09.03.2013 Views

Aero Engine Materials - MTU Aero Engines

Aero Engine Materials - MTU Aero Engines

Aero Engine Materials - MTU Aero Engines

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Aero</strong> <strong>Engine</strong> <strong>Materials</strong><br />

Dr. Wilfried Smarsly<br />

Seminar<br />

Faculty of Mechanical <strong>Engine</strong>ering<br />

Cracow University of Technology<br />

Poland


Key drivers for materials development<br />

Performance<br />

Increase Life-time limits and<br />

increase materials temperature limits<br />

Costs<br />

Cost efficient materials and<br />

processes selection<br />

Reliability &<br />

Durability<br />

More efficient evaluation of materials<br />

and processes with the help of new<br />

simulation tools<br />

Fuel<br />

Consumption<br />

& Emissions<br />

<strong>Materials</strong> with lower specific weight for<br />

the compressor and turbine application<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 2


Requirements: Costs<br />

Complex shaped parts /<br />

50.000 €per Turbine Stage<br />

Efficient and<br />

production processes<br />

Safety requirements<br />

failure rate 1 from 10 9<br />

Modelling & simulation<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH TEW32004 of<br />

failure mechanism<br />

Damage tolerant<br />

materials & design


Requirements: Processability<br />

Availability<br />

of materials and<br />

processes<br />

Certified and efficient<br />

manufacturing<br />

processes<br />

Quality control<br />

concepts and<br />

technologies<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 4


Requirements: Temperatures<br />

Material Properties:<br />

- Creep Strength<br />

- Thermal Mechanical Fatigue Strength<br />

- Microstructural Stability<br />

max. 1200 °C<br />

Vanes<br />

max. 750 °C<br />

Discs<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 5


Requirements: Loads<br />

Material Properties:<br />

- Density<br />

- Yield and Rupture Strength<br />

- Fatigue Strength (LCF)<br />

Centrifugal Loads<br />

Kinetic Energy<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 6


Concepts: Material potential<br />

Strength<br />

Density<br />

MPa<br />

g/cm 3<br />

800<br />

400<br />

200<br />

100<br />

Carbon fiber<br />

reinforced polymers<br />

Ti-MMC<br />

Titanium<br />

alloy (35 Vol. %)<br />

Steel<br />

(20 Vol. %)<br />

Erosion, corrosion, abradable and fretting coatings<br />

TiAl<br />

forgings<br />

powder<br />

Nickel alloy<br />

(40 Vol. %)<br />

Oxidation Thermal barrier<br />

castings<br />

coatings<br />

500 1000 1500<br />

Temperature ° C<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 7


Concepts: Material selection<br />

Titanium Alloys/<br />

Polymer Matrix<br />

Composites<br />

Titanium Alloys<br />

Titanium &<br />

Nickel<br />

Alloys<br />

Nickel<br />

Alloys<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH TEW82004 TiAl<br />

AK 2002/ 1


Concepts: <strong>Materials</strong> volume distribution<br />

Volume %<br />

of material classes<br />

in the engine<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Light Metals (Mg-, Al-alloys)<br />

Ti-alloys<br />

Ni-alloys<br />

steel<br />

1950 1960 1970 1980 1990 2000 2010<br />

Polymer<br />

Matrix<br />

Composites<br />

(PMC)<br />

Metal Matrix<br />

Composites<br />

(MMC)<br />

Titanium-<br />

Aluminide (TiAl)<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 9


Melting metallurgy processing steps<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 10


<strong>Aero</strong> engine disc forging process steps<br />

Melting Forging Cutting<br />

Upsetting Forging Ring Rolling Precision forging<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 11


Applications of steel in areo engines<br />

ROLLER BEARING<br />

hardness<br />

friction and wear resistance<br />

GEAR<br />

hardness of edge layer<br />

toughness in the center of the parts<br />

CASING<br />

SHAFT<br />

young's modulus<br />

fracture<br />

toughness<br />

good deformations and welding properties<br />

high strength<br />

low price<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 12


Titanium alloy compressor parts<br />

Low Pressure<br />

Compressor Stages<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 13


Single crystal turbine blade processing steps<br />

Heating<br />

Zone<br />

Baffle<br />

Crystal<br />

Selector<br />

Cooling<br />

Plate<br />

.<br />

Qab .<br />

QZU v ab<br />

Molten<br />

Alloy<br />

Solidification<br />

Solid<br />

Alloy<br />

Front<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 14<br />

TEW 2004


Creep properties of nickel blade alloys<br />

Dehnung [%]<br />

Elongation %<br />

30<br />

20<br />

10<br />

0<br />

Creep Rupture Life /980°C, 230 MPa<br />

CC<br />

DS<br />

SC<br />

1. Generation<br />

SC SC<br />

2. Generation 3. Generation<br />

0 200 400 600 800 1000<br />

Zeit t [h]<br />

Time h<br />

3. Generation Alloy<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH TEW 152004


Advanced <strong>Materials</strong>: Polymer matrix composite parts<br />

3D <strong>Aero</strong> Design<br />

BENEFITS<br />

• Weight Reduction --50 50 %<br />

• Improved Clearance<br />

Control<br />

• Cost Reduction --70 70 %<br />

Mayor<br />

Advantages<br />

Over Light Metal<br />

Alloys<br />

Stator Cluster<br />

Erosion Resistant Airfoil<br />

CHALLENGES<br />

• FOD Resistant Design<br />

• Erosion Resistant<br />

Coatings<br />

• Quality Testing Methods<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 16


Advanced materials: Titanium matrix rotor parts<br />

Blisk Rotor Assembly MMC - Ring Bling - Rotor Assembly<br />

BENEFITS<br />

• Weight Reduction: --30 30 %<br />

• Improved Compressor Rotor<br />

Dynamics<br />

• Improved Clearance Control<br />

CHALLENGES<br />

• Low Cost Production<br />

• Structural Mechanics<br />

Methods<br />

• Quality Testing Methods<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 17


Advanced materials: Titanium aluminide components<br />

40 %<br />

Weight Reduction<br />

Potential<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH TEW 182004


Future materials technology driver<br />

• Improved Strength<br />

• Increased Temperature Capability<br />

• Improved Predictability and Reliability<br />

• Improved Design & Process Flexibility<br />

• Lower Density<br />

• Reduced Costs<br />

• Reduced Development Time<br />

• Reduced Environmental Impact<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 19


Use of advanced modelling and simulation tools<br />

Usable Modelling<br />

for<br />

R & D System<br />

Costs<br />

Design<br />

• Reduction of Time for Material and Process Development & Optimization<br />

• Reduction of Development Risks<br />

Phase Diagram<br />

Production &<br />

Manufacturing<br />

Process<br />

Microstructure<br />

<strong>Materials</strong> Properties<br />

copyright by <strong>MTU</strong> <strong>Aero</strong> <strong>Engine</strong>s GmbH 20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!