12.06.2013 Views

postupak proračuna sastava produkata pirolize i gasifikacije čvrstog ...

postupak proračuna sastava produkata pirolize i gasifikacije čvrstog ...

postupak proračuna sastava produkata pirolize i gasifikacije čvrstog ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ma{instvo 2(8), 97 – 104, (2004) S.\uri},...: POSTUPAK PRORA^UNA SASTAVA...<br />

POSTUPAK PRORA^UNA SASTAVA PRODUKATA PIROLIZE<br />

I GASIFIKACIJE ^VRSTOG OTPADA<br />

Dr. Slavko \uri}, mr Ranko Bo`i~kovi}, mr Petko Stanojevi}, Vi{a tehni~ka {kola, Doboj<br />

REZIME<br />

U radu je izlo`en model koji omogu}ava odre|ivanje <strong>sastava</strong> heterogene ravnote`ne m e{avine pri<br />

odvijanju hemijske reakcije C+H2O ⇔ CO+H2. Analizira se uticaj temperature <strong>gasifikacije</strong> na sastav<br />

ravnote`ne m e{avine reakcije C+H2O<br />

⇔ CO+H2. Analiza ukazuje da pri temperaturi <strong>gasifikacije</strong><br />

vi{oj od 658,7 °C (931,7 K) u ravnote`noj m e{avini ne postoji ~vrsta faza<br />

(xc ≤ 0).<br />

Klju~ne re~i: hemijska ravnote`a, piroliza, gasifikacija, udio ~vrste faze, temperatura<br />

METHOD OF CALCULATION PRODUCTS CONTENT OF PYROLISIS<br />

AND GASIFICATION OF REFUSE<br />

PhD Slavko \uri}, MSc Ranko Bo`i~kovi}, MSc Petko Stanojevi}, Technical<br />

College, Doboj<br />

SUMMARY<br />

In this work is shown model that provides clear determination of heterogeneous equilibrium mixture<br />

during the chemical reaction C+H 2O ⇔ CO+H 2. The influence of gasification temperature is<br />

analized on equilibrium mixture content reaction C+H 2O ⇔ CO+H 2. Analysis showing that by the<br />

temperature of gasification higher than 658,7 °C (931,7 K) in the equilibrium mixture there is no<br />

firm phase (x c ≤ 0).<br />

Key words: chemical equilibrium, pyrolisis, gasification, firm phase portion, temperature<br />

1. UVOD<br />

Sagorijevanje ~vrstog otpada i uklanjanje gradskog<br />

sme}a predstavlja va`an problem. Razvijen je niz<br />

<strong>postupak</strong>a za sagorijevanje otpada. Procesi <strong>pirolize</strong><br />

i <strong>gasifikacije</strong> ~vrstog otpada omogu}uju dobijanje<br />

kvalitetnog gasovitog goriva. Sastav <strong>produkata</strong><br />

<strong>gasifikacije</strong> ~ini osnovnu veli~inu za postavljanje<br />

jedna~ina materijalnog i toplotnog bilansa. Pri<br />

prora~unu <strong>sastava</strong> ravnote`ne mje{avine <strong>produkata</strong><br />

<strong>gasifikacije</strong> u literaturi se ne uzima udio ~vrste<br />

faze (ugljenika). Kako se udio ~vrste faze u<br />

heterogenoj ravnote`noj mje{avini odre|uje samo<br />

mjerenjem [1, 2] to zna~aj ovog rada jesu razlozi<br />

izrade ovog modela i njegova primjena u<br />

in`injerskoj praksi.<br />

- 97 -<br />

1. INTRODUCTION<br />

Refuse combustion and city trash removal presents<br />

a significant problem. There are many methods for<br />

refuse combustion. Pyrolisis and gasification of<br />

refuse provide getting quality gas fuel. Products<br />

content of gasification is the basic parametre for<br />

setting equations of material and thermo bilance.<br />

By the calculation of products content of<br />

equilibrium mixture of gasification products there is<br />

no firm phase portion (carbon) in the literature.<br />

Firm phase portion in the heterogeneous mixture is<br />

determined by measure [1, 2] so this work is<br />

important for the making of this model and its<br />

implementation in engineering practice.


Ma{instvo 2(8), 97 – 104, (2004) S.\uri},...: POSTUPAK PRORA^UNA SASTAVA...<br />

2. PRORA^UN<br />

Pri procesima <strong>gasifikacije</strong> ~vrstog goriva (sme}a)<br />

odvijaju se reakcije [3]:<br />

C+CO 2 ⇔ 2⋅CO, (1)<br />

C+2⋅H 2 ⇔ CH 4, (2)<br />

C+H 2O ⇔ CO+H 2. (3)<br />

Reakcije (1) do (3) ne de{avaju se kontinualno jedna<br />

za drugom. Dolazi do eliminacije jedne reakcije<br />

drugima, ubrzavanja i usporavanja tokova procesa.<br />

Prora~un <strong>sastava</strong> heterogene ravnote`ne mje{avine<br />

reakcije C+CO2 ⇔ 2⋅CO prikazan je u literaturnom<br />

izvoru [4], a prora~un <strong>sastava</strong> heterogene<br />

ravnote`ne me{avine reakcija<br />

C+2⋅H2 ⇔ CH4 i C+H2O ⇔ CO+H2 pod<br />

pretpostavkom da se reakcije odvijaju istovremeno,<br />

prikazan je u literaturnom izvoru [5]. U cilju<br />

detaljnijeg sagledavanja procesa <strong>gasifikacije</strong> ~vrstog<br />

otpada u radu je analiziran uticaj temperature<br />

<strong>gasifikacije</strong> na sastav ravnote`ne heterogene<br />

mje{avine pri odvijanju reakcije C+H2O ⇔ CO+H2. U radu su prikazana dva na~ina prora~una <strong>sastava</strong>:<br />

prora~un na osnovu broja molova i prora~un na<br />

osnovu odnosa zbira broja molova.<br />

2.1. Prora~un na osnovu broja molova<br />

Pri odvijanju reakcije C+H 2O ⇔ CO+H 2 broj<br />

kilomolova komponenata u mje{avini posle<br />

uspostavljanja hemijske ravnote`e iznosi:<br />

- ugljenik nC=a-z, kmol, (4)<br />

- vodena para nH b z,<br />

kmol, (5)<br />

2O<br />

= −<br />

- ugljen-monoksid nCO=z, kmol, (6)<br />

- vodonik nH = z,<br />

kmol, (7)<br />

2<br />

gdje su:<br />

a = C / 12 - broj kilomolova ugljenika koji stupa u<br />

reakciju C+H2O ⇔ CO+H2, kmol,<br />

b = W / 18 - broj kilomolova vodene pare koja stupa<br />

u reakciju C+H2O ⇔ CO+H2, kmol,<br />

C, W - maseni udjeli ugljenika i vlage u ~vrstom<br />

gorivu (otpadu), kg / kg,<br />

z-broj kilomolova ugljen-monoksida (vodonika) u<br />

ravnote`noj mje{avini reakcije C+H2O⇔CO+H2. Pri odvijanju razmatrane reakcije ukupan broj<br />

kilomolova u mje{avini posle uspostavljanja<br />

hemijske ravnote`e je:<br />

- heterogena mje{avina (~vrsta i gasovita faza)<br />

n ( s)<br />

n( s )<br />

= nC<br />

+ nH<br />

,<br />

2O<br />

+ nCO<br />

+ nH<br />

kmol,<br />

2<br />

= ( a − z)<br />

+ ( b − z)<br />

+ z + z = a + b,<br />

kmol, (8)<br />

- 98 -<br />

2. CALCULATION<br />

By the proceses of refuse gasification (trash) there<br />

are following reactions [3]:<br />

C+CO 2 ⇔ 2⋅CO, (1)<br />

C+2⋅H 2 ⇔ CH 4, (2)<br />

C+H 2O ⇔ CO+H 2. (3)<br />

Reactions from (1) to (3) do not occur continously<br />

one after another. There is one by another reaction,<br />

acceleration and slowing down of process.<br />

Calculation of heterogeneous equilibrium mixture<br />

content reaction C+CO2 ⇔ 2⋅CO is shown in the<br />

literary source [4], and calculation of<br />

heterogeneous equilibrium mixture reactions C+2⋅H2 ⇔ CH4 and C+H2O ⇔ CO+H2 assuming that<br />

reactions are simultaneous is shown in the literary<br />

source [5]. For the purpose of detail view of<br />

gasification process of refuse in the work is<br />

analized the influence of gasification temperature<br />

mixture during the reaction C+H2O ⇔ CO+H2. In the work are shown two methods of content<br />

calculation: calculation based on mole number and<br />

calculation based on summary of mole number ratio.<br />

2.1. Calculation based on mole number<br />

During the reaction C+H 2O ⇔ CO+H 2 kilomole<br />

number in the mixture after setting chemical<br />

equilibrium is:<br />

- carbon nC=a-z, kmol, (4)<br />

- water vapour nH b z,<br />

kmol, (5)<br />

2O<br />

= −<br />

- carbon-monoxide nCO=z, kmol, (6)<br />

- hydrogen nH = z,<br />

kmol, (7)<br />

2<br />

there are:<br />

a = C / 12 - kilomole number of carbon in the<br />

reaction C+H2O ⇔ CO+H2, kmol,<br />

b = W / 18 - kilomole number of water vapour in<br />

the reaction C+H2O ⇔ CO+H2, kmol,<br />

C, W - mass portions of carbon and vapour in<br />

fuel (refuse), kg / kg,<br />

z - kilomole number of carbon-monoxide (hydrogen)<br />

in equilibrium mixture reaction C+H2O⇔CO+H2. During the disscused reaction the total number of<br />

kilomoles in the mixture after chemical equilibrium<br />

setting is:<br />

- heterogeneous mixture (firm and gassy phase)<br />

n ( s)<br />

= nC<br />

+ nH<br />

,<br />

2O<br />

+ nCO<br />

+ nH<br />

kmol,<br />

2<br />

n(<br />

s ) = ( a − z)<br />

+ ( b − z)<br />

+ z + z = a + b, kmol, (8)


Ma{instvo 2(8), 97 – 104, (2004) S.\uri},...: POSTUPAK PRORA^UNA SASTAVA...<br />

- homogena mje{avina (samo gasovita faza)<br />

n ( g)<br />

= nH<br />

,<br />

2O<br />

+ nCO<br />

+ nH<br />

kmol,<br />

2<br />

n( g ) = ( b − z)<br />

+ z + z = b + z ,kmol. (9)<br />

Molski udio komponenata u mje{avini posle<br />

uspostavljanja hemijske ravnote`e je:<br />

- heterogena mje{avina (~vrsta i gasovita faza)<br />

n a z kmol<br />

x C −<br />

C = = , ,<br />

(10)<br />

n(<br />

s)<br />

a + b kmol<br />

nH2O<br />

b − z kmol<br />

xH<br />

, ,<br />

2O = =<br />

(11)<br />

n(<br />

s)<br />

a + b kmol<br />

n z kmol<br />

x CO<br />

CO = = , ,<br />

(12)<br />

n(<br />

s)<br />

a + b kmol<br />

nH2<br />

z kmol<br />

xH<br />

= = , ,<br />

(13)<br />

2 n(<br />

s)<br />

a + b kmol<br />

- homogena mje{avina (samo gasovita faza)<br />

nH2O<br />

b − z kmol<br />

yH<br />

, ,<br />

2O = =<br />

(14)<br />

n(<br />

g)<br />

b + z kmol<br />

n z kmol<br />

y CO<br />

CO = = , ,<br />

(15)<br />

n(<br />

g)<br />

b + z kmol<br />

nH2<br />

z kmol<br />

yH<br />

= = , .<br />

(16)<br />

2 n(<br />

g)<br />

b + z kmol<br />

Parcijalni pritisci komponenata u homogenoj<br />

(gasovitoj) mje{avini posle uspostavljanja hemijske<br />

ravnote`e su:<br />

b − z<br />

pH y p p,<br />

Pa,<br />

2O=<br />

H2O<br />

⋅ = ⋅<br />

(17)<br />

b + z<br />

z<br />

pCO = yCO<br />

⋅ p = ⋅ p,<br />

Pa,<br />

(18)<br />

b + z<br />

z<br />

pH = y p p,<br />

Pa,<br />

2 H ⋅ = ⋅<br />

(19)<br />

2 b + z<br />

gdje je:<br />

p - ukupan pritisak u reaktorskom prostoru posle<br />

uspostavljanja ravnote`e, Pa.<br />

Konstanta hemijske ravnote`e reakcije C+H 2O ⇔<br />

CO+H 2 definisana je izrazom:<br />

- homogenous mixture (gassy phase, only)<br />

n ( g)<br />

= nH<br />

,<br />

2O<br />

+ nCO<br />

+ nH<br />

kmol,<br />

2<br />

n( g ) = ( b − z)<br />

+ z + z = b + z ,kmol. (9)<br />

Mole portion of the components in the mixture<br />

after chemical equilibrium setting is:<br />

- heterogeneous mixture (firm and gassy phase)<br />

n a z kmol<br />

x C −<br />

C = = , ,<br />

(10)<br />

n(<br />

s)<br />

a + b kmol<br />

nH2O<br />

b − z kmol<br />

xH<br />

, ,<br />

2O = =<br />

(11)<br />

n(<br />

s)<br />

a + b kmol<br />

n z kmol<br />

x CO<br />

CO = = , ,<br />

(12)<br />

n(<br />

s)<br />

a + b kmol<br />

nH2<br />

z<br />

xH<br />

= =<br />

2 n(<br />

s)<br />

a + b<br />

kmol<br />

, , (13)<br />

kmol<br />

- homogenous mixture (gassy phase, only)<br />

nH2O<br />

b − z kmol<br />

yH<br />

, ,<br />

2O = =<br />

(14)<br />

n(<br />

g)<br />

b + z kmol<br />

n z kmol<br />

y CO<br />

CO = = , ,<br />

(15)<br />

n(<br />

g)<br />

b + z kmol<br />

nH2<br />

z kmol<br />

yH<br />

= = , .<br />

(16)<br />

2 n(<br />

g)<br />

b + z kmol<br />

Partial pressures of components in the<br />

homogenous (gassy) mixture after chemical<br />

equilibrium are:<br />

b − z<br />

p H y p p,<br />

Pa,<br />

2O<br />

= H 2O<br />

⋅ = ⋅<br />

(17)<br />

b + z<br />

z<br />

pCO = yCO<br />

⋅ p = ⋅ p,<br />

Pa,<br />

(18)<br />

b + z<br />

z<br />

pH = y p p,<br />

Pa,<br />

2 H ⋅ = ⋅<br />

(19)<br />

2 b + z<br />

there is:<br />

p - total pressure in the reactor space after<br />

chemical equilibrium setting, Pa.<br />

Chemical equilibrium reaction constant C+H 2O ⇔<br />

CO+H 2 is defined by the formula:<br />

z z<br />

p<br />

p p 2<br />

CO ⋅ p ⋅ ⋅ ⋅<br />

H2<br />

z<br />

K<br />

b z b z<br />

p = = + + = p ⋅ , Pa.<br />

(20)<br />

p<br />

b − z<br />

2 2<br />

H2O<br />

⋅ p b − z<br />

b + z<br />

- 99 -


Ma{instvo 2(8), 97 – 104, (2004) S.\uri},...: POSTUPAK PRORA^UNA SASTAVA...<br />

Prema literaturnom izvoru [3] konstanta hemijske<br />

ravnote`e reakcije C+H 2O ⇔ CO+H 2 odre|ena je<br />

izrazom:<br />

log<br />

K p<br />

=<br />

According to literary source [3] constant of<br />

chemical equilibrium reaction C+H 2O ⇔ CO+H 2 is<br />

determined by the formula:<br />

4825,<br />

986<br />

−3<br />

−6<br />

2<br />

−28,<br />

45778 − − 5,<br />

671122⋅10<br />

⋅T<br />

+ 0,<br />

8255488⋅10<br />

⋅T<br />

+ 14,<br />

515760⋅<br />

logT<br />

T<br />

Rje{avanjem jedna~ine (20) po nepoznatoj veli~ini z<br />

pri datom a, b, p, K p dobija se:<br />

K p<br />

z = b ⋅ .<br />

(22)<br />

p + K<br />

p<br />

Smjenom izra~unate vrijednosti veli~ine z u<br />

jedna~ine (10) do (16) dobijaju se broj~ane<br />

vrijednosti molskih udjela komponenata u<br />

ravnote`noj heterogenoj odnosno u ravnote`noj<br />

homogenoj (gasovitoj) mje{avini.<br />

2.2. Prora~un na osnovu odnosa zbira<br />

broja molova<br />

U ravnote`noj mje{avini postoje ~etiri komponente<br />

x C , x H O , x CO i x<br />

2<br />

H2<br />

~ije molske udjele treba<br />

odrediti. Jedna~ine materijalnog bilansa za<br />

razmatrane komponente su:<br />

(21)<br />

After solution of equation (20) with unknown<br />

parametre z and parametres a, b, p, K p we have:<br />

K p<br />

z = b ⋅ .<br />

(22)<br />

p + K<br />

p<br />

After parametre z in the equations from (10) to<br />

(16) we get number values of mole portions of<br />

components in the equilibrium heterogeneous that<br />

is in the equilibrium homogenous (gassy) mixture.<br />

2.2 Calculation based on summary of<br />

mole number ratio<br />

There are four components in the equilibrium<br />

mixture xC<br />

, xH<br />

O , xCO<br />

and xH<br />

, their mole portions<br />

2<br />

should be determined. Material balance equations<br />

for the components are:<br />

x C + xH<br />

O + xCO<br />

+ xH<br />

= 1,<br />

(23) xC<br />

+ xH<br />

O + xCO<br />

+ xH<br />

= 1,<br />

(23)<br />

2<br />

ΣC<br />

xC<br />

+ xCO<br />

=<br />

= I,<br />

ΣH<br />

2 xH<br />

x<br />

2O<br />

+ H2<br />

ΣC<br />

xC<br />

+ xCO<br />

=<br />

= J,<br />

ΣO2<br />

0,<br />

5⋅<br />

xH<br />

0,<br />

5 x<br />

2O<br />

+ ⋅ CO<br />

K<br />

p<br />

2<br />

ΣC<br />

xC<br />

+ xCO<br />

(24) =<br />

= I,<br />

ΣH<br />

2 xH<br />

x<br />

2O<br />

+ H2<br />

ΣC<br />

xC<br />

+ xCO<br />

(25) =<br />

= J,<br />

ΣO2<br />

0,<br />

5⋅<br />

xH<br />

0,<br />

5 x<br />

2O<br />

+ ⋅ CO<br />

pCO<br />

⋅ pH<br />

x<br />

2<br />

CO ⋅ xH<br />

p<br />

2<br />

CO ⋅ pH<br />

x<br />

2<br />

CO ⋅ xH<br />

2<br />

= = p ⋅<br />

, (26) K p = = p ⋅<br />

, (26)<br />

p<br />

x ⋅(<br />

1−<br />

x )<br />

p<br />

x ⋅(<br />

1−<br />

x )<br />

H2O<br />

H2O<br />

gdje su:<br />

ΣC, ΣH<br />

2 , ΣO<br />

2 - ukupan broj kilomolova ugljenika,<br />

vodonika i kiseonika koji stupaju u reaktorski<br />

prostor,<br />

a 3 C<br />

I = = ⋅ - pomo}na veli~ina,<br />

b 2 W<br />

a C<br />

J = 2 ⋅ = 3⋅<br />

- pomo}na veli~ina,<br />

b W<br />

C, W - maseni udio ugljenika i vlage u ~vrstom<br />

gorivu (otpadu),kg / kg.<br />

C<br />

- 100 -<br />

2<br />

H2O<br />

2<br />

H2O<br />

2<br />

C<br />

(24)<br />

(25)<br />

there are:<br />

ΣC, ΣH<br />

2 , ΣO<br />

2 - total number of kilomoles of<br />

carbon,hydrogen and oxygen that are in the<br />

reactor space,<br />

a 3 C<br />

I = = ⋅ - aid parametre,<br />

b 2 W<br />

a C<br />

J = 2 ⋅ = 3⋅<br />

- aid parametre,<br />

b W<br />

C, W - mass portion of carbon and vapour in fuel<br />

(refuse),kg / kg.


Ma{instvo 2(8), 97 – 104, (2004) S.\uri},...: POSTUPAK PRORA^UNA SASTAVA...<br />

Rje{avanjem sistema od ~etiri jedna~ine sa ~etiri<br />

nepoznate veli~ine x C , x H O , x CO i x H dobija se:<br />

2<br />

2<br />

2<br />

A⋅ x H B x C O,<br />

2O<br />

+ ⋅ H2O+<br />

=<br />

(27)<br />

gdje su:<br />

3. REZULTATI PRORA^UNA<br />

After solution of four system equations with four<br />

unknown parameters xC<br />

, xH<br />

O , xCO<br />

and xH<br />

we get:<br />

2<br />

A⋅ x H B x C O,<br />

2O<br />

+ ⋅ H2O+<br />

= (27)<br />

there are:<br />

2<br />

A = J ⋅(<br />

1+<br />

I)<br />

⋅ ( K p + 2 ⋅ p),<br />

B = −(<br />

1+<br />

I)<br />

⋅(<br />

2⋅I<br />

⋅(<br />

Kp<br />

+ p)<br />

+ J ⋅(<br />

Kp<br />

+ 2⋅<br />

p)<br />

), C = 2 ⋅ p ⋅ I<br />

Prora~un je ura|en sa vrijednostima pritiska<br />

p=1⋅10 5 Pa i <strong>sastava</strong> goriva C=22,13%, H=1,89%,<br />

O=11,61%, N=0,36%, S=0,31%, W=50%,<br />

A=13,70% [6].<br />

Model prora~una <strong>sastava</strong> ravnote`ne mje{avine pri<br />

odvijanju reakcije C+H 2O ⇔ CO+H 2 kori{}en je i<br />

potvr|en u re{avanju prakti~nih in`injerskih<br />

problema (gasifikacija uglja i drvenih otpadaka,<br />

piroliza otpada). Pri porastu reakcione temperature<br />

opada molski udio ugljenika i vodene pare u<br />

ravnote`noj mje{avini (tabela 1).<br />

1 kmol<br />

xH = − x , ,<br />

2 H<br />

1 I 2O<br />

+ kmol<br />

2<br />

2 ⋅ I 2 − 2 ⋅ J − J kmol<br />

xCO = +<br />

⋅ xH<br />

, ,<br />

J ( 1 I)<br />

J<br />

2O<br />

⋅ +<br />

kmol<br />

2<br />

I ⋅ ( J − 2)<br />

2 − 2 ⋅ J − J kmol<br />

xC = −<br />

⋅ xH<br />

, .<br />

J ( 1 I)<br />

J<br />

2O<br />

⋅ +<br />

kmol<br />

3. CALCULATION RESULTS<br />

Calculation is done with pressure values<br />

p=1⋅10 5 Pa and fuel content C=22,13%, H=1,89%,<br />

O=11,61%, N=0,36%, S=0,31%, W=50%,<br />

A=13,70% [6].<br />

Model of calculation of equilibrium mixture content<br />

during the reaction C+H 2O ⇔ CO+H 2 is used and<br />

confirmed by the solution of practical engineering<br />

problems (coal gasification and wood refuse, refuse<br />

pyrolisis). By the higher reaction temperature mole<br />

portion of carbon and water vapour is going down<br />

in the equilibrium mixture (table 1).<br />

Tabela 1. Prora~un ravnote`nog <strong>sastava</strong> heterogene mje{avine pri odvijanju reakcije C+H 2O ⇔ CO+H 2<br />

Table 1. Calculation of equilibrium content of the heterogeneous mixture during the reaction C+H 2O ⇔ CO+H 2<br />

T,K<br />

kmol<br />

x C,<br />

kmol<br />

kmol<br />

xH<br />

O,<br />

2 kmol<br />

kmol<br />

xCO,<br />

kmol<br />

kmol<br />

x H ,<br />

η ,%<br />

2<br />

C η H O,%<br />

kmol<br />

2<br />

350 0,399002 0,600998 0,000000 0,000000 0,00 0,00<br />

400 0,398996 0,600990 0,000007 0,000007 0,00 0,00<br />

450 0,398946 0,600942 0,000056 0,000056 0,01 0,00<br />

500 0,398687 0,600683 0,000315 0,000315 0,08 0,05<br />

550 0,397692 0,599688 0,001310 0,001310 0,33 0,22<br />

600 0,394646 0,596642 0,004356 0,004356 1,09 0,72<br />

650 0,386850 0,588846 0.012152 0.012152 3.04 2.02<br />

700 0,369554 0.571548 0,029449 0,029449 7,38 4,90<br />

750 0,335530 0,537524 0,063473 0,063473 15,91 10,56<br />

800 0,275853 0,477847 0,123150 0,123150 30,86 20,49<br />

850 0,184706 0,386702 0,214296 0,214296 53,71 35,66<br />

900 0,070950 0,272944 0,328053 0,328053 82,22 54,58<br />

931,7 0,000002 0,201998 0,399000 0,399000 100,00 66,39<br />

931,71 -0,000019 0,201976 0,399021 0,399021 100,00 66,39<br />

- 101 -<br />

2<br />

,<br />

2


Ma{instvo 2(8), 97 – 104, (2004) S.\uri},...: POSTUPAK PRORA^UNA SASTAVA...<br />

Pri reakcionoj temperaturi vi{oj od 658,7°C (931,7K)<br />

u ravnote`noj mje{avni ne postoji ~vrsta faza (x C≤o)<br />

(tabela1 i slika 1). To prakti~no zna~i da pri<br />

reakcionoj temperaturi vi{oj od 658,7°C u kontaktu<br />

sa vodenom parom izreaguje sav ugljenik (slika 2).<br />

Molski udio,kmol/kmol<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

450 500 550 600 650 700 750 800 850 900 932<br />

T,K<br />

By the reaction temperature higher than 658,7°C<br />

(931,7K) in the equilibrium mixture there are no<br />

firm phase (x C≤o) (Table 1 and Figure 1). That<br />

means that by the reaction temperature higher than<br />

658,7°C in contact with water vapour all carbon is<br />

reacted (Figure 2).<br />

Slika 1 . Zavisnost molskih udjela komponenata u heterogenoj ravnote`noj mje{avini reakcije C+H2O<br />

⇔<br />

CO+H2 od reakcione temperature<br />

Figure 1. Dependence of mole portions components in the heterogeneous mixture reaction C+H2O ⇔<br />

CO+H2 from reaction temperature<br />

Molski udio,kmol/kmol<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

450 500 550 600 650 700 750 800 850 900 932<br />

Slika 2. Zavisnost stepena reagovanja ugljenika i vodene pare pri odvijanju reakcije C+H 2O ⇔ CO+H 2 od<br />

reakcione temperature<br />

Figure 2. Dependence of carbon reaction degree and water vapour during the reaction C+H 2O ⇔ CO+H 2<br />

from the reaction temperature<br />

Rezultati prora~una <strong>sastava</strong> homogene mje{avine<br />

(samo gasovita faza) prikazani su u tabeli 2. Pri<br />

porastu reakcione temperature raste molski udeo<br />

ugljen-monoksida i vodonika u homogenoj<br />

mje{avini, dok molski udfeo vodene pare opada<br />

(tabela 2 i slika 3).<br />

T,K<br />

- 102 -<br />

ηC,%<br />

ηH2O ,%<br />

xC<br />

xH2O<br />

xCO<br />

xH2<br />

Calculation results homogenous mixture content<br />

(gassy phase, only) are shown in the table 2. By<br />

the higher mole temperature mole portion of<br />

carbon-monoxide and hydrogen is bigger in the<br />

homogenous mixture, mole portion of water vapour<br />

is going down (Table 2 and Figure 3).


Ma{instvo 2(8), 97 – 104, (2004) S.\uri},...: POSTUPAK PRORA^UNA SASTAVA...<br />

Tabela 2. Prora~un ravnote`nog <strong>sastava</strong> homogene (gasovite) mje{avine pri odvijanju reakcije C+H 2O ⇔ CO+H 2<br />

Table 2. Calculation of equilibrium content of homogenous (gassy) mixture during the reaction C+H 2O ⇔<br />

CO+H 2<br />

Molski udio,kmol/kmol<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

kmol<br />

T,K<br />

yH<br />

O,<br />

2 kmol<br />

kmol<br />

yCO,<br />

kmol<br />

kmol<br />

yH<br />

,<br />

2 kmol<br />

350 1,000000 0,000000 0,000000<br />

400 0.999978 0,000011 0,000011<br />

450 0,999812 0,000094 0,000094<br />

500 0,998952 0,000524 0,000524<br />

550 0,995650 0,002175 0,002175<br />

600 0,985609 0,007195 0,007195<br />

650 0,960360 0,019820 0,019820<br />

700 0,906576 0,046712 0,046712<br />

750 0,808952 0,095524 0,095524<br />

800 0,659878 0,170061 0,170061<br />

850 0,474310 0,262845 0,262845<br />

900 0,293789 0,353105 0,353105<br />

931,7 0,201998 0,399001 0,399001<br />

931,71 0,201972 0,399014 0,399014<br />

450 500 550 600 650 700 750 800 850 900 932<br />

T,K<br />

Slika 3. Zavisnost molskih udjela u homogenoj ravnote`noj mje{avini pri odvijanju reakcije C+H2O ⇔<br />

CO+H2 od reakcione temperature<br />

Figure 3 . Dependence of mole portions in the homogenous equilibrium mixture during the reaction C+H2O<br />

⇔ CO+H2 from reaction temperature<br />

4. ZAKLJU^AK<br />

Izlo`eni <strong>postupak</strong> nastao je rje{avanjem prakti~nih<br />

in`injerskih problema kao {to su piroliza i<br />

gasifikacija ~vrstog goriva. Prora~un ukazuje da pri<br />

temperaturi dimnih gasova vi{oj od 658,7°C<br />

(931,7K) u ravnote`noj mje{avini ne postoji ~vrsta<br />

faza (x C≤0). Pokazano je da pri porastu reakcione<br />

temperature opada molski udeo ugljenika i vodene<br />

pare, dok molski udio ostalih komponenata u<br />

mje{avini raste. Rezultati prora~una <strong>sastava</strong><br />

ravnote`ne mje{avine pri odvijanju reakcije C+H 2O<br />

⇔ CO+H 2 u skladu su sa rezultatima mjerenja u<br />

praksi.<br />

- 103 -<br />

4. SUMMARY<br />

yH2O<br />

yCO<br />

yH2<br />

Shown method is made by the solution of the<br />

practical engineering problems such as pyrolisis<br />

and fuel gasification. Calculation showing that by<br />

the temperature of smoke gases higher than<br />

658,7°C (931,7K) in the equilibrium mixture there is<br />

no firm phase (x C≤0). It is shown that by the<br />

increasing of reaction temperature mole portion of<br />

carbon and water vapour is going down, while<br />

mole portion of other components is going up.<br />

Calculation results of contents of equilibrium<br />

mixture during the reaction C+H 2O ⇔ CO+H 2 are<br />

according to the results in practice.


Ma{instvo 2(8), 97 – 104, (2004) S.\uri},...: POSTUPAK PRORA^UNA SASTAVA...<br />

5. LITERATURA - REFERENCES<br />

[1] Bilodeau, J. F., Therien, N., Proulx, P., Czernik,<br />

S., Chornet, E.: A Mathematical Model of<br />

Fluidised Bed Biomass Gasification,<br />

Canadian Journal of Chemical Engineering,<br />

(1993), 71, 8, 549 - 557.<br />

[2] Wang, Y., Kinoshita, C. M.: Kinetic model of<br />

biomass gasification, Solar Energy,(1993), 51,1,1<br />

- 25.<br />

[3] Gumz, W.: Kurzes Handbuch der Brennstoff<br />

und Feuerungstechnik, Springer - Verlag,<br />

Berlin,1962.<br />

- 104 -<br />

[4] Kuburovi},M.: Transactions, Vol. 27 (1998),<br />

No.1, 1-6, Belgrade, Yugoslavia<br />

[5] \uri},S., Kuburovi},M., Jovovi},A.: Transactions,<br />

Vol.30 (2002),No.2, 47-52, Belgrade,Yugoslavia<br />

[6] Kuburovi},M., Mogu}nosti kori{}enja energije i<br />

materija iz ~vrstih otpadaka, magistarski rad,<br />

Ma{inski fakultet, Beograd, 1980.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!