12.10.2013 Views

Challenges of Fluid Flow in Absorbing Porous Media ... - FEFlow

Challenges of Fluid Flow in Absorbing Porous Media ... - FEFlow

Challenges of Fluid Flow in Absorbing Porous Media ... - FEFlow

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Challenges</strong> <strong>of</strong> <strong>Fluid</strong> <strong>Flow</strong> <strong>in</strong><br />

Absorb<strong>in</strong>g <strong>Porous</strong> <strong>Media</strong> & Th<strong>in</strong> Layers<br />

Rodrigo Rosati*<br />

Pr<strong>in</strong>ciple Eng<strong>in</strong>eer,<br />

Procter & Gamble - Baby Care R&D<br />

FEFLOW 2009 Conference<br />

Berl<strong>in</strong>/Potsdam, Germany<br />

September 15, 2009<br />

Procter & Gamble © 2009<br />

Dr. Mattias Schmidt<br />

Research Fellow – Victor Mills Society,<br />

Procter & Gamble - Baby Care R&D


ABOUT THE PRESENTER<br />

Rodrigo Rosati is a Pr<strong>in</strong>cipal Eng<strong>in</strong>eer at P&G,<br />

work<strong>in</strong>g <strong>in</strong> the Baby Care R&D at Schwalbach<br />

Technical Center, Germany.<br />

He jo<strong>in</strong>ed P&G <strong>in</strong> 1999, after graduat<strong>in</strong>g <strong>in</strong> Chemical<br />

Eng<strong>in</strong>eer<strong>in</strong>g at the University <strong>of</strong> Salerno, Italy. He<br />

has worked <strong>in</strong> the area <strong>of</strong> fluid flow model<strong>in</strong>g and<br />

absorbent core design s<strong>in</strong>ce 2003.<br />

Procter & Gamble © 2009


• P&G at a glance<br />

Outl<strong>in</strong>e<br />

• Importance <strong>of</strong> Model<strong>in</strong>g & Simulation for R&D<br />

• <strong>Fluid</strong> <strong>Flow</strong> <strong>in</strong> Hygiene Products<br />

– Introduction<br />

– Introduction to Diaper Cores and AGM<br />

– Impact <strong>of</strong> AGM swell<strong>in</strong>g on fluid flow<br />

• Typical challenges and opportunities for<br />

collaboration<br />

Procter & Gamble © 2009


It began with Soap & Candles…<br />

Founded <strong>in</strong><br />

1837<br />

Procter & Gamble © 2009<br />

•Fifth Oldest<br />

Company on the<br />

Fortune 50…<br />

Procter & Gamble © 2009<br />

William<br />

Procter<br />

Candle Maker<br />

James<br />

Gamble<br />

Soap Maker


P&G at a Glance<br />

First Consumer goods company <strong>in</strong> the world<br />

More than 300 brands<br />

More than 5 Billion consumers <strong>in</strong> more than 160<br />

countries<br />

Operations <strong>in</strong> more than 80 countries<br />

140 plants and 25 R&D centers worldwide<br />

ca. 138.000 employees<br />

Net sales: $83 Billion<br />

Net earn<strong>in</strong>gs: $12 Billion<br />

R&D Investment: >$2 Billion<br />

Procter & Gamble © 2009


Billion-Dollar<br />

Brands<br />

Procter & Gamble © 2009


Importance <strong>of</strong><br />

Model<strong>in</strong>g & Simulation for R&D<br />

Procter & Gamble © 2009


"<br />

!<br />

"<br />

#<br />

#<br />

Procter & Gamble © 2009<br />

!


Typical <strong>Challenges</strong><br />

Products must perform when used<br />

… But face Fundamental<br />

Eng<strong>in</strong>eer<strong>in</strong>g Contradictions.<br />

•Materials … strong but s<strong>of</strong>t—even wet, stretch not<br />

break, breath but conta<strong>in</strong>, break…not tear/selectively<br />

tear.<br />

•Liquids … mixtures can’t separate, must stay where<br />

applied…but dispense easily.<br />

•Packages … design is key, be strong but light, never<br />

leak but open easily.<br />

Procter & Gamble © 2009


Time<br />

days<br />

hrs<br />

sec<br />

ms<br />

ns<br />

fs<br />

Computational<br />

Chemistry<br />

Quantum<br />

Chemistry<br />

- subatomic<br />

Scales <strong>of</strong> Model<strong>in</strong>g<br />

Molecular<br />

Mechanics<br />

-atoms,<br />

molecules<br />

Coarse Gra<strong>in</strong><br />

or Mesoscale<br />

Model<strong>in</strong>g –<br />

Polymers<br />

angstroms nm microns mm m<br />

Distance<br />

Procter & Gamble © 2009<br />

Cont<strong>in</strong>uum or<br />

F<strong>in</strong>ite Difference<br />

F<strong>in</strong>ite Element<br />

MechEng/ChE<br />

(Closed Form<br />

Equations)<br />

Industrial Eng/<br />

Operations Resrch<br />

(Statistical, Discrete<br />

Event, Agent Based)<br />

Computer Aided<br />

Eng<strong>in</strong>eer<strong>in</strong>g (CAE)<br />

km


<strong>Fluid</strong> <strong>Flow</strong> <strong>in</strong><br />

Absorbent Hygiene Products<br />

Procter & Gamble © 2009


Typical Liquid Handl<strong>in</strong>g Tasks <strong>in</strong> BabyCare<br />

DIAPERS WIPES<br />

Ur<strong>in</strong>e absorb & reta<strong>in</strong> remove (from sk<strong>in</strong>)<br />

BM conta<strong>in</strong> & absorb remove (from sk<strong>in</strong>)<br />

Lotion melt, release & deposit release & deposit (spread)<br />

(spread)(onto sk<strong>in</strong>) (onto sk<strong>in</strong>)<br />

Procter & Gamble © 2009


Typical BabyCare Liquids<br />

Viscosity Surf. Tension Key <strong>in</strong>gredients<br />

Ur<strong>in</strong>e ~1 cP ~50 ... 65 mN/m water, salts, urea,<br />

surfactants<br />

BM ~10 6 ... 10 15 cP ~30 ... 60 mN/m water, bacteria, fibers,<br />

muc<strong>in</strong>s, surfactants, salts<br />

Lotion solid at RT low (temp dep.) petrolatum, stearyl alcohol,<br />

(Diaper) aloe<br />

Lotion ~1 ... 500 cP ~30 ... 65 mN/m Water, silicone (2-3%),<br />

(Wipes Wipes) polymer (stabylen),<br />

preservatives, surfactant<br />

Procter & Gamble © 2009


<strong>Porous</strong> <strong>Media</strong> <strong>Flow</strong><br />

• Simulation <strong>of</strong> fluid flow <strong>in</strong> porous structures<br />

applied to product design <strong>of</strong> „paper products“<br />

e.g. Diapers, Fem<strong>in</strong><strong>in</strong>e Pads, Towels, Swiffer, Wipes,<br />

Make-up-Applications, Olay Facial Wipes ...<br />

• Be<strong>in</strong>g used to develop new designs and new<br />

materials<br />

• Richards equation is a typical formulation<br />

Procter & Gamble © 2009


Absorbent Core Model<strong>in</strong>g<br />

(<br />

" + + % ,<br />

)<br />

Procter & Gamble © 2009<br />

! "<br />

# ! "<br />

*<br />

$ % & '


Diaper Core Technology<br />

Diaper (from Side )<br />

Front <strong>of</strong><br />

Diaper<br />

Waist feature<br />

Acquisition Patch<br />

Backsheet Dust<strong>in</strong>g Layer<br />

Storage Core (blend<br />

<strong>of</strong> AGM and cellulose)<br />

Procter & Gamble © 2009<br />

Lotion Stripes Topsheet<br />

Inside Surface<br />

Back <strong>of</strong><br />

Diaper<br />

Outside Surface


Acquisition &<br />

Distribution<br />

•Nonwoven Layer<br />

•Modified Cellulose<br />

Fibers<br />

How does a diaper work?<br />

Liquid Handl<strong>in</strong>g Tasks <strong>of</strong> diaper Cores<br />

<br />

Procter & Gamble © 2009<br />

Storage Core:<br />

AGM + Cellulose


F<strong>in</strong>al<br />

Absorption<br />

How does a diaper work?<br />

Liquid Handl<strong>in</strong>g Tasks <strong>of</strong> diaper Cores<br />

• AGM can absorb about 30 times <strong>of</strong> its own weight, whereas cellulose can<br />

absorb only around 4 times <strong>of</strong> its own weight.<br />

AGM<br />

70%<br />

Pampers Core<br />

Procter & Gamble © 2009<br />

Airfelt 30%


- .<br />

What is AGM?<br />

+ / + 0 0<br />

+ +<br />

0 + + / + 1 2<br />

CO2H<br />

Na +<br />

3 // 4 / + + 0<br />

Procter & Gamble © 2009<br />

O<br />

O<br />

R - C - Et<br />

C = O<br />

COO<br />

Na +<br />

CO2H<br />

CO2H<br />

Na +<br />

COO<br />

Na +<br />

CO2H<br />

Na +


• Take up ur<strong>in</strong>e and lock it away – as much as possible!<br />

Procter & Gamble © 2009<br />

(Storage Capacity)<br />

• Transport ur<strong>in</strong>e with<strong>in</strong> itself, e.g. with<strong>in</strong> a swollen gel bed.<br />

• Work reasonably fast.<br />

Function <strong>of</strong> AGM<br />

(Permeability)<br />

(Speed)


5 (<br />

!<br />

6 ) -<br />

What is „Gel Block<strong>in</strong>g“?<br />

5<br />

5<br />

Procter & Gamble © 2009<br />

(


∂S<br />

∇ • J + φ<br />

∂t<br />

Model<strong>in</strong>g <strong>Fluid</strong> <strong>Flow</strong> <strong>in</strong> Diaper Cores:<br />

Non swell<strong>in</strong>g <strong>Porous</strong> <strong>Media</strong><br />

=<br />

0<br />

kkr<br />

ρ<br />

µ<br />

J = −<br />

cap<br />

p( S) = p<br />

saturation<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

des<br />

( ∇P<br />

− g)<br />

p p 0 − abs ( Smax<br />

) S −<br />

p ( )<br />

0 S max<br />

0 2 4 6 8 10<br />

pressure (kPa)<br />

absorption measurement<br />

desorption measurement<br />

absorption fit<br />

desorption fit<br />

<strong>in</strong>complete cycle<br />

<strong>in</strong>complete fit<br />

Cont<strong>in</strong>uity Equation<br />

Darcy‘s Law<br />

1<br />

1<br />

n<br />

(<br />

m<br />

)<br />

des<br />

−1<br />

des<br />

+ p ( S )<br />

abs<br />

Procter & Gamble © 2009<br />

max<br />

Implementation <strong>of</strong><br />

capillary pressure<br />

hysteresis


Model<strong>in</strong>g <strong>Fluid</strong> <strong>Flow</strong> <strong>in</strong> Diaper Cores:<br />

AGM-conta<strong>in</strong><strong>in</strong>g cores<br />

• AGM absorbs liquid „away from the pores between AGM<br />

particles and fibers“<br />

– Acts like a „s<strong>in</strong>k term“ <strong>in</strong> the fluid flow equation <strong>of</strong> the pore structure<br />

– Liquid absorbed <strong>in</strong>to each AGM particle by diffusion / osmotic process<br />

– Swell<strong>in</strong>g <strong>of</strong> AGM changes the pore structure<br />

• Described as „two types <strong>of</strong> liquid“<br />

– m 1 : „mobile fluid“ <strong>in</strong> the pore structure<br />

– m 2 : „immobile“ fluid <strong>in</strong> the gel<br />

• Requires modified equation system<br />

– Richards equation extended by „s<strong>in</strong>k term“<br />

– Key properties <strong>of</strong> pore structure now depend on m 2<br />

– Additional equation for absorption <strong>of</strong> liquid <strong>in</strong>to the gel phase<br />

Procter & Gamble © 2009


Swell<strong>in</strong>g Model Equations<br />

Procter & Gamble © 2009


Example: Multilayer Core Structure <strong>in</strong>cl. AGM<br />

• Pictures show snapshots <strong>of</strong> fluid <strong>in</strong> pores (~saturation) and fluid <strong>in</strong> AGM at two different<br />

times after a gush onto a pre-loaded core<br />

• Illustrates how upper acquistition layers and <strong>in</strong>terstitials are be<strong>in</strong>g dewatered and fluid is<br />

absorbed <strong>in</strong>to the AGM<br />

Short time after gush „In equilibrium“ after gush<br />

Procter & Gamble © 2009


<strong>Challenges</strong> & Opportunities for<br />

Collaboration<br />

Procter & Gamble © 2009


Typical <strong>Challenges</strong><br />

• Designs are long / large area but very th<strong>in</strong><br />

– Difficult to mesh properly (balance <strong>of</strong> speed / accuracy)<br />

• Product developers want the answers fast<br />

– Computation time, stability <strong>of</strong> simulations new algorithms<br />

– Need to be able to run lots <strong>of</strong> simulations<br />

• Extreme material properties<br />

– Typical porosities ~90% or higher<br />

– Large parameter contrast <strong>in</strong> K(S) and Pc(S) and hysteresis<br />

– Properties change dur<strong>in</strong>g use (swell<strong>in</strong>g, external pressure changes)<br />

– Th<strong>in</strong> materials (see below)<br />

• Multiple physical effects<br />

– <strong>Porous</strong> <strong>Media</strong> <strong>Flow</strong><br />

– Free Surface <strong>Flow</strong><br />

– Mechanical Deformation<br />

• Liquids can be difficult<br />

– Surfactants – Surface tension as function <strong>of</strong> time, Surfactant Transport<br />

– Non-newtonian effects – most equations do not apply to high porosities<br />

Procter & Gamble © 2009


Opportunities for Collaboration<br />

• <strong>Fluid</strong> flow models <strong>in</strong> presence <strong>of</strong><br />

– Th<strong>in</strong> layers<br />

– Hydrophobic layers / bridg<strong>in</strong>g<br />

• Micromodels to predict K(S, p ext ), Pc(S, p ext ), n(p ext )<br />

– Design materials with target K(S), ...<br />

• (More direct) Measurement <strong>of</strong> K(S)<br />

• Initial wett<strong>in</strong>g behavior <strong>of</strong> very dry materials (analogy to<br />

soil)<br />

• Experimental characterization <strong>of</strong> surfactant release and<br />

transport <strong>in</strong> porous media<br />

Procter & Gamble © 2009


Th<strong>in</strong> Layers – Key Def<strong>in</strong>itions & Relevance<br />

• A „th<strong>in</strong> layer“ is characterized by typical pore dimensions that are<br />

similar (order-<strong>of</strong>-magnitude) to the thickness (or: the smallest<br />

dimension) <strong>of</strong> the layer.<br />

Only few number <strong>of</strong> pore layers through the caliper<br />

Caliper (thickness) <strong>of</strong>ten non-uniform<br />

3D pore structure is <strong>in</strong>fluenced by <strong>in</strong>terface / adjacent layers<br />

• Why are th<strong>in</strong> layers so important <strong>in</strong> absorbent products?<br />

TS, AQL and NWCC have a big impact on speed <strong>of</strong> acquisition and dryness<br />

performance<br />

Acquisition System<br />

Top-sheet (TS): hydrophilic (spunbond) or hydrophobic (apertured TS)<br />

Storage Core<br />

Note: we are us<strong>in</strong>g 2 different systems<br />

1. NW AQL (Acquisition Layer) / curly fibers comb<strong>in</strong>ation (<strong>in</strong> most designs)<br />

2. NW AQL only (<strong>in</strong> low-tier designs)<br />

Procter & Gamble © 2009<br />

NWCC (non-woven core cover)<br />

NWDL (not fluid flow relevant)<br />

Backsheet (not fluid flow relevant)


Th<strong>in</strong> Layers – <strong>Challenges</strong>:<br />

Is Darcy Model still valid?<br />

Only few number <strong>of</strong> pore layers through the caliper<br />

For short pores, e.g. through the thickness <strong>of</strong> such porous materials, can<br />

we still assume that the permeability tensor is <strong>in</strong>dependent from the<br />

pressure gradient, given the <strong>in</strong>ertial effects at the <strong>in</strong>let/exit <strong>of</strong> the pores?<br />

How to def<strong>in</strong>e a consistent REV for these layers?<br />

Example <strong>of</strong> th<strong>in</strong> SMS (spunbond-meltblownspunbond)<br />

nonwoven: side view<br />

Procter & Gamble © 2009


Th<strong>in</strong> Layers – <strong>Challenges</strong>:<br />

Is Darcy Model still valid?<br />

Mesh<strong>in</strong>g<br />

Even regardless from the REV limitations, the th<strong>in</strong>ness <strong>of</strong> these materials<br />

results <strong>in</strong> significantly higher number <strong>of</strong> mesh elements, with <strong>in</strong>creased<br />

computational time and tough numerical challenges. Do we need a novel<br />

theory/approach address<strong>in</strong>g mesh<strong>in</strong>g/numerical challenges?<br />

Disconnected liquid / Instability effects may be present<br />

How can we describe these effects, particularly at the<br />

<strong>in</strong>terfaces?<br />

Procter & Gamble © 2009


Th<strong>in</strong> Layers – <strong>Challenges</strong>:<br />

Is Darcy Model still valid?<br />

„Bridg<strong>in</strong>g“ across the th<strong>in</strong> hydrophobic layer may be a<br />

dom<strong>in</strong>at<strong>in</strong>g effect*<br />

How to <strong>in</strong>corporate this effect <strong>in</strong>to Darcy Model?<br />

r<br />

R r<br />

r r<br />

R r<br />

r<br />

θ<br />

∆<br />

P B<br />

=<br />

R<br />

Procter & Gamble © 2009<br />

4γh<br />

2<br />

+ h<br />

2<br />

2γ<br />

cosϑ<br />

=<br />

R<br />

if<br />

else<br />

h ≤ R ⋅<br />

1−<br />

s<strong>in</strong>ϑ<br />

cosϑ<br />

∆P B : bridg<strong>in</strong>g pressure<br />

γ: surface tension <strong>of</strong> the liquid<br />

h: caliper <strong>of</strong> the sample<br />

R: radius <strong>of</strong> the largest pore<br />

ϑ.: liquid solid contact angle (> 90°)<br />

and ϑ > 90°<br />

* This means that the flow may not be just driven by<br />

capillary pressure differential but also by absolute<br />

pressures / curvature <strong>of</strong> meniscus.


Th<strong>in</strong> Layers – <strong>Challenges</strong>:<br />

Is Darcy Model still valid?<br />

Apertured Topsheet: example <strong>of</strong> hydrophobic<br />

porous material<br />

Procter & Gamble © 2009<br />

Apertured Topsheet Nonwoven before<br />

activation


Th<strong>in</strong> Layers – <strong>Challenges</strong>:<br />

Geometry & Surface Heterogeneity<br />

Inhomogeneous pore structure (patterned emboss<strong>in</strong>g, laydown, different fiber<br />

density, <strong>in</strong>terpenetration between layers at <strong>in</strong>terface)<br />

Inhomogeneous hydrophilicity (surface properties, surfactant coat<strong>in</strong>g &<br />

distribution, <strong>in</strong>terpenetration between layers at <strong>in</strong>terface)<br />

Additional challenge is the change <strong>of</strong> the fluid <strong>in</strong> contact upon surfactant wash-<strong>of</strong>f:<br />

liquid surface tension can be reduced from 72 mN/m to 30-40mN/m<br />

Example <strong>of</strong> bond<strong>in</strong>g pattern on a nonwoven<br />

material<br />

Procter & Gamble © 2009<br />

Curly fibers penetrat<strong>in</strong>g <strong>in</strong>to AQL


Th<strong>in</strong> Layers – <strong>Challenges</strong>:<br />

Lab Characterization<br />

• Difficult to characterize <strong>in</strong> the lab for their fluid flow model <strong>in</strong>put data<br />

Example: Capsorption<br />

Measure saturation dependent on hydraulic head<br />

<strong>Challenges</strong> :<br />

Th<strong>in</strong> layer uptake is only 200-300mg<br />

-> measure 10 layers<br />

-> use smaller frit<br />

Evaporation: 100mg/h<br />

-> tighter equipment (28mg/h)<br />

Procter & Gamble © 2009


• Th<strong>in</strong> NW layer<br />

Pc(S): Comparison 1 layer and 10 layers<br />

• 1 layer has more g/g<br />

uptake than 10 layers<br />

• Interfaces between<br />

sample and weight / frit<br />

form new pores<br />

• Difference <strong>in</strong> uptake<br />

especially at low<br />

pressures,<br />

i.e. large pore size<br />

(>0.3mm)<br />

Procter & Gamble © 2009


sample uptake per layer <strong>in</strong> g<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

0.100<br />

0.050<br />

0.000<br />

1 vs. 10 layers – additional examples<br />

Scimat 1st cycle<br />

Topsheet 1st cycle<br />

Material A Material B<br />

0 20 40 60 80 100<br />

pressure <strong>in</strong> cm<br />

uptake per layer <strong>in</strong> g<br />

0.500<br />

0.400<br />

0.300<br />

0.200<br />

0.100<br />

0.000<br />

10 layers<br />

1 layer<br />

uptake per layer <strong>in</strong> g<br />

Neptune6 1st cycle Material C<br />

0 20 40 60 80 100<br />

pressure <strong>in</strong> cm<br />

Procter & Gamble © 2009<br />

0.450<br />

0.400<br />

0.350<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

0.100<br />

0.050<br />

0.000<br />

0 20 40 60 80 100<br />

pressure <strong>in</strong> cm<br />

10 layers<br />

1 layer<br />

10 layers<br />

1 layer


Th<strong>in</strong> Layers – Opportunities<br />

• Implementation <strong>in</strong>to macroscopic fluid flow models<br />

– Partially saturated flow (2-phase)<br />

– Preference is to „<strong>in</strong>clude effectively“ <strong>in</strong>to Darcy / Richards<br />

Approach (e.g. Interfacial condition?)<br />

– Include mixed wettability<br />

– Surfactant release<br />

• Reliable lab characterization (model <strong>in</strong>put)<br />

– Th<strong>in</strong> layer characterization<br />

– Interface characterization<br />

• Model validation<br />

Procter & Gamble © 2009


Thank you!<br />

Questions?<br />

Procter & Gamble © 2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!