12.07.2015 Views

Gyraulus parvus (Mollusca: Gastropoda) in the Czech Republic

Gyraulus parvus (Mollusca: Gastropoda) in the Czech Republic

Gyraulus parvus (Mollusca: Gastropoda) in the Czech Republic

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Acta Soc. Zool. Bohem. 66: 81–84, 2002ISSN 1211-376X<strong>Gyraulus</strong> <strong>parvus</strong> (<strong>Mollusca</strong>: <strong>Gastropoda</strong>) <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>Luboš BERAN 1) & Michal HORSÁK 2)1)Kokoínsko Protected Landscape Area Adm<strong>in</strong>istration, eská 149, CZ–276 01 Mlník;e-mail: kokor<strong>in</strong>sko@proactive.cz, <strong>Czech</strong> <strong>Republic</strong>2)Department of Zoology and Ecology, Faculty of Science, Masaryk University, Kotláská 2, CZ–611 37Brno; e-mail: horsak@sci.muni.cz, <strong>Czech</strong> <strong>Republic</strong>Received April 12, 2001; accepted October 16, 2001Published June 28, 2002Abstract. Next non-native species of aquatic gastropod <strong>Gyraulus</strong> <strong>parvus</strong> (Say, 1817) is recorded from <strong>the</strong><strong>Czech</strong> <strong>Republic</strong> for <strong>the</strong> first time. Distribution of <strong>the</strong> species is documented from 12 localities <strong>in</strong> Bohemia(9) and Moravia (3).Distribution, <strong>Mollusca</strong>, <strong>Gastropoda</strong>, <strong>Gyraulus</strong> <strong>parvus</strong>, Palaearctic regionINTRODUCTION<strong>Gyraulus</strong> <strong>parvus</strong> (Say, 1817) is species native <strong>in</strong> North America. In Europe this species was foundfirst time <strong>in</strong> 1973 <strong>in</strong> Germany (Glöer & Meier-Brook 1998). Recently, only <strong>in</strong> eastern part of Germanyexist about 15 localities of this species (Glöer & Meier-Brook 1998). The species is very similar tonative <strong>Gyraulus</strong> laevis (Alder, 1813). They are sibl<strong>in</strong>g species accord<strong>in</strong>g to Meier-Brook (1983).The ma<strong>in</strong> diagnostic characters separat<strong>in</strong>g G. <strong>parvus</strong> from G. laevis are as follows (Figs 2, 3):elevated penultimate whorl, marked widen<strong>in</strong>g of <strong>the</strong> distal half of <strong>the</strong> vas deferens as comparedwith that of <strong>the</strong> proximal half, distal portion of <strong>the</strong> spermoviduct is not wider than <strong>the</strong> widestportion of <strong>the</strong> sperm duct, and euroekous character of life strategy (Meier-Brook 1983).RESULTSFirst specimens were identified by <strong>the</strong> senior author <strong>in</strong> <strong>the</strong> sample from <strong>the</strong> sandpit near Lahoš(<strong>the</strong> sandpit on <strong>the</strong> right side of <strong>the</strong> road Lahoš – Teplice, Nor<strong>the</strong>rn Bohemia, code of mapp<strong>in</strong>gsquare 5348[cf. Buchar 1982], November 11, 1999, lgt. L. Beran) and from Barbora (a large waterreservoir or sandpit ? near Teplice, Nor<strong>the</strong>rn Bohemia, 5348, November 11, 1999, lgt. L. Beran).Material of conchs of “<strong>Gyraulus</strong> laevis” from similar localities (sandpits) <strong>in</strong> collections of bothauthors was revised, and after it some localities were visited aga<strong>in</strong> and o<strong>the</strong>r suitable places were<strong>in</strong>vestigated. O<strong>the</strong>r 10 localities with occurrence of <strong>Gyraulus</strong> <strong>parvus</strong> resulted from this activity.These localities are as follows – Horka nad Moravou, <strong>the</strong> sand-pit Podbrady, Central Moravia,6369, April 25, 2000, lgt. L. Beran; Chomoutov, a big sand-pit <strong>in</strong> <strong>the</strong> Chomoutovské jezero NatureReserve, Central Moravia, 6369, April 25, 2000, lgt. L. Beran; Ostrá, a sandpit on <strong>the</strong> right side of <strong>the</strong>road Ostrá – Kostomlaty nad Labem, Central Bohemia, 5855, May 7, 2000, lgt. L. Beran; OstrožskáNová Ves, no<strong>the</strong>rn part of <strong>the</strong> biggest sandpit near Ostrožská Nová Ves, Sou<strong>the</strong>rn Moravia, 6970,May 7, 2000, lgt. M. Horsák (<strong>in</strong> Beran & Horsák 1998 determ<strong>in</strong>ed as G. laevis); Horní Jietín, waterreservoir at former Dolní Jietín village, Nor<strong>the</strong>rn Bohemia, 5447, October 17, 2000, lgt. L. Beran;Louka u Litvínova, a pond between road and railway at nor<strong>the</strong>rn border of Louka u Litvínova,Nor<strong>the</strong>rn Bohemia, 5447, October 18, 2000, lgt. L. Beran; Mariánské Radice, a water reservoir to81


Fig. 3. <strong>Gyraulus</strong> <strong>parvus</strong> (Say), mrp – penis retractor muscle, prp – preaputium, psh – penis sheat, dh – distal halfof vas deferens, ph – proximal half of vas deferens, ut – uterus. Scale = 1 mm. Orig. M. Horsák.<strong>the</strong> south from Mariánské Radice, Nor<strong>the</strong>rn Bohemia, 5447, October 18, 2000, lgt. L. Beran; MariánskéRadice, a small pond at left side of <strong>the</strong> road Mariánské Radice – Braany to <strong>the</strong> east fromMariánské Radice, Nor<strong>the</strong>rn Bohemia, 5448, October, 18, 2000, lgt. L. Beran; Chomutov, a waterreservoir between Spoice and Droužkovice (nearest to Droužkovice), Nor<strong>the</strong>rn Bohemia, 5546,October 20, 2000, lgt. L. Beran; Chomutov, small elongated water reservoir between Spoice andDroužkovice (third from Spoice), Nor<strong>the</strong>rn Bohemia, 5546, October 20, 2000, lgt. L. Beran (see also<strong>the</strong> map on Fig. 1).Very abundant occurrence (at least 100 <strong>in</strong>dividuals per square meter) were documented atlocalities Lahoš, Horka nad Moravou and Louka u Litvínova, at o<strong>the</strong>r localities were documentedonly scattered (less than 10 specimens per square meter) or solitary (less than 1 specimen persquare meter) occurrence of this species. This North-American species probably <strong>in</strong>habits moreespecially artificial (sandpits, water reservoir at reclaimed land) localities on <strong>the</strong> territory of <strong>the</strong><strong>Czech</strong> <strong>Republic</strong>, but because of its similarity with <strong>Gyraulus</strong> laevis it is possible that this species isconfuse with this native species by most of malacozoologists especially <strong>in</strong> case, when determ<strong>in</strong>ationis based only on conchs.83


REFERENCESBERAN L. & HORSÁK M. 1998: Aquatic molluscs (<strong>Gastropoda</strong>, Bivalvia) of <strong>the</strong> Dolnomoravský úval lowland,<strong>Czech</strong> <strong>Republic</strong>. Acta Soc. Zool. Bohem. 62: 7–23.BUCHAR J. 1982: Publication of faunistic data from <strong>Czech</strong>oslovakia. Vst. s. Spole. Zool. 46: 317–318.GLÖER P. & MEIER-BROOK C. 1998: Süsswassermollusken (E<strong>in</strong> Bestimmungsschlüssel für die BundesrepublikDeutschland) 12. Auflage. Hamburg: Deutscher Jugendbund für Naturbeobachtung, 136 pp.MEIER-BROOK C. 1983: Taxonomic studies on <strong>Gyraulus</strong> (<strong>Gastropoda</strong>: Planorbidae). Malacologia 24(1–2): 1–113.84


Acta Soc. Zool. Bohem. 66: 85–97, 2002ISSN 1211-376XOn <strong>the</strong> morphology and surface ultrastructure of some parasitic nematodes(Nematoda) of birds (Aves)Denisa FRANTOVÁInstitute of Parasitology, Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Branišovská 31,CZ–370 05 eské Budjovice, <strong>Czech</strong> <strong>Republic</strong>Department of Parasitology, Faculty of Biological Sciences, University of South Bohemia, Branišovská 31,CZ–370 05 eské Budjovice, <strong>Czech</strong> <strong>Republic</strong>Received February 1, 2001; accepted October 16, 2001Published June 28, 2002Abstract. The morphology of four species of avian nematodes was studied us<strong>in</strong>g scann<strong>in</strong>g electronmicroscopy (SEM): Porrocaecum depressum (Zeder, 1800) from Buteo buteo; third- and fourth-stagelarvae of Porrocaecum semiteres (Zeder, 1800) from Larus ridibundus and Turdus philomelos; Acuariaanthuris (Rudolphi, 1819) from Corvus frugilegus; Cosmocephalus obvelatus (Crepl<strong>in</strong>, 1825) from Larusridibundus. The exam<strong>in</strong>ation of <strong>the</strong> head end of adult Porrocaecum depressum and fourth-stage larvae ofP. semiteres revealed a pattern of labial papillae that is typical of ascaridoid genera. The structure of <strong>the</strong>head end of third- and fourth-stage larvae of P. semiteres seems to be identical with that of <strong>the</strong> related P.ensicaudatum, which occurs <strong>in</strong> <strong>the</strong> same species of <strong>in</strong>termediate and def<strong>in</strong>ite host. The fourth-stage larvaeof P. semiteres was redescribed. A detailed exam<strong>in</strong>ation of <strong>the</strong> oral region of Acuaria anthuris revealed teethat <strong>the</strong> anterior end of <strong>the</strong> cordons, which may serve to host tissue damage dur<strong>in</strong>g feed<strong>in</strong>g. The deirids of A.anthuris are very small, with a bicuspid tip.Morphology, surface ultrastructure, nematode, parasite, AvesINTRODUCTIONThe taxonomy of parasitic nematodes of birds (Aves) is often based on <strong>in</strong>complete descriptionsand draw<strong>in</strong>gs. Dur<strong>in</strong>g a recent study of some materials from birds (Frantová 2002) provided by <strong>the</strong>Helm<strong>in</strong>thological Collection of <strong>the</strong> Institute of Parasitology, Academy of Sciences of <strong>the</strong> <strong>Czech</strong><strong>Republic</strong> (ASCR), <strong>in</strong> eské Budjovice, morphology of four common species of nematodes wasstudied <strong>in</strong> detail, us<strong>in</strong>g light microscopy and scann<strong>in</strong>g electron microscopy (SEM): Porrocaecumdepressum, P. semiteres, Acuaria anthuris and Cosmocephalus obvelatus.Porrocaecum depressum is a common parasite of birds of prey (Falconiformes, Strigiformes)and its morphology had been described several times us<strong>in</strong>g light microscopy (see Mozgovoy1953, Hartwich 1975). P. semiteres is typical of birds of <strong>the</strong> order Charadriiformes. It frequentlyoccurs as a third- or fourth-stage larva <strong>in</strong> <strong>the</strong> digestive tract of small passer<strong>in</strong>es (especially Turdidae),but is unable to mature <strong>in</strong> <strong>the</strong>se atypical hosts (Iygis 1967). Descriptions and draw<strong>in</strong>gs ofthird-stage larvae are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> works of Mozgovoy & Bishaeva (1959), Iygis (1967) andMoravec (1971). There are few accounts of <strong>the</strong> morphology of <strong>the</strong> fourth-stage larvae (Iygis 1967).A related species, P. ensicaudatum (Zeder, 1800), also uses small passer<strong>in</strong>es (especially Turdidae)as def<strong>in</strong>itive hosts, but is also found as larvae <strong>in</strong> Charadriiformes (Iygis 1967, 1970). Consequently,larvae of P. ensicaudatum and P. semiteres can occur <strong>in</strong> <strong>the</strong> same species of avian host. They canbe dist<strong>in</strong>guished by <strong>the</strong> ratio of <strong>the</strong> stomach to <strong>the</strong> <strong>in</strong>test<strong>in</strong>al caecum length (Supryaga & Supryaga1971, Baruš et al. 1978b). In <strong>the</strong> genus Porrocaecum Railliet et Henry, 1912, only P. ensicaudatumwas exam<strong>in</strong>ed us<strong>in</strong>g SEM (Wharton 1978, Baruš et al. 1983, McNeill & Anderson 1990a, b).85


Tab. 1. Nematodes studied with <strong>the</strong> aid of SEMnematode species host site localityPorrocaecum depressum Accipiter gentilis duodenum eské Budjovice (1980)Buteo buteoPorrocaecum semiteres, Larus ridibundus gizzard Praha (1978)3 rd - and 4th-stage larvae Turdus philomelos Klec (1982, 1983)eské Budjovice (1999)Acuaria anthuris Corvus frugilegus L. gizzard eské Budjovice (1981, 1982)Cosmocephalus obvelatus Larus ridibundus oesophagus KlecThe ultrastructure of <strong>the</strong> head end larval P. ensicaudatum was studied by McNeill & Anderson(1990a, b). The present study focuses on <strong>the</strong> head end of larval P. semiteres with <strong>the</strong> aim of f<strong>in</strong>d<strong>in</strong>gdifferences.Acuaria anthuris is a frequent parasite <strong>in</strong> gizzards of corvids (Corvidae). There are several lightmicroscopy studies that deal with <strong>the</strong> morphology of this species (see Chabaud & Petter 1961,Skryab<strong>in</strong> et al. 1965, Baruš et al. 1972). The cordon ultrastructure was studied by Baruš & Majumdar(1975).Cosmocephalus obvelatus is a parasite of <strong>the</strong> oesophagus of various piscivorous birds. Itsmorphology has been studied us<strong>in</strong>g light microscopy (Skryab<strong>in</strong> et al. 1965, Baruš et al. 1978a,Anderson & Wong 1981). SEM micrographs of second- and third-stage larvae of C. obvelatuswere published by Wong & Anderson (1982).MATERIALS AND METHODSAll of <strong>the</strong> nematodes studied were provided by <strong>the</strong> Helm<strong>in</strong>thological Collection of <strong>the</strong> Institute of Parasitology,ASCR, eské Budjovice. The parasites were collected from birds shot at localities <strong>in</strong> South Bohemia, <strong>Czech</strong><strong>Republic</strong>, from1977–1983 (Tab. 1). They were fixed and stored <strong>in</strong> 4% formaldehyde and, after be<strong>in</strong>g cleared <strong>in</strong>glycer<strong>in</strong>e, were identified under an optical microscope. Draw<strong>in</strong>gs were made with <strong>the</strong> aid of a Zeiss microscopedraw<strong>in</strong>g attachment. Prior to SEM exam<strong>in</strong>ation, <strong>the</strong> specimens selected were washed <strong>in</strong> 4% formaldehyde,postfixed for 2 hours <strong>in</strong> 2% aqueous osmium tetraoxide, washed <strong>in</strong> double-distilled water, dehydrated through aseries of <strong>in</strong>creas<strong>in</strong>g concentrations (10–100%) of ethyl alcohol, critical po<strong>in</strong>t dried us<strong>in</strong>g CO2 and coated withgold palladium <strong>in</strong> <strong>the</strong> POLARON PS 100 sputter coater. The JEOL SEM-6300 scann<strong>in</strong>g electron microscope wasused to exam<strong>in</strong>e and photograph <strong>the</strong> specimens.RESULTSFamily Ascarididae Baird, 1853Porrocaecum depressum (Zeder, 1800) Baylis, 1920(Fig. 1)DESCRIPTION (based on SEM exam<strong>in</strong>ation of <strong>the</strong> head ends of 2 males and 2 females). Oral open<strong>in</strong>gtriradiate, surrounded by three massive labia (one dorsal and two subventral) and three smallFig. 1. Porrocaecum depressum (Zeder) from Buteo buteo. SEM micrographs. A – head end, apical view; B – <strong>in</strong>nermarg<strong>in</strong> of labium with detail of teeth; C – subventral labium, ventrolateral view. Note double papilla (dp), s<strong>in</strong>glepapilla (sp) and amphid (a); D – dorsal labium, dorsal view. Note double papillae (dp).Fig. 2. Porrocaecum semiteres (Zeder) from Larus ridibundus (A) and P. ensicaudatum (Zeder) from Turdusphilomelos (B). Third-stage larvae, lateral view. Scale bar <strong>in</strong> mm.86


Fig 3. Porrocaecum semiteres (Zeder) from Turdus philomelos (A, B) and Larus ridibundus (C–F). SEM micrographs.A – cephalic extremity of third-stage larva, apical view. Note subdorsal and subventral papillae (arrows),amphids (a) and ventral tooth (vt); B – cephalic extremity of 3 rd stage larva, ventral view. Note ventral tooth (vt);C – head end of 4 th stage larva, apical view; D – lateral alae of 4 th stage larva; E – dorsal labium of 4 th stage larva.Note two double papillae (dp); F – subventral labium of 4 th stage larva. Note double papilla (dp), s<strong>in</strong>gle papilla (sp)and amphid (arrow).88


Tab. 2. The dimensions (mm) of third- and fourth-stage larvae of Porrocaecum semiteres (Zeder, 1800) fromLarus ridibundus and Turdus philomelosthird-stage larvae fourth-stage larvaemalefemalebody length 3.448 (3.376–3.520) 8.08 (6.82–9.34) 7.952 (3.712–12.192)maximum width 0.088 (0.080–0.096) 0.216 (0.144–0.288) 0.200 (0.112–0.288)nerve r<strong>in</strong>g – anterior 0.217 (0.213–0.221) 0.300 (0.271–0.328) 0.289 (0.210–0.368)excretory pore – anterior 0.219 (0.218–0.220) 0.364 (0.328–0.400) 0.351 (0.253–0.448)length of muscular oesophagus 0.419 (0.410–0.428) 1.016 (0.784–1.248) 0.862 (0.435–1.288)length of ventriculus 0.054 (0.045–0.063) 0.128 (0.105–0.151) 0.113 (0.076– 0.150)<strong>in</strong>test<strong>in</strong>al caecum 0.038 (0.030–0.045) 0.059 (0.050–0.068) 0.108 (0.068–0.148)ratio of length of ventriculusto that of caecum 1:0.70 (1:0.67–0.71) 1:0.67 (1:0.48–0.85) 1:0.9 (1:0.63–1:1.23)genital primordium – anterior 1.746 (1.723–1.768)vulva – anterior 4.188 (2.096–6.280)length of spicule primordia 0.134 (0.068–0.200)tail 0.145 (0.126–0.164) 0.164 (0.126–0.202) 0.199 (0.125–0.272)<strong>in</strong>terlabia (Fig. 1A). Cuticle of head end smooth. Labia hexagonal <strong>in</strong> shape, very narrow at base,widest <strong>in</strong> middle. Anterior half of labia divided by longitud<strong>in</strong>al shallow median depression <strong>in</strong>to twolobes. Each lobe supported by a f<strong>in</strong>ger-like projection, bluntly term<strong>in</strong>at<strong>in</strong>g close to anterior marg<strong>in</strong>of labium. Anterior marg<strong>in</strong>s of labia rounded, rimmed with s<strong>in</strong>gle row of teeth (Fig. 1B). Teethconical, with rounded tips, usually longer than wide, expand<strong>in</strong>g laterally and caudally to last thirdof labia. Dorsal labium with two double papillae situated mediolaterally (Fig. 1D). Each subventrallabium with one double papilla situated medioventrally, and a s<strong>in</strong>gle papilla and amphid situatedanterolaterally (Fig. 1C). Interlabia <strong>in</strong>dist<strong>in</strong>ct, triangular <strong>in</strong> shape, reach<strong>in</strong>g first third of labia.COMMENT. Based on light microscopy, <strong>the</strong> specimens studied showed <strong>the</strong> dimensions and morphologyconsistent with <strong>the</strong> description given by Mozgovoy (1953)Porrocaecum semiteres (Zeder, 1800) Baylis, 1920(Figs 2, 3, 4; Tab. 2)DESCRIPTION. Third-stage larvae: 10 specimens studied us<strong>in</strong>g light microscopy (Fig. 2, Tab. 2), 2 ofwhich were used for SEM (Figs 3A, B). Anterior end bluntly rounded, with smooth roundedcircular rim of cuticle (Fig. 3A). Labia absent. Two s<strong>in</strong>gle cephalic papillae subdorsally and twosubventrally at base of cuticular rim. Two amphids situated laterally on ei<strong>the</strong>r side. One ventraltooth present (Fig. 3A, B). Oral open<strong>in</strong>g circular. Cuticle with dist<strong>in</strong>ct annulation and lateral alae.Excretory porus slightly posterior to nerve r<strong>in</strong>g. Oesophagus with anterior muscular portion andposterior ventriculus. Intest<strong>in</strong>e dark, with rudimentary, anteriorly directed dorsal caecum. Caecumlonger than half <strong>the</strong> length of ventriculus. Ventral genital primordium positioned slightly posteriorto mid body. Sexes not dist<strong>in</strong>guishable. Anus subventral. Tail tapered and po<strong>in</strong>ted.COMMENT. Based on light microscopy, <strong>the</strong> specimens showed <strong>the</strong> dimensions and morphologyconsistent with <strong>the</strong> description given by Iygis (1967) and Okulewicz (1979). Larvae of P. semitereswere dist<strong>in</strong>guished from those of <strong>the</strong> related P. ensicaudatum on <strong>the</strong> basis of <strong>the</strong> ratio of ventriculusand <strong>in</strong>test<strong>in</strong>al caecum lengths by Supryaga & Supryaga (1971) and Baruš et al. (1978b) (Fig.2, Tab. 2).89


Fig. 6. Acuaria anthuris (Rudolphi) from Corvus frugilegus. SEM micrographs. A – tail of female, ventral view.Note phasmids (arrows); B – caudal extremity of male, ventral view. S<strong>in</strong>gle median precloacal papilla and threepairs of postcloacal papillae; C – tail of male, ventral view. Two pairs of postcloacal papillae and s<strong>in</strong>gle pair ofterm<strong>in</strong>al phasmids; D – cloacal region of male. Note distal end of spicule (sp) and s<strong>in</strong>gle median precloacal papilla(arrow).92


Family Acuariidae Railliet, Henry et Sisoff, 1912Acuaria anthuris (Rudolphi, 1819) Railliet, Henry et Sisoff, 1912(Figs 5, 6)DESCRIPTION (based on SEM exam<strong>in</strong>ation of 2 male and 2 female adult specimens). Medium sizednematodes. Males smaller than females, with ventrally coiled tail. Cuticle with prom<strong>in</strong>ent annulation.Head end with two lateral pseudolabia, separated from rest of body by a transverse groove(Figs 5B, D, E). Pseudolabia massive, with smooth cuticle, triangular <strong>in</strong> shape, widest at base,taper<strong>in</strong>g anteriorly to rounded tip. Each pseudolabium medially divided by a longitud<strong>in</strong>al ridge,extend<strong>in</strong>g approximately to second third of length of pseudolabia, to level of shallow transversegroove separat<strong>in</strong>g tips. S<strong>in</strong>gle prom<strong>in</strong>ent papillae laterally on both sides of pseudolabium (Figs 5C,E). Amphid situated medially <strong>in</strong> middle of pseudolabium (Fig. 5C). Tips free, apparently mobile.Dist<strong>in</strong>ct curve formed dorsally and ventrally at <strong>in</strong>ner edge of each tip, giv<strong>in</strong>g it a nose-like appearance(Fig. 5E). Cordons <strong>in</strong> form of two laterodorsal and two lateroventral longitud<strong>in</strong>al cords,slightly exceed<strong>in</strong>g body surface and separated from neighbour<strong>in</strong>g cuticle by a deep grooves. Eachcordon consist<strong>in</strong>g of two parallel unconnected cords, transverselly divided <strong>in</strong>to prom<strong>in</strong>ent ridgescorrespond<strong>in</strong>g with annulation of neighbour<strong>in</strong>g cuticle; first ridge at anterior end of both cords <strong>in</strong>form of tooth (Fig. 5E). Cordons beg<strong>in</strong>n<strong>in</strong>g dorsally (ventrally) at level of curved <strong>in</strong>ner edge ofpseudolabial tip, <strong>the</strong>n runn<strong>in</strong>g between psedolabia and diverg<strong>in</strong>g laterodorsally (lateroventrally)at <strong>the</strong>ir bases; extend<strong>in</strong>g to second third of body. Deirids small, poorly visible, with bicuspid tip(Fig. 5F). Phasmids term<strong>in</strong>al (Figs 6A, C). Caudal extremity curved ventrally (Fig. 6B). Caudal lateralalae present, bear<strong>in</strong>g four pairs of preanal and six pairs of postanal papillae. Two pairs of postanalpapillae just posterior to cloaca, a solitary pair <strong>in</strong> middle of tail and three pairs near tip of tail (Figs6B, C). S<strong>in</strong>gle papilla anteriomedian to cloaca (Fig. 6D).COMMENT. The specimens were larger than with <strong>the</strong> dimensions given by Baruš et al. (1972) fornematodes from <strong>the</strong> same host.Cosmocephalus obvelatus (Crepl<strong>in</strong>, 1825) Seurat, 1919(Figs 7, 8)DESCRIPTION (based on SEM exam<strong>in</strong>ation of 2 males and 1 female specimen). Medium sized nematodes.Cuticle with f<strong>in</strong>e annulation. Lateral alae present, beg<strong>in</strong>n<strong>in</strong>g at level of deirids and extend<strong>in</strong>gto posterior quarter of body (Fig. 7A). Two ra<strong>the</strong>r small lateral pseudolabia, rhomboid <strong>in</strong> shape,widest <strong>in</strong> middle, narrow<strong>in</strong>g towards tips and bases (Figs 7B, C, G). Tips rounded and protrud<strong>in</strong>g(Figs 7D, E); two median ridges separat<strong>in</strong>g dorsal and ventral pore on each tip (Fig. 7F). Medianpart of pseudolabium convex, bear<strong>in</strong>g prom<strong>in</strong>ent amphid (Fig. 7G). Median marg<strong>in</strong>s of pseudolabiaproject<strong>in</strong>g dorsally and ventrally <strong>in</strong>to lobes (Fig. 7C), each with <strong>in</strong>dist<strong>in</strong>ct papilla. Two conspicuouscordons (dorsal and ventral) restricted to head end, with dense transverse striation; beg<strong>in</strong>n<strong>in</strong>gdorsally (ventrally) to mouth, <strong>the</strong>n copy<strong>in</strong>g shape of pseudolabia, runn<strong>in</strong>g posteriorly, recurrentand anastomos<strong>in</strong>g (Fig. 7B). Deirids large, with bicuspid tip (Fig. 8C). Excretory porus situatedventrally, slightly posterior to level of deirids (Fig. 8A). Prom<strong>in</strong>ent phasmids, situated subventrallynear tip of tail (Fig. 8B). Caudal extremity of male with caudal alae bear<strong>in</strong>g four pairs of preanal andfive pairs of postanal pedunculate papillae (Figs 8D, E). Two pairs of small sessile papillae presentat tip of tail, near last pair of pedunculate papillae. Two spicules, dissimilar <strong>in</strong> size and shape: rightspicule short and massive, left long and slender. Caudal extremity of female tapered and round (Fig.8B). Knob-like projection at tip of tail, clearly visible <strong>in</strong> light microscopy, <strong>in</strong>dist<strong>in</strong>ct (probablyshrank or damaged dur<strong>in</strong>g preparation).93


COMMENT. These specimens were studied previously (Frantová 2002); <strong>the</strong>y are smaller comparedthan <strong>the</strong> dimensions given by Anderson & Wong (1981).DISCUSSIONAscarididaeThe present SEM study of <strong>the</strong> head end ultrastructure of Porrocaecum depressum confirmed, withfew exceptions, <strong>the</strong> descriptions given by Mozgovoy (1953) and Hartwich (1975). There is adifference <strong>in</strong> <strong>the</strong> description of labial papillae, which are small and <strong>in</strong>dist<strong>in</strong>ct <strong>in</strong> this species,compared, for example, with P. ensicaudatum (Baruš et al. 1983, McNeill & Anderson 1990a, b).The papillae on <strong>the</strong> dorsal labium and <strong>the</strong> medioventral papilla on each subventral labium aredouble. There are a s<strong>in</strong>gle papilla and an amphid anterolaterally on both subventral labia. Thepattern of papillae is consistent with <strong>the</strong> above mentioned light microscopy studies and similar <strong>in</strong>all ascaridoid genera.The head end ultrastructure of third- and fourth-stage larvae of P. semiteres did not differ fromthat of P. ensicaudatum (McNeill & Anderson 1990a, b). The cuticular rim with four s<strong>in</strong>gle papillae,two ampids and a s<strong>in</strong>gle ventral tooth <strong>in</strong> <strong>the</strong> third-stage larvae is replaced by three labia with fourdouble and two s<strong>in</strong>gle papillae, and two amphids <strong>in</strong> <strong>the</strong> fourth-stage larvae. The fourth-stagelarvae have a pattern of labial papillae similar to that of <strong>the</strong> adults. The head end structure of adultP. semiteres, as seen <strong>in</strong> light microscope, seems to be almost identical with that of P. ensicaudatum(see Mozgovoy 1953, Hartwich 1975). Adults of both genera can be dist<strong>in</strong>guished as lateral alaeare absent <strong>in</strong> adult P. ensicaudatum and <strong>the</strong> ratio of <strong>the</strong> length of <strong>the</strong> ventriculus to that of <strong>the</strong><strong>in</strong>test<strong>in</strong>al caecum is 1: 0.64–1.2 <strong>in</strong> P. semiteres (Baruš et al. 1978b) and 1 : 0.15–0.36 <strong>in</strong> P. ensicaudatum(Supryaga & Supryaga 1971). The ratio of <strong>the</strong> length of <strong>the</strong> ventriculus to that of <strong>the</strong> <strong>in</strong>test<strong>in</strong>alcaecum seems to be <strong>the</strong> only difference between larval P. ensicaudatum and P. semiteres.AcuariidaeAcuaria anthuris has been described several times us<strong>in</strong>g ligth microscopy (Chabaud & Petter1961, Skryab<strong>in</strong> et al. 1965, Baruš et al. 1972). These descriptions differ ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> number ofpostanal papillae <strong>in</strong> <strong>the</strong> male. Chabaud & Petter (1961) stated that <strong>the</strong> number of <strong>the</strong> latter varieddepend<strong>in</strong>g on <strong>the</strong> host: those from Pica and Garrulus had 6 pairs of postcloacal papillae and onepair of term<strong>in</strong>al phasmids; those from Corvus mostly 7 pairs of postcloacal papillae and one pair ofphasmids, with rare specimens that have <strong>the</strong> same pattern as <strong>in</strong> Pica and Garrulus. Baruš et al.(1972) observed 7–8 pairs of postcloacal papillae <strong>in</strong> <strong>the</strong> nematodes parasitic <strong>in</strong> Corvus frugilegus.The present SEM study of specimens from C. frugilegus, revealed 6 pairs of postcloacal papillaeand one pair of term<strong>in</strong>al phasmids <strong>in</strong> males; <strong>the</strong>re were no difference <strong>in</strong> <strong>the</strong> specimens exam<strong>in</strong>edus<strong>in</strong>g light microscopy. The ultrastructure of <strong>the</strong> cordons was studied by Baruš & Majumdar(1975). The present study completes <strong>the</strong> previous description by add<strong>in</strong>g details of <strong>the</strong> organizationof <strong>the</strong> cordons at <strong>the</strong> level of <strong>the</strong> oral open<strong>in</strong>g. The anterior ends of cordons project <strong>in</strong>to teeth,which may serve to host tissue damage dur<strong>in</strong>g feed<strong>in</strong>g. Data on deirids is scarce, only <strong>the</strong>irposition has previously been mentioned (see Skryab<strong>in</strong> et al. 1965). The bicuspid tips are typical ofC. obvelatus and o<strong>the</strong>r acuariid species, but <strong>the</strong>re can be <strong>in</strong>traspecific variations <strong>in</strong> <strong>the</strong> shape ofdeirids and <strong>the</strong> number of tips (Moravec, unpubl. data). The SEM study of C. obvelatus fullyconfirmed <strong>the</strong> data presented by Anderson & Wong 1981).94


Fig. 7. Cosmocephalus obvelatus (Crepl<strong>in</strong>) from Larus ridibundus. SEM micrographs. A – cephalic extremity,dorsoventral view. Note deirids (arrows) and lateral ala (la); B – head end, lateral view; C – detail of pseudolabium,lateral view; D – detail of pseudolabia, dorsoventral view; E – head end, dorsoventral view; F – detail of pseudolabia,apical view. Note pores (arrowhead) and amphid (a); G – head end, apical view.95


Fig. 8. Cosmocephalus obvelatus (Crepl<strong>in</strong>) from Larus ridibundus. SEM micrographs. A – excretory pore, ventralview; B – caudal extremity of female, subventral view. Note phasmid (arrow); C – deirid, lateral view; D – caudalextremity of male, ventral view; E – caudal extremity of male, sublateral view. Note distal end of left (slender)spicule.96


A c k n o w l e d g e m e n t sThe author thanks F. Moravec of <strong>the</strong> Institute of Parasitology, ASCR, <strong>in</strong> eské Budjovice for provid<strong>in</strong>g <strong>the</strong>nematodes from <strong>the</strong> Helm<strong>in</strong>thological collection and critical comments, and <strong>the</strong> workers of <strong>the</strong> Laboratory ofElectron Microscopy, ASCR, <strong>in</strong> eské Budjovice for prepar<strong>in</strong>g <strong>the</strong> nematodes for SEM exam<strong>in</strong>ation.REFERENCESANDERSON R. C. & WONG P. L. 1981: Redescription of Cosmocephalus obvelatus (Crepl<strong>in</strong>, 1825) (Nematoda:Acuarioidea) from Larus delawarensis Ord (Laridae). Can. J. Zool. 59: 1897–1902.BARUŠ V. & MAJUMDAR G. 1975: Scann<strong>in</strong>g electron microscopic studies on <strong>the</strong> cordon structures of seven acuariidgenera (Nematoda: Acuariidae). Folia Parasitol. 22: 125–131.BARUŠ V., RYŠAVÝ B., GROSCHAFT J. & FOLK . 1972: The helm<strong>in</strong>th fauna of Corvus frugilegus L. (Aves, Passeriformes)<strong>in</strong> <strong>Czech</strong>oslovakia and its ecological analysis. Acta Sci. Natur. Brno 6: 1–53.BARUŠ V., SERGEEVA T. P., SONIN M. D. & RZYHIKOV K. M. 1978a: Helm<strong>in</strong>ths of Fish-Eat<strong>in</strong>g Birds of <strong>the</strong>Palaearctic Region I. Nematoda. Praha: Academia, 318 pp.BARUŠ V., SITKO J. & TENORA F.1978b: Nematoda and Pentastomida parasit<strong>in</strong>g gulls (Aves: Laridae) <strong>in</strong> Bohemiaand Moravia. Acta Sci. Natur. Brno 26: 169–189.BARUŠ V., TENORA F., RYŠAVÝ B. & WIGER R. 1983: Morphology and ultrastructure of <strong>the</strong> head end of Porrocaecumensicaudatum. Vst. s. Spole. Zool. 47: 1–5.CHABAUD A. G. & PETTER A. 1961: Nematodes du genre Acuaria de la faune de France. Ann. Parasit. 36: 409–424.FRANTOVÁ D. (2002): Some parasitic nematodes (Nematoda) of birds (Aves) <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>. Acta Soc.Zool. Bohem. 66: 13–28.HARTWICH G. 1975: Die Tierwelt Deutschlands. 62. Teil. I. Rhabditida und Ascaridida. Jena: VEB G. Fisher Verlag,256 pp.IYGIS V. A. 1967: [Life cycle of Porrocaecum semiteres (Zeder, 1800) (Nematoda: Ascaridata)]. Parazitologiya 1:213–218 (<strong>in</strong> Russian).IYGIS V. A. 1970: [Experimental studies of <strong>the</strong> host specifity of Porrocaecum ensicaudatum (Zeder, 1800)].Parazitologiya 4: 563–568 (<strong>in</strong> Russian).MCNEILL M. A. & ANDERSON R. C. 1990a: Development of Porrocaecum ensicaudatum (Nematoda: Ascaridoidea)<strong>in</strong> terrestrial oligochaetes. Can. J. Zool. 68: 1476–1483.MCNEILL M. A. & ANDERSON R. C. 1990b: Development of Porrocaecum ensicaudatum (Nematoda: Ascaridoidea)<strong>in</strong> starl<strong>in</strong>gs (Sturnus vulgaris). Can. J. Zool. 68: 1484–1493.MORAVEC F. 1971: A new natural <strong>in</strong>termediate host of <strong>the</strong> nematode Porrocaecum semiteres (Zeder, 1800). FoliaParasitol. 18: 26.MOZGOVOI A. A. 1953: Askaridaty životnych i eloveka i vyzyvaemye imi zabolevanija. Kniga 2. Osnovynematodologii II. [Ascaridata of Animals and Man and Diseases Caused by Them. Part 2. Pr<strong>in</strong>ciples ofNematology II. ] Moscow: Izdat. AN SSSR, 616 pp (<strong>in</strong> Russian).MOZGOVOY A. A. & BISHAEVA L. 1959: [On <strong>the</strong> life cycle of Porrocaecum heteroura (Ascaridata, Anisakidae)].Helm<strong>in</strong>thologia 1: 195–197 (<strong>in</strong> Russian).OKULEWICZ A. 1979: Threadworms of blackbird (Turdus merula L.) and mavis (Turdus philomelos Brehm) from<strong>the</strong> region of Wrocaw. I. Faunistic study. Wiad. Parazytol. 25: 301–331.SKRYABIN K. I., SOBOLEV A. A. & IVASHKIN V. M. 1965: Spiruraty Životnych i eloveka i Vyzyvaemye ImiZabolevanija. Kniga 3. Acuarioidea. Osnovy Nematodologii XIV [Spirurata of Animals and Man and DiseasesCaused by Them. Part 3. Acuarioidea. Pr<strong>in</strong>ciples of Nematodology XIV] Moscow: Izdat. AN SSSR, 570 pp (<strong>in</strong>Russian).SUPRYAGA V. G. & SUPRYAGA A. M. 1971: [To <strong>the</strong> differential diagnosis of <strong>the</strong> larvae of <strong>the</strong> nematode genusPorrocaecum Railliet et Henry, 1912 from <strong>the</strong> <strong>in</strong>termediate hosts – Oligochaeta.] Tr. GELAN 22: 200–203 (<strong>in</strong>Russian).WHARTON D. A. 1979: The structure of <strong>the</strong> egg shell of Porrocaecum ensicaudatum (Nematoda: Ascaridida). Int.J. Parasitol. 9: 127–131.WONG P. L. & ANDERSON R. C. 1982: The transmission and development of Cosmocephalus obvelatus (Nematoda:Acuarioidea) of gulls (Laridae). Can. J. Zool. 60: 1426–1440.97


Acta Soc. Zool. Bohem. 66: 98, 2002ISSN 1211-376XBOOK REVIEWERZINÇLIOGLU Z.: Maggots, Murder and Men (Memories and Reflections of a Forensic Entomologist).Harley Books, Colchester, Essex, UK, 2000, 256 pp.; format 232×150mm. Price 13.95; ISBN 0-946589-65-8Books written by specialists <strong>in</strong> a field are an <strong>in</strong>valuable resource. Based on <strong>the</strong> author’s personal experience, <strong>the</strong>ygive a better perspective than books written as reviews, often by somebody from ano<strong>the</strong>r field. Maggots, Murder andMen belongs to those that are especially remarkableDr. Zakaria Erz<strong>in</strong>çlioglu, commonly known <strong>in</strong> English circles of crim<strong>in</strong>ology as “Dr. Zak” or “maggotologue”,has been work<strong>in</strong>g <strong>in</strong> <strong>the</strong> field of Forensic Entomology for over ten years. He collects and identifies <strong>in</strong>sects foundassociated with human corpses, most notably Dipteran larvae (maggots). His work helps <strong>in</strong>vestigators to determ<strong>in</strong>etime of death and whe<strong>the</strong>r bodies have been manipulated or moved from <strong>the</strong> orig<strong>in</strong>al scene of <strong>the</strong> crime. Vieweddispassionately, a dead human body is a magnificent and highly nutritious resource for <strong>in</strong>sects as well as o<strong>the</strong>r<strong>in</strong>vertebrate animals. The book relates several accounts of crim<strong>in</strong>al cases <strong>in</strong> which <strong>the</strong> author participated,<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> description of sometimes startl<strong>in</strong>g circumstances of cases, attempts to <strong>in</strong>fluence his reports, <strong>the</strong> useof “muddy-water” consultants by defence lawyers, e.g. unqualified “experts” without any knowledge of <strong>the</strong> entomology<strong>in</strong>volved etc. There is also much about <strong>the</strong> use of entomology <strong>in</strong> archaeology, <strong>the</strong> human history of myiasisand o<strong>the</strong>r <strong>in</strong>terest<strong>in</strong>g topics.From <strong>the</strong> book, it is clear <strong>the</strong>re is empathy between <strong>the</strong> author and <strong>the</strong> unfortunate victims. Erz<strong>in</strong>çlioglu’s casesare far from <strong>the</strong> luxurious environment of crim<strong>in</strong>al TV with detective officer Columbo or attorney Perry Mason,but ra<strong>the</strong>r, for example, <strong>in</strong> a dirty dwell<strong>in</strong>g <strong>in</strong> a deprived area of London, where a victim’s bodies was secreted underfloorboards. Ano<strong>the</strong>r feature that is palpable <strong>in</strong> <strong>the</strong> book is that <strong>the</strong> author is a learned and lettered man. Eachchapter beg<strong>in</strong>s with a citation and citations are also <strong>in</strong> <strong>the</strong> text (Sherlock Holmes!). Chapters are <strong>in</strong>troduced withf<strong>in</strong>e scrapeboard illustrations resembl<strong>in</strong>g woodcuts and <strong>the</strong> book is closed by “sources and fur<strong>the</strong>r read<strong>in</strong>g” and awell-done <strong>in</strong>dex. The book is clearly oriented to a popular audience, but written on <strong>the</strong> highest professional level,so clearly recommendable to every entomologist or zoologist <strong>in</strong>terested <strong>in</strong> forensic practice. If it were not on sucha disturb<strong>in</strong>g subject matter, it would be recommendable for recreational read<strong>in</strong>g before sleep<strong>in</strong>g.Josef Chalupský98


Acta Soc. Zool. Bohem. 66: 99–119, 2002ISSN 1211-376XHarpalus larvae (Coleoptera: Carabidae: Harpal<strong>in</strong>a): description of severalspecies and taxonomic remarksKarel HRKA & Zdenk PAPOUŠEKDepartment of Zoology, Charles University, V<strong>in</strong><strong>in</strong>á 7, CZ–128 44 Praha 2, <strong>Czech</strong> <strong>Republic</strong>;e-mail: hurka@natur.cuni.cz, brkous@seznam.czReceived June 15, 2001; accepted October 16, 2001Published June 28, 2002Abstract. Three larval <strong>in</strong>stars of Harpalus (Harpalus) atratus Latreille, 1804, H. (H.) cisteloides hurkaiDivoký, Pulpán et Rébl, 1990, H. (H.) picipennis (Duftschmid, 1812), H. (H.) saxicola Dejean, 1829, H.(H.) servus (Duftschmid, 1812), first and third larval <strong>in</strong>stars of H. (H.) luteicornis (Duftschmid, 1812) andthird larval <strong>in</strong>star of H. (H.) solitaris Dejean, 1829 and H. (H.) xanthopus w<strong>in</strong>kleri Schauberger, 1923 aredescribed and illustrated. Differential diagnosis of <strong>the</strong> nom<strong>in</strong>otypical subgenus Harpalus Latreille, 1802,based on larval characters, is given. Taxonomic significance of species aggregates and subgenera arediscussed. Some new larval characters (detailed additional chaetotaxy of femora) are used.Larval taxonomy, preimag<strong>in</strong>al characters, Coleoptera, Carabidae, HarpalusINTRODUCTIONThe subgenus Harpalus Latreille, 1802 consists of about 300 species world-wide (Lorenz 1998).The more or less superficial and <strong>in</strong>complete notes on about 30 species of larvae of this subgenusare mentioned <strong>in</strong> <strong>the</strong> literature (Schiodte 1867, Gardner 1938, van Emden 1942, Chu 1945, Larsson1941, 1968, Sharova 1958, 1964, Habu & Sadanaga 1963, 1965, 1970a, b, Kirk 1972, Habu 1973, Hrka1975, Brandmayr, Ferrero & Zeto Brandmayr 1980, Arndt 1991, Luff 1993). Only <strong>the</strong> works by Habu& Sadanaga (1963, 1965, 1970a, b), Habu (1973) and Arndt (1991) deal with more than one larval<strong>in</strong>star and consider <strong>the</strong> chaetotaxy.The purposes of <strong>the</strong> paper are to describe to date undescribed larvae of Harpalus, discusspossible relationships between <strong>the</strong> taxa studied, and provide <strong>the</strong> differential diagnosis of <strong>the</strong>subgenus Harpalus <strong>in</strong> <strong>the</strong> larval stage.MATERIAL AND METHODSThree larval <strong>in</strong>stars of Harpalus (Harpalus) atratus (5 L1, 2 L2, 6 L3), H. (H.) cisteloides hurkai (5 L1, 5 L2, 6 L3),H. (H.) luteicornis (5 L1, 5 L3 ), H.(H.) picipennis (6 L1, 4 L2, 6 L3), H. (H.) saxicola (2 L1, 1 L2, 2 L3), H. (H.)servus (18 L1, 3 L2, 6 L3) and <strong>the</strong> third <strong>in</strong>star of H. (H.) solitaris (1 L3) and H. (H.) xanthopus w<strong>in</strong>kleri (1 exuviaof L1, 1 L3) are reared ex ovo dur<strong>in</strong>g years 1989 and 1999 follow<strong>in</strong>g <strong>the</strong> technique described by Hrka (1996).The parental pairs are found as follows: H. (H.) atratus – Bohemia centr., Praha-Kunratice (code of mapp<strong>in</strong>gsquare 5952, for details see Pruner & Míka 1996), 24.4.1998, Z. Papoušek leg.; H. (H.) cisteloides hurkai –Bohemia, eské stedohoí, Písený vrch, (5548), 11.9.1993, P.Veselý leg.; H. (H.) luteicornis – Bohemia centr.,Praha-Radotín, Cikánka env. (6051), fallow, 20.4.1999, K. Hrka leg.; H. (H.) picipennis – Bohemia centr.,Tuha nr. Neratovice (5753), 21.6.1995, K. Hrka leg.; H. (H.) saxicola – Slovakia mer., Avaš hill nr. Sírnik(7497), 8.4.1989, J. Hejkal leg.; H. (H.) servus – Moravia, Bzenec-stelnice (7069), 28.9. 1997, Z. Papoušek leg.;H. (H.) solitaris Bohemia, eský les, erchov 1000m, (6642), 29.7.1993, K. Hrka leg.; H.(H.) xanthopusw<strong>in</strong>kleri – Bohemia centr., Travice (5451), 15.5.1997, K. Hrka leg.99


For comparative purpose larvae of follow<strong>in</strong>g taxa have been studied: H.(Acardystus) flavescens (Piller etMitterpacher, 1783), H. (Harpalus) anxius (Duftschmid, 1812), H. (H.) autumnalis (Duftschmid, 1812), H. (H.)dist<strong>in</strong>guendus (Duftschmid, 1812), H. (H.) froelichii Sturm, 1818, H. (H.) honestus (Duftschmid, 1812), H.(H.)latus (L<strong>in</strong>naeus, 1758), H. (H.) pumilus Sturm, 1818, H. (H.) subcyl<strong>in</strong>dricus Dejean, 1829, H. (H.) tardus(Panzer, 1797) and H. (Semiophonus) signaticornis (Duftschmid, 1812).All material is deposited <strong>in</strong> <strong>the</strong> Collectio Hrka of <strong>the</strong> Charles University Praha, Department of Zoology. Thenotation of setae and pores follows <strong>the</strong> papers by Bousquet & Goulet (1984) and Bousquet (1985).DESCRIPTION OF LARVAEHarpalus (Harpalus) atratus Latreille, 1804(Figs 1–10)First <strong>in</strong>starHABITUS AND COLOR. Head capsule and pronotum conspicuously broad and transverse; bodyyellow, head and pronotum pale brown, ret<strong>in</strong>aculum and apex of mandible dark brown. Width ofhead capsule 1.44–1.50 mm (x = 1.47 mm, n = 5).MICROSCULPTURE. Isodiametric microsculpture absent, granulated microsculpture on pronotal prescutumand postscutum.CHAETOTAXY. Only one additional pair of sp<strong>in</strong>es on anterior femora; seta PA4 very f<strong>in</strong>e, but dist<strong>in</strong>ctlylonger than setae PA1 – PA3; setae FR1 and FR3 obviously reduced; group gMX consists of 5–6 thicker and more than 70 th<strong>in</strong>ner, long setae.HEAD (Fig. 1) dist<strong>in</strong>ctly transverse (<strong>in</strong>dex width/length 1.35); nasale (Fig. 2) not or slightly prom<strong>in</strong>ent,dist<strong>in</strong>ctly too<strong>the</strong>d throughout, with 13–16 teeth, two lateral on each side larger, ventral rowwith 30–32 teeth; adnasalia moderately slop<strong>in</strong>g; cervical grooves clearly bent, almost reach<strong>in</strong>g <strong>the</strong>level of seta PA7 on dorsal side, don’t reach<strong>in</strong>g <strong>the</strong> ventral side; coronal suture very long, dist<strong>in</strong>ctlylonger than length of antennomere II; egg burster consists of 5–6 small teeth on each side offrontale. Antennae as long as mandibles; mandible (Fig. 3) triangular, 3 times as long as basalwidth, with one larger and one smaller teeth <strong>in</strong> front of ret<strong>in</strong>aculum; seta MB1 short, only a littlelonger than ret<strong>in</strong>aculum, penicillus present; maxillae (Fig. 4) slender, stipes more than 3 times aslong as wide; labium (Fig. 5) very short and rounded on lateral borders, ligula reach<strong>in</strong>g <strong>the</strong> level ofone quarter of palpomere I, dist<strong>in</strong>ctly bifid at apex.THORAX. Pronotum transverse, as wide as head, notal car<strong>in</strong>a <strong>in</strong>dist<strong>in</strong>ct, seta PR1 reduced up topore; legs (Fig. 6) normally developed, claws unequal, anterior curved, almost twice as long asposterior on <strong>the</strong> first pair and only a little longer than posterior on <strong>the</strong> o<strong>the</strong>r pairs.ABDOMEN. Urogomphi subparallel, longer than width of tergum IX and of anal tube.Second and third <strong>in</strong>starsSame character states as <strong>in</strong> <strong>the</strong> first <strong>in</strong>star except for follow<strong>in</strong>g:HABITUS. Width of head capsule 1.89 and 2.07 mm <strong>in</strong> <strong>the</strong> second and 2.45–2.59 mm (x = 2.52 mm,n = 6) <strong>in</strong> <strong>the</strong> third <strong>in</strong>star.MICROSCULPTURE. Isodiametric microsculpture on head and pronotum, granulated microsculptureon pronotal prescutum and postscutum and on postscutum of meso- and metanotum.CHAETOTAXY. Head: 2 secondary setae on <strong>in</strong>ner side of antennomere II, 2 setae on outer side ofstipes, 1–2 setae near apex of palpomere I, 8 pairs of setae (10 pairs <strong>in</strong> L3) on dorso-lateral surfaceof prementum, 1–2 setae on place of <strong>in</strong>ner and outer stemmatal furrows.Thorax: pronotum with 2–3 secondary setae along notal car<strong>in</strong>a, several setae on lateral marg<strong>in</strong> and between setae PR11 andPR12; 9–11 secondary sp<strong>in</strong>es on each side of anterior femora. Abdomen: abdom<strong>in</strong>al tergites with 1secondary seta between TE1 and TE6, 2 setae between TE6 and TE7 and 1–2 setae between TE9100


Figs 1–10. Harpalus (Harpalus) atratus Latreille. First <strong>in</strong>star larva: 1 – head capsule (dorsal view). 2 – nasale. 3 –mandible. 4 – maxilla. 5 – labium. 6 – first leg. Third <strong>in</strong>star larva: 7 – nasale. 8 – antenna. 9 – mandible. 10 –urogomphi. Scales: 1 mm (Figs 1, 10), 0.5 mm (Figs 3, 4, 5, 6, 8, 9), 0.2 mm (Figs 2, 7).101


and TE10, 2–3 small setae on lateral marg<strong>in</strong>; 4 long and many small secondary setae on surface ofurogomphi, length of URβ 0.65 times that of UR4, URγ about as long as UR4.HEAD AND NASALE (Fig. 7) similar as <strong>in</strong> L1, nasale more prom<strong>in</strong>ent, lateral teeth larger; cervicalgrooves reach<strong>in</strong>g <strong>the</strong> level of PA5; coronal suture longer than antennomere II; seta PA4 as long asantennomere II or III; setae PA1,2,3very small; antenna (Fig. 8); mandible with only one extra tooth(Fig. 9).THORAX. Claws unequal as <strong>in</strong> first <strong>in</strong>star.ABDOMEN. Urogomphi (Fig. 10) long and subparallel, twice as long as width of tergum IX, dist<strong>in</strong>ctlylonger than anal tube.Harpalus (Harpalus) cisteloides hurkai Divoký, Pulpán et Rébl, 1990(Figs 11–19)First <strong>in</strong>starHABITUS AND COLOR. Body yellow white, head and pronotum pale brown, ret<strong>in</strong>aculum and apex ofmandible dark brown. Width of head capsule 1.14–1.20 mm (x = 1.16 mm, n = 5).MICROSCULPTURE. Isodiametric microsculpture on frontale and parietale, granulated microsculptureon prescutum and postscutum of pronotum and on postscutum of mesonotum, po<strong>in</strong>ted microsculptureon metanotum and on abdom<strong>in</strong>al terga.CHAETOTAXY. Except<strong>in</strong>g ancestral chaetotaxy one additional seta on dorso-lateral surface of prementumand 4 pairs of additional sp<strong>in</strong>es on anterior femora; seta PA4 slightly longer than coronalsuture, as long as antennomere IV and dist<strong>in</strong>ctly longer than setae PA1 – PA3; <strong>the</strong> majority of setaeon frontale, except FR2, relatively short, especially setae FR8,9 and one additional neighbour<strong>in</strong>gseta; group gMX consists of 4–5 thicker and more than 50 th<strong>in</strong>ner, long setae.HEAD (Fig. 11) dist<strong>in</strong>ctly transverse (<strong>in</strong>dex width/length 1.3); nasale (Fig. 12) protrud<strong>in</strong>g, withtriangular central <strong>in</strong>cision and with 5–6 teeth on each side, two lateral only a little larger, ventral rowconsists of 18–22 teeth, adnasalia moderately slop<strong>in</strong>g; cervical grooves clearly bent, almost reach<strong>in</strong>g<strong>the</strong> level between setae PA7 and PA4 on dorsal side, don’t reach<strong>in</strong>g <strong>the</strong> level of seta PA16 onventral side; coronal suture dist<strong>in</strong>ctly longer than width of antennomere I; egg burster consists of2 smaller teeth on <strong>the</strong> level of seta PA4 on each side. Antennae slightly longer than mandibles;mandible (Fig. 13) strongly curved and robust, twice as long as basal width, with only a slightswell<strong>in</strong>g <strong>in</strong> front of ret<strong>in</strong>aculum, penicillus present; maxillae (Fig. 14) slender, stipes almost 3.5times as long as wide; labium (Fig. 15) ra<strong>the</strong>r short, with slender labial palpi; ligula reach<strong>in</strong>g <strong>the</strong>level of one third of palpomere I and dist<strong>in</strong>ctly bifid apically.THORAX. Pronotum transverse, wider than head, with very dist<strong>in</strong>ct notal car<strong>in</strong>a, reach<strong>in</strong>g <strong>the</strong> levelof seta PR2; legs normally developed, claws unequal, anterior twice as long as posterior <strong>in</strong> <strong>the</strong> firstpair.ABDOMEN. Urogomphi parallel and longer than width of tergum IX, with ancestral setae as long asurogomphi; anal tube long and slender, reach<strong>in</strong>g <strong>the</strong> level between setae UR5 and UR6.Second and third <strong>in</strong>starsSame character states as <strong>in</strong> <strong>the</strong> first <strong>in</strong>star except for follow<strong>in</strong>g:HABITUS. Width of head capsule 1.38–1.57 mm (x = 1.50 mm, n = 5) <strong>in</strong> <strong>the</strong> second and 1.84–1.98 mm(x = 1.90 mm, n = 6) <strong>in</strong> <strong>the</strong> third <strong>in</strong>star.MICROSCULPTURE. Granulated microsculpture also on postscuta of metanotum and abdom<strong>in</strong>al terga,po<strong>in</strong>ted microsculpture on urogomphi.CHAETOTAXY. Head: 2 additional setae on <strong>in</strong>ner side of antennomere I, 4–6 setae on <strong>in</strong>ner side ofantennomere II, 2–3 setae on outer side of stipes, 2 setae near base of mandible, 2–3 setae near102


Figs 11–19. Harpalus (Harpalus) cisteloides hurkai Divoký, Pulpán et Rébl. First <strong>in</strong>star larva: 11 – head capsule(dorsal view). 12 – nasale. 13 – mandible. 14 – maxilla. 15 – labium. Third <strong>in</strong>star larva: 16 – nasale. 17 – antenna. 18– mandible. 19 – urogomphi. Scales: 1 mm (Figs 11, 19), 0.5 mm (Figs 13, 14, 15, 17, 18), 0.2 mm (Figs 12, 16).103


apex of palpomere I, 5–7 pairs of setae (8–9 pairs <strong>in</strong> L3) on lateral side of prementum; 2 setae onplace of <strong>in</strong>ner and outer stemmatal furrows, many dim<strong>in</strong>utive setae or sensillae on dorsal surface ofhead capsule. Thorax: Pronotum with 2–3 additional setae along notal car<strong>in</strong>a, number of setae onlateral marg<strong>in</strong> and between setae PR11 and PR12, more than 8 additional sp<strong>in</strong>es on each side ofanterior femora. Abdomen: 1 additional seta between TE1 and TE6, 2 setae between TE6 and TE7,1–2 setae between TE9 and TE10 and 2–3 small setae on lateral marg<strong>in</strong>. Length of URβ 0.75 timesthat of UR4, URγ about as long as UR4.HEAD. Nasale (Fig. 16) with larger lateral teeth; coronal suture longer than antennomere II; seta PA4as long as antennomeres II or III; setae PA1 – PA3 very small; antenna (Fig. 17); mandible (Fig. 18).THORAX. Legs long and slender, claws unequal as <strong>in</strong> first <strong>in</strong>star.ABDOMEN. Urogomphi (Fig. 19) subparallel and long, twice as long as width of tergum IX andlonger than anal tube.Harpalus (Harpalus) luteicornis (Duftschmid, 1812)(Figs 20–27)First <strong>in</strong>starHABITUS AND COLOR. Body yellow-white, ret<strong>in</strong>aculum and apex of mandible brown. Width of headcapsule 1.04–1.14 mm (x = 1.08 mm, n = 5).MICROSCULPTURE. Isodiametric microsculpture on anterior part of frontale, granulated microsculptureon prescutum and postscutum of pronotum.CHAETOTAXY. Head: Setae PA4, PA5 and especially PA1 – PA3 very f<strong>in</strong>e and small, setae PA6 andPA8 markedly f<strong>in</strong>e and reduced; group gMX consists of 4–5 thicker and more than 50 th<strong>in</strong>ner andra<strong>the</strong>r short setae. Thorax: Except for ancestral chaetotaxy 6 or 7 additional sp<strong>in</strong>es on ei<strong>the</strong>r side ofanterior femora.HEAD (Fig. 20) transverse (<strong>in</strong>dex width/length 1.3); nasale (Fig. 21) protrud<strong>in</strong>g, with f<strong>in</strong>e but dist<strong>in</strong>ctcentral <strong>in</strong>cision and 6–7 teeth on each side, two lateral slightly longer, adnasalia moderatelyslop<strong>in</strong>g, ventral row consists of 22–24 teeth; cervical grooves clearly bent, almost reach<strong>in</strong>g <strong>the</strong>level of seta PA7 on dorsal side, don’t reach<strong>in</strong>g <strong>the</strong> level of seta PA16 on ventral side; coronalsuture as long as width of antennomere I; egg-burster consists of 4–5 teeth, be<strong>in</strong>g larger caudad,along frontal suture on each side. Antennae slightly longer than mandibles; mandible (Fig. 22)strongly curved and robust, twice as long as basal width, with a toothlike swell<strong>in</strong>g <strong>in</strong> front ofret<strong>in</strong>aculum, penicillus present; maxillae (Fig. 23) slender, stipes almost 3 times as long as wide;labium (Fig. 24) short, with slender labial palpi; ligula reach<strong>in</strong>g <strong>the</strong> level of one fourth or fifth ofpalpomere I and weakly bifid at apex.THORAX. Pronotum narrower than head, with <strong>in</strong>dist<strong>in</strong>ct notal car<strong>in</strong>a; legs normally developed,claws unequal, anterior as long as or a little longer than posterior.ABDOMEN. Abdom<strong>in</strong>al tergites transverse; urogomphi weakly curved, twice as long as width oftergum IX and about one third of anal tube length.Third <strong>in</strong>starSame character states as <strong>in</strong> <strong>the</strong> first <strong>in</strong>star except for follow<strong>in</strong>g:HABITUS. Width of head capsule 1.30–1.40 mm (x = 1.34 mm, n = 5).MICROSCULPTURE. Isodiametric microsculpture weakly dist<strong>in</strong>ct.CHAETOTAXY. Head: 2 additional setae on <strong>in</strong>ner side of antennomere II, 2 setae on outer side ofstipes, 1–2 seta near apex of palpomere I, 7–9 pairs of setae on dorso-lateral surface of prementum;2–3 small setae on place of outer stemmatal furrows. Thorax: 1 (2) secondary setae on ei<strong>the</strong>r side of104


Figs 20–27. Harpalus (Harpalus) luteicornis (Duftschmid). First <strong>in</strong>star larva: 20 – head capsule (dorsal view). 21– nasale. 22 – mandible. 23 – maxilla. 24 – labium. Third <strong>in</strong>star larva: 25 – nasale. 26 – antenna. 27 – mandible.Scales: 0.5 mm (Fig. 20), 0.3 mm (Figs 21, 22, 23, 24, 25, 26, 27).105


anterior femora. Only dim<strong>in</strong>utive setae on dorsal surface of head capsule, thoracic and abdom<strong>in</strong>altergites. Length of seta URβ about 0.5 times, of URγ 0.75 times that of UR4.HEAD similar to L1, nasale (Fig. 25) more prom<strong>in</strong>ent and with larger lateral teeth; cervical grooves verydist<strong>in</strong>ct and bent; well developed outer stemmatal furrows; antenna (Fig. 26), mandible (Fig. 27).THORAX. Pronotum with weakly developed notal car<strong>in</strong>a; legs similar to L1; claws unequal, anteriorabout one fourth longer than posterior.ABDOMEN. Urogomphi slender and long, more than twice as long as width of tergum IX and lengthof anal tube.Harpalus (Harpalus) picipennis (Duftschmid, 1812)(Figs 28–35)First <strong>in</strong>starHABITUS AND COLOR. Small larvae with transverse, angular head capsule and shortened extremities;body yellow-white, head and pronotum yellow-brown, ret<strong>in</strong>aculum and apex of mandibles darkbrown. Width of head capsule 0.70–0.78 mm (x = 0.73 mm, n = 6).MICROSCULPTURE. Isodiametric microsculpture absent, granulated microsculpture on pronotal prescutumand postscutum.CHAETOTAXY. Except for ancestral chaetotaxy 4 additional setae on ei<strong>the</strong>r side of anterior femora;seta PA4 dist<strong>in</strong>ctly longer than setae PA1 – PA3 and PA5.HEAD. (Fig. 28) transverse (<strong>in</strong>dex width/length 1.4); nasale (Fig. 29) slightly prom<strong>in</strong>ent, with 7–9central and 2, slightly longer, lateral teeth on each side, ventral row consists of 19–23 teeth,adnasalia moderately slop<strong>in</strong>g; cervical grooves bent, almost reach<strong>in</strong>g <strong>the</strong> level of seta PA3; coronalsuture very short, as long as half of width of antennomere I; egg burster consists mostly of 2teeth, one larger on <strong>the</strong> level of seta PA4, one smaller on <strong>the</strong> level of seta PA3; group gMX consistsof only 1–2 thick and more than 40 th<strong>in</strong>ner, very f<strong>in</strong>e and short setae. Antennae short and thickset,less than 6.5 times as long as wide; mandibles (Fig. 30) strongly curved and robust, twice as longas basal width, with a f<strong>in</strong>e swell<strong>in</strong>g <strong>in</strong> front of ret<strong>in</strong>aculum, penicillus present; maxillae (Fig. 31)thickset, stipes only 2.3 times as long as wide; labium (Fig. 32) short with slender labial palpi, ligulareach<strong>in</strong>g <strong>the</strong> level of one third of palpomere I.THORAX. Pronotum transverse, with dist<strong>in</strong>ct notal car<strong>in</strong>a; legs short and robust.ABDOMEN. Abdom<strong>in</strong>al tergites transverse; urogomphi very short and divergent, only slightly longerthan width of tergum IX and length of anal tube.Second and third <strong>in</strong>starsSame character states as <strong>in</strong> <strong>the</strong> first <strong>in</strong>star except for follow<strong>in</strong>g:HABITUS. Width of head capsule 0.83–0.97 mm (x = 0.92 mm, n = 3) <strong>in</strong> <strong>the</strong> second and 0.94–1.20 mm(x = 1.06 mm, n = 6) <strong>in</strong> <strong>the</strong> third <strong>in</strong>star.MICROSCULPTURE. Weakly dist<strong>in</strong>ct isodiametric microsculptur on head capsule, granulated microsculpturealso on postscuta of meso- and metanotum.CHAETOTAXY. Head: 2 additional setae on <strong>in</strong>ner side of antennomere II, 2 setae on outer side ofstipes, 2 setae near apex of palpomere I, 5–6 pairs of setae (8–9 pairs <strong>in</strong> L3) on dorso-lateral surfaceof prementum; 1–2 small setae on place of <strong>in</strong>ner and outer stemmatal furrows. Thorax: 6 additionalsetae on each side of anterior femora. Abdomen: On abdom<strong>in</strong>al terga 1 additional seta between TE1and TE6, 2 setae between TE6 and TE7 and 1 seta between TE9 and TE10; 4 long secondary setaeon urogomphi. Several very small setae on surface of thoracic and abdom<strong>in</strong>al terga and urogomphi.Length of both URβ and URγ about 0.80 times that of UR4.106


Figs 28–35. Harpalus (Harpalus) picipennis (Duftschmid). First <strong>in</strong>star larva: 28 – head capsule (dorsal view). 29– nasale. 30 – mandible. 31 – maxilla. 32 – labium. Third <strong>in</strong>star larva: 33 – nasale. 34 – antenna. 35 – mandible.Scales: 0.5 mm (Fig. 28), 0.2 mm (Figs 29, 30, 31, 32, 33, 34, 35).107


HEAD. Similar to L1; nasale (Fig. 33) more protrud<strong>in</strong>g; coronal suture longer; cervical groovesdeeper; outer stemmatal furrows weakly dist<strong>in</strong>ct. Extremities slightly longer: antenna (Fig. 34);mandible (Fig. 35).THORAX. Pronotum with weakly determ<strong>in</strong>ed notal car<strong>in</strong>a; legs a little longer.ABDOMEN. Urogomphi a little longer than width of tergum IX and <strong>the</strong> length of anal tube.Harpalus (Harpalus) saxicola Dejean, 1829(Figs 36–44)First <strong>in</strong>starHABITUS AND COLOR. Body pale, ret<strong>in</strong>aculum and apex of mandible dark brown. Width of headcapsule 1.42 and 1.46 mm.MICROSCULPTURE. Isodiametric microsculpture absent, granulated microsculpture on prescurumand postscutum of pronotum and on postscuta of mesonotum, metanotum and of abdom<strong>in</strong>altergites I–III.CHAETOTAXY. Except for ancestral chaetotaxy one additional seta on dorso-lateral surface of prementumand 7 additional setae on ei<strong>the</strong>r side of anterior femora; group gMX consists of 10–11thick and more than 60 th<strong>in</strong>ner, ra<strong>the</strong>r short setae; seta PA4 very long, as long as antennomere I and3–4 times as long as seta PA5, setae PA1 – PA3 very short.HEAD (Fig. 36) transverse (<strong>in</strong>dex width/length 1.3); nasale (Fig. 37) protrud<strong>in</strong>g, almost reach<strong>in</strong>g <strong>the</strong>top of adnasalia, with 8–10 central teeth and two lateral on each side twice as long as <strong>the</strong> o<strong>the</strong>rs,ventral row consists of 25–27 teeth; cervical grooves bent, reach<strong>in</strong>g <strong>the</strong> level of seta PA5; coronalsuture as long as antennomere II; egg burster consists of 1 small teeth beh<strong>in</strong>d <strong>the</strong> level of seta PA7.Antennae as long as mandibles; mandible (Fig. 38) strongly curved and robust, 1.8 times as longas basal width, with only a f<strong>in</strong>e swell<strong>in</strong>g <strong>in</strong> front of ret<strong>in</strong>aculum; maxilla (Fig. 39) with stipes 3 timesas long as wide; labium (Fig. 40) slender, ligula reach<strong>in</strong>g <strong>the</strong> level of one fourth of palpomere I.THORAX. Pronotum transverse, wider than head, with well developed notal car<strong>in</strong>a, reach<strong>in</strong>g <strong>the</strong>level of seta PR2; legs (Fig. 41) short and robust, claws unequal, anterior dist<strong>in</strong>ctly shorter thanposterior.ABDOMEN. Abdom<strong>in</strong>al terga transverse with ancestral setae; urogomphi very short and weaklydivergent, only a little longer than width of tergum IX and length of anal tube. Setae UR4–8 longerthan urogomphi, shifted apicad.Second and third <strong>in</strong>starSame character states as <strong>in</strong> <strong>the</strong> first <strong>in</strong>star except for follow<strong>in</strong>g:HABITUS. Width of head capsule 1.57 mm <strong>in</strong> L2 and 1.95 and 1.98 mm <strong>in</strong> L3.MICROSCULPTURE. Isodiametric microsculpture on head and pronotum.CHAETOTAXY. 1 additional seta on <strong>in</strong>ner side of antennomere I (2 setae <strong>in</strong> L3), 3 setae on <strong>in</strong>ner sideof antennomere II, 1 long and 1 short setae on outer side of stipes (2 long and 2 short setae <strong>in</strong> L3),2 setae near base of mandible, 1 seta near apex of palpomere I (2 setae <strong>in</strong> L3), 6–10 pair of setae ondorso-lateral side of prementum; 2 setae on place of <strong>in</strong>ner and outer stemmatal furrows, 1–2 setaenear very long seta PA4, 2 pairs of small setae on <strong>the</strong> level of seta FR4.Thorax: 2–3 secondary setae<strong>in</strong> both anterior and posterior rows, 5–7 setae on lateral marg<strong>in</strong>, 2 setae near prothoracic notalcar<strong>in</strong>a; 2 secondary sp<strong>in</strong>es and 2–3 setae on ei<strong>the</strong>r side of anterior femora. Numerous very smallsetae on head capsule, thoracic and abdom<strong>in</strong>al terga and urogomphi. Length of seta URβ about0.75 times that of UR4, URγ about as long as UR4.108


Figs 36–44. Harpalus (Harpalus) saxicola Dejean. First <strong>in</strong>star larva: 36–head capsule (dorsal view). 37 – nasale.38 – mandible. 39 – maxilla. 40 – labium. 41 – first leg. Third <strong>in</strong>star larva: 42 – nasale. 43 – antenna. 44 –mandible. Scales: 1 mm (Fig. 36), 0.5 mm (Figs 38, 39, 40, 41, 43, 44), 0.2 mm (Figs 37, 42).109


HEAD similar to L1; nasale (Fig. 42) more protrud<strong>in</strong>g, overlapp<strong>in</strong>g top of adnasalia, with 9–10 centralteeth, two lateral on each side very large, ventral row consists of about 26 teeth, adnasalia moderatelyslop<strong>in</strong>g; cervical grooves more bent; antennae slender (Fig. 43); mandible (Fig. 44).ABDOBEN. Urogomphi very short and divergent, shorter than width of tergum IX and only slightlylonger than anal tube.Harpalus servus (Harpalus) (Duftschmid, 1812)(Figs 45–53)First <strong>in</strong>starHABITUS AND COLOR. Body yellow-brown, head capsule, apex of mandibles, ret<strong>in</strong>aculum, thoracicand abdom<strong>in</strong>al sclerites dark brown. Width of head capsule 0.84–1.02 mm (x = 0.94 mm, n = 18).MICROSCULPTURE. Isodiametric microsculpture absent, granulated microsculpture on prescutumand postscutum of pronotum and of postscuta of mesonotum, metanotum and abdom<strong>in</strong>al tergitesI–III.CHAETOTAXY. Except for ancestral chaetotaxy 2 additional sp<strong>in</strong>es on ei<strong>the</strong>r side of anterior femora;seta PA4 relatively long, more than twice as long as PA5 and more longer than PA1–PA3; groupgMX consists of two or three thick and more than 50 th<strong>in</strong>ner, ra<strong>the</strong>r short setae.HEAD (Fig.45) transverse (<strong>in</strong>dex width/length less than 1.3); nasale (Fig. 46) protrud<strong>in</strong>g and weaklybifurcate at apex, with 7–8 central teeth, two lateral teeth only a little longer; ventral row consistsof 16–18 teeth; cervical grooves clearly bent, almost reach<strong>in</strong>g <strong>the</strong> level of seta PA5; coronal suturevery short, as long as length of setae PA1–PA3; egg burster consists on each side of only onelarger tooth. Extremities short and robust; antennae as long as mandibles; mandible (Fig. 47)strongly curved, twice as long as basal width, with one small swell<strong>in</strong>g <strong>in</strong> front of ret<strong>in</strong>aculum,penicillus present; maxilla (Fig. 48) stout and robust, stipes 2.4 times as long as wide; labium (Fig.49) short with ligula reach<strong>in</strong>g <strong>the</strong> level of one third of palpomere I and slightly bifid at apex.THORAX. Pronotum dist<strong>in</strong>ctly transverse, wider than head, with dist<strong>in</strong>ct notal car<strong>in</strong>a, reach<strong>in</strong>g <strong>the</strong>level of seta PR14; legs (Fig. 50) robust, claws unequal, anterior twice as long as posterior <strong>in</strong> firstpair, anterior a little longer <strong>in</strong> o<strong>the</strong>r pairs.ABDOMEN. Urogomphi very short and curved, a little longer than width of tergum IX and slightlylonger than anal tube.Second and third <strong>in</strong>starsSame character states as <strong>in</strong> <strong>the</strong> first <strong>in</strong>star except for follow<strong>in</strong>g:HABITUS. Width of head capsule 1.05–1.27 mm (x = 1.18 mm, n = 4) <strong>in</strong> <strong>the</strong> second and 1.50–1.64 mm(x = 1.59 mm, n = 6) <strong>in</strong> <strong>the</strong> third <strong>in</strong>star.MICROSCULPTURE. Isodiametric microsculpture on head and pronotum.CHAETOTAXY. Head: 2 additional setae on <strong>in</strong>ner side of antennomere II, 2 setae on outer side ofstipes, 1–2 setae near apex of palpomere I, more than 10 pairs of setae on dorso-lateral surface ofprementum; 1 or 2 setae on places of <strong>in</strong>ner and outer stemmatal furrows. Thorax: pronotum with 2secondary setae near notal car<strong>in</strong>a and 4–5 setae on lateral and 2 setae on posterior marg<strong>in</strong>; 6secondary sp<strong>in</strong>es on ei<strong>the</strong>r side of anterior femora. Abdomen: 1 seta between TE1 and TE6, betweenTE6 and TE7 and between TE9 and TE10. Length of seta URβ about 0.75 that of UR4, seta URγabout as long as UR4.HEAD similar to L1; nasale (Fig. 51) more prom<strong>in</strong>ent and with larger lateral teeth; antenna (Fig. 52);mandible (Fig. 53); maxilla longer than <strong>in</strong> first <strong>in</strong>star, stipes more than 3.5 times as long as wide.THORAX. Legs with unequal tarsal claws.ABDOBEN. Urogomphi parallel, slightly longer than width of tergum IX and dist<strong>in</strong>ctly longer thananal tube.110


Figs 45–53. Harpalus (Harpalus) servus (Duftschmid). First <strong>in</strong>star larva: 45–head capsule (dorsal view). 46 –nasale. 47 – mandible. 48 – maxilla. 49 – labium. 50 – first leg. Third <strong>in</strong>star larva: 51 – nasale. 52 – antenna. 53– mandible. Scales: 0.5 mm (Fig. 45), 0.3 mm (Figs 47, 48, 49, 50, 52, 53), 0.2 mm (Figs 46, 51).111


Harpalus (Harpalus) solitaris Dejean, 1829(Figs 54–61)Third <strong>in</strong>starHABITUS AND COLOR. Body yellow-white, head and pronotum yellow-brown, ret<strong>in</strong>aculum and apexof mandible dark brown. Width of head capsule 1.91 mm <strong>in</strong> one specimen.MICROSCULPTURE. Isodiametric microsculpture on parietale and pronotum, granulated microsculptureon prescutum and postscutum of pronotum and on postscuta of mesonotum, metanotum andabdom<strong>in</strong>al terga I–III.CHAETOTAXY. Head: 2 additional setae on <strong>in</strong>ner side of antennomere II, 2 setae on outer side ofstipes, 2 setae near apex of palpomere I, 7–11 pairs of setae on dorso-lateral surface of prementum;2–3 setae on place of <strong>in</strong>ner and number of setae or sensillae on place of outer stemmatal furrows,one small seta along cervical grooves, group gMX consists of only two or three thicker and morethan 70 th<strong>in</strong>ner, long setae; seta PA5 and especially PA1 – PA3 small, seta PA4 three times as longas seta PA5 and as long as antennomere I, <strong>the</strong> majority of setae on frontale, except for FR2 and FR7,relatively f<strong>in</strong>e. Thorax: several small secondary setae on thoracic tergites; 9–10 sp<strong>in</strong>es on eachside of anterior femora. Abdomen: tergites transvere (Fig. 60) with 2 secondary setae neighbour<strong>in</strong>gTE1 and TE10 and one seta neighbour<strong>in</strong>g TE6. Length of seta URβ 0.6 times that of UR4, seta URγabout as long as UR4.HEAD (Fig. 54) dist<strong>in</strong>ctly transverse (<strong>in</strong>dex width/length 1.3–1.4); nasale (Fig. 55) slightly protrud<strong>in</strong>g,with only 5–6 large central teeth and two slightly larger lateral teeth on each side, ventral rowconsists of about 25 teeth; adnasalia strongly slop<strong>in</strong>g; cervical grooves long and bent, reach<strong>in</strong>g<strong>the</strong> level of seta PA7 dorsally and <strong>the</strong> level of seta PA15 on ventral side; coronal suture slightlylonger than width of antennomere I. Antennae (Fig. 56) as long as mandibles; mandible (Fig. 57)triangular and robust, 1.9 times as long as basal width, with two dist<strong>in</strong>ct additional teeth <strong>in</strong> front ofret<strong>in</strong>aculum, penicillus present; maxillae (Fig. 58) slender, stipes almost 3.3 times as long as wide;labium (Fig. 59), ligula reach<strong>in</strong>g <strong>the</strong> level of one fourth of palpomere I.THORAX. Pronotum transverse, notal car<strong>in</strong>a weakly developed; legs normally developed, clawsunequal, anterior twice as long as posterior <strong>in</strong> first pair, a little longer <strong>in</strong> o<strong>the</strong>r pairs.ABDOMEN. Urogomphi (Fig. 61) relatively long and weakly curved, twice as long as width of tergumIX, about one third as long as length of slender anal tube.Harpalus (Harpalus) xanthopus w<strong>in</strong>kleri Schauberger, 1923(Figs 62–70)First <strong>in</strong>starHABITUS AND COLOR. Body yellow-brown, head and pronotum pale brown, ret<strong>in</strong>aculum and apex ofmandible dark brown. Width of head capsule 0.98 mm <strong>in</strong> one specimen.MICROSCULPTURE. Isodiametric microsculpture on head very dist<strong>in</strong>ct.CHAETOTAXY. Ancestral chaetotaxy on head capsule and extremities; seta PA4 and especially setaePA5, PA6 and PA8 short and reduced.HEAD dist<strong>in</strong>ctly transverse; nasale (Fig. 62) only slightly protrud<strong>in</strong>g, with 10 central teeth and twoa little larger lateral teeth on each side, ventral row consists of 25–26 teeth, adnasalia moderatelyslop<strong>in</strong>g; cervical grooves short and weakly bent, almost reach<strong>in</strong>g <strong>the</strong> level of seta PA5; coronalsuture as long as width of antennomere I; egg burster consists of 5 small teeth along frontal sutureon each side. Extremities, especially antennae and mandibles, short and robust; mandible (Fig. 63)triangular, 1.9 times as long as basal width, with only one small tooth <strong>in</strong> front of ret<strong>in</strong>aculum,112


Figs 54–61. Harpalus (Harpalus) solitaris Dejean. Third <strong>in</strong>star larva: 54–head capsule (dorsal view). 55–nasale.56–antenna. 57–mandible. 58–maxilla. 59–labium. 60–tergum I. 61–urogomphi. Scales: 1 mm (Figs 54, 60, 61),0.5 mm (Figs 56, 57, 58, 59), 0.3 mm (Fig. 55).113


penicillus present; maxilla slender, stipes more than 3 times as long as wide; labium short and ra<strong>the</strong>rrobust.THORAX AND ABDOMEN. Not available.Third <strong>in</strong>starSame character states as <strong>in</strong> <strong>the</strong> first <strong>in</strong>star except for follow<strong>in</strong>g:HABITUS. Width of head capsule 1.37 mm <strong>in</strong> one specimen.MICROSCULPTURE. Isodiametric microsculpture on head, thoracic and abdom<strong>in</strong>al tergites. Granulatedmicrosculpture on pronotal prescutum and postscutum and on postscuta of mesonotum, metanotumand abdom<strong>in</strong>al tergites I–II(III).CHAETOTAXY. Head: 2 secondary setae on <strong>in</strong>ner side of antennomere II, 2 setae on outer side ofstipes, 1 seta near apex of labial palpomere I, 8 pairs of setae on dorso-lateral surface of prementum,4 setae near outer stemmatal furrow. Thorax: 2 small secondary setae along notal car<strong>in</strong>a on prothorax;8 additional sp<strong>in</strong>es on ei<strong>the</strong>r side of anterior femora. Abdomen: seta TE11 on abdom<strong>in</strong>al tergavery reduced or rudimental. Length of seta URβ only about 0.2 times that of UR4 and about 0.3times that of URγ.HEAD (Fig. 64) transverse (<strong>in</strong>dex weight/length 1.4); nasale (Fig. 65) more prom<strong>in</strong>ent, with 9–10central teeth, two lateral on each side dist<strong>in</strong>ctly longer, ventral row consists of 25 teeth, adnasaliamore slop<strong>in</strong>g; cervical grooves more deepened and bent; coronal suture longer than width ofantennomere I; outer stemmatal furrow developed. Extremities more slender; antenna (Fig. 66);mandible (Fig. 67) with one dist<strong>in</strong>ct additional tooth <strong>in</strong> front of ret<strong>in</strong>aculum; maxilla (Fig. 68); labium(Fig. 69).THORAX. Legs with unequal claws, anterior dist<strong>in</strong>ctly shorter than posterior.ABDOMEN. Urogomphi (Fig. 70) long and parallel, 1.8 times as long as width of tergum IX and aboutone third longer than anal tube.LARVAL DIAGNOSIS OF SUBGENUS HARPALUSFirst <strong>in</strong>starHABITUS. Typical Harpal<strong>in</strong>i larva with great and transverse head capsule and pronotum, body be<strong>in</strong>gnarrower caudad.MICROSCULPTURE. Mostly only parts of frontale and parietale and lateral sides of pronotum withisodiametric microsculpture. Granulated microsculpture on pronotal prescutum and postscutumand on <strong>the</strong> postscuta of mesonotum, metanotum and of anterior abdom<strong>in</strong>al tergites. Po<strong>in</strong>ted microsculpturesometimes on tergite IX, on base of urogomphi and on antero-lateral parts of abdom<strong>in</strong>alscuta.CHAETOTAXY. All ancestral setae and pores, except for seta LA4 on prementum, present; one additionalseta of ancestral orig<strong>in</strong> on adnasalia, and mostly one additional pair of sp<strong>in</strong>iform setae orsp<strong>in</strong>es on all pairs of femora.HEAD. Dist<strong>in</strong>ctly transverse (<strong>in</strong>dex width/length more than 1.1), nasale diverse but frequentlyprom<strong>in</strong>ent and always with central protuberance and one pair of lateral teeth on each side; cervicalgrooves and coronal suture always present; egg-bursters consist of 2 rows of 1–10 teeth alongfrontal suture. Antennae mostly a little longer than mandibles; mandible more or less <strong>in</strong>curvate andstout, as a rule twice as long as wide, frequently with only one or none tooth <strong>in</strong> front of ret<strong>in</strong>aculum,exceptionally with three extra teeth, penicillus present; six stemmata well-developed; maxillarystipes different <strong>in</strong> length, 1.5 to 5 times as long as wide, lac<strong>in</strong>ia dist<strong>in</strong>ct, with stout lateral seta MX6;prementum longer than wide, ligula at least as wide as base of palpomere I, frequently bifid at apex.114


Figs 62–70. Harpalus (Harpalus) xanthopus w<strong>in</strong>kleri Schauberger. First <strong>in</strong>star larva: 62 – nasale. 63 – mandible.Third <strong>in</strong>star larva: 64 – head capsule (dorsal view). 65 – nasale. 66 – antenna. 67 – mandible. 68 – maxilla. 69 –labium. 70 – urogomphi. Scales: 1 mm (Figs 64, 70), 0.5 mm (Figs 63, 66, 67, 68, 69), 0.3 mm (Fig. 65), 0.2 mm(Fig. 62).115


THORAX. Pronotum transverse, mostly wider than head, often with well developed notal car<strong>in</strong>aabove half of pronotum; legs stout, sp<strong>in</strong>y, claws frequently unequal.ABDOMEN. Abdom<strong>in</strong>al tergites transverse, sometimes with a f<strong>in</strong>e keel separat<strong>in</strong>g prescutum andscutum; urogomphi parallel or divergent, mostly longer than both width of tergite IX and length ofanal tube.Second and third <strong>in</strong>starsSame character states as <strong>in</strong> <strong>the</strong> first <strong>in</strong>star except <strong>the</strong> follow<strong>in</strong>g:HABITUS. Head capsule wider than <strong>in</strong> first <strong>in</strong>star.MICROSCULPTURE. In some species isodiametric microsculpture also on abdom<strong>in</strong>al tergites. Po<strong>in</strong>tedmicrosculpture on posterior abdom<strong>in</strong>al tergites and on base of urogomphi.CHAETOTAXY. Secondary chaetotaxy regularly represented by <strong>the</strong>se setae: Head. 2–3 (1–6) setae on<strong>in</strong>ner side of antennomere II, 2–3 setae on outer side of stipes, 2–3 (1) setae near apex of palpomereI, a number pairs of setae (5–6 pairs <strong>in</strong> L2, 8–9 pairs <strong>in</strong> L3 ) on dorso-lateral surface of prementum;2 setae on place of <strong>in</strong>ner and outer stemmatal furrows; many dim<strong>in</strong>utive setae or sensillae on dorsalsurface of head capsule. Thorax. Some setae around notal car<strong>in</strong>a, on lateral border and betweensetae PR11 and PR12; legs often with many secondary setae. Abdomen. Abdom<strong>in</strong>al tergites withseveral setae; urogomphi with 4 long secondary setae and often with many dim<strong>in</strong>utive setae orsensillae on <strong>the</strong> surface; seta URα small or absent, seta URβ more or less shorter than setae URγand UR4.HEAD and nasale mostly similar to L1, nasale with ra<strong>the</strong>r larger lateral teeth and more dist<strong>in</strong>ct centralprotuberance. Cervical grooves and stemmatal furrows more deepened, extremities ra<strong>the</strong>r longer.THORAX AND ABDOMEN similar to L1, urogomphi regularly longer.DISCUSSIONThe fundamental paper on <strong>the</strong> taxonomy of <strong>the</strong> larvae of Harpal<strong>in</strong>a was published by Brandmayr,Ferrero & Zetto Brandmayr, 1980. In this paper, <strong>the</strong>y separated with<strong>in</strong> <strong>the</strong> genus Harpalus Latreille,1802 sensu lato, <strong>the</strong> “ophonoid” and “harpaloid” l<strong>in</strong>eages, based on dist<strong>in</strong>ctive, morphologicallarval characters. They also presented differential diagnoses and <strong>the</strong> key of all described taxawith<strong>in</strong> <strong>the</strong> genus group, and a list of more or less well described species, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> authors of<strong>the</strong> descriptions.The taxonomy of <strong>the</strong> genus Harpalus is far of be<strong>in</strong>g stabilised at present. Based on <strong>the</strong> comb<strong>in</strong>ationof both adult and larval characters we consider Ophonus Dejean, 1821, CryptophonusBrandmayr & Zetto Brandmayr, 1982, Pseudoophonus Motschulsky, 1844 and NipponoharpalusHabu, 1973 as generic level taxa.The last monographic treatments of Carabidae larvae (Arndt 1991, Luff 1993) offer morphologicaldata for 17 species (11 species respectively) with<strong>in</strong> <strong>the</strong> genus Harpalus <strong>in</strong> our concept. Afteradd<strong>in</strong>g data from additional sources (Brandmayr et al. 1980, Gardner 1938, Habu 1973, Hrka 1975,1992, Kirk 1972, Puchkov 1992, Zeto Brandmayr & Brandmayr 1978), <strong>the</strong> number of species raisesto 32, of which 29 are <strong>in</strong> <strong>the</strong> subgenus Harpalus. In this paper we are add<strong>in</strong>g larval descriptions offur<strong>the</strong>r 8 species of <strong>the</strong> subgenus Harpalus. Most papers published so far are based on <strong>in</strong>completeand <strong>in</strong>sufficient material that does not fully take <strong>in</strong> consideration <strong>the</strong> variability of <strong>the</strong> larvalcharacters of <strong>the</strong> studied species. With <strong>the</strong> <strong>in</strong>creased number of described taxa, it is becom<strong>in</strong>gobvious that <strong>the</strong> variability of larval characters is considerably higher than previously thought. Itis also necessary to <strong>in</strong>crease <strong>the</strong> spectrum of <strong>the</strong> characters used <strong>in</strong> larval taxonomy, particularlyby <strong>the</strong> characters concern<strong>in</strong>g <strong>the</strong> chaetotaxy of <strong>the</strong> head and appendages.116


Based on <strong>the</strong> study of our larval material, as well as on data <strong>in</strong> <strong>the</strong> literature, <strong>the</strong> genus Harpalus<strong>in</strong> our concept may be characterised ma<strong>in</strong>ly by <strong>the</strong> follow<strong>in</strong>g characters: (1) Nasale deepenedbetween adnasalia; (2) Labial palpomere I <strong>in</strong> both second and third <strong>in</strong>stars with 2 (1–4) short setaenear apex; (3) Mandible with 0–4 teeth <strong>in</strong> front of ret<strong>in</strong>aculum, mandibular apex never bifid; (4)Antennomere II <strong>in</strong> <strong>in</strong>stars II and III with (1)2–5(6) large subapical setae directed <strong>in</strong>wards; (5) Innerside of stipes with a setal group gMX consist<strong>in</strong>g of more than 40 setae.A slightly more than 10 subgenera are mentioned world-wide <strong>in</strong> <strong>the</strong> genus Harpalus <strong>in</strong> ourconcept (Lorenz 1998), several tens of species aggregates are recognised <strong>in</strong> <strong>the</strong> subgenus Harpalus(Kataev 1995). In addition to <strong>the</strong> subgenus Harpalus, some of <strong>the</strong> larval characters areavailable also for species of <strong>the</strong> subgenera Acardystus Reitter, 1908 (Habu 1973), Artabas DesGozis, 1882 (Puchkov 1992), Harpalophonus Ganglbauer, 1892 (Zeto Brandmayr & Brandmayr1978), Megapangus Casey, 1914 (Kirk 1972), Plectralidus Casey, 1914 (Kirk 1972) and SemiophonusSchauberger, 1933 (Hrka 1992). Taxonomic–morphological differences between <strong>the</strong> larvaeof <strong>the</strong> species aggregates of <strong>the</strong> subgenus Harpalus are often more significant than thosebetween <strong>the</strong> larvae of conventional subgenera.The results of our study of both larval and adult characters with<strong>in</strong> <strong>the</strong> subgenus Harpalussensu novo mostly quite support <strong>the</strong> Kataev’s division <strong>in</strong> species aggregates that was establishedus<strong>in</strong>g adult characters, as it can be documented by <strong>the</strong> follow<strong>in</strong>g examples:Harpalus (Harpalus) atratusKataev 1995 established <strong>the</strong> separate species aggregate “atratus” for this species. This is fullysupported by <strong>the</strong> larval characters. Unique is <strong>the</strong> form of nasale (Figs 2, 7), <strong>the</strong> shape of mandiblewith two additional teeth <strong>in</strong> front of ret<strong>in</strong>aculum (Fig. 3), <strong>the</strong> shape of first <strong>in</strong>star labium (Fig. 5), aswell as <strong>the</strong> general habitus of <strong>the</strong> larva.Harpalus (Harpalus) cisteloides hurkaiA separate “cisteloides” species aggregate was established for this and three additional speciesby Kataev 1995. This is fully supported by <strong>the</strong> larval morphology, particularly by <strong>the</strong> follow<strong>in</strong>g:details <strong>in</strong> <strong>the</strong> development of <strong>the</strong> nasale, with <strong>the</strong> wide V–shaped medial emarg<strong>in</strong>ation (Figs 12, 16),<strong>the</strong> development of <strong>the</strong> ancestral chaetotaxy, <strong>the</strong> m<strong>in</strong>ute setae PA2 and PA3, and particularly <strong>the</strong>reduced setae FR8, FR9 and an additional seta near <strong>the</strong>m. Some of <strong>the</strong>se characters are similar tothose of H. autumnalis from <strong>the</strong> next species aggregate, <strong>in</strong> particular <strong>the</strong> similar shape of <strong>the</strong>mandible and of <strong>the</strong> egg–bursters, similar arrangement of <strong>the</strong> additional chaetotaxy of <strong>the</strong> labiumand of <strong>the</strong> legs (particularly of <strong>the</strong> femora), <strong>the</strong> similar development of <strong>the</strong> secondary chaetotaxy of<strong>the</strong> antennae, mandibles and of <strong>the</strong> maxillae. The actual relationships are not clear at present.Harpalus (Harpalus) picipennisA well def<strong>in</strong>ed “pumilus” species aggregate was established for this and seven additional species(= Actephilus Stephens, 1833). This is entirely supported by <strong>the</strong> larval morphology, especiallyafter a comparison with <strong>the</strong> larva of H. pumilus. The larvae of this group are characterised particularlyby <strong>the</strong> shape of <strong>the</strong> nasale (Figs 29, 33), by <strong>the</strong> markedly shortened head appendages, by <strong>the</strong>arrangement of <strong>the</strong> egg-bursters (Fig. 28), and by <strong>the</strong> shortened urogomphi. The shortened headappendages and urogomphi and <strong>the</strong> basic shape of <strong>the</strong> nasale, are similar to those of <strong>the</strong> “anxius”species aggregate, but <strong>in</strong> <strong>the</strong> latter <strong>the</strong> arrangement of <strong>the</strong> egg-bursters, <strong>the</strong> additional chaetotaxyof <strong>the</strong> legs and <strong>the</strong> details <strong>in</strong> <strong>the</strong> shape of <strong>the</strong> nasale are different.117


Harpalus (Harpalus) saxicolaBased on adult characters, <strong>the</strong> species was assigned, toge<strong>the</strong>r with H. angulatus Putzeys and H.dist<strong>in</strong>guendus (Duftschmid), to <strong>the</strong> “dist<strong>in</strong>guendus” species aggregate. This taxonomical actionis fully supported by <strong>the</strong> larval morphology, particularly after a comparison with <strong>the</strong> larva of H.dist<strong>in</strong>guendus. The species aggregate is characterised by <strong>the</strong> sagittiform nasale (Figs 37, 42), <strong>the</strong>shortened urogomphi, as well as by <strong>the</strong> secondary chaetotaxy of <strong>the</strong> antennae (Fig. 43), mandibles(Fig. 44) and <strong>the</strong> maxillae. Some of <strong>the</strong> characters, e.g. <strong>the</strong> somewhat similar shape of <strong>the</strong> nasale and<strong>the</strong> secondary chaetotaxy may suggest a possible relationships to <strong>the</strong> “aff<strong>in</strong>is” and “hospes”species aggregates.Harpalus (Harpalus) servusBased on adult characters, <strong>the</strong> species was assigned by Kataev 1995, toge<strong>the</strong>r with 8 additionalspecies, to <strong>the</strong> “anxius” species aggregate. The larval morphology of H. anxius, H. servus and H.subcyl<strong>in</strong>dricus fully supports this action. The larvae of <strong>the</strong> named species are very difficult todist<strong>in</strong>guish. The species aggregate is ma<strong>in</strong>ly def<strong>in</strong>ed by <strong>the</strong> shape of <strong>the</strong> nasale with a small apicalemarg<strong>in</strong>ation (Figs 46, 51), by <strong>the</strong> arrangement of <strong>the</strong> egg-bursters (Fig. 45), <strong>the</strong> shortened headappendages and urogomphi, and by <strong>the</strong> chaetotaxy of <strong>the</strong> legs (namely of <strong>the</strong> femora). Some of <strong>the</strong>characters are shared with <strong>the</strong> “pumilus” species aggregate (see above).The “latus” species aggregateKataev assigned 10 Palaearctic species to this species aggregate. About half of <strong>the</strong> species aredescribed <strong>in</strong> <strong>the</strong> larval stage <strong>in</strong> more or less details: H. latus, H. luteicornis, H. marg<strong>in</strong>ellus, H.solitaris and H. xanthopus w<strong>in</strong>kleri. The larval features of this five species <strong>in</strong>dicate that <strong>the</strong>species aggregate is likely not homogeneous. Harpalus luteicornis and H. xanthopus w<strong>in</strong>kleriare related. Harpalus latus and H. solitaris differ by <strong>the</strong> shape of <strong>the</strong> mandible and nasale, <strong>the</strong>larva of H. latus <strong>in</strong> addition by <strong>the</strong> conspicuously transverse head. The arrangement of <strong>the</strong> eggburstersis similar <strong>in</strong> all species exam<strong>in</strong>ed. The species aggregate requires a taxonomic revisionbased on sufficient material of all larval <strong>in</strong>stars.The comparison of both larval and adult characters of species of <strong>the</strong> genus Harpalus <strong>in</strong>dicatesthat it is at present more proper to assign <strong>the</strong> related species to <strong>the</strong> species aggregates ra<strong>the</strong>r thanto separate subgenera. However, some of <strong>the</strong> species aggregates established by Kataev 1995should be re-exam<strong>in</strong>ed.A c k n o w l e d g e m e n tThe senior author acknowledges <strong>the</strong> support of this study by <strong>the</strong> Research Project of <strong>the</strong> M<strong>in</strong>istry of Educationof <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> No. J 13/98113130004.REFERENCESARNDT E. 1991: Familie Carabidae. Pp.: 45–141. In: KLAUSNITZER B. (ed.): Die Larven der Käfer Mitteleuropas 1.Band 1 Adephaga. Krefeld: Goecke & Evers, 237 pp.BOUSQUET Y. 1985: Morphologie comparée des larves de Pterostich<strong>in</strong>i (Coleoptera: Carabidae): Descriptions ettables de déterm<strong>in</strong>ation des espces du nord-est de l’Amérique du nord. Natur. Can. (Rev. Écol. Syst.) 112:191–251.BOUSQUET Y. & GOULET H. 1984: Notation of primary setae and pores on larvae of Carabidae (Coleoptera:Adephaga). Can. J. Zool. 62: 573–588.BRANDMAYR P., FERRERO E. & ZETTO BRANDMAYR T. 1980: Larval versus imag<strong>in</strong>al taxonomy and <strong>the</strong> systematicstatus of <strong>the</strong> ground beetle taxa Harpalus and Ophonus (Coleoptera, Carabidae: Harpal<strong>in</strong>i). Entomol. Gener. 6:335–353.CHU H. F. 1945: The Larvae of Harpal<strong>in</strong>ae Unisetosae (Coleoptera, Carabidae). Entomol. Amer. 25: 1–71.118


EMDEN F. I. van 1942: A key to <strong>the</strong> genera of larval Carabidae (Coleoptera). Trans. R. Entomol. Soc. Lond. 92:1–99.GARDNER J. C. M. 1938: Immature stages of Indian Coleoptera (23) (Carabidae-contd.). Indian Forest Rec. 3:149–157, Plate I, II.HABU A. 1973: Fauna Japonica. Carabidae: Harpal<strong>in</strong>i (Insecta: Coleoptera). Tokyo: Keigaku Publ. Co., 430 pp.Habu A. & Sadanaga K. 1963: Illustrations for Identifications of Larvae of <strong>the</strong> Carabidae Found <strong>in</strong> CultivatedFields and Paddy-fields (II). Bull. Natl. Inst. Agr. Sci. Ser. C 16: 151–157.HABU A. & SADANAGA K. 1965: Illustrations for Identification of Larvae of <strong>the</strong> Carabidae Found <strong>in</strong> CultivatedFields and Paddy-fields (III). Bull. Natl. Inst. Agr. Sci. Ser. C 19: 81–216.HABU A. & SADANAGA K. 1970a: Descriptions of some larvae of <strong>the</strong> Carabidae found <strong>in</strong> cultivated fields and paddyfields(I). Konty 38: 9–23.HABU A. & SADANAGA K. 1970b: Descriptions of some larvae of <strong>the</strong> Carabidae found <strong>in</strong> cultivated fields and paddyfields(II). Konty 38: 24–41.HRKA K. 1975: Larval diagnosis of <strong>the</strong> tribe Stenoloph<strong>in</strong>i and notes on <strong>the</strong> classification of <strong>the</strong> subfamilyHarpal<strong>in</strong>ae (Coleoptera, Carabidae). Acta Entomol. Bohemoslov. 77: 247–256.HRKA K. 1992: The taxonomic status of Semiophonus (Coleoptera: Carabidae, Harpal<strong>in</strong>i) and description of <strong>the</strong>larva of Harpalus (Semiophonus) signaticornis. Acta Entomol. Bohemoslov. 89: 29–34.HRKA K. 1996: Carabidae of <strong>the</strong> <strong>Czech</strong> and Slovak <strong>Republic</strong>s. Zlín: Kabourek, 565 pp.KATAEV B. M. 1995: Subtribe Harpal<strong>in</strong>a. Pp.: 139–153. In: KRYZHANOVSKIJ O. L. et al.: A Checklist of <strong>the</strong> Ground-Beetles of Russia and Adjacent Lands (Insecta, Coleoptera, Carabidae). Sofia-Moscow: PENSOFT Publishers,271 pp.KIRK V. M. 1972: Identification of ground beetle larvae found <strong>in</strong> cropland <strong>in</strong> South Dakota. Ann. Entomol. Soc.Amer. 65: 1349–1356.LARSSON S. G. 1941: Larver [Larvae]. Pp.: 243–360. In: HANSEN V.: Biller XI. Sandspr<strong>in</strong>gere og Lobebiller(Cic<strong>in</strong>delidae og Carabidae) [Coleoptera XI. Cic<strong>in</strong>delidae and Carabidae]. Danmarks Fauna 47: 1–360.LARSSON S. G. 1968: Lobebillernes larver [Larvae of Carabidae]. Pp.: 282–433. In: HANSEN V.: Biller XXIVSandspr<strong>in</strong>gere og Lobebiller (Cic<strong>in</strong>delidae og Carabidae) [Coleoptera XXIV Cic<strong>in</strong>delidae and Carabidae].Danmarks Fauna 76: 1–451.LORENZ W. 1998: Systematic list of extant ground beetles of <strong>the</strong> world. Tutz<strong>in</strong>g: W. Lorenz, 502 pp.LUFF M. L. 1993: The Carabidae (Coleoptera) larvae of Fennoscandia and Denmark. Fauna Entomol. Scand<strong>in</strong>avica27: 1–176.PRUNER L. & MÍKA P. 1996: List of settlements <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> with associated map field codes for faunisticgrid mapp<strong>in</strong>g system. Klapalekiana 32 (Suppl.): 1–115 (In <strong>Czech</strong>, Engl. Summary).PUCHKOV A. V. 1992: The larva of Harpalus (Artabas) splendens (Coleoptera, Carabidae). Vest. Zool. 1992: 70–73(In Russian, Engl. Summary).SCHIDTE J. C. 1867: De metamorphosi eleu<strong>the</strong>ratorum observationes. Naturh. Tidssk. 4: 439–552, Taf. XII–XII.SHAROVA I. C. 1958: Lich<strong>in</strong>ki zhukov zhuzhelic (Carabidae) poleznykh i vrednykh v selskom khozyaistve [Thelarvae of Carabidae, beneficial and noxious to agriculture]. Uchen. Zap. Mosk. Pedag. Inst. 124: 4–165 (InRussian).SHAROVA I. C. 1964: Carabidae. Pp.: 112–195. In: GHILAROV M. S. (ed.): Opredelitel obitajushchikh v pochvelich<strong>in</strong>ok nasekomykh [Key for <strong>the</strong> identification of soil <strong>in</strong>habit<strong>in</strong>g <strong>in</strong>sect larvae]. Moskva: Nauka, 919 pp (InRussian).ZETTO BRANDMAYR T. & BRANDMAYR P. 1978: Morfologia pre-imag<strong>in</strong>ale e note bionomiche su Harpalus(Harpalophonus) circumpunctatus italus Schaum (Coleoptera, Carabidae). Boll. Ist. Entomol. Univ. Bologna34: 65–74.119


120


Acta Soc. Zool. Bohem. 66: 121–140, 2002ISSN 1211-376XObservations on seasonal changes <strong>in</strong> <strong>the</strong> occurrence and maturation of fivehelm<strong>in</strong>th species <strong>in</strong> <strong>the</strong> pimelodid catfish, Rhamdia guatemalensis,<strong>in</strong> <strong>the</strong> cenote (= s<strong>in</strong>khole) Ix<strong>in</strong>-há, Yucatán, MexicoFrantišek MORAVEC 1, 2) , Edgar MENDOZA-FRANCO 2) , Clara VIVAS-RODRÍGUEZ 2) ,Joaqu<strong>in</strong> VARGAS-VÁZQUEZ 2) & David GONZÁLEZ-SOLÍS 2)1)Institute of Parasitology, Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>, Branišovská 31,CZ–370 05 eské Budjovice, <strong>Czech</strong> <strong>Republic</strong>2)Centre for Research and Advanced Studies, National Polytechnic Institute (CINVESTAV-IPN), Mérida Unit,Carretera Antigua a Progreso Km 6, A. P. 73 “Cordemex”, C. P. 973 10 Mérida, Yucatán, MexicoReceived March 23, 2001; accepted October 16, 2001Published June 28, 2002Abstract. Prelim<strong>in</strong>ary data on seasonal changes <strong>in</strong> <strong>the</strong> occurrence and <strong>the</strong> maturation of five fish helm<strong>in</strong>ths,<strong>the</strong> trematodes Genarchella tropica (Manter, 1936) and Stunkardiella m<strong>in</strong>ima (Stunkard, 1938), <strong>the</strong>cestode Proteocephalus brooksi García-Prieto, Rodríguez et Pérez-Ponce de León, 1996 and <strong>the</strong> nematodesRhabdochona kidderi Pearse, 1936 and Neophilometroides caudatus (Moravec, Scholz et Vivas-Rodríguez,1995), <strong>in</strong> <strong>the</strong>ir def<strong>in</strong>itive host, Rhamdia guatemalensis (Gün<strong>the</strong>r, 1864), are provided, based on monthlysamples of fish (a total of 82 fish were exam<strong>in</strong>ed) collected from <strong>the</strong> cenote (= s<strong>in</strong>khole) Ix<strong>in</strong>-há, centralState of Yucatán, Mexico, from June – November 1994. Encysted metacercariae of Stunkardiella m<strong>in</strong>imaand encapsulated larvae of Proteocephalus brooksi also occurred <strong>in</strong> Rhamdia guatemalensis. No clear-cutseasonal maturation cycles were observed <strong>in</strong> <strong>the</strong>se parasites and <strong>in</strong> contrast to most helm<strong>in</strong>ths of freshwaterfish <strong>in</strong> <strong>the</strong> temperate zone, all <strong>the</strong>se species seemed to reproduce throughout <strong>the</strong> year. High water temperaturesand quickly develop<strong>in</strong>g sequence of generations of <strong>in</strong>vertebrate <strong>in</strong>termediate hosts appear to be <strong>the</strong> pr<strong>in</strong>ciplefactors determ<strong>in</strong><strong>in</strong>g this annual reproduction of fish helm<strong>in</strong>ths <strong>in</strong> <strong>the</strong> tropics.Seasonality, maturation cycles, fish helm<strong>in</strong>ths, Pimelodidae, Rhamdia guatemalensis, MexicoINTRODUCTIONIt is well-known that most helm<strong>in</strong>th parasites of fish live for only a short time and <strong>in</strong> <strong>the</strong> temperatezone, <strong>in</strong> addition to <strong>the</strong> species capable of reproduction <strong>in</strong> any season, <strong>the</strong>re are o<strong>the</strong>rs that growand mature only <strong>in</strong> that period of <strong>the</strong> year when favourable climatic and o<strong>the</strong>r conditions occur(Chubb 1979, 1982, Moravec 1994). In spite of both <strong>the</strong> <strong>the</strong>oretical and practical importance of suchdata, <strong>the</strong> seasonal maturation cycles have been studied <strong>in</strong> few species and almost exclusively <strong>in</strong>Europe and North America. In subtropical and tropical regions such studies have not been madeand, as far as <strong>the</strong> authors know, <strong>the</strong> only published data is on <strong>the</strong> seasonal occurrence and maturationof <strong>the</strong> nematodes Rhabdochona zacconis Yamaguti, 1935 <strong>in</strong> Tribolodon hakuensis (Gün<strong>the</strong>r,1877) <strong>in</strong> a subtropical region of Japan (Moravec et al. 1998), of Procamallanus <strong>in</strong>op<strong>in</strong>atus Travassos,Artigas et Pereira, 1928 <strong>in</strong> Serrasalmus spilopleura Kner, 1858 <strong>in</strong> a subtropical region ofnor<strong>the</strong>astern Argent<strong>in</strong>a (Hamann 1999), and of Rhabdochona kidderi <strong>in</strong> Cichlasoma nigrofasciatum(Gün<strong>the</strong>r, 1867) <strong>in</strong> a tropical region of central Mexico (Caspeta-Mandujano et al. 2000). Becausewater temperature is generally considered to be <strong>the</strong> pr<strong>in</strong>cipal factor controll<strong>in</strong>g directly or<strong>in</strong>directly <strong>the</strong> seasonal cycles of helm<strong>in</strong>ths of fish (Kennedy 1970), data on <strong>the</strong> seasonal maturationcycles of fish helm<strong>in</strong>ths <strong>in</strong> tropical regions are of special <strong>in</strong>terest.121


Tab. 1. Monthly survey of Rhamdia guatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há for <strong>in</strong>fection with Genarchellatropica (Manter)month no. of fish fish length mean no. of fish prevalence (%) <strong>in</strong>tensity meanexam<strong>in</strong>ed (range) [cm] <strong>in</strong>fected (range)June 20 18 (12–28) 8 40 1.6 (1–3)July 1 7 16 (12–23) 9 53 2.1 (1–4)August 14 19 (12–27) 5 36 1.6 (1–2)September 14 17 (13–19) 5 36 1.4 (1–2)October 15 16 (12–24) 2 13 1.5 (1–2)November 2 14 (11–17) 1 50 1.0 (1)The authors are aware that <strong>the</strong> material used <strong>in</strong> this work is rar<strong>the</strong>r limited and that fu<strong>the</strong>r studies,cover<strong>in</strong>g all months of <strong>the</strong> year, are necessary to describe <strong>in</strong> detail <strong>the</strong> seasonal maturation cycles of<strong>the</strong>se helm<strong>in</strong>th species. Never<strong>the</strong>less, <strong>the</strong> present data represent, except for Rhabdochona kidderi,<strong>the</strong> first observations on <strong>the</strong> maturation cycles of <strong>the</strong>se parasites <strong>in</strong> <strong>the</strong> tropical region (Yucatán),and <strong>the</strong>refore worthy of publication.MATERIALS AND METHODSThe cenote (= s<strong>in</strong>khole) Ix<strong>in</strong>-há belongs to <strong>the</strong> so called open type (its open<strong>in</strong>g is almost <strong>the</strong> same diameter as <strong>the</strong>diameter of <strong>the</strong> water surface) accord<strong>in</strong>g to Hall (1977) and is situated <strong>in</strong> <strong>the</strong> central part of <strong>the</strong> Yucatán State(20° 37’ 14” N, 89° 06’ 40” W), sou<strong>the</strong>astern Mexico. This is a deep water body of about 50 m <strong>in</strong> diametercommunicat<strong>in</strong>g with subterranean streams and surrounded by rich tropical vegetation. As <strong>in</strong> o<strong>the</strong>r parts of <strong>the</strong>Yucatán Pen<strong>in</strong>sula, <strong>the</strong> tropical sett<strong>in</strong>g, low elevation and strong maritime <strong>in</strong>fluences, <strong>the</strong> mean temperatures arewarm and relatively homogenous, with a mean annual temperature of 25–26 °C, and annual range of mean monthlytemperatures of about 4–6 °C (Lee 1996).The fish fauna of this cenote is <strong>in</strong>sufficiently known but is dom<strong>in</strong>ated by <strong>the</strong> pimelodid catfish Rhamdiaguatemalensis (Gün<strong>the</strong>r, 1864) (Siluriformes: Pimelodidae); this fish is known to migrate from one cenote toano<strong>the</strong>r through <strong>the</strong> <strong>in</strong>terconnect<strong>in</strong>g subterranean streams. Although no o<strong>the</strong>r species of fish were recordeddur<strong>in</strong>g this study, <strong>the</strong> rare occurrence of <strong>the</strong> two bl<strong>in</strong>d cave fishes, Ogilbia pearsei (Hubbs, 1938) (Ophidiiformes:Bythitidae) and Ophisternon <strong>in</strong>fernale (Hubbs, 1938) (Synbranchiformes: Synbranchidae), cannot be excluded.Fish (Rhamdia guatemalensis) were caught by angl<strong>in</strong>g at regular monthly <strong>in</strong>tervals from June until November1994 (Tab. 1). The live fish were transported to <strong>the</strong> laboratory of <strong>the</strong> CINVESTAV <strong>in</strong> Mérida, where <strong>the</strong>y wereexam<strong>in</strong>ed for parasites. Altoge<strong>the</strong>r 82 specimens of R. guatemalensis were dissected. Occasional small samples ofbenthic <strong>in</strong>vertebrates were exam<strong>in</strong>ed for helm<strong>in</strong>th larvae <strong>in</strong> June, July and August. This <strong>in</strong>cluded aquatic Oligochaeta(17 specimens), Hirud<strong>in</strong>ea (9), <strong>Gastropoda</strong> (12), Isopoda (1), Ephemeroptera (166), Plecoptera (2), Odonata(66), Trichoptera (19), Coleoptera (10), and Diptera (Chironomidae) (197).The freshly collected nematodes were fixed ei<strong>the</strong>r <strong>in</strong> hot 4% formaldehyde (Rhabdochona kidderi) or hot 4%formaldehyde <strong>in</strong> physiological sal<strong>in</strong>e (Neophilometroides caudatus) and temporarily stored <strong>in</strong> 4% formaldehyde.For exam<strong>in</strong>ation <strong>the</strong>y were cleared <strong>in</strong> glycer<strong>in</strong>e. After exam<strong>in</strong>ation <strong>the</strong>y were preserved <strong>in</strong> 70% ethanol. Trematodesand cestodes were fixed <strong>in</strong> 4% formaldehyde under a coverslip; subsequently <strong>the</strong>y were sta<strong>in</strong>ed with Schuberg’scarm<strong>in</strong>e, dehydrated and mounted as permanent preparations <strong>in</strong> Canada balsam. The specimens have been deposited<strong>in</strong> <strong>the</strong> Institute of Parasitology, ASCR, <strong>in</strong> eské Budjovice and <strong>in</strong> <strong>the</strong> Parasitological Laboratory, CIN-VESTAV-IPN, <strong>in</strong> Mérida.RESULTSDur<strong>in</strong>g this study, carried out at <strong>the</strong> cenote Ix<strong>in</strong>-há from June to November 1994, <strong>the</strong> follow<strong>in</strong>g 13helm<strong>in</strong>th parasites were recorded from Rhamdia guatemalensis: Trematoda: Genarchella tropica,Stunkardiella m<strong>in</strong>ima adults and metacercariae, Cl<strong>in</strong>ostomum cf. complanatum metacercariae;Cestoda: Proteocephalus brooksi adults and encapsulated larvae (= Nomimoscolex sp. and Proteocephalideagen. sp. larvae of Scholz et al. 1996), Dendrouter<strong>in</strong>a pilherodiae Mahon, 1956 larvae122


and D. papillifera (Fuhrmann, 1908) larvae; Nematoda: Paracapillaria rhamdiae Moravec,González-Solís et Vargas-Vázquez, 1995, Pseudocapillaria yucatanensis Moravec, Scholz et Vivas-Rodríguez,1995, Neophilometroides caudatus (Moravec, Scholz et Vivas-Rodríguez, 1995),Rhabdochona kidderi, Contracaecum sp. Type 1 larvae and Eustrongylides sp. (cf. E. ignotusJägerskiöld, 1909) larvae; <strong>the</strong>se f<strong>in</strong>d<strong>in</strong>gs were reported <strong>in</strong> <strong>the</strong> surveys of Yucatanese fish helm<strong>in</strong>thspublished by Moravec et al. (1995a, b) and Scholz et al. (1995a, b, 1996).Of <strong>the</strong> above mentioned parasites, seasonal maturation was followed only <strong>in</strong> <strong>the</strong> species occurr<strong>in</strong>gas adults <strong>in</strong> Rhamdia guatemalensis, with <strong>the</strong> exception of <strong>the</strong> two capillariid species, Paracapillariarhamdiae and Pseudocapillaria yucatanensis, which only rarely occur <strong>in</strong> this host.The fish host and its foodIn this locality, <strong>the</strong> only def<strong>in</strong>itive host of all five helm<strong>in</strong>th species was <strong>the</strong> pimelodid catfish,Rhamdia guatemalensis. In <strong>the</strong> case of Rhabdochona kidderi, it cannot be excluded that <strong>the</strong> bl<strong>in</strong>dcave fish Ogilbia pearsei is also a host, but <strong>the</strong> importance of this fish for <strong>the</strong> local population ofRhabdochona kidderi is negligible.S<strong>in</strong>ce <strong>the</strong> composition of a helm<strong>in</strong>th fauna (both qualitatively and quantitatively) is considerablyaffected by <strong>the</strong> diet of <strong>the</strong> host, <strong>the</strong> character of <strong>the</strong> food of R. guatemalensis was also recordedmonthly. This revealed that <strong>the</strong>re were almost no changes <strong>in</strong> <strong>the</strong> composition of food over <strong>the</strong>period of this study, which consisted ma<strong>in</strong>ly of larvae of aquatic <strong>in</strong>sects (largely Ephemeroptera,Plecoptera and Odonata) and o<strong>the</strong>r aquatic <strong>in</strong>vertebrates (ma<strong>in</strong>ly snails), and occasionally a largeproportion of plant material; tree flowers or bird fea<strong>the</strong>rs were found <strong>in</strong> <strong>the</strong> stomachs and it is highlyprobable that <strong>the</strong>se fish fed also on bird and bat excrement (bats occur <strong>in</strong> huge numbers <strong>in</strong> thislocality). Although no fish rema<strong>in</strong>s were recorded, <strong>the</strong> frequent occurrence of encapsulated Proteocephalusbrooksi larvae and encysted metacercariae of Stunkardiella m<strong>in</strong>ima suggests thatcannibalism frequently occurs <strong>in</strong> this species of fish <strong>in</strong> this eutrophic cenote.Genarchella tropica (Manter, 1936)This trematode species is a stomach parasite of pimelodid catfishes of <strong>the</strong> genus Rhamdia Bleeker,1858 <strong>in</strong> Mexico (Yucatán), Nicaragua and Panama (Scholz et al. 1995a, c). I was previously collectedfrom R. guatemalensis <strong>in</strong> <strong>the</strong> cenote Ix<strong>in</strong>-há by Scholz et al. (1995a).Occurrence of Genarchella tropica <strong>in</strong> Rhamdia guatemalensisPrevalence and <strong>in</strong>tensity of <strong>in</strong>fection: Out of 82 R. guatemalensis exam<strong>in</strong>ed, 29 (prevalence 35%)were <strong>in</strong>fected with G. tropica at an <strong>in</strong>tensity of 1–4 (mean 2) trematodes per fish (see Tab. 1). Thetrematodes were all found <strong>in</strong> <strong>the</strong> host’s stomach.The number of catfish exam<strong>in</strong>ed dur<strong>in</strong>g <strong>the</strong> survey and <strong>the</strong> <strong>in</strong>cidence of <strong>in</strong>fection with G. tropicais given <strong>in</strong> Tab. 1. As is evident from Tab. 2, <strong>in</strong>fection by this trematode is associated with <strong>the</strong> bodysize (age) of <strong>the</strong> fish. The smallest catfish that harboured G. tropica measured 12 cm and <strong>the</strong> largest23 cm. The trematodes occurred <strong>in</strong> all size-groups of catfish exam<strong>in</strong>ed, which was all but <strong>the</strong> smallestsize-group. Tab. 2 shows that <strong>the</strong> values of both prevalence and mean <strong>in</strong>tensity of <strong>in</strong>fection generallydecreased with <strong>the</strong> body length of <strong>the</strong> host; a considerable decrease <strong>in</strong> prevalence is obvious<strong>in</strong> <strong>the</strong> largest size-group (body length 20–28 cm).Seasonal changes <strong>in</strong> prevalence and mean <strong>in</strong>tensity of <strong>in</strong>fectionA survey of prevalence, <strong>in</strong>tensity and mean <strong>in</strong>tensity of G. tropica <strong>in</strong>fection <strong>in</strong> catfish <strong>in</strong> <strong>in</strong>dividualmonths is shown <strong>in</strong> Tab. 1. G. tropica was present <strong>in</strong> catfish dur<strong>in</strong>g <strong>the</strong> whole period. It is obviousfrom Fig. 1 that <strong>the</strong> prevalence was usually ra<strong>the</strong>r high, atta<strong>in</strong><strong>in</strong>g its maximum (53%) <strong>in</strong> July, with a123


Tab. 2. Association of helm<strong>in</strong>th <strong>in</strong>fection with body length of host (irrespective of season) (prevalence, mean<strong>in</strong>tensity)helm<strong>in</strong>th species > 15 cm (n = 31) > 19 cm (n = 36) < 20 cm (n = 15)Genarchella tropica 45% 39% 13%1.9 1.6 1.5Stukardiella m<strong>in</strong>ima 29% 19% 20%1.9 19.3 8.3Stunkardiella m<strong>in</strong>imametacercariae 13% 11% 27%37.3 15.0 5.3Proteocephalus brooksi 6% 8% 13%1.0 5.3 5.5Proteocephalus brooksiencapsulated larvae 52% 44% 7%39.8 23.3 6.0Philometroides caudata 0% 14% 13%0 1.4 2.0Rhabdochona kidderi 87% 81% 67%10.1 6.6 8.2marked decrease (13%) <strong>in</strong> October; <strong>the</strong> mean <strong>in</strong>tensity was relatively low throughout <strong>the</strong> period,with <strong>the</strong> highest value (2.1) <strong>in</strong> July.Seasonal changes <strong>in</strong> maturation of Genarchella tropicaThe state of maturation of G. tropica <strong>in</strong> <strong>the</strong> monthly samples is shown <strong>in</strong> Fig. 2. The first group oftrematodes <strong>in</strong>cluded young <strong>in</strong>dividuals without eggs, <strong>the</strong> second: small <strong>in</strong>dividuals (body lengthFig. 1. Variation of prevalence (triangle) and mean <strong>in</strong>tensity of <strong>in</strong>fection (square) by Genarchella tropica (Manter)<strong>in</strong> Rhamdia guatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há over <strong>the</strong> period June to November 1994.124


about 1 mm) with only a few eggs <strong>in</strong> <strong>the</strong>ir uterus, and <strong>the</strong> third: large specimens (body length 1.3–2.2 mm) with many eggs <strong>in</strong> <strong>the</strong>ir uterus.It is evident from Fig. 2 that G. tropica had eggs <strong>in</strong> all months, but that <strong>the</strong>re were dist<strong>in</strong>ctseasonal differences <strong>in</strong> <strong>the</strong> composition of trematode samples from <strong>in</strong>dividual months. Although <strong>in</strong>June specimens with many eggs (group III) prevailed and some with few eggs (group II) werepresent, only specimens with many eggs occurred <strong>in</strong> July; <strong>in</strong> <strong>the</strong> period from August to October <strong>the</strong>proportion of specimens with many eggs gradually decreased and that of those with few eggsgradually <strong>in</strong>creased; also young, nongravid <strong>in</strong>dividuals were recorded <strong>in</strong> August and October.Only trematodes with few eggs were found <strong>in</strong> November, but this monthly sample consisted of onlytwo <strong>in</strong>dividuals.Monthly changes <strong>in</strong> <strong>the</strong> number of trematode size groups are apparent from Fig. 3, which shows<strong>the</strong> mean numbers of <strong>in</strong>dividuals <strong>in</strong> each size group of G. tropica <strong>in</strong> each month. It is obvious fromthis figure that <strong>the</strong>re was a sudden <strong>in</strong>crease <strong>in</strong> <strong>the</strong> numbers of trematodes with many eggs <strong>in</strong> July,reach<strong>in</strong>g <strong>the</strong> maximum number of 1.24 specimens per fish; from August, <strong>the</strong> numbers of <strong>in</strong>dividuals<strong>in</strong> this group gradually decreased to zero by November. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> numbers of trematodeswith few eggs <strong>in</strong>creased gradually from zero <strong>in</strong> July to 0.50 <strong>in</strong> October–November. Numbersof nongravid specimens per fish, <strong>in</strong> August and October, were low (0.07 and 0.10).Fig. 2. Monthly changes <strong>in</strong> <strong>the</strong> occurrence and state of maturity of Genarchella tropica (Manter) <strong>in</strong> Rhamdiaguatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há over <strong>the</strong> period June to November 1994. The data are expressedas percentages of <strong>the</strong> total number of trematodes found per month: small specimens without eggs – group I(unshaded), specimens with few eggs – group II (stippled) and fully mature specimens – group III (blackened).125


Tab. 3. Survey of Rhamdia guatemalensis exam<strong>in</strong>ed from <strong>the</strong> cenote Ix<strong>in</strong>-há and <strong>the</strong>ir <strong>in</strong>fection with Stunkardiellam<strong>in</strong>imamonth no. of fish exam<strong>in</strong>ed no. of fish <strong>in</strong>fected prevalence (%) <strong>in</strong>tensity mean (range)June 20 8 40 11.0 (1–31)July 1 7 3 1 8 1.0 (1)August 14 3 21 6.3 (2–11)September 14 3 21 19.0 (1–54)October 15 2 13 7.7 (1–26)November 2 0 – –Stunkardiella m<strong>in</strong>ima (Stunkard, 1938)This acanthostomatid trematode is a specific <strong>in</strong>test<strong>in</strong>al parasite of Rhamdia guatemalensis <strong>in</strong> sou<strong>the</strong>rnMexico (Pérez-Ponce de León et al. 1996); conspecific metacercariae occur mostly <strong>in</strong> f<strong>in</strong>s of R.guatemalensis and some o<strong>the</strong>r fishes. From <strong>the</strong> cenote Ix<strong>in</strong>-há, both adults and metacercariae ofthis species were reported by Scholz et al. (1995a, b).Occurrence of adult Stunkardiella m<strong>in</strong>ima <strong>in</strong> Rhamdia guatemalensisPrevalence and <strong>in</strong>tensity of <strong>in</strong>fection: Out of 82 R. guatemalensis exam<strong>in</strong>ed from this locality, 19(prevalence 23%) proved to be <strong>in</strong>fected with S. m<strong>in</strong>ima, and <strong>the</strong> <strong>in</strong>tensity of <strong>in</strong>fection was 1–54(mean 9) trematodes per fish (Tab. 3). The trematodes were found only <strong>in</strong> <strong>the</strong> host’s <strong>in</strong>test<strong>in</strong>e.Fig. 3. Monthly changes <strong>in</strong> mean numbers of specimens of three size groups of Genarchella tropica (Manter) perfish. A = small specimens without eggs (group I); B = specimens with few eggs (group II); C = fully maturespecimens with numerous eggs (group III).126


The number of catfish exam<strong>in</strong>ed each month and <strong>the</strong> <strong>in</strong>cidence of <strong>in</strong>fection with S. m<strong>in</strong>ima isgiven <strong>in</strong> Tab. 3. They occurred <strong>in</strong> all size-groups of catfish, but it is evident from Tab. 2 that<strong>in</strong>fection by this trematode is associated with <strong>the</strong> body size (age) of <strong>the</strong> fish; <strong>the</strong> highest prevalence(29%) and <strong>the</strong> lowest mean <strong>in</strong>tensity (1.9) was <strong>in</strong> <strong>the</strong> smallest fish; <strong>the</strong> lowest prevalence and <strong>the</strong>highest mean <strong>in</strong>tensity was found <strong>in</strong> fish with a body length 16–19 cm. The smallest catfish harbour<strong>in</strong>gS. m<strong>in</strong>ima measured 12 cm and <strong>the</strong> largest 28 cm.Seasonal changes <strong>in</strong> prevalence and mean <strong>in</strong>tensity of <strong>in</strong>fectionA survey of <strong>the</strong> monthly prevalence, <strong>in</strong>tensity and mean <strong>in</strong>tensity of S. m<strong>in</strong>ima <strong>in</strong>fection of catfishis shown <strong>in</strong> Tab. 3. This trematode was found <strong>in</strong> catfish from June to October. The highest prevalence(40%) was <strong>in</strong> June, decreased (18–21%) <strong>in</strong> July-September, and aga<strong>in</strong> (13%) <strong>in</strong> October tozero <strong>in</strong> November, when only two fish were exam<strong>in</strong>ed (Fig. 4). The mean <strong>in</strong>tensity decreased (1) <strong>in</strong>July and <strong>the</strong>n <strong>in</strong>creased to atta<strong>in</strong> its maximum (19) <strong>in</strong> September, followed by a decrease (13) <strong>in</strong>October.Seasonal changes <strong>in</strong> maturation of Stunkardiella m<strong>in</strong>imaThe state of maturation of S. m<strong>in</strong>ima <strong>in</strong> each month is shown <strong>in</strong> Fig. 5. The first group of trematodes<strong>in</strong>cludes young <strong>in</strong>dividuals (body length 0.4–0.7 mm) without eggs, <strong>the</strong> second group – small<strong>in</strong>dividuals (body length 0.7–0.8 mm) with only a few eggs <strong>in</strong> <strong>the</strong>ir uterus, and <strong>the</strong> third group –larger specimens (body length 1.3–2.2 mm) with many eggs.Fig. 4. Variation <strong>in</strong> <strong>the</strong> prevalence (triangle) and mean <strong>in</strong>tensity of <strong>in</strong>fection (square) of Stunkardiella m<strong>in</strong>ima(Stunkard) of Rhamdia guatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há over <strong>the</strong> period June to November1994.127


Tab. 4. Monthly survey of Rhamdia guatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há for <strong>in</strong>fection with metacercariaeof Stunkardiella m<strong>in</strong>ima (Stunkard)month no. of fish exam<strong>in</strong>ed no. of fish <strong>in</strong>fected prevalence (%) <strong>in</strong>tensity mean (range)June 20 2 10 60.5 (1–120)July 1 7 4 2 4 6.8 (1–15)August 14 3 21 6.3 (2–8)September 14 1 7 43.0 (43)October 15 3 20 8.0 (4–16)November 2 0 – –It is evident from Fig. 5 that S. m<strong>in</strong>ima conta<strong>in</strong><strong>in</strong>g eggs were present <strong>in</strong> all months exceptNovember, when only two fish were exam<strong>in</strong>ed and no S. m<strong>in</strong>ima was found. The specimens withmany eggs (group III) made up 100% of <strong>the</strong> samples <strong>in</strong> September and October and prevailed <strong>in</strong>those collected <strong>in</strong> June–August, <strong>in</strong> which trematode groups I and II were present. The proportionof specimens without eggs (group I) gradually <strong>in</strong>creased from June to August, whereas of thosewith few eggs (group II) was somewhat greater <strong>in</strong> July compared to June and August.Monthly changes <strong>in</strong> <strong>the</strong> number of trematode groups are apparent from Fig. 6, which shows <strong>the</strong>mean numbers of <strong>in</strong>dividuals <strong>in</strong> each of <strong>the</strong> size group of S. m<strong>in</strong>ima <strong>in</strong> each month. The highestFig. 5. Monthly changes <strong>in</strong> <strong>the</strong> occurrence and state of maturity of Stunkardiella m<strong>in</strong>ima (Stunkard) <strong>in</strong> Rhamdiaguatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há over <strong>the</strong> period June to November 1994. The data are expressedas percentages of <strong>the</strong> total number of trematodes found per month: small specimens without eggs – group I(unshaded), specimens with few eggs – group II (stippled) and fully mature specimens with numerous eggs – groupIII (blackened).128


number (3.65) of trematodes with many eggs (group III) per fish occurred <strong>in</strong> June, <strong>the</strong>n suddenlydecreased (0.35–0.57) <strong>in</strong> July–August and considerably <strong>in</strong>creased (2.86) <strong>in</strong> September, and suddenlydecreased (0.57) <strong>in</strong> October. The numbers of trematodes <strong>in</strong> groups I and II were ra<strong>the</strong>r low <strong>in</strong>June–August.Occurrence of Stunkardiella m<strong>in</strong>ima metacercariae <strong>in</strong> Rhamdia guatemalensisOut of 82 R. guatemalensis, 13 (prevalence 16%) harboured S. m<strong>in</strong>ima metacercariae encysted <strong>in</strong><strong>the</strong>ir f<strong>in</strong>s, with <strong>the</strong> <strong>in</strong>tensity of <strong>in</strong>fection be<strong>in</strong>g 1–120 (mean 18) cysts per fish.The number of catfish exam<strong>in</strong>ed each month and <strong>the</strong>ir <strong>in</strong>fection with encysted metacercariae ofS. m<strong>in</strong>ima is given <strong>in</strong> Tab. 4. The highest prevalence was <strong>in</strong> July–August and October, and <strong>the</strong>highest <strong>in</strong>tensity <strong>in</strong> June and September. Tab. 2 shows that <strong>the</strong> mean <strong>in</strong>tensity decreased with<strong>in</strong>crease <strong>in</strong> size of fish, but <strong>the</strong> highest prevalence was <strong>in</strong> <strong>the</strong> largest fish. The data suggest anoverdispersion <strong>in</strong> <strong>the</strong> frequency distribution of <strong>in</strong>fections.Proteocephalus brooksi García-Prieto, Rodríguez et Pérez-Ponce de León, 1996Adults of this cestode are specific <strong>in</strong>test<strong>in</strong>al parasites of Rhamdia guatemalensis <strong>in</strong> sou<strong>the</strong>rnMexico (Pérez-Ponce de León et al. 1996). In <strong>the</strong> cenote Ix<strong>in</strong>-há, <strong>the</strong> adults of this species wereFig. 6. Monthly changes <strong>in</strong> mean numbers of specimens of three size groups of Stunkardiella m<strong>in</strong>ima (Stunkard)per fish. A = small specimens without eggs (group I); B = specimens with few eggs (group II); C = fully maturespecimens with numerous eggs (group III).129


Tab. 5. Monthly survey of Rhamdia guatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há for <strong>in</strong>fection with Proteocephalusbrooksi García-Prieto et al. (exclud<strong>in</strong>g encapsulated larvae)month no. of fish exam<strong>in</strong>ed no. of fish <strong>in</strong>fected prevalence (%) <strong>in</strong>tensity mean (range)June 20 3 15 3.0 (1–6)July 1 7 1 6 1.0 (1)August 14 2 14 5.5 (3–8)September 14 1 7 1.0 (1)October 15 0 – –November 2 0 – –identified as Nomimoscolex sp. by Scholz et al. (1996). The encapsulated cestode larvae occurr<strong>in</strong>g<strong>in</strong> R. guatemalensis <strong>in</strong> this locality, designated as Proteocephalidea gen. sp. larvae by Scholz et al.(1996), undoubtedly belong to <strong>the</strong> same species, because no o<strong>the</strong>r proteocephalids were found <strong>in</strong>this locality.Occurrence of adult Proteocephalus brooksi <strong>in</strong> Rhamdia guatemalensisPrevalence and <strong>in</strong>tensity of <strong>in</strong>fection: Out of 82 R. guatemalensis from this locality, only 7 (prevalence9%) harboured P. brooksi <strong>in</strong> <strong>the</strong>ir <strong>in</strong>test<strong>in</strong>es, <strong>the</strong> <strong>in</strong>tensity of <strong>in</strong>fection was 1–13 (mean 4)cestodes per fish.The number of catfish exam<strong>in</strong>ed and <strong>the</strong>ir <strong>in</strong>fection with P. brooksi is given <strong>in</strong> Tab. 5; it is evidentthat this parasite was found only from June to September. Tab. 2 shows that <strong>in</strong>fection by thisFig. 7. Variation <strong>in</strong> <strong>the</strong> prevalence (diamond) and mean <strong>in</strong>tensity of <strong>in</strong>fection (sguare) by Rhabdochona kidderiPearse <strong>in</strong> Rhamdia guatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há over <strong>the</strong> period June to November 1994.130


cestode was dist<strong>in</strong>ctly associated with <strong>the</strong> body size of <strong>the</strong> host, and both <strong>the</strong> prevalence and <strong>the</strong><strong>in</strong>tensity <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g body size of fish. Because of <strong>the</strong> low rate of <strong>in</strong>fection it was notpossible to quantify <strong>the</strong> seasonal changes <strong>in</strong> prevalence and mean <strong>in</strong>tensity.Seasonal changes <strong>in</strong> maturation of Proteocephalus brooksiBecause of <strong>the</strong> rarity of P. brooksi <strong>in</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>e of catfish, it was impossible to make a detailedquantitative analysis of its state of maturity each month. The follow<strong>in</strong>g specimens were found:June: 2 gravid specimens (body length about 4 cm), 4 nongravid specimens with mature segments(1.5–3 cm) and 10 immature specimens (1–1.5 cm); July: 1 immature specimen; August: 2 gravidFig. 8. Monthly changes <strong>in</strong> <strong>the</strong> occurrence and state of maturity of Rhabdochona kidderi Pearse <strong>in</strong> Rhamdiaguatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há over <strong>the</strong> period June to November 1994. The data are expressedas percentages of <strong>the</strong> total number of nematodes found per month: larvae and females without eggs (unsheaded),males (stippled), females with immature eggs <strong>in</strong> uteri (obliquely hatched) and gravid females with mature eggs <strong>in</strong>uteri (blackened).131


Tab. 6. Monthly survey of Rhamdia guatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há for <strong>in</strong>fection with encapsulatedlarvae of Proteocephalus brooksi García-Prieto et al.month no. of fish exam<strong>in</strong>ed no. of fish <strong>in</strong>fected prevalence (%) <strong>in</strong>tensity mean (range)June 20 9 45 30.0 (6–79)July 1 7 7 4 1 23.0 (1–45)August 14 6 43 21.0 (3–165)September 14 4 29 10.5 (4–22)October 15 7 47 32.7 (6–72)November 2 0 – –specimens, 2 nongravid specimens with mature segments and 5 immature specimens; September: 1larva (scolex) (length about 1 mm). This suggests that oviposition occurred <strong>in</strong> June and August,and new <strong>in</strong>fections were acquired by fish from June to September.Occurrence of encapsulated Proteocephalus brooksi larvae <strong>in</strong> Rhamdia guatemalensisOut of 82 R. guatemalensis, 33 (prevalence 40%) had P. brooksi larvae encapsulated <strong>in</strong> <strong>the</strong>irmesenteries, <strong>the</strong> <strong>in</strong>tensity of <strong>in</strong>fection be<strong>in</strong>g 1–165 (mean 30) larvae per fish.The number of catfish exam<strong>in</strong>ed and <strong>the</strong>ir <strong>in</strong>fection with encapsulated P. brooksi larvae is given<strong>in</strong> Tab. 6. Larvae were found from June to October with high values of prevalence and mean<strong>in</strong>tensity, except <strong>in</strong> September, when both values were dist<strong>in</strong>ctly low. No larvae were found <strong>in</strong>November, but this may be due to <strong>the</strong> fact that only two catfish were exam<strong>in</strong>ed. Tab. 2 shows that<strong>the</strong> rate of <strong>in</strong>fection is associated with <strong>the</strong> body size (age) of <strong>the</strong> fish. Values for both <strong>the</strong> prevalenceand mean <strong>in</strong>tensity decreased with <strong>in</strong>crease <strong>in</strong> body length of <strong>the</strong> catfish.Neophilometroides caudatus (Moravec, Scholz et Vivas-Rodríguez, 1995)This nematode is a specific parasite of <strong>the</strong> swimbladder surface of R. guatemalensis, so far onlyreported from sou<strong>the</strong>astern Mexico from <strong>the</strong> cenotes Ix<strong>in</strong>-há and Xmucuy <strong>in</strong> Yucatán and <strong>the</strong>Papaloapan River <strong>in</strong> Veracruz (Moravec et al. 1995a, c, 2002).Occurrence of Neophilometroides caudatus <strong>in</strong> Rhamdia guatemalensisPrevalence and <strong>in</strong>tensity of <strong>in</strong>fection: Of <strong>the</strong> 82 R. guatemalensis from this locality, 7 (prevalence9%) were <strong>in</strong>fected with N. caudatus, <strong>the</strong> <strong>in</strong>tensity of <strong>in</strong>fection be<strong>in</strong>g 1–2 (mean 2) nematodes perfish. All nematodes were located under <strong>the</strong> serosa of <strong>the</strong> host’s swimbladder.The number of catfish exam<strong>in</strong>ed and <strong>the</strong>ir <strong>in</strong>fection with N. caudatus is given <strong>in</strong> Tab. 7. Thisparasite was recorded from June to October. Because of its rarity, it was impossible to compare dataTab. 7. Monthly survey of Rhamdia guatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há for <strong>in</strong>fection with Neophilometroidescaudatus (Moravec et al.)month no. of fish exam<strong>in</strong>ed no. of fish <strong>in</strong>fected prevalence (%) <strong>in</strong>tensity mean (range)June 20 2 10 1.5 (1–2)July 1 7 1 6 2.0 (2)August 14 1 7 2.0 (2)September 14 1 7 1.0 (1)October 15 2 13 1.5 (1–2)November 2 0 – –132


from <strong>in</strong>dividual months. Tab. 2 shows that N. caudatus <strong>in</strong>fections occurred only <strong>in</strong> large catfish,i. e., longer than 15 cm.Seasonal changes <strong>in</strong> maturation of Neophilometroides caudatusBecause of <strong>the</strong> rarity of N. caudatus, it was impossible to make a detailed quantitative analysis of<strong>the</strong> state of maturity of this parasite each month. The follow<strong>in</strong>g nematodes were found: June: 3nongravid females; July: 2 nongravid females; August: 1 nongravid and 1 subgravid female;September: 1 male; October: 2 males and 1 gravid female with larvae. In a previous study carried outat this locality <strong>in</strong> 1993 (Moravec et al. 1995a, c), <strong>the</strong> only male of N. caudatus was collected from R.guatemalensis <strong>in</strong> October. These records suggest that males and gravid females occur more frequently<strong>in</strong> <strong>the</strong> autumn months (September, October), although it is highly probable that <strong>the</strong>re areno pronounced seasonal maturation cycles <strong>in</strong> N. caudatus.Fig. 9. Monthly changes <strong>in</strong> mean numbers of specimens of three stages of Rhabdochona kidderi Pearse per fish.A = larvae and females without eggs; B = males; C = females with immature eggs; D = females with mature eggs.133


Tab. 8. Monthly survey of Rhamdia guatemalensis (Gün<strong>the</strong>r) from <strong>the</strong> cenote Ix<strong>in</strong>-há for <strong>in</strong>fection with Rhabdochonakidderi Pearsemonth no. of fish exam<strong>in</strong>ed no. of fish <strong>in</strong>fected prevalence (%) <strong>in</strong>tensity mean (range)June 20 14 70 7.6 (1–26)July 1 7 1 7 100 7.7 (1–38)August 14 12 86 12.6 (2–32)September 14 10 71 6.6 (2–17)October 15 13 87 7.7 (1–26)November 2 1 50 4.0 (4)Rhabdochona kidderi Pearse, 1936In Yucatán, this nematode (its nom<strong>in</strong>otypical subspecies) ma<strong>in</strong>ly occurs <strong>in</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>e of R. guatemalensisand less often that of <strong>the</strong> bl<strong>in</strong>d cave fish, Ogilbia pearsei, <strong>in</strong> cenotes and caves (Moravec1998); from <strong>the</strong> cenote Ix<strong>in</strong>-há it was reported by Moravec et al. (1995a). R. kidderi occurs <strong>in</strong>Mexico and <strong>the</strong> sou<strong>the</strong>rn USA (Texas).Occurrence of Rhabdochona kidderi <strong>in</strong> Rhamdia guatemalensisPrevalence and <strong>in</strong>tensity of <strong>in</strong>fection: Out of 82 R. guatemalensis exam<strong>in</strong>ed, 67 (prevalence 82%)were <strong>in</strong>fected with R. kidderi, and <strong>the</strong> <strong>in</strong>tensity of <strong>in</strong>fection was 1–38 (mean 8) nematodes per fish.The number of catfish exam<strong>in</strong>ed and <strong>the</strong>ir <strong>in</strong>fection with R. kidderi is given <strong>in</strong> Tab. 8. Infectionby this nematode was associated with <strong>the</strong> body size (age) of <strong>the</strong> host (Tab. 2). The smallest specimenharbour<strong>in</strong>g R. kidderi measured 12 cm and <strong>the</strong> largest 27 cm. The nematodes occurred <strong>in</strong> allsize-groups of catfish exam<strong>in</strong>ed. The smallest size-groups were not exam<strong>in</strong>ed. Tab. 2 shows that <strong>the</strong>percentage of fish <strong>in</strong>fected decreased with <strong>in</strong>crease of body length of <strong>the</strong> host. The mean <strong>in</strong>tensityof <strong>in</strong>fection was highest <strong>in</strong> <strong>the</strong> smallest (15 cm and less) fish, and somewhat lower <strong>in</strong> <strong>the</strong> middle-sizedfish than <strong>in</strong> <strong>the</strong> <strong>the</strong> largest fish (20 cm and more).Seasonal changes <strong>in</strong> prevalence and mean <strong>in</strong>tensity of <strong>in</strong>fectionA survey of <strong>the</strong> monthly prevalence, <strong>in</strong>tensity and mean <strong>in</strong>tensity of R. kidderi <strong>in</strong>fection <strong>in</strong> catfishis shown <strong>in</strong> Tab. 8. R. kidderi was present <strong>in</strong> catfish dur<strong>in</strong>g <strong>the</strong> whole period. Prevalence wasusually high, at its maximum (100%) <strong>in</strong> July, decreased gradually <strong>in</strong> August and September (71%),<strong>in</strong>creased <strong>in</strong> October (87%), and decreased aga<strong>in</strong> <strong>in</strong> November (Fig. 7). The mean <strong>in</strong>tensity washighest (12.6) <strong>in</strong> August and lowest <strong>in</strong> September (6.6) (ignor<strong>in</strong>g <strong>the</strong> data for November, when onlytwo fish were exam<strong>in</strong>ed).Seasonal changes <strong>in</strong> maturation of Rhabdochona kidderiMonthly changes <strong>in</strong> <strong>the</strong> occurrence and <strong>the</strong> state of maturity of R. kidderi <strong>in</strong> R. guatemalensis areshown <strong>in</strong> Figs 8 and 9. The larvae and non-gravid females of this parasite occurred from June toOctober, with <strong>the</strong> highest percentages (22% and 23%) <strong>in</strong> July and September (Fig. 8). Malesoccurred from June to November, and made up a considerable part (31–51%) of all samples. Femaleswith immature eggs occurred from June to October; <strong>the</strong>ir proportion decreased from 31% <strong>in</strong> June to8% <strong>in</strong> August, <strong>in</strong>creased slightly (14%) <strong>in</strong> September, and decreased markedly (2%) <strong>in</strong> October.Gravid females with mature eggs occurred from June to November; <strong>the</strong> proportion <strong>in</strong> samplesmarkedly <strong>in</strong>creased <strong>in</strong> August and this trend cont<strong>in</strong>ued until November (Fig. 8).The numbers of <strong>in</strong>dividual developmental stages of R. kidderi <strong>in</strong> R. guatemalensis each monthare shown <strong>in</strong> Fig. 9. The numbers of larvae and juvenile females per fish were approximately <strong>the</strong>same (1.40–1.76) from June to September, but suddenly decreased (0.53) <strong>in</strong> October. The maximum134


number (5.57) of males occurred <strong>in</strong> August and <strong>the</strong> m<strong>in</strong>imum (1.00) <strong>in</strong> November. Numbers offemales with immature eggs cont<strong>in</strong>uously decreased from 2.20 <strong>in</strong> June to 0.13 <strong>in</strong> October. Themaximum number (3.86) of females with mature eggs was found <strong>in</strong> August, <strong>the</strong> m<strong>in</strong>imum (1.00) <strong>in</strong>November.Exam<strong>in</strong>ation of <strong>in</strong>vertebratesAn exam<strong>in</strong>ation of aquatic <strong>in</strong>vertebrates (see Material and Methods) did not reveal any larvalstages of <strong>the</strong> helm<strong>in</strong>ths parasitiz<strong>in</strong>g <strong>the</strong> fish, although <strong>the</strong> cystophorofurcocercous cercariae recorded<strong>in</strong> one of twelve aquatic snails, Pyrgophorus coronatus (Pfeiffer, 1839), exam<strong>in</strong>ed on 13 July1994, probably belonged to G. tropica. The encysted metacercariae found <strong>in</strong> three out of <strong>the</strong> fiveunidentified dragon-fly nymphs (Odonata), exam<strong>in</strong>ed on <strong>the</strong> same day (<strong>in</strong>tensity 1–2 metacercariae),were identified as Loxogenes sp. (Trematoda: Lecithodendriidae), which as adults were found<strong>in</strong> <strong>the</strong> <strong>in</strong>test<strong>in</strong>e of <strong>the</strong> frog Rana brownorum Sanders, 1973 <strong>in</strong> <strong>the</strong> same locality (unpublished).The metacercariae were <strong>in</strong> round, th<strong>in</strong>-walled (3 µm) light-coloured cysts 30–43 µm <strong>in</strong> diameter.One specimen (Fig. 10), which was removed from a cyst and fixed <strong>in</strong> 4% formaldehyde, was oval, 490µm long and 225 µm wide. Body was densely covered by small tegmental sp<strong>in</strong>es visible at itsanterior part. The oral sucker was subterm<strong>in</strong>al, size 55×60 µm, <strong>the</strong> ventral sucker situated <strong>in</strong> <strong>the</strong>middle of body was slightly smaller, measur<strong>in</strong>g 40×45 µm. The prepharynx was absent, <strong>the</strong> roundpharynx was 25 µm <strong>in</strong> diameter. The narrow oesophagus was 75 µm long. Caeca were short, extend<strong>in</strong>gposteriorly to <strong>the</strong> level of <strong>the</strong> posterior end of <strong>the</strong> ventral sucker. The volum<strong>in</strong>ous excretorypore was V-shaped, 200 µm long, and its anterior branches reached nearly to <strong>the</strong> level of <strong>the</strong> ventralsucker.DISCUSSIONAlthough <strong>the</strong> pr<strong>in</strong>cipal factor responsible for <strong>the</strong> seasonal maturation of fish helm<strong>in</strong>ths is watertemperature, this may operate via o<strong>the</strong>r factors, such as seasonal changes <strong>in</strong> <strong>the</strong> host’s physiology,availability of <strong>in</strong>fective larvae (i. e. <strong>in</strong> <strong>the</strong> range of <strong>in</strong>termediate and paratenic hosts and cyclicalchanges <strong>in</strong> <strong>the</strong>ir abundance), and food preference and behaviour of <strong>the</strong> fish (Moravec 1998). It isFig. 10. Metacercaria of Loxogenes sp. from unidentified dragon-fly nymphs (Odonata) from <strong>the</strong> cenote Ix<strong>in</strong>-há.135


clear, <strong>the</strong>refore, that <strong>the</strong> seasonality <strong>in</strong> <strong>the</strong> occurrence and maturation of <strong>the</strong>se parasites will be, <strong>in</strong>addition to o<strong>the</strong>r factors, highly affected by <strong>the</strong>ir life-cycle patterns.The life cycle of <strong>the</strong> trematode Genarchella tropica <strong>in</strong> not known, but is likely to be similar tothat of <strong>the</strong> related congeneric species, G. astyanacis (Watson, 1976), a parasite of <strong>the</strong> characidAstyanax fasciatus (Cuvier, 1819) <strong>in</strong> Mexico and Nicaragua (Scholz et al. 1995a). Accord<strong>in</strong>g toDitrich et al. (1997) and Scholz et al. (2000), <strong>the</strong> first <strong>in</strong>termediate host of G. astyanacis <strong>in</strong> Yucatánis <strong>the</strong> aquatic snail Pyrgophorus coronatus, <strong>in</strong> which a cystophorofurcocercous cercaria develops,and <strong>the</strong> experimentally established second <strong>in</strong>termediate host is <strong>the</strong> copepod Mesocyclops chaciFiers, Reid, Iliffe et Suárez-Morales, 1996. The cystophorofurcocercous cercariae recorded dur<strong>in</strong>gthis study from P. coronatus (see p. 135) probably belonged to G. tropica, because no def<strong>in</strong>itivehosts of o<strong>the</strong>r congeneric trematode species occur <strong>in</strong> this locality; apparently, various copepodsserve as <strong>the</strong> second <strong>in</strong>termediate host and a source of <strong>in</strong>fection by this trematode for catfish.The present data suggest that new <strong>in</strong>fections of G. tropica are acquired by catfish throughout<strong>the</strong> year, possibly because copepods are available all year. Although oviposition may occur all yearround, it ma<strong>in</strong>ly occurs <strong>in</strong> June and July. The quantitative differences may be associated withpossible seasonal changes <strong>in</strong> <strong>the</strong> abundance of <strong>the</strong> copepod <strong>in</strong>termediate hosts. The <strong>in</strong>crease <strong>in</strong><strong>in</strong>fection rate with <strong>in</strong>crease <strong>in</strong> body size of <strong>the</strong> catfish may be associated with <strong>the</strong> amount of foodeaten (and consequently <strong>the</strong> numbers of <strong>in</strong>fected copepods eaten) by fish, but it cannot be excludedthat small fish (<strong>in</strong>clud<strong>in</strong>g young catfish ) may serve as paratenic or paradef<strong>in</strong>itive hosts of G.tropica and be an addititional source of <strong>in</strong>fection; this is suggested by <strong>the</strong> f<strong>in</strong>d<strong>in</strong>g of a juvenile G.tropica specimen <strong>in</strong> Gambusia yucatana Regan, 1914 <strong>in</strong> <strong>the</strong> cenote Noc-ac <strong>in</strong> Yucatán by Scholzet al. (1995a).The first <strong>in</strong>termediate host of <strong>the</strong> trematode Stunkardiella m<strong>in</strong>ima is unknown, but it is possiblethat <strong>the</strong> oculopleurolophocercous cercariae <strong>in</strong> <strong>the</strong> snail Pyrgophorus coronatus at this locality(Ix<strong>in</strong>-há) and identified as Oligogonotylus manteri Watson, 1976 by Ditrich et al. (1997) and Scholzet al. (2000), are <strong>in</strong> fact cercariae of S. m<strong>in</strong>ima (T. Scholz pers. comm.). The def<strong>in</strong>itive hosts of O.manteri are cichlids, which are not known to occur <strong>in</strong> <strong>the</strong> cenote Ix<strong>in</strong>-há. Metacercariae of S.m<strong>in</strong>ima have been reported from fish (ma<strong>in</strong>ly Rhamdia guatemalensis, rarely <strong>in</strong> Gambusia yucatana),which serve as <strong>the</strong> second <strong>in</strong>termediate hosts (Scholz et al. 1995b, Scholz & Aguirre-Macedo2000). The def<strong>in</strong>itive host (R. guatemalensis) acquires <strong>the</strong> <strong>in</strong>fection by cannibalism or predation ono<strong>the</strong>r fish species.The present data <strong>in</strong>dicate that Stunkardiella m<strong>in</strong>ima metacercariae probably occur <strong>in</strong> catfish atthis locality throughout <strong>the</strong> year. Consequently, new <strong>in</strong>fections are acquired by catfish as a def<strong>in</strong>itivehost also all <strong>the</strong> year round, even though only nongravid or very young gravid specimens ofS. m<strong>in</strong>ima were recorded from June to August (this is probably due to <strong>the</strong> low numbers of fishsampled and <strong>the</strong> rapid development of <strong>the</strong> trematode <strong>in</strong> <strong>the</strong> def<strong>in</strong>itive host at high water temperatures).It can be assumed that S. m<strong>in</strong>ima lays eggs <strong>in</strong> all months, but <strong>the</strong> highest prevalence and arelatively high mean <strong>in</strong>tensity of gravid specimens were recorded <strong>in</strong> June. It is <strong>in</strong>terest<strong>in</strong>g that <strong>the</strong>mean <strong>in</strong>tensity of S. m<strong>in</strong>ima metacercariae was also highest <strong>in</strong> June. The frequency distribution andaggregation of <strong>in</strong>fections by metacercariae <strong>in</strong>dicate a considerable overdispersion of <strong>in</strong>fections byyoung and adult trematodes.The life cycle of <strong>the</strong> cestode Proteocephalus brooksi is unknown, but it is assumed to be similarto that of o<strong>the</strong>r Proteocephalus spp., where various copepods serve as obligate <strong>in</strong>termediate hostsand <strong>the</strong> source of <strong>in</strong>fection for <strong>the</strong> def<strong>in</strong>itive host (Scholz 1999). Although fish paratenic hosts havebeen demonstrated for some species of this genus parasitiz<strong>in</strong>g piscivorous fishes, <strong>in</strong> <strong>the</strong> case of P.brooksi it is not clear whe<strong>the</strong>r R. guatemalensis harbour<strong>in</strong>g encapsulated larvae of P. brooksi actsas a paratenic host or an obligate second <strong>in</strong>termediate host. However, even if <strong>the</strong>re is only one136


<strong>in</strong>termediate host, copepod, catfish undoubtedly play an important role as a source of P. brooksi<strong>in</strong>fection for <strong>the</strong> def<strong>in</strong>itive host, which it acquires by cannibalism.The present study <strong>in</strong>dicates that <strong>the</strong>re are large numbers of encapsulated larvae of P. brooksi <strong>in</strong>catfish throughout <strong>the</strong> year and are thus available for <strong>the</strong> def<strong>in</strong>itive host. Consequently, it can beassumed that new <strong>in</strong>fections are acquired by Rhamdia guatemalensis all <strong>the</strong> year round, but few of<strong>the</strong> acquired cestode larvae can establish and mature <strong>in</strong> <strong>the</strong> def<strong>in</strong>itive host’s <strong>in</strong>test<strong>in</strong>e, a phenomenonwell-known for o<strong>the</strong>r species of this genus (Scholz 1999). Even though gravid specimens of P.brooksi were only found <strong>in</strong> June and August, evidently as a result of a low rate of <strong>in</strong>fection, it ishighly probable that <strong>the</strong> oviposition occurs throughout <strong>the</strong> year, <strong>in</strong> contrast to <strong>the</strong> majority ofcongeneric palaearctic species, which have pronounced seasonal maturation cycles and whereoviposition is restricted to 1–2 months <strong>in</strong> a year (Scholz 1999). This difference probably results from<strong>the</strong> source of <strong>in</strong>fection (fish harbour<strong>in</strong>g encapsulated cestode larvae are available throughout <strong>the</strong>year vs. seasonal occurrence of <strong>in</strong>fected copepods with a life of a few months) and relatively highwater temperatures. The decreas<strong>in</strong>g prevalence and mean <strong>in</strong>tensity of encapsulated P. brooksilarvae with <strong>in</strong>crease <strong>in</strong> body length of R. guatemalensis reflects <strong>the</strong> fact that <strong>the</strong>se fish acquire <strong>the</strong><strong>in</strong>fection by feed<strong>in</strong>g on copepod <strong>in</strong>termediate hosts.The life cycle of <strong>the</strong> nematode Neophilometroides caudatus is unknown, but o<strong>the</strong>r philometridsare known to utilize copepods as obligate <strong>in</strong>termediate hosts. Therefore, it is likely that <strong>the</strong> life cycleof N. caudatus also <strong>in</strong>volves a copepod <strong>in</strong>termediate host, but <strong>the</strong> existence of a fish paratenic host(probably young catfish) as <strong>in</strong> some o<strong>the</strong>r philometrids parasitiz<strong>in</strong>g piscivorous fish (e. g., Philometraobturans (Prenant, 1886) parasitic <strong>in</strong> Esox lucius L<strong>in</strong>naeus, 1758 <strong>in</strong> Europe – see Moravec &Dyková 1978) can be expected. The presence of a fish paratenic host of N. caudatus is suggestedby <strong>the</strong> fact that this parasite was recorded only <strong>in</strong> large R. guatemalensis.Even though males and <strong>the</strong> gravid female with larvae were recorded from catfish only <strong>in</strong> Septemberand October (apparently due to a low <strong>in</strong>fection rate), it is highly probable that <strong>the</strong>re is nopronounced seasonal maturation cycle <strong>in</strong> N. caudatus and that both acquir<strong>in</strong>g new <strong>in</strong>fections by<strong>the</strong> def<strong>in</strong>itive host and <strong>the</strong> production of larvae by gravid females take place throughout <strong>the</strong> year.As <strong>in</strong> <strong>the</strong> forego<strong>in</strong>g species, this may be associated with a relatively constant and high watertemperature, and a fish paratenic host that enables new <strong>in</strong>fections to be acquired throughout <strong>the</strong>year. All Philometra spp. from European cypr<strong>in</strong>ids, where <strong>the</strong> only source of <strong>in</strong>fection are copepods,have markedly pronounced seasonal maturation cycles with a short-term production of larvaemostly <strong>in</strong> late spr<strong>in</strong>g, but <strong>the</strong> pr<strong>in</strong>cipal source of Philometra obturans <strong>in</strong>fection of pike, Esoxlucius, is fish paratenic hosts and, consequently, <strong>the</strong> production of larvae of this parasite occursthroughout <strong>the</strong> year (Moravec 1994).Intermediate hosts of various Rhabdochona spp. are larvae of aquatic <strong>in</strong>sects (Ephemeroptera,Plecoptera, Trichoptera). The life cycle of R. kidderi texensis Moravec et Huffman, 1988 wasrecently studied by Moravec & Huffman (2001) who found <strong>the</strong> nymphs of <strong>the</strong> mayfly Tricorythodescurvatus Allen, 1977 to be <strong>the</strong> natural <strong>in</strong>termediate host of this parasite <strong>in</strong> Texas, USA, andalso successfully <strong>in</strong>fected a European mayfly species. Seasonal cycles <strong>in</strong> <strong>the</strong> occurrence and maturationof R. kidderi <strong>in</strong> Cichlasoma nigrofasciatum (Gün<strong>the</strong>r, 1867) <strong>in</strong> <strong>the</strong> Amacuzac River <strong>in</strong>central Mexico was studied by Caspeta-Mandujano et al. (2000). Although some unidentifiedephemeropteran and o<strong>the</strong>r aquatic <strong>in</strong>sect larvae were exam<strong>in</strong>ed from Ix<strong>in</strong>-há dur<strong>in</strong>g this study (seeMaterials and Methods), no Rhabdochona larvae were recorded from <strong>the</strong>m.The present data suggest that Rhabdochona kidderi occurs <strong>in</strong> Rhamdia guatemalensis <strong>in</strong> <strong>the</strong>cenote Ix<strong>in</strong>-há throughout <strong>the</strong> year, with <strong>the</strong> highest prevalence <strong>in</strong> July. Similar to what Caspeta-Mandujano et al. (2000) found for this species <strong>in</strong> central Mexico, both juveniles and gravid femaleswith mature eggs were recorded nearly all months, <strong>in</strong>dicat<strong>in</strong>g that both new <strong>in</strong>fections and ovipo-137


sition occurred throughtout <strong>the</strong> year. The ma<strong>in</strong> reason for this may be <strong>the</strong> annual presence ofsuitable ephemeropteran <strong>in</strong>termediate hosts <strong>in</strong> <strong>the</strong> locality and a rapid development of <strong>the</strong> nematodeboth <strong>in</strong> <strong>the</strong> <strong>in</strong>termediate and <strong>the</strong> def<strong>in</strong>itive host. Quantitative differences <strong>in</strong> <strong>the</strong> monthlysamples of R. kidderi may be due to seasonal changes <strong>in</strong> populations of <strong>the</strong> mayfly <strong>in</strong>termediatehosts.Some European species of Rhabdochona (R. hellichi (Šrámek, 1901), R. phox<strong>in</strong>i Moravec, 1968)exhibit highly pronounced maturation cycles, where <strong>the</strong> oviposition is restricted to a short period <strong>in</strong>late spr<strong>in</strong>g and summer (Moravec 1977, Moravec & Scholz 1995), whereas oviposition <strong>in</strong> R. denudata(Dujard<strong>in</strong>, 1843) occurs all <strong>the</strong> year round (Moravec 1989); <strong>the</strong> ma<strong>in</strong> reason for <strong>the</strong>se differencesis <strong>the</strong> seasonal changes <strong>in</strong> <strong>the</strong> availability of <strong>in</strong>fective larvae of <strong>the</strong>se nematodes due to <strong>the</strong>seasonal occurrence of mayfly <strong>in</strong>termediate hosts <strong>in</strong> addition to <strong>the</strong> direct effect of temperature(Moravec 1994). An <strong>in</strong>dist<strong>in</strong>ct seasonal maturation cycle is found <strong>in</strong> R. zacconis Yamaguti, 1935from <strong>the</strong> subtropical region of Japan (Moravec et al. 1998).It is evident from <strong>the</strong> results of this study that none of <strong>the</strong> five helm<strong>in</strong>th species from R. guatemalensis<strong>in</strong> <strong>the</strong> cenote Ix<strong>in</strong>-há exhibit a clear-cut seasonal maturation cycle with reproductionrestricted to a certa<strong>in</strong> season. In this <strong>the</strong>y differ from <strong>the</strong> majority of adult helm<strong>in</strong>ths parasitiz<strong>in</strong>gfreshwater fish <strong>in</strong> <strong>the</strong> temperate zone. Similar results were obta<strong>in</strong>ed by Caspeta-Mandujano et al.(2000) study<strong>in</strong>g <strong>the</strong> seasonality of <strong>the</strong> nematode Rhabdochona kidderi <strong>in</strong> Cichlasoma nigrofasciatum<strong>in</strong> ano<strong>the</strong>r tropical region of Mexico; <strong>in</strong> <strong>the</strong> Amacuzac River <strong>in</strong> <strong>the</strong> State of Morelos.It appears that <strong>in</strong> <strong>the</strong> tropics <strong>the</strong> ma<strong>in</strong> factor enabl<strong>in</strong>g fish helm<strong>in</strong>ths to reproduce throughout <strong>the</strong>year is a relatively high water temperature all <strong>the</strong> year round, which enables <strong>the</strong> parasites to rapidlydevelop, and <strong>the</strong> quickly chang<strong>in</strong>g generations of <strong>in</strong>vertebrate <strong>in</strong>termediate hosts. Some quantitativeseasonal differences <strong>in</strong> <strong>the</strong> populations of fish helm<strong>in</strong>ths are, apparently, associated with <strong>the</strong>ecology and ethology of <strong>the</strong>ir <strong>in</strong>termediate, paratenic and def<strong>in</strong>itive hosts.The association of <strong>in</strong>fection rates with body size of host seems to depend on <strong>the</strong> way of acquir<strong>in</strong>g<strong>in</strong>fection by <strong>the</strong> host. In those species where <strong>in</strong>fection is acquired by feed<strong>in</strong>g on small <strong>in</strong>vertebrate<strong>in</strong>termediate hosts, i.e. Genarchella tropica, Rhabdochona kidderi and Proteocephalusbrooksi larvae, <strong>the</strong> rate of <strong>in</strong>fection decreases with <strong>in</strong>creas<strong>in</strong>g body length of <strong>the</strong> host. In contrast,those species acquir<strong>in</strong>g <strong>in</strong>fection by feed<strong>in</strong>g on fish <strong>in</strong>termediate or paratenic hosts, e. g. P. brooksi,<strong>the</strong> rate of <strong>in</strong>fection <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g body length of <strong>the</strong> host. This relationship is notapparent <strong>in</strong> Stunkardiella m<strong>in</strong>ima and Neophilometroides caudatus, where o<strong>the</strong>r ecological factorsmight operate.A c k n o w l e d g e m e n t sWe wish to thank fellow-workers at <strong>the</strong> Laboratory of Parasitology and Histopathology of <strong>the</strong> CINVESTAV-IPNMérida, namely R. Simá-Alvarez, J. Güemez Ricalde and G. Arjona-Torres for <strong>the</strong>ir assistance <strong>in</strong> collect<strong>in</strong>g fish,and I. Husáková from <strong>the</strong> Institute of Parasitology, ASCR, <strong>in</strong> eské Budjovice for her technical help with <strong>the</strong>preparation of <strong>the</strong> manuscript. This study was supported by grant No. P099 from <strong>the</strong> Comisión Nacional paraConocimiento y Uso de la Biodiversidad (CONABIO), Mexico and by grant No. A6022901 from <strong>the</strong> Grant Agencyof <strong>the</strong> Academy of Sciences of <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>.REFERENCESCASPETA-MANDUJANO J. M., MORAVEC F., DELGADO-YOSHINO M. A. & SALGADO-MALDONADO G. 2000: Seasonalvariations <strong>in</strong> <strong>the</strong> occurrence and maturation of <strong>the</strong> nematode Rhabdochona kidderi <strong>in</strong> Cichlasoma nigrofasciatumof <strong>the</strong> Amacuzac River, Mexico. Helm<strong>in</strong>thologia 37: 29–33.CHUBB J. C. 1979: Seasonal occurrence of helm<strong>in</strong>ths <strong>in</strong> freshwater fishes. Part II. Trematoda. Adv. Parasitol. 17:141–313.138


CHUBB J. C. 1982: Seasonal occurrence of helm<strong>in</strong>ths <strong>in</strong> freshwater fishes. Part IV. Adult Cestoda and Nematoda.Adv. Parasitol. 20: 1–292.DITRICH O., SCHOLZ T., AGUIRRE-MACEDO L. & VARGAS-VÁZQUEZ J. 1997: Larval stages of trematodes fromfreshwater molluscs of <strong>the</strong> Yucatan Pen<strong>in</strong>sula, Mexico. Folia Parasitol. 44: 109–127.HALL F. G. 1977: Cenotes y aguadas. Pp.: 67–80. In: Enciclopedía Yucatanense. Tomo I. Gobierno del Estado deYucatán.HAMANN M. I. 1999: Population biology of Spirocamallanus <strong>in</strong>op<strong>in</strong>atus (Travassos, Artigas et Pereira, 1928)(Nematoda: Camallanidae) <strong>in</strong> Serrasalmus spiropleura Kner, 1860 (Pisces: Characidae) from Corrientes,Argent<strong>in</strong>a. Res. Rev. Parasitol. 59: 1–6.KENNEDY C. R. 1970: The population biology of helm<strong>in</strong>ths of British freshwater fish. In: TAYLOR A. E. R (ed.):Symp. Br. Soc. Parasitol. 8: 145–159.LEE J.C. 1996: The amphibians and reptiles of <strong>the</strong> Yucatán Pen<strong>in</strong>sula. Ithaca: Cornell University Press, 500 pp.MORAVEC F. 1977: Life history of <strong>the</strong> nematode Rhabdochona phox<strong>in</strong>i Moravec, 1968 <strong>in</strong> <strong>the</strong> Rokytka Brook,<strong>Czech</strong>oslovakia. Folia Parasitol. 24: 97–105.MORAVEC F. 1989: Observations on <strong>the</strong> occurrence and maturation of <strong>the</strong> nematode Rhabdochona denudata(Dujard<strong>in</strong>, 1845) <strong>in</strong> chub, Leuciscus cephalus (L.), of <strong>the</strong> Rokytná River, <strong>Czech</strong>oslovakia. Parassitologia 31:25–35.MORAVEC F. 1994: Parasitic nematodes of freshwater fishes of Europe. Praha and Dordrecht, Boston, London:Academia and Kluwer Acad. Publishers, 473 pp.MORAVEC F. 1998: Nematodes of freshwater fishes of <strong>the</strong> Neotropical Region. Praha: Academia, 464 pp.MORAVEC F. & DYKOVÁ I. 1978: On <strong>the</strong> biology of <strong>the</strong> nematode Philometra obturans (Prenant, 1886) <strong>in</strong> <strong>the</strong>fishpond system of Mácha Lake, <strong>Czech</strong>oslovakia. Folia Parasitol. 25: 231–240.MORAVEC F. & HUFFMAN D. G. 2001: Observations on <strong>the</strong> biology of Rhabdochona kidderi texensis, a parasite ofNorth American cichlids. J. Helm<strong>in</strong>thol. 75: 197–203.MORAVEC F., NAGASAWA K. & URUSHIBARA Y. 1998: Observations on <strong>the</strong> seasonal maturation of <strong>the</strong> nematodeRhabdochona zacconis <strong>in</strong> Japanese dace, Tribolodon hakonensis, of <strong>the</strong> Okitsu River, Japan. Acta Soc. Zool.Bohem. 62: 45–60.MORAVEC F., SALGADO-MALDONADO G. & AGUILAR-AGUILAR R. 2002: Neophilometroides n. gen. (Nematoda:Philometridae) for Philometroides caudatus Moravec et al., 1995, with erection of Neophilometr<strong>in</strong>ae n.subfam. J. Parasitol. (<strong>in</strong> press).MORAVEC F. & SCHOLZ T. 1995: Life history of <strong>the</strong> nematode Rhabdochona hellichi, a parasite of <strong>the</strong> barbel <strong>in</strong> <strong>the</strong>Jihlava River, <strong>Czech</strong> <strong>Republic</strong>. J. Helm<strong>in</strong>thol. 69: 59–64.MORAVEC F., SCHOLZ T. & VIVAS-RODRÍGUEZ C. 1995c: Philometroides caudata sp. n. (Nematoda: Philometridae)from Rhamdia guatemalensis (Pisces) <strong>in</strong> Yucatan, Mexico. Folia Parasitol. 42: 293–298.MORAVEC F., VIVAS-RODRÍGUEZ C., SCHOLZ T., VARGAS-VÁZQUEZ J., MENDOZA-FRANCO E. & GONZÁLEZ-SOLÍS D.1995a: Nematodes parasitic <strong>in</strong> fishes of cenotes (= s<strong>in</strong>kholes) of <strong>the</strong> Pen<strong>in</strong>sula of Yucatan, Mexico. Part 1.Adults. Folia Parasitol. 42: 115–129.MORAVEC F., VIVAS-RODRÍGUEZ C., SCHOLZ T., VARGAS-VÁZQUEZ J., MENDOZA-FRANCO E., SCHMITTER-SOTO J. J. &GONZÁLEZ-SOLÍS D. 1995b: Nematodes parasitic <strong>in</strong> fishes of cenotes (= s<strong>in</strong>kholes) of <strong>the</strong> Pen<strong>in</strong>siula of Yucatan,Mexico. Part 2. Larvae. Folia Parasitol. 42: 199–210.PÉREZ-PONCE DE LEÓN G., GARCÍA-PRIETO L., OSORIO-SARABIA D. & LEÓN-RGAGNON V. 1996: Listados faunísticode México VI. Helm<strong>in</strong>tos parásitos de peces de aguas cont<strong>in</strong>entales de México. México: Universidad NacionalAutónoma de México, Instituto de Biología, 100 pp.SCHOLZ T. 1999: Life cycles of species of Proteocephalus, parasites of fishes <strong>in</strong> <strong>the</strong> Palearctic Region: A review. J.Helm<strong>in</strong>thol. 73: 1–19.SCHOLZ T. & AGUIRRE-MACEDO M. L. 2000: Metacercariae of trematodes parasitiz<strong>in</strong>g freshwater fish <strong>in</strong> Mexico:A reappraisal and methods of study. Pp.: 101–115. In: SALGADO-MALDONADO G., GARCÍA ALDRETE A. N. &VIDAL-MARTÍNEZ V. M. (eds.): Metazoan parasites <strong>in</strong> <strong>the</strong> neotropics: A systematic and ecological perspective.Mexico: Instituto de Biología, Universidad Nacional Autónoma de México, 310 pp.SCHOLZ T., AGUIRRE-MACEDO M. L., SABASFLORES DÍAZ DE LEÓN A. T. & DITRICH O. 2000: Larval stages oftrematodes <strong>in</strong> Mexican freshwater molluscs: A review of present state and methodology for future research.Pp.: 77–100. In: SALGADO-MALDONADO G., GARCÍA ALDRETE A. N.& VIDAL-MARTÍNEZ V. M. (eds.): Metazoanparasites <strong>in</strong> <strong>the</strong> neotropics: A systematic and ecological perspective. Mexico: Instituto de Biología, UniversidadNacional Autónoma de México, 310 pp.SCHOLZ T., VARGAS-VÁZQUEZ J., MORAVEC F., VIVAS-RODRÍGUEZ C. & MENDOZA-FRANCO E. 1995a: Cenotes (s<strong>in</strong>kholes)of <strong>the</strong> Yucatan Pen<strong>in</strong>sula, Mexico, as a habitat of adult trematodes of fish. Folia Parasitol. 42: 37–47.139


SCHOLZ T., VARGAS-VÁZQUEZ J., MORAVEC F., VIVAS-RODRÍGUEZ C. & MENDOZA-FRANCO E. 1995b: Metacercariaeof trematodes of fishes from cenotes (= s<strong>in</strong>kholes) of <strong>the</strong> Yucatan Pen<strong>in</strong>sula, Mexico. Folia Parasitol. 42:173–192.SCHOLZ T., VARGAS-VÁZQUEZ J., MORAVEC F., VIVAS-RODRÍGUEZ C. & MENDOZA-FRANCO E. 1996: Cestoda andAcanthocephala of fishes from cenotes (= s<strong>in</strong>kholes) of Yucatan, Mexico. Folia Parasitol. 43: 141–152.SCHOLZ T., VARGAS-VÁZQUEZ J. & SALGADO-MALDONADO G. 1995c: Revision of Genarchella species (Digenea:Derogenidae) parasitiz<strong>in</strong>g freshwater fishes <strong>in</strong> Mexico and Central America. J. Natur. Histor. 29: 1403–1417.140


Acta Soc. Zool. Bohem. 66: 141–150, 2002ISSN 1211-376XNew Tertiary dragonflies from Lower Oligocene of <strong>the</strong> eské stedohoíMts and Lower Miocene of <strong>the</strong> Most Bas<strong>in</strong> <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong>(Odonata: Anisoptera)Jakub PROKOP 1, 2) & André NEL 3)1)Department of Zoology, Charles University, V<strong>in</strong><strong>in</strong>á 7, CZ–128 44, Praha 2, <strong>Czech</strong> <strong>Republic</strong>;e-mail: jprokop@natur.cuni.cz2)Department of Palaeontology, Charles University, Albertov 6, CZ–128 43 Praha 2, <strong>Czech</strong> <strong>Republic</strong>3)Laboratoire d’Entomologie et CNRS UMR 8569, Museum national d’Histoire naturelle, 45 rue Buffon,F–75005 Paris, France; e-mail: anel@mnhn.frReceived January 30, 2002; accepted March 23, 2002Published June 28, 2002Abstract. Two new representatives of <strong>the</strong> clade Aeshnoptera are described from <strong>the</strong> Lower Oligocene andLower Miocene of nor<strong>the</strong>rn Bohemia (<strong>Czech</strong> <strong>Republic</strong>), i. e. Kvacekia <strong>in</strong>fuscata gen. n. et sp. n. (Aeshnidae)and Gomphaeschna miocenica sp. n. (Gomphaeschnidae). Kvacekia gen. n. seems to be closely related to<strong>the</strong> Cenozoic genus Oligaeschna Piton et Théobald, 1939 and <strong>the</strong> recent genus Oplonaeschna Selys, 1883.Gomphaeschna miocenica sp. n. w<strong>in</strong>g venation has particular w<strong>in</strong>g coloration and dist<strong>in</strong>ctly differentcharacters from all previously described species of <strong>the</strong> genus. A holarctic distribution <strong>in</strong> fossil history isproposed for both Oplonaeschn<strong>in</strong>ae and Gomphaeschn<strong>in</strong>ae.Taxonomy, fossil, description, Insecta, Anisoptera, Odonata, Aeshnoptera, Gomphaeschnidae,Aeshnidae, Kvacekia <strong>in</strong>fuscata gen. n. et sp. n., Gomphaeschna miocenica sp. n., Tertiary, LowerOligocene, Lower Miocene, Central Europe, Palaearctic regionINTRODUCTIONTertiary fossil dragonflies have been recorded from several sites such as Pochlovice near Kynšperk,Sokolov, Jehl<strong>in</strong>á near Sokolov belong<strong>in</strong>g to Cypris Shale and from Bíl<strong>in</strong>a m<strong>in</strong>e of Most Formation<strong>in</strong> northwestern Bohemia (Bachmayer 1952, Heer 1849, Handlirsch 1907, Kukalová 1962, íha 1977,1979, Prokop & Nel 2000). Up till now all <strong>the</strong>se recorded fossils, both larvae and adults, belong toLibellulidae and Aeshnidae (Prokop 2002).Cenozoic <strong>in</strong>sect fauna of northwestern Bohemia is preserved <strong>in</strong> fluvio-lacustr<strong>in</strong>e deposits of<strong>the</strong> Krušné hory piedmont bas<strong>in</strong>s and <strong>the</strong> eské stedohoí Mts. About 16 localities represent<strong>in</strong>gseveral different palaleoenvironments dated from Upper Eocene to Lower Miocene are <strong>in</strong>vestigated.The relatively diverse <strong>in</strong>sect fauna from Lower Oligocene (Ruppelian/Chattian) of Kundraticenear Litomice is preserved <strong>in</strong> several <strong>in</strong>terbeds of <strong>the</strong> brownish diatomite of Ústí Formation (Fig.1b). The site is well known because of studied palaeobotanical and palaeoichthyological records(Kvaek & Wal<strong>the</strong>r 1998, Obrhelová 1979). Ano<strong>the</strong>r famous site is <strong>the</strong> Bíl<strong>in</strong>a m<strong>in</strong>e (<strong>the</strong> formerMaxim Gorkij m<strong>in</strong>e) situated <strong>in</strong> <strong>the</strong> Most Bas<strong>in</strong> near <strong>the</strong> town of Bíl<strong>in</strong>a (Fig. 1b). The stratigraficalattribution is to <strong>the</strong> Most Formation of <strong>the</strong> Lower Miocene (Eggenburgian/Ottnangian) and <strong>in</strong>sectsare preserved <strong>in</strong> three fossiliferous horizons (Clayey Superseam Horizon, Delta Sandy Horizon,Lake Clayey Horizon) (Prokop 2002). The site has been observed from o<strong>the</strong>r paleoscientificaspects as palaeobotany, palynology and sedimentology (Bžek et al. 1992, Dašková 2000, Kvaek1998, Rajchl & Ul<strong>in</strong>ý 1999, Sakala 2000).141


In <strong>the</strong> follow<strong>in</strong>g study we use <strong>the</strong> w<strong>in</strong>g venation nomenclature of Riek & Kukalová-Peck (1984),amended by Kukalová-Peck (1991), Nel et al. (1993), Bechly (1996) and Bechly et al. (2001). Wefollow <strong>the</strong> phylogenetic classification of Anisoptera proposed by Bechly et al. (1996, 2002).SYSTEMATIC PALAEONTOLOGYAeshnoptera Bechly, 1996Family Aeshnidae Leach, 1815Genus Kvacekia gen. n.TYPE SPECIES. Kvacekia <strong>in</strong>fuscata sp. n.DIAGNOSIS. The new genus very similar and probably closely related to recent genus OplonaeschnaSelys, 1883 and fossil genus Oligaeschna Piton et Théobald, 1939. It differs from <strong>the</strong>se generaby <strong>the</strong> follow<strong>in</strong>g comb<strong>in</strong>ation of characters (fore w<strong>in</strong>g structures): (1) pterostigma elongate, cover<strong>in</strong>g5–6 cells; (2) cubito-anal area very broad, with more than 9 rows of cells between CuA andposterior w<strong>in</strong>g marg<strong>in</strong> (possible autapomorphy, but character unknown <strong>in</strong> some Oligaeschnaspecies); (3) 5 rows of cells <strong>in</strong> area between IR2 and RP2; (4) hypertriangle with 4 or more crossve<strong>in</strong>s;(5) w<strong>in</strong>g dark <strong>in</strong>fuscate; (6) about 18–20 postnodal cross-ve<strong>in</strong>s (14 to 16 <strong>in</strong> <strong>the</strong> Oplonaeschnaand Oligaeschna species, but character state unknown <strong>in</strong> Oligaeschna lapidaria). Characters(2) and (5) are probably autapomorphies of Kvacekia gen. n., but no relative autapomorphy ofOligaeschna is known. Only <strong>the</strong> discovery of better-preserved specimens of both taxa will permitto solve <strong>the</strong> problem of <strong>the</strong> possible paraphyly of Oligaeschna relatively to Kvacekia gen. n.ETYMOLOGY. Kvacekia gen. n. (fem<strong>in</strong><strong>in</strong>e <strong>in</strong> gender), named <strong>in</strong> honour of Prof. Zlatko Kvaek,palaeobotanist from Charles University <strong>in</strong> Prague.Kvacekia <strong>in</strong>fuscata sp. n.(Figs 2, 3)DIAGNOSIS. That of <strong>the</strong> genus.DESCRIPTION. A nearly complete fore w<strong>in</strong>g, broken <strong>in</strong> nodal region and with part basal of arculusmiss<strong>in</strong>g; whole w<strong>in</strong>g surface dark fuscous with some lighter zones (see Fig. 2); fore w<strong>in</strong>g, about52 mm long (assumed from fragment) and 12 mm wide; distance from estimate base to nodus, about25 mm; distance from nodus to w<strong>in</strong>g apex, about 27 mm; nodus nearly midway between base andapex; distance from nodus to pterostigma, 12.4 mm; distance from pterostigma to apex, 5.6 mm;pterostigma ra<strong>the</strong>r long, 5.3 mm long and 0.9 mm wide, cover<strong>in</strong>g approximately 5–6 cells; pterostigmalbrace slightly obliquely aligned with proximal side of pterostigma; 19 visible antenodal crossve<strong>in</strong>sof first row between C and ScP not aligned with <strong>the</strong> 16 visible correspond<strong>in</strong>g antenodalcross-ve<strong>in</strong>s of second row between ScP and RA; 18 visible postnodal cross-ve<strong>in</strong>s, not well alignedwith 19 visible subpostnodal cross-ve<strong>in</strong>s, maybe 1–2 miss<strong>in</strong>g postnodal cross-ve<strong>in</strong>s close tonodus; more than 12 secondary antenodal cross-ve<strong>in</strong>s visible between Ax2 and nodus; more than4 antenodal cross-ve<strong>in</strong>s of second row between Ax2 and Ax1; Ax1 be<strong>in</strong>g 6.2 mm and Ax2 12.9 mmfrom w<strong>in</strong>g base; hypertriangle crossed by 4–5 cross-ve<strong>in</strong>s; arculus, anal area, median and submedianspace, and subdiscoidal triangle not preserved; discoidal triangle elongate and divided <strong>in</strong>to7 smaller cells, its costal side be<strong>in</strong>g 9.2 mm long, distal side 8.3 mm long and proximal side 3.1 mmlong; width of postdiscoidal area just beh<strong>in</strong>d discoidal triangle, 4 mm, probable width along posteriorw<strong>in</strong>g marg<strong>in</strong>, 11.4 mm; 3 rows of cells <strong>in</strong> postdiscoidal area just distal of discoidal triangle; ashort convex supplementary sector (trigonal planate) <strong>in</strong> postdiscoidal area, beg<strong>in</strong>n<strong>in</strong>g one cell142


efore distal angle of discoidal triangle, and aligned with concave Mspl; Mspl well def<strong>in</strong>ed, nearlystrait <strong>in</strong> its basal half but slightly curved <strong>in</strong> distal part; 2 rows of cells between Mspl and MP and5 rows between Mspl and MA; 2 rows of cells and a zigzagged supplementary ve<strong>in</strong> <strong>in</strong> distal part ofarea between MA and RP3/4; bulge <strong>in</strong> distal part of MA (“aeshnid bulla”) weak; 2 preserved Bqcross-ve<strong>in</strong>s; oblique ve<strong>in</strong> ’O’ not preserved; Rspl well def<strong>in</strong>ed and slightly anteriorly curved <strong>in</strong> itsdistal part; area between Rspl and IR2 very wide, with about 5 rows of cells <strong>in</strong> its widest part; spacebetween IR2 and Rspl basally divided by oblique <strong>in</strong>tercalary ve<strong>in</strong>lets; IR2 smoothly curved distallybut not forked; a long and ra<strong>the</strong>r straight <strong>in</strong>tercalary ve<strong>in</strong>, close and well parallel to RP2, proximallynot branch<strong>in</strong>g on IR2 but vanish<strong>in</strong>g <strong>in</strong> area between RP2 and IR2; RP2 strongly curvedposteriorly opposite proximal side of pterostigma; 5 rows of cells between RP2 and IR2 <strong>in</strong> widestpart; IR1 present but zigzagged, 6.8 mm long, beg<strong>in</strong>n<strong>in</strong>g just below proximal side of pterostigma;one row of cells between MP and CuAa; CuAa with more than 8 posterior branches directedtowards posterior w<strong>in</strong>g marg<strong>in</strong>; cubito-anal area very broad.TYPE MATERIAL. Holotype: specimen P1193 (National Museum coll., Praha, <strong>Czech</strong> <strong>Republic</strong>), medio-distal part offore w<strong>in</strong>g (impr<strong>in</strong>t) with venation well preserved, only posterior part of w<strong>in</strong>g preserved <strong>in</strong> counter impr<strong>in</strong>t.TYPE LOCALITY. Kundratice near Litomice, <strong>Czech</strong> <strong>Republic</strong>.TYPE STRATA. Lower Oligocene (Ruppelian/Chattian), Ústí Formation (Stedohoí Complex).ETYMOLOGY. Named after <strong>the</strong> dark <strong>in</strong>fuscate w<strong>in</strong>g of <strong>the</strong> type specimen.DISCUSSION. Kvacekia gen. n. fits <strong>in</strong>to <strong>the</strong> Aeshnidae because of <strong>the</strong> presence of several potentialautapomorphies (after Bechly 1996): “Rspl and Mspl dist<strong>in</strong>ctly curved, with more than 3 rows ofFig. 1. Geographical position of northwestern Bohemia with<strong>in</strong> Europe (A), detailed map of <strong>the</strong> Most Bas<strong>in</strong> and<strong>the</strong> eské stedohoí volcanic areas (B), 1 – Bíl<strong>in</strong>a m<strong>in</strong>e, 2 – Kundratice near Litomice.143


144


cells between <strong>the</strong>m and IR2 or MA”; “space between IR2 and Rspl basally divided by oblique<strong>in</strong>tercalary ve<strong>in</strong>lets”;”more than 2 rows of cells <strong>in</strong> basal part of postdiscoidal area between level ofdistal angle of discoidal triangle and level of midfork”; “hypertriangles traversed by at least 3cross-ve<strong>in</strong>s <strong>in</strong> forew<strong>in</strong>gs”. As all <strong>the</strong>se characters are convergently present <strong>in</strong> some o<strong>the</strong>r aeshnopteridgroups, it is difficult to consider <strong>the</strong>m as very accurate characters. Never<strong>the</strong>less, <strong>the</strong>ircomb<strong>in</strong>ation is only present <strong>in</strong> Aeshnidae. With<strong>in</strong> this family, Kvacekia gen. n. shares with <strong>the</strong>Oplonaeschn<strong>in</strong>ae Bechly, 1996 <strong>the</strong> unique autapomorphy of this subfamily, “IR2 unbranched”,that Bechly (1996, 2002) considered as a reversion. Note that some Aeshna spp. (among o<strong>the</strong>rs, A.coerulea (Ström, 1783); A. septentrionalis Burmeister, 1839; A. ollivieri Nel, 1986) have a veryrudimentary division of IR2 <strong>in</strong>to a strong posterior branch and a weak more or less zigzaggedanterior branch (Nel et al. 1994). Kvacekia gen. n. has no trace of such an anterior branch of IR2.Bechly (1996, 2002) <strong>in</strong>cluded <strong>in</strong> this group <strong>the</strong> recent genus Oplonaeschna Selys, 1883 (plusmaybe Basiaeschna Selys, 1883). Kvacekia gen. n. differs from Basiaeschna and Oplonaeschna<strong>in</strong> <strong>the</strong> follow<strong>in</strong>g characters: “presence of 4 cross-ve<strong>in</strong>s <strong>in</strong> fore w<strong>in</strong>g hypertriangle, <strong>in</strong>stead of 2 <strong>in</strong>Basiaeschna and 3 <strong>in</strong> Oplonaeschna’, “broader postdiscoidal area with 3 rows of cells just distalof discoidal triangle, <strong>in</strong>stead of 2 <strong>in</strong> both Basiaeschna and Oplonaeschna”, “broader areas betweenMspl and MA and between Rspl and IR2, with 5 rows of cells, <strong>in</strong>stead of 3–4 rows <strong>in</strong>Oplonaeschna and 2–3 rows <strong>in</strong> Basiaeschna”. Fur<strong>the</strong>rmore, it differs from Oplonaeschna <strong>in</strong> <strong>the</strong>follow<strong>in</strong>g characters: “pterostigma dist<strong>in</strong>ctly longer cover<strong>in</strong>g 5–6 cells <strong>in</strong>stead of 3 <strong>in</strong> Oplonaeschna”.The pterostigma of Basiaeschna is cover<strong>in</strong>g 4 cells. Nel et al. (1994) revised <strong>the</strong> Oligocenegenus Oligaeschna Piton and Théobald, 1939 (type species O. jungi Piton et Théobald, 1939) andconsidered it as closely related to Oplonaeschna (maybe its sister genus). They also transferred 4fossil species from Oplonaeschna <strong>in</strong>to Oligaeschna, i. e. O. separata (Scudder, 1890), O. lapidaria(Cockerell et Counts, 1913), O. ashutasica (Martynov, 1929) and O. palaeocoerulea (Timon-David, 1946). Kvacekia gen. n. shares with Oligaeschna its long pterostigma (plesiomorphy), andits postdiscoidal area with 3 rows of cells just distal of discoidal triangle (synapomorphy) (Nel etal. 1994). It differs from Oligaeschna jungi Piton et Théobald, 1939 and O. separata <strong>in</strong> its dist<strong>in</strong>ctlybroader cubito-anal area, with about 9 rows of cells between CuA and posterior fore w<strong>in</strong>g marg<strong>in</strong>,<strong>in</strong>stead of 5 <strong>in</strong> O. jungi and O. separata (Scudder 1890: Pl. 13, Fig. 15). Unfortunately, this structureis miss<strong>in</strong>g <strong>in</strong> <strong>the</strong> type specimen of O. palaeocoerulea. Never<strong>the</strong>less, this last species is characterizedby its very broad area between IR2 and RP2, with 9 rows of cells along posterior w<strong>in</strong>g marg<strong>in</strong>,<strong>in</strong>stead of 5 rows <strong>in</strong> Kvacekia gen. n. and O. jungi (direct exam of type specimen, Timon-David,1946). Oligaeschna lapidaria is based on a h<strong>in</strong>d w<strong>in</strong>g. Thus, it is not possible to compare <strong>the</strong>width of its cubito-anal area to that of <strong>the</strong> fore w<strong>in</strong>g of Kvacekia gen. n. Never<strong>the</strong>less, it differsfrom Kvacekia gen. n. <strong>in</strong> its pterostigma cover<strong>in</strong>g only 3 cells, <strong>in</strong>stead of 5–6 <strong>in</strong> Kvacekia gen. n.and <strong>in</strong> its hyal<strong>in</strong>e w<strong>in</strong>g (Cockerell 1913). Oligaeschna ashutasica is based on a h<strong>in</strong>d w<strong>in</strong>g. Never<strong>the</strong>lessits pterostigma is cover<strong>in</strong>g 4 cells <strong>in</strong>stead of 5–6 <strong>in</strong> Kvacekia gen. n., and it has 3 rows ofcells between IR2 and RP2, <strong>in</strong>stead of 5 <strong>in</strong> Kvacekia gen. n. (Martynov 1929: text and fig. 4).Noth<strong>in</strong>g is known about <strong>the</strong> w<strong>in</strong>g coloration of Oligaeschna jungi because no trace of colorationis preserved <strong>in</strong> all known specimens, and of O. ashutasica, as Martynov (1929) <strong>in</strong>dicatednoth<strong>in</strong>g about this po<strong>in</strong>t. All o<strong>the</strong>r Oligaeschna species have hyal<strong>in</strong>e w<strong>in</strong>gs, as many recentAeshnidae. Some recent Aeshnidae (among o<strong>the</strong>rs, Subaeschna francesca Mart<strong>in</strong>, 1909 and Agyrt-Figs 2–5. 2, 3 – Kvacekia <strong>in</strong>fuscata gen. n. et sp. n., holotype specimen P1193 – photo and l<strong>in</strong>e draw<strong>in</strong>g offorew<strong>in</strong>g venation. Scale 5 mm. 4–5 – Gomphaeschna miocenica sp. n., holotype specimen ZD0184 – photo andl<strong>in</strong>e draw<strong>in</strong>g of forew<strong>in</strong>g venation. Scale 3 mm.145


acantha disrupta (Karsch, 1889) have a w<strong>in</strong>g coloration very similar to that of Kvacekia gen. n.(Mart<strong>in</strong> 1908).NOTE. Three fossil species Oplonaeschna vectensis Cockerell et Andrews, 1916, Oplonaeschnastaurophlebioides Henriksen, 1922 and Oplonaeschna metis (Heer, 1849) are based on ra<strong>the</strong>rpoorly preserved specimens. Nel et al. (1994) considered <strong>the</strong>m as Aeshnidae of uncerta<strong>in</strong> position.Family Gomphaeschnidae Tillyard et Fraser, 1940 (sensu Bechly 1996 and Bechly et al. 2001)Gomphaeschna miocenica sp. n.(Figs 4, 5)DIAGNOSIS. This species differs from all o<strong>the</strong>r described Gomphaeschna <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g po<strong>in</strong>ts: (1)w<strong>in</strong>g not hyal<strong>in</strong>e but with all ve<strong>in</strong>s underl<strong>in</strong>ed by dark coloration and central part of each cellhyal<strong>in</strong>e; (2) undulated IR2; (3) area between IR2 and RP2 not narrowed near w<strong>in</strong>g marg<strong>in</strong>, with 3rows of cells; (4) only 3 rows of cells between RP1 and RP2 along w<strong>in</strong>g marg<strong>in</strong>; (5) pterostigmarelatively long, cover<strong>in</strong>g 2 cells.DESCRIPTION. Distal part of a forew<strong>in</strong>g (w<strong>in</strong>g ra<strong>the</strong>r narrow below nodus); with all ve<strong>in</strong>s underl<strong>in</strong>edby dark coloration and central part of each cell hyal<strong>in</strong>e; probable length, about 40 mm; distancebetween nodus and apex, 19.0 mm, between nodus and pterostigma, 11.1 mm, between pterostigmaand apex, about 4.3 mm; pterostigma, 3.3 mm long and 1.1 mm wide, with its costal and posteriorsides slightly widened <strong>in</strong> middle; pterostigmal brace not elongate, straight and only slightly oblique;pterostigma cover<strong>in</strong>g 2 cells; 6 postnodal cross-ve<strong>in</strong>s not aligned with <strong>the</strong> correspond<strong>in</strong>gpostsubnodal cross-ve<strong>in</strong>s; 5 antenodal cross-ve<strong>in</strong>s of first row preserved, not aligned with thoseof second row, last antenodal cross-ve<strong>in</strong> of first row <strong>in</strong>complete, i. e. with no correspond<strong>in</strong>g crossve<strong>in</strong>of second row; 2 preserved cross-ve<strong>in</strong>s between RA and RP basal of subnodus, presence of<strong>the</strong> antesubnodal gap; 2 Bq cross-ve<strong>in</strong>s between IR2 and RP2; MP curved and reach<strong>in</strong>g posteriorw<strong>in</strong>g marg<strong>in</strong> opposite nodus; 3 rows of cells <strong>in</strong> postdiscoidal area just basal of Mspl; Mspl slightlycurved, distally weakly zigzagged, with 1–2 row of cells between it and MA; RP3/4 and MA arebasally nearly straight but distally curved and nearly perpendicular to posterior w<strong>in</strong>g marg<strong>in</strong>; ashort zigzagged <strong>in</strong>tercalary ve<strong>in</strong> between RP3/4 and MA <strong>in</strong> <strong>the</strong>ir distal part, but not end<strong>in</strong>g onposterior w<strong>in</strong>g marg<strong>in</strong>; RP2 aligned with subnodus; oblique cross-ve<strong>in</strong> ‘O’ 1.1 mm distal of subnodus;IR2 nearly straight; RP2 with 2 weak but dist<strong>in</strong>ct undulations; IR2 and RP2 distally curvedand nearly perpendicular to posterior w<strong>in</strong>g marg<strong>in</strong>; area between IR2 and RP2 ra<strong>the</strong>r widened <strong>in</strong> itsdistal half, with 2–3 rows of cells between <strong>the</strong>m; a nearly straight ve<strong>in</strong> Rspl, slightly curved <strong>in</strong> itsdistal end, with one row of cells between it and IR2; area between RP1 and RP2 ra<strong>the</strong>r wide, with 3rows of cells between <strong>the</strong>m, but <strong>in</strong>completely preserved, with a ra<strong>the</strong>r short and zigzagged IR1.TYPE MATERIAL. Holotype: specimen ZD0184 (Bíl<strong>in</strong>a m<strong>in</strong>e coll., <strong>Czech</strong> <strong>Republic</strong>), distal half of fore w<strong>in</strong>g (impr<strong>in</strong>t)with venation well preserved.TYPE LOCALITY. Bil<strong>in</strong>a m<strong>in</strong>e, <strong>Czech</strong> <strong>Republic</strong>.TYPE STRATA. Lower Miocene (Eggenburgian/Ottnangian), Most Formation, Clay Superseam Horizon.ETYMOLOGY. Named after <strong>the</strong> Miocene age of <strong>the</strong> fossil.DISCUSSION. The specimen is clearly attributable to <strong>the</strong> clade Aeshnoptera because of <strong>the</strong> presenceof a clear ve<strong>in</strong> Rspl, undulation of RP3/4 and MA and <strong>the</strong> narrow area between RP1 and RP2 basalof pterostigma. It can be <strong>in</strong>cluded <strong>in</strong> Gomphaeschnidae Tillyard et Fraser, 1940 (sensu Bechly 1996and Bechly et al. 2001) because it has one of its ma<strong>in</strong> synapomorphies, viz. “<strong>the</strong> most distal part of<strong>the</strong> antesubnodal area between RA and RP is free of antesubnodal cross-ve<strong>in</strong>s”, although this146


character is less pronounced <strong>in</strong> Oligoaeschna Selys, 1889 (<strong>in</strong> o<strong>the</strong>r Gomphaeschna Selys, 1871species and Gomphaeschna miocenica sp. n., <strong>the</strong> most distal cross-ve<strong>in</strong> of this area is opposite<strong>the</strong> base of IR2, but <strong>the</strong>re is one more <strong>in</strong> a slightly distal position at least <strong>in</strong> Oligoaeschna pryeri(Mart<strong>in</strong>, 1909) and Oligoaeschna modigliani (Selys, 1889).With<strong>in</strong> this family, <strong>the</strong> autapomorphy of <strong>the</strong> fossil subfamily Gomphaeschnaoid<strong>in</strong>ae Bechly etal., 2001 that could be visible <strong>in</strong> G. miocenica sp. n. is absent <strong>in</strong> this taxon: its pterostigmal braceve<strong>in</strong> is not very oblique. The o<strong>the</strong>r autapomorphies of <strong>the</strong> Gomphaeschnaoid<strong>in</strong>ae are unknown <strong>in</strong>G. miocenica sp. n.: “only a s<strong>in</strong>gle secondary antenodal cross-ve<strong>in</strong> between Ax1 and Ax2 alignedlike a primary antenodal bracket” and “<strong>in</strong> forew<strong>in</strong>g, Ax2 shifted basally on level of basal angle ofdiscoidal triangle”. As G. miocenica sp. n. has a plesiomorphic state of character, it is not sufficientto exclude it from this subfamily. Also, <strong>the</strong> o<strong>the</strong>r subfamily “Gomphaeschn<strong>in</strong>ae” (sensu Bechly etal. 2001) has no known autapomorphy and could be paraphyletic. Never<strong>the</strong>less, G. miocenicasp. n. is very different from all Gomphaeschnaoid<strong>in</strong>i <strong>in</strong> its pterostigmal brace not undulat<strong>in</strong>g, <strong>the</strong>absence of any basally widened cell below pterostigma, its cross-ve<strong>in</strong>s between RP2 and RP1 allsimilar, not oblique. It also differs from <strong>the</strong> unique representative of <strong>the</strong> S<strong>in</strong>ojagor<strong>in</strong>i Bechly et al.,2001 (S<strong>in</strong>ojagoria Bechly et al., 2001) <strong>in</strong> its less numerous postnodal cross-ve<strong>in</strong>s and <strong>in</strong> <strong>the</strong> basalpart of area between RP2 and RP1 (6 aga<strong>in</strong>st 10–12). Lastly, it differs from <strong>the</strong> Lower CretaceousAnomalaeschna berndschusteri Bechly et al., 2001 <strong>in</strong> its dist<strong>in</strong>ctly longer pterostigma, cover<strong>in</strong>g 2cells <strong>in</strong>stead of only one.With<strong>in</strong> “Gomphaeschn<strong>in</strong>ae”, <strong>the</strong> recent genus L<strong>in</strong>aeschna Mart<strong>in</strong>, 1909 is very different fromG. miocenica sp. n. <strong>in</strong> its very long postnodal area with numerous cross-ve<strong>in</strong>s and its absence ofgap <strong>in</strong> <strong>the</strong> distal part of antesubnodal area (Mart<strong>in</strong> 1909). Bechly et al. (2001) considered that thisgenus could belong to a different family of <strong>the</strong> clade Aeshnoptera. The rema<strong>in</strong><strong>in</strong>g genera areGomphaeschna, Oligoaeschna, Alloaeschna Wighton et Wilson, 1986 and Cretalloaeschna Jarzembowskiet Nel, 1996.The Lower Cretaceous Cretalloaeschna differs from G. miocenica sp. n. <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g characters:(1) presence of one row of cells between RP3/4 and MA, (2) a straight IR2, (3) only 2 rowsof cells between IR2 and RP2, (4) 4–5 rows of cells between RP2 and RP1, <strong>in</strong>stead of 3 <strong>in</strong> G.miocenica sp. n. (Bechly et al. 2001). These authors <strong>in</strong>dicated that character (1) could represent asynapomorphy of Cretalloaeschna with Gomphaeschna, Gomphaeschnoides Carle et Wighton,1990 (<strong>in</strong> Gomphaeschnaoid<strong>in</strong>i), and Alloaeschna, but some specimens attributed to Alloaeschnapaskapooensis Wighton et Wilson, 1986 have 2 rows of cells def<strong>in</strong><strong>in</strong>g a long zigzagged ve<strong>in</strong>between RP3/4 and MA. Thus, this character is at least not so important, if subject to <strong>in</strong>traspecificvariation.The Late Paleocene genus Alloaeschna (at least A. paskapooensis and maybe A. marklaeWighton et Wilson, 1986) shares <strong>the</strong> autapomorphies proposed by Bechly et al. (2001) for <strong>the</strong>Gomphaeschnaoid<strong>in</strong>i, i. e. “presence of a characteristic elongate distal paranal cell <strong>in</strong> h<strong>in</strong>dw<strong>in</strong>g,longer than wide, directly basal of <strong>the</strong> anal loop” (see Wighton & Wilson 1986: Figs 1–10). InOligoaeschna and Gomphaeschna, <strong>the</strong> correspond<strong>in</strong>g cell is quadrate or transverse, wider thanlong; “pterostigmal brace ve<strong>in</strong> somewhat undulat<strong>in</strong>g”; “basally widened cell bellow pterostigma,caused by a curvature of RP1 at pterostigmal brace”; “posterior branches of CuAa relativelyweakly def<strong>in</strong>ed <strong>in</strong> h<strong>in</strong>d w<strong>in</strong>g” (at least <strong>in</strong> some specimens of Alloaeschna paskapooensis). Thus,we propose to transfer Alloaeschna to this tribe, previously only known <strong>in</strong> Lower Cretaceous. Itwould be its most recent representative <strong>in</strong> Early Cenozoic. As noted above, <strong>the</strong> preserved correspond<strong>in</strong>gcharacters of pterostigmal region are different <strong>in</strong> Gomphaeschna miocenica sp. n.It is extremely difficult to separate <strong>the</strong> two genera Gomphaeschna and Oligoaeschna on <strong>the</strong>sole basis of <strong>the</strong> w<strong>in</strong>g venation characters. Madsen & Nel (1997) proposed to use <strong>the</strong> presence of147


only 1–2 Bq cross-ve<strong>in</strong>s <strong>in</strong> Gomphaeschna <strong>in</strong>stead of 3 <strong>in</strong> Oligoaeschna. Bechly et al. (2001: 197)attributed <strong>the</strong> two Cretaceous species ?Gomphaeschna <strong>in</strong>ferna Prityk<strong>in</strong>a, 1977 and ?G. sibiricaBechly et al., 2001 to <strong>the</strong> genus Gomphaeschna on <strong>the</strong> basis of “a reduced w<strong>in</strong>g venation withfewer rows of cells between <strong>the</strong> ma<strong>in</strong> ve<strong>in</strong>s, and a short pterostigma with only one or two cellsbeneath it.” G. miocenica sp. n. has 2 Bq cross-ve<strong>in</strong>s and a short pterostigma cover<strong>in</strong>g only 2 cells.Thus, we tentatively attribute it to Gomphaeschna ra<strong>the</strong>r than to Oligoaeschna.Gomphaeschna miocenica sp. n. differs from ?G. <strong>in</strong>ferna <strong>in</strong> its undulated IR2 and area betweenIR2 and RP2 not narrowed near w<strong>in</strong>g marg<strong>in</strong>, with 3 rows of cells, <strong>in</strong>stead of 2 <strong>in</strong> ?G. <strong>in</strong>ferna. G.miocenica sp. n. differs from ?G. sibirica <strong>in</strong> <strong>the</strong> presence of only 3 rows of cells between RP1 andRP2 along w<strong>in</strong>g marg<strong>in</strong>, <strong>in</strong>stead of 7. G. miocenica sp. n. differs from recent Gomphaeschnafurcillata (Say, 1839) <strong>in</strong> its longer pterostigma cover<strong>in</strong>g 2 cells, <strong>in</strong>stead of one cell and a half, <strong>the</strong>presence of 3 rows of cells between IR2 and RP2, <strong>in</strong>stead of 1–2 rows and its IR2 dist<strong>in</strong>ctlyundulated. G. miocenica sp. n. also differs from <strong>the</strong> two Paleocene/Eocene Gomphaeschna paleocenicaMadsen et Nel, 1997 and ?Gomphaeschna danica Madsen et Nel, 1997 <strong>in</strong> its IR2 undulated,<strong>in</strong>stead of be<strong>in</strong>g straight. Ano<strong>the</strong>r important difference with all species of Gomphaeschna is<strong>the</strong> particular w<strong>in</strong>g coloration of G. miocenica sp. n. All recent and fossil Gomphaeschna havehyal<strong>in</strong>e w<strong>in</strong>gs (maybe except ?G. sibirica only known after a fossil with no preserved coloration).PALAEOGEOGRAPHIC REMARKSRecent species of Oplonaeschna and Basiaeschna are North American. The fossil genus Oligaeschnais known from <strong>the</strong> Oligocene of France, USA and Siberia. This suggests a Holarctic distributionof <strong>the</strong> Oplonaeschn<strong>in</strong>ae but little is known about <strong>the</strong> Cenozoic record of Gondwanian Aeshnoptera.Recent species G. furcillata (Say, 1839) and G. antillope Hagen, 1874 are distributed <strong>in</strong> <strong>the</strong>North America (USA), fossil members are known from Lower Cretaceous (?G. <strong>in</strong>ferna – Baissa <strong>in</strong>Buryat <strong>Republic</strong>, Sibieria and ?G. sibirica – Chita region, Siberia, Russia) and Upper Paleocene/Lower Eocene (G. paleocenica, ?G. danica – Moclay <strong>in</strong> Denmark). O<strong>the</strong>r related genus Oligoaeschnais recently liv<strong>in</strong>g <strong>in</strong> South-east Asia and fossil representatives are known from UpperEocene: O. anglica Cockerel et Andrews, 1916 – Gurnet Bay, Isle of Wight, UK; Lower Oligocene:O. needhami (Cockerell, 1913) – Florissant, Colorado, USA, O. oligocenica (Nel et Papazian, 1983)– Aix-en-Provence, France, O. conjuncta (Martynov, 1929) – Ashutas Mounta<strong>in</strong>s, Zaisan, Siberia;Lower Miocene: ‘Projagoria conjuncta Martynov, 1929’ (sensu Zeuner 1938) – “Ma<strong>in</strong>zer Hydrobienkalks”,Germany, Oligoaschna s<strong>in</strong>ica (Zhang, 1989) comb. nov. – Miocene, Shanwang, Shandong,Ch<strong>in</strong>a, and Upper Pliocene: Oligoaeschna sp. (Esaki & Asah<strong>in</strong>a 1957, Nel et al. 1994) –Nagasaki Prefecture, Japan. The fossil genus Alloaeschna is known from Paleocene (A. paskapooensis,A. marklae W<strong>in</strong>gton et Wilson, 1986, A. quadrata Wighton et Wilson, 1986 – Blackfalds<strong>in</strong> Alberta, Canada). All o<strong>the</strong>r representatives of <strong>the</strong> Gomphaeschnaoid<strong>in</strong>ae are from <strong>the</strong> LowerCretaceous of Ch<strong>in</strong>a, Mongolia, UK and Brazil. From <strong>the</strong>se palaeogeographical data we can assumea very wide, maybe almost cosmopolitan distribution of <strong>the</strong> family dur<strong>in</strong>g <strong>the</strong> Lower Cretaceous,a wide Holarctic distribution of <strong>the</strong> subfamily Gomphaeschn<strong>in</strong>ae dur<strong>in</strong>g <strong>the</strong> Tertiary and amore marg<strong>in</strong>al occurrence of <strong>the</strong> taxa present today.A c k n o w l e d g e m e n t sThe authors are grateful to Zdenk Dvoák (Doly Bíl<strong>in</strong>a) and Kamil Zagoršek (National Museum Prague) for <strong>the</strong>loan of <strong>the</strong> material. The name of Kvacekia gen. n. is dedicated to 65 birthday of Prof. Zlatko Kvaek, leader of<strong>Czech</strong> palaeobotany at Charles University. The research was supported by grants of <strong>the</strong> M<strong>in</strong>istry of Schools J13/98-113100004, GAUK 197/2000 and GAR 205/01/0639.148


REFERENCESBACHMAYER F. 1952: Fossile Libellenlarven aus miozänen Süßwasserablagerungen. Sitzungsber. Oesterreich. Akad.Wiss., Math.-Naturwiss. Kl. 161: 135–140.BECHLY G. 1996: Morphologische Untersuchungen am Flügelgeäder der rezenten Libellen und deren Stammgruppenvertreter(Insecta; Pterygota; Odonata), unter besonderer Berücksichtigung der PhylogenetischenSystematik und des Grundplanes der *Odonata. Petalura 2 (Spec. Vol): 1–402.BECHLY G. 2002: Phylogenetic systematics of Odonata. Homepage on <strong>the</strong> Internet: http://members.tripod.de/GBechly/phylosys.htmBECHLY G., NEL A., MARTÍNEZ-DELCLS X., JARZEMBOWSKI E. A., CORAM R., MARTILL D., FLECK G., ESCUILLIÉ F.,WISSHAK M. M. & MAISCH M. 2001: A revision and phylogenetic study of Mesozoic Aeshnoptera, withdescription of several new families, genera and species (Insecta: Odonata: Anisoptera). N. Paläontol. Abh. 4:1–219.BŽEK ., DVOÁK Z., KVAEK Z. & PROKŠ M. 1992: Tertiary vegetation and depositional environments of <strong>the</strong>“Bíl<strong>in</strong>a delta” <strong>in</strong> <strong>the</strong> North-Bohemian brown-coal bas<strong>in</strong>. as. M<strong>in</strong>eral. Geol. 37: 117–134.COCKERELL T. D. A. 1913: Two fossil <strong>in</strong>sects from Florissant with a discussion of <strong>the</strong> venation of <strong>the</strong> aeschn<strong>in</strong>edragon-flies. Proc. U. S. Natl. Mus. 45: 577–583.DAŠKOVÁ J. 2000: [Prelim<strong>in</strong>ary micropaleobotanical characterization of a sample from <strong>the</strong> roof of <strong>the</strong> ma<strong>in</strong>brown-coal seam from <strong>the</strong> Bíl<strong>in</strong>a M<strong>in</strong>e (North Bohemia)]. Zpr. Geol. Výzk. v Roce 1999: 128–129 (<strong>in</strong> <strong>Czech</strong>).HANDLIRSCH A. 1906–1908: Die fossilen Insekten und die Phylogenie der rezenten Formen. E<strong>in</strong> Handbuch fürPaläontologen und Zoologen. Leipzig: V. W. Engelmann Publ., 1430 pp. [published <strong>in</strong> parts between 1906 and1908 as follows: pp. i–vi, 1–160, pls. 1–9 (May 1906); pp. 161–320, pls. 10–18 (June 1906); pp. 321–480,pls. 19–27 (August 1906); pp. 481–640, pls. 28–36 (October 1906); pp. 641–800, pls. 37–45 (February1907); pp. 801–960, pls. 46–51 (June 1907); pp. 961–1120 (November 1907); pp. 1121–1280 (January1908); pp. vii–ix, 1281–1430 (July 1908). Dated from publication <strong>in</strong>formation given on p. ix.]HEER O. 1849: Die Insektenfauna der Tertiärgebilde von n<strong>in</strong>gen und von Radoboj <strong>in</strong> Croatien. Zweite Ab<strong>the</strong>ilung:Heuschrecken, Florfliegen, Aderflüger, Schmetterl<strong>in</strong>ge und Fliegen. Neue Denkschriften der Allgeme<strong>in</strong>enSchweizerischen Gesellschaft für der Gesammten Naturwissenschaften (Zürich) 11: iv + 1–264.KUKALOVÁ J. 1962: Tetihorní hmyz [Tertiary Insects]. Geofond, Unpublished MS. Praha: Charles University, 3 pp(<strong>in</strong> <strong>Czech</strong>).KUKALOVÁ-PECK J. 1991: Fossil history and <strong>the</strong> evolution of hexapod structures. Pp.: 141–179. In: CSIRO (ed.):The <strong>in</strong>sects of Australia, a textbook for students and research workers (2 nd ed.) Vol. 1. Melbourne: MelbourneUniversity Press, 542 pp.KVAEK Z. 1998: Bíl<strong>in</strong>a: a w<strong>in</strong>dow on Early Miocene marshland environments. Rev. Palaeobot. Palynol. 101:111–113.KVAEK Z. & WALTER H. 1998: The Oligocene vocanic flora of Kundratice near Litomice, eské stedohoívolcanic complex (<strong>Czech</strong> <strong>Republic</strong>). Acta Mus. Natl. Pragae, Ser. B, Histor. Natur. 54: 1–42.MADSEN H. O. R. & NEL A. 1997: Two new fossil species of Gomphaeschna Selys, 1871 <strong>in</strong> <strong>the</strong> Paleocene/Eoceneof Denmark. Ann. Soc. Entomol. Fr. (N. S.) 33: 285–293.MARTIN R. 1908. Aeschn<strong>in</strong>es. Collections zoologiques du Baron Edm. de Selys Longchamps, Cataloguesystématique et descriptif (Haye and Brussels) 18: 1–84.MARTIN R. 1909. Aeschn<strong>in</strong>es. Collections zoologiques du Baron Edm. de Selys Longchamps, Cataloguesystématique et descriptif (Haye and Brussels) 19: 85–156.MARTYNOV A. 1929: Fossil <strong>in</strong>sects from Tertiary deposits <strong>in</strong> Ashutas Saisan district. Tr. Geol. Mus. Akad. NaukSSSR 5: 173–216.NEL A., MARTÍNEZ-DELCLS X., ESCUILLÉ F. & BRISAC P. 1994: Les Aeshnidae fossiles. Un <strong>in</strong>ventaire critique(Odonata, Anisoptera). N. Jahrb. Geol. Paläontol. Abh. 194: 143–186.NEL A., MARTÍNEZ-DELCLS X., PAICHELER J. C. & HENROTAY M. 1993: Les “Anisozygoptera” fossiles. Phylogénieet classification. (Odonata). Mart<strong>in</strong>ia, Num. Hors. Ser. 3: 1–311.OBRHELOVÁ N. 1979: Süsswasser-Ichthyofauna im Tertiär der SSR. as. M<strong>in</strong>eral. Geol. 24: 135–146.PROKOP J. 2002: Remarks on palaeoenviromental changes based on reviewed Tertiary <strong>in</strong>sect associations from<strong>the</strong> Krušné hory piedmont bas<strong>in</strong>s and <strong>the</strong> eské stedohoí Mts. <strong>in</strong> northwestern Bohemia (<strong>Czech</strong> <strong>Republic</strong>).Acta Zool. Cracov. 45: <strong>in</strong> press.PROKOP J. & NEL A. 2000: New fossil dragonflies from <strong>the</strong> Lower Miocene of <strong>the</strong> nor<strong>the</strong>rn Bohemia (Odonata:Aeshnidae). Eur. J. Entomol. 97: 427–431.RAJCHL M. & ULINÝ D. 1999: Sedimentární model bíl<strong>in</strong>ské delty (Miocén, Mostecká Pánev) [Deposital model of<strong>the</strong> Bíl<strong>in</strong>a Delta (Miocene, Most Bas<strong>in</strong>, <strong>Czech</strong> <strong>Republic</strong>)]. Zpravod. Hndé Uhlí 1999(3): 15–42.149


RIEK F. & KUKALOVÁ–PECK J. 1984: A new <strong>in</strong>terpretation of dragonfly w<strong>in</strong>g venation based upon early UpperCarboniferous fossils from Argent<strong>in</strong>a (Insecta: Odonatoidea) and basic character states <strong>in</strong> pterygote w<strong>in</strong>gs.Can. J. Zool. 62: 1150–1166.ÍHA P. 1977: Tercierní hmyz chebské a sokolovské pánve. Pp.: 19–22. In: HOLÝ F. (ed.): Sborník 8. celostátnípaleontologické konference v Sokolov. Sokolov: Propag.ÍHA P. 1979: Katalog der Tertären und Quartären fossilen <strong>in</strong>sekten der Tsechoslowakei Entomol. Probl. 15:13–32.SAKALA J. 2000: Flora and vegetation of <strong>the</strong> roof of <strong>the</strong> ma<strong>in</strong> lignite seam <strong>in</strong> <strong>the</strong> Bíl<strong>in</strong>a M<strong>in</strong>e (Most Bas<strong>in</strong>, LowerMiocene). Acta Mus. Natl. Pragae, Ser. B, Hisort. Natur. 56: 49–84.SCUDDER S. H. 1890: The fossil <strong>in</strong>sects of North America (with notes on some European species). 2. The Tertiary<strong>in</strong>sects. Rep. U. S. Geol. Surv. Territ. 13: 1–734.TIMON-DAVID J. 1946: Insectes fossiles de l’Oligocne <strong>in</strong>férieur des Camo<strong>in</strong>s. 3. Description d’une nouvelle espced’Odonate. Bull. Soc. Entomol. Fr. 51: 94–96.WIGHTON D.C. & WILSON M. V. H. 1986: The Gomphaeschn<strong>in</strong>ae (Odonata: Aeshnidae): new fossil genus,reconstructed phylogeny, and geographical history. Syst. Entomol. 11: 505–522.ZHANG J. F. 1989: [Fossil <strong>in</strong>sects from Shanwang, Shandong, Ch<strong>in</strong>a]. J<strong>in</strong>an: Shandong Science and TechnologyPubl. House, 459 pp (<strong>in</strong> Ch<strong>in</strong>ese, Engl. abstr.).150


Acta Soc. Zool. Bohem. 66: 151–160, 2002ISSN 1211-376XMonogyny <strong>in</strong> Leptothorax slavonicus (Hymenoptera: Formicidae)Klára TICHÁ 1) & Pavel ŠTYS 2)1)Muzeum Vyso<strong>in</strong>y, Masarykovo námstí 55, CZ–58601 Jihlava, <strong>Czech</strong> <strong>Republic</strong>2)Department of Zoology, Charles University, V<strong>in</strong><strong>in</strong>á 7, CZ–12844 Praha 2, <strong>Czech</strong> <strong>Republic</strong>Received August 15, 2001; accepted October 6, 2001Published June 28, 2002Abstract. Monogyny <strong>in</strong> Leptothorax slavonicus Seifert, 1995 (Hymenoptera: Formicidae: Myrmic<strong>in</strong>ae)was studied under field and laboratory conditions. None of 238 colonies from <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> andSlovakia were polygynous. Experiments based on mix<strong>in</strong>g two monogynous colonies and offer<strong>in</strong>g twoqueens to an orphaned colony showed that this species is capable of form<strong>in</strong>g genetically ra<strong>the</strong>r heterogeneousbut never polygynous colonies. Fusion of unrelated colonies and <strong>the</strong> adoption of alien queens occurred, but<strong>the</strong> workers always regulated number of queens to one. The workers can recognise <strong>the</strong>ir nestmates <strong>in</strong>experimentally mixed colonies.Ethology, monogyny, fusion of colonies, recognition of nestmates, Hymenoptera, Formicidae,Leptothorax slavonicus, Central EuropeINTRODUCTIONThis paper presents <strong>the</strong> results of an experimental study of monogyny <strong>in</strong> a recently establishedleptothorac<strong>in</strong>e ant species Leptothorax (Myrafant) slavonicus Seifert, 1995 (Myrmic<strong>in</strong>ae).The number of queens (see Term<strong>in</strong>ology) present <strong>in</strong> a colony of eusocial <strong>in</strong>sects markedlyaffects its genetic composition. About 50% of ant species form monogynous colonies (one queen)while <strong>the</strong> o<strong>the</strong>rs may form polygynous colonies (several queens) (Busch<strong>in</strong>ger 1974). There areobligatorily monogynous species, e. g. Lasius (Lasius) niger (L<strong>in</strong>naeus, 1758), Camponotus (Camponotus)ligniperda (Latreille, 1802), Leptothorax (Myrafant) unifasciatus (Latreille, 1798); facultativelypolygynous species which form both monogynous and polygynous colonies, e. g. Leptothorax(Leptothorax) acervorum (Fabricius, 1793), Leptothorax (Leptothorax) muscorum (Nylander,1846), and obligatorily polygynous species, e. g. Formica (Formica) polyctena Förster,1850 (all cf. Busch<strong>in</strong>ger 1967, 1968, 1974).Several unusual cases have been described <strong>in</strong> Leptothorax Mayr, 1855. The functionally monogynouscolony conta<strong>in</strong>s several <strong>in</strong>sem<strong>in</strong>ated females only one of which is <strong>the</strong> queen and laysfertilised eggs <strong>in</strong> a facultatively polygynous species Leptothorax (Leptothorax) gredleri Mayr,1855 (cf. Busch<strong>in</strong>ger 1967, 1968, 1974, He<strong>in</strong>ze & Busch<strong>in</strong>ger 1988) and some North Americanspecies of Leptothorax s. str. (cf. He<strong>in</strong>ze & Busch<strong>in</strong>ger 1986, 1988). Regular monogyny is a switchof monogynous colonies to polygyny by fus<strong>in</strong>g colonies (usually observed <strong>in</strong> polygynous species,cf. Hölldobler & Wilson 1990) when suitable nest sites are scarce; this phenomenon wasobserved <strong>in</strong> <strong>the</strong> usually monogynous species Leptothorax (Myrafant) nylanderi (Förster, 1850)(cf. Busch<strong>in</strong>ger 1967, 1968, 1974). Fusion of colonies <strong>in</strong> this species was observed also by Foitzik& He<strong>in</strong>ze (1998, 2000); however, polygyny is only temporary and results <strong>in</strong> <strong>in</strong>traspecific slavery(Foitzik & He<strong>in</strong>ze 1998, 2000) – one of <strong>the</strong> queens is subsequently elim<strong>in</strong>ated, and workers of hercolony serve <strong>in</strong> <strong>the</strong> alien colony.151


Study of <strong>the</strong> above phenomene is important for understand<strong>in</strong>g <strong>the</strong> role of k<strong>in</strong>-selection ando<strong>the</strong>r factors shap<strong>in</strong>g <strong>the</strong> evolution and ma<strong>in</strong>tenance of eusociality.The existence of monogynous/polygynous strategies <strong>in</strong> Leptothorax (Myrafant) slavonicus, aspecies only recently (Seifert 1995) separated from L.(M.) nylanderi, has not been studied. Our<strong>in</strong>vestigations began with a study of populations of “L. (M.) nylanderi” from Bohemia and Slovakia.As prelim<strong>in</strong>ary observations (Kašpárek unpubl.) suggested, and subsequent field and laboratorystudies confirmed (Tichá 1992) <strong>the</strong>se populations are less tolerant of several queens <strong>in</strong> acolony than West-European populations (Donisthorpe 1927, Chauv<strong>in</strong> 1947, Busch<strong>in</strong>ger 1967,1968). Seifert (1995, 1996) studied <strong>the</strong> morphology of East-European populations of “L. nylanderi”,and concluded (supported by genetic research carried out at <strong>the</strong> University of Lund-Douwespers. comm. <strong>in</strong> Seifert 1995) that <strong>the</strong> populations on <strong>the</strong> eastern side of <strong>the</strong> l<strong>in</strong>e Schwer<strong>in</strong>–Magdeburg–Leipzig–Döbeln (Germany) belong to an unrecognised parapatric species, Leptothoraxslavonicus. It was first assigned subspecific rank, Leptothorax nylanderi slavonicus <strong>in</strong> 1995,and that of a dist<strong>in</strong>ct species <strong>in</strong> 1996. The populations we studied belong to this species.This discovery may account for <strong>the</strong> differences <strong>in</strong> behaviour of <strong>Czech</strong>, Moravian and Slovakpopulations of <strong>the</strong> above species, and have stimulated o<strong>the</strong>r ethological and sociobiologicalstudies of L. slavonicus, a species not previously studied <strong>in</strong> this way (except <strong>the</strong> sem<strong>in</strong>ar study ofTichá 1992).MATERIAL AND METHODS1. Term<strong>in</strong>ology (see <strong>the</strong> Introduction as well)Queen – dealate, fully fertile, egg-lay<strong>in</strong>g female, parent of next generations of females, strongly attractive forher nestmates, dom<strong>in</strong>ant <strong>in</strong> <strong>the</strong> colony (<strong>in</strong> Leptothorax slavonicus <strong>the</strong> queen is located <strong>in</strong> a centre of <strong>the</strong> colonyon a heap of brood, and does not take part <strong>in</strong> <strong>the</strong> labour);worker (<strong>in</strong> L. slavonicus) – w<strong>in</strong>gless female; if egg-lay<strong>in</strong>g, <strong>the</strong>n produc<strong>in</strong>g non-fertilised eggs only; co-operat<strong>in</strong>gwith nestmates and perform<strong>in</strong>g basic tasks necessary for <strong>the</strong> well-be<strong>in</strong>g of <strong>the</strong> colony and ma<strong>in</strong>tenance of <strong>the</strong>nest;brood – juvenile stages;orphaned colony – colony lack<strong>in</strong>g a queen;regulation towards monogyny – reduction <strong>in</strong> <strong>the</strong> number of queens <strong>in</strong> a colony result<strong>in</strong>g <strong>in</strong> monogyny;recruitment – <strong>in</strong>creased motor activity of some <strong>in</strong>dividuals, which touch <strong>the</strong> o<strong>the</strong>r ants with <strong>the</strong>ir antennae andlegs, lead<strong>in</strong>g to <strong>the</strong>ir mobilisation;tugg<strong>in</strong>g – mutual pull<strong>in</strong>g <strong>in</strong> opposite directions by two (or more) workers, or pull<strong>in</strong>g <strong>the</strong> queen by a group(groups) of workers;accepted queen – <strong>the</strong> female chosen as a queen after fusion of colonies and fully satisfy<strong>in</strong>g <strong>the</strong> above criteria ofa queen;neutral formicarium – clean formicarium un<strong>in</strong>habited before <strong>the</strong> experiment.2. Orig<strong>in</strong> of <strong>the</strong> colonies used <strong>in</strong> this studyLeptothorax slavonicus – 238 colonies were collected <strong>in</strong> June to September over <strong>the</strong> period 1989–2000.<strong>Czech</strong> <strong>Republic</strong> – 176 colonies: Mlník env. (14° 32’ E, 50° 28’ N, Nat. grid No 5553 [after Pruner & Míka1996]); Praha (14° 22’ E, 50° 03’ N, No 5952); Mohelno env. (16° 11’ E, 49° 07’ N, No. 6863), Znojmo env.(15° 54’ E, 48° 59’ N, No. 7061). Slovakia – 62 colonies: Piešany env. (18° 53’E, 48° 18’ N, No. 7769) (Fig. 1).Colonies of this small ant usually conta<strong>in</strong> only several dozen <strong>in</strong>dividuals, and <strong>in</strong>habit small cavities, ma<strong>in</strong>lyhollow, dead tree twigs and acorns. They were collected ma<strong>in</strong>ly <strong>in</strong> deciduous (Quercus, Carp<strong>in</strong>us), mixed and p<strong>in</strong>ewoods. Complete colonies, mostly still <strong>in</strong> <strong>the</strong>ir nest-sites, were placed <strong>in</strong>to plastic bags (when this was notpossible, <strong>the</strong> ants were collected <strong>in</strong> vials by us<strong>in</strong>g an aspirator), and <strong>the</strong>n transferred to <strong>the</strong> laboratory.3. CulturesNumber of <strong>in</strong>dividuals (queens, alate females, workers, males, brood) <strong>in</strong> each colony was counted, and <strong>the</strong> antswere <strong>the</strong>n transferred <strong>in</strong>to tripartite plastic formicaria. Here <strong>the</strong>y were bred (accord<strong>in</strong>g to Busch<strong>in</strong>ger 1967) andmanipulated. Dimensions of <strong>the</strong> formicaria: cyl<strong>in</strong>drical nest-site, r – 75 mm, l – 135 mm; three types of arenas– 120×80×30 mm, 170×90×70 mm, 270×90×70 mm – each type was used for ten experiments of Series 1 (see152


elow) and a 170×90×70 type was used <strong>in</strong> <strong>the</strong> Series 3 experiments. For <strong>the</strong> Series 2 experiments an arena sized120×80×30 mm was used; <strong>the</strong> flat glass chambers (dimensions 20×20×3 mm) with a millimetre grid were used as<strong>the</strong> nest-site – this arrangement facilitated observation of ant movements.4. Mark<strong>in</strong>g antsAll <strong>the</strong> queens <strong>in</strong> Series 1 were marked by amputation of <strong>the</strong> last tarsal segment of some of <strong>the</strong> legs, <strong>the</strong> queens and<strong>the</strong> workers used <strong>in</strong> <strong>the</strong> Series 2 experiments were marked with acetone nail varnish applied to <strong>the</strong> thorax orabdomen (manipulation dur<strong>in</strong>g mark<strong>in</strong>g ants as described by He<strong>in</strong>ze 1993, 1996).5. ExperimentsSERIES 1. Two monogynous colonies (usually of different size) were placed <strong>in</strong> <strong>the</strong> arena of a neutral formicarium.Behaviour of <strong>the</strong> ants was monitored visually, cont<strong>in</strong>uously for <strong>the</strong> first 4 hours, over <strong>the</strong> next 10 hours at 15m<strong>in</strong>utes <strong>in</strong>tervals, and than at <strong>in</strong>tervals of 6 hours up to <strong>the</strong> term<strong>in</strong>ation of <strong>the</strong> experiment. This experiment wasreplicated 30 times and each lasted 6 weeks. Questions addressed: When nest-sites are scarce do colonies ofLeptothorax slavonicus fuse (as described for L. nylanderi by Busch<strong>in</strong>ger 1967, 1968 and Foitzik & He<strong>in</strong>ze 1998,2000)? If <strong>the</strong>y do, does queen regulation occur?SERIES 2. Ten workers and <strong>the</strong>ir queens were marked and used <strong>in</strong>stead of <strong>the</strong> colonies <strong>in</strong> experiment identical withSeries 1 experiments. There were 5 replicates of this experiments. Tim<strong>in</strong>g of <strong>the</strong> observations was as <strong>in</strong> Series 1.Duration of each experiment was 6 weeks. Questions addressed: Does <strong>the</strong> orig<strong>in</strong>al nestmates cont<strong>in</strong>ue torecognise one ano<strong>the</strong>r, and does any hierarchy develop <strong>in</strong> <strong>the</strong> mixture?SERIES 3. Two foreign queens were added to an orphaned colony. This was repeated ten times. Observations wereas <strong>in</strong> Series 1 and 2. Duration of each experiment was six weeks. Questions addressed: What is <strong>the</strong> behaviouralresponse of orphaned colonies to foreign queens and is <strong>the</strong>re any regulation towards monogyny when foreignqueens were adopted?6. Statistical assessment of resultsFig. 1. Localities <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> (CZ) and Slovakia (SK) where <strong>the</strong> colonies of Leptothorax slavonicusSeifert used <strong>in</strong> <strong>the</strong> experiments were collected.153


Tab. 1. Summary of experimental results. Explanations: N – number of experiments, NRM – number of regulationsto monogyny (= elim<strong>in</strong>ation of supernumerary queens), NF – number of fusions of two monogyous colonies,N2M – number of orig<strong>in</strong>ations of two monogynous colonies, N0 – number of experiments result<strong>in</strong>g <strong>in</strong> orphancyof <strong>the</strong> colony, NAQ – number of adoptions of an alien queen; * – adoption before orphancy, ** – adoption of aw<strong>in</strong>n<strong>in</strong>g by workers from <strong>the</strong> colony of <strong>the</strong> elim<strong>in</strong>ated queen after <strong>the</strong> fusiondesign N = 100% NRM NF N2M NO NAQseries 1 30 24 24 6 1* 24**series 2 5 0 0 5 0 0series 3 10 6 0 0 4 6Fisher exact test from Statistica 93 was used <strong>in</strong> <strong>the</strong> statistical evaluation of <strong>the</strong> choice of a queen.RESULTS1. Monogyny of Leptothorax slavonicus <strong>in</strong> <strong>the</strong> fieldAll of <strong>the</strong> 238 colonies exam<strong>in</strong>ed (100%) had only one queen.2. Experiments (Tab. 1, Fig. 2)SERIES 1. The mix<strong>in</strong>g of two monogynous colonies (30 experiments) resulted <strong>in</strong> <strong>the</strong> colonies fus<strong>in</strong>gto form one colony, and <strong>the</strong> workers reduc<strong>in</strong>g <strong>the</strong> number of queens to one <strong>in</strong> 24 cases (monogynouscolonies formed <strong>in</strong> all cases except one, <strong>in</strong> which <strong>the</strong> accepted queen died before <strong>the</strong> term<strong>in</strong>ationof <strong>the</strong> experiment, and an orphaned colony resulted). The colonies separated and formed twomonogynous colonies, each <strong>in</strong> a different part of <strong>the</strong> formicarium <strong>in</strong> 6 cases. A digynous colonywas never formed.SERIES 2. The mix<strong>in</strong>g of two marked groups of ants (5 experiments) resulted <strong>in</strong> <strong>the</strong> ants of <strong>the</strong>different colonies liv<strong>in</strong>g <strong>in</strong> one formicarium, but as two autonomous and dist<strong>in</strong>ct fractions. No caseof fusion was observed.SERIES 3. When two foreign queens were offered to an orphaned colony (10 experiments) onequeen was adopted, <strong>the</strong> o<strong>the</strong>r elim<strong>in</strong>ated <strong>in</strong> 6 cases, and both queens elim<strong>in</strong>ated, i. e. <strong>the</strong> coloniesrema<strong>in</strong>ed without queen, <strong>in</strong> 4 cases.3. Behaviour of ants dur<strong>in</strong>g experiments3. 1. Experimental Series 1The ants first explored <strong>the</strong> arena and nest-site, which was accompanied by aggressive <strong>in</strong>teractionsbetween <strong>the</strong> workers and attacks on both queens, <strong>the</strong>n formed a cluster around each queen, andei<strong>the</strong>r reta<strong>in</strong>ed this separation up to <strong>the</strong> term<strong>in</strong>ation of <strong>the</strong> experiment, or <strong>the</strong> clusters <strong>in</strong>habited <strong>the</strong>nest-site, formed a fused colony, and regulated <strong>the</strong> number of queens to one. Six successivebehavioural phases (unless stated o<strong>the</strong>rwise) were identified <strong>in</strong> nearly all <strong>the</strong> experiments : a-b-cd-e-f,or a-b-c-d-g-h.(a) Exploration. Dur<strong>in</strong>g this phase <strong>the</strong> ants became acqua<strong>in</strong>ted with <strong>the</strong> new situation, arena andstrangers. This was associated with <strong>in</strong>creased mobility with exploratory behaviour prevail<strong>in</strong>g overo<strong>the</strong>r activities. Ritualised attacks <strong>in</strong> which <strong>the</strong> mandibles were opened wide aga<strong>in</strong>st strangers,but <strong>the</strong>re was no body contact, were common. Groom<strong>in</strong>g of <strong>the</strong> queens by workers lasted until oneof <strong>the</strong> queens was elim<strong>in</strong>ated. Duration of this phase was about 15 m<strong>in</strong>utes.(b) Aggregation of workers around <strong>the</strong> alien queen dur<strong>in</strong>g which <strong>the</strong> workers seized <strong>the</strong> legs,antennae, head of <strong>the</strong> queen and dragged it across <strong>the</strong> arena or transported it by hold<strong>in</strong>g it by itspetiole and attacked it with <strong>the</strong>ir mandibles. The queens characteristically rema<strong>in</strong>ed passive andrigid dur<strong>in</strong>g transportation. At <strong>the</strong> same time <strong>the</strong> workers explored <strong>the</strong> nest-site and transported154


<strong>the</strong> brood, first <strong>in</strong>to heaps near <strong>the</strong> shaded part of <strong>the</strong> arena and later <strong>in</strong>to <strong>the</strong> nest-site, andtransported <strong>the</strong>ir queens to <strong>the</strong> heaps of brood. Trophallaxis among workers was observed until<strong>the</strong> experiment was term<strong>in</strong>ated. Both queens were fed prior to regulation, when only <strong>the</strong> acceptedone was fed. In cases when <strong>the</strong> colonies separated, feed<strong>in</strong>g of both queens cont<strong>in</strong>ued. Recruitmentoccurred <strong>in</strong> 18 experiments. Individual conflicts took <strong>the</strong> form of tugg<strong>in</strong>g (27 experiments)and fight<strong>in</strong>g (24 experiments); group conflicts also <strong>in</strong>volved tugg<strong>in</strong>g (15 experiments) and fight<strong>in</strong>g(7 experiments), but rarely st<strong>in</strong>g<strong>in</strong>g (3 experiments). In two cases both <strong>the</strong> queens used <strong>the</strong>irst<strong>in</strong>g <strong>in</strong> mutual fights that lasted 20 or 40 seconds (no evident relation with any o<strong>the</strong>r factor).Duration of this phases was 10 m<strong>in</strong>utes to 2.5 hours.(c) Formation of two monogynous colonies occurred when <strong>the</strong> brood was divided <strong>in</strong>to two heaps,each of which was occupied by one of <strong>the</strong> two queens accompanied by a group of workers. Thiswas followed by <strong>the</strong> subdivision of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g workers <strong>in</strong> two groups. Duration of this phasewas 10 m<strong>in</strong>utes to 2.5 hours.(d) Decreased activity occurred when <strong>the</strong> ants <strong>in</strong> both groups rema<strong>in</strong>ed immobile for 25 m<strong>in</strong>utes to24 hours.The next two successive phases occurred <strong>in</strong> one of <strong>the</strong> two variants.VARIANT 1 (e, f)(e) Occupation of <strong>the</strong> nest-site by both <strong>the</strong> colonies. This was accomplished by <strong>the</strong> movement of<strong>in</strong>dividual ants, or <strong>the</strong>ir passive transport <strong>in</strong> <strong>the</strong> sup<strong>in</strong>e position (head or <strong>the</strong> petiole held by o<strong>the</strong>rants) along with <strong>the</strong> transfer of both <strong>the</strong> queens. The result<strong>in</strong>g colony was seem<strong>in</strong>gly digynous,however egg-lay<strong>in</strong>g by <strong>the</strong> queens was never observed. This took 23 hours to 22 days to complete.(f) Return to monogyny by <strong>the</strong> elim<strong>in</strong>ation of one of <strong>the</strong> queens at <strong>the</strong> periphery of <strong>the</strong> arenaoccurred <strong>in</strong> 24 of 30 experiments, usually with<strong>in</strong> 23 days of <strong>the</strong> start of <strong>the</strong> experiment. This wasFig. 2. Results of experiments series 1–3. Explanations: N – number of experiments, NRM – number of regulationsto monogyny (= eleim<strong>in</strong>ation of supernumerary queens), NF – numbers of fusions of two monogynouscolonies, N2M – number of orig<strong>in</strong>ations of two monogynous colonies, N0 – number of experiments result<strong>in</strong>g <strong>in</strong>orphancy of <strong>the</strong> colony, NAQ – number of adoptions of an alien queen.155


achieved by workers attack<strong>in</strong>g one of <strong>the</strong> queens with <strong>the</strong>ir mandibles, never with <strong>the</strong>ir st<strong>in</strong>gs.The elim<strong>in</strong>ated “queen” died while be<strong>in</strong>g transported (3 out of 24) or immediately after (13 out of24), or was kept <strong>in</strong> isolation at <strong>the</strong> periphery of <strong>the</strong> arena, without groom<strong>in</strong>g and trophallaxis (8 outof 24). The workers action was co-ord<strong>in</strong>ated, with no mutual conflicts, and <strong>the</strong> rejected “queen”rema<strong>in</strong>ed passive. The accepted queen was adopted by <strong>the</strong> workers and monogyny persisted until<strong>the</strong> term<strong>in</strong>ation of <strong>the</strong> experiment. This phase took between 10 m<strong>in</strong>utes to 8 hours to complete.VARIANT 2 (g, h)(g) Occupation of <strong>the</strong> nest-site by one colony while <strong>the</strong> o<strong>the</strong>r rema<strong>in</strong>ed <strong>in</strong> <strong>the</strong> arena, which wasaccepted as a “nest-site” on 6 occasions. This phase lasted for between 10 m<strong>in</strong>utes and 4 hours.(h) Return to monogyny. The two colonies functioned <strong>in</strong>dependently and behaved as two dist<strong>in</strong>ctmonogynous colonies until <strong>the</strong> term<strong>in</strong>ation of <strong>the</strong> experiment.Choice of queenThere was a relation between <strong>the</strong> actual sizes of <strong>the</strong> experimental colonies and choice of acceptedqueen (Fig. 3). After fusion of <strong>the</strong> colonies <strong>in</strong> <strong>the</strong> experiments of Series 1 (24 occasions) <strong>the</strong> queenof <strong>the</strong> larger colony was chosen <strong>in</strong> 18 cases, and that of <strong>the</strong> smaller colony <strong>in</strong> 6 cases (c 2 = 6, p =0.0143, df = 1).3. 2. Experimental Series 2The behaviour of ants was very similar to that <strong>in</strong> Series 1, but both <strong>the</strong> colonies reta<strong>in</strong>ed <strong>the</strong>irautonomy and never fused. Conflicts only occurred between members of different colonies, and<strong>the</strong> ants were always able to recognise <strong>the</strong>ir nestmates (<strong>in</strong>teractions: allogroom<strong>in</strong>g, trophallaxis,etc.) from non-nestmates (<strong>in</strong>teractions: both ritualised and true attacks). The recognition was notimpaired even immediately after mark<strong>in</strong>g <strong>the</strong> ants with nail varnish, <strong>the</strong> odour of which probably<strong>in</strong>terfered with nest scents. The result<strong>in</strong>g two monogynous colonies were formed exclusively from<strong>the</strong> orig<strong>in</strong>al nestmates <strong>in</strong> all five experiments.3. 3. Experimental Series 3These experiments resulted ei<strong>the</strong>r <strong>in</strong> adoption of one of <strong>the</strong> queens or elim<strong>in</strong>ation of both, never <strong>in</strong>digyny. Even <strong>in</strong> <strong>the</strong>se experiments 5 successive behavioural phases were regularly observedei<strong>the</strong>r <strong>in</strong> sequence a-b-c-d-e, or a-b-c-d-f.(a) Identification of <strong>the</strong> queen. Workers approached a queen, touched it with <strong>the</strong>ir antennae,departed, etc. This phase lasted about 30 m<strong>in</strong>utes.(b) Aggregation of workers around queens. Workers formed clusters around quite passive queens,seized <strong>the</strong>m, transported and attacked <strong>the</strong>m with <strong>the</strong>ir mandibles etc., as <strong>in</strong> <strong>the</strong> previous experiments,<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> same k<strong>in</strong>d of conflicts between <strong>the</strong> workers (st<strong>in</strong>g never used), i.e. ritualisedattacks (6 out of 10 experiments), tugg<strong>in</strong>g (4 out of 10) and fight<strong>in</strong>g (3 out of 10 experiments), andgroup tugg<strong>in</strong>g (1 out of 10) <strong>in</strong>volv<strong>in</strong>g maximally 4 <strong>in</strong>dividuals. Duration of this phase was 30m<strong>in</strong>utes to 3 hours.(c) Decreased activity. The majority of <strong>the</strong> workers jo<strong>in</strong>ed one of <strong>the</strong> groups around <strong>the</strong> queens,and rema<strong>in</strong>ed stationary. This phase lasted far from 55 m<strong>in</strong>utes to 8 hours.(d) Intermediate phase with two “queens”. Formation of a seem<strong>in</strong>gly digynous colony <strong>in</strong> <strong>the</strong> nestsite,but <strong>the</strong> queens did not lay eggs. Duration of this phase was from 5 hours to 6 days.VARIANT 1(e) The establishment (6 experiments out of 10) of monogyny. One of <strong>the</strong> two “queens” <strong>in</strong> <strong>the</strong>colony was attacked <strong>in</strong> <strong>the</strong> nest-site and transferred to <strong>the</strong> periphery and elim<strong>in</strong>ated. This queendied <strong>in</strong> 4 cases (out of 6) or was kept <strong>in</strong> isolation at <strong>the</strong> periphery of arena without groom<strong>in</strong>g and156


trophallaxis until <strong>the</strong> term<strong>in</strong>ation of <strong>the</strong> experiment <strong>in</strong> 2 cases (out of 6 cases) . This occurred notlater than 7 days after <strong>the</strong> start of <strong>the</strong> experiment. Duration of this phase was from 30 m<strong>in</strong>utes to 6hours. The rema<strong>in</strong><strong>in</strong>g queen was adopted and <strong>the</strong> colony functioned as a monogynous colonyuntil <strong>the</strong> end of <strong>the</strong> experiment.VARIANT 2(f) Elim<strong>in</strong>ation of both “queens” and return to orphancy (4 experiments out of 10). With<strong>in</strong> 6 daysboth “queens” were attacked, elim<strong>in</strong>ated and died. This phase lasted far from 3 hours to 2 days.The orphaned colony rema<strong>in</strong>ed <strong>in</strong> this state up to <strong>the</strong> end of <strong>the</strong> experiment.DISCUSSIONBoth field observations and laboratory experiments have shown that Leptothorax slavonicus isan obligatory monogynous species, as are many o<strong>the</strong>r species of <strong>the</strong> subgenus Myrafant Smith,1950. The regulatory mechanisms restor monogyny reliably <strong>in</strong> cases when <strong>in</strong> a colony occur twoqueens. Monogynous colonies may fuse, regulate number of queens and form genetically heterogeneouscolonies. This occurs <strong>in</strong> Leptothorax nylanderi (cf. Foitzik & He<strong>in</strong>ze 1998, 2000) whereit is regarded as <strong>in</strong>traspecific slavery.Frequent f<strong>in</strong>ds of wood cavities resembl<strong>in</strong>g empty nest-sites of L. slavonicus <strong>in</strong> w<strong>in</strong>ter (Kašpárek& Tichá unpubl.) may suggest colony fusion occurs <strong>in</strong> this species under natural conditions.Hence we cannot exclude existence of <strong>in</strong>traspecific slavery <strong>in</strong> this species. Moreover, our experiments<strong>in</strong>dicate that nest-site limitation plays a role <strong>in</strong> <strong>the</strong> fusion of colonies of L. slavonicus (as <strong>in</strong>L. nylanderi) – first <strong>the</strong> two colonies attempt to live <strong>in</strong>dependently, but after some time elapses<strong>the</strong>y occasionally fuse.However, L. slavonicus seems less tolerant than L. nylanderi of even <strong>the</strong> temporary presence ofseveral queens <strong>in</strong> a colony. This is supported by a faster reduction <strong>in</strong> <strong>the</strong> number of queens than<strong>in</strong> <strong>the</strong> latter species. Foitzik & He<strong>in</strong>ze (1998) recorded <strong>the</strong> survival of several “queens” <strong>in</strong> onecolony of L. nylanderi for more than 64 days, while <strong>in</strong> our experiments on L. slavonicus <strong>the</strong>regulation towards monogyny took place with<strong>in</strong> 23 days.Fig. 3. Choice of <strong>the</strong> queen. Explanations: NE – number of experimental colonies, NMC – number of members of<strong>the</strong> colony; negative values = <strong>the</strong> w<strong>in</strong>n<strong>in</strong>g queen from smaller colony.157


This difference was observed by Kašpárek (pers. comm.) and Tichá (1992) prior to <strong>the</strong> taxonomicseparation of <strong>the</strong> two species, and we <strong>the</strong>n hypo<strong>the</strong>sised that “L. nylanderi” consists of two ormore genetically and ethologically dist<strong>in</strong>ct populations. Independently of this hypo<strong>the</strong>sis, thiswas proved by morphological and genetic studies, which revealed it consisted of two parapatricspecies. The West European L. nylanderi (type locality Aachen, Germany fide Radchenko 2000)and <strong>the</strong> Central and East European L. slavonicus (type locality Kr. Görlitz, Schönau-Berzdorf,Hutberg; cf. Seifert 1995, Radchenko 2000). The uncerta<strong>in</strong>ty of several authors (Donisthorpe 1927,Chauv<strong>in</strong> 1947, Busch<strong>in</strong>ger 1967, 1968, Foitzik & He<strong>in</strong>ze 1997, 1998, 2000, Plateaux, pers. comm.)concern<strong>in</strong>g monogyny/polygyny and monoandry/polyandry of colonies of West European populationsof L. nylanderi (Chauv<strong>in</strong> 1947, Plateaux 1970, 1978, 1981, Foitzik et al. 1997) <strong>in</strong>dicate <strong>the</strong>need for morphological and genetic studies of metapopulations of this species <strong>in</strong> regions not yet<strong>in</strong>vestigated and to re-<strong>in</strong>vestigate its ethology.The second series of experiments showed that <strong>the</strong> workers of L. slavonicus consistently recognisenestmates from non-nestmates, even under conditions that probably impair recognition ofnest scent, <strong>in</strong> this case <strong>the</strong> presence of acetone vapours. Nestmate recognition <strong>in</strong> ants is based onpresence of nest-specific odour which may be <strong>in</strong>dividually borne or collectively shared and transferred(Gestalt) (Crozier & Dix 1979). This odour <strong>in</strong>volves discrim<strong>in</strong>ators recognisable by all <strong>the</strong>members of a colony, e. g. cuticular hydrocarbons (e. g. Bonavita et al. 1996, 1997, Meskali et al.1995a, b), polar cuticular lipids (Franks et al. 1990), food quality (Jutsum et al. 1979), a nest material(Breed et al. 1995, He<strong>in</strong>ze et al. 1996) etc. Leptothorax (Myrafant) lichtenste<strong>in</strong>i Bondroit, 1918, aspecies closely related to L. slavonicus, has nestmate recognition probably based on a Gestalttype model (Provost 1985, 1989, 1990, Provost et al. 1993). Strong <strong>in</strong>fluence has a nest material oncolony odour <strong>in</strong> ano<strong>the</strong>r related species, Leptothorax nylanderi (He<strong>in</strong>ze et al. 1996). This factormay expla<strong>in</strong> <strong>the</strong> ease with which colonies of this species fuse (Foitzik & He<strong>in</strong>ze 1998). The natureof <strong>the</strong> recognition <strong>in</strong> L. slavonicus is still unknown. However, its ability to recognise nestmatesconfirms <strong>the</strong> general op<strong>in</strong>ion (see, e. g., Holldöbler & Wilson 1977) that monogynous speciesshow a higher degree of closeness than polygynous ones.The marked <strong>in</strong>dividuals from different colonies did not mix, probably because of <strong>the</strong> smallnumber of <strong>in</strong>dividuals <strong>in</strong>volved, and hence <strong>the</strong> large amount of normal space available. Consequently,we could not determ<strong>in</strong>e whe<strong>the</strong>r nestmate recognition persists for a long period aftercolony fusion or whe<strong>the</strong>r a hierarchy associated with colony orig<strong>in</strong> exists <strong>in</strong> mixed colonies.The series of third experiments showed that orphaned workers of L. slavonicus readily adopt analien queen. Although this has previously been recorded by Foitzik & He<strong>in</strong>ze (1998) <strong>in</strong> L. nylanderi,it is strange, because <strong>the</strong> presence of a queen <strong>in</strong> leptothorac<strong>in</strong>e ants usually <strong>in</strong>hibits <strong>the</strong>lay<strong>in</strong>g of unfertilised eggs by workers, which is ra<strong>the</strong>r common <strong>in</strong> orphaned colonies (He<strong>in</strong>ze1997). The situation seems to be <strong>in</strong> conflict with <strong>the</strong> basic tenets of k<strong>in</strong> selection: <strong>the</strong>re should exista conflict of <strong>in</strong>terests between <strong>the</strong> workers and <strong>the</strong> queen concern<strong>in</strong>g maternal orig<strong>in</strong> of males(Hamilton 1964, Trivers & Hare 1976). An important task for future research is to determ<strong>in</strong>e whe<strong>the</strong>r<strong>the</strong> <strong>in</strong>hibition of egg-lay<strong>in</strong>g by workers occurs <strong>in</strong> <strong>the</strong> presence of an adopted alien queen.CONCLUSIONS1. The species Leptothorax slavonicus is monogynous; no case of polygyny was found <strong>in</strong> naturalor experimental conditions.2. The ma<strong>in</strong>tenance of monogyny was accomplished by behavioural regulation which resulted <strong>in</strong><strong>the</strong> elim<strong>in</strong>ation of supernumerary queens by workers.3. Recognition of nestmates occurred even under conditions of impaired scent communication.158


4. The queen that was accepted was usually that of <strong>the</strong> larger of <strong>the</strong> two colonies used <strong>in</strong> eachexperiment.5. Mix<strong>in</strong>g two monogynous colonies usually resulted <strong>in</strong> <strong>the</strong>ir fusion, formation of a mixed colonyand reduction <strong>in</strong> <strong>the</strong> number of queens (monogyny).6. Genetically heterogeneous colonies may persist under experimental conditions.7. In <strong>the</strong> laboratory orphaned colonies will adopt an alien queen.ADDENDUMLeptothorax (Myrafant) slavonicus is probably a junior subjective synonym of Leptothorax (Myrafant)crassisp<strong>in</strong>us Karawajev, 1926, a species described orig<strong>in</strong>ally from Russia (Radchenko 2000,Seifert pers. comm., October 2001).A c k n o w l e d g e m e n t sThe <strong>in</strong>itial and f<strong>in</strong>al phases of this study were carried out <strong>in</strong> <strong>the</strong> Department of Zoology, Charles University,Prague; we gratefully acknowledge <strong>the</strong> f<strong>in</strong>ancial support of this Research project by <strong>the</strong> M<strong>in</strong>istry of Schools andEducation of <strong>Czech</strong> <strong>Republic</strong> Grant No. J 13/98113100004. We are obliged to R. Kašpárek (Praha) for cont<strong>in</strong>uousadvice, assistance <strong>in</strong> ma<strong>in</strong>tenance of cultures and carry<strong>in</strong>g out <strong>the</strong> experiments and to A. Busch<strong>in</strong>ger (Darmstadt),D. Frynta (Praha), L. Plateaux (Nancy), E. Provost (Marseilles), B. Seifert (Görlitz), P. Werner (Praha), J.Žárek (Praha) for valuable <strong>in</strong>formation.REFERENCESBONAVITA-COUGOURDAN A., RIVIERE G., PROVOST E., BAGNERES A.-G., ROUX M., DUSTICIER G. & CLEMENT J.-L.1996: Selective adaptation of <strong>the</strong> cuticular hydrocarbon profiles of <strong>the</strong> slave-mak<strong>in</strong>g ants Polyergus rufescensLatr. and <strong>the</strong>ir Formica rufibarbis Fab. and F. cunicularia Latr. slaves. Comp. Biochem. Physiol. 113B: 313–329.BONAVITA-COUGOURDAN A., BAGNERES A.-G., PROVOST E., DUSTICIER G., & CLEMENT J.-L. 1997: Plasticity of <strong>the</strong>cuticular hydrocarbon profile of <strong>the</strong> slave-mak<strong>in</strong>g ants Polyergus rufescens depend<strong>in</strong>g on <strong>the</strong> socialenvironment. Comp. Biochem. Physiol. 116B: 287–302.BREED M. D., GARRY M. F., PEARCE A. N., HIBBARD B. E. & RAGE R. E. J. 1995: The role of wax comb <strong>in</strong> honey beenestmate recognition. Anim. Behav. 50: 489–496.BUSCHINGER A. 1967: Verbreitung und Auswirkungen von Mono- und Polygynie bei Arten der Gattung LeptothoraxMayr (Hymenoptera, Formicidae). Unpubl. Inaugural-Dissertation, Würzburg, 115 pp.BUSCHINGER A. 1968: Mono- und Polygynie bei Arten der Gattung Leptothorax Mayr (Hymenoptera, Formicidae).Insectes Soc. 15: 217–226.BUSCHINGER A. 1974: Monogynie und Polygynie <strong>in</strong> Insektensozietäten. Pp.: 862–896. In: SCHMIDT G. H. (ed.):Sozialpolamorphismus bei Insekten. Stuttgart: Wiss. Verlagsges MBH, xxiv+974 pp.CHAUVIN R. 1947: Sur l’elevage du Leptothorax nylanderi (Hymenoptere Formicide) et sur l’essaimage <strong>in</strong> vitro.Bull. Soc. Zool. Fr. 81: 151–165.CROZIER R. H. & DIX M. W. 1979: Analysis of two genetic models for <strong>the</strong> <strong>in</strong>nate components of colony odor <strong>in</strong>social Hymenoptera. Behav. Ecol. Sociobiol. 4: 217–224.DONISTHORPE H. 1927: British Ants. Their Life-history and Classification. London: G. Routledge & Sons, 436 pp.FOITZIK S., HABERL M., GADAU J. & HEINZE J. 1997: Mat<strong>in</strong>g frequency of Leptothorax nylanderi ant queensdeterm<strong>in</strong>ed by mikrosatelite analysis. Insectes Soc. 44: 219–227.FOITZIK S. & HEINZE J. 1998: Nest site limitation and colony takeover <strong>in</strong> ant Leptothorax nylanderi. Behav. Ecol.4: 367–375.FOITZIK S. & HEINZE J. 2000: Intraspecific parasitism and split sex ratios <strong>in</strong> a monogynous and monandrous ant(Leptothorax nylanderi). Behav. Ecol. Sociobiol. 47: 424–431.FRANKS N. R., BLUM M.S., SMITH R. & ALLIES A.B. 1990: Behaviour and chemical disguise of cockoo ant Leptothoraxkutteri <strong>in</strong> relation to its host Leptothorax acervorum. J. Chem. Ecol. 16: 1431–1444.HAMILTON W. D. 1964: The genetical evolution of social behaviour. J. Theor. Biol. 7: 1–52.HEINZE J. 1993: How to immobilize an ant? Insectes Soc. 40: 231–232.HEINZE J. & BUSCHINGER A. 1986: Queen polymorphism <strong>in</strong> a non-parasitic Leptothorax species (Hymenoptera,Formicidae). Insectes Soc. 34: 1, 28–43.159


HEINZE J.& BUSCHINGER A. 1988: Polygyny and functional monogyny <strong>in</strong> Leptothorax ants (Hymenoptera,Formicidae). Psyche 95: 309–325.HEINZE J., FOITZIK S., HIPPERT A. & HÖLLDOBLER B. 1996: Apparent dear-enemy phenomenon and environmentalbasedrecognition cues <strong>in</strong> <strong>the</strong> ant Leptothorax nylanderi. Ethology 102: 510–522.HEINZE J., PUCHINGER W. & HÖLLDOBLER B. 1997: Worker reproduction and social hierarchies <strong>in</strong> Leptothoraxants. Anim. Behav. 54: 849–864.HÖLLDOBLER B. & WILSON E. O. 1977: The number of queens: an important trite <strong>in</strong> ant evolution. Naturwissenschaften64: 8–15.HÖLLDOBLER B. & WILLSON E. O. 1990: The Ants. Berl<strong>in</strong>: Spr<strong>in</strong>ger-Verlag, 732 pp.JUTSUM A. R., SAUNDERS T. S. & CHERRET J. M. 1979: Intraspecific aggression <strong>in</strong> <strong>the</strong> leaf-cutt<strong>in</strong>g ant Acromyrmexoctosp<strong>in</strong>osus. Anim. Behav. 27: 839–844.MESKALI M., BONAVITA-COUGOURDAN A., PROVOST E., BAGNERES A.-G., DUSTICIER G. & CLEMENT J.-L. 1995:Mechanism underly<strong>in</strong>g cuticular hydrocarbon homogenity <strong>in</strong> <strong>the</strong> ant Camponotus vagus (Scop.) (Hymenoptera:Formicidae): Role of postpharyngeal glands. J. Chem. Ecol. 21: 1127–1148.MESKALI M., PROVOST E., BONAVITA-COUGOURDAN A. & CLEMENT J.-L 1995: Behavioural effects of an experimentalchange <strong>in</strong> <strong>the</strong> chemical signature of <strong>the</strong> ant Camponotus vagus (Scop.). Insectes Soc. 42: 347–358.PLATEAUX L. 1970: Sur le polymorphisme social de la fourmi Leptothorax nylanderi (Förster). I. Morphologie etbiologie comparées des castes. Ann. Sci. Natur. Zool. Biol. Anim. 12 sér. 12: 373–478.PLATEAUX L. 1978: L essaimage de quelques fourmis Leptothorax: roles de l éclairement et de divers autresfacteurs. Effet sur l isolement reproductif et la répartition géographique. Ann. Sci. Natur. Zool. Biol. Anim. 12sér. 20: 1219–1264.PLATEAUX L. 1981: Difficulté du replacement de la re<strong>in</strong>e dans une colonie de la fourmi Leptothorax nylanderi.Ann. Sci. Natur. Zool. 3: 1–14.PROVOST E. 1985: Etude de la fermeture de la société chez les fourmis I. Analyse des <strong>in</strong>teractions entre ouvriéresde sociétés différentes, lors de rencontres expérimentales, chez des fourmis du genre Leptothorax et chezCamponotus lateralis Ol. Insectes Soc. 32: 445–462.PROVOST E. 1989: Social environmental factors <strong>in</strong>fluenc<strong>in</strong>g mutual recognition of <strong>in</strong>dividuals of <strong>the</strong> ant Leptothoraxlichtenste<strong>in</strong>i Bondr. (Hymenoptera: Formicidae). Behav. Proc. 18: 35–59.PROVOST E. 1990: Non-nestmate K<strong>in</strong> Recognition <strong>in</strong> <strong>the</strong> Ant Leptothorax lichtenste<strong>in</strong>i: Evidence that GeneticFactors Regulate Colony Recognition. Behav. Gen. 21: 151–167.PROVOST E., RIVIERE G., ROUX M., MORGAN E. D. & BAGNERES A.-G. 1993: Change <strong>in</strong> <strong>the</strong> chemical signature of <strong>the</strong>ant Leptothorax lichtenste<strong>in</strong>i Bondroit with time. Insect. Biochem. Molec. Biol. 23: 945–957.PROVOST E., RIVIERE G., ROUX M., BAGNERES A. G. & CLEMENT J.-L. 1994: Cuticular hydrocarbons whereby Messorbarbarus ant workers putatively discrim<strong>in</strong>ate between monogynous and polygynous colonies. Are workerslabeled by queens? J. Chem. Ecol. 20: 2985–3003.PROVOST E. & CERDAN P. H. 1990: Experimental polygyny and colony closure <strong>in</strong> <strong>the</strong> ant Mesor barbarus (L.)(Hym. Formicidae). Behaviour 115: 114–126.PROVOST E., CERDAN P., BAGNERES A.-G. MORGAN E.D., & RIVIERE G.1992: Role of <strong>the</strong> queen <strong>in</strong> Messor barbaruscolony signature. Pp.: 195–202. In: BILLEN J. (ed.): Biology and Evolution of Social Insects. Leuven: LeuvenUniv. Press, 390 pp.PRUNER L. & MÍKA P. 1996: List of settlements <strong>in</strong> <strong>the</strong> <strong>Czech</strong> <strong>Republic</strong> with associated map field codes for faunisticgrid mapp<strong>in</strong>g system. Klapalekiana 32 (Suppl): 1–115 (<strong>in</strong> <strong>Czech</strong>, English summary).RADCHENKO A. 2000: What is “Leptothorax nylanderi” (Hymenoptera, Formicidae) <strong>in</strong> Russian and former Sovietliterature? Ann. Zool. 50: 43–45.SEIFERT B. 1995: Two new Central European subspecies of Leptothorax nylanderi Förster, 1850) and Leptothoraxsordidulus Müller, 1923 (Hymenoptera, Formicidae). Abh. Ber. Naturkundenmus. Görlitz 68(7): 1–18.SEIFERT B. 1996: Ameisen, Beobachten, Bestimmen. Natur Buch Verlag, 352 pp.STATSOFT 1993: Statistica for W<strong>in</strong>dows 4.5. Tulsa, Oklahoma: Stat.Soft, Inc.TICHÁ K. 1992: [Monogyny of Leptothorax nylanderi (Hymenoptera, Formicidae) <strong>in</strong> sample of population from<strong>Czech</strong>oslovakia]. Unpubl. Magister Thesis. Praha: Charles University, 194 pp (<strong>in</strong> <strong>Czech</strong>).TRIVERS R. L. & HARE A. 1976: Haplodiploidy and <strong>the</strong> evolution of <strong>the</strong> social <strong>in</strong>sects. Science 191: 249–263.160

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!