17.12.2016 Views

Effects of nitrogen sources and application time on yield attributes, yield and grain protein of rain-fed NERICA-3 rice in Gambella, Ethiopia - IJAAR

Abstract A field experiment was carried out under rain-fed conditions at Imla, Gambella Agricultural Research Institute in 2008 and 2009 main cropping seasons in order to compare the effects of N sources [ammonium nitrate (NH4NO3), ammonium sulfate ((NH4)2SO4) and urea (CO(NH2)2)] and their time of application (½ at sowing + ½ at tillering; ⅓ at sowing + ⅓ at tillering + ⅓ at panicle initiation; ½ at sowing + ½ at panicle initiation, and ½ at tillering + ½ at panicle initiation) on growth, yield attributes and yield of rice (Oryza sativa L.) variety NERICA-3 (O. sativa x O. glaberrima), in a factorial experiment laid out in a RCBD replicated thrice. Nitrogen from each source was applied at the rate of 92 kg N ha-1, and the plots received uniform dose of 46 kg P and 20 kg K ha-1 at sowing. The results revealed that effects of year on rice days to flowering, panicle length, number of grains and grain weight panicle-1, grain yield, grain protein content (P ≤ 0.01), plant height, and straw yield (P ≤ 0.05) were only significant. The responses of rice growth and yield components and grain protein to sources of N were not significant (P > 0.05). Plant height, panicle length and grain weight panicle-1 to application time were significant (P ≤ 0.05) while the other growth and yield components and grain protein were not (P > 0.05). Only grain and straw yield significantly (P ≤ 0.01) influenced by interaction of N sources and application time whereas the other yield and growth components and grain protein not (P > 0.05). Effects of sources of N, interactions of year by sources of N, year by application time and year by sources of N by application time were insignificant(P > 0.05) on the rice growth, yield components and grain protein. Significantly increased rice grain yield (6.33 t ha-1) obtained with NH4NO3 applied ½ at sowing + ½ at tillering. The, results were subjected to economic analysis using the partial budget procedure to determine sources of N and application time that would give acceptable returns to farmers. Economic analysis showed that CO(NH2)2 applied ½ at sowing + ½ at panicle initiation and ½ at tillering + ½ at panicle initiation are superior and stable within a price variability range of 15%. Hence, it may be recommended for production of NERICA-3 rice under the climatic conditions prevailing in the study area.

Abstract
A field experiment was carried out under rain-fed conditions at Imla, Gambella Agricultural Research Institute in 2008 and 2009 main cropping seasons in order to compare the effects of N sources [ammonium nitrate (NH4NO3), ammonium sulfate ((NH4)2SO4) and urea (CO(NH2)2)] and their time of application (½ at sowing + ½ at tillering; ⅓ at sowing + ⅓ at tillering + ⅓ at panicle initiation; ½ at sowing + ½ at panicle initiation, and ½ at tillering + ½ at panicle initiation) on growth, yield attributes and yield of rice (Oryza sativa L.) variety NERICA-3 (O. sativa x O. glaberrima), in a factorial experiment laid out in a RCBD replicated thrice. Nitrogen from each source was applied at the rate of 92 kg N ha-1, and the plots received uniform dose of 46 kg P and 20 kg K ha-1 at sowing. The results revealed that effects of year on rice days to flowering, panicle length, number of grains and grain weight panicle-1, grain yield, grain protein content (P ≤ 0.01), plant height, and straw yield (P ≤ 0.05) were only significant. The responses of rice growth and yield components and grain protein to sources of N were not significant (P > 0.05). Plant height, panicle length and grain weight panicle-1 to application time were significant (P ≤ 0.05) while the other growth and yield components and grain protein were not (P > 0.05). Only grain and straw yield significantly (P ≤ 0.01) influenced by interaction of N sources and application time whereas the other yield and growth components and grain protein not (P > 0.05). Effects of sources of N, interactions of year by sources of N, year by application time and year by sources of N by application time were insignificant(P > 0.05) on the rice growth, yield components and grain protein. Significantly increased rice grain yield (6.33 t ha-1) obtained with NH4NO3 applied ½ at sowing + ½ at tillering. The, results were subjected to economic analysis using the partial budget procedure to determine sources of N and application time that would give acceptable returns to farmers. Economic analysis showed that CO(NH2)2 applied ½ at sowing + ½ at panicle initiation and ½ at tillering + ½ at panicle initiation are superior and stable within a price variability range of 15%. Hence, it may be recommended for production of NERICA-3 rice under the climatic conditions prevailing in the study area.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Int. J. Agr. & Agri. R.<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy <str<strong>on</strong>g>and</str<strong>on</strong>g> Agricultural Research (<strong>IJAAR</strong>)<br />

ISSN: 2223-7054 (Pr<strong>in</strong>t)<br />

Vol. 2, No. 9, p. 14-32, 2012<br />

http://www.<strong>in</strong>nspub.net<br />

RESEARCH PAPER<br />

OPEN ACCESS<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> <strong>yield</strong><br />

<strong>attributes</strong>, <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>prote<strong>in</strong></strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>ra<strong>in</strong></strong>-<strong>fed</strong> <strong>NERICA</strong>-3 <strong>rice</strong> <strong>in</strong><br />

<strong>Gambella</strong>, <strong>Ethiopia</strong><br />

Shiferaw Nesgea 1* , Heluf Gebrekidan 2 , J. J. Sharma 3 , Tareke Berhe 3<br />

1<br />

<strong>Gambella</strong> Regi<strong>on</strong>al Agricultural Research Institute, P.O.Box 62, <strong>Gambella</strong>, <strong>Ethiopia</strong><br />

2<br />

Colleges <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture <str<strong>on</strong>g>and</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences, Haramaya University, P. O. Box 138, Dire<br />

Dawa, Ehiopia.<br />

3<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Sciences, Haramaya University, P. O. Box 138, Dire Dawa, <strong>Ethiopia</strong><br />

4<br />

SASAKAWA Africa Associati<strong>on</strong>`s, Regi<strong>on</strong>al Rice Program, Addis Ababa, <strong>Ethiopia</strong><br />

Received: 06 August 2012<br />

Revised: 16 August 2012<br />

Accepted: 17 August 2012<br />

Key words: Applicati<strong>on</strong> <str<strong>on</strong>g>time</str<strong>on</strong>g>, <strong>NERICA</strong>-3 <strong>rice</strong>, <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>sources</str<strong>on</strong>g>, partial budget, <strong>yield</strong>, <strong>yield</strong><br />

<strong>attributes</strong>.<br />

Abstract<br />

A field experiment was carried out under <strong>ra<strong>in</strong></strong>-<strong>fed</strong> c<strong>on</strong>diti<strong>on</strong>s at Imla, <strong>Gambella</strong> Agricultural Research Institute <strong>in</strong> 2008 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009 ma<strong>in</strong><br />

cropp<strong>in</strong>g seas<strong>on</strong>s <strong>in</strong> order to compare the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>sources</str<strong>on</strong>g> [amm<strong>on</strong>ium nitrate (NH4NO3), amm<strong>on</strong>ium sulfate ((NH4)2SO4) <str<strong>on</strong>g>and</str<strong>on</strong>g> urea<br />

(CO(NH2)2)] <str<strong>on</strong>g>and</str<strong>on</strong>g> their <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> (½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g; ⅓ at sow<strong>in</strong>g + ⅓ at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong>; ½ at<br />

sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> ½ at tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>) <strong>on</strong> growth, <strong>yield</strong> <strong>attributes</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> (Oryza sativa<br />

L.) variety <strong>NERICA</strong>-3 (O. sativa x O. glaberrima), <strong>in</strong> a factorial experiment laid out <strong>in</strong> a RCBD replicated th<strong>rice</strong>. Nitrogen from each<br />

source was applied at the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 92 kg N ha -1 , <str<strong>on</strong>g>and</str<strong>on</strong>g> the plots received uniform dose <str<strong>on</strong>g>of</str<strong>on</strong>g> 46 kg P <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 kg K ha -1 at sow<strong>in</strong>g. The results<br />

revealed that effects <str<strong>on</strong>g>of</str<strong>on</strong>g> year <strong>on</strong> <strong>rice</strong> days to flower<strong>in</strong>g, panicle length, number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> weight panicle -1 , <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong>, <strong>g<strong>ra<strong>in</strong></strong></strong><br />

<strong>prote<strong>in</strong></strong> c<strong>on</strong>tent (P ≤ 0.01), plant height, <str<strong>on</strong>g>and</str<strong>on</strong>g> straw <strong>yield</strong> (P ≤ 0.05) were <strong>on</strong>ly significant. The resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong><br />

comp<strong>on</strong>ents <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>prote<strong>in</strong></strong> to <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N were not significant (P > 0.05). Plant height, panicle length <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> weight panicle -1 to<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> were significant (P ≤ 0.05) while the other growth <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>prote<strong>in</strong></strong> were not (P > 0.05). Only<br />

<strong>g<strong>ra<strong>in</strong></strong></strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> straw <strong>yield</strong> significantly (P ≤ 0.01) <strong>in</strong>fluenced by <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> whereas the other <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

growth comp<strong>on</strong>ents <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>prote<strong>in</strong></strong> not (P > 0.05). <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N, <strong>in</strong>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> year by <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N, year by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> year by <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> were <strong>in</strong>significant(P > 0.05) <strong>on</strong> the <strong>rice</strong> growth, <strong>yield</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>prote<strong>in</strong></strong>.<br />

Significantly <strong>in</strong>creased <strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> (6.33 t ha -1 ) obta<strong>in</strong>ed with NH4NO3 applied ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g. The, results were<br />

subjected to ec<strong>on</strong>omic analysis us<strong>in</strong>g the partial budget procedure to determ<strong>in</strong>e <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> that would give<br />

acceptable returns to farmers. Ec<strong>on</strong>omic analysis showed that CO(NH2)2 applied ½ at sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ½ at<br />

tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> are superior <str<strong>on</strong>g>and</str<strong>on</strong>g> stable with<strong>in</strong> a p<strong>rice</strong> variability range <str<strong>on</strong>g>of</str<strong>on</strong>g> 15%. Hence, it may be recommended for<br />

producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>NERICA</strong>-3 <strong>rice</strong> under the climatic c<strong>on</strong>diti<strong>on</strong>s prevail<strong>in</strong>g <strong>in</strong> the study area.<br />

*Corresp<strong>on</strong>d<strong>in</strong>g Author: Shiferaw Nesgea shiferawnesgea@yahoo.com<br />

Nesgea et al. Page 14


Introducti<strong>on</strong><br />

Rice (O. sativa L.), family Poaceae, subfamily<br />

Oryzoideae <str<strong>on</strong>g>and</str<strong>on</strong>g> tribe Oriyzeae, is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most<br />

important cereal crops <str<strong>on</strong>g>of</str<strong>on</strong>g> the world grown <strong>in</strong> a wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic z<strong>on</strong>es. There are about 25 species<br />

(annual <str<strong>on</strong>g>and</str<strong>on</strong>g> perennial) <str<strong>on</strong>g>of</str<strong>on</strong>g> Oryza, <str<strong>on</strong>g>of</str<strong>on</strong>g> which <strong>on</strong>ly two<br />

species (O. sativa L<strong>in</strong>us <str<strong>on</strong>g>and</str<strong>on</strong>g> O. glaberrima Stead)<br />

are cultivated (Reddy, 2006; Astewel, 2010). The<br />

former is orig<strong>in</strong>ated <strong>in</strong> North Eastern India to<br />

Southern Ch<strong>in</strong>a but has spread to all parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

world. The latter is still c<strong>on</strong>f<strong>in</strong>ed to its orig<strong>in</strong>al<br />

home l<str<strong>on</strong>g>and</str<strong>on</strong>g>, West Africa. Accord<strong>in</strong>g to Brohi et al.<br />

(1998), <strong>rice</strong> is the most important food crop <str<strong>on</strong>g>of</str<strong>on</strong>g> half<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the human race, whereas Roy et al. (2011)<br />

reported that it is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the ma<strong>in</strong> staple foods for<br />

nearly two-thirds <str<strong>on</strong>g>of</str<strong>on</strong>g> the populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the world.<br />

Cultivated <strong>rice</strong>, both Asiatic <str<strong>on</strong>g>and</str<strong>on</strong>g> African, are an<br />

annual grass with culms term<strong>in</strong>ated by a loose<br />

panicle <strong>in</strong>florescence hav<strong>in</strong>g s<strong>in</strong>gle perfect flowered<br />

spikelet (Reddy, 2006).<br />

Africa produced an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 21.9 milli<strong>on</strong> t<strong>on</strong>s (t)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rough <strong>rice</strong> <strong>in</strong> the year 2006 <strong>on</strong> 9.2 milli<strong>on</strong> hectare<br />

(ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> equivalent to 2.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.0% <str<strong>on</strong>g>of</str<strong>on</strong>g> the world<br />

total producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>rice</strong> area, respectively. By<br />

world st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards, Africa is a m<strong>in</strong>or player as far as<br />

<strong>rice</strong> producti<strong>on</strong> is c<strong>on</strong>cerned. The people c<strong>on</strong>sume<br />

more <strong>rice</strong> than what is produced <strong>on</strong> the c<strong>on</strong>t<strong>in</strong>ent.<br />

Dur<strong>in</strong>g the 2001-2003, milled <strong>rice</strong> producti<strong>on</strong> <strong>in</strong><br />

Africa averaged 11.80 milli<strong>on</strong> t per annum, whereas,<br />

c<strong>on</strong>sumpti<strong>on</strong> averaged 15.27 milli<strong>on</strong> t <str<strong>on</strong>g>of</str<strong>on</strong>g> milled <strong>rice</strong><br />

per year, <str<strong>on</strong>g>of</str<strong>on</strong>g> which 5.24 milli<strong>on</strong> t (22.72%) is<br />

imported (FARA, 2009).<br />

The ec<strong>on</strong>omy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Ethiopia</strong> is largely dependent <strong>on</strong><br />

agriculture. Crop producti<strong>on</strong> is estimated to<br />

c<strong>on</strong>tribute <strong>on</strong> average about 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total<br />

agricultural value (Astewel, 2010). <strong>Ethiopia</strong> is<br />

emerg<strong>in</strong>g as an important <strong>rice</strong> grow<strong>in</strong>g country <strong>in</strong><br />

Eastern Africa. The area under <strong>rice</strong> producti<strong>on</strong> <strong>in</strong><br />

<strong>Ethiopia</strong> is estimated to have <strong>in</strong>creased from 49,948<br />

ha <strong>in</strong> 2007 to about 155,886 ha <strong>in</strong> the 2009. Ow<strong>in</strong>g<br />

to its recent <strong>in</strong>troducti<strong>on</strong> to the country, the<br />

research <str<strong>on</strong>g>and</str<strong>on</strong>g> development effort so far undertaken<br />

<strong>on</strong> <strong>rice</strong> <strong>in</strong> <strong>Ethiopia</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> limited scale. However, its<br />

productivity, varied uses, existence <str<strong>on</strong>g>of</str<strong>on</strong>g> vast suitable<br />

c<strong>on</strong>diti<strong>on</strong>s (swampy, water-logged, <strong>ra<strong>in</strong></strong>-<strong>fed</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

irrigable l<str<strong>on</strong>g>and</str<strong>on</strong>g>) <str<strong>on</strong>g>and</str<strong>on</strong>g> possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<strong>in</strong>g it where<br />

other food crops do not perform well make <strong>rice</strong><br />

am<strong>on</strong>g the promis<strong>in</strong>g alternative crops available for<br />

cultivati<strong>on</strong> <strong>in</strong> <strong>Ethiopia</strong>. As a result, <strong>rice</strong> am<strong>on</strong>g the<br />

target commodities <str<strong>on</strong>g>of</str<strong>on</strong>g> the millennium development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the country which is named “Millennium crop” as<br />

it is expected to c<strong>on</strong>tribute greatly towards ensur<strong>in</strong>g<br />

household as well as nati<strong>on</strong>al food security <strong>in</strong> the<br />

country<br />

Introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid <strong>rice</strong> is an important step<br />

towards augmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> <strong>yield</strong>. Hybrid <strong>rice</strong><br />

<strong>yield</strong>s about 15-20% more than the promis<strong>in</strong>g high<br />

<strong>yield</strong><strong>in</strong>g commercial varieties (Chaturvedi, 2005).<br />

In order to <strong>in</strong>crease <strong>rice</strong> producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> quality<br />

related to its genetic potential, use <str<strong>on</strong>g>of</str<strong>on</strong>g> judicious<br />

<str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> (N) source <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> are am<strong>on</strong>g<br />

the most important agr<strong>on</strong>omic practices (Manzoor<br />

et al., 2006). Nitrogen <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> is the major<br />

agr<strong>on</strong>omic practice that affects the growth, <strong>yield</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> crop which is required as much<br />

as possible at early <str<strong>on</strong>g>and</str<strong>on</strong>g> mid tiller<strong>in</strong>g stages to<br />

maximize panicle number <str<strong>on</strong>g>and</str<strong>on</strong>g> dur<strong>in</strong>g reproductive<br />

stage to produce optimum filled spikelets panicle -1<br />

(Sathiya <str<strong>on</strong>g>and</str<strong>on</strong>g> Ramesh, 2009). The efficient<br />

utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N helps <strong>in</strong> reduc<strong>in</strong>g the cost <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

producti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> produc<strong>in</strong>g high <strong>yield</strong>s with low<br />

<strong>in</strong>puts <str<strong>on</strong>g>of</str<strong>on</strong>g> N (Lim<strong>on</strong>-Ortega et al., 2000).<br />

Given the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> N fertilizati<strong>on</strong> <strong>on</strong> the <strong>yield</strong><br />

<strong>in</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> from the <strong>rice</strong> plant, it is necessary to know<br />

what the best source, level <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> is<br />

for each variety as well as its <strong>in</strong>fluence <strong>on</strong><br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> other agr<strong>on</strong>omic<br />

parameters such as the plant height, LAI, lodg<strong>in</strong>g,<br />

days to flower<strong>in</strong>g, number <str<strong>on</strong>g>of</str<strong>on</strong>g> tillers m -2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

moisture c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>g<strong>ra<strong>in</strong></strong></strong>, <strong>in</strong> order to obta<strong>in</strong><br />

better knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> said productive resp<strong>on</strong>se<br />

(Chaturvedi, 2005; Manzoor et al., 2006; Salem,<br />

2006; Jan et al., 2010 ). Nitrogen fertilizer <str<strong>on</strong>g>sources</str<strong>on</strong>g>,<br />

levels <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> had significant roles <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizer <str<strong>on</strong>g>and</str<strong>on</strong>g> its partiti<strong>on</strong> to<br />

soil <str<strong>on</strong>g>and</str<strong>on</strong>g> plant (Iqbal et al., 2005; Kichey et al.,


Int. J. Agr. & Agri. R.<br />

2007; Jan et al., 2010). As a result, the type <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>nitrogen</str<strong>on</strong>g>ous fertilizer also affects the <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>g<strong>ra<strong>in</strong></strong></strong>. Fertilizers like CO(NH2)2 are<br />

substantially cheaper than others <str<strong>on</strong>g>and</str<strong>on</strong>g> their use may<br />

be justified <strong>on</strong> ec<strong>on</strong>omic grounds provided as they<br />

do not adversely affect the <strong>yield</strong> or quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>g<strong>ra<strong>in</strong></strong></strong> (Chaturvedi, 2005). Accord<strong>in</strong>g to Assefa et al.<br />

(2009), di-amm<strong>on</strong>ium phosphate could be chosen<br />

as an appropriate <strong>in</strong>organic N fertilizer source<br />

followed by (NH4)2SO4 for better <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong>;<br />

the latter suggested that there may be a need to<br />

fertilize <strong>rice</strong> with sulfur c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g fertilizers.<br />

On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>, Jensen (2006) suggested that all<br />

<str<strong>on</strong>g>sources</str<strong>on</strong>g>/forms <str<strong>on</strong>g>of</str<strong>on</strong>g> N fertilizer can perform equally<br />

well to aid <strong>in</strong> crop producti<strong>on</strong> if applied as l<strong>on</strong>g as<br />

c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the movement <str<strong>on</strong>g>and</str<strong>on</strong>g> loss<br />

mechanisms <strong>in</strong>herent <strong>in</strong> the N cycle are understood<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> specific fertilizer is appropriate<br />

as far as tim<strong>in</strong>g, based <strong>on</strong> plant need, soil type <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

placement is c<strong>on</strong>cerned. Highest <strong>yield</strong> resp<strong>on</strong>se to<br />

applied N, <strong>in</strong> general, varies from 40-60 kg ha -1 <strong>in</strong><br />

fertile soils <str<strong>on</strong>g>of</str<strong>on</strong>g> delta areas to 80-100 kg ha -1 <strong>in</strong> light<br />

soils <str<strong>on</strong>g>of</str<strong>on</strong>g> low fertility dur<strong>in</strong>g the ma<strong>in</strong> <strong>ra<strong>in</strong></strong>y seas<strong>on</strong>. In<br />

dry seas<strong>on</strong>, optimum rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>, <strong>in</strong> general,<br />

is 100 <str<strong>on</strong>g>and</str<strong>on</strong>g> 120 kg N ha -1 for short <str<strong>on</strong>g>and</str<strong>on</strong>g> medium, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

for l<strong>on</strong>g durati<strong>on</strong> <strong>rice</strong> varieties, respectively (Reddy,<br />

2006). Manzoor et al. (2006) applied 100/50/50 kg<br />

N/P/K ha -1 <str<strong>on</strong>g>and</str<strong>on</strong>g> found that N applied ½ at 50%<br />

tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> gave maximum<br />

<strong>yield</strong> <strong>attributes</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> followed with ½ at<br />

transplant<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> with respect<br />

to height, productive tillers, panicle length <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>g<strong>ra<strong>in</strong></strong></strong>s panicle -1 . Recommended dose <str<strong>on</strong>g>of</str<strong>on</strong>g> N at presow<strong>in</strong>g<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> tiller<strong>in</strong>g or transplant<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> tiller<strong>in</strong>g<br />

(Bil<strong>on</strong>i <str<strong>on</strong>g>and</str<strong>on</strong>g> Bocchi, 2003.); tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle<br />

<strong>in</strong>itiati<strong>on</strong> (Raza et al., 2003); sow<strong>in</strong>g, tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

panicle <strong>in</strong>itiati<strong>on</strong> (Krishnan <str<strong>on</strong>g>and</str<strong>on</strong>g> Nayak, 2000) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

transplant<strong>in</strong>g, tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong> (Raza<br />

et al., 2003; Kenzo, 2004) significantly <strong>in</strong>creased<br />

growth parameters, <strong>yield</strong> <strong>attributes</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong>.<br />

Tim<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> had a significant role <strong>on</strong><br />

reduc<strong>in</strong>g N losses, <strong>in</strong>creas<strong>in</strong>g N use efficiency <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

avoid<strong>in</strong>g unnecessary vegetative growth (Jan et al.,<br />

2010). When N was applied before the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> stem<br />

el<strong>on</strong>gati<strong>on</strong> (Mossedaq <str<strong>on</strong>g>and</str<strong>on</strong>g> Smith, 1994) <str<strong>on</strong>g>and</str<strong>on</strong>g> at that<br />

first node stage (Lim<strong>on</strong>-Ortega et al., 2000), the<br />

total N uptake was greater than at plant<strong>in</strong>g <str<strong>on</strong>g>time</str<strong>on</strong>g>.<br />

Similarly, Tran <str<strong>on</strong>g>and</str<strong>on</strong>g> Tremblay (2000) reported that<br />

early <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N at plant<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> tiller<strong>in</strong>g had<br />

lower N fertilizer uptake than later <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

(shoot<strong>in</strong>g) <strong>in</strong> wheat. Further, fertilizer recovery was<br />

higher when N was applied at anthesis compared to<br />

at plant<strong>in</strong>g (Wuest <str<strong>on</strong>g>and</str<strong>on</strong>g> Cassman, 1992). Pan et al.<br />

(2006) reported that dur<strong>in</strong>g <strong>g<strong>ra<strong>in</strong></strong></strong> fill<strong>in</strong>g, N<br />

remobilizati<strong>on</strong> from the leaves, stem <str<strong>on</strong>g>and</str<strong>on</strong>g> chaff<br />

depended <strong>on</strong> the curvil<strong>in</strong>ear or l<strong>in</strong>ear decrease <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the N c<strong>on</strong>centrati<strong>on</strong>.<br />

Fig. 1. Locati<strong>on</strong> map <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area, Imla, nearby<br />

<strong>Gambella</strong> town <strong>in</strong> <strong>Gambella</strong> Zuria District.<br />

In additi<strong>on</strong>, alter<strong>in</strong>g the split doses accord<strong>in</strong>g to the<br />

crop requirement also needs to be analyzed under<br />

<strong>ra<strong>in</strong></strong>-<strong>fed</strong> <strong>rice</strong> cultivati<strong>on</strong>. Thus, optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

<str<strong>on</strong>g>sources</str<strong>on</strong>g> as well as <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> at different<br />

growth stages is more important to produce higher<br />

<strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong>. C<strong>on</strong>sider<strong>in</strong>g this fact, this<br />

<strong>in</strong>vestigati<strong>on</strong> was undertaken dur<strong>in</strong>g the <strong>ra<strong>in</strong></strong>y<br />

seas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2008 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009 to have a detailed<br />

account <str<strong>on</strong>g>of</str<strong>on</strong>g> the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> three commercially<br />

available <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g>ous fertilizers <str<strong>on</strong>g>and</str<strong>on</strong>g> their <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>rice</strong> growth, <strong>yield</strong> <strong>attributes</strong>, <strong>yield</strong>,<br />

<strong>g<strong>ra<strong>in</strong></strong></strong> quality <str<strong>on</strong>g>and</str<strong>on</strong>g> ec<strong>on</strong>omic viability <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

treatment under the agro-climatic c<strong>on</strong>diti<strong>on</strong>s<br />

prevail<strong>in</strong>g at the Imla site <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Gambella</strong> Regi<strong>on</strong>,<br />

<strong>Ethiopia</strong>.<br />

16


Int. J. Agr. & Agri. R.<br />

Materials <str<strong>on</strong>g>and</str<strong>on</strong>g> methods<br />

The study site<br />

An experiment, to determ<strong>in</strong>e the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sources</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> tim<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> growth, <strong>yield</strong><br />

<strong>attributes</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> <strong>on</strong> <strong>ra<strong>in</strong></strong>-<strong>fed</strong> <strong>rice</strong>, was carried out<br />

at Imla, <strong>Gambella</strong> Agricultural Research Institute,<br />

<strong>Gambella</strong>, <strong>Ethiopia</strong>, dur<strong>in</strong>g the ma<strong>in</strong> <strong>ra<strong>in</strong></strong>y seas<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the 2008 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009. The site is geographically<br />

located at 8 o 14' 46.36'' N latitude <str<strong>on</strong>g>and</str<strong>on</strong>g> 34 o 35'<br />

17.75'' E l<strong>on</strong>gitude (Wikipedia, 2011), <str<strong>on</strong>g>and</str<strong>on</strong>g> at an<br />

altitude <str<strong>on</strong>g>of</str<strong>on</strong>g> 450 meters above sea level (Figure 4.1).<br />

The area is characterized by hot-humid tropical<br />

lowl<str<strong>on</strong>g>and</str<strong>on</strong>g> climate. This area`s l<strong>on</strong>g year total annual<br />

<strong>ra<strong>in</strong></strong>fall was 1227.55 mm. The average yearly<br />

m<strong>in</strong>imum <str<strong>on</strong>g>and</str<strong>on</strong>g> maximum temperatures were 19.9<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 35.5 o C, respectively (NMA, 2009). The total<br />

<strong>ra<strong>in</strong></strong>fall dur<strong>in</strong>g the two cropp<strong>in</strong>g seas<strong>on</strong>s was 816.9<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 403.1 mm while the mean maximum <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

m<strong>in</strong>imum temperatures were 32.4, 34.1 o C <str<strong>on</strong>g>and</str<strong>on</strong>g> 21.3,<br />

22.0 o C <strong>in</strong> 2008 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009, respectively (Figure 4.2).<br />

tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>) arranged <strong>in</strong><br />

factorial comb<strong>in</strong>ati<strong>on</strong> <strong>in</strong> a r<str<strong>on</strong>g>and</str<strong>on</strong>g>omized complete<br />

block design with three replicati<strong>on</strong>s. The N<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the amm<strong>on</strong>ium nitrate (NH4NO3)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> urea (CO (NH2)2) were 34 <str<strong>on</strong>g>and</str<strong>on</strong>g> 46%,<br />

respectively, while amm<strong>on</strong>ium sulfate ((NH4)2SO4)<br />

c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> 21% N <str<strong>on</strong>g>and</str<strong>on</strong>g> 24% S.<br />

Table 1. Physiochemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

experimental soil before sow<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> after harvest <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>rice</strong> <strong>in</strong> 2008 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009 crop seas<strong>on</strong>s.<br />

Soil analysis BS AH AH<br />

(2008) (2008) (2009)<br />

S<str<strong>on</strong>g>and</str<strong>on</strong>g> (%) 17.68 - -<br />

Silt (%) 32.72 - -<br />

Clay (%) 49.60 - -<br />

Soil texture Clay - -<br />

pH 6.43 6.80 6.20<br />

Organic carb<strong>on</strong> (%) 4.08 1.40 2.70<br />

Total N (%) 0.51 0.15 0.29<br />

Available P (mg kg - 650.00 751.16 448.02<br />

1<br />

)<br />

Available K 0.60 0.66 0.32<br />

(cmolc kg -1 )<br />

S (mg kg -1 ) 6.30 5.95 13.70<br />

BS = Before sow<strong>in</strong>g; AH = After harvest<strong>in</strong>g; pH =<br />

The negative logarithm <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrogen i<strong>on</strong> activity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a soil [-log (H + )<br />

Fig. 2. M<strong>on</strong>thly weather data for the 2008 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

2009 cropp<strong>in</strong>g seas<strong>on</strong>s (Source: <strong>Gambella</strong><br />

Meteorological Service Branch Office).<br />

The soil <str<strong>on</strong>g>of</str<strong>on</strong>g> the experimental field was clay <strong>in</strong> texture<br />

c<strong>on</strong>sist<strong>in</strong>g 4.08% organic carb<strong>on</strong>, 0.51% total N,<br />

650.00 mg kg -1 available P, 0.60 cmolc kg -1 available<br />

K, 6.3 mg kg -1 sulfur <str<strong>on</strong>g>and</str<strong>on</strong>g> hav<strong>in</strong>g a pH <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.43 (Table<br />

1). The dom<strong>in</strong>ant soil at <str<strong>on</strong>g>and</str<strong>on</strong>g> around the study site<br />

was brownish clay.<br />

The treatments comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> three <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

[amm<strong>on</strong>ium nitrate (NH4NO3), amm<strong>on</strong>ium sulfate<br />

((NH4)2SO4) <str<strong>on</strong>g>and</str<strong>on</strong>g> urea (CO (NH2)2] <str<strong>on</strong>g>and</str<strong>on</strong>g> their split<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> (½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g; ⅓ at<br />

sow<strong>in</strong>g + ⅓ at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong>; ½<br />

at sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ½ at<br />

Experimental treatments, design <str<strong>on</strong>g>and</str<strong>on</strong>g> procedures<br />

The field was plowed us<strong>in</strong>g tractor <strong>in</strong> April 2008.<br />

Disk<strong>in</strong>g, harrow<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> level<strong>in</strong>g were d<strong>on</strong>e to<br />

prepare a suitable seed bed to get proper<br />

germ<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> root development. The experiment<br />

was c<strong>on</strong>ducted <strong>on</strong> a fixed layout with plot size <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 x<br />

4 m (16 m 2 ). To c<strong>on</strong>trol mix<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments,<br />

experimental plots were prepared manually <strong>in</strong> the<br />

sec<strong>on</strong>d seas<strong>on</strong>. The outer most row <str<strong>on</strong>g>and</str<strong>on</strong>g> 0.5 m row<br />

length at both ends <str<strong>on</strong>g>of</str<strong>on</strong>g> plots were c<strong>on</strong>sidered as<br />

borders. The sec<strong>on</strong>d, third <str<strong>on</strong>g>and</str<strong>on</strong>g> fourth rows <strong>on</strong> both<br />

sides <str<strong>on</strong>g>of</str<strong>on</strong>g> plots were designated for destructive<br />

sampl<strong>in</strong>g, n<strong>on</strong> destructive sampl<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> guard rows,<br />

respectively. Thus, the net plot size was 3.0 m x 2.4<br />

m (7.2 m 2 ).<br />

17


Int. J. Agr. & Agri. R.<br />

An upl<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>rice</strong> variety, <strong>NERICA</strong>-3, was used as<br />

plant<strong>in</strong>g material. S<strong>in</strong>ce germ<strong>in</strong>ati<strong>on</strong> percentage<br />

expresses the proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the total number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seeds that are viable, it was determ<strong>in</strong>ed through<br />

c<strong>on</strong>trol test us<strong>in</strong>g news paper (absorbent material),<br />

water pro<str<strong>on</strong>g>of</str<strong>on</strong>g> tray, r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly sampled mixed <strong>rice</strong> seed<br />

lot <str<strong>on</strong>g>and</str<strong>on</strong>g> water for 10 days. Each day was checked that<br />

news paper rema<strong>in</strong>s moist <str<strong>on</strong>g>and</str<strong>on</strong>g> recorded the actual<br />

counts <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> germ<strong>in</strong>ated seeds.<br />

Germ<strong>in</strong>ati<strong>on</strong> (%) was calculated as the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds germ<strong>in</strong>ated to number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds<br />

placed <strong>on</strong> the tray multiplied by 100 <str<strong>on</strong>g>and</str<strong>on</strong>g> recorded<br />

as 96.1% <strong>in</strong> 2008 <str<strong>on</strong>g>and</str<strong>on</strong>g> 94.8% <strong>in</strong> 2009.<br />

The seeds were drilled manually at the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 100<br />

kg ha -1 <strong>in</strong> rows 20 cm apart <strong>in</strong> the last week <str<strong>on</strong>g>of</str<strong>on</strong>g> July<br />

each year. Nitrogen (92 kg ha -1 ) was applied from<br />

each source as per the treatments as urea, whereas<br />

the entire doses <str<strong>on</strong>g>of</str<strong>on</strong>g> P (46) <str<strong>on</strong>g>and</str<strong>on</strong>g> K (20) <strong>in</strong> kg ha -1 were<br />

applied at sow<strong>in</strong>g <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> triple super<br />

phosphate <str<strong>on</strong>g>and</str<strong>on</strong>g> potassium chloride, respectively.<br />

Recommended agr<strong>on</strong>omic practices were uniformly<br />

followed to raise the crop. F<strong>in</strong>ally, the crop was<br />

harvested <strong>in</strong> the sec<strong>on</strong>d week <str<strong>on</strong>g>of</str<strong>on</strong>g> October each year.<br />

Soil sampl<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> analysis<br />

Composite surface (0-30 cm depth) soil samples<br />

(<strong>on</strong>e composite sample per block) were collected<br />

with a gauge auger <strong>in</strong> the 2008 before plow<strong>in</strong>g the<br />

experimental field <str<strong>on</strong>g>and</str<strong>on</strong>g> block<strong>in</strong>g it <strong>in</strong>to three<br />

depend<strong>in</strong>g <strong>on</strong> l<str<strong>on</strong>g>and</str<strong>on</strong>g> uniformity. Plant residues <strong>on</strong> the<br />

soil surface were removed prior to sampl<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> 8<br />

soil sub-samples for a composite surface soil sample<br />

per block were collected for characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

selected soil physicochemical properties (Table 1).<br />

Accord<strong>in</strong>gly, the samples were analyzed for soil<br />

texture follow<strong>in</strong>g the hydrometer method (Jacks<strong>on</strong>,<br />

1967). Soil pH was determ<strong>in</strong>ed <strong>in</strong> a 1:2.5 soil-water<br />

suspensi<strong>on</strong> us<strong>in</strong>g a comb<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glass electrode.<br />

Organic carb<strong>on</strong> (OC) was estimated by the wet<br />

digesti<strong>on</strong> method (Okalebo et al., 2002).<br />

Exchangeable K was extracted with 1 M amm<strong>on</strong>ium<br />

acetate soluti<strong>on</strong> adjusted to pH 7.0 (Sahlemedh<strong>in</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Taye, 2000). From the extract, exchangeable K<br />

was analyzed us<strong>in</strong>g flame photometer (Black, 1965).<br />

Further, sulfur (S) was extracted with Ca(H2PO4) <strong>in</strong><br />

2NH4OAc <str<strong>on</strong>g>and</str<strong>on</strong>g> measured turbidmetrically (Hoeft et<br />

al., 1973). Total soil N was measured us<strong>in</strong>g the<br />

micro-Kjeldahl digesti<strong>on</strong>, distillati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> titrati<strong>on</strong><br />

procedure as described by AOAC (1994). After<br />

extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil sample by sodium bicarb<strong>on</strong>ate<br />

soluti<strong>on</strong> as per the procedure outl<strong>in</strong>ed by Olsen et<br />

al. (1954), available P was determ<strong>in</strong>ed by measur<strong>in</strong>g<br />

the absorbance us<strong>in</strong>g spectrophotometer at a wave<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> 880 µm.<br />

Crop agr<strong>on</strong>omic <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> data collecti<strong>on</strong><br />

The observati<strong>on</strong>s <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> <strong>attributes</strong><br />

were made <strong>on</strong> r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly sampled plants per plot.<br />

Days to flower<strong>in</strong>g was recorded by visual<br />

observati<strong>on</strong> from the net plot. Leaf area <strong>in</strong>dex (LAI)<br />

was recorded us<strong>in</strong>g the length-width method<br />

(Reddy, 2006) dur<strong>in</strong>g panicle <strong>in</strong>itiati<strong>on</strong> us<strong>in</strong>g 0.725<br />

adjustment factor (Tsunoda, 1964).<br />

The productive tillers were counted dur<strong>in</strong>g<br />

physiological maturity from 1.5 m row length <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong><br />

destructive rows found at both sides <str<strong>on</strong>g>of</str<strong>on</strong>g> each net<br />

plot. Plant height (cm) was measured from the base<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the plant to the tip <str<strong>on</strong>g>of</str<strong>on</strong>g> panicle dur<strong>in</strong>g physiological<br />

maturity from r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly sampled 25 plants per plot.<br />

Whereas panicle length, <strong>g<strong>ra<strong>in</strong></strong></strong> number panicle -1 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>g<strong>ra<strong>in</strong></strong></strong> weight panicle -1 were recorded from 20<br />

r<str<strong>on</strong>g>and</str<strong>on</strong>g>omly selected plants per plot. Similarly, 1000-<br />

<strong>g<strong>ra<strong>in</strong></strong></strong> weight was recorded by tak<strong>in</strong>g the weight <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

1000-<strong>g<strong>ra<strong>in</strong></strong></strong>s per plot us<strong>in</strong>g sensitive balance. G<strong>ra<strong>in</strong></strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> straw <strong>yield</strong> were recorded from net plot area.<br />

After thresh<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> w<strong>in</strong>now<strong>in</strong>g, the <strong>g<strong>ra<strong>in</strong></strong></strong> was sun<br />

dried <str<strong>on</strong>g>and</str<strong>on</strong>g> their weight was recorded after adjusted<br />

at 14% <strong>g<strong>ra<strong>in</strong></strong></strong> moisture c<strong>on</strong>tent while the straw was<br />

obta<strong>in</strong>ed as the difference <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> from the<br />

total above ground biomass. The N c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> was analyzed from the respective <strong>g<strong>ra<strong>in</strong></strong></strong><br />

sample collected treatment wise us<strong>in</strong>g the micro-<br />

Kjeldahl digesti<strong>on</strong>, distillati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> titrati<strong>on</strong><br />

procedure as described by AOAC (1994). The <strong>g<strong>ra<strong>in</strong></strong></strong><br />

<strong>prote<strong>in</strong></strong> c<strong>on</strong>tent (N x 6.25) was also determ<strong>in</strong>ed<br />

accord<strong>in</strong>g to the AOAC (1994).<br />

18


Int. J. Agr. & Agri. R.<br />

Statistical analysis<br />

Data were statistically evaluated us<strong>in</strong>g a two-way<br />

ANOVA follow<strong>in</strong>g the General L<strong>in</strong>ear Model<br />

procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> the Statistical Analysis System (SAS)<br />

process<strong>in</strong>g package, versi<strong>on</strong> 9.10 (SAS, 2003).<br />

When significant differences were observed,<br />

comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> means were performed us<strong>in</strong>g the<br />

Duncan Multiple Range Test at 5% probability level.<br />

Ec<strong>on</strong>omic analysis<br />

Ec<strong>on</strong>omic viability evaluati<strong>on</strong> was d<strong>on</strong>e us<strong>in</strong>g<br />

partial budget with dom<strong>in</strong>ance, marg<strong>in</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

sensitivity analysis as described <strong>in</strong> CIMMYT (1988).<br />

Partial budget is a way <str<strong>on</strong>g>of</str<strong>on</strong>g> calculat<strong>in</strong>g total cost that<br />

varied (TCV) <str<strong>on</strong>g>and</str<strong>on</strong>g> the net benefits (NB) <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

treatment <strong>in</strong> an <strong>on</strong> farm experiment. It <strong>in</strong>cludes<br />

adjusted <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> gross field benefits (GFB).<br />

The adjusted <strong>yield</strong> for a treatment was the average<br />

<strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> adjusted downward to a certa<strong>in</strong><br />

percentage (30% <strong>in</strong> our study) to reflect the<br />

difference between the experimental <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

<strong>yield</strong> farmers could expect from the same treatment<br />

without the <strong>in</strong>volvement <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers (Shah et al.,<br />

2009)<br />

To estimate the ec<strong>on</strong>omic parameters, products<br />

were valued based <strong>on</strong> local market p<strong>rice</strong> collected<br />

dur<strong>in</strong>g May 2009 where <strong>rice</strong> was 4.0 <strong>Ethiopia</strong>n Birr<br />

(ETB) kg -1 . Costs related to N source <strong>in</strong> ETB per 100<br />

kg at the <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the experiment were 300<br />

[CO(NH2)2], 600 [(NH4)2SO4], 550 (NH4NO3), 37.5<br />

(transport cost) <str<strong>on</strong>g>and</str<strong>on</strong>g> 50 (<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> cost ha -1 ).The<br />

transport cost <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizer was estimated from<br />

market to farm entry. The farm entry p<strong>rice</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong><br />

was assumed to be the retail p<strong>rice</strong> <strong>in</strong> village markets<br />

dur<strong>in</strong>g the period. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>cepts used <strong>in</strong> the<br />

partial budget analysis were GFB, TCV <str<strong>on</strong>g>and</str<strong>on</strong>g> the NB.<br />

The GFB ha -1 was obta<strong>in</strong>ed as the products <str<strong>on</strong>g>of</str<strong>on</strong>g> real<br />

farmers’ p<strong>rice</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the average <strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> for<br />

each treatment. The TCV <strong>in</strong> the partial budget<br />

analysis referred to the sum <str<strong>on</strong>g>of</str<strong>on</strong>g> costs <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizer,<br />

transport, labor <str<strong>on</strong>g>and</str<strong>on</strong>g> credit (<strong>in</strong>terest paid at 6% <strong>on</strong><br />

total cost that vary), whereas the NB ha -1 was the<br />

difference between the GFB <str<strong>on</strong>g>and</str<strong>on</strong>g> the TCV. The<br />

dom<strong>in</strong>ance analysis procedure, which was used to<br />

select potentially pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable treatments, comprised<br />

rank<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments <strong>in</strong> order <str<strong>on</strong>g>of</str<strong>on</strong>g> ascend<strong>in</strong>g order.<br />

Total cost that varied from the lowest to the highest<br />

cost to avoid those treatments cost<strong>in</strong>g more but<br />

produc<strong>in</strong>g a lower NB than the next least cost<br />

treatment. The selected <str<strong>on</strong>g>and</str<strong>on</strong>g> discarded treatments<br />

by us<strong>in</strong>g this technique were referred to as<br />

undom<strong>in</strong>ated <str<strong>on</strong>g>and</str<strong>on</strong>g> dom<strong>in</strong>ated treatments,<br />

respectively. For each pair <str<strong>on</strong>g>of</str<strong>on</strong>g> ranked undom<strong>in</strong>ated<br />

treatments, a marg<strong>in</strong>al rate <str<strong>on</strong>g>of</str<strong>on</strong>g> return (% MRR) was<br />

calculated. The % MRR between any pair <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

undom<strong>in</strong>ated treatments denotes the return per<br />

unit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vestment <strong>in</strong> crop manag<strong>in</strong>g practices<br />

expressed as %age. The % MRR is given by the<br />

equati<strong>on</strong>: % MRR = Change <strong>in</strong> net benefit<br />

(NB)/Change <strong>in</strong> total cost that varies (TCV) x<br />

100.<br />

In order to make recommendati<strong>on</strong>s from marg<strong>in</strong>al<br />

analysis, it is vital to approximate the least<br />

acceptable rate <str<strong>on</strong>g>of</str<strong>on</strong>g> return to farmers <strong>in</strong> the advice<br />

doma<strong>in</strong>. Experimental evidences have shown that<br />

for majority <str<strong>on</strong>g>of</str<strong>on</strong>g> situati<strong>on</strong>s, acceptable MRR will be<br />

between 50 to 100%. For most <str<strong>on</strong>g>of</str<strong>on</strong>g> the cases, when<br />

there is preamble <str<strong>on</strong>g>of</str<strong>on</strong>g> any new <strong>in</strong>put, 100% is<br />

suggested <str<strong>on</strong>g>and</str<strong>on</strong>g> was used for analysis <strong>in</strong> this study.<br />

To c<strong>on</strong>firm the results obta<strong>in</strong>ed were with<strong>in</strong> the<br />

framework <str<strong>on</strong>g>of</str<strong>on</strong>g> farm level <str<strong>on</strong>g>and</str<strong>on</strong>g> market suspici<strong>on</strong>s,<br />

sensitivity test under worst situati<strong>on</strong>s was carried<br />

out, where <strong>in</strong>put or output market p<strong>rice</strong> rise or fall<br />

by 15% was c<strong>on</strong>sidered.<br />

Results <str<strong>on</strong>g>and</str<strong>on</strong>g> discussi<strong>on</strong><br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> n <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> growth<br />

characters <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong><br />

All the growth <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> parameters (Tables 2, 3 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

4) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>prote<strong>in</strong></strong> c<strong>on</strong>tent (Table 4) were<br />

<strong>in</strong>significantly (P > 0.05) affected by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N fertilizers. Our f<strong>in</strong>d<strong>in</strong>gs were <strong>in</strong><br />

harm<strong>on</strong>y with the Jensen (2006) suggesti<strong>on</strong> that all<br />

forms <str<strong>on</strong>g>of</str<strong>on</strong>g> N fertilizers can perform equally well if<br />

applied appropriately to aid <strong>in</strong> crop producti<strong>on</strong>.<br />

19


Table 2. Comb<strong>in</strong>ed analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance show<strong>in</strong>g the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> growth, <strong>yield</strong><br />

<strong>attributes</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>prote<strong>in</strong></strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> <strong>in</strong> 2008 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009.<br />

Mean square for source <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong><br />

Parameter<br />

Year (1) SN (2) AT (3) Y x SN (2) Y x AT (3) SN x AT (6) Y x SN x AT (6) Error (44)<br />

Growth parameters<br />

Days to flower<strong>in</strong>g 1760.22** 1.56 2.87 1.56 9.56 1.87 1.83 4.95<br />

Leaf area <strong>in</strong>dex 0.02 0.17 0.03 0.11 0.05 0.06 0.06 0.08<br />

Plant height (cm) 176.41* 2.83 181.89* 8.13 55.31 94.50 34.86 43.22<br />

Yield <strong>attributes</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong><br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> tillers m -2 (No 8146.62 2754.97 837.44 2619.59 3270.62 584.67 2060.11 2863.50<br />

Panicle length (cm) 201.14** 0.81 3.38* 0.36 0.82 0.98 1.69 0.96<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s panicle -1 15658.60** 628.94 1036.77 613.93 362.11 310.08 699.30 507.62<br />

G<strong>ra<strong>in</strong></strong> weight panicle -1 (g) 7.04** 0.43 0.80* 0.14 0.08 0.22 0.22 0.26<br />

1000-<strong>g<strong>ra<strong>in</strong></strong></strong> weight (g) 0.59 0.85 1.95 1.86 1.58 3.92 6.14 3.04<br />

G<strong>ra<strong>in</strong></strong> <strong>yield</strong> (t ha -1 ) 50.05** 0.24 1.07 1.80 1.25 3.71* 1.10 1.37<br />

Straw <strong>yield</strong> (t ha -1 ) 39.15* 4.45 4.67 2.65 1.58 10.64* 3.38 3.86<br />

G<strong>ra<strong>in</strong></strong> quality<br />

G<strong>ra<strong>in</strong></strong> <strong>prote<strong>in</strong></strong> (%) 387.49** 19.67 2.95 25.41 14.43 28.18 22.50 13.19<br />

SN = <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N; Figures <strong>in</strong> parenthesis = Degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom; AT = Applicati<strong>on</strong> <str<strong>on</strong>g>time</str<strong>on</strong>g>; Y = Year; ** = Significant at P = 0.01; *<br />

= Significant at P = 0.05; t = T<strong>on</strong>; ha = Hectare<br />

Table 3. The ma<strong>in</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> year, N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> days to flower<strong>in</strong>g, leaf area <strong>in</strong>dex, plant<br />

height, number <str<strong>on</strong>g>of</str<strong>on</strong>g> tillers per m2 <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle length <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong>.<br />

Days to Leaf area <strong>in</strong>dex Plant<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Panicle<br />

N <str<strong>on</strong>g>sources</str<strong>on</strong>g> flower<strong>in</strong>g<br />

height (cm) tillers m -2 length (cm)<br />

Year<br />

2008 69.08b 0.95 104.98a 146.36 20.60b<br />

2009 72.97a 0.98 101.85b 167.63 23.94a<br />

NH4NO3 74.08 0.88 103.74 163.81 22.22<br />

(NH4)2SO4 73.75 1.05 103.45 162.53 22.11<br />

CO(NH2)2 74.25 0.96 103.06 144.64 22.47<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>time</str<strong>on</strong>g> (AT)<br />

AT1 73.78 0.90 106.29a 155.51 22.89a<br />

AT2 73.67 0.97 105.89a 162.82 22.16ab<br />

AT3 74.56 0.98 99.84b 147.96 22.15ab<br />

AT4 74.11 1.00 101.65ab 161.67 21.87b<br />

CV (%) 3.00 30.01 6.36 34.09 4.40<br />

Means <str<strong>on</strong>g>of</str<strong>on</strong>g> the same factor <strong>in</strong> a column followed by the same letter are not significantly different at P > 0.05 by Duncan's multiple<br />

range test; AT1 = ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g; AT2 = ⅓ at sow<strong>in</strong>g + ⅓ at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong>; AT3 = ½ at sow<strong>in</strong>g +<br />

½ at panicle <strong>in</strong>itiati<strong>on</strong>; AT4 = ½ at tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>; CV = Coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>


Days to flower<strong>in</strong>g<br />

There was a significant (P ≤ 0.01) difference <strong>in</strong> days<br />

to flower<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> between the means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experimental years. Ma<strong>in</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N,<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>, <strong>in</strong>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> year by <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

N, year by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>, <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N by<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> year by <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N by<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> days to flower<strong>in</strong>g however, were<br />

not significant (P > 0.05) (Table 2). Days to<br />

flower<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> delayed dur<strong>in</strong>g 2009 than that <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2008 may be resulted from meteorological changes<br />

between the experimental years (Figure 4.2). For<br />

example, Kabuye <str<strong>on</strong>g>and</str<strong>on</strong>g> Drew (2000) reported that<br />

any drought that occurs after seedl<strong>in</strong>g germ<strong>in</strong>ati<strong>on</strong><br />

to maximum tiller<strong>in</strong>g period will reduce the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tillers <str<strong>on</strong>g>and</str<strong>on</strong>g> prol<strong>on</strong>g the <strong>rice</strong> maturity period by a<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> days (7-14 days). On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> tim<strong>in</strong>g had no<br />

significant (P > 0.05) effect <strong>on</strong> days to flower<strong>in</strong>g<br />

although days to flower<strong>in</strong>g tended to <strong>in</strong>crease from<br />

73.75 to 74.25 <str<strong>on</strong>g>and</str<strong>on</strong>g> 73.67 to 74.56 days, respectively<br />

(Table 3). Maximum days to flower<strong>in</strong>g (74.25 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

74.56 days) were obta<strong>in</strong>ed with <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO<br />

(NH2)2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N ½ each<br />

at sow<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong>, respectively.<br />

This fact <strong>in</strong>dicated that when N was applied before<br />

the <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> stem el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> at first node stage,<br />

the total N uptake was greater (Mossedaq <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Smith, 1994). Accord<strong>in</strong>gly, accelerated root<br />

(efficient uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients <str<strong>on</strong>g>and</str<strong>on</strong>g> water) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

vegetative (efficient photosynthesis) growth might<br />

be a factor for resist<strong>in</strong>g drought that delayed<br />

flower<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> crop maturity (Haque et al., 2006).<br />

Leaf area <strong>in</strong>dex<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> different N <str<strong>on</strong>g>sources</str<strong>on</strong>g>, <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>,<br />

<strong>in</strong>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental year with <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

or <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>, <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N with <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental year with <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> the <strong>rice</strong> leaf area <strong>in</strong>dex was not<br />

significant (P > 0.05) (Table 2). In ma<strong>in</strong> effect,<br />

however, (NH4)2SO4 showed higher leaf area <strong>in</strong>dex<br />

(1.05) followed by CO (NH2)2 (0.96) whereas<br />

NH4NO3 obta<strong>in</strong>ed the lowest (0.88) (Table 3) <strong>in</strong> an<br />

acidic soil <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental site. Kushwaha et al.<br />

(1992) believe that lower N volatilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

denitrificati<strong>on</strong> from (NH4)2SO4 is resp<strong>on</strong>sible for a<br />

higher leaf area <strong>in</strong> <strong>rice</strong> treated with this fertilizer.<br />

But TNAU (2008) reported that (NH4)2SO4 fertilizer<br />

is not effective <strong>in</strong> acid soils <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>rice</strong> did not absorb<br />

N <strong>in</strong> nitrate form s<strong>in</strong>ce the amm<strong>on</strong>ium i<strong>on</strong>s are<br />

readily absorbed <strong>on</strong> the colloidal complex <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soil. Whereas, Reddy (2006) reported that<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrates <strong>in</strong> the early<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> growth may not have any effect s<strong>in</strong>ce<br />

nitrates are easily leached or may prove even<br />

deleterious to the plant due to c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate<br />

to nitrite.<br />

In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>, <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fertilizers ½ at tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong><br />

produced highest leaf area <strong>in</strong>dex followed by ½ at<br />

sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> (Table 3). The<br />

lowest was observed with <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizers<br />

½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g followed by ⅓ at<br />

sow<strong>in</strong>g + ⅓ at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong>.<br />

Plant height<br />

Experimental year <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> had a<br />

significant (P ≤ 0.01) effect <strong>on</strong> plant height. Rice<br />

plant height, however, did not show significant (P ><br />

0.05) differences with <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N, <strong>in</strong>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

year by <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N, year by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> year by <str<strong>on</strong>g>sources</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> (Table 2). C<strong>on</strong>trarily to this<br />

study, Assefa et al. (2009) found significant effect<br />

<strong>on</strong> <strong>rice</strong> plant height us<strong>in</strong>g urea, amm<strong>on</strong>ium nitrate,<br />

amm<strong>on</strong>ium sulfate, di-amm<strong>on</strong>ium phosphate <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

calcium amm<strong>on</strong>ium nitrate each at 120 kg N ha -1 as<br />

a source <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>in</strong> the hot-humid North-western part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Ethiopia</strong>.<br />

The average <strong>rice</strong> plant height was 104.98 <str<strong>on</strong>g>and</str<strong>on</strong>g> 101.85<br />

cm <strong>in</strong> 2008 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009, respectively (Table 3). Even<br />

though not significantly affected by <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N,<br />

the plants <strong>in</strong> NH4NO3 treated plots atta<strong>in</strong>ed the<br />

maximum height (103.74 cm) followed by<br />

(NH4)2SO4 (103.45 cm). The higher plant height<br />

obta<strong>in</strong>ed with NH4NO3 or (NH4)2SO4 might


Int. J. Agr. & Agri. R.<br />

probably be due to slow N release from these<br />

fertilizers, that supplies enough N <strong>in</strong> a pattern to<br />

satisfy the <strong>rice</strong> N requirement based <strong>on</strong> its<br />

physiological stages (Kiran <str<strong>on</strong>g>and</str<strong>on</strong>g> Patra, 2002).<br />

Moreover, the sulfur <strong>in</strong> (NH4)2SO4 <str<strong>on</strong>g>and</str<strong>on</strong>g> its vital role<br />

<strong>in</strong> <strong>rice</strong> nutriti<strong>on</strong> cannot be ignored; the higher plant<br />

height was obta<strong>in</strong>ed from amm<strong>on</strong>ium sulfate,<br />

compared to CO (NH2)2. It has been reported that N<br />

losses from urea are extensive <str<strong>on</strong>g>and</str<strong>on</strong>g> much greater<br />

than amm<strong>on</strong>ium nitrate or sulfate (Marschner,<br />

1995) which might have led to higher plant height<br />

with amm<strong>on</strong>ium nitrate or sulfate compared to CO<br />

(NH2)2 that obta<strong>in</strong>ed shortest <strong>rice</strong> plant height<br />

(103.06 cm). Chaturvedi (2005) also obta<strong>in</strong>ed<br />

decreased <strong>rice</strong> plant height <strong>in</strong> plots where CO(NH2)2<br />

applied compared to calcium amm<strong>on</strong>ium nitrate,<br />

super net(25.5% N <str<strong>on</strong>g>and</str<strong>on</strong>g> 9.8% S), amm<strong>on</strong>ium sulfate<br />

nitrate <str<strong>on</strong>g>and</str<strong>on</strong>g> 20-10-12 NPK compound.<br />

Plant height reveals the overall vegetative growth <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the crop <strong>in</strong> resp<strong>on</strong>se to various management<br />

practices (Chaturvedi, 2005). It was found that N<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> significantly affected the <strong>rice</strong> plant<br />

height. The maximum plant height (106.29 cm) was<br />

obta<strong>in</strong>ed when the N was applied ½ at sow<strong>in</strong>g + ½<br />

at tiller<strong>in</strong>g, which had no statistical variati<strong>on</strong><br />

compared to height recorded with ⅓ at sow<strong>in</strong>g + ⅓<br />

at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ½ at<br />

tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> (Table 3).<br />

Similarly no significant difference <strong>in</strong> plant height<br />

obta<strong>in</strong>ed between the N applied ½ at sow<strong>in</strong>g + ½ at<br />

panicle <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ½ at tiller<strong>in</strong>g + ½ at panicle<br />

<strong>in</strong>itiati<strong>on</strong>.<br />

Visual field observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this study realized that<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO(NH2)2, ½ at sow<strong>in</strong>g + ½ at<br />

tiller<strong>in</strong>g, ⅓ at sow<strong>in</strong>g + ⅓ at tiller<strong>in</strong>g + ⅓ at panicle<br />

<strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> NH4NO3 ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g<br />

tolerated water stress caused by <strong>in</strong>terrupted <strong>ra<strong>in</strong></strong>fall<br />

than the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>s <strong>in</strong> hot-humid<br />

lowl<str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Gambella</strong>.<br />

Accord<strong>in</strong>g to Abd El-Maksoud (2008), early<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N fertilizer favored plant height <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

this was seen when two splits gave the taller plants<br />

than three splits. The <strong>in</strong>crease <strong>in</strong> plant height <strong>in</strong><br />

resp<strong>on</strong>se to <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N fertilizer was probably<br />

due to enhanced availability <str<strong>on</strong>g>of</str<strong>on</strong>g> N which resulted <strong>in</strong><br />

more leaf area (M<str<strong>on</strong>g>and</str<strong>on</strong>g>al et al., 1992) that <strong>in</strong> turn<br />

enhanced photo assimilates <str<strong>on</strong>g>and</str<strong>on</strong>g> thereby resulted <strong>in</strong><br />

more dry matter accumulati<strong>on</strong> (Rupp <str<strong>on</strong>g>and</str<strong>on</strong>g> Hubner,<br />

1995).<br />

<str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> n <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> <strong>yield</strong><br />

<strong>attributes</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong><br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> effective tillers:<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental years, N <str<strong>on</strong>g>sources</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> their <strong>in</strong>teracti<strong>on</strong>s <strong>on</strong> the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> effective tillers m -2 were <strong>in</strong>significant (P<br />

> 0.05). Although not significant, higher number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

effective tillers was recorded <strong>in</strong> 2009 cropp<strong>in</strong>g year<br />

that might be related to meteorological c<strong>on</strong>diti<strong>on</strong>s<br />

with high solar radiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> sufficient supply <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

(Haque et al., 2006). Yield <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> <strong>attributes</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>rice</strong> cultivars are not <strong>on</strong>ly <strong>in</strong>fluenced by <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

fertilizers, but also by their split <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> (Abd<br />

El-Maksoud, 2008). However, <strong>in</strong> this study like<br />

plant height, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> tillers though not<br />

significant, varied between 144.64 m -2 [CO (NH2)2]<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 163.81 m -2 (NH4NO3). In case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>time</str<strong>on</strong>g>, N applied ⅓ each at sow<strong>in</strong>g, tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

panicle <strong>in</strong>itiati<strong>on</strong> resulted <strong>in</strong> more number <str<strong>on</strong>g>of</str<strong>on</strong>g> tillers<br />

followed by two equal splits at tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle<br />

<strong>in</strong>itiati<strong>on</strong> stages (Table 3) The present f<strong>in</strong>d<strong>in</strong>g<br />

support the results <str<strong>on</strong>g>of</str<strong>on</strong>g> Jensen (2006) <str<strong>on</strong>g>and</str<strong>on</strong>g> Madan<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Munjal (2009) who suggested that seed rate<br />

governs the number <str<strong>on</strong>g>of</str<strong>on</strong>g> tillers plant -1 <str<strong>on</strong>g>and</str<strong>on</strong>g> all forms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

N fertilizers can perform equally well if applied<br />

appropriately.<br />

Panicle length:<br />

The panicle length varied significantly due to the<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> cropp<strong>in</strong>g year (P ≤ 0.01) <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>sources</str<strong>on</strong>g> (P ≤ 0.05), whereas N<br />

<str<strong>on</strong>g>sources</str<strong>on</strong>g>, <strong>in</strong>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> year by N <str<strong>on</strong>g>sources</str<strong>on</strong>g>, year by<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>, N <str<strong>on</strong>g>sources</str<strong>on</strong>g> by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

year by N <str<strong>on</strong>g>sources</str<strong>on</strong>g> by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> were not (P ><br />

0.05). The result <strong>in</strong>dicated that the panicle length<br />

was significantly higher <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>in</strong>crease <strong>in</strong> the<br />

length was 16.2% <strong>in</strong> 2009 than that <str<strong>on</strong>g>of</str<strong>on</strong>g> 2008<br />

22


Int. J. Agr. & Agri. R.<br />

cropp<strong>in</strong>g year. Also significantly higher panicle<br />

length (Table 3) was obta<strong>in</strong>ed with the <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>in</strong> two equal splits at sow<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> tiller<strong>in</strong>g<br />

(22.89 cm) than at tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong><br />

stages (21.87 cm) that <strong>in</strong>dicated the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> <strong>rice</strong> at sow<strong>in</strong>g. C<strong>on</strong>trarily, Abd El-<br />

Maksoud (2008) reported that panicle length was<br />

not significantly <strong>in</strong>fluenced with the split<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N. Moreover, <strong>in</strong> this experiment no<br />

significant differences <strong>in</strong> panicle length were<br />

obta<strong>in</strong>ed between N applied <strong>in</strong> three equal splits<br />

(sow<strong>in</strong>g, tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong>), two equal<br />

splits (sow<strong>in</strong>g, panicle <strong>in</strong>itiati<strong>on</strong>/tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

panicle <strong>in</strong>itiati<strong>on</strong>).<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s:<br />

Except experimental years (P ≤ 0.01), the resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s panicle -1 to N <str<strong>on</strong>g>sources</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> all the <strong>in</strong>teracti<strong>on</strong>s were not<br />

significant (P > 0.05) (Table 2). The number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>g<strong>ra<strong>in</strong></strong></strong>s panicle -1 was significantly higher <strong>in</strong> 2009 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

this <strong>in</strong>crease was 26.5% over 2008 cropp<strong>in</strong>g year<br />

(Table 4). The <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N did not br<strong>in</strong>g significant<br />

<strong>in</strong>fluence <strong>on</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s, but CO(NH2)2<br />

recorded 7.2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 7.3% more <strong>g<strong>ra<strong>in</strong></strong></strong>s panicle -1 than<br />

NH4NO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> (NH4)2SO4 <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N, respectively.<br />

Similarly the variati<strong>on</strong> <strong>in</strong> <strong>g<strong>ra<strong>in</strong></strong></strong>s panicle -1 was 119.2<br />

to 136.8 due to <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>, the highest<br />

be<strong>in</strong>g with the <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N ½ each at sow<strong>in</strong>g<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> the lowest with ½ each at tiller<strong>in</strong>g<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong> stages <str<strong>on</strong>g>of</str<strong>on</strong>g> the crop. The trend<br />

<strong>in</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s panicle -1 was similar to panicle<br />

length, therefore this parameter might be<br />

<strong>in</strong>fluenced by the panicle length, but the significant<br />

difference <strong>in</strong> panicle length due to N <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>time</str<strong>on</strong>g> (Table 3) however, failed to br<strong>in</strong>g a significant<br />

change <strong>in</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s panicle -1 . The panicle<br />

length obta<strong>in</strong>ed with the N <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>in</strong> the<br />

study was compatible with Witt et al. (2007)<br />

f<strong>in</strong>d<strong>in</strong>gs who reported that N absorbed at sow<strong>in</strong>g,<br />

tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong> stage <strong>in</strong> <strong>rice</strong> plant<br />

ensured a sufficient number <str<strong>on</strong>g>of</str<strong>on</strong>g> panicles with<br />

<strong>in</strong>creased number <str<strong>on</strong>g>of</str<strong>on</strong>g> spikelet (flower) panicle -1 that<br />

develop <strong>in</strong>to <strong>in</strong>creased <strong>g<strong>ra<strong>in</strong></strong></strong> number panicle -1 .<br />

Panicle <strong>g<strong>ra<strong>in</strong></strong></strong> weight:<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental year (P ≤ 0.01) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> (P ≤ 0.05) <strong>on</strong> panicle<br />

<strong>g<strong>ra<strong>in</strong></strong></strong> weight were significant, while the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>and</str<strong>on</strong>g> the all <strong>in</strong>teracti<strong>on</strong>s were not found<br />

to be significant(P > 0.05) <strong>on</strong> <strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> weight<br />

panicle -1 (Table 2). Like panicle length <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s<br />

panicle -1 , the <strong>g<strong>ra<strong>in</strong></strong></strong> weight panicle -1 was significantly<br />

(P ≤ 0.05) higher <strong>in</strong> 2009 than 2008. Regardless <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>, the <strong>g<strong>ra<strong>in</strong></strong></strong> weight<br />

panicle -1 was 21.4% higher <strong>in</strong> 2009 than <strong>in</strong> 2008.<br />

Significantly more panicle length <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s<br />

panicle -1 might have c<strong>on</strong>tributed to significant<br />

<strong>in</strong>crease <strong>in</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> weight panicle -1 (Tables 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4).<br />

The <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N had no significant difference <strong>in</strong><br />

<strong>g<strong>ra<strong>in</strong></strong></strong> weight panicle -1 but it varied from 3.11g<br />

(NH4NO3) to 3.37g (CO (NH2)2). Unlike this study,<br />

Chaturvedi (2005) found significantly highest<br />

(1.97g) <strong>g<strong>ra<strong>in</strong></strong></strong> weight panicle -1 with (NH4)2SO4 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

lowest (1.24 g) with CO (NH2)2 treatment. The<br />

highest (3.50 g) <strong>g<strong>ra<strong>in</strong></strong></strong> weight panicle -1 was obta<strong>in</strong>ed<br />

with the <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N ½ at sow<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> tiller<strong>in</strong>g<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong>, but it did not vary significantly with<br />

the <strong>g<strong>ra<strong>in</strong></strong></strong> weight recorded with ½ at sow<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

panicle <strong>in</strong>itiati<strong>on</strong> (3.32g) <str<strong>on</strong>g>and</str<strong>on</strong>g> ⅓ at sow<strong>in</strong>g, tiller<strong>in</strong>g<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong> (3.18 g) stages.<br />

The significantly more panicle length due to<br />

cropp<strong>in</strong>g year <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> (Table 3) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>in</strong>significantly higher <strong>g<strong>ra<strong>in</strong></strong></strong> number panicle -1 when<br />

N was applied ½ each at sow<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> tiller<strong>in</strong>g might<br />

have resulted <strong>in</strong> a significant <strong>in</strong>crease <strong>in</strong> <strong>g<strong>ra<strong>in</strong></strong></strong><br />

weight panicle -1 over N <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> also <strong>in</strong> two equal<br />

splits but at tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong> stages<br />

(Table 4).<br />

1000-<strong>g<strong>ra<strong>in</strong></strong></strong> weight:<br />

Similar to number <str<strong>on</strong>g>of</str<strong>on</strong>g> effective tillers m -2 <str<strong>on</strong>g>and</str<strong>on</strong>g> leaf<br />

area <strong>in</strong>dex, 1000-<strong>g<strong>ra<strong>in</strong></strong></strong> weight <strong>in</strong>significantly (P ><br />

0.05)affected by experimental years, <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N,<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> their <strong>in</strong>teracti<strong>on</strong>s (Table 2).<br />

There was no statistical difference (P > 0.05)<br />

between the experimental years for 1000-<strong>g<strong>ra<strong>in</strong></strong></strong><br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>NERICA</strong>-3 <strong>rice</strong>. However, <strong>in</strong> first<br />

experimental year more 1000-<strong>g<strong>ra<strong>in</strong></strong></strong> weight (26.11 g)<br />

23


Int. J. Agr. & Agri. R.<br />

was recorded than <strong>in</strong> the sec<strong>on</strong>d year (25.93 g)<br />

(Table 4). Similarly, 1000-<strong>g<strong>ra<strong>in</strong></strong></strong> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong><br />

ranged from 25.86 to 26.33g <str<strong>on</strong>g>and</str<strong>on</strong>g> 25.7 to 26.43 g,<br />

with the <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>,<br />

respectively (Table 4). But, <strong>in</strong> hybrid <strong>rice</strong> Proagro<br />

6207, Chaturvedi (2005) used calcium amm<strong>on</strong>ium<br />

nitrate, urea, supper net (25.5% N <str<strong>on</strong>g>and</str<strong>on</strong>g> 9.8% S),<br />

amm<strong>on</strong>ium sulfate nitrate <str<strong>on</strong>g>and</str<strong>on</strong>g> 20-10-12 NPK<br />

compound fertilizer <str<strong>on</strong>g>and</str<strong>on</strong>g> found <strong>in</strong>creased 1000-<br />

<strong>g<strong>ra<strong>in</strong></strong></strong> weight with super net <str<strong>on</strong>g>and</str<strong>on</strong>g> decreased with<br />

CO(NH2)2 treatment. Availability <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

better plant growth might be the reas<strong>on</strong> for heavier<br />

<strong>g<strong>ra<strong>in</strong></strong></strong> with super net. Generally, <strong>g<strong>ra<strong>in</strong></strong></strong> weight is a<br />

genetically c<strong>on</strong>trolled trait, which is greatly<br />

<strong>in</strong>fluenced by envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s prevail<strong>in</strong>g<br />

dur<strong>in</strong>g the process <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> fill<strong>in</strong>g (Kausar et al.,<br />

1993).<br />

Table 4. <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> year, N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s panicle -1 , <strong>g<strong>ra<strong>in</strong></strong></strong> weight panicle -1 ,<br />

1000-<strong>g<strong>ra<strong>in</strong></strong></strong> weight, <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>prote<strong>in</strong></strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong>.<br />

No. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s<br />

panicle -1<br />

G<strong>ra<strong>in</strong></strong> weight<br />

panicle -1 (g)<br />

1000-<strong>g<strong>ra<strong>in</strong></strong></strong><br />

weight (g)<br />

G<strong>ra<strong>in</strong></strong><br />

<strong>yield</strong><br />

Straw<br />

<strong>yield</strong><br />

G<strong>ra<strong>in</strong></strong><br />

<strong>prote<strong>in</strong></strong><br />

N <str<strong>on</strong>g>sources</str<strong>on</strong>g><br />

(t ha -1 ) (t ha -1 )<br />

(%)<br />

Year<br />

2008 111.1b 2.94b 26.11 4.22b 5.40b 11.46a<br />

2009 140.5a 3.57a 25.93 5.89a 6.88a 6.82b<br />

NH4NO3 122.9 3.11 25.86 5.00 6.10 9.64<br />

(NH4)2SO4 122.8 3.28 26.33 4.99 6.58 8.10<br />

CO(NH2)2 131.7 3.37 25.97 5.17 5.73 9.69<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>time</str<strong>on</strong>g> (AT)<br />

AT1 136.8 3.50a 25.70 5.38 6.88 8.75<br />

AT2 123.4 3.18ab 25.82 4.98 6.05 9.67<br />

AT3 123.8 3.32ab 26.43 5.06 5.82 9.25<br />

AT4 119.2 3.00b 26.14 4.79 5.79 8.92<br />

CV (%) 17.91 15.73 6.70 23.20 31.99 39.72<br />

Means <str<strong>on</strong>g>of</str<strong>on</strong>g> the same factor <strong>in</strong> a column followed by the same letter are not significantly different at P > 0.05 by Duncan's multiple<br />

range test; AT1 = ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g; AT2 = ⅓ at sow<strong>in</strong>g + ⅓ at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong>; AT3 = ½ at sow<strong>in</strong>g +<br />

½ at panicle <strong>in</strong>itiati<strong>on</strong>; AT4 = ½ at tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>; CV = Coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong><br />

Table 5. Interacti<strong>on</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> <strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> (t ha -1 ).<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

N Sources<br />

AT1 AT2 AT3 AT4<br />

NH4NO3 6.33a 4.88ab 4.34b 4.46b<br />

(NH4)2SO4 5.45ab 4.64b 5.43ab 4.42b<br />

CO(NH2)2 4.36b 5.42ab 5.39ab 5.50ab<br />

Means <str<strong>on</strong>g>of</str<strong>on</strong>g> the same factor <strong>in</strong> a row or a column followed by the same letter are not significantly different at P > 0.05 by Duncan's<br />

Multiple Range test. AT1 = ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g; AT2 = ⅓ at sow<strong>in</strong>g + ⅓ at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong>; AT3 = ½ at<br />

sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>; AT4 = ½ at tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong><br />

G<strong>ra<strong>in</strong></strong> <strong>yield</strong>:<br />

The analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> variance revealed that the resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> to cropp<strong>in</strong>g year (P ≤ 0.01) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> (P ≤<br />

0.05) were significant while N <str<strong>on</strong>g>sources</str<strong>on</strong>g>, <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>time</str<strong>on</strong>g>, <strong>in</strong>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> year by N <str<strong>on</strong>g>sources</str<strong>on</strong>g>, year by<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> year by N <str<strong>on</strong>g>sources</str<strong>on</strong>g> by<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> were not (P > 0.05) (Table 2).<br />

24


Int. J. Agr. & Agri. R.<br />

Regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>,<br />

significantly higher <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> (5.89 t ha -1 ) was<br />

obta<strong>in</strong>ed dur<strong>in</strong>g 2009 <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>in</strong>crease <strong>in</strong> <strong>g<strong>ra<strong>in</strong></strong></strong><br />

<strong>yield</strong> was 39.6% over 2008 cropp<strong>in</strong>g year. Despite<br />

lower 1000 <strong>g<strong>ra<strong>in</strong></strong></strong> weight, higher tillers m -2 <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

significantly higher panicle length, number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> weight panicle -1 might have c<strong>on</strong>tributed to<br />

<strong>in</strong>crease <strong>in</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> (Tables 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4). In additi<strong>on</strong><br />

the air temperature <strong>in</strong> 2009 was comparatively<br />

more than the 2008 cropp<strong>in</strong>g year. Accord<strong>in</strong>g to<br />

Akita (1989) crop envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s with<br />

high solar radiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> abundant supply <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

favored accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high amount <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> high <strong>yield</strong> provided varieties resp<strong>on</strong>d favorably<br />

to N.<br />

The <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> due to ma<strong>in</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

<str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> ranged from 4.99 -<br />

5.17 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.79 - 5.38 t ha -1 , respectively that was not<br />

significant (P > 0.05). However, Table 5 showed<br />

that significantly (P ≤ 0.05) higher <strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong><br />

was obta<strong>in</strong>ed with NH4NO3 applied <strong>in</strong>to equal splits<br />

(sow<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> tiller<strong>in</strong>g) that had no significant<br />

difference with the <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> recorded with<br />

NH4NO3 applied <strong>in</strong> three equal (sow<strong>in</strong>g, tiller<strong>in</strong>g<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong> stages), (NH4)2SO4 applied ½<br />

at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> ½ at sow<strong>in</strong>g + ½ at<br />

panicle <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> CO(NH2)2 applied at all <str<strong>on</strong>g>time</str<strong>on</strong>g>s<br />

except ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g. Significantly<br />

decreased <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> observed with NH4NO3<br />

applied ½ at sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> but<br />

had no significant variati<strong>on</strong> with <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong><br />

obta<strong>in</strong>ed with NH4NO3, (NH4)2SO4 <str<strong>on</strong>g>and</str<strong>on</strong>g> CO(NH2)2<br />

applied at all <str<strong>on</strong>g>time</str<strong>on</strong>g>s except with NH4NO3 applied ½<br />

at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g.<br />

This <strong>in</strong>creased <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> might be due to<br />

cumulative effect <str<strong>on</strong>g>of</str<strong>on</strong>g> more panicle length, number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>g<strong>ra<strong>in</strong></strong></strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> weight panicle -1 <strong>in</strong> CO(NH2)2 than<br />

(NH4)2SO4 <str<strong>on</strong>g>and</str<strong>on</strong>g> NH4NO3 treated plots <strong>in</strong> spite <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lower number <str<strong>on</strong>g>of</str<strong>on</strong>g> tillers m -2 (Tables 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4).<br />

Likewise, these parameters might have also<br />

performed better c<strong>on</strong>tributi<strong>on</strong> to higher <strong>yield</strong> when<br />

the fertilizer applied ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g<br />

than at other <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>s. Similar results<br />

have been reported by Viraktamath (2006) who<br />

reported <strong>in</strong>crease <strong>in</strong> <strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> due to the<br />

<strong>in</strong>creased <strong>yield</strong> attribut<strong>in</strong>g characters like panicle<br />

number, panicle length, 1000-<strong>g<strong>ra<strong>in</strong></strong></strong> weight <str<strong>on</strong>g>and</str<strong>on</strong>g> low<br />

sterility percentage. The lowest <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong>s (4.99<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 4.79 t ha -1 ) were found with (NH4)2SO4 <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

N applied ½ at tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>,<br />

respectively. Maragatham, et al. (2010) also stated<br />

that <strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> obta<strong>in</strong>ed with recommended<br />

(NH4)2SO4 was found lower than the <strong>yield</strong> ga<strong>in</strong>ed<br />

with recommended N as CO (NH2)2. This might be<br />

due to c<strong>on</strong>t<strong>in</strong>uous <str<strong>on</strong>g>and</str<strong>on</strong>g> steady supply <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>in</strong>to the<br />

soil soluti<strong>on</strong> to meet the required nutrients for<br />

physiological processes, which <strong>in</strong> turn improved the<br />

<strong>yield</strong>. Also <strong>in</strong>creased nutrient uptake especially <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> P resulted <strong>in</strong> <strong>in</strong>creased photosynthetic rate <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>in</strong>creased plant growth. Increased photosynthetic<br />

rate resulted <strong>in</strong> higher translocati<strong>on</strong> to s<strong>in</strong>k <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

more <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong>. After panicle <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> at 100<br />

ppm N, nitrate is better source for <strong>rice</strong> than<br />

amm<strong>on</strong>ia (Reddy, 2006). Under neutral to warm<br />

soil or alkal<strong>in</strong>e soil, CO(NH2)2 performed equally to<br />

NH4NO3 by reduc<strong>in</strong>g N losses through volatilizati<strong>on</strong><br />

(Mahler et al., 1994; Jan et al. 2010). However,<br />

Chaturvedi (2005) reported that sulfur c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g N<br />

fertilizer had significant effect <strong>on</strong> <strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hybrid <strong>rice</strong> (Proagro 6207) than the n<strong>on</strong> sulfur<br />

c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g>ous fertilizers.<br />

Based <strong>on</strong> panicle length, <strong>g<strong>ra<strong>in</strong></strong></strong> number <str<strong>on</strong>g>and</str<strong>on</strong>g> weight<br />

panicle -1 , N fertilizer applied at or near seed<strong>in</strong>g <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

was usually the most effective for <strong>in</strong>creas<strong>in</strong>g <strong>yield</strong>s<br />

(Tables 4). Hence, <strong>NERICA</strong>-3 resp<strong>on</strong>ded better to<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g, ½ at<br />

sow<strong>in</strong>g + ½ panicle <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ⅓ at sow<strong>in</strong>g +⅓<br />

at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> resulted<br />

respectively, <strong>in</strong> 12.3,5.6 <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.0% <strong>in</strong>crease <strong>in</strong> <strong>yield</strong><br />

than ½ at tiller<strong>in</strong>g + ½ panicle <strong>in</strong>itiati<strong>on</strong> (Table 4.).<br />

Therefore, avoid<strong>in</strong>g N fertilizer <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> at<br />

sow<strong>in</strong>g may prove detrimental to the crop <strong>yield</strong>.<br />

Therefore, split <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N is imperative to<br />

<strong>in</strong>crease the N use efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong>; to reduce loss<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N fertilizer <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>mental polluti<strong>on</strong>.<br />

However, Sallam (2005) <str<strong>on</strong>g>and</str<strong>on</strong>g> Abd El-Maksoud<br />

(2008) found splitt<strong>in</strong>g N to four doses, provided the<br />

25


Int. J. Agr. & Agri. R.<br />

<strong>rice</strong> plants with N throughout the vegetative growth<br />

period. This may expla<strong>in</strong> the favorable effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

splitt<strong>in</strong>g N fertilizer <strong>on</strong> <strong>yield</strong> attribut<strong>in</strong>g traits.<br />

These effects led the <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> aboveground<br />

biomass to be affected positively by splitt<strong>in</strong>g the N<br />

fertilizer to 3 or 4 doses.<br />

Straw <strong>yield</strong>”<br />

The <strong>rice</strong> straw <strong>yield</strong> showed significant (P ≤ 0.05)<br />

resp<strong>on</strong>d to experimental years <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>in</strong>teracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>sources</str<strong>on</strong>g> by <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> whereas its<br />

resp<strong>on</strong>se to N <str<strong>on</strong>g>sources</str<strong>on</strong>g>, <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>,<br />

<strong>in</strong>teracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> year by N <str<strong>on</strong>g>sources</str<strong>on</strong>g>, years by<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> years by N <str<strong>on</strong>g>sources</str<strong>on</strong>g> by<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> were not (Table 2). Like <strong>g<strong>ra<strong>in</strong></strong></strong><br />

<strong>yield</strong>, the straw <strong>yield</strong> was significantly (P ≤ 0.05)<br />

higher <strong>in</strong> 2009 than 2008 cropp<strong>in</strong>g year. In the<br />

2009 the straw <strong>yield</strong> (6.88 t ha -1 ) was 27.4% higher<br />

than <strong>in</strong> 2008 cropp<strong>in</strong>g year. Higher leaf area <strong>in</strong>dex,<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> tillers m -2 <str<strong>on</strong>g>and</str<strong>on</strong>g> significantly more panicle<br />

length <strong>in</strong> 2009 than 2008 cropp<strong>in</strong>g year (Table 3.)<br />

might have c<strong>on</strong>tributed to <strong>in</strong>crease <strong>in</strong> straw <strong>yield</strong>.<br />

On the other h<str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>in</strong>teracti<strong>on</strong> data (Table 6.)<br />

<strong>in</strong>dicated that the <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (NH4)2SO4 applied<br />

½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g resulted <strong>in</strong> the highest<br />

straw <strong>yield</strong> (8.64 t ha -1 ) that did not vary<br />

significantly with the <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NH4NO3 applied<br />

½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> ⅓ at sow<strong>in</strong>g + ⅓ at<br />

tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong>, (NH4)2SO4 ½ at<br />

sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> CO(NH2)2 ½ at<br />

sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ½ at tiller<strong>in</strong>g +<br />

½ at panicle <strong>in</strong>itiati<strong>on</strong> stages (Table 6). Whereas,<br />

Manzoor et al. (2006) <strong>in</strong>dicated that am<strong>on</strong>g four N<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>s used <strong>on</strong> f<strong>in</strong>e <strong>rice</strong>, three equal<br />

splits showed maximum straw <strong>yield</strong>. The magnitude<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>crease <strong>in</strong> <strong>rice</strong> straw <strong>yield</strong> with (NH4)2SO4 ½ at<br />

sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g was 90.73% over the lowest<br />

straw <strong>yield</strong> (4.53 t ha -1 ) recorded with NH4NO3<br />

applied ½ at sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> (Table<br />

6). Better straw <strong>yield</strong> could be expla<strong>in</strong>ed as higher<br />

capability <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid <strong>rice</strong> to utilize more N through<br />

the expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> better growth by accumulat<strong>in</strong>g<br />

more dry matter.<br />

Maragatham, et al. (2010), however, found lowest<br />

straw <strong>yield</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Indica <str<strong>on</strong>g>and</str<strong>on</strong>g> Jap<strong>on</strong>ica <strong>rice</strong> from<br />

recommended (NH4)2SO4 treatment. They added,<br />

the plants grown <strong>on</strong> plots supplied with (NH4)2SO4<br />

exhibited wilt<strong>in</strong>g followed by development <str<strong>on</strong>g>of</str<strong>on</strong>g> tipburns<br />

<strong>in</strong> the lower leaves which subsequently<br />

spread over the whole blade. Their roots were<br />

darkened, poorly branched <str<strong>on</strong>g>and</str<strong>on</strong>g> appeared much less<br />

healthy than those <str<strong>on</strong>g>of</str<strong>on</strong>g> NH4NO3, or (NH4)2SO4 +<br />

NH4NO3 <strong>fed</strong> plants.<br />

G<strong>ra<strong>in</strong></strong> <strong>prote<strong>in</strong></strong> c<strong>on</strong>tent:<br />

The <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>prote<strong>in</strong></strong> c<strong>on</strong>tent was significantly (P ≤<br />

0.01) affected by the experimental year, while<br />

<strong>in</strong>significant difference occurred due to N <str<strong>on</strong>g>sources</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>in</strong>teracti<strong>on</strong>s<br />

(Table 2).<br />

G<strong>ra<strong>in</strong></strong> <strong>prote<strong>in</strong></strong> c<strong>on</strong>tents were 11.46 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.82% <strong>in</strong><br />

2008 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009, respectively (Table 4). However,<br />

the highest <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>prote<strong>in</strong></strong> c<strong>on</strong>tent (9.69 <str<strong>on</strong>g>and</str<strong>on</strong>g> 9.67%)<br />

was recorded with CO (NH2)2 <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

N <strong>in</strong> three equal splits (at sow<strong>in</strong>g, tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

panicle <strong>in</strong>itiati<strong>on</strong> stages), respectively. CO (NH2)2 is<br />

effective <strong>in</strong> most crops <str<strong>on</strong>g>and</str<strong>on</strong>g> can be applied to all soils<br />

as the acidity will not <strong>in</strong>crease with regular use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO (NH2)2 compared to (NH4)2SO4. (Freney et al.,<br />

2009). The lowest <strong>prote<strong>in</strong></strong> c<strong>on</strong>tent was obta<strong>in</strong>ed<br />

with (NH4)2SO4 (8.10%) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N ½ at<br />

sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g (8.75%). TNAU (2008)<br />

study reveal that (NH4)2SO4 fertilizer is not effective<br />

<strong>in</strong> acid soils s<strong>in</strong>ce the amm<strong>on</strong>ium i<strong>on</strong>s are readily<br />

absorbed <strong>on</strong> the colloidal complex <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil, but it<br />

is effective <strong>in</strong> sal<strong>in</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> alkali soils. The higher<br />

<strong>prote<strong>in</strong></strong> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> N treated plants could be related<br />

with the positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>on</strong> some important<br />

physiological processes (Chaturvedi, 2005). Similar<br />

to this study, Abd El-Maksoud (2008) reported that<br />

<strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> quality was not affected by split<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N fertilizer.<br />

26


Table 6. Interacti<strong>on</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>on</strong> <strong>rice</strong> straw <strong>yield</strong> (t ha -1 )<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

N Sources<br />

AT1 AT2 AT3 AT4<br />

NH4NO3 7.25ab 6.96ab 4.53b 5.67b<br />

(NH4)2SO4 8.64a 5.44b 6.81ab 5.44b<br />

CO(NH2)2 4.76b 5.76b 6.12ab 6.27ab<br />

Means <str<strong>on</strong>g>of</str<strong>on</strong>g> the same factor <strong>in</strong> a row or a column followed by the same letter are not significantly different at P > 0.05 by Duncan's<br />

Multiple Range test. AT1 = ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g; AT2 = ⅓ at sow<strong>in</strong>g + ⅓ at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong>; AT3 = ½ at<br />

sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>; AT4 = ½ at tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong><br />

Table 7. Partial budget with dom<strong>in</strong>ance to estimate net benefit for <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO(NH2)2, NH4NO3 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(NH4)2SO4 fertilizers at current p<strong>rice</strong>s.<br />

Partial budget with dom<strong>in</strong>ance<br />

Treatment<br />

Total <strong>g<strong>ra<strong>in</strong></strong></strong><br />

<strong>yield</strong> (t ha -1 )<br />

Adjusted<br />

<strong>yield</strong> (t ha -1 )<br />

GFB<br />

(ETB ha -1 )<br />

TCV<br />

(ETB ha -1 )<br />

NB<br />

(ETB ha -1 )<br />

CO(NH2)2/AT1 4.36 3.05 12208 4370.65 7837.35U<br />

CO(NH2)2/AT3 5.39 3.77 15092 5183.45 9908.55U<br />

CO(NH2)2/AT2 5.42 3.79 15176 5232.53 9943.47U<br />

CO(NH2)2/AT4 5.50 3.85 15400 5273.77 10126.23U<br />

NH4NO3/AT3 4.34 3.04 12152 5406.77 6745.23D<br />

NH4NO3/AT4 4.46 3.12 12488 5497.09 6990.91D<br />

NH4NO3/AT2 4.88 3.42 13664 5862.26 7801.74D<br />

(NH4)2SO4/AT4 4.42 3.09 12376 6912.37 5463.63D<br />

NH4NO3/AT1 6.33 4.43 17724 6975.94 10748.06U<br />

(NH4)2SO4/AT2 4.64 3.25 12992 7119.49 5872.51D<br />

(NH4)2SO4/AT3 5.43 3.80 15204 7713.89 7490.11D<br />

(NH4)2SO4/AT1 5.45 3.82 15260 7736.46 7523.54D<br />

Field p<strong>rice</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO(NH2)2 = Birr 3.38 per kg; Field p<strong>rice</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NH4NO3 = Birr 6.38 per kg; Field p<strong>rice</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (NH4)2SO4 = Birr 5.88;<br />

Wage rate = Birr 25 per day; Labor to apply fertilizer per ha = 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 man-day for 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3 split <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>s, respectively;<br />

Retail p<strong>rice</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong> = Birr 4000 per t<strong>on</strong>; HTW= Harvest<strong>in</strong>g, thresh<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> w<strong>in</strong>now<strong>in</strong>g cost = Birr 1000 per t<strong>on</strong>; BMT =<br />

Bagg<strong>in</strong>g, material <str<strong>on</strong>g>and</str<strong>on</strong>g> transport cost = Birr 65 per t<strong>on</strong> ; GFB = Gross field benefit; TCV = Total cost that varied; NB = Net<br />

benefit; AT1 = ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g; AT2 = ⅓ at sow<strong>in</strong>g + ⅓ at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong>; AT3 = ½ at sow<strong>in</strong>g + ½<br />

at panicle <strong>in</strong>itiati<strong>on</strong>; AT4 = ½ at tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>; U = Undom<strong>in</strong>ated; D = Dom<strong>in</strong>ated<br />

G<strong>ra<strong>in</strong></strong> <strong>prote<strong>in</strong></strong> c<strong>on</strong>tents were 11.46 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6.82% <strong>in</strong><br />

2008 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2009, respectively (Table 4). However,<br />

the highest <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>prote<strong>in</strong></strong> c<strong>on</strong>tent (9.69 <str<strong>on</strong>g>and</str<strong>on</strong>g> 9.67%)<br />

was recorded with CO (NH2)2 <str<strong>on</strong>g>and</str<strong>on</strong>g> the <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

N <strong>in</strong> three equal splits (at sow<strong>in</strong>g, tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

panicle <strong>in</strong>itiati<strong>on</strong> stages), respectively. CO (NH2)2 is<br />

effective <strong>in</strong> most crops <str<strong>on</strong>g>and</str<strong>on</strong>g> can be applied to all soils<br />

as the acidity will not <strong>in</strong>crease with regular use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CO (NH2)2 compared to (NH4)2SO4. (Freney et al.,<br />

2009). The lowest <strong>prote<strong>in</strong></strong> c<strong>on</strong>tent was obta<strong>in</strong>ed<br />

with (NH4)2SO4 (8.10%) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N ½ at<br />

sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g (8.75%). TNAU (2008)<br />

study reveal that (NH4)2SO4 fertilizer is not effective<br />

<strong>in</strong> acid soils s<strong>in</strong>ce the amm<strong>on</strong>ium i<strong>on</strong>s are readily<br />

absorbed <strong>on</strong> the colloidal complex <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil, but it<br />

is effective <strong>in</strong> sal<strong>in</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> alkali soils. The higher<br />

<strong>prote<strong>in</strong></strong> c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> N treated plants could be related<br />

with the positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> N <strong>on</strong> some important<br />

physiological processes (Chaturvedi, 2005). Similar<br />

to this study, Abd El-Maksoud (2008) reported that<br />

<strong>rice</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> quality was not affected by split<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N fertilizer.


Table 8. Partial budget with estimated marg<strong>in</strong>al rate <str<strong>on</strong>g>of</str<strong>on</strong>g> return (%) N <str<strong>on</strong>g>sources</str<strong>on</strong>g><br />

Marg<strong>in</strong>al rate <str<strong>on</strong>g>of</str<strong>on</strong>g> return (MRR%)<br />

TCV<br />

NB<br />

Raised benefit MRR%<br />

Treatment (ETB ha -1 ) (ETB ha -1 ) Raised cost<br />

CO(NH2)2/AT1 4370.65 7837.35<br />

CO(NH2)2/AT3 5183.45 9908.55 812.80 2071.20 254.82<br />

CO(NH2)2/AT2 5232.53 9943.47 49.08 34.92 71.15<br />

CO(NH2)2/AT4 5273.77 10126.23 41.24 182.76 443.16<br />

NH4NO3/AT1 6975.94 10748.06 1702.17 612.83 36.00<br />

ETB = <strong>Ethiopia</strong>n Birr; TCV = Total cost that vary; NB = Net benefit; AT1 = ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g; AT2 = ⅓<br />

at sow<strong>in</strong>g + ⅓ at tiller<strong>in</strong>g + ⅓ at panicle <strong>in</strong>itiati<strong>on</strong>; AT3 = ½ at sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>;AT4 = ½ at<br />

tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong><br />

Table 9. Sensitivity analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> producti<strong>on</strong> after different practices based <strong>on</strong> a 15% rise <strong>in</strong> total cost <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>rice</strong><br />

p<strong>rice</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gross field benefit fall<br />

Treatment<br />

TCV<br />

(ETB ha -1 )<br />

NB<br />

(ETB ha -1 )<br />

Increment<br />

cost<br />

Increment<br />

benefit MRR%<br />

CO(NH2)2/AT1 5026.25 6661.75<br />

CO(NH2)2/AT3 5960.97 8422.27 934.72 1760.52 188.35<br />

CO(NH2)2/AT4 6064.84 8607.30 103.87 185.03 178.14<br />

ETB = <strong>Ethiopia</strong>n Birr; TCV = Total cost that vary; NB = Net benefit; MRR=Marg<strong>in</strong>al rate <str<strong>on</strong>g>of</str<strong>on</strong>g> return; AT1 = ½ at<br />

sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g; AT3 = ½ at sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>;AT4 = ½ at tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong><br />

Ec<strong>on</strong>omic viability <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> their split<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>rice</strong><br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (Table 2) showed that <str<strong>on</strong>g>sources</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> N fertilizer <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> had no<br />

significant (P > 0.05) effect <strong>on</strong> <strong>g<strong>ra<strong>in</strong></strong></strong> <strong>yield</strong>, but<br />

cropp<strong>in</strong>g year <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>in</strong>teracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> had significant effect. An ec<strong>on</strong>omic<br />

analysis <strong>on</strong> the comb<strong>in</strong>ed result us<strong>in</strong>g the partial<br />

budget technique is appropriate (CIMMYT 1988).<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> the partial budget <str<strong>on</strong>g>and</str<strong>on</strong>g> the ec<strong>on</strong>omic<br />

data used <strong>in</strong> the development <str<strong>on</strong>g>of</str<strong>on</strong>g> the partial budget<br />

are given <strong>in</strong> Table 7.<br />

Dom<strong>in</strong>ance analysis (Table 7) led to the selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

treatments CO (NH2)2 applied at all <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>time</str<strong>on</strong>g>s <str<strong>on</strong>g>and</str<strong>on</strong>g> NH4NO3 applied ½ at sow<strong>in</strong>g + ½ at<br />

tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> which ranked <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g order <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

total costs that varied. Marg<strong>in</strong>al rate <str<strong>on</strong>g>of</str<strong>on</strong>g> return below<br />

100% was c<strong>on</strong>sidered low <str<strong>on</strong>g>and</str<strong>on</strong>g> unacceptable to<br />

farmers (CIMMYT, 1988). Thus, CO(NH2)2 applied<br />

⅓ each at sow<strong>in</strong>g, tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> NH4NO3 applied ½ at sow<strong>in</strong>g + ½ at tiller<strong>in</strong>g<br />

were rejected while CO(NH2)2 applied ½ each at<br />

sow<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> tiller<strong>in</strong>g, sow<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong>,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> tiller<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> panicle <strong>in</strong>itiati<strong>on</strong> were accepted<br />

(Table 8).<br />

Therefore, this <strong>in</strong>vestigati<strong>on</strong> rema<strong>in</strong>ed with changes<br />

to CO (NH2)2 applied ½ at sow<strong>in</strong>g + ½ at panicle<br />

<strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> ½ at tiller<strong>in</strong>g + ½ at panicle<br />

<strong>in</strong>itiati<strong>on</strong> as they gave more than 100% MRR as<br />

promis<strong>in</strong>g new practices for farmers under the<br />

prevail<strong>in</strong>g p<strong>rice</strong> structure. This might suggest the<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>puts that results <strong>in</strong> maximum net benefits<br />

(Bekele, 2000). An assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> p<strong>rice</strong> change <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Birr 0.51 per kg <str<strong>on</strong>g>of</str<strong>on</strong>g> CO(NH2)2 <str<strong>on</strong>g>and</str<strong>on</strong>g> Birr 0.6 per kg <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>rice</strong> is borne out <str<strong>on</strong>g>of</str<strong>on</strong>g> our own experiences <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

represents a p<strong>rice</strong> fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 15%. These p<strong>rice</strong><br />

changes are realistic under the liberal market<br />

c<strong>on</strong>diti<strong>on</strong>s prevail<strong>in</strong>g <strong>in</strong> <strong>Gambella</strong> am<strong>on</strong>g lowl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dwellers at the <str<strong>on</strong>g>time</str<strong>on</strong>g>.


Int. J. Agr. & Agri. R.<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>siderati<strong>on</strong>s <strong>in</strong> project<strong>in</strong>g p<strong>rice</strong>s<br />

were; <strong>in</strong>creased <strong>rice</strong> supply due to aid for refugees,<br />

imports from abroad; <str<strong>on</strong>g>and</str<strong>on</strong>g> a deteriorat<strong>in</strong>g bus<strong>in</strong>ess<br />

envir<strong>on</strong>ment <strong>in</strong> <strong>Gambella</strong>. The new p<strong>rice</strong>s were used<br />

to obta<strong>in</strong> the sensitivity analysis. As observed<br />

CO(NH2)2 applied ½ at sow<strong>in</strong>g + ½ at panicle<br />

<strong>in</strong>itiati<strong>on</strong> (254.82%) <str<strong>on</strong>g>and</str<strong>on</strong>g> ½ at tiller<strong>in</strong>g + ½ at<br />

panicle <strong>in</strong>itiati<strong>on</strong> (443.16%) were accepted from the<br />

MRR calculati<strong>on</strong> (Table 9) for giv<strong>in</strong>g a higher MRR<br />

than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong>imum acceptance threshold.<br />

From the range <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments tested CO (NH2)2<br />

applied ½ at sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong><br />

(188.35%) <str<strong>on</strong>g>and</str<strong>on</strong>g> ½ at tiller<strong>in</strong>g + ½ at panicle<br />

<strong>in</strong>ititiati<strong>on</strong> (178.14%) give an ec<strong>on</strong>omic <strong>yield</strong><br />

resp<strong>on</strong>se <str<strong>on</strong>g>and</str<strong>on</strong>g> also susta<strong>in</strong>ed acceptable returns even<br />

under a projected worsen<strong>in</strong>g trade c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong><br />

<strong>Gambella</strong> (Table 9). It was observed that CO(NH2)2<br />

was relatively cheaper <str<strong>on</strong>g>and</str<strong>on</strong>g> easy to transport than<br />

NH4NO3 <str<strong>on</strong>g>and</str<strong>on</strong>g> (NH4)2SO4 (Obreza et al., 2010).<br />

These results agree with Saha et al., (1994) whose<br />

f<strong>in</strong>d<strong>in</strong>gs from coastal Kenya <strong>on</strong> maize showed that<br />

the <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 kg N ha -1 c<strong>on</strong>sistently gave<br />

acceptable ec<strong>on</strong>omic returns.<br />

On a tentative basis farmers could thus choose any<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the two new <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO (NH2)2. As<br />

the data generated from this experiment based <strong>on</strong><br />

small area, the results can be used to make tentative<br />

recommendati<strong>on</strong>s, which could be ref<strong>in</strong>ed through<br />

multi-locati<strong>on</strong> test<strong>in</strong>g over a wider area.<br />

C<strong>on</strong>clusi<strong>on</strong>s<br />

Results carried out for two years <strong>in</strong> a typical clay soil<br />

compar<strong>in</strong>g three N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> their split<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>in</strong>dicated that <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> N<br />

fertilizers ½ at sow<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong>;<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ½ at tiller<strong>in</strong>g + ½ at panicle <strong>in</strong>itiati<strong>on</strong> stages<br />

were effective <strong>in</strong> <strong>rice</strong> producti<strong>on</strong> partially due to<br />

reduce N losses.<br />

Slow-release fertilizers, (NH4)2SO4 <str<strong>on</strong>g>and</str<strong>on</strong>g> NH4NO3,<br />

were form less effective <strong>in</strong> <strong>rice</strong> producti<strong>on</strong> under<br />

acid clay soil than CO (NH2)2 because <str<strong>on</strong>g>of</str<strong>on</strong>g> its high N<br />

analysis, ease <str<strong>on</strong>g>of</str<strong>on</strong>g> h<str<strong>on</strong>g>and</str<strong>on</strong>g>l<strong>in</strong>g, <str<strong>on</strong>g>and</str<strong>on</strong>g> lower cost. Little is<br />

known <str<strong>on</strong>g>of</str<strong>on</strong>g> this behavior due, with all probability, to<br />

the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>ism with the peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> plant N<br />

dem<str<strong>on</strong>g>and</str<strong>on</strong>g>. Hence, farmers must be c<strong>on</strong>scious <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

different properties <str<strong>on</strong>g>and</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> these fertilizers,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> should be ready to change some management<br />

practices, if necessary, to susta<strong>in</strong> high fertilizati<strong>on</strong><br />

efficiency.<br />

Therefore, <strong>in</strong> wet seas<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> medium fertility soils,<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> 92 kg N ha -1 as CO(NH2)2 at <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <strong>in</strong>dicated above was found to be<br />

ec<strong>on</strong>omical for <strong>NERICA</strong>-3 <strong>rice</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> efficient N<br />

utilizati<strong>on</strong> <strong>in</strong> agro climatic c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the study<br />

area. Split <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizer N is likely to be<br />

the most promis<strong>in</strong>g strategy to <strong>in</strong>crease N use<br />

efficiency, <str<strong>on</strong>g>and</str<strong>on</strong>g> optimiz<strong>in</strong>g synchr<strong>on</strong>y between crop<br />

dem<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> supply go<strong>in</strong>g to rema<strong>in</strong> an essential<br />

practice <strong>in</strong> <strong>rice</strong>. However, it needs further<br />

<strong>in</strong>vestigati<strong>on</strong> <strong>in</strong> subsequent studies, <strong>in</strong>volv<strong>in</strong>g a<br />

greater number <str<strong>on</strong>g>of</str<strong>on</strong>g> N <str<strong>on</strong>g>sources</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> splits <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>rice</strong><br />

varieties to formulate a general recommendati<strong>on</strong>.<br />

Acknowledgement<br />

We would like to thank Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Belay Kassa, the<br />

Haramaya University’s President for his special help<br />

<strong>in</strong> solv<strong>in</strong>g the residential <str<strong>on</strong>g>and</str<strong>on</strong>g> laboratory service<br />

expenses <str<strong>on</strong>g>of</str<strong>on</strong>g> the first author.<br />

References<br />

Abd El-Maksoud M. F. 2008. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Levels<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Splitt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> N-fertilizati<strong>on</strong> <strong>on</strong> Growth, Yield<br />

Comp<strong>on</strong>ents, Yield <str<strong>on</strong>g>and</str<strong>on</strong>g> G<strong>ra<strong>in</strong></strong> Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Some Rice<br />

Cultivars. Res. J. Agric. <str<strong>on</strong>g>and</str<strong>on</strong>g> Biol. Sci. 4(5), 392-<br />

398.<br />

AOAC (Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Official Analytical<br />

Chemist). 1994. Official method <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis. 12 th<br />

Ed. Wash<strong>in</strong>gt<strong>on</strong>, DC.<br />

Assefa M, Getnet F, Menzir, A, Kurabachew<br />

H. 2009. Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> upl<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>rice</strong> for <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

phosphorus fertilizers <strong>on</strong> Vertisols <str<strong>on</strong>g>of</str<strong>on</strong>g> Pawe area. In:<br />

Proceed<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the 10 th C<strong>on</strong>ference <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>Ethiopia</strong>n<br />

Soc. Soil Sci. held dur<strong>in</strong>g 25-27 March 2009, Addis<br />

Ababa, <strong>Ethiopia</strong>.<br />

29


Int. J. Agr. & Agri. R.<br />

Astewel T. 2010. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Rice pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itability <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

market<strong>in</strong>g cha<strong>in</strong>: The case <str<strong>on</strong>g>of</str<strong>on</strong>g> Fogera woreda, South<br />

G<strong>on</strong>dar Z<strong>on</strong>e, Amhara Nati<strong>on</strong>al Regi<strong>on</strong>al State,<br />

<strong>Ethiopia</strong>. MSc Thesis, Haramaya University,<br />

Haramaya, <strong>Ethiopia</strong>.<br />

Bil<strong>on</strong>i M, Bocchi S. 2003. Nitrogen <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong><br />

dry seeded delayed flooded <strong>rice</strong> <strong>in</strong> Italy. Effect <strong>on</strong><br />

<strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> crop parameters. Nutr. Cycl<strong>in</strong>g <strong>in</strong> Agroec.<br />

67(2), 117-128.<br />

Chaturvedi I. 2005. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> fertilizers<br />

<strong>on</strong> growth, <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid <strong>rice</strong> (Oryza<br />

sativa). J. Centl. Eur. Agric. 6(4), 611-618.<br />

CIMMYT. 1988. From agr<strong>on</strong>omic data to farmer<br />

recommendati<strong>on</strong>s: Answers to Workbook Exercises.<br />

Mexico, DF.<br />

FARA (The Forum for Agricultural Research<br />

<strong>in</strong> Africa). 2009. Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> change <strong>in</strong> <strong>rice</strong><br />

producti<strong>on</strong> <strong>in</strong> Africa: Implicati<strong>on</strong> for <strong>rice</strong> policy<br />

development /M<strong>in</strong>isterial_Policy_brief_series<br />

_No_2.<br />

Freney JR, Peoples MB, Mosier AR. 2009.<br />

Efficient use <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizer FFTC Publicati<strong>on</strong>, Taipei<br />

10616 Taiwan R.O.C.<br />

Haque KMS, Khaliq QA, Aktar J. 2006. Effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <strong>on</strong> phenology, light <strong>in</strong>tercepti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

growth <strong>in</strong> Aromatic Rice. Intl. J. Susta<strong>in</strong>. Crop Prod.<br />

1(2), 1-6.<br />

Jensen T. 2006. Nitrogen fertilizer, forms <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

methods <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>. Proceed<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the 2006<br />

Alberta Irrigated Crop Producti<strong>on</strong> Update<br />

C<strong>on</strong>ference, Alberta Agriculture, Food <str<strong>on</strong>g>and</str<strong>on</strong>g> Rural<br />

Development, Southern Applied Research<br />

Associati<strong>on</strong>, 17 January, 2006, Lethbridge. p. 21-26.<br />

Kabuye FM, Drew C. 2000. Upl<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>rice</strong> grow<strong>in</strong>g<br />

manual. Africa 2000 Network <str<strong>on</strong>g>and</str<strong>on</strong>g> USAID-<br />

Agricultural Productivity Enhancement Program,<br />

Ug<str<strong>on</strong>g>and</str<strong>on</strong>g>a.<br />

Kausar K, Akbar M, Rasul E, Ahmad AN.<br />

1993. Physiological resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g>,<br />

phosphorus <str<strong>on</strong>g>and</str<strong>on</strong>g> potassium <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wheat. Pak. J. Agric. Res. 14, 2–3<br />

Kenzo W. 2004. Utilizati<strong>on</strong> advantages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>trolled release <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> fertilizer <strong>on</strong> paddy <strong>rice</strong><br />

cultivati<strong>on</strong>. JARQ. 38(1), 15-20.<br />

Kichey T, Hirel B, Heumez E, Dubois F, Le-<br />

Gouis J. 2007. In w<strong>in</strong>ter wheat, post-anthesis<br />

<str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> uptake <str<strong>on</strong>g>and</str<strong>on</strong>g> remobilizati<strong>on</strong> to the <strong>g<strong>ra<strong>in</strong></strong></strong><br />

correlates with agr<strong>on</strong>omic traits <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g><br />

physiological markers. Field Crops Res. 102, 22-32.<br />

Kiran U, Patra DD. 2002. Augment<strong>in</strong>g <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

urea-<str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> utilizati<strong>on</strong> efficiency <strong>in</strong> wheat through<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> natural essential oils <str<strong>on</strong>g>and</str<strong>on</strong>g> dicy<str<strong>on</strong>g>and</str<strong>on</strong>g>iamide<br />

coated urea <strong>in</strong> light–textured soils <str<strong>on</strong>g>of</str<strong>on</strong>g> Central Uttar<br />

Pradesh. Commun. Soil Sci.Plant Anal. 33, 1375-<br />

1388.<br />

Iqbal MM, Akhter J, Mohammad W, Shah<br />

SM, Nawaz H, Mahmood K. 2005. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tillage <str<strong>on</strong>g>and</str<strong>on</strong>g> fertilizer levels <strong>on</strong> wheat <strong>yield</strong>, <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g><br />

uptake <str<strong>on</strong>g>and</str<strong>on</strong>g> their correlati<strong>on</strong> with carb<strong>on</strong> isotope<br />

discrim<strong>in</strong>ati<strong>on</strong> under <strong>ra<strong>in</strong></strong><strong>fed</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>in</strong> northwest<br />

Pakistan. Soil <str<strong>on</strong>g>and</str<strong>on</strong>g> Tillage Res. 80, 47-57.<br />

Jan MT, Khan MJ, Khan A, Arif M, Shafi M,<br />

Farmanullah. 2010. Wheat <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <strong>in</strong>dices<br />

resp<strong>on</strong>se to <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> source <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>.<br />

Pak. J. Bot. 42(6), 4267-4279.<br />

Krishnan P, Nayak SK. 2000. Biomass<br />

partiti<strong>on</strong><strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividual<br />

tillers <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> (Oryza sativa) at different <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g><br />

levels. Indian J. Agric. Sci. 70(3), 143-145.<br />

Kushwaha HS, Mishra MK, Tomar RAS. 1992.<br />

Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong> to N, P, K <str<strong>on</strong>g>and</str<strong>on</strong>g> Zn <strong>on</strong> Farmer’s<br />

Field. Agric. Soc. Digest(Karanal) 21, 4-6.<br />

30


Int. J. Agr. & Agri. R.<br />

Lim<strong>on</strong>-Ortega A, Sayre KD, Francis CA. 2000.<br />

Wheat <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> use efficiency <strong>in</strong> a bed plant<strong>in</strong>g<br />

system <strong>in</strong> northwest Mexico. Agr<strong>on</strong>. J. 92, 303-308.<br />

Mossedaq F, Smith DH. 1994. Tim<strong>in</strong>g <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> to enhance spr<strong>in</strong>g wheat <strong>yield</strong>s <strong>in</strong><br />

Mediterranean climates. Agr<strong>on</strong>. J. 86, 221-226.<br />

Madan HS, Munjal R. 2009. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> split doses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> seed rate <strong>on</strong> <strong>prote<strong>in</strong></strong> c<strong>on</strong>tent,<br />

<strong>prote<strong>in</strong></strong> fracti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat. ARPN J. Agric.<br />

Biol. Sci. 4(1), 26-31.<br />

NMA (Nati<strong>on</strong>al Meteorological Agency).<br />

2009. Period averages <str<strong>on</strong>g>and</str<strong>on</strong>g> climatologically<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard normals. Unpublished, <strong>Gambella</strong> Branch<br />

Office, <strong>Ethiopia</strong>.<br />

Mahler RL, Koehler FE, Lutcher LK. 1994.<br />

Nitrogen source, tim<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

placement: <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <strong>on</strong> w<strong>in</strong>ter wheat producti<strong>on</strong>.<br />

Agr<strong>on</strong>. J. 86, 637-642.<br />

Obreza T, Pars<strong>on</strong>s L, Morgan K. 2010.<br />

Nitrogen fertilizer <str<strong>on</strong>g>sources</str<strong>on</strong>g>: What does the future<br />

hold for citrus producers. IFAS Extensi<strong>on</strong>,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Florida.<br />

M<str<strong>on</strong>g>and</str<strong>on</strong>g>al NN, Chaudhry PP, S<strong>in</strong>ha D. 1992.<br />

Nitrogen, phosphorus <str<strong>on</strong>g>and</str<strong>on</strong>g> potash uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat<br />

(var. S<strong>on</strong>alika). Env. Eco. 10, 297 (Field Crop Abst.<br />

46(1), 30.<br />

Manzoor Z, Ali RI, Awan TH, Khalid N,<br />

Ahmad M. 2006. Appropriate <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> to f<strong>in</strong>e <strong>rice</strong>, Oryza sativa. J. Agric. Res.<br />

44(4), 261-266.<br />

Maragatham M, Mart<strong>in</strong> GJ, Po<strong>on</strong>godi T.<br />

2010. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Nitrogen <str<strong>on</strong>g>sources</str<strong>on</strong>g> <strong>on</strong> aerobic <strong>rice</strong><br />

producti<strong>on</strong> under various <strong>rice</strong> soil ecosystems. 19th<br />

World C<strong>on</strong>gress <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil Sci. Soil Soluti<strong>on</strong>s for a<br />

Chang<strong>in</strong>g World, 1- 6 August 2010, Brisbane,<br />

Australia.<br />

Marschner H. 1995. M<strong>in</strong>eral nutriti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higher<br />

plants. 2nd Editi<strong>on</strong>. Academic Press. San Diego, CA.<br />

Mengel K, Kirkby EA. 1996. Pr<strong>in</strong>ciples <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant<br />

Nutriti<strong>on</strong>. Pan<strong>in</strong>a Publish<strong>in</strong>g Corporati<strong>on</strong>, 4th edn,<br />

New Delhi.<br />

Padmavathi P. 1997. Studies <strong>on</strong> relative<br />

performance <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> hybrid <strong>rice</strong><br />

varieties under various levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g>, plant<br />

populati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> plant<strong>in</strong>g paterns. PhD thesis, Indian<br />

Agricultural Research Institute, New Delhi.<br />

Pan J, Zhu Y, Jiang D, Dai T, Li Y, Cao W.<br />

2006. Model<strong>in</strong>g plant <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> uptake <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>g<strong>ra<strong>in</strong></strong></strong><br />

<str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> accumulati<strong>on</strong> <strong>in</strong> wheat. Field Crops Res.<br />

97, 322-336.<br />

Raza M, Khan H, Karim F, Tahir MJ. 2003.<br />

Nitrogen use efficiency as affected by <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <strong>in</strong> <strong>rice</strong> (IRRI-6). Sarhad J. Agric. 19(4),<br />

453- 457.<br />

Reddy SR. 2006. Agr<strong>on</strong>omy <str<strong>on</strong>g>of</str<strong>on</strong>g> field crops. Kalyani<br />

Publishers, New Delhi, India. 65-68.<br />

Roy P, Orikasa T, Okadome H, Nakamura N,<br />

Shi<strong>in</strong>a T. 2011. Process<strong>in</strong>g c<strong>on</strong>diti<strong>on</strong>s, <strong>rice</strong><br />

properties, health <str<strong>on</strong>g>and</str<strong>on</strong>g> envir<strong>on</strong>ment. Intl. J.<br />

Envir<strong>on</strong>. Res. Public Health 8, 1957-1976.<br />

MoARD (M<strong>in</strong>istry <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture <str<strong>on</strong>g>and</str<strong>on</strong>g> Rural<br />

Development). 2010. Nati<strong>on</strong>al Rice Research <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Development Strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Ethiopia</strong>. Addis Ababa,<br />

<strong>Ethiopia</strong>.<br />

Rupp D, Hubner H. 1995. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Nitrogen<br />

fertilizati<strong>on</strong> <strong>on</strong> the m<strong>in</strong>eral c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> apple leaves.<br />

Erwerbsobstbau, 37, 29-31.<br />

Salem AKM. 2006. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> levels, plant<br />

spac<strong>in</strong>g <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> farm yard manure <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g><br />

31


Int. J. Agr. & Agri. R.<br />

<strong>on</strong> the productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rice</strong>. J. Appl. sci. Res. 2(11),<br />

980-987.<br />

N rates <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>s. Can. J. Soil Sci. 80,<br />

533-539.<br />

Sallam STM. 2005. Studies <strong>on</strong> <strong>yield</strong> potentiality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Giza 177 <str<strong>on</strong>g>and</str<strong>on</strong>g> Sakha 101 <strong>rice</strong> cultivars under the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ertilizati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> splitt<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g>.<br />

PhD. Thesis Fac. Agric. Zagazig Univ., Egypt.<br />

SAS (Statistical Analysis System) Institute.<br />

2003. SAS Versi<strong>on</strong> 9. 1.2 © 2002-2003. SAS<br />

Institute, Inc., Cary, NC.<br />

Sathiya K, Ramesh T. 2009. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> split<br />

<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>nitrogen</str<strong>on</strong>g> <strong>on</strong> growth <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>yield</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aerobic Rice. Asian J. Exp. Sci. 23 (1), 303-306.<br />

Shah H, Sharif M, Majid A, Hayat U,<br />

Munawar A. 2009. From experimental data to<br />

farmer recommendati<strong>on</strong>: an ec<strong>on</strong>omic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>on</strong>-farm trial <str<strong>on</strong>g>of</str<strong>on</strong>g> UMMB feed for milk<strong>in</strong>g animals <strong>in</strong><br />

<strong>ra<strong>in</strong></strong>-<strong>fed</strong> Pothwar, Pakistan. Livestock Research for<br />

Rural Development, 21(117).<br />

Tsunoda S.1964. A developmental analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>yield</strong><strong>in</strong>g ability <strong>in</strong> varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> field crops. Nih<strong>on</strong><br />

Gakujitsu Sh<strong>in</strong>kokai, Tokyo, Japan.<br />

Viraktamath BC. 2006. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> system <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>rice</strong> Intensificati<strong>on</strong> (SRI) under all India<br />

coord<strong>in</strong>ated <strong>rice</strong> improvement project. In: Abstracts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Nati<strong>on</strong>al Symposium <strong>on</strong> System <str<strong>on</strong>g>of</str<strong>on</strong>g> Rice<br />

Intensificati<strong>on</strong> (SRI)–Present status <str<strong>on</strong>g>and</str<strong>on</strong>g> future<br />

prospects, November 17-18, India.<br />

Witt C, Buresh RJ, Peng S, Balasubramanian<br />

V, Dobermann A. 2007. Nutrient management. p<br />

1-45. In: T. H. Fairhurst, C. Witt, R. Buresh <str<strong>on</strong>g>and</str<strong>on</strong>g> A.<br />

Dobermann, eds. Rice: A practical guide to nutrient<br />

management. Los Baños (Philipp<strong>in</strong>es) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

S<strong>in</strong>gapore: Internati<strong>on</strong>al Rice Research Institute<br />

(IRRI), Internati<strong>on</strong>al Plant Nutriti<strong>on</strong> Institute<br />

(IPNI), <str<strong>on</strong>g>and</str<strong>on</strong>g> Internati<strong>on</strong>al Potash Institute (IPI).<br />

TNAU (Tamil Nadu Agricultural University).<br />

2008. Nutrient management: Fertilizers,<br />

Coimbatore, India.<br />

Tran TS, Tremblay G. 2000. Recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> N-15-<br />

labeled fertilizer by spr<strong>in</strong>g bread wheat at different<br />

Wuest SB, Cassman KG. 1992. Fertilizer<str<strong>on</strong>g>nitrogen</str<strong>on</strong>g><br />

use efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigated wheat: Uptake<br />

efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> preplant versus late-seas<strong>on</strong> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>.<br />

Agr<strong>on</strong>. J. 84, 682-688.<br />

32

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!