17.01.2013 Views

Clinical Pathways in Neuro-ophthalmology : An ... - E-Lib FK UWKS

Clinical Pathways in Neuro-ophthalmology : An ... - E-Lib FK UWKS

Clinical Pathways in Neuro-ophthalmology : An ... - E-Lib FK UWKS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

This page <strong>in</strong>tentionally left blank


<strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong><br />

<strong>Neuro</strong>-Ophthalmology<br />

<strong>An</strong> Evidence-Based Approach<br />

Second Edition


This page <strong>in</strong>tentionally left blank


<strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong><br />

<strong>Neuro</strong>-Ophthalmology<br />

<strong>An</strong> Evidence-Based Approach<br />

Second Edition<br />

<strong>An</strong>drew G. Lee, M.D.<br />

Associate Professor of Ophthalmology, <strong>Neuro</strong>logy, and <strong>Neuro</strong>surgery<br />

University of Iowa Hospitals and Cl<strong>in</strong>ics<br />

Iowa City, Iowa<br />

Paul W. Brazis, M.D.<br />

Professor of <strong>Neuro</strong>logy<br />

Mayo School of Medic<strong>in</strong>e<br />

Consultant <strong>in</strong> <strong>Neuro</strong>logy and <strong>Neuro</strong>-Ophthalmology<br />

Mayo Cl<strong>in</strong>ic<br />

Jacksonville, Florida<br />

Thieme<br />

New York Stuttgart


Thieme New York<br />

333 Seventh Avenue<br />

New York, NY 10001<br />

Consult<strong>in</strong>g Medical Editor: Esther Gumpert<br />

Assistant Editor: Owen Zurhellen<br />

Director, Production and Manufactur<strong>in</strong>g: <strong>An</strong>ne V<strong>in</strong>nicombe<br />

Production Editor: David R. Stewart<br />

Market<strong>in</strong>g Director: Phyllis Gold<br />

Director of Sales: Ross Lumpk<strong>in</strong><br />

Chief F<strong>in</strong>ancial Officer: Peter van Woerden<br />

President: Brian D. Scanlan<br />

Compositor: Techset Composition Ltd., Salisbury, UK<br />

Pr<strong>in</strong>ter: Sheridan Books, Inc.<br />

<strong>Lib</strong>rary of Congress Catalog<strong>in</strong>g <strong>in</strong> Publication Data is available from the publisher<br />

Copyright # 2003 by Thieme Medical Publishers, Inc. This book, <strong>in</strong>clud<strong>in</strong>g all parts thereof, is legally protected<br />

by copyright. <strong>An</strong>y use, exploitation, or commercialization outside the narrow limits set by copyright legislation,<br />

without the publisher’s consent, is illegal and liable to prosecution. This applies <strong>in</strong> particular to photostat<br />

reproduction, copy<strong>in</strong>g, mimeograph<strong>in</strong>g or duplication of any k<strong>in</strong>d, translat<strong>in</strong>g, preparation of microfilms, and<br />

electronic data process<strong>in</strong>g and storage.<br />

Important note: Medical knowledge is ever-chang<strong>in</strong>g. As new research and cl<strong>in</strong>ical experience broaden our<br />

knowledge, changes <strong>in</strong> treatment and drug therapy may be required. The authors and editors of the material<br />

here<strong>in</strong> have consulted sources believed to be reliable <strong>in</strong> their efforts to provide <strong>in</strong>formation that is complete and <strong>in</strong><br />

accord with the standards accepted at the time of publication. However, <strong>in</strong> view of the possibility of human error<br />

by the authors, editors, or publisher of the work here<strong>in</strong>, or changes <strong>in</strong> medical knowledge, neither the authors,<br />

editors, or publisher, nor any other party who has been <strong>in</strong>volved <strong>in</strong> the preparation of this work, warrants that the<br />

<strong>in</strong>formation conta<strong>in</strong>ed here<strong>in</strong> is <strong>in</strong> every respect accurate or complete, and they are not responsible for any errors<br />

or omissions or for the results obta<strong>in</strong>ed from use of such <strong>in</strong>formation. Readers are encouraged to confirm the<br />

<strong>in</strong>formation conta<strong>in</strong>ed here<strong>in</strong> with other sources. For example, readers are advised to check the product<br />

<strong>in</strong>formation sheet <strong>in</strong>cluded <strong>in</strong> the package of each drug they plan to adm<strong>in</strong>ister to be certa<strong>in</strong> that the <strong>in</strong>formation<br />

conta<strong>in</strong>ed <strong>in</strong> this publication is accurate and that changes have not been made <strong>in</strong> the recommended dose or <strong>in</strong> the<br />

contra<strong>in</strong>dications for adm<strong>in</strong>istration. This recommendation is of particular importance <strong>in</strong> connection with new or<br />

<strong>in</strong>frequently used drugs.<br />

Some of the product names, patents, and registered designs referred to <strong>in</strong> this book are <strong>in</strong> fact registered<br />

trademarks or proprietary names even though specific reference to this fact is not always made <strong>in</strong> the text.<br />

Therefore, the appearance of a name without designation as proprietary is not to be construed as a representation<br />

by the publisher that it is <strong>in</strong> the public doma<strong>in</strong>.<br />

Pr<strong>in</strong>ted <strong>in</strong> the United States of America<br />

54321<br />

TNY ISBN 1-58890-136-X<br />

GTV ISBN 3-13-108642-4


Contents<br />

Foreword ........................................................ vii<br />

Preface ......................................................... ix<br />

1. The Diagnosis of Optic <strong>Neuro</strong>pathies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br />

2. Optic Neuritis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

3. Optic Disc Edema with a Macular Star and <strong>Neuro</strong>ret<strong>in</strong>itis . . . . . . . . . . . . . . 63<br />

4. Nonarteritic Ischemic Optic <strong>Neuro</strong>pathy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

5. Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis . . . . . 93<br />

6. Traumatic Optic <strong>Neuro</strong>pathy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119<br />

7. Papilledema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129<br />

8. Transient Visual Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167<br />

9. Visual Field Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189<br />

10. Diplopia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215<br />

11. Third Nerve Palsies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253<br />

12. Fourth Nerve Palsies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281<br />

13. Sixth Nerve Palsies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296<br />

14. Supranuclear Disorders of Gaze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311<br />

15. Ocular Myasthenia Gravis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337<br />

16. Thyroid Eye Disease: Graves’ Ophthalmopathy . . . . . . . . . . . . . . . . . . . . . . 349<br />

17. Nystagmus and Other Ocular Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . 367<br />

18. Ptosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409<br />

19. Lid Retraction and Lid Lag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421<br />

20. <strong>An</strong>isocoria and Pupillary Abnormalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433<br />

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464<br />

v


To our wives, Hilary and Liz<br />

and<br />

to our parents, Alberto C. Lee, M.D.,<br />

and Rosal<strong>in</strong>d G. Lee, M.D., and<br />

Dr. and Mrs. Peter T. Brazis


Foreword<br />

Never <strong>in</strong> the history of medic<strong>in</strong>e have physicians had so many ways to both diagnose<br />

and treat disease, and never have physicians had so many bureaucratic barriers to<br />

perform<strong>in</strong>g these activities. This paradox has necessitated a return to the days when<br />

cl<strong>in</strong>ical judgment was at least as important as diagnostic test<strong>in</strong>g. The challenge to all of<br />

us who care for patients is thus to understand the signs and symptoms that dist<strong>in</strong>guish<br />

among many different local and systemic disorders so that we can perform the most<br />

logical, expeditious, safe, and economic assessment.<br />

<strong>An</strong>drew G. Lee is an ophthalmologist and director of cl<strong>in</strong>ical neuro-<strong>ophthalmology</strong> at<br />

the University of Iowa Hospitals and Cl<strong>in</strong>ics <strong>in</strong> Iowa City, Iowa. Paul W. Brazis is a<br />

neurologist and head of the neuro-<strong>ophthalmology</strong> service at the Mayo Cl<strong>in</strong>ic <strong>in</strong><br />

Jacksonville, Florida. Both authors have extensive tra<strong>in</strong><strong>in</strong>g and experience <strong>in</strong> the field<br />

of neuro-<strong>ophthalmology</strong>, and both have contributed s<strong>in</strong>gly and together to the field of<br />

neuro-<strong>ophthalmology</strong> with numerous articles, chapters, and textbooks. In this book,<br />

these authors provide the reader with a triumverate of <strong>in</strong>formation. First, they describe<br />

the symptoms and signs of a variety of neuro-ophthalmologic disorders, such as<br />

anterior and retrobulbar optic neuropathies, ocular motor nerve pareses, and other<br />

disorders of ocular motility and alignment, and anisocoria. Second, they provide<br />

algorithms for differentiat<strong>in</strong>g, both <strong>in</strong> the office and us<strong>in</strong>g laboratory and neuroimag<strong>in</strong>g<br />

studies, among conditions that often have overlapp<strong>in</strong>g cl<strong>in</strong>ical manifestations. Third,<br />

they provide a basic set of references about each subject that the reader can use to<br />

expand his or her knowledge.<br />

By provid<strong>in</strong>g basic, cl<strong>in</strong>ically relevant <strong>in</strong>formation regard<strong>in</strong>g various disorders, their<br />

diagnosis, and treatment, this book teaches the reader how to approach a patient with a<br />

known or presumed neuro-ophthalmologic problem <strong>in</strong> a logical, straightforward, and<br />

cost-effective manner. As such, it is a welcome addition to the neuro-ophthalmologic<br />

repertoire.<br />

Neil R. Miller, M.D.<br />

Baltimore, Maryland<br />

vii


This page <strong>in</strong>tentionally left blank


Preface<br />

The primary goal of this book is to provide the reader with an easy-to-follow, heavily<br />

referenced guide to the management of common neuro-ophthalmologic conditions. We<br />

have specifically chosen to focus on recent (1990 to 2002) references, and we emphasize<br />

the best available cl<strong>in</strong>ical evidence. To this end, we have not <strong>in</strong>cluded letters or case<br />

reports unless they add significant new <strong>in</strong>formation. We <strong>in</strong>clude pre-1990 references<br />

only if they are of historical significance. We have tried to be <strong>in</strong>clusive, however, <strong>in</strong> the<br />

construction of our tables and charts, and provide the references as needed. The<br />

secondary goal of this book is to discuss and classify the available cl<strong>in</strong>ical evidence<br />

concern<strong>in</strong>g the evaluation and treatment of various neuro-ophthalmologic processes<br />

and grade the strength of any recommendations that are made. Readers will have to<br />

judge for themselves which is the best approach for the <strong>in</strong>dividual patient; the authors<br />

emphasize that these guidel<strong>in</strong>es are not meant to def<strong>in</strong>e any particular standard of care<br />

for these conditions.<br />

In this edition, we classify the cl<strong>in</strong>ical evidence <strong>in</strong>to the follow<strong>in</strong>g four<br />

categories. Where appropriate, we have summarized the class of evidence for each<br />

section.<br />

1. Class I: Well-designed, randomized, high statistical power controlled cl<strong>in</strong>ical trials<br />

<strong>in</strong>clud<strong>in</strong>g meta-analyses of such trials.<br />

2. Class II: Well-designed controlled studies without randomization <strong>in</strong>clud<strong>in</strong>g metaanalyses<br />

of such studies.<br />

3. Class III: Retrospective observational studies, cohort, or case-control studies, or<br />

multiple time series with or without <strong>in</strong>tervention.<br />

4. Class IV: Expert op<strong>in</strong>ion, case series, case reports.<br />

We grade the strength of the recommendations from each section as follows:<br />

1. Level A: A pr<strong>in</strong>ciple for patient management reflect<strong>in</strong>g a high degree of cl<strong>in</strong>ical<br />

certa<strong>in</strong>ty (usually requires class I evidence that directly addresses the cl<strong>in</strong>ical<br />

question).<br />

2. Level B: A recommendation reflect<strong>in</strong>g moderate cl<strong>in</strong>ical certa<strong>in</strong>ty based on either<br />

class II evidence or strong consensus of class III evidence with significant and<br />

consistent results.<br />

3. Level C: <strong>An</strong> acceptable practice option with low cl<strong>in</strong>ical certa<strong>in</strong>ty based on class III<br />

or class IV evidence.<br />

4. Level U: Inconclusive or conflict<strong>in</strong>g evidence, or op<strong>in</strong>ion that is <strong>in</strong>sufficient to<br />

support an evidence-based recommendation.<br />

ix


x Preface<br />

We would aga<strong>in</strong> like to thank our mentor, colleague, and friend Dr. Neil R. Miller for<br />

his encouragement and example. Dr. Brazis would also like to thank the follow<strong>in</strong>g<br />

<strong>in</strong>dividuals for their guidance: Drs. James Corbett, Jonathan Trobe, James Boll<strong>in</strong>g, and<br />

Frank Rub<strong>in</strong>o. He is appreciative of the encouragement and support of his family,<br />

especially Elizabeth, Erica, Paul, and Kelly Brazis.<br />

Dr. Lee acknowledges the support and encouragement of the three chairmen with<br />

whom he has served over the years: Drs. Mort Goldberg, Dan B. Jones, and Thomas<br />

We<strong>in</strong>geist. He is grateful to his colleagues at the University of Iowa, Drs. Randy Kardon,<br />

Michael Wall, and Stan Thompson, for their <strong>in</strong>sight, support, and friendship. He thanks<br />

his parents Drs. Alberto C. Lee and Rosal<strong>in</strong>d G. Lee for <strong>in</strong>still<strong>in</strong>g <strong>in</strong> a young man the<br />

thirst for knowledge and <strong>in</strong>tellectual curiosity. He is particularly thankful to his lov<strong>in</strong>g,<br />

patient, and tolerant wife, Dr. Hilary A. Beaver, who made a baby (Rachael E. Lee) while<br />

he made a book.<br />

We appreciate the assistance of our editors at Thieme Medical Publishers. We thank<br />

the faculty and residents of the Departments of Ophthalmology, <strong>Neuro</strong>logy, and<br />

<strong>Neuro</strong>surgery at the University of Iowa Hospitals and Cl<strong>in</strong>ics, and the Departments<br />

of <strong>Neuro</strong>logy and Ophthalmology at the Mayo Cl<strong>in</strong>ic <strong>in</strong> Jacksonville, Florida, for their<br />

academic stimulation. We especially appreciate and extend our love to our wives and<br />

families.<br />

<strong>An</strong>drew G. Lee, M.D.<br />

Paul W. Brazis, M.D.


1 r<br />

The Diagnosis of Optic <strong>Neuro</strong>pathies<br />

The diagnosis of an optic neuropathy is usually made on cl<strong>in</strong>ical grounds alone. Several<br />

excellent references discuss <strong>in</strong> detail the anatomy of the optic nerve as well as<br />

exam<strong>in</strong>ation techniques (Burde, 1992; Miller, 1998; Trobe, 2001). The cl<strong>in</strong>ical features<br />

of optic neuropathies are summarized <strong>in</strong> Table 1–1. Other more sophisticated (and timeconsum<strong>in</strong>g)<br />

tests for optic neuropathy, such as visual evoked potentials, flicker fusion,<br />

formal color vision test<strong>in</strong>g, and contrast sensitivity, are not discussed.<br />

Once the diagnosis of optic neuropathy has been made, it is important to consider a<br />

wide differential diagnosis of possible etiologies, <strong>in</strong>clud<strong>in</strong>g hereditary, <strong>in</strong>flammatory,<br />

<strong>in</strong>filtrative, ischemic, demyel<strong>in</strong>at<strong>in</strong>g (optic neuritis), toxic, and compressive optic<br />

neuropathies. We refer the reader to the specific chapter on each type of optic<br />

neuropathy for further details.<br />

Can the Appearance of the Optic Nerve<br />

Differentiate Etiology?<br />

In general, the appearance of the optic nerve (e.g., normal, swollen, or pale) is not<br />

specific and cannot differentiate among various possible etiologies for optic neuropathy.<br />

Trobe et al reviewed 163 color fundus photographs of several entities result<strong>in</strong>g <strong>in</strong> optic<br />

Table 1–1. <strong>Cl<strong>in</strong>ical</strong> Features of an Optic <strong>Neuro</strong>pathy<br />

Decreased visual acuity<br />

Decreased color vision<br />

Visual field defect<br />

Ipsilateral relative afferent pupillary defect <strong>in</strong> unilateral or bilateral, asymmetric cases<br />

Light-near dissociation of the pupils <strong>in</strong> bilateral and symmetric cases<br />

Optic disc edema or disc atrophy (although the optic nerve may appear normal <strong>in</strong> retrobulbar optic<br />

neuropathy)<br />

1


2 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

atrophy, <strong>in</strong>clud<strong>in</strong>g glaucoma, central ret<strong>in</strong>al artery occlusion (CRAO), ischemic optic<br />

neuropathy (ION), optic neuritis (ON), hereditary optic neuropathy (Leber’s and non-<br />

Leber’s types), compressive optic neuropathy (CON), and traumatic optic neuropathy<br />

(TON) (Trobe, 1980). These photographs were reviewed by five ophthalmologists as<br />

‘‘unknowns.’’ Glaucoma, CRAO, and ION were correctly identified as the etiology by at<br />

least one of the five observers with an accuracy above 80%, but the rema<strong>in</strong><strong>in</strong>g etiologies<br />

were correctly identified <strong>in</strong> less than 50% of cases! Helpful features <strong>in</strong> differentiat<strong>in</strong>g the<br />

entities <strong>in</strong>cluded:<br />

1. The presence of ret<strong>in</strong>al arteriolar attenuation and sheath<strong>in</strong>g <strong>in</strong> ischemic lesions (e.g.,<br />

CRAO or ION).<br />

2. Temporal pallor <strong>in</strong> entities selectively <strong>in</strong>volv<strong>in</strong>g central vision and central visual field<br />

with spar<strong>in</strong>g of peripheral visual field (e.g., optic neuritis and toxic optic neuropathies).<br />

3. Superior or <strong>in</strong>ferior (sector) optic disc pallor <strong>in</strong> ION.<br />

Although optic disc cupp<strong>in</strong>g was often identified <strong>in</strong> glaucoma, it was also seen <strong>in</strong> 20%<br />

of cases not associated with glaucoma. Optic disc cupp<strong>in</strong>g <strong>in</strong> glaucoma cases, however,<br />

was more profound than <strong>in</strong> nonglaucomatous cases and greater neuroret<strong>in</strong>al rim pallor<br />

occurred <strong>in</strong> the nonglaucomatous cases. In patients with glaucoma, there is often<br />

absence of at least part of the neuroret<strong>in</strong>al rim, and the color of the rema<strong>in</strong><strong>in</strong>g rim is<br />

normal. With nonglaucomatous optic neuropathy, rarely is any area of the rim<br />

completely absent and the rema<strong>in</strong><strong>in</strong>g rim is often pale. Interest<strong>in</strong>gly, only 11% of<br />

these cases with a known history of papillitis or ION had sufficient clues to identify<br />

previous disc swell<strong>in</strong>g (Trobe, 1980).<br />

<strong>An</strong>other study suggested that optic disc appearance may help differentiate anterior<br />

ischemic optic neuropathy (AION) from ON, although there are overlapp<strong>in</strong>g features.<br />

Optic disc stereographs were reviewed by masked observers (87 AION and 68 ON)<br />

(Warner, 1997). Altitud<strong>in</strong>al disc swell<strong>in</strong>g was more than three times more common <strong>in</strong><br />

AION than ON, although most discs were diffusely swollen. Most patients with AION<br />

had hemorrhages, whereas most ON cases did not. Almost all discs with ON had<br />

normal color or were hyperemic; only 35% of discs with AION had pallid swell<strong>in</strong>g.<br />

Pallid swell<strong>in</strong>g was so rare <strong>in</strong> ON, however, that of discs with pallor, 93% had AION.<br />

Arterial attenuation was also much more typical of AION. AION was the cl<strong>in</strong>ical<br />

diagnosis <strong>in</strong> 82% of cases with altitud<strong>in</strong>al edema, 81% of cases with disc hemorrhage,<br />

93% of cases with pallid edema, and 90% of cases with arterial attenuation. A pale optic<br />

nerve with hemorrhage, regardless of type of edema, always represented AION (100%).<br />

A normal color nerve without hemorrhage reflected ON <strong>in</strong> 91% of cases, <strong>in</strong>creased from<br />

only 76% if hemorrhage was not considered. A hyperemic nerve with hemorrhage<br />

represented AION <strong>in</strong> 82% of cases, but if altitud<strong>in</strong>al edema was also present, AION<br />

<strong>in</strong>cidence <strong>in</strong>creased to 93%.<br />

In addition, numerous authors have stressed the localiz<strong>in</strong>g value to the optic chiasm<br />

or optic tract of a special type of optic atrophy caused by specific <strong>in</strong>volvement of the<br />

nerve fiber layer of the nasal and temporal ret<strong>in</strong>a, respectively. Involvement of these<br />

fibers results <strong>in</strong> atrophy of the nasal and temporal optic disc with spar<strong>in</strong>g of the <strong>in</strong>ferior<br />

and superior poles (‘‘band’’ or ‘‘bow tie’’ atrophy). Band atrophy occurs <strong>in</strong> the eye<br />

contralateral to the <strong>in</strong>volved optic tract and may be unilateral or bilateral with lesions of<br />

the optic chiasm.<br />

Neither the pattern (e.g., central scotoma, arcuate, altitud<strong>in</strong>al) of ipsilateral visual<br />

field impairment nor the severity of visual loss is pathognomonic for a specific optic


neuropathy, and virtually any visual field defect may occur with any optic neuropathy<br />

(Trobe, 1978). In their report on 35 eyes <strong>in</strong> 20 patients with CON and 70 eyes <strong>in</strong> 54<br />

patients with ON, Trobe and Glaser found central scotomas <strong>in</strong> 33% of cases of CON (vs.<br />

75% <strong>in</strong> ON) and felt that a central scotoma could not be used as a differentiat<strong>in</strong>g feature<br />

between the two entities (Trobe, 1978).<br />

The follow<strong>in</strong>g sections describe the evaluation of optic neuropathy; this approach is<br />

summarized <strong>in</strong> Figure 1–1. We beg<strong>in</strong> with an age-based differential diagnosis of an<br />

acute optic neuropathy. Two of the most common causes of acute optic neuropathy are<br />

AION and ON. Although there is considerable overlap <strong>in</strong> their cl<strong>in</strong>ical presentation, age<br />

can be used as an <strong>in</strong>itial differentiat<strong>in</strong>g feature <strong>in</strong> many cases (Rizzo, 1991). In younger<br />

patients (< 40 years old) with acute unilateral optic disc edema and evidence for an<br />

optic neuropathy, ON is more likely than AION. Conversely, <strong>in</strong> the older patient with<br />

acute optic disc edema and visual loss, AION is more common (class III).<br />

Is the <strong>Cl<strong>in</strong>ical</strong> Presentation Typical for<br />

<strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy?<br />

The features of typical AION are discussed <strong>in</strong> Chapter 4. If these features are present,<br />

the patient should undergo an evaluation for underly<strong>in</strong>g vasculopathic risk factors and<br />

giant cell arteritis (class III–IV, level B).<br />

Is the <strong>Cl<strong>in</strong>ical</strong> Presentation Typical for Optic<br />

Neuritis?<br />

The features and evaluation of typical ON are described <strong>in</strong> Chapter 2.<br />

Is the <strong>Cl<strong>in</strong>ical</strong> Presentation Consistent with<br />

Optic Disc Edema with a Macular Star<br />

(ODEMS)?<br />

The evaluation of optic disc edema with a macular star (ODEMS) is outl<strong>in</strong>ed <strong>in</strong><br />

Chapter 3.<br />

Is a Compressive Optic <strong>Neuro</strong>pathy Present?<br />

The Diagnosis of Optic <strong>Neuro</strong>pathies 3<br />

Compressive optic neuropathy (CON) usually causes pa<strong>in</strong>less, progressive, gradual loss<br />

of visual function (visual acuity, visual field, and color vision), a relative afferent<br />

pupillary defect (<strong>in</strong> unilateral or asymmetric cases), and optic disc edema or atrophy<br />

(but the optic disc may <strong>in</strong>itially appear normal) (Burde, 1992; Miller, 1998; Trobe, 1978).<br />

Unfortunately, CON may also present acutely or be steroid responsive and may<br />

masquerade as an <strong>in</strong>flammatory or demyel<strong>in</strong>at<strong>in</strong>g optic neuropathy.<br />

CON that is due to orbital or <strong>in</strong>tracanalicular lesions may result <strong>in</strong> ipsilateral optic<br />

disc edema followed by optic atrophy and may be associated with the development of<br />

abnormal blood vessels on the disc head called optociliary shunt vessels. These vessels


4 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 1–1. Evaluation of an optic neuropathy.


probably represent collateral circulation between the ret<strong>in</strong>al and choroidal venous<br />

circulation that allows venous blood to bypass the compression at the level of the<br />

optic nerve. The presence of an unexpla<strong>in</strong>ed relative afferent pupillary defect or<br />

unexpla<strong>in</strong>ed optic atrophy should prompt appropriate neuroimag<strong>in</strong>g studies (usually<br />

magnetic resonance imag<strong>in</strong>g of the <strong>in</strong>volved optic nerve) (Guy, 1990). Orbital signs such<br />

as proptosis, chemosis, or conjunctival <strong>in</strong>jection should direct the imag<strong>in</strong>g studies to<br />

the orbit (class III–IV, level B). Table 1–2 lists some possible causes of CON. Tables<br />

1–3, 1–4, 1–5, and 1–6, and Figures 1–2 and 1–3, review the ma<strong>in</strong> cl<strong>in</strong>ical features<br />

of men<strong>in</strong>gioma affect<strong>in</strong>g the anterior visual pathways, optic nerve glioma, and<br />

craniopharyngioma.<br />

Is There <strong>Cl<strong>in</strong>ical</strong> Evidence for an Infiltrative or<br />

Inflammatory Optic <strong>Neuro</strong>pathy?<br />

Infiltrative or <strong>in</strong>flammatory optic neuropathy may present with the typical features of<br />

an optic neuropathy discussed above. As described <strong>in</strong> Chapter 2, the cl<strong>in</strong>ical profile of<br />

typical ON (e.g., pa<strong>in</strong> with eye movement, typical age of onset, etc.) should be<br />

Table 1–2. Lesions Caus<strong>in</strong>g Compressive Optic <strong>Neuro</strong>pathy<br />

The Diagnosis of Optic <strong>Neuro</strong>pathies 5<br />

Intracranial or <strong>in</strong>traorbital benign and malignant tumors (Burde, 1992; Golnik, 1996; Katz, 1991;<br />

Kazim, 1992; Kodsi, 1993; Lee, 1997b)<br />

Men<strong>in</strong>gioma (see Table 1–3)<br />

Glioma (see Tables 1–4 and 1–5)<br />

Craniopharyngioma (see Table 1–6)<br />

Pituitary adenoma<br />

Lymphoma and leukemia (Brazis, 1995; Nygaard, 1991; Park, 1993; Roth, 2000)<br />

Germ<strong>in</strong>oma (Nakajima, 2001)<br />

S<strong>in</strong>us histocytosis with lymphadenopathy (Goldberg, 1998)<br />

Nasopharyngeal cancer<br />

Metastasis (Kattah, 1993; Newsom, 1999; Pengel, 1997)<br />

Extramedullary hematopoiesis (Aarabi, 1998)<br />

Orbital fractures<br />

Pneumatocele (We<strong>in</strong>, 1999)<br />

Inflammatory or <strong>in</strong>fectious diseases (e.g., mucoceles, scleros<strong>in</strong>g orbital <strong>in</strong>flammation) (Hao, 1994;<br />

Loehrl, 2000; Thorne, 2002; Yamaguchi, 1997)<br />

Idiopathic hypertrophic cranial pachymen<strong>in</strong>gitis (Tamai, 2000)<br />

Primary bone diseases (e.g., osteopetrosis, fibrous dysplasia, craniometaphyseal dysplasia,<br />

fibrosclerosis, Paget’s disease, aneurysmal bone cyst, pneumos<strong>in</strong>us dilatans, etc.) (Arroyo, 1991;<br />

Bland, 1992; Bocca, 1998; Caldermeyer, 1995; Chen, 1997; Daly, 1994; Grimm, 1995; Joseph, 1995;<br />

Katz, 1998; Michael, 2000; Saito, 1990; Schaffler, 2000; Skolnick, 2000; Steel, 1995; Stretch, 1992;<br />

Weisman, 1990)<br />

Vascular etiologies<br />

Orbital hemorrhage (Amrith, 1990; Buus, 1990; Dolman, 1991; Moorthy, 1992; Muthukumar, 1997)<br />

Orbital venous anomalies<br />

Carotid artery and anterior communicat<strong>in</strong>g artery aneurysms (Bakker, 1999; Miller, 1995; Misra,<br />

1991; Ortiz, 1991; Shutter, 1993; Vargas, 1994)<br />

Dolichoectasia of the carotid artery (Colap<strong>in</strong>to, 1996; Jacobson, 1999; Savy, 1996)<br />

(cont<strong>in</strong>ued)


6 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 1–2. (cont<strong>in</strong>ued)<br />

Compression by supracl<strong>in</strong>oid carotid artery (Ishikawa, 2000; Jacobson, 1999)<br />

Arteriovenous malformations<br />

Thyroid ophthalmopathy (see Chapter 16)<br />

Hydrocephalus<br />

Iatrogenic<br />

Intracranial catheters (Shults, 1993)<br />

Intranasal balloon catheter<br />

Intracranial oxidized cellulose hemostat<br />

Postoperative (e.g., post–optic canal decompression, s<strong>in</strong>us surgery) (Carter, 1998; Edelste<strong>in</strong>, 1998)<br />

Musl<strong>in</strong>oma (Bhatti, 2000; Lee, 1997a)<br />

differentiated from atypical ON (e.g., lack of pa<strong>in</strong>, atypical age of onset, anterior or<br />

posterior segment <strong>in</strong>flammation, etc.). Atypical cases should undergo an evaluation for<br />

<strong>in</strong>filtrative or <strong>in</strong>flammatory etiologies as listed <strong>in</strong> Table 1–7 (class IV, level C).<br />

Patients with <strong>in</strong>flammatory autoimmune optic neuropathy often have a progressive<br />

or recurrent steroid responsive or steroid dependent cl<strong>in</strong>ical course. A more detailed<br />

discussion of the evaluation of atypical ON and these alternative etiologies is found <strong>in</strong><br />

Chapter 2. In patients with a possible <strong>in</strong>flammatory or <strong>in</strong>filtrative optic neuropathy, a<br />

Table 1–3. <strong>Cl<strong>in</strong>ical</strong> Features of Men<strong>in</strong>giomas Affect<strong>in</strong>g the <strong>An</strong>terior Visual Pathway<br />

Most commonly middle aged (peak <strong>in</strong> the 5th decade)<br />

Female : male ¼ 3:1<br />

White > African-American<br />

Increased frequency <strong>in</strong> neurofibromatosis<br />

May grow <strong>in</strong> pregnancy<br />

Symptoms<br />

Pa<strong>in</strong>less (rarely retro-orbital pa<strong>in</strong>)<br />

Gradually progressive loss of vision or visual field defects<br />

If frontal, may have mental status changes<br />

May have diplopia if cavernous s<strong>in</strong>us <strong>in</strong>volvement<br />

Olfactory groove may have anosmia<br />

Ophthalmic signs<br />

May have relative afferent pupillary defect (RAPD)<br />

Optic disc edema (<strong>in</strong>clud<strong>in</strong>g papilledema) and=or optic atrophy<br />

May see optociliary shunt vessel (disc collaterals, visual loss, and optic atrophy—characteristic<br />

triad)<br />

Indocyan<strong>in</strong>e green videoangiography may show abnormal hemodynamics of choroidal circulation<br />

<strong>in</strong> patients with sheath men<strong>in</strong>giomas (Muci-Mendoza, 1999)<br />

Visual acuity loss or visual field defects<br />

Generalized depression or constriction (orbital=canal=sphenoid)<br />

Central, paracentral, or cecocentral (orbital=canal)<br />

Homonymous hemianopsia (suprasellar=sphenoid)<br />

Bitemporal hemianopsia (suprasellar=sphenoid)<br />

May have proptosis (orbital=sphenoid)<br />

Motility deficits


Table 1–3. (cont<strong>in</strong>ued)<br />

Sixth nerve palsy (most common), but any ocular motor palsy (third, fourth, sixth, comb<strong>in</strong>ation)<br />

Restrictive extraocular muscle mechanical limitation if orbital lesion<br />

Paretic pattern if suprasellar=sphenoid=cavernous s<strong>in</strong>us<br />

Differential diagnosis of optic nerve sheath men<strong>in</strong>gioma<br />

Sarcoidosis and other granulomatous diseases<br />

Optic nerve sheath men<strong>in</strong>gocele (Garrity, 1990)<br />

Idiopathic hypertrophic cranial pachymen<strong>in</strong>gitis<br />

Idiopathic <strong>in</strong>flammatory perioptic neuritis<br />

Metastasis (e.g., breast cancer) and other tumors (Newman, 1996)<br />

Source: Al-Mefty, 1990; Cunliffe, 1992; DeMonte, 1994; Dutton, 1991, 1992; Fayaz, 1999; F<strong>in</strong>eman, 1999; Garrity,<br />

1990; Goldsmith, 1994a,b; Grunberg, 1991; Hirsch, 1993; K<strong>in</strong>jo, 1995; Kl<strong>in</strong>k, 2000; Kotapka, 1994; Larson, 1995;<br />

Lee, 1996; Lee Wan, 1990; Lundsford, 1994; Mafee, 1999; Maroon, 1994; Moyer, 2000; Muci-Mendoza, 1999;<br />

Newman, 1994, 1996; Rub<strong>in</strong>ste<strong>in</strong>, 1994; Sadun, 1993; Stafford, 1998; Vaphiades, 2001; Weaver, 1993; Wilson, 1994;<br />

Wroe, 1991; Zimmerman, 1990b.<br />

Table 1–4. <strong>Cl<strong>in</strong>ical</strong> Features of Optic Glioma<br />

The Diagnosis of Optic <strong>Neuro</strong>pathies 7<br />

Age<br />

Can present at any age<br />

Usually < 10 years old (75%)<br />

Mean 8.8 years (90%< 20 years old)<br />

No gender predilection<br />

Association with neurofibromatosis type 1 (NF1)<br />

29% of optic nerve gliomas occur <strong>in</strong> sett<strong>in</strong>g of NF1<br />

15% of NF1 who have no visual symptoms have glioma<br />

Patients with NF1 may have borderl<strong>in</strong>e favorable or no different prognosis than patients without<br />

NF1<br />

Location of <strong>in</strong>filtration (topographic localization)<br />

One or both optic nerves (nerve alone <strong>in</strong> 24%)<br />

Optic disc (1.6%)<br />

Optic chiasm (75.7%) or tract<br />

In general, the more anterior the lesion, the better the prognosis<br />

Signs and symptoms<br />

Proptosis<br />

Pa<strong>in</strong>less progressive visual loss (optic neuropathy)<br />

Visual loss at presentation <strong>in</strong> 87.5%<br />

Hypothalamic symptoms (26%) or endocr<strong>in</strong>ologic: diabetes <strong>in</strong>sipidus, diencephalic wast<strong>in</strong>g,<br />

precocious puberty, somnolence, growth failure<br />

Disc swell<strong>in</strong>g (35%) or atrophy (59%)<br />

Rare optociliary shunt vessels<br />

Strabismus<br />

Nystagmus (23%) (spasmus nutans–like nystagmus)<br />

Visual field defects (central or bitemporal)<br />

Headache (23%)<br />

Intr<strong>in</strong>sic enlargement of optic nerve with variable contrast enhancement<br />

(cont<strong>in</strong>ued)


8 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 1–4. (cont<strong>in</strong>ued)<br />

<strong>Neuro</strong>imag<strong>in</strong>g<br />

Magnetic resonance (MR) scan with gadol<strong>in</strong>ium superior to computed tomography (CT) scan<br />

Differential diagnosis<br />

Parenchymal optic nerve enlargement<br />

Sarcoid<br />

Tuberculosis<br />

Syphilis<br />

Optic neuritis (e.g., multiple sclerosis)<br />

Optic nerve <strong>in</strong>filtration (e.g., leukemia, lymphoma)<br />

Extraparenchymal<br />

Optic nerve sheath men<strong>in</strong>gioma<br />

Optic nerve sheath metastasis<br />

Treatment<br />

Controversial<br />

Gliomas are often static lesions<br />

May enlarge and cause progressive visual loss <strong>in</strong> one or both eyes<br />

Treatment recommendations outl<strong>in</strong>ed <strong>in</strong> Figure 1–3 (Lee, 1999)<br />

Observation <strong>in</strong> stable cases is reasonable (class III–IV, level B)<br />

Radiation therapy (class III–IV, level C)<br />

Usually 5400 cGy <strong>in</strong> daily dose fractions 150–180 cGy<br />

Radiation risks <strong>in</strong>clude cerebrovascular disease, moyamoya disease, cerebral atrophy,<br />

subnormal <strong>in</strong>telligence or learn<strong>in</strong>g disabilities, secondary malignancies (e.g., astrocytomas),<br />

cataracts, radiation ret<strong>in</strong>opathy or optic neuropathy, endocr<strong>in</strong>opathy, hypothalamic<br />

dysfunction<br />

Chemotherapy—various agents <strong>in</strong> various comb<strong>in</strong>ations: act<strong>in</strong>omyc<strong>in</strong>-D, v<strong>in</strong>crist<strong>in</strong>e, 2 chloroethylcyclohexyl-1-nitrosourea<br />

(CCNU), 6-thioguan<strong>in</strong>e, procarbaz<strong>in</strong>e, dibromodulatol, topotecan,<br />

carboplat<strong>in</strong>, etoposide (class III–IV, level C)<br />

Surgical therapy (class III–IV, level C)<br />

Optic nerve glioma with no useful vision or progression may be resected<br />

Chiasmal hypothalamic, optic tract glioma cannot be resected<br />

Exophytic component of tumor may be debulked<br />

Hydrocephalus may require shunt<strong>in</strong>g procedure<br />

Prognosis<br />

80% have stable vision after an <strong>in</strong>itial period of visual loss<br />

10-year survival rate 85–100% <strong>in</strong> various series<br />

Spontaneous regression may occur<br />

Source: Brodovsky, 1997; Chateil, 2001; Créange, 1999; Cumm<strong>in</strong>gs, 2000; Deliganis, 1996; DiMario, 1993; Drake,<br />

1991; Dunn, 1990; Dutton, 1994; Epste<strong>in</strong>, 1992; Friedman, 1997; Fuss, 1999; Garvey, 1996; Gayre, 2001; Grill, 1999;<br />

Hoffman, 1993; Imes, 1991; Janss, 1995; Jenk<strong>in</strong>, 1993; Kestle, 1993; Kovalic, 1990; Lev<strong>in</strong>, 1992; Listernick, 1992,<br />

1994, 1997; Liu, 1992a, 2001; Moghrabi, 1993; Nishio, 1993; Oaks, 1990; Packer, 1993, 1994; Parsa, 2001; Petronio,<br />

1991; Pierce, 1990; Rodriguez, 1990; Shuper, 1997; Sutton, 1994, 1995; Wisoff, 1990a,b.<br />

lumbar puncture and additional laboratory studies (e.g., complete blood count, syphilis<br />

serology, ant<strong>in</strong>uclear antibody, Lyme titer, chest radiograph, etc.) should be considered.<br />

The appropriate specific laboratory studies should be directed by pert<strong>in</strong>ent history and<br />

exam<strong>in</strong>ation f<strong>in</strong>d<strong>in</strong>gs. Table 1–8 reviews the evaluation of an atypical or unexpla<strong>in</strong>ed<br />

optic neuropathy (class IV, level C).


Is There Evidence for Traumatic Optic<br />

<strong>Neuro</strong>pathy?<br />

The features and evaluation of TON are discussed <strong>in</strong> Chapter 6.<br />

Is There Evidence for a Toxic or Nutritional<br />

Optic <strong>Neuro</strong>pathy?<br />

The Diagnosis of Optic <strong>Neuro</strong>pathies 9<br />

Table 1–5. <strong>Cl<strong>in</strong>ical</strong> Features of Adult Malignant Gliomas of the <strong>An</strong>terior Visual Pathway<br />

Age at presentation: middle-age; range 6–79, mean 47.8; 73% were 40 or older<br />

Sex: 65% males and 35% females<br />

<strong>Cl<strong>in</strong>ical</strong> signs and symptoms<br />

Decreased vision<br />

Bilateral or unilateral<br />

Visual acuity usually falls to bl<strong>in</strong>dness over average of 11.1 weeks (range 1–60 weeks)<br />

Optic nerve visual field defects<br />

Normal discs, optic disc swell<strong>in</strong>g or atrophy<br />

Proptosis<br />

Ophthalmoplegia<br />

Retro-orbital pa<strong>in</strong> common<br />

Macular edema, cherry-red spot, and flame hemorrhage or hemorrhagic papillopathy may<br />

simulate central ret<strong>in</strong>al ve<strong>in</strong> occlusion (CRVO)<br />

Not associated with NF1 (neurofibromatosis)<br />

Location<br />

Involves chiasm and at least one contiguous optic nerve; often <strong>in</strong>volves hypothalamus, third<br />

ventricle, basal ganglia, temporal lobe<br />

Primarily affects chiasm and <strong>in</strong>tracranial optic nerves<br />

Treatment<br />

Radiation<br />

Chemotherapy<br />

Treatment may temporarily improve or rarely stabilize vision<br />

Pathology: malignant astrocytoma<br />

Prognosis<br />

Poor<br />

Overall mortality 97%<br />

Mean survival 8.7 months (3 to 24 months)<br />

Patients with toxic optic neuropathies usually present with pa<strong>in</strong>less, bilaterally<br />

symmetric, and slowly progressive visual loss. The visual field defect is typically<br />

bilateral central or cecocentral scotomas. The optic nerves may appear normal until<br />

late <strong>in</strong> the course of the disease when optic atrophy (often temporal pallor) usually<br />

develops. Occasionally the discs may be swollen and slightly hyperemic. A number of<br />

medications and tox<strong>in</strong>s may result <strong>in</strong> optic neuropathy (Brazis, 1998; Danesh-Meyer,<br />

2000; Sedwick, 1991, 1992). These are summarized <strong>in</strong> Table 1–9. Most of these etiologies<br />

can be excluded by a careful and detailed exposure and occupational history.


10 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 1–6. <strong>Cl<strong>in</strong>ical</strong> Feature of Craniopharyngiomas<br />

<strong>An</strong>y age<br />

Bimodal <strong>in</strong>cidence<br />

Peak age < 20 and 50 to 70 years old<br />

Equal sex distribution<br />

<strong>Cl<strong>in</strong>ical</strong><br />

Decreased visual acuity (optic nerve, chiasm, optic tract)<br />

In children—often decreased acuity and papilledema (50%)<br />

In adults—less commonly papilledema<br />

Signs of <strong>in</strong>creased <strong>in</strong>tracranial pressure (headache, nausea, vomit<strong>in</strong>g)<br />

Endocr<strong>in</strong>e<br />

Absent or precocious sexual development<br />

Growth disturbances<br />

Variable hypopituitarism<br />

Diabetes <strong>in</strong>sipidus<br />

Obesity<br />

Impotence<br />

Amenorrhea=galactorrhea<br />

Somnolence, confusion, or dementia (especially <strong>in</strong> older patients)<br />

Ocular f<strong>in</strong>d<strong>in</strong>gs<br />

Seesaw nystagmus<br />

Visual field defects<br />

Inferior bitemporal field defect (most have field defects)<br />

May have <strong>in</strong>congruous, asymmetric defect<br />

May <strong>in</strong>volve optic tract<br />

May cause ocular motor nerve palsies<br />

<strong>Neuro</strong>imag<strong>in</strong>g<br />

Magnetic resonance imag<strong>in</strong>g (MRI) del<strong>in</strong>eates tumor and <strong>in</strong>tracranial anatomy<br />

Computed tomography (CT) shows calcification better<br />

Occasionally may <strong>in</strong>filtrate optic nerve, chiasm tract, mimick<strong>in</strong>g primary <strong>in</strong>tr<strong>in</strong>sic tumor such as<br />

optic glioma (‘‘potbelly’’ appearance of optic nerve)<br />

Treatment<br />

Surgical: complete vs. partial resection<br />

Radiotherapy<br />

Cyst aspiration and P32 <strong>in</strong>stillation<br />

Consider <strong>in</strong>tracystic chemotherapy (bleomyc<strong>in</strong>)<br />

Secondary malignant glioma can develop after radiation<br />

therapy<br />

Source: Brummitt, 1992; Crotty, 1995; El-Mahdy, 1998; Fahlbusch, 1999; Honegger, 1999; Petito, 1996; Rao, 1995;<br />

We<strong>in</strong>er, 1994; Youl, 1990.<br />

Ethambutol is a commonly used medication that may cause toxic optic neuropathy.<br />

The mechanism of ethambutol toxicity is poorly understood but may be related to z<strong>in</strong>c<br />

depletion (Schild, 1991). The <strong>in</strong>cidence of toxicity is dose and duration dependent (Choi,<br />

1997; Harcombe, 1991; Kumar, 1993; Russo, 1994; Schild, 1991; Seth, 1991; Thomas, 1994;<br />

Tsai, 1997), with the <strong>in</strong>cidence of optic neuropathy be<strong>in</strong>g as high as 6% at doses of<br />

25 mg=kg=day. Doses less than 15 mg=kg=day are thought to be relatively safe, but optic<br />

neuropathy may occur even at ‘‘safe’’ doses.


Figure 1–2. Treatment algorithm for men<strong>in</strong>giomas affect<strong>in</strong>g optic pathway.<br />

The Diagnosis of Optic <strong>Neuro</strong>pathies 11<br />

Barron et al reported ethambutol optic neuropathy <strong>in</strong> 3 of 304 (0.99%) patients treated<br />

with ethambutol at 25 mg=kg=day for 60 days followed by 15 mg=kg=day (Barron,<br />

1974). Leibold described two types of visual loss due to ethambutol toxicity: a central<br />

toxicity (e.g., decreased visual acuity, central scotomas, and impaired color perception)<br />

and a periaxial toxicity (e.g., normal or almost normal visual acuity, normal color<br />

perception, and peripheral quadrantic scotomas or constriction) (Leibold, 1966). There<br />

was a 20% <strong>in</strong>cidence of central toxicity and an 11% <strong>in</strong>cidence of periaxial toxicity <strong>in</strong> 35<br />

patients receiv<strong>in</strong>g doses higher than 35 mg=kg=day for a m<strong>in</strong>imum of 185 days. A 5.3%<br />

<strong>in</strong>cidence of periaxial toxicity occurred <strong>in</strong> the 38 patients receiv<strong>in</strong>g less than<br />

35 mg=kg=day (Leibold, 1966). Although many authors feel that doses of 25 mg=kg=day<br />

=day for less than 2 months followed by ma<strong>in</strong>tenance doses of 15 mg=kg=day are safe,<br />

there are cases of visual loss even at ‘‘safe’’ doses (Alvarez, 1993; Thomas, 1994; Tsai,<br />

1997). Bronte-Stewart et al reported five patients with severe visual loss after<br />

25 mg=kg=day for 2 months followed by 15 mg=kg=day (Bronte-Stewart, 1976). Three


12 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 1–3. Treatment algorithm for optic pathway gliomas based on location. (Repr<strong>in</strong>ted from Lee,<br />

1999, with permission from # Swets & Zeitl<strong>in</strong>ger.)<br />

of these five patients had renal disease that may have <strong>in</strong>creased drug levels because 70%<br />

of the ethambutol dose is excreted by the kidneys (Citron, 1986). Tsai and Lee reported<br />

10 patients with ethambutol optic neuropathy from ‘‘safe’’ doses, stress<strong>in</strong>g that there is<br />

<strong>in</strong> fact no safe dose of ethambutol. Toxicity <strong>in</strong> this study was most prom<strong>in</strong>ent <strong>in</strong><br />

<strong>in</strong>dividuals over the age of 60 years, and thus this drug must be used with caution,<br />

especially <strong>in</strong> elderly patients (Tsai, 1997). Isoniazid (isonicot<strong>in</strong>ic acid hydrazide, INH),<br />

especially <strong>in</strong> comb<strong>in</strong>ation with ethambutol, has also been reported to cause a toxic optic<br />

neuropathy, and isoniazid toxicity should be suspected as the etiology <strong>in</strong> cases of<br />

persistent visual loss despite discont<strong>in</strong>uation of ethambutol (Jimenez-Lucho, 1987).<br />

Visual evoked potential studies may be useful <strong>in</strong> evaluat<strong>in</strong>g patients with early<br />

ethambutol toxicity (Kumar, 1993).<br />

Nutritional deficiencies may result <strong>in</strong> optic neuropathy (Bourne, 1998; Lessell, 1998).<br />

Some vitam<strong>in</strong> and nutrient deficiencies caus<strong>in</strong>g an optic neuropathy are listed <strong>in</strong> Table<br />

1–10.<br />

Pernicious anemia or dietary deficiency (e.g., vegetarian) may result <strong>in</strong> a vitam<strong>in</strong> B 12<br />

deficiency optic neuropathy. The pathophysiology of ‘‘alcohol amblyopia’’ is probably<br />

related to a deficiency (nutritional amblyopia) of B 12, thiam<strong>in</strong>e, and=or folate (rather<br />

than a direct toxic effect of alcohol). The ability of tobacco alone to cause a toxic optic<br />

neuropathy has been asserted by several authors (Samples and Younge, 1981). Samples<br />

and Younge (1981), for example, state that central and cecocentral scotomas may occur<br />

<strong>in</strong> association with smok<strong>in</strong>g alone, especially cigar smok<strong>in</strong>g. A toxic effect of cyanide<br />

may be the basis for tobacco optic neuropathy (Bronte-Stewart, 1976). Smok<strong>in</strong>g may<br />

also impair <strong>in</strong>test<strong>in</strong>al vitam<strong>in</strong> B 12 absorption.<br />

Patients suspected of harbor<strong>in</strong>g a toxic or nutritional optic neuropathy should be<br />

screened for nutritional deficiencies and treated with appropriate supplementation<br />

(class IV, level C). These patients should be urged to discont<strong>in</strong>ue alcohol and tobacco


Table 1–7. Infiltrative or Inflammatory Optic <strong>Neuro</strong>pathies<br />

The Diagnosis of Optic <strong>Neuro</strong>pathies 13<br />

Neoplastic<br />

Plasmacytoma and multiple myeloma (Ma<strong>in</strong>i, 1997)<br />

Carc<strong>in</strong>omatous men<strong>in</strong>gitis (Freilich, 1995; Ing, 1996; Katz, 1991; McFadzean, 1994; Sung, 1998;<br />

Teare, 1991)<br />

Leukemia (Brown, 1992a; Camera, 1993; Costagliola, 1992; Cramer, 1996; Horton, 1992; Pierro,<br />

1992; Shibasaki, 1992; Wallace, 1991)<br />

Lymphoma (Dunker, 1996; Fierz, 2001; Forman, 1998; Guyer, 1990; Noda, 1993; Siatkowski, 1992;<br />

Strom<strong>in</strong>ger, 1993; Yamamoto, 1994; Zaman, 1993)<br />

Infiltrative orbitopathy <strong>in</strong> POEMS syndrome<br />

Reactive lymphocytosis with pseudolymphoma from phenyto<strong>in</strong> (Galetta, 1991)<br />

Paraneoplastic disease (Ing, 1996; Lieberman, 1999; Luiz, 1998; Malik, 1992; Oohira, 1991;<br />

Thambisetty, 2001)<br />

Idiopathic hypertrophic cranial pachymen<strong>in</strong>gitis (Aylward, 1995; Botella, 1994; Girk<strong>in</strong>, 1998;<br />

Hamilton, 1993; Jacobson, 1996; Kawano, 1995; Lam, 1994; Lev<strong>in</strong>e, 1993; Mamelak, 1993;<br />

Nishizaki, 1997; Olmos, 1993; Parney, 1997; Rootman, 1994)<br />

Infectious etiologies<br />

Cryptococcal men<strong>in</strong>gitis (Cohen, 1993)<br />

Aspergillus (Brown, 1994; D<strong>in</strong>owitz, 2001; Hutnik, 1997; Johnson, 1999)<br />

Mucormycosis (Balch, 1997)<br />

Cysticercosis (Chandra, 2000; Gulliani, 2001; Gurha, 1999)<br />

Lyme disease (Lesser, 1990)<br />

Tuberculosis<br />

Toxoplasmosis (Song, 2002)<br />

Syphilis (Danesh-Meyer, 1999)<br />

Cat-scratch disease (Golnik, 1994b)<br />

HIV (AIDS) (Cacciatori, 1996)<br />

Inflammatory diseases (Burde, 1992)<br />

Churg-Strauss (Acheson, 1993)<br />

Contiguous s<strong>in</strong>us disease<br />

Behçet’s disease<br />

Sarcoidosis (Achiron, 1995; Beck, 1994; Carmody, 1994; DeBroff, 1993; Ing, 1997; Kosmorsky, 1996;<br />

Pelton, 1999; Sharma, 1991; Silver, 1994; Thorne, 1998)<br />

Wegener’s granulomatosis (Belden, 1993)<br />

Systemic lupus erythematosus (Ahmadieh, 1994; Rosenbaum, 1997; Siatkowski, 2001)<br />

Sjögren’s syndrome<br />

Relaps<strong>in</strong>g polychondritis<br />

Polyarteritis nodosa<br />

Inflammatory bowel disease<br />

Granulomatous hypophysitis (Arsava, 2001)<br />

Isolated optic nerve pseudotumor (Patankar, 2000)<br />

Scleros<strong>in</strong>g orbital <strong>in</strong>flammation (Thorne, 2002)<br />

use. Both serum and erythrocyte folate levels should be checked because there may be<br />

variability <strong>in</strong> the serum folate level alone (especially related to recent meals) (Golnik,<br />

1994).<br />

Toxic or nutritional optic neuropathies are pa<strong>in</strong>less, subacute <strong>in</strong> onset, and bilateral,<br />

and usually <strong>in</strong>volve central visual acuity and visual fields (e.g., central and cecocentral


14 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 1–8. Evaluation of an Atypical or Unexpla<strong>in</strong>ed Optic <strong>Neuro</strong>pathy<br />

First-l<strong>in</strong>e test<strong>in</strong>g<br />

Magnetic resonance imag<strong>in</strong>g of optic nerve(s)<br />

Erythrocyte sedimentation rate<br />

Complete blood count with differential<br />

Syphilis serology<br />

<strong>An</strong>t<strong>in</strong>uclear antibody (ANA)<br />

Chest radiograph<br />

<strong>An</strong>giotens<strong>in</strong>-convert<strong>in</strong>g enzyme (ant<strong>in</strong>eutrophil cytoplasmic antibody, ANCA)<br />

Lumbar puncture<br />

Second-l<strong>in</strong>e test<strong>in</strong>g<br />

Gallium scan if sarcoidosis suspected<br />

Purified prote<strong>in</strong> derivative (PPD) sk<strong>in</strong> test<strong>in</strong>g if tuberculosis suspected<br />

<strong>An</strong>ti–double-stranded DNA, complement levels, etc., if systemic lupus erythematosus or other<br />

collagen vascular disease suspected<br />

Leber’s hereditary optic neuropathy mutation blood test<br />

Heavy metal screen<br />

Serum vitam<strong>in</strong> B 12 and folate levels<br />

Lyme titer if endemic area or exposure history<br />

Paraneoplastic antibody profile (e.g., autoantibodies for collaps<strong>in</strong> response mediated prote<strong>in</strong><br />

(CRMP)-5 may be associated with optic neuropathy <strong>in</strong> patients with lung cancer, especially<br />

small-cell type, or thymoma) (Cross, 2002; Thambisetty, 2001; Yu, 2001)<br />

Consider more specific serologic studies if <strong>in</strong>fectious process suspect (e.g., Bartonella titers for<br />

cat-scratch disease, toxoplasmosis titers, toxocara titers, etc.)<br />

scotomas), but their cl<strong>in</strong>ical presentations may be variable. Unfortunately, CON may<br />

mimic the cl<strong>in</strong>ical presentation of toxic optic neuropathy, and neuroimag<strong>in</strong>g is recommended.<br />

The determ<strong>in</strong>ation of presumed toxic or nutritional optic neuropathy should<br />

<strong>in</strong>clude a complete evaluation to exclude other etiologies of bilateral, pa<strong>in</strong>less, and<br />

progressive optic neuropathies (e.g., hereditary optic neuropathy, bilateral compressive<br />

optic neuropathy, etc.). The evaluation of presumed toxic optic neuropathy is outl<strong>in</strong>ed<br />

<strong>in</strong> Table 1–11 (class IV, level C).<br />

Is There a History of Radiation Exposure to<br />

the Optic Nerves?<br />

Radiation optic neuropathy (RON) is thought to be an ischemic disorder of the optic<br />

nerve that usually results <strong>in</strong> irreversible severe visual loss months to years after<br />

radiation therapy to the bra<strong>in</strong> or orbit (Arnold, 1995; Borruat, 1993, 1996; Ebner, 1995;<br />

Girk<strong>in</strong>, 1997; Glantz, 1994; Goldsmith, 1992; Guy, 1991, 1995; Hudg<strong>in</strong>s, 1992; Jiang, 1994;<br />

Landau, 1996; Leber, 1998; Liu, 1992; McClellan, 1995; Parsons, 1994; Polak, 1995;<br />

Roden, 1990; Tachibana, 1990; Young, 1992; Zimmerman, 1990). It is most often a<br />

retrobulbar optic neuropathy, and thus the optic nerve may appear normal on <strong>in</strong>itial<br />

exam<strong>in</strong>ation. Approximately three fourths of patients have bilateral <strong>in</strong>volvement. The<br />

visual loss is characteristically rapid and progressive, with the disc becom<strong>in</strong>g pale over<br />

a period of 4 to 6 weeks. F<strong>in</strong>al vision is NLP <strong>in</strong> 45% and worse than 20=200 <strong>in</strong> an


Table 1–9. Etiologies for Toxic Optic <strong>Neuro</strong>pathy<br />

The Diagnosis of Optic <strong>Neuro</strong>pathies 15<br />

Common etiologies<br />

Ethambutol—tuberculosis therapy (Harcombe, 1991; Kumar, 1993;<br />

Russo, 1994; Schild, 1991; Seth, 1991; Thomas, 1994; Tsai, 1997)<br />

Ethanol and tobacco (tobacco alcohol amblyopia) (Danesh-Meyer, 2000; Sedwick, 1991, 1992)<br />

Less common etiologies<br />

Amantad<strong>in</strong>e—antiviral, Park<strong>in</strong>son’s disease<br />

Amiodarone (Cardarone)—cardiac disease (Macaluso, 1999; Sedwick, 1992; Speicher, 2000; Sreih,<br />

1999)<br />

Amoproxan—vasodilator and antiarrhythmic<br />

<strong>An</strong>il<strong>in</strong>e dyes<br />

Aspidium (male fern)<br />

Barbiturates—sedative, anticonvulsant<br />

Cafergot—headache<br />

Carbon disulfide—manufacture of viscose rayon fibers and cellophane films<br />

Carbon monoxide (Simmons, 1998)<br />

Carbon tetrachloride—manufactur<strong>in</strong>g of refrigerants and aerosols, dry-clean<strong>in</strong>g fluid, fat solvent,<br />

fire ext<strong>in</strong>guishers, <strong>in</strong>secticides, shampoo<br />

Cephalorid<strong>in</strong>e—antibiotic<br />

Chloramphenicol—antibiotic (Thomas, 1994)<br />

Chloronitrobenzene and d<strong>in</strong>itrobenzene—explosives<br />

Chlorpromaz<strong>in</strong>e (Thoraz<strong>in</strong>e)—antipsychotic<br />

Chlorpropamide (Diabenese)—diabetes<br />

Cimetid<strong>in</strong>e (Sa’adah, 1999)<br />

Ciprofloxac<strong>in</strong> (Cipro)—antibiotic (Vrabec, 1990)<br />

Cisplat<strong>in</strong> plus carboplat<strong>in</strong>—chemotherapy (Caraaceni, 1997)<br />

Cisplat<strong>in</strong> plus carmust<strong>in</strong>e—chemotherapy (Wang, 2000)<br />

Clioqu<strong>in</strong>ol—antibiotic<br />

Cobalt chloride<br />

Corticosteroids (Teus, 1991)<br />

Cyanide <strong>in</strong>toxication (dietary)<br />

Cyclospor<strong>in</strong>e—chemotherapy (Avery, 1991)<br />

D-penicillam<strong>in</strong>e—rheumatologic<br />

Deferoxam<strong>in</strong>e—for removal of excess iron <strong>in</strong> patients requir<strong>in</strong>g long-term transfusions (P<strong>in</strong>na,<br />

2001)<br />

Dichlorodiphenyltrichloroethane (DDT)—<strong>in</strong>secticide<br />

Digitalis (Digox<strong>in</strong>)—cardiac disease<br />

Diiodohydroxyqu<strong>in</strong>—amoebocide<br />

D<strong>in</strong>itrotoluene—explosive<br />

Disulfiram (<strong>An</strong>tabuse)—alcohol addiction<br />

Elcaton<strong>in</strong>—synthetic analogue of calciton<strong>in</strong> (Kimura, 1996)<br />

Emet<strong>in</strong>e—amoebocide<br />

Ethylchlorvynol (Placidyl)—hypnotic<br />

Ethylene glycol—antifreeze, moistener for tobacco, lacquer softener, solvent<br />

Etoposide phosphate and carboplat<strong>in</strong> (<strong>in</strong>tracarotid)—chemotherapy (Lauer, 1999)<br />

5-Fluorouracil—ant<strong>in</strong>eoplastic<br />

Gallium nitrate—ant<strong>in</strong>eoplastic (Csaky, 1997)<br />

(cont<strong>in</strong>ued)


16 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 1–9. (cont<strong>in</strong>ued)<br />

Halogenated hydroxyqu<strong>in</strong>olone (e.g., Clioqu<strong>in</strong>ol, boxyqu<strong>in</strong>olone [Colipar],<br />

chlorqu<strong>in</strong>adol [Sterox<strong>in</strong>], diiodohydroxyqu<strong>in</strong> [Diodoqu<strong>in</strong>], iodochlorhydroxyqu<strong>in</strong> [Entero-<br />

Vioform], Vioform)—gastro<strong>in</strong>test<strong>in</strong>al disorders<br />

Heavy metals (e.g., arsenic, lead, mercury)<br />

Hexachlorophene (Phiso-Hex)—detergent cleanser<br />

Iodoform—dis<strong>in</strong>fectant<br />

Iodopyracet (Diodrast)—radiologic contrast media<br />

Isoniazid (INH)—tuberculosis therapy (Thomas, 1994)<br />

Lead <strong>in</strong>toxication<br />

Lysol—dis<strong>in</strong>fectant<br />

Manganese—sk<strong>in</strong> exposure or <strong>in</strong>halation of fumes <strong>in</strong> pottery or electroplat<strong>in</strong>g <strong>in</strong>dustry (Lewis,<br />

2001)<br />

Melaton<strong>in</strong>, Zoloft (sertral<strong>in</strong>e), and a high-prote<strong>in</strong> diet (Lehman, 1999)<br />

Methamphetam<strong>in</strong>e (<strong>in</strong>tranasal abuse) (Wijaya, 1999)<br />

Methanol—wood alcohol, solvent, combustible, antifreeze, adulterant of alcohol (Sullivan-Mee,<br />

1998)<br />

Methotrexate—ant<strong>in</strong>eoplastic and rheumatologic (Johansson, 1992)<br />

Methyl acetate—solvent for nitrocellulose, res<strong>in</strong>s, and oils and manufacture of artificial leather<br />

Methyl bromide—fumigant, fire ext<strong>in</strong>guishers, refrigerant, <strong>in</strong>secticide<br />

Octamox<strong>in</strong>—monoam<strong>in</strong>e oxidase <strong>in</strong>hibitor<br />

Organophosphate pesticides<br />

Pamidronate—treatment of hypercalcemia (des Grottes, 1997)<br />

Penicillam<strong>in</strong>e (Cupram<strong>in</strong>e)—treatment of Wilson’s disease, rheumatologic diseases<br />

Phenazone (antipyr<strong>in</strong>e)—analgesic and antipyretic<br />

Phenipraz<strong>in</strong>e (Catron)—monoam<strong>in</strong>e oxidase <strong>in</strong>hibitor for hypertension and depression<br />

Plasmocid—antimalarial<br />

Qu<strong>in</strong><strong>in</strong>e—antimalarial, cramps<br />

Sodium fluoride<br />

Streptomyc<strong>in</strong>—tuberculosis therapy<br />

Styrene (v<strong>in</strong>yl benzyl)—synthetic rubber and fiberglass production<br />

Sulfonamides—antibiotics<br />

Tacrolimus (<strong>FK</strong> 506)—immunosuppressant (Brazis, 2000)<br />

Thallium—rodenticides and <strong>in</strong>secticides<br />

Tobutamide (Or<strong>in</strong>ase)—diabetes<br />

Toluene—glue sniff<strong>in</strong>g (Kiyokawa, 1999)<br />

Trichloroethylene—<strong>in</strong>dustrial solvent and degreas<strong>in</strong>g compound used <strong>in</strong> dry clean<strong>in</strong>g and <strong>in</strong><br />

manufacture of rubber<br />

Tricresyl phosphate—plasticizer and lubricant<br />

V<strong>in</strong>crist<strong>in</strong>e—ant<strong>in</strong>eoplastic agent<br />

additional 40% of affected eyes (i.e., 85% of eyes with RON have a f<strong>in</strong>al visual acuity of<br />

20=200 or worse). More rarely, RON may present as an anterior optic neuropathy with<br />

optic disc swell<strong>in</strong>g (Parsons, 1994). Such cases usually occur <strong>in</strong> the sett<strong>in</strong>g of radiation<br />

ret<strong>in</strong>opathy follow<strong>in</strong>g treatment of orbital or <strong>in</strong>traocular lesions. Associated f<strong>in</strong>d<strong>in</strong>gs of<br />

radiation ret<strong>in</strong>opathy resemble those of diabetic ret<strong>in</strong>opathy and variably <strong>in</strong>clude<br />

peripapillary hard exudates, hemorrhages, subret<strong>in</strong>al fluid, cotton-wool spots, focal


Table 1–10. Etiologies of Nutritional Optic <strong>Neuro</strong>pathy<br />

The Diagnosis of Optic <strong>Neuro</strong>pathies 17<br />

B 6 deficiency<br />

B 12 deficiency (e.g., pernicious anemia)<br />

Folate deficiency (Golnik, 1994a)<br />

Niac<strong>in</strong> deficiency<br />

Riboflav<strong>in</strong> deficiency<br />

Thiam<strong>in</strong>e (B 1)deficiency<br />

Iatrogenic malabsorption (e.g., post-biliopancreatic bypass procedure) (Smets, 1999)<br />

arteriolar narrow<strong>in</strong>g, macular edema, capillary nonperfusion, capillary telangiectasia,<br />

microaneurysms, neovascularization of disc and ret<strong>in</strong>a, perivascular sheath<strong>in</strong>g, vitreous<br />

hemorrhage, neovascular glaucoma, central ret<strong>in</strong>al artery occlusion, and central ret<strong>in</strong>al<br />

ve<strong>in</strong> occlusion. Loss of vision with anterior cases may be due to macular edema,<br />

macular hemorrhages, macular exudates, or perifoveal capillary nonperfusion, as<br />

well as from optic nerve <strong>in</strong>volvement. The cl<strong>in</strong>ical features of RON are outl<strong>in</strong>ed <strong>in</strong><br />

Table 1–12.<br />

The diagnosis of RON is suspected from the cl<strong>in</strong>ical sett<strong>in</strong>g and may usually be<br />

confirmed by magnetic resonance imag<strong>in</strong>g. In RON, the unenhanced T1- and T2weighted<br />

images show no abnormalities, but there is enhancement of the optic nerves,<br />

chiasm, and possibly the optic tracts <strong>in</strong> some cases (Borruat, 1993; Guy, 1991; Hudg<strong>in</strong>s,<br />

1992; McClellan, 1995; Tachibana, 1990; Young, 1992; Zimmerman, 1990). This enhancement<br />

usually resolves over several months. The differential diagnosis of RON is<br />

presented <strong>in</strong> Table 1–13. Recurrence of the primary tumor and radiation-<strong>in</strong>duced<br />

tumors must be especially considered.<br />

Patients with RON may rarely improve with corticosteroids. Hyperbaric oxygen<br />

therapy may be of benefit if given early <strong>in</strong> the course (e.g., with<strong>in</strong> 72 hours of onset of<br />

symptoms), although some patients show no improvement (Borruat, 1993, 1996; Liu,<br />

1992; Roden, 1990). <strong>An</strong>ticoagulation therapy was of no help <strong>in</strong> one case (Barbosa, 1999).<br />

There is no proven effective therapy for RON (class IV, level U).<br />

Table 1–11. Evaluation of Pa<strong>in</strong>less Progressive Bilateral Optic <strong>Neuro</strong>pathy (Presumed Toxic or<br />

Nutritional Optic <strong>Neuro</strong>pathy)<br />

Magnetic resonance imag<strong>in</strong>g of the optic nerves (exclude compressive optic neuropathy [CON])<br />

Vitam<strong>in</strong> B 12 level (serum)<br />

Folate level (serum and erythrocyte)<br />

Complete blood count with differential<br />

Ur<strong>in</strong>e heavy metal screen (mercury, lead, arsenic) if history suggestive<br />

Syphilis serology (e.g., rapid plasma reagent [RPR], fluorescent treponemal antibody absorption<br />

[FTA-ABS])<br />

Leber’s hereditary optic neuropathy mutational analysis<br />

Consider lumbar puncture and other laboratory studies (e.g., chest x-ray, ant<strong>in</strong>uclear antibody<br />

[ANA], sedimentation rate, angiotens<strong>in</strong>-1-convert<strong>in</strong>g enzyme [ACE], ant<strong>in</strong>eutrophil cytoplasmic<br />

antibody [ANCA], paraneoplastic antibody screen, etc.) if an <strong>in</strong>flammatory or <strong>in</strong>filtrative process is<br />

suspected


Table 1–12. <strong>Cl<strong>in</strong>ical</strong> Features of Radiation-Induced Optic <strong>Neuro</strong>pathy (RON)<br />

Acute onset of visual loss, gradual or rapidly progressive course<br />

Unilateral or bilateral ‘‘dimm<strong>in</strong>g’’ or ‘‘spotty vision’’; bilateral visual loss <strong>in</strong> 74%<br />

Variable acuity: 20=25–no light perception (NLP); often 20=200<br />

Variable color deficits<br />

Visual field loss<br />

Pa<strong>in</strong>less, progressive loss or constricted fields common<br />

May have altitud<strong>in</strong>al, central scotoma, junctional, or chiasmal field defects<br />

Monocular or b<strong>in</strong>ocular transient visual loss may precede by several weeks<br />

Fundus <strong>in</strong> RON<br />

Initially no optic nerve edema (or pallid edema); that is, almost always retrobulbar<br />

Rarely anterior but then associated with peripapillary hemorrhages and ret<strong>in</strong>al exudates,<br />

especially with radiation ret<strong>in</strong>opathy follow<strong>in</strong>g treatment of orbital or <strong>in</strong>traocular lesions<br />

Later atrophic nerve; may be pale <strong>in</strong>itially, optic atrophy over 4 to 6 weeks<br />

Occasional chiasmal syndrome<br />

Occasionally focal ret<strong>in</strong>al pigment epithelium (RPE) loss (choroidal compromise)<br />

<strong>Neuro</strong>imag<strong>in</strong>g<br />

Non-enhanced T1- and T2-weighted MRI images normal<br />

Often gadol<strong>in</strong>ium enhancement of optic nerves, chiasm, and even tracts<br />

Enhancement usually resolves <strong>in</strong> several months at which time visual function usually stabilizes<br />

Onset of visual loss<br />

Latency from radiation to onset of symptoms 1 to 144 months, with median delay 13 months after<br />

cessation of therapy<br />

Majority of cases occur with<strong>in</strong> 3 years of radiation therapy<br />

Occurs after radiation for paranasal s<strong>in</strong>us and other skull base malignancies, but also for pituitary<br />

adenomas, parasellar men<strong>in</strong>giomas, craniopharyngiomas, frontal or temporal gliomas, and<br />

<strong>in</strong>traocular tumors; rarely after radiation for thyroid orbitopathy (ma<strong>in</strong>ly <strong>in</strong> diabetics or patients<br />

with more than 2000–2500 cGy)<br />

Radiation dose<br />

Cumulative radiation dose of 2400–12,500 cGy<br />

75% have received total dose of 5000 or more cGy<br />

May occur with stereotactic radiosurgery (Girk<strong>in</strong>, 1997) if dosage to visual apparatus greater than<br />

8 Gy, large tumor volume, prior visual dysfunction, prior radiation exposure, or treatment<br />

isocenter with<strong>in</strong> 5 mm of anterior visual pathway<br />

Increased risk of RON<br />

Concomitant chemotherapy<br />

Patient with hormone secret<strong>in</strong>g pituitary adenoma<br />

Increased age<br />

Increased risk with <strong>in</strong>creased radiation exposure to optic nerve<br />

Treatment<br />

Unproven treatments<br />

Hyperbaric oxygen (HBO) if started early<br />

Corticosteroids<br />

Others (anticoagulation, antiplatelet agents)<br />

Prognosis<br />

Usually poor visual prognosis<br />

No light perception <strong>in</strong> 45%<br />

Worse than 20=200 <strong>in</strong> additional 40%<br />

85% have f<strong>in</strong>al visual acuity of 20=200 or worse<br />

Source: Arnold, 1995; Barbosa, 1999; Borruat, 1993, 1996; Ebner, 1995; Girk<strong>in</strong>, 1997; Glantz, 1994; Goldsmith, 1992;<br />

Gragoudas, 1999; Guy, 1991, 1995; Hudg<strong>in</strong>s, 1992; Jiang, 1994; Landau, 1996; Leber, 1998; Liu, 1992b; McClellan,<br />

1995; Mohamed, 2000; Parsons, 1994; Polak, 1995; Roden, 1990; Tachibana, 1990; Wijers, 1999; Toung, 1992;<br />

Zimmerman, 1990.<br />

18


Table 1–13. The Differential Diagnosis of Radiation Optic <strong>Neuro</strong>pathy<br />

Is There <strong>Cl<strong>in</strong>ical</strong> Evidence for a Hereditary<br />

Optic <strong>Neuro</strong>pathy?<br />

The Diagnosis of Optic <strong>Neuro</strong>pathies 19<br />

Recurrent tumor (ma<strong>in</strong> consideration!)<br />

Empty sella syndrome (arachnoiditis)<br />

Secondary new tumor <strong>in</strong> field of radiation (long latency 3 to 41 years; mean 15 years)<br />

Men<strong>in</strong>giomas or gliomas<br />

Dural tumors (e.g., fibrosarcoma)<br />

Cranial bone tumors (e.g., osteosarcoma)<br />

Peripheral nerve tumors (e.g., malignant schwannoma)<br />

<strong>Neuro</strong>fibromatosis type I and ataxia telangiectasia are risk factors<br />

Adhesive arachnoiditis<br />

Ischemic optic neuropathy<br />

Carc<strong>in</strong>omatous men<strong>in</strong>gitis<br />

Paraneoplastic optic neuropathy or ret<strong>in</strong>opathy<br />

Chemotherapy-related complications or toxicity<br />

Tamoxifen<br />

Cisplat<strong>in</strong>um<br />

Intraarterial bis 2-(chloroethyl)-1 nitrosourea (BCNU), etoposide phosphate and<br />

carboplat<strong>in</strong><br />

Primary optic nerve tumors<br />

Metastatic tumor<br />

Increased <strong>in</strong>tracranial pressure<br />

Venous s<strong>in</strong>us thrombosis<br />

Miller and Newman have divided the hereditary optic neuropathies <strong>in</strong>to three groups<br />

(Miller, 1998):<br />

1. Patients without associated neurologic signs and symptoms.<br />

2. Patients with neurologic signs and symptoms.<br />

3. Patients <strong>in</strong> whom the optic neuropathy is secondary to the underly<strong>in</strong>g systemic<br />

disease.<br />

The hereditary optic neuropathies may have an isolated, dom<strong>in</strong>ant (e.g., Kjer optic<br />

neuropathy), recessive, or mitochondrial (e.g., Leber’s hereditary optic neuropathy)<br />

<strong>in</strong>heritance pattern. The cl<strong>in</strong>ical features of Kjer autosomal-dom<strong>in</strong>ant optic neuropathy<br />

are outl<strong>in</strong>ed <strong>in</strong> Table 1–14, and the cl<strong>in</strong>ical features of Leber’s hereditary optic<br />

neuropathy are outl<strong>in</strong>ed <strong>in</strong> Table 1–15. We will not discuss other forms of hereditary<br />

optic neuropathy, as outl<strong>in</strong>ed <strong>in</strong> Table 1–16.<br />

Leber’s hereditary optic neuropathy (LHON) usually occurs <strong>in</strong> young males (up to 80<br />

to 90% of cases <strong>in</strong> the United States), although it may rarely occur <strong>in</strong> females and<br />

develop at any age (Ajax, 1998; Al-Salem, 1997; Bhatti, 1999; Cock, 1998; Hackett, 1997;<br />

Howell, 1997; Jacobson, 1998; Kerrison, 1997; MacMillan, 1998; Mashima, 1998; Purohit,<br />

1997; Saadati, 1998; Tsao, 1999).


20 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 1–14. The <strong>Cl<strong>in</strong>ical</strong> Features of Dom<strong>in</strong>ant Optic Atrophy (Kjer)<br />

Onset <strong>in</strong> first decade of life (usually 4 to 6 years) <strong>in</strong> 58% of patients<br />

Symptoms<br />

12.5% to 22.6% unaware of visual difficulties<br />

May be discovered to have optic atrophy as consequence of exam of another affected family<br />

member<br />

May have nystagmus<br />

Visual acuity<br />

20=20 to 20=60 <strong>in</strong> 40%<br />

20=200 to 20=600 <strong>in</strong> 15%<br />

Uncommonly hand motions or worse vision<br />

37% of patients 20=60 or better<br />

46% 20=60 to 20=200<br />

17% below 20=200<br />

Often <strong>in</strong>ability to perceive blue color (tritanopia) or generalized dyschromatopsia<br />

Central, paracentral, or cecocentral scotomas; may be characteristic <strong>in</strong>version of peripheral field, with<br />

the field be<strong>in</strong>g more constricted to blue isopters than red<br />

Optic atrophy: occasionally subtle; usually temporal; rarely diffuse<br />

Occasionally peripapillary atrophy, absent foveal reflex, mild macular pigmentary changes, arterial<br />

attenuation, and nonglaucomatous cupp<strong>in</strong>g<br />

Occasionally mental abnormality (10%) or hear<strong>in</strong>g loss<br />

Occasionally axonal, predom<strong>in</strong>antly sensory hereditary neuropathy (Chalmers, 1996)<br />

Visual evoked potential (VEP) may be reduced <strong>in</strong> amplitude and delayed<br />

Prognosis<br />

Visual prognosis is relatively good <strong>in</strong> Kjer’s dom<strong>in</strong>ant optic atrophy<br />

Stable or slow progression of visual loss<br />

Some families show<strong>in</strong>g evidence of l<strong>in</strong>kage to chromosome 3q and 18q<br />

Source: Bern<strong>in</strong>ger, 1991; Del Porto, 1994; Eigberg, 1994; Eliott, 1993; Johnston, 1997, 1999; Kerrison, 1999; Kjer,<br />

1996; Votruba, 1998.<br />

Table 1–15. <strong>Cl<strong>in</strong>ical</strong> Features of Leber’s Hereditary Optic <strong>Neuro</strong>pathy (LHON)<br />

Hereditary aspects<br />

‘‘Primary’’ mitochondrial DNA mutations (e.g., 11778, 3460, 14484)<br />

Mother’s egg sole provider of zygote’s cytoplasmic contents—mitochondria only extracellular<br />

source of DNA<br />

Every son and daughter of female carrier <strong>in</strong>herit LHON trait; only women pass trait<br />

Affected woman more likely to have affected children, especially daughters, than unaffected<br />

woman carrier<br />

20 to 83% of men at risk develop visual loss<br />

4 to 32% of women at risk develop visual loss<br />

Men affected more than women (80–90% males)<br />

Onset 13 to 35 years (range 5–80 years)<br />

Visual acuity loss<br />

Usually acute, rapid, unremitt<strong>in</strong>g, and pa<strong>in</strong>less<br />

Ultimately 20=200 to hand motions (20=20 to NLP range)<br />

Sequential bilateral <strong>in</strong>volvement (second eye <strong>in</strong> weeks to months later)<br />

Interval between onset <strong>in</strong> two eyes 0 to 15 months<br />

Simultaneous onset <strong>in</strong> both eyes 42–55%<br />

(cont<strong>in</strong>ued)


Table 1–15. (cont<strong>in</strong>ued)<br />

Rarely rema<strong>in</strong>s monocular<br />

Color vision severely affected<br />

Visual field loss (central or cecocentral scotomas; especially central 25–30 degrees)<br />

Occasionally positive Uhthoff’s phenomenon<br />

Fundus f<strong>in</strong>d<strong>in</strong>gs at the time of visual loss<br />

Small or absent cup (‘‘disc at risk’’) may predispose<br />

Triad of the suspect fundus<br />

Telangiectatic microangiopathy<br />

Apparent swell<strong>in</strong>g of nerve fiber layer around disc (‘‘pseudoedema’’)<br />

Fluoresce<strong>in</strong> angiogram often shows ‘‘pseudoedema’’ but may rarely see disc leakage<br />

Occasionally disc or ret<strong>in</strong>al hemorrhages, macular edema, or exudates<br />

Fundus appearance after visual loss<br />

Attenuated arterioles<br />

Nerve fiber layer loss especially papillomacular bundle<br />

Optic nerve pallor (temporally)<br />

May develop nonglaucomatous cupp<strong>in</strong>g<br />

MRI with acute visual loss may show <strong>in</strong>creased signal <strong>in</strong> middle or posterior <strong>in</strong>traorbital sections of<br />

optic nerves<br />

Prognosis—most patients rema<strong>in</strong> unchanged<br />

Some patients experience spontaneous improvement<br />

Improvement may occur gradually over 6 months to 1 year, or may suddenly improve up to 10<br />

years after onset<br />

Improved central vision—small island of vision with<strong>in</strong> large central scotoma<br />

Those that improve appear to have lower mean age of onset<br />

Better prognosis <strong>in</strong> mutation 14484 patients (37–65% improve) vs. mutation 11778 (4% improve)<br />

and mutation 3460 (22% improve) patients<br />

Associations<br />

Occasional cardiac conduction defects—Wolff-Park<strong>in</strong>son-White syndrome, Lawn-Ganong-Lev<strong>in</strong>e<br />

(LGL) syndrome, prolonged QT<br />

Dystonia described with 11778 and 3460 mutations<br />

Myoclonus with 11778 mutation (Carelli, 2001)<br />

Postural tremor occurs with <strong>in</strong>creased frequency <strong>in</strong> all forms<br />

Multiple sclerosis (MS)–like illness <strong>in</strong> up to 45% of females with 11778 mutation; rarely described<br />

<strong>in</strong> women with 3460 mutation or men with 11778 mutation<br />

Thoracic kyphosis <strong>in</strong> some patients with 3460 mutation<br />

Lesions <strong>in</strong> basal ganglia on MRI<br />

Spasticity<br />

Psychiatric disturbances<br />

Myelopathy<br />

Charcot-Marie-Tooth disease<br />

Treatment (class IV, level U)<br />

Medical therapy rema<strong>in</strong>s unproven<br />

Multivitam<strong>in</strong>s, folate, vitam<strong>in</strong> B 12, thiam<strong>in</strong>e 100 mg=day<br />

Coenzyme Q (Ubiqu<strong>in</strong>ate) 30 mg qid or 40 mg tid, ibed<strong>in</strong>one, and other coenzyme Q10 analogs<br />

Avoid alcohol, tobacco, and other environmental tox<strong>in</strong>s<br />

Discont<strong>in</strong>ue smok<strong>in</strong>g (Kerrison, 2000; Tsao, 1999)<br />

Consider electrocardiogram (ECG)<br />

Low vision assessment<br />

Source: Ajax, 1998; Al-Salem, 1997; Bhatti, 1999; Cock, 1998; Hackett, 1997; Howell, 1997; Jacobson, 1998;<br />

Kerrison, 1997, 2000; MacMillan, 1998; Mashima, 1998, 2000; Nakamura, 2000; Purohit, 1997; Saadati, 1998;<br />

Shaikh, 2001; Tsao, 1999; Vaphiades, 1999.<br />

21


22 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 1–16. Other Hereditary Optic <strong>Neuro</strong>pathies<br />

No associated neurologic deficits<br />

Congenital recessive optic atrophy (extremely rare; existence questioned)<br />

Apparent sex-l<strong>in</strong>ked optic atrophy<br />

Associated with other neurologic or systemic diseases<br />

Autosomal-dom<strong>in</strong>ant progressive optic atrophy with congenital deafness<br />

Autosomal-dom<strong>in</strong>ant progressive optic atrophy with progressive hear<strong>in</strong>g loss and ataxia<br />

Autosomal-dom<strong>in</strong>ant progressive optic atrophy with peripheral neuropathy<br />

Autosomal-dom<strong>in</strong>ant optic atrophy with ataxia and pes cavus<br />

Hereditary optic atrophy with progressive hear<strong>in</strong>g loss and polyneuropathy<br />

Familial bulbosp<strong>in</strong>al neuronopathy with optic atrophy<br />

Dom<strong>in</strong>ant optic atrophy, deafness, ophthalmoplegia, and myopathy<br />

Autosomal-recessive optic atrophy with progressive hear<strong>in</strong>g loss, spastic quadriplegia, mental<br />

deterioration, and death (opticocochleodentate degeneration)<br />

Opticoacoustic atrophy with dementia<br />

Sex-l<strong>in</strong>ked recessive optic atrophy, ataxia, deafness, tetraplegia, and areflexia<br />

Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO syndrome)<br />

Juvenile diabetes <strong>in</strong>sipidus, diabetes mellitus, progressive optic atrophy, and deafness (Wolfram’s<br />

syndrome or DIDMOAD)<br />

Complicated hereditary <strong>in</strong>fantile optic atrophy (Behr’s syndrome)<br />

Optic atrophy with hereditary ataxias (Friedreich’s ataxia, Marie’s ataxia)<br />

Optic atrophy with Charcot-Marie-Tooth disease (hereditary sensorimotor neuropathy)<br />

Optic atrophy with myotonic muscular dystrophy (Gamez, 2001)<br />

Source: Barrett, 1997; Chalmers, 1996; Miller, 1998; Paradiso, 1996; Scold<strong>in</strong>g, 1996.<br />

Some patients with presumed ‘‘tobacco-alcohol amblyopia’’ or nutritional deficiency<br />

amblyopia may actual harbor a LHON mutation (Cullom, 1993; Purohit, 1997), and<br />

therefore test<strong>in</strong>g for Leber’s mutations may be <strong>in</strong>dicated <strong>in</strong> patients with presumed<br />

toxic or nutritional optic neuropathy. Although the diagnosis of LHON can be<br />

confirmed by serologic test<strong>in</strong>g for the known LHON mutations, little consensus exists<br />

regard<strong>in</strong>g the treatment of LHON. Some authors have recommended reduc<strong>in</strong>g metabolic<br />

stress on the optic nerve (e.g., discont<strong>in</strong>ue smok<strong>in</strong>g, alcohol use, known optic<br />

nerve tox<strong>in</strong>s, trauma, etc.). Medical therapy rema<strong>in</strong>s unproven, but some authors<br />

suggest supplementation with multivitam<strong>in</strong>s, folate, vitam<strong>in</strong> B 12, ibed<strong>in</strong>one and other<br />

coenzyme Q10 analogs, and thiam<strong>in</strong>e (class IV, level U).<br />

Is This an Atypical or Unexpla<strong>in</strong>ed Optic<br />

<strong>Neuro</strong>pathy?<br />

A number of patients with optic neuropathy do not fit <strong>in</strong>to the categories listed <strong>in</strong> our<br />

approach. For patients with unexpla<strong>in</strong>ed optic neuropathy or atypical optic neuropathy,<br />

a suggested evaluation is listed <strong>in</strong> Table 1–8.<br />

References<br />

Aarabi B, Haghshenas M, Rakeii V. (1998). Visual failure caused by suprasellar extramedullary hematopoiesis <strong>in</strong><br />

beta thalassemia: case report. <strong>Neuro</strong>surgery 42:922–925.


The Diagnosis of Optic <strong>Neuro</strong>pathies 23<br />

Acheson JF, Cockerell OC, Bentley CR, Sanders MD. (1993). Churg-Strauss vasculitis present<strong>in</strong>g with severe visual<br />

loss due to bilateral sequential optic neuropathy. Br J Ophthalmol 77:188–119.<br />

Achiron L, Strom<strong>in</strong>ger M, Witk<strong>in</strong> N, Prime S. (1995). Sarcoid optic neuropathy: a case report. J Am Optom Assoc<br />

66:646–651.<br />

Ahmadieh H, Roodpeyma S, Azarm<strong>in</strong>a M, Soheilian M, Sajjadi SH. (1994). Bilateral simultaneous optic neuritis <strong>in</strong><br />

childhood systemic lupus erythematosus. A case report. J <strong>Neuro</strong>-ophthalmol 14:84–86.<br />

Ajax ET, Kardon R. (1998). Late-onset Leber’s hereditary optic neuropathy. J <strong>Neuro</strong>-ophthalmol 18:30–31.<br />

Al-Mefty O, Kersh JE, Routh A, et al. (1990). The long term side effects of radiation therapy for benign bra<strong>in</strong><br />

tumors <strong>in</strong> adults. J <strong>Neuro</strong>surg 73:502–512.<br />

Al-Salem M. (1997). Leber’s congenital amaurosis <strong>in</strong> 22 affected members of one family. J Pediatr Ophthalmol<br />

Strabismus 34:254–257.<br />

Alvarez KL, Krop LC. (1993). Ethambutol-<strong>in</strong>duced ocular toxicity revisited. <strong>An</strong>n Pharmacother 27:102–103.<br />

Alvord EJ, Lofton S. (1988). Gliomas of the optic nerve or chiasm. Outcome by patient’s age, tumor site, and<br />

treatment. J <strong>Neuro</strong>surg 68:85–98.<br />

Amrith S, Baratham G, Khoo CY, et al. (1990). Spontaneous hematic cysts of the orbit present<strong>in</strong>g with acute<br />

proptosis. Ophthalmic Plast Reconstr Surg 6:273–277.<br />

Arnold AC. (1995). Radiation optic neuropathy. Presented at the North American <strong>Neuro</strong>-Ophthalmology meet<strong>in</strong>g,<br />

Tucson, Arizona.<br />

Arroyo JG, Lessell S, Montgomery WW. (1991). Steroid-<strong>in</strong>duced visual recovery <strong>in</strong> fibrous dysplasia. J Cl<strong>in</strong> <strong>Neuro</strong>ophthalmol<br />

11:259–261.<br />

Arsava EM, Ulc K, Kansu T, et al. (2001). Granulomatous hypophysitis and bilateral optic neuropathy. J <strong>Neuro</strong>ophthalmol<br />

21:34–36.<br />

Avery R, Jabs DA, W<strong>in</strong>gard JR, et al. (1991). Optic disc edema after bone marrow transplantation. Possible role of<br />

cyclospor<strong>in</strong>e toxicity. Ophthalmology 98:1294–1301.<br />

Aylward GW, Sullivan TJ, Garner A, et al. (1995). Orbital <strong>in</strong>volvement <strong>in</strong> multifocal fibrosclerosis. Br J Ophthalmol<br />

79:246–249.<br />

Bakker SL, Hasan D, Bijvoet HW. (1999). Compression of the visual pathway by anterior cerebral artery<br />

aneurysm. Acta <strong>Neuro</strong>l Scand 99:204–207.<br />

Balch K, Phillips PH, Newman NJ. (1997). Pa<strong>in</strong>less orbital apex syndrome from mucormycosis. J <strong>Neuro</strong>-ophthalmol<br />

17:178–182.<br />

Barbosa AP, Carvalho D, Marques L, et al. (1999). Inefficiency of the anticoagulant therapy <strong>in</strong> the regression of the<br />

radiation-<strong>in</strong>duced optic neuropathy <strong>in</strong> Cush<strong>in</strong>g’s disease. J Endocr Invest 22:301–305.<br />

Barrett TG, Dundey SE, Fielder AR, Good PE. (1997). Optic atrophy <strong>in</strong> Wolfram (DIDMOAD) syndrome. Eye<br />

11:882–888.<br />

Barron CJ, Tepper L, Iov<strong>in</strong>g E. (1974). Ocular toxicity from ethambutol. Am J Ophthalmol 77:256–266.<br />

Beck AD, Newman NJ, Grossniklaus HE, et al. (1994). Optic nerve enlargement and chronic visual loss. Surv<br />

Ophthalmol 38:555–566.<br />

Belden CJ, Hamed LM, Mancuso AA. (1993). Bilateral isolated retrobulbar optic neuropathy <strong>in</strong> limited Wegener’s<br />

granulomatosis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:119–123.<br />

Bern<strong>in</strong>ger TA, Jaeger W, Krastel M. (1991). Electrophysiology and colour perimetry <strong>in</strong> dom<strong>in</strong>ant <strong>in</strong>fantile optic<br />

atrophy. Br J Ophthalmol 75:49–53.<br />

Bhatti MT, Holder CA, Newman NJ, Hudg<strong>in</strong>s PA. (2000). MR characteristics of musl<strong>in</strong>-<strong>in</strong>duced optic neuropathy:<br />

report of two cases and review of the literature. AJNR 21:346–352.<br />

Bhatti MT, Newman NJ. (1999). A multiple sclerosis-like illness <strong>in</strong> a man harbor<strong>in</strong>g the mtDNA 14484 mutation. J<br />

<strong>Neuro</strong>-ophthalmol 19:28–33.<br />

Bland LI, Marchese MJ, McDonald JV. (1992). Acute monocular bl<strong>in</strong>dness secondary to fibrous dysplasia of the<br />

skull: a case report. <strong>An</strong>n Ophthalmol 24:263–266.<br />

Bocca G, de Vries J, Cruysberg JR, et al. (1998). Optic neuropathy <strong>in</strong> McCune-Albright syndrome: an <strong>in</strong>dication for<br />

aggressive treatment. Acta Paediatr 87:599–600.<br />

Borruat F-X, Schatz NJ, Glaser JS, Feun LG, Matos L. (1993). Visual recovery from radiation-<strong>in</strong>duced optic<br />

neuropathy. The role of hyperbaric oxygen therapy. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:98–101.<br />

Borruat F-X, Schatz NJ, Glaser JS, et al. (1996). Radiation optic neuropathy: report of cases, role of hyperbaric<br />

oxygen, and literature review. <strong>Neuro</strong>-<strong>ophthalmology</strong> 16:255–266.<br />

Botella C, Orozco M, Navarro J, Riesgo P. (1994). Idiopathic chronic hypertrophic craniocervical pachymen<strong>in</strong>gitis:<br />

case report. <strong>Neuro</strong>surgery 35:1144–1149.<br />

Bourne RR, Dol<strong>in</strong> PJ, Mtanda AT, et al. (1998). Epidemic optic neuropathy <strong>in</strong> primary school children <strong>in</strong> Dar es<br />

Salaam, Tanzania. Br J Ophthalmol 82:232–234.<br />

Brazis PW, Lee AG. (1998). <strong>Neuro</strong>-ophthalmic problems caused by medications. Focal Po<strong>in</strong>ts 16:1–13.<br />

Brazis PW, Menke DM, McLeish WM, et al. (1995). <strong>An</strong>giocentric T-cell lymphoma present<strong>in</strong>g with multiple cranial<br />

nerve palsies and retrobulbar optic neuropathy. J <strong>Neuro</strong>-ophthalmol 15:152–157.


24 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Brazis PW, Spivey JR, Boll<strong>in</strong>g JP, Steers JL. (2000). A case of bilateral optic neuropathy <strong>in</strong> a patient on Tacrolimus<br />

(<strong>FK</strong> 506) therapy after liver transplantation. Am J Ophthalmol 129:536–538.<br />

Brodovsky S, ten Hove MW, P<strong>in</strong>kerton RM, et al. (1997). <strong>An</strong> enhanc<strong>in</strong>g optic nerve lesion: malignant glioma of<br />

adulthood. Can J Ophthalmol 32:409–413.<br />

Bronte-Stewart J, Pettigrew AR, Foulds WS. (1976). Toxic optic neuropathy and its experimental production. Trans<br />

Ophthalmol Soc UK 96:355–358.<br />

Brown DM, Kimura AE, Oss<strong>in</strong>ig KC, We<strong>in</strong>er GJ. (1992a). Acute promyelocytic <strong>in</strong>filtration of the optic nerve<br />

treated by oral trans-ret<strong>in</strong>oic acid. Ophthalmology 99:1463–1467.<br />

Brown MD, Voljavec AS, Lott MT, et al. (1992b). Mitochondrial DNA complex I and III mutations associated with<br />

Leber’s hereditary optic neuropathy. Genetics 130:163–173.<br />

Brown P, Demaerel P, McNaught A, et al. (1994). <strong>Neuro</strong>-ophthalmological presentation of non-<strong>in</strong>vasive<br />

Aspergillus s<strong>in</strong>us disease <strong>in</strong> the non-immunocompromised host. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 57:234–237.<br />

Brummit ML, Kl<strong>in</strong>e LB, Wilson ER. (1992). Craniopharyngioma: pitfalls <strong>in</strong> diagnosis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol<br />

12:77–81.<br />

Burde REM, Sav<strong>in</strong>o PJ, Trobe JD. (1992). <strong>Cl<strong>in</strong>ical</strong> Decisions <strong>in</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. St. Louis, Mosby-Year Book, pp.<br />

56–57.<br />

Buus DR, Tse DT, Farris BK. (1990). Ophthalmic complications of s<strong>in</strong>us surgery. Ophthalmology 97:612–619.<br />

Cacciatori M, L<strong>in</strong>g CS, Dhillon B. (1996). Retrobulbar neuritis <strong>in</strong> a patient with acquired immune deficiency<br />

syndrome. Acta Ophthalmol Scand 74:194–196.<br />

Caldemeyer KS, Smith RR, Edwards-Brown MK. (1995). Familial hypophosphatemic rickets caus<strong>in</strong>g ocular<br />

calcification and optic canal narrow<strong>in</strong>g. AJNR 16:1252–1254.<br />

Camera A, Piccirillo G, Cennamo G, et al. (1993). Optic nerve <strong>in</strong>volvement <strong>in</strong> acute lymphoblastic leukemia. Leuk<br />

Lymphoma 11:153–155.<br />

Caraaceni A, Mart<strong>in</strong>i C, Spatti G, et al. (1997). Recover<strong>in</strong>g optic neuritis dur<strong>in</strong>g systemic cisplat<strong>in</strong> and carboplat<strong>in</strong><br />

chemotherapy. Acta <strong>Neuro</strong>l Scand 96:260–261.<br />

Carelli V, Valent<strong>in</strong>o ML, Liguori R, et al. (2001). Leber’s hereditary optic neuropathy (LHON=1178) with<br />

myoclonus: report of two cases. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 71:813–816.<br />

Carmody RF, Mafee MF, Goodw<strong>in</strong> JA, et al. (1994). Orbital and optic pathway sarcoidosis: MR f<strong>in</strong>d<strong>in</strong>gs. AJNR<br />

15:775–783.<br />

Carter K, Lee AG, Tang RA, et al. (1998). <strong>Neuro</strong>-ophthalmologic complications of s<strong>in</strong>us surgery. <strong>Neuro</strong><strong>ophthalmology</strong><br />

19:75–82.<br />

Chalmers RM, Bird AC, Hard<strong>in</strong>g AE. (1996). Autosomal dom<strong>in</strong>ant optic atrophy with asymptomatic peripheral<br />

neuropathy. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 60:195–196.<br />

Chandra S, Vashisht S, Menon V, et al. (2000). Optic nerve cysticercosis: imag<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs. AJNR 21:198–200.<br />

Chateil JF, Soussotte C, Pedespan JM, et al. (2001). MRI and cl<strong>in</strong>ical differences between optic pathway tumours <strong>in</strong><br />

children with and without neurofibromatosis. Br J Radiol 74:24–31.<br />

Chen YR, Breidahl A, Chang CN. (1997). Optic nerve decompression <strong>in</strong> fibrous dysplasia: <strong>in</strong>dications, efficacy,<br />

and safety. Plast Reconstr Surg 99:22–30.<br />

Choi SY, Hwang JM. (1997). Optic neuropathy associated with ethambutol <strong>in</strong> Koreans. Korean J Ophthalmol 11:106–<br />

110.<br />

Citron KM, Thomas GO. (1986). Ocular toxicity from ethambutol. Thorax 41:737–739.<br />

Cock HR, Tabrizi SJ, Cooper JM, Schapira AHV. (1998). The <strong>in</strong>fluence of nuclear background on the biochemical<br />

expression of 3460 Leber’s hereditary optic neuropathy. <strong>An</strong>n <strong>Neuro</strong>l 44:187–193.<br />

Cohen SB, Glasgow BT. (1993). Bilateral optic nerve cryptococcosis <strong>in</strong> sudden bl<strong>in</strong>dness <strong>in</strong> patients with acquired<br />

immune deficiency syndrome. Ophthalmology 100:1689–1694.<br />

Colap<strong>in</strong>to EV, Cabeen MA, Johnson LN. (1996). Optic nerve compression by a dolichoectatic <strong>in</strong>ternal carotid<br />

artery: case report. <strong>Neuro</strong>surgery 39:604–606.<br />

Costagliola C, R<strong>in</strong>aldi M, Cotticelli L, et al. (1992). Isolated optic nerve <strong>in</strong>volvement <strong>in</strong> chronic myeloid leukemia.<br />

Leuk Res 16:411–413.<br />

Cramer SC, Glaspy JA, Efird JT, Louis DN. (1996). Chronic lymphocytic leukemia and the central nervous system.<br />

A cl<strong>in</strong>ical and pathological study. <strong>Neuro</strong>logy 46:19–25.<br />

Créange A, Zeller J, Rosta<strong>in</strong>g-Rigattieri S, et al. (1999). <strong>Neuro</strong>logical complications of neurofibromatosis type 1 <strong>in</strong><br />

adulthood. Bra<strong>in</strong> 122:473–481.<br />

Cross SA, Salomao D, Lennon VA. (2002). A paraneoplastic syndrome of comb<strong>in</strong>ed optic neuritis and ret<strong>in</strong>itis<br />

def<strong>in</strong>ed serologically by CRMP-5-IgG. Presented at the 28th annual meet<strong>in</strong>g of the North American <strong>Neuro</strong>-<br />

Ophthalmology Society, Copper Mounta<strong>in</strong>, Colorado, February 9–14.<br />

Crotty TB, Scheithauer BW, Young WF Jr, et al. (1995). Papillary craniopharyngioma: a cl<strong>in</strong>icopathological study<br />

of 48 cases. J <strong>Neuro</strong>surg 83:206–214.<br />

Csaky KG, Caruso RC. (1997). Gallium nitrate optic neuropathy. Am J Ophthalmol 124:567–568.


The Diagnosis of Optic <strong>Neuro</strong>pathies 25<br />

Cullom ME, Heher KL, Miller NR, et al. (1993). Leber’s hereditary optic neuropathy masquerad<strong>in</strong>g as tobaccoalcohol<br />

amblyopia. Arch Ophthalmol 111:1482.<br />

Cumm<strong>in</strong>gs TJ, Provenzale JM, Hunter SB, et al. (2000). Gliomas of the optic nerve: histological, immunohistochemical<br />

(MIB-1 and p53), and MRI analysis. Acta <strong>Neuro</strong>pathol 99:563–570.<br />

Cunliffe IA, Moffat DA, Hardy DG, Moore AT. (1992). Bilateral optic nerve sheath men<strong>in</strong>giomas <strong>in</strong> a patient with<br />

neurofibromatosis type 2. Br J Ophthalmol 76:310–312.<br />

Daly BD, Chow CC, Cockram CS. (1994). Unusual manifestations of craniofacial dysplasia: cl<strong>in</strong>ical, endocr<strong>in</strong>ological,<br />

and computed tomographic features. Postgrad Med J 70:10–16.<br />

Danesh-Meyer H, Kubis KC, Sergott RC, et al. (1999). Not so progressive visual loss. Surv Ophthalmol 44:247–252.<br />

Danesh-Meyer H, Kubis KC, Wolf MA, Lessell S. (2000). Chiasmopathy? Surv Ophthalmol 44:329–335.<br />

DeBroff BM, Donahue SP. (1993). Bilateral optic neuropathy as the <strong>in</strong>itial manifestation of systemic sarcoidosis.<br />

Am J Ophthalmol 116:108–111.<br />

Deliganis AV, Geyer JR, Berger MS. (1996). Prognostic significance of type I neurofibromatosis (von Reckl<strong>in</strong>ghausen<br />

disease) <strong>in</strong> childhood optic glioma. <strong>Neuro</strong>surgery 38:1114–1118.<br />

Del Porto G, V<strong>in</strong>golo EM, Ste<strong>in</strong>dl K, et al. (1994). <strong>Cl<strong>in</strong>ical</strong> heterogeneity of dom<strong>in</strong>ant optic atrophy: the<br />

contribution of visual function <strong>in</strong>vestigations to diagnosis. Graefes Arch Cl<strong>in</strong> Exp Ophthalmol 32:717–727.<br />

DeMonte F, Smith HK, Al-Mefty O. (1994). Outcome of aggressive removal of cavernous s<strong>in</strong>us men<strong>in</strong>giomas. J<br />

<strong>Neuro</strong>surg 81:245–251.<br />

des Grottes JM, Schrooyen M, Dumon JC, Body JJ. (1997). Retrobulbar optic neuritis after pamidronate<br />

adm<strong>in</strong>istration <strong>in</strong> a patient with a history of cutaneous porphyria. Cl<strong>in</strong> Rheumatol 16:93–95.<br />

DiMario FJ, Ramsby G, Greenaste<strong>in</strong> R, et al. (1993). <strong>Neuro</strong>fibromatosis type I: magnetic resonance imag<strong>in</strong>g<br />

f<strong>in</strong>d<strong>in</strong>gs. J Child <strong>Neuro</strong>l 8:32–39.<br />

D<strong>in</strong>owitz M, Leen JS, Hameed M, et al. (2001). Sudden pa<strong>in</strong>less visual loss. Surv Ophthalmol 46:143–148.<br />

Dolman PJ, Glazer LC, Harris GJ, et al. (1991). Mechanisms of visual loss <strong>in</strong> severe proptosis. Ophthalmic Plast<br />

Reconstruct Surg 7:256–260.<br />

Drake JM, Joy M, Goldenberg A, et al. (1991). Computer and robot assisted resection of thalamic astrocytomas <strong>in</strong><br />

children. <strong>Neuro</strong>surgery 29:27–31.<br />

Dunker S, Reuter U, Rösler A, et al. (1996). Optic nerve <strong>in</strong>filtration <strong>in</strong> well-differentiated B-cell lymphoma.<br />

Ophthalmology 93:351–353.<br />

Dunn DW, Purv<strong>in</strong> V. (1990). Optic pathway gliomas <strong>in</strong> neurofibromatosis. Dev Med Child <strong>Neuro</strong>l 32:820–824.<br />

Dutton JJ. (1991). Optic nerve gliomas and men<strong>in</strong>giomas. <strong>Neuro</strong>l Cl<strong>in</strong> 9:163–177.<br />

Dutton JJ. (1992). Optic nerve sheath men<strong>in</strong>giomas. Surv Ophthalmol 37:167–183.<br />

Dutton JJ. (1994). Gliomas of the anterior visual pathway. Surv Ophthalmol 38:427–452.<br />

Dutton JJ, Tse DT, <strong>An</strong>derson RL. (1983). Compressive optic neuropathy follow<strong>in</strong>g use of <strong>in</strong>tracranial oxidized<br />

cellulose hemostat. Ophthalmic Surg 14:487–490.<br />

Ebner R, Slamovits TL, Friedlamd S, Pearlman JL, Fowble B. (1995). Visual loss follow<strong>in</strong>g treatment of sphenoid<br />

s<strong>in</strong>us cancer. Surv Ophthalmol 40:62–68.<br />

Edelste<strong>in</strong> C, Goldberg RA, Rub<strong>in</strong>o G. (1998). Unilateral bl<strong>in</strong>dness after ipsilateral prophylactic transcranial optic<br />

canal decompression for fibrous dysplasia. Am J Ophthalmol 126:469–471.<br />

Eigberg H, Kjer B, Kjer P, et al. (1994). Dom<strong>in</strong>ant optic atrophy (OPA 1) mapped to chromosome 3q region. I.<br />

L<strong>in</strong>kage analysis. Hum Mol Genet 3:977–980.<br />

Eliott D, Traboulski EI, Maumenee IH. (1993). Visual prognosis <strong>in</strong> autosomal dom<strong>in</strong>ant optic atrophy (Kjer type).<br />

Am J Ophthalmol 115:360–367.<br />

El-Mahdy W, Powell M. (1998). Transsphenoidal management of 28 symptomatic Rathke’s cleft cysts, with special<br />

reference to visual and hormonal recovery. <strong>Neuro</strong>surgery 42:7–17.<br />

Epste<strong>in</strong> MA, Packer RJ, Rorke LB, et al. (1992). Vascular malformation with radiation vasculopathy after treatment<br />

of chiasmatic hypothalamic glioma. Cancer 70:887–893.<br />

Fahlbusch R, Honegger J, Paulus W, et al. (1999). Surgical treatment of craniopharyngiomas: experience with 168<br />

patients. J <strong>Neuro</strong>surg 90:237–250.<br />

Fayaz I, Gentili F, MacKenzie IR. (1999). Optic nerve sheath men<strong>in</strong>gioma. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

67:408.<br />

Fierz AB, Sartoretti S, Thoelen AM. (2001). Optic neuropathy and central ret<strong>in</strong>al artery occlusion <strong>in</strong> non-<br />

Hodgk<strong>in</strong>’s lymphoma. J <strong>Neuro</strong>-ophthalmol 21:102–105.<br />

F<strong>in</strong>eman MS, Augsburger JJ, Lee AG, <strong>An</strong>drews DW. (1999). A new approach to an old problem. Surv Ophthalmol<br />

43:519–524.<br />

Forman S, Rosenbaum PS. (1998). Lymphomatoid granulomatosis present<strong>in</strong>g as an isolated unilateral optic<br />

neuropathy. A cl<strong>in</strong>icopathologic report. J <strong>Neuro</strong>-<strong>ophthalmology</strong> 18:150–152.<br />

Freilich RJ, Krol G, De<strong>An</strong>gelis LM. (1995). <strong>Neuro</strong>imag<strong>in</strong>g and cerebrosp<strong>in</strong>al fluid cytology <strong>in</strong> the diagnosis of<br />

leptomen<strong>in</strong>geal metastasis. <strong>An</strong>n <strong>Neuro</strong>l 38:51–57.


26 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Friedman JM, Birch P. (1997). <strong>An</strong> association between optic glioma and other tumours of the central nervous<br />

system <strong>in</strong> neurofibromatosis type I. <strong>Neuro</strong>pediatrics 28:131–132.<br />

Fuss M, Hug EB, Schaefer RA, et al. (1999). Proton radiation therapy (PRT) for pediatric optic pathway gliomas:<br />

comparison with 3D planned conventional photons and standard photon technique. Int J Radiat Oncol Biol<br />

Phys 45:1117–1126.<br />

Galetta SL, Stadtmauer EA, Hicks DG, et al. (1991). Reactive lymphohistiocytosis with recurrence <strong>in</strong> the optic<br />

chiasm. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 9:25–30.<br />

Gamez J, Montane D, Martorell L, et al. (2001). Bilateral optic nerve atrophy <strong>in</strong> myotonic dystrophy. Am J<br />

Ophthalmol 131:398–400.<br />

Garrity JA, Trautmann JC, Bartley GB, et al. (1990). Optic nerve sheath men<strong>in</strong>goceles. <strong>Cl<strong>in</strong>ical</strong> and radiographic<br />

features <strong>in</strong> 13 cases with a review of the literature. Ophthalmology 97:1519–1531.<br />

Garvey M, Packer RJ. (1996). <strong>An</strong> <strong>in</strong>tegrated approach to the treatment of chiasmatic hypothalamic gliomas. J<br />

<strong>Neuro</strong>-oncol 28:167–183.<br />

Gayre GS, Scott IU, Feuer W, et al. (2001). Long-term visual outcome <strong>in</strong> patients with anterior visual pathway<br />

gliomas. J <strong>Neuro</strong>-ophthalmol 21:1–7.<br />

Girk<strong>in</strong> CA, Comey CH, Lunsford D, et al. (1997). Radiation optic neuropathy after stereotactic radiosurgery.<br />

Ophthalmology 104:1634–1643.<br />

Girk<strong>in</strong> CA, Perry JD, Miller NR, Reich SG. (1998). Pachymen<strong>in</strong>gitis with multiple cranial neuropathies and<br />

unilateral optic neuropathy secondary to Pseudomonas aerug<strong>in</strong>osa. Case report and review. J <strong>Neuro</strong>-ophthalmol<br />

18:196–200.<br />

Glantz MJ, Burger PC, Friedman AH, et al. (1994). Treatment of radiation-<strong>in</strong>duced nervous system <strong>in</strong>jury with<br />

hepar<strong>in</strong> and warfar<strong>in</strong>. <strong>Neuro</strong>logy 44:2020–2027.<br />

Goldberg S, Mahadevia P, Lipton M, Rosenbaum PS. (1998). S<strong>in</strong>us histiocytosis with massive lymphadenopathy<br />

<strong>in</strong>volv<strong>in</strong>g orbit: reversal of compressive optic neuropathy after chemotherapy. J <strong>Neuro</strong>-Ophthalmol 18:270–<br />

275.<br />

Goldsmith BJ, Rosenthal SA, Wara WM, et al. (1992). Optic neuropathy after irradiation of men<strong>in</strong>gioma. Radiology<br />

185:71–76.<br />

Goldsmith BJ, Wara WM, Wilson CB, Larson DA. (1994a). Postoperative irradiation for subtotally resected<br />

men<strong>in</strong>giomas. A retrospective analysis of 140 patients treated from 1967 to 1990. J <strong>Neuro</strong>surg 80:195–201.<br />

Goldsmith BJ, Wara WM, Wilson CB, et al. (1994b). Postoperative irradiation of subtotally resected men<strong>in</strong>giomas.<br />

J <strong>Neuro</strong>surg 80:195–201.<br />

Golnik KC, Schaible ER. (1994a). Folate-responsive optic neuropathy. J <strong>Neuro</strong>-ophthalmol 14:163–169.<br />

Golnik KC, Hund PW, Stroman GA, Stewart WC. (1996). Magnetic resonance imag<strong>in</strong>g <strong>in</strong> patients with<br />

unexpla<strong>in</strong>ed optic neuropathy. Ophthalmology 103:515–520.<br />

Golnik KC, Marotto ME, Fanous MM, et al. (1994b). Ophthalmic manifestations of Rochalimaea species. Am J<br />

Ophthalmol 118:145–151.<br />

Gragoudas ES, Li W, Lane AM, et al. (1999). Risk factors for radiation maculopathy and papillopathy after<br />

<strong>in</strong>traocular irradiation. Ophthalmology 106:1571–1578.<br />

Grill J, Couanet D, Cappelli C, et al. (1999). Radiation-<strong>in</strong>duced cerebral vasculopathy <strong>in</strong> children with<br />

neurofibromatosis and optic pathway glioma. <strong>An</strong>n <strong>Neuro</strong>l 45:393–396.<br />

Grimm MA, Hazelton T, Beck RW, et al. (1995). Postgadol<strong>in</strong>ium enhancement of a compressive neuropathy of the<br />

optic nerve. AJNR 16:779–781.<br />

Grunberg SM, Weiss MH, Spitz IM, et al. (1991). Treatment of unresectable men<strong>in</strong>giomas with the antiprogesterone<br />

agent mifepristone. J <strong>Neuro</strong>surg 74:861–866.<br />

Gulliani BP, Dadeya S, Malik KPS, Ja<strong>in</strong> DC. (2001). Bilateral cysticercosis of the optic nerve. J <strong>Neuro</strong>-ophthalmol<br />

21:217–218.<br />

Gurha N, Sood A, Dhar J, Gupta S. (1999). Optic nerve cysticercosis <strong>in</strong> the optic canal. Acta Ophthalmol Scand<br />

77:107–109.<br />

Guy J, Mancuso A, Beck R, et al. (1991). Radiation-<strong>in</strong>duced optic neuropathy: a magnetic resonance imag<strong>in</strong>g<br />

study. J <strong>Neuro</strong>surg 74:426–432.<br />

Guy J, Mancuso A, Quisl<strong>in</strong>g RG, et al. (1990). Gadol<strong>in</strong>ium-DTPA-enhanced magnetic resonance imag<strong>in</strong>g <strong>in</strong> optic<br />

neuropathies. Ophthalmology 97:592–600.<br />

Guy J, Schatz NJ. (1995). Radiation-<strong>in</strong>duced optic neuropathy. In: Tusa RJ, Newman SA, eds. <strong>Neuro</strong>-ophthalmological<br />

Disorders. New York, Marcel Dekker, pp. 437–450.<br />

Guyer DR, Green WR, Schachat AP, et al. (1990). Bilateral ischemic optic neuropathy and ret<strong>in</strong>al vascular<br />

occlusions associated with lymphoma and sepsis. Ophthalmology 97:882–888.<br />

Hackett SE. (1997). Leber’s hereditary optic neuropathy: a genetic disorder of the eye. Insight 22:94–96.<br />

Hamilton SR, Smith CH, Lessell S. (1993). Idiopathic hypertrophic cranial pachymen<strong>in</strong>gitis. J Cl<strong>in</strong> <strong>Neuro</strong>ophthalmol<br />

13:127–134.


The Diagnosis of Optic <strong>Neuro</strong>pathies 27<br />

Hao SP. (1994). Mucocele of the sphenoid s<strong>in</strong>us with acute bilateral bl<strong>in</strong>dness: report of two cases. J Formosan Med<br />

Assoc 93:519–521.<br />

Harcombe A, K<strong>in</strong>near W, Britton J, Macfarlane J. (1991). Ocular toxicity of ethambutol. Respir Med 85:151–153.<br />

Hedges TR. (1995). Two brothers with bilateral optic neuropathy. Surv Ophthalmol 39:417.<br />

Hirsch WL, Sekhar LN, Lanz<strong>in</strong>o G, et al. (1993). Men<strong>in</strong>giomas <strong>in</strong>volv<strong>in</strong>g the cavernous s<strong>in</strong>us: value of imag<strong>in</strong>g for<br />

predict<strong>in</strong>g surgical complications. AJR 160:1083–1088.<br />

Hoffman HJ, Humphreys RP, Drake JM, et al. (1993). Optic pathway=hypothalamic gliomas: a dilemma <strong>in</strong><br />

management. Pediatr <strong>Neuro</strong>surg 19:186–195.<br />

Honegger J, Buchfelder M, Fahlbusch R. (1999). Surgical treatment of craniopharyngiomas: endocr<strong>in</strong>ological<br />

results. J <strong>Neuro</strong>surg 90:251–257.<br />

Horton JC, Garcia EC, Becker EK. (1992). Magnetic resonance imag<strong>in</strong>g of leukemic <strong>in</strong>vasion of the optic nerve.<br />

Arch Ophthalmol 110:1207–1208.<br />

Howell N. (1997). Leber hereditary optic neuropathy: mitochondrial mutations and degeneration of the optic<br />

nerve. Vision Res 37:3495–3507.<br />

Howell N, Kubacka I, Halvorson S, Mackey D. (1993). Leber’s hereditary optic neuropathy: the etiological role of<br />

a mutation <strong>in</strong> the mitochondrial cytochrome b gene. Genetics 133:133–136.<br />

Hudg<strong>in</strong>s PA, Newman NJ, Dillon WP, et al. (1992). Radiation-<strong>in</strong>duced optic neuropathy: characteristic appearance<br />

on gadol<strong>in</strong>ium-enhanced MR. AJNR 13:235–238.<br />

Huopenen, et al. (1991). A new mtDNA mutation associated with Leber’s hereditary optic neuroret<strong>in</strong>opathy. Am J<br />

Hum Genet 48:1147.<br />

Hutnik CML, Nicolle DA, Munoz DG. (1997). Orbital aspergillosis. A fatal masquerader. J <strong>Neuro</strong>-ophthalmol<br />

17:257–261.<br />

Imes RK, Hoyt WF. (1991). Magnetic resonance imag<strong>in</strong>g signs of optic nerve gliomas <strong>in</strong> neurofibromatosis. Am J<br />

Ophthalmol 111:729–734.<br />

Ing EB, Augsburger JJ, Eagle RC. (1996). Lung cancer with visual loss. Surv Ophthalmol 40:505–510.<br />

Ing EB, Garrity JA, Cross SA, Ebersold MJ. (1997). Sarcoid masquerad<strong>in</strong>g as optic nerve sheath men<strong>in</strong>gioma. Mayo<br />

Cl<strong>in</strong> Proc 72:38–43.<br />

Ishikawa T, Ito T, Shoji E, Inukai K. (2000). Compressive optic nerve atrophy result<strong>in</strong>g from a distorted <strong>in</strong>ternal<br />

carotid artery. Pediatr <strong>Neuro</strong>l 22:322–324.<br />

Jacobson DM. (1999). Symptomatic compression of the optic nerve by the carotid artery. <strong>Cl<strong>in</strong>ical</strong> profile of 18<br />

patients with 24 affected eyes identified by magnetic resonance imag<strong>in</strong>g. Ophthalmology 106:1994–2004.<br />

Jacobson DM, <strong>An</strong>derson DR, Rupp GM, Warner JJ. (1996). Idiopathic hypertrophic cranial pachymen<strong>in</strong>gitis:<br />

cl<strong>in</strong>ical-radiological-pathological correlation of bone <strong>in</strong>volvement. J <strong>Neuro</strong>-ophthalmol 16:264–268.<br />

Jacobson DM, Stone EM, Miller NR, et al. (1998). Relative afferent pupillary defects <strong>in</strong> patients with Leber<br />

hereditary optic neuropathy and unilateral visual loss. Am J Ophthalmol 126:291–295.<br />

Janss AJ, Grundy R, Cnaan A, et al. (1995). Optic pathway and hypothalamic=chiasmatic gliomas <strong>in</strong> children<br />

younger than 5 years with a 6-year follow-up. Cancer 75:1052–1059.<br />

Jenk<strong>in</strong> D, <strong>An</strong>gyalfi S, Becker L, et al. (1993). Optic glioma <strong>in</strong> children, surveillance or irradiation? Int J Radiat Oncol<br />

Biol Phys 25:215–225.<br />

Jiang GL, Tucker SL, Guttenberger R, et al. (1994). Radiation-<strong>in</strong>duced <strong>in</strong>jury to the visual pathway. Radiother Oncol<br />

30:17–25.<br />

Jimenez-Lucho VE, Del Bustro R, Odel J. (1987). Isoniazid and ethambutol as a cause of optic neuropathy. Eur J<br />

Respir Dis 71:42–45.<br />

Johansson BA. (1992). Visual field defects dur<strong>in</strong>g low-dose methotrexate therapy. Doc Ophthalmol 79:91.<br />

Johns DR, Heher KL, Miller NR, Smith KH. (1993). LHON: cl<strong>in</strong>ical manifestations of the 14484 mutation. Arch<br />

Ophthalmol 111:495–498.<br />

Johns DR, Neufeld MJ. (1993). Cytochrome c oxidase mutations <strong>in</strong> Leber’s hereditary optic neuropathy. Biochem<br />

Biophys Res Commun 196:810–815.<br />

Johns DR, Smith KH, Miller NR. (1992). Leber’s hereditary optic neuropathy. <strong>Cl<strong>in</strong>ical</strong> manifestations of the 3460<br />

mutation. Arch Ophthalmol 110:1577–1581.<br />

Johns DR, Smith KH, Sav<strong>in</strong>o PJ, Miller NR. (1993). Leber’s hereditary optic neuropathy. <strong>Cl<strong>in</strong>ical</strong> manifestations of<br />

the 15257 mutation. Ophthalmology 100:981–986.<br />

Johnson TE, Casiano RR, Kronish JW, et al. (1999). S<strong>in</strong>o-orbital aspergillosis <strong>in</strong> acquired immunodeficiency<br />

syndrome. Arch Ophthalmol 117:57–64.<br />

Johnston RL, Burdon MA, Spalston DJ, et al. (1997). Dom<strong>in</strong>ant optic atrophy, Kjer type. L<strong>in</strong>kage analysis and<br />

cl<strong>in</strong>ical features <strong>in</strong> a large British pedigree. Arch Ophthalmol 115:100–103.<br />

Johnston RL, Seller MJ, Behnam JT, et al. (1999). Dom<strong>in</strong>ant optic atrophy. Ref<strong>in</strong><strong>in</strong>g the cl<strong>in</strong>ical diagnostic criteria <strong>in</strong><br />

light of genetic l<strong>in</strong>kage studies. Ophthalmology 106:123–128.


28 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Joseph MP. (1995). Commentary on Papay FA, Morales L Jr, Flaharty P, et al. Optic nerve decompression <strong>in</strong> cranial<br />

base fibrous dysplasia. J Craniofac. Surg 6:11–13.<br />

Kattah JC, Chrousos GC, Roberts J, et al. (1993). Metastatic prostate cancer to the optic canal. Ophthalmology<br />

100:1711–1715.<br />

Katz B. (1991). Disc edema, transient obscurations of vision, and a temporal fossa mass. Surv Ophthalmol 36:133–<br />

139.<br />

Katz BJ, Nerad JA. (1998). Ophthalmic manifestations of fibrous dysplasia. A disease of children and adults.<br />

Ophthalmology 105:2207–2215.<br />

Kawano Y, Kira JJ. (1995). Chronic hypertrophic cranial pachymen<strong>in</strong>gitis associated with HTLV-I <strong>in</strong>fection. J<br />

<strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 59:435–437.<br />

Kazim M, Kennerdell JS, Rothfus W, Marquardt M. (1992). Orbital lymphangioma. Correlation of magnetic<br />

resonance images and <strong>in</strong>traoperative f<strong>in</strong>d<strong>in</strong>gs. Ophthalmology 99:1588–1594.<br />

Kerrison JB, Arnould VJ, Ferraz Sallum JM, et al. (1999). Genetic heterogeneity of dom<strong>in</strong>ant optic atrophy, Kjer<br />

type. Identification of a second locus on chromosome 18q12.2-12.3. Arch Ophthalmol 117:805–810.<br />

Kerrison JB, Howell N, Miller NR, et al. (1995). Leber hereditary optic neuropathy: electron microscopy and<br />

molecular genetic analysis of a case. Ophthalmology 102:1509–1516.<br />

Kerrison JB, Miller NR, Hsu F-C, et al. (2000). A case-control study of tobacco and alcohol consumption <strong>in</strong> Leber<br />

hereditary optic neuropathy. Am J Ophthalmol 130:803–812.<br />

Kerrison JB, Newman NJ. (1997). <strong>Cl<strong>in</strong>ical</strong> spectrum of Leber’s hereditary optic neuropathy. Cl<strong>in</strong> <strong>Neuro</strong>sci 4:295–<br />

301.<br />

Kestle JRW, Hoffman HJ, Mock AR. (1993). Moya moya phenomenon after radiation for optic glioma. J <strong>Neuro</strong>surg<br />

79:32–35.<br />

Kimura H, Masai H, Kashii S. (1996). Optic neuropathy follow<strong>in</strong>g elcaton<strong>in</strong> therapy. J <strong>Neuro</strong>-ophthalmol 16:134–<br />

136.<br />

K<strong>in</strong>jo T, Al-Mefty O, Ciric I. (1995). Diaphragma sellae men<strong>in</strong>giomas. <strong>Neuro</strong>surgery 36:1082–1092.<br />

Kiyokawa M, Mizota A, Takasoh M, Adachi-Usami E. (1999). Pattern visual evoked cortical potentials <strong>in</strong> patients<br />

with toxic optic neuropathy caused by toluene abuse. Jpn J Ophthalmol 43:438–442.<br />

Kjer B, Eiberg H, Kjer P, et al. (1996). Dom<strong>in</strong>ant optic atrophy mapped to chromosome 3q region. II. <strong>Cl<strong>in</strong>ical</strong> and<br />

epidemiological aspects. Acta Ophthalmol Scand 74:3–7.<br />

Kl<strong>in</strong>k DF, Sampath P, Miller NR, et al. (2000). Long-term visual outcome after nonradical microsurgery <strong>in</strong> patients<br />

with parasellar and cavernous s<strong>in</strong>us men<strong>in</strong>giomas. <strong>Neuro</strong>surgery 47:24–32.<br />

Kodsi SR, Younge BR, Leavitt JA, et al. (1993). Intracranial plasma cell granuloma present<strong>in</strong>g as an optic<br />

neuropathy. Surv Ophthalmol 38:70–74.<br />

Kosmorsky GS, Prayson R. (1996). Primary optic pathway sarcoidosis <strong>in</strong> a 38-year-old white man. J <strong>Neuro</strong>ophthalmol<br />

16:188–190.<br />

Kotapka MJ, Kalia KK, Mart<strong>in</strong>ez AJ, Sekhar LN. (1994). Infiltration of the carotid artery by cavernous s<strong>in</strong>us<br />

men<strong>in</strong>gioma. J <strong>Neuro</strong>surg 81:252–255.<br />

Kovalic JJ, Grigsby PW, Shepard MJ, et al. (1990). Radiation therapy for gliomas of the optic nerve and chiasm. Int<br />

J Radiat Oncol Biol Phys 18:927–932.<br />

Kumar A, Sandramouli S, Verma L, Tewari HK, Khosla PK. (1993). Ocular ethambutol toxicity: Is it reversible? J<br />

Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:15–17.<br />

Lam BL, Barret DA, Glaser JS, et al. (1994). Visual loss from idiopathic <strong>in</strong>tracranial pachymen<strong>in</strong>gitis. <strong>Neuro</strong>logy<br />

44:694–698.<br />

Landau K, Killer HE. (1996). Radiation damage. <strong>Neuro</strong>logy 88:9.<br />

Larson JJ, van Loveren HR, Balko G, Tew JM Jr. (1995). Evidence of men<strong>in</strong>gioma <strong>in</strong>filtration <strong>in</strong>to cranial nerves:<br />

cl<strong>in</strong>ical implications for cavernous s<strong>in</strong>us men<strong>in</strong>giomas. J <strong>Neuro</strong>surg 83:596–599.<br />

Lauer AK, Wobig JL, Shults WT, et al. (1999). Severe ocular and orbital toxicity after <strong>in</strong>tracarotid etoposide<br />

phosphate and carboplat<strong>in</strong> therapy. Am J Ophthalmol 127:230–233.<br />

Leber KA, Berglöff J, Pendl G. (1998). Dose-response tolerance of the visual pathways and cranial nerves of the<br />

cavernous s<strong>in</strong>us to stereotactic radiosurgery. J <strong>Neuro</strong>surg 88:43–50.<br />

Lee AG, Cech DA, Rose JE, et al. (1997a). Recurrent visual loss due to musl<strong>in</strong>-<strong>in</strong>duced optochiasmatic<br />

arachnoiditis. <strong>Neuro</strong>-<strong>ophthalmology</strong> 18:199–204.<br />

Lee AG, Dutton JJ. (1999). A practice pathway for the management of gliomas of the anterior visual pathway: an<br />

update and evidence-based approach. <strong>Neuro</strong>-<strong>ophthalmology</strong> 22:139–155.<br />

Lee AG, Phillips PH, Newman NJ, et al. (1997b). <strong>Neuro</strong>-ophthalmologic manifestations of adenoid cystic<br />

carc<strong>in</strong>oma. J <strong>Neuro</strong>-ophthalmol 17:183–188.


The Diagnosis of Optic <strong>Neuro</strong>pathies 29<br />

Lee AG, Woo SY, Miller NR, et al. (1996). Improvement <strong>in</strong> visual function <strong>in</strong> an eye with a presumed optic nerve<br />

sheath men<strong>in</strong>gioma after treatment with three-dimensional conformal radiation therapy. J <strong>Neuro</strong>-ophthalmol<br />

16:247–251.<br />

Lee Wan W, Geller JL, Feldon SE, Sadun AA. (1990). Visual loss caused by rapidly progressive <strong>in</strong>tracranial<br />

men<strong>in</strong>giomas dur<strong>in</strong>g pregnancy. Ophthalmology 97:18–21.<br />

Lehman NL, Johnson LN. (1999). Toxic optic neuropathy after concomitant use of melaton<strong>in</strong>, Zoloft, and highprote<strong>in</strong><br />

diet. J <strong>Neuro</strong>-ophthalmol 19:232–234.<br />

Leibold JE. (1966). The ocular toxicity of ethambutol and its relationship to dose. <strong>An</strong>n NY Acad Sci 135:904–909.<br />

Lessell S. (1998). Nutritional amblyopia. J <strong>Neuro</strong>-ophthalmol 18:106–111.<br />

Lesser RL, Kornmehl EW, Pachner AR, et al. (1990). <strong>Neuro</strong>-ophthalmologic manifestations of Lyme disease.<br />

Ophthalmology 97:699–706.<br />

Lev<strong>in</strong> LA, Jakobiec FA. (1992). Optic nerve tumors of childhood: a decision-analytical approach to their diagnosis.<br />

Int Ophthalmol Cl<strong>in</strong> 32:223–240.<br />

Lev<strong>in</strong>e MR, Kaye L, Mair S, Bates J. (1993). Multifocal fibrosclerosis. Report of a case of bilateral idiopathic<br />

scleros<strong>in</strong>g pseudotumor and retroperitoneal fibrosis. Arch Ophthalmol 111:841–843.<br />

Lewis JR. (2001). Bilateral optic neuropathy secondary to manganese toxicity. Presented at the 27th <strong>An</strong>nual<br />

Meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society, Rancho Mirage, California, February 18–22.<br />

Lieberman FS, Odel J, Hirsh J, et al. (1999). Bilateral optic neuropathy with IgGk multiple myeloma improved<br />

after myeloablative chemotherapy. <strong>Neuro</strong>logy 52:414–416.<br />

Listernick R, Charrow J, Greenwald M. (1992). Emergence of optic pathway gliomas <strong>in</strong> children with neurofibromatosis<br />

type I after normal neuroimag<strong>in</strong>g results. J Pediatr 121:584–587.<br />

Listernick R, Charrow J, Greenwald M, et al. (1994). Optic gliomas I children with neurofibromatosis type I. J<br />

Pediatr 125:63–66.<br />

Listernick R, Louis DN, Packer RJ, Gutmann DH. (1997). Optic pathway gliomas <strong>in</strong> children with neurofibromatosis<br />

1: consensus statement from the NF1 Optic Pathway Glioma Task Force. <strong>An</strong>n <strong>Neuro</strong>l 41:143–149.<br />

Liu GT, Lessell S. (1992a). Spontaneous visual improvement <strong>in</strong> chiasmal gliomas. Am J Ophthalmol 114:193–201.<br />

Liu GT, Schmandt SM, Packer RJ. (2001). Visual loss <strong>in</strong> childhood. Surv Ophthalmol 46:35–42.<br />

Liu JL. (1992b). <strong>Cl<strong>in</strong>ical</strong> analysis of radiation optic neuropathy. Ch<strong>in</strong> J Ophthalmol 28:86–88.<br />

Loehrl TA, Leopold DA. (2000). Sphenoethmoidal mucocele present<strong>in</strong>g with bilateral visual compromise. <strong>An</strong>n<br />

Otol Rh<strong>in</strong>ol Laryngol 109:608–610.<br />

Luiz JE, Lee AG, Keltner JL, et al. (1998). Paraneoplastic optic neuropathy and autoantibody production <strong>in</strong> smallcell<br />

carc<strong>in</strong>oma of the lung. J <strong>Neuro</strong>-ophthalmol 18:187–181.<br />

Lundsford LD. (1994). Contemporary management of men<strong>in</strong>gioma: radiation therapy as an adjuvant and<br />

radiosurgery as an alternative to surgical removal? J <strong>Neuro</strong>surg 80:187–190.<br />

Macaluso DC, Shults WT, Fraunfelder FT. (1999). Features of amiodarone-<strong>in</strong>duced optic neuropathy. Am J<br />

Ophthalmol 127:610–612.<br />

Mackey DA, Buttery RC. (1992). LHON <strong>in</strong> Australia. Aust NZ J Ophthalmol 20:179.<br />

MacMillan C, Kirkham T, Fu K, et al. (1998). Pedigree analysis of French Canadian families with 14484C Leber’s<br />

hereditary optic neuropathy. <strong>Neuro</strong>logy 50:417–422.<br />

Mafee MF, Goodw<strong>in</strong> J, Dorodi S. (1999). Optic nerve sheath men<strong>in</strong>giomas. Role of MR imag<strong>in</strong>g. Radiol Cl<strong>in</strong> North<br />

Am 37:37–58.<br />

Ma<strong>in</strong>i R, Macewen CJ. (1997). Intracranial plasmacytoma present<strong>in</strong>g with optic nerve compression. Br J<br />

Ophthalmol 81:417–418.<br />

Malik S, Furlan AJ, Sweeney PJ, Kosmorsky GS, Wong M. (1992). Optic neuropathy: a rare paraneoplastic<br />

syndrome. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:137–141.<br />

Mamelak AN, Kelly WM, Davis RL, Rosenblum ML. (1993). Idiopathic hypertrophic cranial pachymen<strong>in</strong>gitis.<br />

Report of three cases. J <strong>Neuro</strong>surg 79:270–276.<br />

Maroon JC, Kennerdell JS, Vidovich DV, et al. (1994). Recurrent spheno-orbital men<strong>in</strong>gioma. J <strong>Neuro</strong>surg 80:202–<br />

208.<br />

Mashima Y, Hiida Y, Oguchi Y. (1992). Remission of Leber’s hereditary optic neuropathy with idebenone. Lancet<br />

340:368–369.<br />

Mashima Y, Hiida Y, Oguchi Y. (1995). Lack of differences among mitochondrial DNA <strong>in</strong> family members with<br />

Leber’s hereditary optic neuropathy and differ<strong>in</strong>g visual outcomes. J <strong>Neuro</strong>ophthalmol 15:15–19.<br />

Mashima Y, Kigasawa K, Wakakura M, Oguchi Y. (2000). Do idebenone and vitam<strong>in</strong> therapy shorten the time to<br />

achieve visual recovery <strong>in</strong> Leber hereditary optic neuropathy? J <strong>Neuro</strong>-ophthalmol 20:166–170.<br />

Mashima Y, Oshitari K, Imamura Y, et al. (1998). Orbital high resolution magnetic resonance imag<strong>in</strong>g with fast<br />

sp<strong>in</strong> echo <strong>in</strong> the acute stage of Leber’s hereditary optic neuropathy. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 64:124–127.


30 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

McClellan RL, El Gammal T, Kl<strong>in</strong>e LB. (1995). Early bilateral radiation-<strong>in</strong>duced optic neuropathy with follow-up<br />

MRI. <strong>Neuro</strong>radiology 37:131–133.<br />

McFadzean R, Brosnahan D, Doyle D, et al. (1994). A diagnostic quartet <strong>in</strong> leptomen<strong>in</strong>geal <strong>in</strong>filtration of the optic<br />

nerve sheath. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 14:175–182.<br />

Michael CB, Lee AG, Patr<strong>in</strong>ely JR, et al. (2000). Visual loss associated with fibrous dysplasia of the anterior skull<br />

base. Case report and review of the literature. J <strong>Neuro</strong>surg 92:350–354.<br />

Miller NR, Newman NJ. (1998). Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 5th ed. Baltimore, Williams &<br />

Wilk<strong>in</strong>s.<br />

Miller NR, Sav<strong>in</strong>o PJ, Schneider T. (1995). Rapid growth of an <strong>in</strong>tracranial aneurysm caus<strong>in</strong>g apparent retrobulbar<br />

optic neuritis. J <strong>Neuro</strong>-ophthalmol 15:212–218.<br />

Misra M, Mohanty AB, Rath S. (1991). Giant aneurysm of the <strong>in</strong>ternal carotid artery present<strong>in</strong>g features of<br />

retrobulbar neuritis. Ind J Ophthalmol 1:28–29.<br />

Moghrabi A, Friedman HS, Burger PC, et al. (1993). Carboplat<strong>in</strong> treatment of progressive optic pathway gliomas<br />

to delay radiotherapy. J <strong>Neuro</strong>surg 79:223–227.<br />

Mohamed IG, Roa W, Fulton D, et al. (2000). Optic nerve sheath fenestration for a reversible optic neuropathy <strong>in</strong><br />

radiation oncology. Am J Cl<strong>in</strong> Oncol 23:401–405.<br />

Moorthy RS, Yung CW, Nunery WR, et al. (1992). Spontaneous orbital subperiosteal hematomas <strong>in</strong> patients with<br />

liver disease. Ophthalmic Plast Reconstr Surg 8:150–152.<br />

Moyer PD, Golnik KC, Breneman J. (2000). Treatment of optic nerve sheath men<strong>in</strong>gioma with three-dimensional<br />

conformal radiation. Am J Ophthalmol 129:694–696.<br />

Muci-Mendoza R, Aravalo JF, Ramella M, et al. (1999). Optociliary ve<strong>in</strong>s <strong>in</strong> optic nerve sheath men<strong>in</strong>gioma.<br />

Indocyan<strong>in</strong>e green videoangiography f<strong>in</strong>d<strong>in</strong>gs. Ophthalmology 106:311–318.<br />

Muthukumar N. (1997). Traumatic hemorrhagic optic neuropathy: case report. Br J <strong>Neuro</strong>surg 11:166–167.<br />

Nakae K, Yamamoto S, Shigematsu I, Kono R. (1973). Relation between subacute myelo-optic neuropathy<br />

(SMON) and clioqu<strong>in</strong>ol: nationwide survey. Lancet 1:171–173.<br />

Nakajima T, Kumabe T, Jokura H, Yoshimoto T. (2001). Recurrent germ<strong>in</strong>oma <strong>in</strong> the optic nerve: report of two<br />

cases. <strong>Neuro</strong>surgery 48:214–218.<br />

Nakamura M, Yamamoto M. (2000). Variable pattern of visual recovery of Leber’s hereditary optic neuropathy. Br<br />

J Ophthalmol 84:534–535.<br />

Newman NJ. (1993). Leber’s hereditary optic neuropathy: new genetic considerations. Arch <strong>Neuro</strong>l 50:540–<br />

548.<br />

Newman NJ, Grossniklaus HE, Wojno TH. (1996). Breast carc<strong>in</strong>oma metastatic to the optic nerve. Arch Ophthalmol<br />

114:102–103.<br />

Newman NJ, Lott MT, Wallace DC. (1994). The cl<strong>in</strong>ical characteristics of pedigrees of Leber’s hereditary optic<br />

neuropathy with the 11778 mutation. Am J Ophthalmol 111:750.<br />

Newman SJ. (1994). Men<strong>in</strong>giomas: a quest for the optimum therapy. J <strong>Neuro</strong>surg 80:191–194.<br />

Newsom RSB, Simcock P, Zambarakji H. (1999). Cerebral metastasis present<strong>in</strong>g with altitud<strong>in</strong>al field defect. J<br />

<strong>Neuro</strong>-ophthalmol 19:10–11.<br />

Nishio S, Taheshita I, Fujiwara S, et al. (1993). Optico-hypothalamic glioma: an analysis of 16 cases. Childs Nerv<br />

Syst 9:334–338.<br />

Nishizaki T, Iwamoto F, Uesugi S, et al. (1997). Idiopathic cranial pachymen<strong>in</strong>goencephalitis focally affect<strong>in</strong>g the<br />

parietal dura mater and adjacent bra<strong>in</strong> parenchyma: case report. <strong>Neuro</strong>surgery 40:840–843.<br />

Noda S, Hayasaka S, Setogawa T. (1993). Intraocular lymphoma <strong>in</strong>vades the optic nerve and orbit. <strong>An</strong>n<br />

Ophthalmol 25:30–34.<br />

Nygaard R, Garwicz S, Haldorsen T, et al. (1991). Second malignant neoplasms <strong>in</strong> patients treated for childhood<br />

leukemia. Acta Pediatr Scand 80:1220–1228.<br />

Oaks W. (1990). Recent experience with resection of pilocytic astrocytomas of the hypothalamus. Concepts Pediatr<br />

<strong>Neuro</strong>surg 10:108–117.<br />

Olmos PR, Falko JM, Rea GL, et al. (1993). Fibros<strong>in</strong>g pseudotumor of the sella and parasellar area produc<strong>in</strong>g<br />

hypopituitarism and multiple cranial nerve palsies. <strong>Neuro</strong>surgery 32:1015–1021.<br />

Oohira A, Inoue T, Fukuda N, Uchida K-I. (1991). A case with paraneoplastic optic neuropathy present<strong>in</strong>g<br />

bitemporal hemianopsia. <strong>Neuro</strong>-<strong>ophthalmology</strong> 11:325–328.<br />

Ortiz JR, Newman NJ, Barrow DL. (1991). CREST-associated multiple <strong>in</strong>tracranial aneurysms and bilateral optic<br />

neuropathies. Ophthalmology 11:233–240.<br />

Packer RJ, Ater JC, Phillips P, et al. (1994). Efficacy of chemotherapy for children with newly diagnosed<br />

progressive low-grade glioma (abstract). <strong>An</strong>n <strong>Neuro</strong>l 36:496.<br />

Packer R, Lange B, Ater J, et al. (1993). Carboplat<strong>in</strong> and v<strong>in</strong>crist<strong>in</strong>e for recurrent and newly diagnosed low grade<br />

gliomas of childhood. J Cl<strong>in</strong> Oncol 11:850–860.


The Diagnosis of Optic <strong>Neuro</strong>pathies 31<br />

Paradiso G, Micheli F, Taratuto AL, Parera IC. (1996). Familial bulbosp<strong>in</strong>al neuronopathy with optic atrophy: a<br />

dist<strong>in</strong>ct entity. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 61:196–199.<br />

Park KL, Go<strong>in</strong>s KM. (1993). Hodgk<strong>in</strong>’s lymphoma of the orbit associated with acquired immunodeficiency<br />

syndrome. Am J Ophthalmol 116:111–112.<br />

Parney IF, Johnson ES, Allen PBR. (1997). ‘‘Idiopathic’’ cranial hypertrophic pachymen<strong>in</strong>gitis responsive to<br />

antituberculous therapy: case report. <strong>Neuro</strong>surgery 41:965–971.<br />

Parsa CF, Hoyt CS, Lesser RL, et al. (2001). Spontaneous regression of optic gliomas. Thirteen cases documented<br />

by serial neuroimag<strong>in</strong>g. Arch Ophthalmol 119:516–529.<br />

Parsons JT, Bova FJ, Fitzgerald CR, et al. (1994). Radiation optic neuropathy after megavoltage external-beam<br />

irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys 30:755–763.<br />

Patankar T, Prasad S, Krishnan A, Laxm<strong>in</strong>arayan R. (2000). Isolated optic nerve pseudotumor. Australas Radiol<br />

44:101–103.<br />

Peele KA, Kennerdell JS, Maroon JC, et al. (1996). The role of postoperative irradiation <strong>in</strong> the management of<br />

sphenoid w<strong>in</strong>g men<strong>in</strong>giomas. A prelim<strong>in</strong>ary report. Ophthalmology 103:1761–1767.<br />

Pelton RW, Lee AG, Orengo-Nania SD, Patr<strong>in</strong>ely JR. (1999). Bilateral optic disk edema caused by sarcoidosis<br />

mimick<strong>in</strong>g pseudotumor cerebri. Am J Ophthalmol 127:229–230.<br />

Pengel J, Crevits L, Wynants P, et al. (1997). Optic nerve metastasis simulat<strong>in</strong>g optic neuritis. Cl<strong>in</strong> <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

99:46–49.<br />

Petito CK. (1996). Craniopharyngioma: prognostic importance of histologic features. AJNR 17:1441–1442.<br />

Petronio J, Edwards M, Prados M, et al. (1991). Management of chiasmal and hypothalamic gliomas of <strong>in</strong>fancy<br />

and childhood with chemotherapy. J <strong>Neuro</strong>surg 74:701–708.<br />

Pierce SM, Barnes PD, Loeffler JS, et al. (1990). Def<strong>in</strong>itive radiation therapy <strong>in</strong> the management of symptomatic<br />

patients with optic glioma. Survival and long term effects. Cancer 65:45–52.<br />

Pierro L, Brancato R, Zagnanelli E, et al. (1992). Ocular <strong>in</strong>volvement <strong>in</strong> acute lymphoblastic leukemia: an<br />

echographic study. Int Ophthalmol 16:159–162.<br />

P<strong>in</strong>na A, Corda L, Carta F. (2001). Rapid recovery with oral z<strong>in</strong>c sulphate <strong>in</strong> deferoxam<strong>in</strong>e-<strong>in</strong>duced presumed<br />

optic neuropathy and hear<strong>in</strong>g loss. J <strong>Neuro</strong>-ophthalmol 21:32–33.<br />

Polak BCP, Wijngaarde R. (1995). Radiation neuropathy <strong>in</strong> patients with both diabetes mellitus and ophthalmic<br />

Graves’ disease. Orbit 14:71–74.<br />

Purohit SS, Tomsak RL. (1997). Nutritional deficiency amblyopia or Leber’s hereditary optic neuropathy? <strong>Neuro</strong><strong>ophthalmology</strong><br />

18:111–116.<br />

Rao GP, Blyth CP, Jefferys RV. (1995). Ophthalmic manifestations of Rathke’s cleft cysts. Am J Ophthalmol 119:86–<br />

91.<br />

Rizzo JF III, Lessell S. (1991). Optic neuritis and ischemic optic neuropathy: overlapp<strong>in</strong>g cl<strong>in</strong>ical problems. Arch<br />

Ophthalmol 109:1668–1672.<br />

Rizzo JF III, Lessell S. (1993). Tobacco amblyopia. Am J Ophthalmol 116:84–88.<br />

Roden D, Bosley TM, Fowble B, et al. (1990). Delayed radiation <strong>in</strong>jury to the retrobulbar optic nerves and chiasm.<br />

Ophthalmology 97:346–351.<br />

Rodriguez LA, Edwards MSB, Lev<strong>in</strong> VA. (1990). Management of hypothalamic gliomas <strong>in</strong> children: an analysis of<br />

33 cases. <strong>Neuro</strong>surgery 26:242–247.<br />

Rootman J, McCarthy M, White V, et al. (1994). Idiopathic scleros<strong>in</strong>g <strong>in</strong>flammation of the orbit. A dist<strong>in</strong>ct<br />

cl<strong>in</strong>icopathologic entity. Ophthalmology 101:570–584.<br />

Rosenbaum JT, Simpson T, Neuwelt CM. (1997). Successful treatment of optic neuropathy <strong>in</strong> association with<br />

systemic lupus erythematosus us<strong>in</strong>g <strong>in</strong>travenous cyclophosphamide. Br J Ophthalmol 81:130–132.<br />

Roth DB, Siatkowski RM. (2000). Bilateral bl<strong>in</strong>dness as the <strong>in</strong>itial presentation of lymphoma of the sphenoid s<strong>in</strong>us.<br />

Am J Ophthalmol 129:256–258.<br />

Rub<strong>in</strong>ste<strong>in</strong> AB, Loven D, Greir A, et al. (1994). Hormone receptors <strong>in</strong> <strong>in</strong>itially excised versus recurrent <strong>in</strong>tracranial<br />

men<strong>in</strong>giomas. J <strong>Neuro</strong>surg 81:184–187.<br />

Russo PA, Changlasian MA. (1994). Toxic optic neuropathy associated with ethambutol: implications for current<br />

therapy. J Am Optom Assoc 65:332–338.<br />

Sa’adah MA, Al Salem M, Ali AS, et al. (1999). Cimetid<strong>in</strong>e-associated optic neuropathy. Eur <strong>Neuro</strong>l 42:23–26.<br />

Saadati HG, Hsu HY, Heller KB, Sadun AA. (1998). A histopathologic and morphometric differentiation of nerves<br />

<strong>in</strong> optic nerve hypoplasia and Leber hereditary optic neuropathy. Arch Ophthalmol 116:911–916.<br />

Sadun AA, Weiss MH. (1993). Reversal of visual losses follow<strong>in</strong>g RU 486 therapy for men<strong>in</strong>gioma. Presented at<br />

the 19th annual meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society, Big Sky, Montana.<br />

Saito K, Suzuki Y, Nehashi K, et al. (1990). Unilateral extradural approach for bilateral optic canal release <strong>in</strong> a<br />

patient with fibrous dysplasia. Surg <strong>Neuro</strong>l 34:124–128.


32 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Samples JR, Younge BR. (1981). Tobacco-alcohol amblyopia. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 11:213–218.<br />

Savy LE, Moseley IF. (1996). Intracranial arterial calcification and ectasia <strong>in</strong> visual failure. Br J Radiol 69:394–401.<br />

Schaffler GJ, Simbrunner J, Lechner H, et al. (2000). Idiopathic sclerotic <strong>in</strong>flammation of the orbit with left optic<br />

nerve compression <strong>in</strong> a patient with multifocal fibrosclerosis. AJNR 21:194–197.<br />

Schild HS, Fox BC. (1991). Rapid-onset reversible ocular toxicity from ethambutol therapy. Am J Med 90:404–406.<br />

Scold<strong>in</strong>g NJ, Kellar-Wood HF, Shaw C, Shneerson JM, <strong>An</strong>toun N. (1996). Wolfram syndrome: hereditary diabetes<br />

mellitus with bra<strong>in</strong>stem and optic atrophy. <strong>An</strong>n <strong>Neuro</strong>l 39:352–360.<br />

Sedwick LA. (1991). The perils of Paul<strong>in</strong>e: visual loss <strong>in</strong> a tippler. Surv Ophthalmol 35:454–462.<br />

Sedwick LA. (1992). Gett<strong>in</strong>g to the heart of visual loss: when cardiac medication may be dangerous to the optic<br />

nerves. Surv Ophthalmol 36:366–372.<br />

Seth B, Khosla PK, Semwal OP, D’Monty V. (1991). Visual evoked responses <strong>in</strong> tuberculous children on<br />

ethambutol therapy. Indian Pediatr 28:713–717.<br />

Shaikh S, Ta C, Basham AA, Mansour S. (2001). Leber hereditary optic neuropathy associated with antiretroviral<br />

therapy for human immunodeficiency virus <strong>in</strong>fection. Am J Ophthalmol 131:143–145.<br />

Sharma OP, Sharma AM. (1991). Sarcoidosis of the nervous system: a cl<strong>in</strong>ical approach. Arch Intern Med 151:1317–<br />

1321.<br />

Shibasaki HS, Hayasaka S, Noda S, et al. (1992). Radiotherapy resolves leukemic <strong>in</strong>volvement of the optic nerves.<br />

<strong>An</strong>n Ophthalmol 24:395–397.<br />

Shoffner JM, Brown MD, Stugard C, et al. (1995). Leber’s hereditary optic neuropathy plus dystonia is caused by a<br />

mitochondrial DNA po<strong>in</strong>t mutation. <strong>An</strong>n <strong>Neuro</strong>l 38:163–169.<br />

Shults WT, Hamby S, Corbett JJ, et al. (1993). <strong>Neuro</strong>-ophthalmic complications of <strong>in</strong>tracranial catheters.<br />

<strong>Neuro</strong>surgery 33:135–138.<br />

Shuper A, Horeu G, Kornreich L. (1997). Visual pathway glioma: an erratic tumour with therapeutic dilemmas.<br />

Arch Dis Child 76:259–263.<br />

Shutter LA, Kl<strong>in</strong>e LB, Fisher WS. (1993). Visual loss and a suprasellar mass complicated by pregnancy. Surv<br />

Ophthalmol 38:63–69.<br />

Siatkowski RM, Lam BL, Schatz NJ, et al. (1992). Optic neuropathy <strong>in</strong> Hodgk<strong>in</strong>’s disease. Am J Ophthalmol<br />

114:625–629.<br />

Siatkowski RM, Scott IU, Verm AM, et al. (2001). Optic neuropathy and chiasmopathy <strong>in</strong> the diagnosis of systemic<br />

lupus erythematosus. J <strong>Neuro</strong>-ophthalmol 21:193–198.<br />

Silver MR, Messner LV. (1994). Sarcoidosis and its ocular manifestations. J Am Optom Assoc 65:321–327.<br />

Simmons IG, Good PA. (1998). Carbon monoxide poison<strong>in</strong>g causes optic neuropathy. Eye 12:809–814.<br />

Skolnick CA, Mafee MF, Goodw<strong>in</strong> JA. (2000). Pneumos<strong>in</strong>us dilatans of the sphenoid s<strong>in</strong>us present<strong>in</strong>g with visual<br />

loss. J <strong>Neuro</strong>-ophthalmol 20:259–263.<br />

Smets RM, Waeben M. (1999). Unusual comb<strong>in</strong>ation of night bl<strong>in</strong>dness and optic neuropathy after biliopancreatic<br />

bypass. Bull Soc Belge Ophtalmol 271:93–96.<br />

Song A, Scott IU, Davis JL, et al. (2002). Atypical anterior optic neuropathy caused by toxoplasmosis. Am J<br />

Ophthalmol 133:162–164.<br />

Speicher MA, Goldman MH, Ghrousos GA. (2000). Amiodarone optic neuropathy without disc edema. J <strong>Neuro</strong>ophthalmol<br />

20:171–172.<br />

Sreih AG, Schoenfeld MH, Marieb MA. (1999). Optic neuropathy follow<strong>in</strong>g amiodarone therapy. Pac<strong>in</strong>g Cl<strong>in</strong><br />

Electrophysiol 22:1108–1110.<br />

Stafford SL, Perry A, Leavitt JA, et al. (1998). <strong>An</strong>terior visual pathway men<strong>in</strong>giomas primarily resected between<br />

1978 and 1988. The Mayo Cl<strong>in</strong>ic Rochester experience. J <strong>Neuro</strong>-ophthalmol 18:206–210.<br />

Steel DHW, Potts MJ. (1995). Bilateral sudden visual loss <strong>in</strong> Albright’s syndrome. Br J Ophthalmol 79:1149.<br />

Stone EM, Newman NJ, Miller NR, et al. (1992). Visual recovery <strong>in</strong> patients with Leber’s hereditary optic<br />

neuropathy and the 11778 mutation. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:10–14.<br />

Stretch JR, Poole MD. (1992). Pneumos<strong>in</strong>us dilatans as the aetiology of progressive bl<strong>in</strong>dness. Br J Plast Surg<br />

45:469–473.<br />

Strom<strong>in</strong>ger MB, Schatz NJ, Glaser JS. (1993). Lymphomatous optic neuropathy. Am J Ophthalmol 116:774–776.<br />

Sung JU, Lam BL, Curt<strong>in</strong> VT, et al. (1998). Metastatic gastric carc<strong>in</strong>oma to the optic nerve. Arch Ophthalmol<br />

116:692–693.<br />

Sullivan-Mee M, Solis K. (1998). Methanol-<strong>in</strong>duced vision loss. J Am Optom Assoc 69:57–65.<br />

Sutton LN. (1994). Visual pathway gliomas of childhood. <strong>Neuro</strong>surgery 16:1–6.<br />

Sutton LN, Molloy PT, Senyak H. (1995). Long term outcome of hypothalamic=chiasmatic astrocytomas <strong>in</strong><br />

children treated with conservative surgery. J <strong>Neuro</strong>surg 83:583–589.<br />

Tachibana O, Yamashima T, Yamashita J. (1990). Radiation necrosis of the optic chiasm, optic tract, hypothalamus,


The Diagnosis of Optic <strong>Neuro</strong>pathies 33<br />

and upper pons after radiotherapy for pituitary adenoma detected by gadol<strong>in</strong>ium-enhanced, T1 weighted<br />

magnetic resonance imag<strong>in</strong>g: case report. <strong>Neuro</strong>surgery 27:640–643.<br />

Tamai H, Tamai K, Yuasa H. (2000). Pachymen<strong>in</strong>gitis with pseudo–Foster Kennedy syndrome. Am J Ophthalmol<br />

130:535–537.<br />

Teare JP, Whitehead M, Rake MO, Coker RJ. (1991). Rapid onset of bl<strong>in</strong>dness due to men<strong>in</strong>geal carc<strong>in</strong>omatosis<br />

from an oesophageal adenocarc<strong>in</strong>oma. Postgrad Med J 67:909–911.<br />

Teus MA, Teruel JL, Pascual J, et al. (1991). Corticosteroid <strong>in</strong>duced toxic optic neuropathy. Am J Ophthalmol<br />

112:605.<br />

Thambisetty MR, Scherzer CR, Yu Z, et al. (2001). Paraneoplastic optic neuropathy and cerebellar ataxia with<br />

small cell carc<strong>in</strong>oma of the lung. J <strong>Neuro</strong>-ophthalmol 21:164–167.<br />

Thomas RJ. (1994). <strong>Neuro</strong>toxicity of antibacterial therapy. South Med J 87:869–874.<br />

Thorne JE, Galetta SL. (1998). Disc edema and ret<strong>in</strong>al periphlebitis as the <strong>in</strong>itial manifestation of sarcoidosis. Arch<br />

<strong>Neuro</strong>l 55:862–863.<br />

Thorne JE, Volpe NJ, Wulc AE, Galetta SL. (2002). Caught by a masquerade: scleros<strong>in</strong>g orbital <strong>in</strong>flammation. Surv<br />

Ophthalmol 47:50–54.<br />

Trobe JD. (2001). The <strong>Neuro</strong>logy of Vision. Oxford, Oxford University Press.<br />

Trobe JD, Glaser JS. (1978). Quantitative perimetry <strong>in</strong> compressive optic neuropathy and optic neuritis. Arch<br />

Ophthalmol 96:1210–1216.<br />

Trobe JD, Glaser JS, Cassady JC. (1980). Optic atrophy: differential diagnosis by fundus observation. Arch<br />

Ophthalmol 98:1040–1045.<br />

Tsai RK, Lee UH. (1997). Reversibility of ethambutol optic neuropathy. J Ocul Pharmacol Ther 13:473–477.<br />

Tsao K, Aitken PA, Johns DR. (1999). Smok<strong>in</strong>g as an aetiological factor <strong>in</strong> a pedigree with Leber’s hereditary optic<br />

neuropathy. Br J Ophthalmol 83:577–581.<br />

Vaphiades MS. (2001). Disk edema and cranial MRI optic nerve enhancement: How long is too long? Surv<br />

Ophthalmol 46:56–58.<br />

Vaphiades MS, Newman NJ. (1999). Optic nerve enhancement on orbital magnetic resonance imag<strong>in</strong>g <strong>in</strong> Leber’s<br />

hereditary optic neuropathy. J <strong>Neuro</strong>-ophthalmol 19:238–239.<br />

Vargas ME, Kupersmith MJ, Setton A, et al. (1994). Endovascular treatment of giant aneurysm which cause visual<br />

loss. Ophthalmology 101:1091–1098.<br />

Votruba M, Fitzke FW, Holder GE, et al. (1998). <strong>Cl<strong>in</strong>ical</strong> features <strong>in</strong> affected <strong>in</strong>dividuals from 21 pedigrees with<br />

dom<strong>in</strong>ant optic atrophy. Arch Ophthalmol 116:351–358.<br />

Vrabec TA, Sergott AC, Jaeger EA, et al. (1990). Reversible visual loss <strong>in</strong> a patient receiv<strong>in</strong>g high-dose<br />

ciprofloxac<strong>in</strong> hydrochloride (cipro). Ophthalmology 97:707–710.<br />

Wallace RT, Shields JA, Shields CL, et al. (1991). Leukemic <strong>in</strong>filtration of the optic nerve. Arch Ophthalmol 109:1027.<br />

Wang MY, Arnold AC, V<strong>in</strong>ters HV, Glasgow BJ. (2000). Bilateral bl<strong>in</strong>dness and lumbosacral myelopathy<br />

associated with high-dose Carmust<strong>in</strong>e and Cisplat<strong>in</strong> therapy. Am J Ophthalmol 130:367–368.<br />

Warner JEA, Lessell S, Rizzo JF III, Newman NJ. (1997). Does optic disc appearance dist<strong>in</strong>guish ischemic optic<br />

neuropathy from optic neuritis? Arch Ophthalmol 115:1408–1410.<br />

Weaver DT, Garrity JA, Meyer FA, Laws ER. (1993). Visual prognosis <strong>in</strong> sphenoid ridge men<strong>in</strong>gioma. Presented at<br />

the 19th annual meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society, Big Sky, Montana.<br />

We<strong>in</strong> FB, Gans MS. (1999). The perils of a sneeze. J <strong>Neuro</strong>-ophthalmol 19:128–130.<br />

We<strong>in</strong>er HL, Wisoff JH, Rosenberg ME, et al. (1994). Craniopharyngiomas: a cl<strong>in</strong>icopathological analysis of factors<br />

predictive of recurrence and functional outcome. <strong>Neuro</strong>surgery 35:1001–1011.<br />

Weisman JS, Hepler RS, V<strong>in</strong>ters HV. (1990). Reversible visual loss caused by fibrous dysplasia. Am J Ophthalmol<br />

110:244–249.<br />

Wijaya J, Salu P, Leblanc A, Bervoets S. (1999). Acute unilateral visual loss due to a s<strong>in</strong>gle <strong>in</strong>tranasal<br />

methamphetam<strong>in</strong>e abuse. Bull Soc Belge Ophtalmol 271:19–25.<br />

Wijers OB, Levendag PC, Luyten GP, et al. (1999). Radiation-<strong>in</strong>duced bilateral optic neuropathy <strong>in</strong> cancer of the<br />

nasopharynx. Case failure analysis and review of the literature. Strahlenther Onkol 175:21–27.<br />

Wilson CB. (1994). Men<strong>in</strong>giomas: genetics, malignancy, and the role of radiation <strong>in</strong> <strong>in</strong>duction and treatment. J<br />

<strong>Neuro</strong>surg 81:666–675.<br />

Wisoff J. (1990a). Management of optic pathway tumors of childhood. Pediatr <strong>Neuro</strong>oncol 3:791.<br />

Wisoff JH, Abbott R, Epste<strong>in</strong> F. (1990b). Surgical management of exophytic chiasmatic-hypothalamic tumors of<br />

childhood. J <strong>Neuro</strong>surg 73:661–667.<br />

Wright JE, Sullivan TJ, Garner A, Wulc AE, Moseley IF. (1997). Orbital venous anomalies. Ophthalmology 104:905–<br />

913.<br />

Wroe SJ, Thompson AJ, McDonald WI. (1991). Pa<strong>in</strong>ful <strong>in</strong>traorbital men<strong>in</strong>giomas. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

54:1009–1010.


34 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Yamaguchi K, Ohnuma I, Takahashi S, et al. (1997). Magnetic resonance imag<strong>in</strong>g <strong>in</strong> acute optic neuropathy by<br />

sphenoidal mucocele. Int Ophthalmol 21:9–11.<br />

Yamamoto N, Kiyosawa M, Kawasaki T, et al. (1994). Successfully treated optic nerve <strong>in</strong>filtration with adult T-cell<br />

lymphoma. J <strong>Neuro</strong>-ophthalmol 14:81–83.<br />

Youl BD, Plant GT, Stevens JM, et al. (1990). Three cases of craniopharyngioma show<strong>in</strong>g optic tract hypersignal on<br />

MRI. <strong>Neuro</strong>logy 40:1416–1419.<br />

Young WC, Thornton AF, Gebarski SS, et al. (1992). Radiation-<strong>in</strong>duced optic neuropathy: correlation of MR<br />

imag<strong>in</strong>g and radiation dosimetry. Radiology 185:904–907.<br />

Yu Z, Kryzer TJ, Greisman GE, et al. (2001). CRMP-5 neuronal autoantibody: marker of lung cancer and<br />

thymoma-related autoimmunity. <strong>An</strong>n <strong>Neuro</strong>l 49:146–154.<br />

Zaman AG, Graham EM, Sanders MD. (1993). <strong>An</strong>terior visual system <strong>in</strong>volvement <strong>in</strong> Hodgk<strong>in</strong>’s lymphoma. Br J<br />

Ophthalmol 77:184–187.<br />

Zimmerman CF, Schatz NJ. (1990a). Magnetic resonance imag<strong>in</strong>g of radiation optic neuropathy. Am J Ophthalmol<br />

110:389–394.<br />

Zimmerman CF, Schatz NJ, Glaser JS. (1990b). Magnetic resonance imag<strong>in</strong>g of optic nerve men<strong>in</strong>giomas.<br />

Enhancement with gadol<strong>in</strong>ium-DTPA. Ophthalmology 97:585–591.


2 r<br />

Optic Neuritis<br />

Optic neuritis (ON) is a general term for an optic neuropathy result<strong>in</strong>g from an idiopathic,<br />

<strong>in</strong>flammatory, <strong>in</strong>fectious, or demyel<strong>in</strong>at<strong>in</strong>g etiology. If the optic nerve is swollen on<br />

ophthalmoscopy, then the term papillitis or anterior ON is used. If the optic nerve is normal<br />

on ophthalmoscopy, then it is called retrobulbar ON. In cl<strong>in</strong>ical practice, most ophthalmologists<br />

use the term optic neuritis to describe idiopathic or demyel<strong>in</strong>at<strong>in</strong>g ON.<br />

What Are the Features of Typical Optic<br />

Neuritis?<br />

Patients with idiopathic or demyel<strong>in</strong>at<strong>in</strong>g ON usually present with a ‘‘typical’’ cl<strong>in</strong>ical<br />

profile as shown <strong>in</strong> Table 2–1 (Beck, 1992a, 1993a,c–e, 1994a; Cleary, 1993; Frederiksen,<br />

1991; Gerl<strong>in</strong>g, 1998a,b; J<strong>in</strong>, 1999; Keltner, 1993a, 1993b; Optic Neuritis Study Group,<br />

1991; Schneck, 1997; Slamovits, 1991a; Wakakuru, 1999b; Wall, 1998).<br />

The cl<strong>in</strong>ical characteristics of 455 patients with ON enrolled <strong>in</strong> the Optic Neuritis<br />

Treatment Trial (ONTT), a study sponsored by the National Eye Institute conducted at<br />

15 cl<strong>in</strong>ical centers <strong>in</strong> the United States between the years 1988 and 1991, are outl<strong>in</strong>ed <strong>in</strong><br />

Table 2–2.<br />

The majority of patients with ON with eye or ophthalmic trigem<strong>in</strong>al distribution pa<strong>in</strong><br />

or pa<strong>in</strong> with eye movement have <strong>in</strong>volvement of the orbital segment of the optic nerve<br />

(Kupersmith, 2002). The absence of pa<strong>in</strong>, particularly with eye movement, suggests<br />

the disorder is limited to the canalicular or <strong>in</strong>tracranial portion of the optic nerve<br />

(Kupersmith, 2002).<br />

What Visual Field Defects Are Noted with<br />

Optic Neuritis?<br />

<strong>An</strong>alysis of <strong>in</strong>itial perimetry <strong>in</strong> the ONTT showed that the most common present<strong>in</strong>g<br />

pattern was a diffuse field defect (48%), with altitud<strong>in</strong>al=arcuate defects <strong>in</strong> 20%, and<br />

35


36 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 2–1. Features of Typical Optic Neuritis (ON)<br />

Acute, usually unilateral loss of vision<br />

Visual acuity (variable visual loss 20=20 to no light perception (NLP)<br />

Visual field (variable optic nerve visual field defects)<br />

A relative afferent pupillary defect (RAPD) <strong>in</strong> unilateral or bilateral but asymmetric cases<br />

Periocular pa<strong>in</strong> (90%), especially with eye movement (Gerl<strong>in</strong>g, 1998a)<br />

Normal (65%) or swollen (35%) optic nerve head<br />

A young adult patient (


Optic Neuritis 37<br />

Table 2–2. The <strong>Cl<strong>in</strong>ical</strong> Profile of the Optic Neuritis Treatment Trial (ONTT)<br />

Patients<br />

<strong>Cl<strong>in</strong>ical</strong> characteristic Patients<br />

Female 77%<br />

White 85%<br />

Age (years) (mean SD) 32 6.7<br />

Mean days of visual symptoms before entry 5.0 1.6<br />

Ocular pa<strong>in</strong> present 92%<br />

Pa<strong>in</strong> worsened by eye movement 87%<br />

Ophthalmoscopic f<strong>in</strong>d<strong>in</strong>gs<br />

Optic disc appearance<br />

Optic disc swollen 35%<br />

Optic disc normal (retrobulbar) 65%<br />

Characteristics of swollen optic disc<br />

Mild and focal 28.6%<br />

Mild and diffuse 51%<br />

Severe and focal 3.1%<br />

Severe and diffuse 16.8%<br />

Ret<strong>in</strong>al or optic disc hemorrhage<br />

None 84.5%<br />

On disc 6.2%<br />

On ret<strong>in</strong>a 3.7%<br />

On both disc and ret<strong>in</strong>a 5.0%<br />

Vitreous<br />

Normal 93.8%<br />

Trace cells 6.2%<br />

More than trace cells 0%<br />

Ret<strong>in</strong>al exudates<br />

Present on or adjacent to disc 3.1%<br />

Present <strong>in</strong> the macula 0%<br />

Present elsewhere 0.6%<br />

Visual acuity<br />

20=20 or better 11%<br />

20=25–20=40 25%<br />

20=50–20=190 29%<br />

20=200–20=800 20%<br />

Count<strong>in</strong>g f<strong>in</strong>gers 4%<br />

Hand motions 6%<br />

Light perception 3%<br />

No light perception (NLP) 3%<br />

Visual field defects <strong>in</strong> <strong>in</strong>volved eye<br />

Pattern<br />

Diffuse 48%<br />

Altitud<strong>in</strong>al, arcuate, nasal step 20%<br />

Central, cecocentral 8%<br />

Other types 24%<br />

Chiasmal 5%<br />

(cont<strong>in</strong>ued)


38 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 2–2. (cont<strong>in</strong>ued)<br />

Retrochiasmal 9%<br />

Median visual field mean deviation (quartiles) 23.02 ( 31.90, 12.25)<br />

Visual function deficits <strong>in</strong> fellow eye 67%<br />

Visual acuity 14%<br />

Contrast sensitivity 15%<br />

Color vision 22%<br />

Visual field (mean deviation) 48%<br />

Abnormal MRI (one or more white matter lesion) 49%<br />

Percents represent the percent of patients with the characteristic.<br />

pure papillomacular <strong>in</strong>volvement <strong>in</strong> only 8%. Fang et al showed that ON affects the entire<br />

30 degrees (global field <strong>in</strong>volvement) even <strong>in</strong> patients who appear to have localized<br />

depression of visual threshold, <strong>in</strong>dicat<strong>in</strong>g that ON does not have a true predilection for the<br />

papillomacular bundle, or any specificnervefiber bundle (Fang, 1999a). In another study,<br />

Fang et al assessed specific nervefiber group <strong>in</strong>volvement by analyz<strong>in</strong>g recovery of field<br />

with<strong>in</strong> concentric field r<strong>in</strong>gs <strong>in</strong> the central 30 degrees and found that return of field function<br />

does not appear to differ between patients with diffuse or localized defects (Fang, 1999b).<br />

They postulate that reduced redundancy of axons <strong>in</strong> the periphery of the field compared<br />

with near fixation may be responsible for the greater recovery of threshold near fixation.<br />

What Are the Features of Atypical Optic<br />

Neuritis?<br />

Patients who meet the criteria listed <strong>in</strong> Table 2–1 are considered to have typical<br />

ON. Conversely, patients with the features listed <strong>in</strong> Table 2–3 have atypical ON<br />

(Beck, 1993a–e, 1994b; Biousse, 1999; Lee, 1998a; Moschos, 1990; Optic Neuritis Study<br />

Group, 1991). For example, the fundus features that should lead the exam<strong>in</strong>er to<br />

consider an alternate diagnosis to ON <strong>in</strong>clude lipid maculopathy, very severe disc<br />

edema with marked hemorrhages, cotton wools spots, vitreous cells, pale optic disc<br />

edema, ret<strong>in</strong>al arteriolar narrow<strong>in</strong>g, and ret<strong>in</strong>opathy.<br />

What Disorders May Be Associated with Optic<br />

Neuritis?<br />

Table 2–4 lists a number of disorders that may be associated with typical or atypical ON.<br />

The presence of one of these disorders is usually suggested by the historical or<br />

exam<strong>in</strong>ation f<strong>in</strong>d<strong>in</strong>gs.<br />

What Are the <strong>Cl<strong>in</strong>ical</strong> Features of Optic<br />

Neuritis <strong>in</strong> Children?<br />

The cl<strong>in</strong>ical features of ON <strong>in</strong> children differ from those <strong>in</strong> adults. Table 2–5 summarizes<br />

these features. Brady et al reviewed 25 cases and concluded that pediatric ON is usually


Table 2–3. Features of Atypical Optic Neuritis (ON)<br />

associated with visual recovery; however, a significant number of patients (22%) rema<strong>in</strong><br />

visually disabled. A normal magnetic resonance (MR) image of the bra<strong>in</strong> may be<br />

associated with a better outcome. Younger patients are more likely to have bilateral<br />

disease and a better visual prognosis (Brady, 1999).<br />

In another study of 47 children with multiple sclerosis, 38 (80.9%) had ON at least<br />

once, and 10 (21.3%) had two or more attacks of ON (Boiko, 2000). The presence of<br />

tumor necrosis factor a7 (TNF-a7) locus on chromosome 6 was proposed as a possible<br />

marker of early multiple sclerosis (MS) onset <strong>in</strong> these patients.<br />

What Is the Evaluation of Optic Neuritis?<br />

Optic Neuritis 39<br />

Bilateral simultaneous onset of ON <strong>in</strong> an adult patient<br />

Lack of pa<strong>in</strong><br />

Severe headache (e.g., sphenoid s<strong>in</strong>usitis)<br />

Ocular f<strong>in</strong>d<strong>in</strong>gs suggestive of an <strong>in</strong>flammatory process<br />

<strong>An</strong>terior uveitis<br />

Posterior chamber <strong>in</strong>flammation more than trace<br />

Macular exudate or star figure<br />

Ret<strong>in</strong>al <strong>in</strong>filtrate or ret<strong>in</strong>al <strong>in</strong>flammation<br />

Severe disc swell<strong>in</strong>g<br />

Marked hemorrhages<br />

Lack of significant improvement of visual function or worsen<strong>in</strong>g of visual function after 30 days<br />

Lack of at least one l<strong>in</strong>e of visual acuity improvement with<strong>in</strong> the first 3 weeks after onset of<br />

symptoms<br />

Age greater than 50 years<br />

Preexist<strong>in</strong>g diagnosis or evidence of other systemic condition<br />

Inflammatory (e.g., sarcoidosis, Wegener’s granulomatosis, systemic lupus erythematosus)<br />

Infectious disease (e.g., Lyme disease, tuberculosis, human immunodeficiency virus <strong>in</strong>fection)<br />

Severe hypertension, diabetes, or other systemic vasculopathy<br />

Exquisitely steroid sensitive or steroid-dependent optic neuropathy<br />

In atypical cases, consideration should be given to do<strong>in</strong>g a lumbar puncture and<br />

additional laboratory studies; <strong>in</strong> the ONTT, syphilis serology, ant<strong>in</strong>uclear antibody,<br />

and chest x-ray were performed. The required evaluation depends on the history and<br />

exam<strong>in</strong>ation, with specific attention to <strong>in</strong>fectious or <strong>in</strong>flammatory etiologies as listed <strong>in</strong><br />

Table 2–4. In addition, patients with <strong>in</strong>flammatory autoimmune ON often have<br />

progressive or recurrent steroid-responsive or steroid-dependent optic neuropathy<br />

(Beck, 1994a; Bielory, 1993; Riedel, 1998).<br />

The association of acute or subacute loss of vision <strong>in</strong> one or both eyes caused by optic<br />

neuropathy preceded or followed by a transverse or ascend<strong>in</strong>g myelopathy is referred<br />

to as neuromyelitis optica (Devic’s disease). The cl<strong>in</strong>ical features of Devic’s disease are<br />

outl<strong>in</strong>ed <strong>in</strong> Table 2–6.


40 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 2–4. Disorders Associated with Optic Neuritis<br />

Polyneuropathies<br />

Guilla<strong>in</strong>-Barré syndrome (Nadkarni, 1993; Ropper, 1991)<br />

Miller Fisher syndrome (Chan, 2002)<br />

Chronic <strong>in</strong>flammatory demyel<strong>in</strong>at<strong>in</strong>g polyradiculoneuropathy (CIDP) (Kaufman, 1998; Lee, 1999)<br />

Infections<br />

Bacteria<br />

Syphilis (Frohman, 1997)<br />

Tuberculosis (Mansour, 1998)<br />

Lyme disease (Arnold, 1993; Jacobson, 1991; Karma, 1995; Lesser, 1990; W<strong>in</strong>terkorn, 1990)<br />

Bartonella henselae (Cat-scratch disease) (Brazis, 1986; Schwartzman, 1994, 1995)<br />

Mycoplasma (Nadkarni, 1993; Salzman, 1992; Sheth, 1993)<br />

Whipple’s disease<br />

Brucellosis (Abd Elrazek, 1991; McLean, 1992)<br />

b-Hemolytic streptococcus<br />

Men<strong>in</strong>gococcus (Miller, 1995)<br />

Propionibacterium acnes (Kouyoumdjian, 2001)<br />

Fungi<br />

Aspergillus<br />

Histoplasmosis (Perry, 1999; Yau, 1996)<br />

Cryptococcus (Golnik, 1991)<br />

Rickettsiae (e.g., Q fever, epidemic typhus)<br />

Protozoa<br />

Toxoplasmosis (Banta, 2002; Falcone, 1993; Grossniklaus, 1990; Pierce, 1993; Rose, 1991; Song,<br />

2002)<br />

Parasites<br />

Toxocariasis (Komiyama, 1995)<br />

Cysticercosis (Chang, 2001; Menon, 2000)<br />

Viruses<br />

Adenovirus<br />

Hepatitis A (McKibb<strong>in</strong>, 1995)<br />

Hepatitis B (Achiron, 1994)<br />

Cytomegalovirus (CMV) (Hark<strong>in</strong>s, 1992; Ho, 1995; Mansour, 1997; Patel, 1996; Roarty, 1993)<br />

Coxsackie B<br />

Rubella<br />

Chickenpox (Lee, 1997)<br />

Herpes zoster (Deane, 1995; Greven, 2001; Gunduz, 1994; Lee, 1997; Miyashita, 1993; Mori, 1997;<br />

Nakazawa, 1999)<br />

Herpes simplex virus 1 (Tornerup, 2000)<br />

Epste<strong>in</strong>-Barr (EB) virus (<strong>in</strong>fectious mononucleosis) (<strong>An</strong>derson, 1994; Beiran, 2000; Corssmit,<br />

1997; Straussberg, 1993)<br />

Measles (Totan, 1999)<br />

Mumps (Sugita, 1991)<br />

Influenza<br />

HTLV-1 (Lehky, 1996; Merle, 1997; Yoshida, 1998)<br />

Prions (Jakob-Creutzfeldt disease)<br />

HIV (AIDS)-related (Friedman, 1991; Nichols, 1992)<br />

(cont<strong>in</strong>ued)


Table 2–4. (cont<strong>in</strong>ued)<br />

Optic Neuritis 41<br />

Primary HIV-related optic neuritis (Burton, 1998; Malessa, 1995; Newman, 1992; Quicenco, 1992;<br />

Sadun, 1995; Sweeney, 1993)<br />

Syphilis (McLeish, 1990)<br />

Cat-scratch disease (Bartonella henselae) (Schwartzman, 1994, 1995)<br />

Cryptococcus (Golnik, 1991)<br />

Histoplasmosis (Yau, 1996)<br />

Cytomegalovirus (CMV) (Mansour, 1997; Patel, 1996; Roarty, 1993)<br />

Herpes zoster (Friedlander, 1996; Lee, 1998b; Litoff, 1990; Margolis, 1998; Meenken, 1998;<br />

Shayegani, 1996)<br />

Hepatitis B<br />

Toxoplasmosis (Falcone, 1993)<br />

Postvacc<strong>in</strong>ation (Albitar, 1997; Hull, 1997; Kerrison, 2001; L<strong>in</strong>ssen, 1997; Stewart, 1999; Topaloglu<br />

1992; van de Geijn, 1994; Yen, 1991)<br />

Smallpox<br />

Tetanus<br />

Rabies<br />

Influenza<br />

Hepatitis B<br />

Bacille Calmette-Guér<strong>in</strong> (BCG)<br />

<strong>An</strong>thrax (Kerrison, 2002)<br />

Trivalent measles-mumps-rubella vacc<strong>in</strong>e<br />

Mantoux tubercul<strong>in</strong> sk<strong>in</strong> test<br />

Focal <strong>in</strong>fection or <strong>in</strong>flammation (Bath, 1998; Farris, 1990; Fujimoto, 1999; Moorman, 1999)<br />

Paranasal s<strong>in</strong>usitis<br />

Mucocele<br />

Post<strong>in</strong>fectious<br />

Malignant otitis externa<br />

Systemic <strong>in</strong>flammations and diseases<br />

Behçet’s disease (Vaphiades, 1999)<br />

Inflammatory bowel disease (Hutnik, 1996)<br />

Reiter’s syndrome<br />

Sarcoidosis (Beck, 1994; Case Records Massachusetts General Hospital, 1996; DeBroft, 1993;<br />

Haupert, 1997; Kosmorsky, 1996)<br />

Systemic lupus erythematosus (Ahmadieh, 1994; Gal<strong>in</strong>do-Rodriguez, 1999; Giorgi, 1999a,b;<br />

N<strong>in</strong>omiya, 1990; Ohnuma, 1996; Rosenbaum, 1997)<br />

Sjögren’s syndrome<br />

Mixed connective tissue disease<br />

Rheumatoid arthritis (Agildere, 1999)<br />

Miscellaneous<br />

Multifocal choroiditis<br />

Birdshot chorioret<strong>in</strong>opathy<br />

Acute posterior multifocal placoid pigment epitheliopathy (APMPPE) (Wolf, 1990)<br />

Autoimmune optic neuropathy (Bielory, 1993; Riedel, 1998)<br />

Familial Mediterranean fever (Lossos, 1993)<br />

Bee or wasp st<strong>in</strong>g (Berrios, 1994; Choi, 2000; Maltzman, 2000; Song, 1991)<br />

Snake bite (Menon, 1997)<br />

(cont<strong>in</strong>ued)


42 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 2–4. (cont<strong>in</strong>ued)<br />

Postpartum optic neuritis (Leiba, 2000)<br />

Retrobulbar optic neuritis with ret<strong>in</strong>itis pigmentosa s<strong>in</strong>e pigmento (Hatta, 2000)<br />

<strong>Neuro</strong>myelitis optica (Devic’s disease) (Ahasan, 1994; Al-Deeb, 1993; Barkhoff, 1991b;<br />

Ha<strong>in</strong>fellner, 1992; Hershewe, 1990; Igarishi, 1994; Ja<strong>in</strong>, 1994; Jeffrey, 1996; Khan, 1990; Mandler,<br />

1993, 1998; O’Riordan, 1996; Piccolo, 1990; Ramelli, 1992; Silber, 1990)<br />

Recurrent optic neuromyelitis with endocr<strong>in</strong>opathies (Vernant, 1997)<br />

Table 2–5. Features of Childhood Optic Neuritis Compared<br />

with Adult Optic Neuritis<br />

More likely to be bilateral<br />

More likely to have papillitis<br />

May have worse present<strong>in</strong>g vision (later presentation?)<br />

More likely to be associated with viral=para<strong>in</strong>fectious etiology<br />

Less likely to be associated with multiple sclerosis<br />

Table 2–6. <strong>Cl<strong>in</strong>ical</strong> Features of Devic’s Disease<br />

Age: Typically younger patients<br />

Gender: Affects men and women equally<br />

Race<br />

May be more common <strong>in</strong> African Americans who develop ON (Phillips, 1998)<br />

May be more common <strong>in</strong> Asians who develop ON (Sakuma, 1999)<br />

Recurrent optic neuromyelitis with endocr<strong>in</strong>opathies <strong>in</strong> eight <strong>An</strong>tillean women from Mart<strong>in</strong>ique<br />

and Guadeloupe (Vernant, 1997)<br />

Familial cases: rare (Yamakawa, 2000)<br />

Pathology: Differs from multiple sclerosis (MS)<br />

Cerebellum is almost never affected<br />

Excavation of affected tissue with formation of cavities common <strong>in</strong> Devic’s but rare <strong>in</strong> MS<br />

Gliosis characteristic of MS absent or m<strong>in</strong>imal with Devic’s<br />

Arcuate fibers <strong>in</strong> cerebral subcortex relatively unaffected <strong>in</strong> Devic’s but severely damaged <strong>in</strong> MS<br />

<strong>Cl<strong>in</strong>ical</strong> features<br />

May have prodrome of fever, sore throat, and headache<br />

Visual loss<br />

May precede or follow paraplegia<br />

Usually bilateral (hours, days, or rarely weeks between eyes)<br />

Rapid and usually severe (complete bl<strong>in</strong>dness not uncommon)<br />

Central scotoma most common visual field defect<br />

Ophthalmoscopy<br />

Majority have mild disc swell<strong>in</strong>g of both discs but may be normal<br />

Occasional severe swell<strong>in</strong>g with dilation of ve<strong>in</strong>s and extensive peripapillary exudates<br />

May have slight narrow<strong>in</strong>g of ret<strong>in</strong>al vessels<br />

(cont<strong>in</strong>ued)


Table 2–6. (cont<strong>in</strong>ued)<br />

What Were the Results of the Optic Neuritis<br />

Treatment Trial (ONTT)?<br />

Optic Neuritis 43<br />

Visual prognosis<br />

Usually some recovery of vision<br />

Often recovers with<strong>in</strong> weeks to months<br />

Some cases severe and permanent<br />

Paraplegia (transverse myelitis)<br />

Usually sudden and severe<br />

Often recover to some degree but may be permanent complete paralysis<br />

Sp<strong>in</strong>al cord MRI often shows abnormality extend<strong>in</strong>g over three or more segments<br />

May have Lhermitte’s symptom, paroxysmal tonic spasms, and radicular pa<strong>in</strong><br />

Course: monophasic or relaps<strong>in</strong>g<br />

Associations<br />

Rarely associated with demyel<strong>in</strong>at<strong>in</strong>g peripheral neuropathy<br />

Rarely associated with HIV-1 <strong>in</strong>fection, systemic lupus erythematosus, antiphospholipid antibody<br />

syndrome, and pulmonary tuberculosis<br />

Laboratory studies<br />

Often cerebrosp<strong>in</strong>al fluid (CSF) pleocytosis (e.g., >50 WBC, often polymorphonuclear cells)<br />

Oligoclonal bands uncommon<br />

Rare <strong>in</strong>creased <strong>in</strong>tracranial pressure<br />

Treatment<br />

Possible response to IV steroids<br />

IV gamma globul<strong>in</strong><br />

Mortality less than 10 to 33%<br />

Source: Ahasan, 1994; Al-Deeb, 1993; Barkhoff, 1991b; Blanche, 2000; Filippi, 1999; Ha<strong>in</strong>fellner, 1992; Hershewe,<br />

1990; Igarishi, 1994; Ja<strong>in</strong>, 1994; Jeffrey, 1996; Khan, 1990; Mandler, 1993, 1998; O’Riordan, 1996; Phillips, 1998;<br />

Piccolo, 1990; Ramelli, 1992; Silber, 1990; Vernant, 1997; W<strong>in</strong>gerchuk, 1999; Yamakawa, 2000.<br />

The ONTT was developed to evaluate the efficacy of corticosteroid treatment for acute<br />

ON and to <strong>in</strong>vestigate the relationship between ON and MS (Beck, 1992a, 1993a–e,<br />

1995a). The ONTT was sponsored by the National Eye Institute as a randomized,<br />

controlled cl<strong>in</strong>ical trial that enrolled 457 patients at 15 cl<strong>in</strong>ical centers <strong>in</strong> the United<br />

States between the years 1988 and 1991. The ONTT entry criteria specified that patients<br />

be between the ages of 18 and 46 years, that they have a relative afferent pupillary<br />

defect as well as a visual field defect <strong>in</strong> the affected eye, and that they were exam<strong>in</strong>ed<br />

with<strong>in</strong> 8 days of the onset of visual symptoms of a first attack of acute unilateral ON.<br />

Patients were excluded if they had previous episodes of ON <strong>in</strong> the affected eye,<br />

previous corticosteroid treatment for ON or MS, or systemic disease other than MS<br />

that might be a cause of the ON (Beck, 1992a, 1993a–e, 1995a). The cl<strong>in</strong>ical features of<br />

the ONTT patients are outl<strong>in</strong>ed <strong>in</strong> Table 2–2.<br />

In the ONTT, all patients underwent test<strong>in</strong>g for collagen vascular disease (ant<strong>in</strong>uclear<br />

antibody [ANA]), serologic test<strong>in</strong>g for syphilis (fluorescent treponemal antibody<br />

absorption [FTA-ABS]), and a chest radiograph for sarcoidosis. Lumbar puncture was<br />

optional. <strong>An</strong> ANA test was positive <strong>in</strong> a titer less than 1:320 <strong>in</strong> 13% of patients, and


44 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

1:320 or greater <strong>in</strong> 3%. Only one patient was eventually diagnosed with a collagen<br />

vascular disease.<br />

Visual and neurologic outcomes <strong>in</strong> these patients were no different from those of the<br />

other ONTT patients. The FTA-ABS was positive <strong>in</strong> six patients (1.3%), but none had<br />

syphilis. A chest radiograph did not reveal sarcoidosis <strong>in</strong> any patient. However, <strong>in</strong> a<br />

separate report, Jacobson et al described 4 of 20 patients with isolated ON with a<br />

positive serology for Lyme disease (Jacobson, 1991). These authors recommended<br />

serologic test<strong>in</strong>g for Lyme disease <strong>in</strong> patients with ON, with or without the typical<br />

rash of erythema migrans, who live <strong>in</strong> or have visited Lyme endemic areas. Cerebrosp<strong>in</strong>al<br />

fluid (CSF) analysis was recommended for patients with positive serology and<br />

<strong>in</strong>travenous (IV) antibiotic therapy for unexpla<strong>in</strong>ed pleocytosis (Jacobson, 1991). We do<br />

not order Lyme titers for patients with ON from nonendemic regions (class IV, level C).<br />

The evaluation recommendations of the ONTT study group for patients with typical<br />

acute ON are listed <strong>in</strong> Table 2–7.<br />

What Are the <strong>Neuro</strong>imag<strong>in</strong>g F<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> Optic<br />

Neuritis?<br />

Periventricular white matter signal abnormalities on magnetic resonance imag<strong>in</strong>g (MRI)<br />

consistent with MS (Baumhefner, 1990; Jacobs, 1991) have been reported <strong>in</strong> 40 to 70% of<br />

cases of isolated ON (Christiansen, 1992; Fe<strong>in</strong>ste<strong>in</strong>, 1992; Francis, 1995; Frederiksen,<br />

1991a; Jacobs, 1991; Morrissey, 1993). MRI with gadol<strong>in</strong>ium may show enhanc<strong>in</strong>g<br />

lesions <strong>in</strong> 26 to 37% of patients with isolated ON (Christiansen, 1992; Merandi, 1991)<br />

and may <strong>in</strong>crease the detection of disease activity (Guy, 1990; Merandi, 1991; Thompson,<br />

1990).<br />

Although computed tomography (CT) scan of the head may also show abnormalities<br />

<strong>in</strong> MS and ON, CT has been relatively <strong>in</strong>sensitive to the detection of MS plaques<br />

compared to MRI. MRI is a very sensitive test for detect<strong>in</strong>g lesions consistent with MS<br />

(Baumhefner, 1990). Paty reported 19 cases of cl<strong>in</strong>ically def<strong>in</strong>ite MS (CDMS) out of 200<br />

consecutive patients with suspected MS compar<strong>in</strong>g predictive value of MR scann<strong>in</strong>g<br />

Table 2–7. Modified Evaluation Recommendations of the Optic Neuritis Treatment Trial<br />

(ONTT) for Optic Neuritis (ON)<br />

No laboratory studies or lumbar puncture required for typical optic neuritis<br />

Potential test<strong>in</strong>g for atypical optic neuritis<br />

Chest radiograph<br />

Syphilis serology<br />

Collagen vascular disease screen<br />

Serum chemistries<br />

Complete blood counts<br />

Lumbar puncture<br />

Lyme serology <strong>in</strong> patients from endemic areas<br />

<strong>Neuro</strong>imag<strong>in</strong>g<br />

MR imag<strong>in</strong>g of the bra<strong>in</strong> for all optic neuritis (class I–II, level B)<br />

Consider MR of head and orbit with fat suppression views to exam<strong>in</strong>e optic nerve course,<br />

especially <strong>in</strong> atypical optic neuritis


Optic Neuritis 45<br />

with CT scann<strong>in</strong>g, evoked potentials (EPs), and CSF analysis for oligoclonal bands (Paty,<br />

1988). Eighteen of these 19 (95%) patients had MR scans that were ‘‘strongly suggestive<br />

of MS’’ at first evaluation. Fourteen of 19 (74%) patients had positive oligoclonal bands.<br />

Ten of 19 (53%) patients had abnormal somatosensory EPs, 9 of 19 (47%) patients had<br />

abnormal visual EPs (VEPs), and 9 of 19 (47%) patients had abnormal CT scans.<br />

Comb<strong>in</strong><strong>in</strong>g multiple reports, the risk of develop<strong>in</strong>g MS with<strong>in</strong> 1 to 4 years is about<br />

30% (range 23–35%) <strong>in</strong> patients with isolated ON and an abnormal MR scan (Beck,<br />

1993a; Frederiksen, 1992; Jacobs, 1997; Söderström, 1998). Morrisey et al reported 89<br />

patients (44 with ON, 17 with bra<strong>in</strong>stem <strong>in</strong>volvement, and 28 with sp<strong>in</strong>al cord<br />

<strong>in</strong>volvement) with an acute cl<strong>in</strong>ical demyel<strong>in</strong>at<strong>in</strong>g attack (Morrisey, 1993). Of these 89<br />

patients, 57 (64%) had one or more MR scan abnormalities and 32 had no MR scan<br />

abnormalities. Only one of the 32 patients with normal MR scans developed MS, versus<br />

development of MS <strong>in</strong> 37 of 57 patients (65%) with an abnormal MR scan. Of the three<br />

isolated cl<strong>in</strong>ical syndromes (optic nerve, bra<strong>in</strong>stem, sp<strong>in</strong>al cord), ON with an abnormal<br />

MR scan had the highest rate of progression to MS—82%. Jacobs et al reported 42<br />

patients with isolated monosymptomatic optic neuritis (Jacobs, 1991). Dur<strong>in</strong>g 5.6 years<br />

of follow-up, 21 patients developed MS. Of these 21 patients, 16 (76%) had abnormal<br />

MR scans and 5 had normal MR scans (Jacobs, 1991).<br />

Söderström et al performed a prospective study of 147 consecutive patients with<br />

acute monosymptomatic ON (Söderström, 1998). Of 116 patients exam<strong>in</strong>ed with MR<br />

scans, 64 (55%) had three or more high signal lesions, 11 (9%) had one or two high signal<br />

lesions, and 41 (35%) had a normal MRI. Among 146 patients undergo<strong>in</strong>g CSF studies,<br />

oligoclonal bands were demonstrated <strong>in</strong> 103 (71%) patients. Dur<strong>in</strong>g the 6-year study<br />

period, 53 patients (36%) developed CDMS. Three or more MS lesions on MR scan or<br />

CSF oligoclonal bands were strongly associated with MS. Jacobs et al found that 42 of 74<br />

(57%) patients with isolated monosymptomatic ON had 1 to 20 bra<strong>in</strong> lesions by MR<br />

scans (Jacobs, 1997). All of the bra<strong>in</strong> lesions were cl<strong>in</strong>ically silent and had characteristics<br />

consistent with MS. Dur<strong>in</strong>g 5.6 years of follow-up, 21 patients (28%) developed CDMS.<br />

Sixteen of the 21 convert<strong>in</strong>g patients (76%) had abnormal MR scans; the other 5 (24%)<br />

had MR scans that were normal <strong>in</strong>itially (when they had ON only) and normal <strong>in</strong> 4 of<br />

the 5 when repeated after they had developed cl<strong>in</strong>ical MS. Of the 53 patients who had<br />

not developed CDMS, 26 (49%) had abnormal MR scans and 27 (51%) had normal MR<br />

scans. The authors concluded that the f<strong>in</strong>d<strong>in</strong>gs of an abnormal MR scan at the time of<br />

ON was significantly related to the subsequent development of MS. The <strong>in</strong>terpretation<br />

of the strength of that relationship must be tempered by the fact that some of the<br />

convert<strong>in</strong>g patients had normal MR scans and approximately half of the patients who<br />

did not develop cl<strong>in</strong>ical MS had abnormal MR scans. Thus, it should be emphasized<br />

that MS is a cl<strong>in</strong>ical diagnosis that cannot be made on the basis of MR scan<br />

abnormalities alone (Guy, 1994; Paty, 1993), and the absence of MR scan abnormalities<br />

does not protect aga<strong>in</strong>st the future development of MS (Beck, 1993d; Jacobs, 1991).<br />

The ONTT prospectively studied 388 patients who did not have probable or def<strong>in</strong>ite<br />

MS at study entry and who were followed for the development of CDMS (Optic<br />

Neuritis Study Group, 1997a). The 5-year cumulative probability of CDMS was 30% and<br />

did not differ by treatment group (see below). <strong>Neuro</strong>logic impairment <strong>in</strong> patients who<br />

developed CDMS was generally mild. Bra<strong>in</strong> MR scans performed at study entry was a<br />

strong predictor of CDMS, with the 5-year risk of CDMS rang<strong>in</strong>g from 16% <strong>in</strong> 202<br />

patients with no MR lesions to 51% <strong>in</strong> 89 patients with three or more MR lesions. The<br />

5-year risk of CDMS follow<strong>in</strong>g optic neuritis is dependent on the number of lesions


46 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

present on bra<strong>in</strong> MR scan. Even a normal bra<strong>in</strong> MRI, however, did not preclude the<br />

development of CDMS.<br />

MR scans may demonstrate contrast-enhanc<strong>in</strong>g lesions with<strong>in</strong> the optic nerve <strong>in</strong><br />

patients with ON (Cornblath, 1997; Dunker, 1996; Kupersmith, 2002a). Less complete<br />

visual recovery <strong>in</strong> ON was associated with longer lesions of the optic nerve and with<br />

<strong>in</strong>volvement of the <strong>in</strong>tracanicular segment <strong>in</strong> one study (Dunker, 1996). In another<br />

study, however, lesions <strong>in</strong>volv<strong>in</strong>g the canal or longer segments of the optic nerve had<br />

worse start<strong>in</strong>g vision, but the location and length of enhancement were not predictive of<br />

recovery (Kupersmith, 2002a).<br />

Should a Lumbar Puncture Be Performed <strong>in</strong><br />

Patients with Optic Neuritis?<br />

Patients with ON may show abnormalities <strong>in</strong> CSF analysis consistent with MS. These<br />

CSF abnormalities <strong>in</strong>clude <strong>in</strong>creased cell count (>5 cells per cubic millimeter), <strong>in</strong>creased<br />

total prote<strong>in</strong>, <strong>in</strong>creased CSF–immunoglobul<strong>in</strong> G (IgG) concentration, oligoclonal bands,<br />

antibodies to myel<strong>in</strong> basic prote<strong>in</strong> (MBP) and proteolipid prote<strong>in</strong> (PLP), and <strong>in</strong>creased<br />

CSF MBP levels (Cole, 1998; Fredericksen, 1992; Jacobs, 1997; Sellebjerg, 1994, 1995;<br />

Simon, 2000; Söderström, 1993, 1998; Warren, 1994). Lumbar puncture, however, did not<br />

produce any additional unsuspected diagnosis <strong>in</strong> the 141 patients <strong>in</strong> the ONTT undergo<strong>in</strong>g<br />

CSF analysis. In addition, a normal <strong>in</strong>itial CSF after ON did not preclude the<br />

eventual development of MS (Sandberg-Wollheim, 1975).<br />

Cole et al <strong>in</strong>vestigated the predictive value of CSF oligoclonal band<strong>in</strong>g for MS 5 years<br />

after optic neuritis <strong>in</strong> patients enrolled <strong>in</strong> the ONTT (Cole, 1998). In 76 patients, the<br />

presence of oligoclonal bands was associated with development of CDMS. However,<br />

the results suggested that CSF analysis was useful <strong>in</strong> the risk assessment of optic<br />

neuritis patients only when the bra<strong>in</strong> MR scan was normal and was not of predictive<br />

value when bra<strong>in</strong> MR scan lesions were present at the time of optic neuritis. CDMS<br />

developed with<strong>in</strong> 5 years <strong>in</strong> 22 of the 76 patients (29%); <strong>in</strong> 16 of 38 patients (42%) with<br />

oligoclonal bands present and <strong>in</strong> 6 of 38 patients (16%) without bands. Among the 39<br />

patients with normal MR scans, CDMS developed <strong>in</strong> three of 11 patients (27%) with<br />

bands present but <strong>in</strong> only one patient (4%) without bands. In contrast, among 37<br />

patients with abnormal MR scans, CDMS developed <strong>in</strong> 13 of 27 (48%) with bands and 5<br />

of 10 (50%) without bands. The positive predictive value of bands was 42% and the<br />

negative predictive value was 84%. Among the 39 patients with normal MR scans, the<br />

positive predictive value was 27% and the negative predictive value was 96%, whereas<br />

among the 37 patients with abnormal MR scans the positive predictive value was 48%<br />

and the negative predictive value was 50%.<br />

Although several authors have reported that abnormal CSF results may be predictive<br />

of eventual MS (Cole, 1998; Frederiksen, 1992; Jacobs, 1997; Sandberg-Wollheim, 1990;<br />

Söderström, 1998), others have not found CSF abnormalities to have predictive value<br />

(Sandberg-Wollheim, 1975). Although a lumbar puncture was optional <strong>in</strong> the ONTT, it<br />

should be considered <strong>in</strong> atypical ON or <strong>in</strong> cases where the diagnosis of MS might be<br />

clarified by CSF analysis (class I–II, level B).


Should Visual Evoked Potentials Be<br />

Performed on Patients with Optic Neuritis?<br />

Although the VEP is often abnormal <strong>in</strong> patients with ON (Ashworth, 1994; Brusa, 1999;<br />

Fotiou, 1999; Frederiksen, 1999; Fuhr, 2001; Honan, 1990; R<strong>in</strong>alduzzi, 2001), an abnormal<br />

VEP <strong>in</strong> the sett<strong>in</strong>g of a cl<strong>in</strong>ically diagnosed ON does not alter the diagnostic or<br />

treatment plan. The VEP does not provide additional prognostic <strong>in</strong>formation for visual<br />

recovery or for the development of MS. We do not recommend rout<strong>in</strong>e use of VEP <strong>in</strong><br />

typical ON (class III–IV, level C). VEP may be useful <strong>in</strong> identify<strong>in</strong>g a second site of<br />

neurologic <strong>in</strong>volvement (previous ON) to strengthen the cl<strong>in</strong>ical diagnosis of MS <strong>in</strong><br />

patients with no history or exam<strong>in</strong>ation f<strong>in</strong>d<strong>in</strong>gs of an optic neuropathy (Celesia, 1990).<br />

What Is the Treatment of Optic Neuritis?<br />

Optic Neuritis 47<br />

Although corticosteroids have been used for acute ON (Lessell, 1992; Sellebjerg, 1999;<br />

Silberberg, 1993) and have been shown to improve symptoms <strong>in</strong> MS (Kapoor, 1998),<br />

well-controlled data to support the treatment efficacy of steroids <strong>in</strong> ON have been<br />

lack<strong>in</strong>g until recently (Beck, 1992a). IV methylprednisolone (MP) treatment has been<br />

reported to decrease CSF anti-MBP levels, <strong>in</strong>trathecal IgG synthesis, and CSF oligoclonal<br />

bands; to decrease gadol<strong>in</strong>ium enhancement of MS plaques (and presumably blood–<br />

bra<strong>in</strong> barrier disruption) on MR scan; and to improve cl<strong>in</strong>ical disability. Modulation of<br />

the function of <strong>in</strong>flammatory cells may also contribute to the cl<strong>in</strong>ical efficacy or highdose<br />

corticosteroids (Sellebjerg, 2000). The cl<strong>in</strong>ical effect of treatment might be due to<br />

reduction of <strong>in</strong>flammation and myel<strong>in</strong> breakdown (Barkhoff, 1991a, 1992; Warren,<br />

1994).<br />

Rawson et al reported a more rapid visual recovery, but no difference <strong>in</strong> visual<br />

outcome after 1 year <strong>in</strong> a double-bl<strong>in</strong>d, placebo-controlled, prospective study of 50<br />

patients with ON treated with adrenocorticotropic hormone (ACTH) (Rawson, 1966).<br />

Rose et al observed similarly more rapid improvement <strong>in</strong> patients with ON treated with<br />

ACTH compared with placebo (Rose, 1970). Bowden et al, however, reported no benefit<br />

from ACTH compared with placebo <strong>in</strong> 54 patients with ON (Bowden, 1974). Gould et al<br />

reported a prospective, s<strong>in</strong>gle-bl<strong>in</strong>d, controlled, randomized cl<strong>in</strong>ical trial of 74 patients<br />

with ON who experienced more rapid improvement with a retrobulbar <strong>in</strong>jection of<br />

triamc<strong>in</strong>olone, but patients had no difference <strong>in</strong> outcome after 6 months (Gould, 1977).<br />

In the ONTT, the patients were randomly assigned to one of three treatment arms <strong>in</strong><br />

the study:<br />

1. IV methylprednisolone sodium succ<strong>in</strong>ate (250 mg every 6 hours for 3 days) followed<br />

by oral prednisone (1 mg=kg daily) for 11 days.<br />

2. Oral prednisone (1 mg=kg daily) for 14 days.<br />

3. Oral placebo for 14 days, followed by a short oral taper.<br />

The major conclusions of the ONTT related to treatment are summarized <strong>in</strong> Table 2–8.<br />

Wakakura et al also performed a randomized trial of IV megadose methylprednisolone<br />

<strong>in</strong> ON and found that treatment with steroids improved visual recovery at 3 weeks.<br />

Visual function at 12 weeks and at 1 year, however, was the same as <strong>in</strong> control patients<br />

(Wakakura, 1999a). Sellebjerg et al performed a randomized, controlled trial of oral


48 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 2–8. Summary of the ONTT F<strong>in</strong>d<strong>in</strong>gs<br />

Intravenous (IV) steroids followed by oral corticosteroids accelerated visual recovery but<br />

provided no long-term visual benefit.<br />

‘‘Standard dose’’ oral prednisone alone did not improve the visual outcome and was associated<br />

with an <strong>in</strong>creased rate of new attacks of ON.<br />

IV followed by oral corticosteroids reduced the rate of development of cl<strong>in</strong>ically def<strong>in</strong>ite MS<br />

(CDMS) dur<strong>in</strong>g the first 2 years, but by 3 years the effect had subsided (Beck, 1993b, 1995a).<br />

MR f<strong>in</strong>d<strong>in</strong>gs were of prognostic significance for MS.<br />

Treatment was well tolerated with few major side effects.<br />

high-dose methylprednisolone (500 mg daily for 5 days with a 10-day taper) <strong>in</strong> 30<br />

patients compared to 30 control patients (Sellebjerg, 1999). The visual analog scale but<br />

not spatial visual function was better <strong>in</strong> the steroid group at 3 weeks. After 8 weeks, the<br />

visual analog scale and spatial visual function were comparable <strong>in</strong> both groups. The risk<br />

of new demyel<strong>in</strong>at<strong>in</strong>g attacks with<strong>in</strong> 1 year was unaffected by treatment. In another<br />

study, 55 patients with acute ON received IV sal<strong>in</strong>e or IV MP and were assessed at 6<br />

months (Kapoor, 1998). Patients with short lesions of the optic nerve on MR scan<br />

presented earlier than those with long lesions (<strong>in</strong>volv<strong>in</strong>g three or more 5-mm-thick<br />

slices of any part of the optic nerve, as well as its <strong>in</strong>tracanalicular portion). Lesion length<br />

was significantly less <strong>in</strong> patients present<strong>in</strong>g with<strong>in</strong> a week of onset of symptoms.<br />

Treatment did not limit lesion length <strong>in</strong> either the long or short lesion subgroups and<br />

had no significant effect on f<strong>in</strong>al visual outcome. The authors conclude that steroids do<br />

not improve visual outcome or lesion length <strong>in</strong> patients with acute ON (Kapoor, 1998).<br />

Based on the ONTT results, it is recommended that treatment with oral prednisone <strong>in</strong><br />

standard doses be avoided <strong>in</strong> ON (Kaufman, 2000) (class I, level A). Treatment with IV<br />

MP should be considered <strong>in</strong> patients with abnormal MR scans of the bra<strong>in</strong> or a<br />

particular need (e.g., monocular patient or occupational requirement) to recover<br />

visual function more rapidly (class I, level B). Beck et al thought that although bra<strong>in</strong><br />

MR scan may not be necessary for the diagnosis of ON, imag<strong>in</strong>g was valuable for<br />

prognostic purposes (Beck, 1992, 1993a–e). In the ONTT, patients with multiple signal<br />

abnormalities on MR scans most clearly benefited from IV corticosteroid therapy <strong>in</strong><br />

terms of development of MS. The rate of development of MS was too low <strong>in</strong> the patients<br />

with normal MR scans to assess treatment benefit <strong>in</strong> this group. ON patients <strong>in</strong> the<br />

ONTT had MR scans with<strong>in</strong> 9 days of the onset of visual loss. Some authors have<br />

suggested that patients present<strong>in</strong>g later than this <strong>in</strong>terval with an abnormal MR scan<br />

may still benefit from treatment with IV MP with<strong>in</strong> a treatment w<strong>in</strong>dow of about 2<br />

months (Guy, 1994). The results of the ONTT have led to a reduction <strong>in</strong> the use or oral<br />

corticosteroids <strong>in</strong> the treatment of ON (Trobe, 1999).<br />

Even though the ONTT was a large, well-designed study, several criticisms have been<br />

raised:<br />

1. The lack of an <strong>in</strong>travenous control group.<br />

2. Incomplete mask<strong>in</strong>g of all patients (i.e., <strong>in</strong>-hospital IV-treated patients knew they had<br />

received IV MP).<br />

3. Data regard<strong>in</strong>g treatment effect of IV MP on the development of MS was obta<strong>in</strong>ed<br />

from a retrospective analysis that was primarily designed for a different purpose (to<br />

evaluate the treatment effect).


4. The role of retrobulbar steroids was not assessed.<br />

5. The role of higher doses of MP, such as 30 mg per kg dose suggested for the treatment<br />

of acute sp<strong>in</strong>al cord <strong>in</strong>jury, was not determ<strong>in</strong>ed.<br />

6. The efficacy of oral prednisone at higher doses was not assessed.<br />

7. The need or lack of need for oral taper<strong>in</strong>g doses of corticosteroids follow<strong>in</strong>g IV MP<br />

was not addressed.<br />

Despite these concerns, the ONTT is the best well-controlled prospective cl<strong>in</strong>ical trial<br />

(class I) available <strong>in</strong> the literature to date on the treatment and evaluation of ON. We<br />

follow the evaluation and the treatment recommendations of the ONTT (class I, level B).<br />

Should Interferon Therapy Be Instituted <strong>in</strong><br />

Patients with Optic Neuritis?<br />

In a double-bl<strong>in</strong>d, randomized trial, 383 patients who had a first acute demyel<strong>in</strong>at<strong>in</strong>g<br />

event (optic neuritis, <strong>in</strong>complete transverse myelitis, or a bra<strong>in</strong>stem or cerebellar<br />

syndrome) were studied. All had evidence of prior subcl<strong>in</strong>ical demyel<strong>in</strong>ation on MR<br />

imag<strong>in</strong>g of the bra<strong>in</strong> (two or more silent lesions of at least 3 mm <strong>in</strong> diameter thought<br />

characteristic of MS). Patients received either weekly <strong>in</strong>tramuscular <strong>in</strong>jections of 30 mgof<br />

<strong>in</strong>terferon-b-1a (193 patients) or placebo (190 patients) (CHAMPS Study Group, 2001;<br />

Jacobs, 2000). The patients had received <strong>in</strong>itial treatment with corticosteroids. Dur<strong>in</strong>g 3<br />

years of follow-up, the cumulative probability of the development of CDMS was<br />

significantly lower <strong>in</strong> the <strong>in</strong>terferon-b-1a group than <strong>in</strong> the placebo group (rate ratio,<br />

0.56). At 3 years, the cumulative probability was 35% <strong>in</strong> the <strong>in</strong>terferon-b-1a group and<br />

50% <strong>in</strong> the placebo group. As compared with the patients <strong>in</strong> the placebo group, patients<br />

<strong>in</strong> the <strong>in</strong>terferon-b-1a group had a relative reduction <strong>in</strong> the volume of bra<strong>in</strong> lesions,<br />

fewer new lesions or enlarg<strong>in</strong>g lesions, and fewer gadol<strong>in</strong>ium-enhanc<strong>in</strong>g lesions at 18<br />

months. The authors concluded that <strong>in</strong>itiat<strong>in</strong>g treatment with <strong>in</strong>terferon-b-1a at the time<br />

of a first demyel<strong>in</strong>at<strong>in</strong>g event is beneficial for patients with bra<strong>in</strong> lesions on MRI that<br />

<strong>in</strong>dicate high risk of CDMS (CHAMPS Study Group, 2001; Jacobs, 2000).<br />

Are There Treatments Other than Steroids for<br />

Optic Neuritis?<br />

Intravenous immunoglobul<strong>in</strong> (IVIg) had been <strong>in</strong>itially reported to improve visual acuity<br />

<strong>in</strong> an uncontrolled study of five patients with def<strong>in</strong>ite MS and unilateral or bilateral but<br />

stable demyel<strong>in</strong>at<strong>in</strong>g ON (van Engelen, 1992). However, <strong>in</strong> a randomized trial <strong>in</strong> 55<br />

patients, this agent did not reverse persistent visual loss from ON to a degree that merits<br />

general use (Noseworthy, 2001).<br />

What Is the Long-Term Vision Prognosis of<br />

Patients with Optic Neuritis?<br />

Optic Neuritis 49<br />

In patients with ON, visual recovery generally beg<strong>in</strong>s with<strong>in</strong> the first 2 weeks, with<br />

much of the recovery occurr<strong>in</strong>g by the end of 1 month. If recovery is <strong>in</strong>complete at 6<br />

months, some further improvement may cont<strong>in</strong>ue for up to 1 year.


50 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

In the ONTT, there was no significant difference <strong>in</strong> visual acuity compar<strong>in</strong>g the three<br />

treatment groups at 6 months. After 12 months, visual acuity was 20=40 or greater <strong>in</strong><br />

93% of patients, greater than 20=20 <strong>in</strong> 69%, and 20=200 or lower <strong>in</strong> 3%. Results were<br />

similar <strong>in</strong> each treatment group. The only predictor of poor visual outcome was poor<br />

visual acuity at the time of study entry; even so, of 160 patients start<strong>in</strong>g with a visual<br />

acuity of 20=200 or worse, all had at least some improvement and only 8 (5%) had<br />

visual acuities that were still 20=200 or worse at 6 months. Of 30 patients whose <strong>in</strong>itial<br />

visual acuity was light perception (LP) or no light perception (NLP), 20 (67%) recovered<br />

to 20=40 or better. Basel<strong>in</strong>e acuity was the best predictor of 6-month visual acuity<br />

outcome; older age was statistically associated with a slightly worse outcome but this<br />

appeared to be of no cl<strong>in</strong>ical importance.<br />

Thus, <strong>in</strong> most patients with ON, visual recovery is rapid. The only factor of value <strong>in</strong><br />

predict<strong>in</strong>g the visual outcome is <strong>in</strong>itial severity of visual loss. However, even when<br />

<strong>in</strong>itial loss is severe, visual recovery is still good <strong>in</strong> most patients. Patients not follow<strong>in</strong>g<br />

the usual course of visual recovery should be considered atypical and further <strong>in</strong>vestigation<br />

<strong>in</strong> regard to etiology of the visual loss is appropriate.<br />

At the 5-year follow-up for 347 (64%) of 545 patients <strong>in</strong> the ONTT, the affected eyes<br />

had normal or only slightly abnormal visual acuities <strong>in</strong> most patients, and results did<br />

not significantly differ by treatment group (Optic Neuritis Study Group, 1997b). Visual<br />

acuity <strong>in</strong> affected eyes was 20=25 or better <strong>in</strong> 87%, 20=25 to 20=40 <strong>in</strong> 7%, 20=50 to 20=190<br />

<strong>in</strong> 3%, and 20=200 or worse <strong>in</strong> 3%. Recurrence of ON <strong>in</strong> either eye occurred <strong>in</strong> 28% of<br />

patients and was more frequent <strong>in</strong> patients with MS and <strong>in</strong> patients without MS who<br />

were <strong>in</strong> the prednisone treatment group. Most eyes with a recurrence reta<strong>in</strong>ed normal or<br />

almost normal visual function. In conclusion, most patients with ON reta<strong>in</strong> good or<br />

excellent vision 5 years follow<strong>in</strong>g an attack of ON, even if the ON recurs. Recurrences<br />

are more frequent <strong>in</strong> patients with MS and <strong>in</strong> those treated with oral prednisone alone.<br />

Recurrence of ON <strong>in</strong> either eye occurs <strong>in</strong> 28% of patients and are twofold more frequent<br />

<strong>in</strong> patients who had or developed CDMS (46%) compared with patients without CDMS<br />

(22%).<br />

What Is the Risk of Develop<strong>in</strong>g Multiple<br />

Sclerosis follow<strong>in</strong>g Optic Neuritis?<br />

The risk for the development of MS follow<strong>in</strong>g ON is quite variable <strong>in</strong> the literature, with<br />

reports rang<strong>in</strong>g from 8 to 85% (Cole, 1998; Frith, 2000; Jacobs, 1997; Optic Neuritis<br />

Study Group, 1997a; Rodriguez, 1995; Söderström, 1998; Sorensen, 1999). Most<br />

studies <strong>in</strong>dicate a 25 to 35% risk of patients with ON develop<strong>in</strong>g MS. This variability<br />

is probably related to numerous factors <strong>in</strong>clud<strong>in</strong>g:<br />

Differences <strong>in</strong> patient populations (e.g., cl<strong>in</strong>ic or hospital versus population based);<br />

sample sizes; study design (retrospective versus prospective)<br />

Duration of follow-up (longer <strong>in</strong>terval studies tend to report higher <strong>in</strong>cidence rates)<br />

Differences <strong>in</strong> selection criteria and diagnostic evaluation of ON cases<br />

Different study diagnostic criteria for both ON and MS<br />

Rodriguez et al found a cumulative probability of develop<strong>in</strong>g CDMS of 24% after 5<br />

years and 39% after 10 years and noted no difference <strong>in</strong> the risk of develop<strong>in</strong>g MS


etween men and women (Rodriguez, 1995). Rizzo and Lessell studied 60 patients with<br />

ON, with a mean follow-up of 14.9 years (Rizzo, 1988). Life table analysis <strong>in</strong>dicated that<br />

74% of the women and 34% of the men developed MS 15 years after their attack of ON,<br />

and 91.3% of the women and 44.8% of the men would develop MS after 20 years. MR<br />

scan abnormalities may be the best predictor for the eventual development of MS after<br />

ON. As noted above, <strong>in</strong> the ONTT prospective study of 388 patients who did not have<br />

probable or def<strong>in</strong>ite MS at study entry, the 5-year cumulative probability of CDMS was<br />

30% (Optic Neuritis Study Group, 1997a). Bra<strong>in</strong> MR scans performed at study entry<br />

were a strong predictor of CDMS, with the 5-year risk of CDMS rang<strong>in</strong>g from 16% <strong>in</strong><br />

202 patients with no MR lesions to 51% <strong>in</strong> 89 patients with three or more MR lesions.<br />

The 5-year risk of CDMS follow<strong>in</strong>g ON is highly dependent on the number of lesions<br />

present on bra<strong>in</strong> MR scan. Sorensen et al studied the predictive value on survival of ON<br />

as onset manifestation of MS and concluded that ON as onset manifestation of MS (vs.<br />

another or unknown onset manifestation of MS) <strong>in</strong>dicates a more favorable prognosis of<br />

survival of MS <strong>in</strong> women (Sorensen, 1999). ON was the present<strong>in</strong>g manifestation of MS<br />

<strong>in</strong> 10% of MS cases.<br />

Brex et al performed high-resolution, multisequence bra<strong>in</strong> and sp<strong>in</strong>al cord MRI <strong>in</strong> 60<br />

patients after their first demyel<strong>in</strong>at<strong>in</strong>g event, <strong>in</strong>clud<strong>in</strong>g 38 patients with ON (Brex,<br />

1999). At basel<strong>in</strong>e, 73% of patients had lesions on T2-weighted fast sp<strong>in</strong>-echo (FSE) bra<strong>in</strong><br />

images and 42% had asymptomatic sp<strong>in</strong>al cord lesions. Of the 38 patients with ON, 29<br />

had lesions <strong>in</strong> the bra<strong>in</strong> on FSE images and 16 had sp<strong>in</strong>al cord lesions. Repeat MRI<br />

demonstrated new FSE lesions <strong>in</strong> 43% of the patients overall. After 1 year, 26% of the<br />

patients developed MS. The MRI features that provided the best comb<strong>in</strong>ation of<br />

sensitivity and specificity for the development of MS were new FSE lesions at followup<br />

and enhanc<strong>in</strong>g lesions at basel<strong>in</strong>e. The authors concluded that the comb<strong>in</strong>ation of<br />

basel<strong>in</strong>e MR abnormalities on multisequence MRI and new lesions at follow-up,<br />

Table 2–9. Risk Factors for Develop<strong>in</strong>g Multiple Sclerosis Follow<strong>in</strong>g Optic Neuritis<br />

Optic Neuritis 51<br />

Factor<br />

Increased risk<br />

References<br />

Abnormal MR scan (three or more lesions) Jacobs, 1997; Optic Neuritis Study Group, 1997a;<br />

Söderström, 1998<br />

Prior nonspecific neurologic symptoms ONTT<br />

Increased CSF oligoclonal bands Cole, 1998<br />

Increased CSF IgG Jacobs, 1997; Söderström, 1998<br />

Previous optic neuritis ONTT<br />

HLA-DR2 and HLA-B7<br />

Decreased risk<br />

Morrissey, 1993<br />

Normal MR scan ONTT<br />

Absence of pa<strong>in</strong>* ONTT<br />

Marked disc edema* ONTT<br />

Ret<strong>in</strong>al exudates or macular star* ONTT<br />

Bilateral simultaneous onset* Frederiksen, 1997a<br />

Onset <strong>in</strong> childhood* Lucch<strong>in</strong>etti, 1997<br />

*We consider these f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> a patient with ON to be atypical and thus likely require further evaluation.<br />

ONTT, Optic Neuritis Treatment Trial.


52 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

<strong>in</strong>dicat<strong>in</strong>g dissem<strong>in</strong>ation <strong>in</strong> space and time, are associated with a high sensitivity and<br />

specificity for the early development of cl<strong>in</strong>ical MS.<br />

Ghezzi et al evaluated the risk of SDMS after acute isolated ON <strong>in</strong> 102 patients with<br />

follow-up duration 6.3 years (10 patients were lost to follow-up) (Ghezzi, 1999, 2000).<br />

The risk of develop<strong>in</strong>g SDMS was 13% after 2 years, 30% after 4 years, 37% after 6 years,<br />

and 42% after 8 and 10 years. Gender, age, and season of ON onset did not affect the<br />

risk. CDMS occurred <strong>in</strong> 37 of 71 patients (52.1%) with one MRI lesion or more; no<br />

Figure 2-1. Evaluation of optic neuritis.


patient with a normal MRI developed CDMS. CDMS developed more frequently <strong>in</strong><br />

patients with <strong>in</strong>trathecal IgG synthesis than <strong>in</strong> those without (43% vs. 28%), but the<br />

difference was not statistically significant (Ghezzi, 1999, 2000).<br />

Increased risk of MS has been reported <strong>in</strong> patients with human leukocyte antigen<br />

HLA-DR2 and HLA-B7 tissue types, but we do not recommend rout<strong>in</strong>e HLA screen<strong>in</strong>g<br />

for ON (Hauser, 2000; Morrissey, 1993). Risk factors for develop<strong>in</strong>g MS follow<strong>in</strong>g ON<br />

are outl<strong>in</strong>ed <strong>in</strong> Table 2–9.<br />

Our approach to ON is summarized <strong>in</strong> Figure 2–1.<br />

References<br />

Optic Neuritis 53<br />

Abd Elrazek M. (1991). Brucella optic neuritis. Arch Intern Med 151:776–778.<br />

Achiron LR. (1994). Post<strong>in</strong>fectious hepatitis B optic neuritis. Optom Vis Sci 71:53–56.<br />

Agildere AM, Tutar NU, Yucel E, et al. (1999). Pachymen<strong>in</strong>gitis and optic neuritis <strong>in</strong> rheumatoid arthritis: MRI<br />

f<strong>in</strong>d<strong>in</strong>gs. Br J Radiol 72:404–407.<br />

Ahasan HA, Jafiqueudd<strong>in</strong> AK, Chowdrhury MA, et al. (1994). <strong>Neuro</strong>myelitis optica (Devic’s disease) follow<strong>in</strong>g<br />

chicken pox. Trop Doct 24:75–76.<br />

Ahmadieh H, Roodpeyma S, Azarm<strong>in</strong>a M, et al. (1994). Bilateral simultaneous optic neuritis <strong>in</strong> childhood<br />

systemic lupus erythematosus. A case report. J <strong>Neuro</strong>-ophthalmol 14:84–86.<br />

Albitar S, Bourgeon B, Gen<strong>in</strong> R, et al. (1997). Bilateral retrobulbar optic neuritis with hepatitis B vacc<strong>in</strong>ation.<br />

Nephrol Dial Transplant 12:2169–2170.<br />

Al-Deeb SM, Yaqub BA, Khoja WO. (1993). Devic’s neuromyelitis optica and varicella. J <strong>Neuro</strong>l 240:450–451.<br />

<strong>An</strong>derson MD, Kennedy CA, Lewis AW, Christensen GR. (1994). Retrobulbar neuritis complicat<strong>in</strong>g acute Epste<strong>in</strong>-<br />

Barr virus <strong>in</strong>fection. Cl<strong>in</strong> Infect Dis 18:799–801.<br />

Arnold AC. (1999). Visual field defects <strong>in</strong> the Optic Neuritis Treatment Trial: central vs peripheral, focal vs global.<br />

Am J Ophthalmol 128:632–634.<br />

Arnold RW, Schriever G. (1993). Lyme amaurosis <strong>in</strong> a child. J Pediatr Ophthalmol Strabismus 30:268–270.<br />

Ashworth B, Asp<strong>in</strong>all PA, Mitchell JD. (1994). Visual function <strong>in</strong> multiple sclerosis. Doc Ophthalmol 73:209–224.<br />

Banta JT, Lam BL. (2002). Toxoplasmic anterior optic neuropathy. Presented at the 28th annual meet<strong>in</strong>g of the<br />

North American <strong>Neuro</strong>-Ophthalmology Society. Copper Mounta<strong>in</strong>, Colorado, February 9–14.<br />

Barkhoff F, Frequ<strong>in</strong> STFM, Hommes OR, et al. (1992). A correlative triad of gadol<strong>in</strong>ium-DTPA MRI, EDSS, and<br />

CSF-MBP <strong>in</strong> relaps<strong>in</strong>g multiple sclerosis patients treated with high-dose <strong>in</strong>travenous methylprednisolone.<br />

<strong>Neuro</strong>logy 42:63–67.<br />

Barkhoff F, Hommes OR, Lamers KJB, et al. (1991a). High dose <strong>in</strong>travenous methylprednisolone <strong>in</strong> multiple<br />

sclerosis. <strong>Neuro</strong>logy 41:1219–1222.<br />

Barkhoff F, Scheltens P, Valk J, et al. (1991b). Serial quantitative MR assessment of optic neuritis <strong>in</strong> a case of<br />

neuromyelitis optica, us<strong>in</strong>g gadol<strong>in</strong>ium-‘‘enhanced’’ STIR imag<strong>in</strong>g. <strong>Neuro</strong>radiology 33:70–71.<br />

Bath AP, Rowe JR, Innes AJ. (1998). Malignant otitis externa with optic neuritis. J Laryngol Otol 112:274–277.<br />

Baumhefner RO, Tourtellotte WW, Syndulko K, et al. (1990). Quantitative multiple sclerosis plaque assessment<br />

with magnetic resonance imag<strong>in</strong>g: its correlation with cl<strong>in</strong>ical parameters, evoked potentials, and <strong>in</strong>trablood-barrier<br />

IgG synthesis. Arch <strong>Neuro</strong>1 47:19–26.<br />

Beck AD, Newman NJ, Grossniklaus HE, et al. (1994a). Optic nerve enlargement and chronic visual loss. Surv<br />

Ophthalmol 38:555–566.<br />

Beck RW. (1992a). Corticosteroid treatment of optic neuritis. <strong>Neuro</strong>logy 42:1133–1135.<br />

Beck RW. (1995a). The optic neuritis treatment trial: three year follow-up results. Arch Ophthalmol 113:136–137.<br />

Beck RW, Arr<strong>in</strong>gton I, Murtagh FR, et al. (1993a). Bra<strong>in</strong> magnetic resonance imag<strong>in</strong>g <strong>in</strong> acute optic neuritis:<br />

experience of the optic neuritis study group. Arch <strong>Neuro</strong>l 50:841–846.<br />

Beck RW, Cleary PA. (1993b). Recovery from severe visual loss <strong>in</strong> optic neuritis. Arch Ophthalmol 111:300.<br />

Beck RW, Cleary PA. (1993c). Optic neuritis treatment trial. One year follow-up results. Arch Ophthalmol<br />

111:773–775.<br />

Beck RW, Cleary PA, <strong>An</strong>derson MA, et al. (1992b). A randomized, controlled trial of corticosteroids <strong>in</strong> the<br />

treatment of acute optic neuritis. N Engl J Med 326:581–588.<br />

Beck RW, Cleary PA, Backlund JC. (1994b). The course of visual recovery after optic neuritis. Ophthalmology<br />

101:1771–1778.


54 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Beck RW, Cleary PA, Trobe JD, et al. (1993d). The effect of corticosteroids for acute optic neuritis on the subsequent<br />

development of multiple sclerosis. N Engl J Med 329:1764–1769.<br />

Beck RW, Kupersmith MJ, Cleary PA, Katz B. (1993e). Fellow eye abnormalities <strong>in</strong> acute unilateral optic neuritis.<br />

Ophthalmology 100:691–698.<br />

Beck RW, Trobe J. (1995b). What we have learned from the optic neuritis treatment trial. Ophthalmology<br />

102:1504–1508.<br />

Beiran I, Krasnitz I, Zimhoni-Eibsitz M, et al. (2000). Paediatric chiasmal neuritis—typical of post-Epste<strong>in</strong>-Barr<br />

virus <strong>in</strong>fection? Acta Ophthalmol 78:226–227.<br />

Berrios RR, Serrano LA. (1994). Bilateral optic neuritis after a bee st<strong>in</strong>g. Am J Ophthalmol 117:677–678.<br />

Bielory L, Kupersmith M, Warren F, et al. (1993). Sk<strong>in</strong> biopsies <strong>in</strong> the evaluation of atypical optic neuropathies.<br />

Ocul Immunol Inflam 1:231–241.<br />

Biousse V, Trichet C, Bloch-Michel E, Roullet E. (1999). Multiple sclerosis associated with uveitis <strong>in</strong> two large<br />

cl<strong>in</strong>ic-based series. <strong>Neuro</strong>logy 52:179–181.<br />

Blanche P, Diaz E, Gombert B, et al. (2000). Devic’s neuromyelitis optica and HIV-1 <strong>in</strong>fection. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 68:795–796.<br />

Boiko AN, Guseva ME, Guseva MR, et al. (2000). Cl<strong>in</strong>ico-immunogenetic characteristics of multiple sclerosis optic<br />

neuritis <strong>in</strong> children. J <strong>Neuro</strong>virol 6(suppl 2):S152–S155.<br />

Bowden AN, Bowden PMA, Friedmann AI, et al. (1974). A trial of corticotroph<strong>in</strong> gelat<strong>in</strong> <strong>in</strong>jection <strong>in</strong> acute optic<br />

neuritis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 37:869–873.<br />

Brady KM, Brar AS, Lee AG, et al. (1999). Optic neuritis <strong>in</strong> children: cl<strong>in</strong>ical features and visual outcome. JAm<br />

Assoc Pediatr Ophthalmol Strabismus 3:98–103.<br />

Brazis PW, Stokes HR, Erv<strong>in</strong> FR. (1986). Optic neuritis <strong>in</strong> cat scratch disease. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 6:172–174.<br />

Brex PA, O’Riordan JI, Miszkiel KA, et al. (1999). Multisequence MRI <strong>in</strong> cl<strong>in</strong>ically isolated syndromes and the<br />

early development of MS. <strong>Neuro</strong>logy 53:1184–1190.<br />

Brodsky MC, Beck RW. (1994). The chang<strong>in</strong>g role of MR imag<strong>in</strong>g <strong>in</strong> the evaluation of acute optic neuritis.<br />

Radiology 192:22–23.<br />

Brusa A, Jones SJ, Kapoor R, et al. (1999). Long-term recovery and fellow eye deterioration after optic neuritis,<br />

determ<strong>in</strong>ed by serial visual evoked potentials. J <strong>Neuro</strong>l 246:776–782.<br />

Burton BJL, Leff AP, Plant GT. (1998). Steroid-responsive HIV optic neuropathy. J <strong>Neuro</strong>-ophthalmol 18:25–29.<br />

Case records of the Massachusetts General Hospital. Case 37-1996. (1996). N Engl J Med 335:1668–1674.<br />

Celesia GG, Kaufman DI, Brigell M, et al. (1990). Optic neuritis: A prospective study. <strong>Neuro</strong>logy 40:919–923.<br />

CHAMPS Study Group. (2001). Interferon beta-1a for optic neuritis patients at high risk for multiple sclerosis.<br />

Am J Ophthalmol 132:463–471.<br />

Chan JW. (2002). Optic neuritis <strong>in</strong> anti-GQ1b positive Miller Fisher syndrome. Presented at the 28th annual<br />

meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society, Copper Mounta<strong>in</strong>, Colorado, February 9–14.<br />

Chang GY, Keane JR. (2001). Visual loss <strong>in</strong> cysticercosis: analysis of 23 patients. <strong>Neuro</strong>logy 57:545–548.<br />

Choi MY, Cho SH. (2000). Optic neuritis after bee st<strong>in</strong>g. Korean J Ophthalmol 14:49–52.<br />

Christiansen P, Frederiksen JL, Henriksen O, et al. (1992). Gd-DTPA-enhanced lesions <strong>in</strong> the bra<strong>in</strong> of patients with<br />

acute optic neuritis. Acta <strong>Neuro</strong>l Scand 85:141–146.<br />

Cleary PA, Beck RW, <strong>An</strong>derson MM, et al. (1993). Design, methods and conduct of the Optic Neuritis Treatment<br />

Trial. Controlled Cl<strong>in</strong> Trials 24:123–142.<br />

Cleary PA, Beck RW, Bourque LB, et al. (1997). Visual symptoms after optic neuritis: results from the Optic<br />

Neuritis Treatment Trial. J <strong>Neuro</strong>-ophthalmol 17:1–28.<br />

Cole SR, Beck RW, Moke PS, et al. (1998). The predictive value of CSF oligoclonal band<strong>in</strong>g for MS 5 years after<br />

optic neuritis. <strong>Neuro</strong>logy 51:885–887.<br />

Cornblath WT, Qu<strong>in</strong>t DJ. (1997). MRI of optic nerve enlargement <strong>in</strong> optic neuritis. <strong>Neuro</strong>logy 48:821–825.<br />

Corssmit EP, Leverste<strong>in</strong>-van Hall MA, Portegies P, Bakker P. (1997). Severe neurological complications <strong>in</strong><br />

association with Epste<strong>in</strong>-Barr virus <strong>in</strong>fection. J <strong>Neuro</strong>virol 3:460–464.<br />

Deane JS, Bibby K. (1995). Bilateral opiic neuritis follow<strong>in</strong>g herpes zoster ophthalmicus. Arch Ophthalmol<br />

113:972–973.<br />

DeBroft BM, Donahue SP. (1993). Bilateral optic neuropathy as the <strong>in</strong>itial manifestation of systemic sarcoidosis.<br />

Am J Ophthalmol 116:108–110.<br />

Dunker S, Wiegand W. (1996). Prognostic value of magnetic resonance imag<strong>in</strong>g <strong>in</strong> monosymptomatic optic<br />

neuritis. Ophthalmology 103:1768–1773.<br />

Falcone PM, Notis C, Merhige K. (1993). Toxoplasmosis papillitis as the <strong>in</strong>itial manifestation of acquired<br />

immunodeficiency syndrome. <strong>An</strong>n Ophthalmol 25:56–57.<br />

Fang JP, Donahue SP, L<strong>in</strong> RH. (1999a). Global visual field <strong>in</strong>volvement <strong>in</strong> acute unilateral optic neuritis.<br />

Am J Ophthalmol 128:554–565.


Optic Neuritis 55<br />

Fang JP, L<strong>in</strong> RH, Donahue SP. (1999b). Recovery of visual field function <strong>in</strong> the Optic Neuritis Treatment Trial.<br />

Am J Ophthalmol 128:566–572.<br />

Farris BK, Pickard DJ. (1990). Bilateral post<strong>in</strong>fectious optic neuritis and <strong>in</strong>travenous steroid therapy <strong>in</strong> children.<br />

Ophthalmology 97:339–345.<br />

Fe<strong>in</strong>ste<strong>in</strong> A, Youl B, Ron M. (1992). Acute optic neuritis. Bra<strong>in</strong> 115:1403–1415.<br />

Filippi M, Rocca MA, Moiola L, et al. (1999). MRI and magnetization transfer imag<strong>in</strong>g changes <strong>in</strong> the bra<strong>in</strong> and<br />

cervical cord of patients with Devic’s neuromyelitis optica. <strong>Neuro</strong>logy 53:1705–1710.<br />

Fotiou F, Koutlas E, Tsorl<strong>in</strong>is I, et al. (1999). The value of neurophysiological and MRI assessment <strong>in</strong><br />

demyel<strong>in</strong>at<strong>in</strong>g optic neuritis. Electromyograph Cl<strong>in</strong> <strong>Neuro</strong>physiol 39:397–404.<br />

Francis CS, Evens AC, Arnold DL. (1995). <strong>Neuro</strong>imag<strong>in</strong>g <strong>in</strong> multiple sclerosis. <strong>Neuro</strong>l Cl<strong>in</strong> 23:147–170.<br />

Frederiksen JL. (1997a). Bilateral acute optic neuritis: prospective cl<strong>in</strong>ical, MRI, CSF, neurophysiological and HLA<br />

f<strong>in</strong>d<strong>in</strong>gs. <strong>Neuro</strong>-<strong>ophthalmology</strong> 17:175–183.<br />

Frederiksen JL, Larsson HBW, Olesen J. (1992). Correlation of magnetic resonance imag<strong>in</strong>g and CSF f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong><br />

patients with acute monosymptomatic optic neuritis. Acta <strong>Neuro</strong>l Scand 86:317–322.<br />

Frederiksen JL, Larsson HBW, Olesen J, Stigsby B. (1991a). MR, VEP, SEP, and biothesiometry suggest<br />

monosymptomatic acute optic neuritis to be a first manifestation of multiple sclerosis. Acta <strong>Neuro</strong>l Scand<br />

83:34–350.<br />

Frederiksen JL, Larsson HBW, Ottovay E, Stigsby B, Olesen J. (1991b). Acute optic neuritis with normal visual<br />

acuity. Acta Ophthalmol 69:357–366.<br />

Frederiksen JL, Petrera J. (1999). Serial visual evoked potentials <strong>in</strong> 90 untreated patients with acute optic neuritis.<br />

Surv Ophthalmol 44(suppl 1):S54–S62.<br />

Frederiksen JL, Sorensen TL, Sellebjerg FT. (1997b). Residual symptoms and signs after untreated acute optic<br />

neuritis. Acta Ophthalmol Scand 75:544–547.<br />

Friedlander SM, Rahhal FM, Ericson L, et al. (1996). Optic neuropathy preced<strong>in</strong>g acute ret<strong>in</strong>al necrosis <strong>in</strong> acquired<br />

immunodeficiency syndrome. Arch Ophthalmol 114:1481–1485.<br />

Friedman DI. (1991). <strong>Neuro</strong>-ophthalmic manifestations of human immunodeficiency virus <strong>in</strong>fection. <strong>Neuro</strong>l Cl<strong>in</strong><br />

9:55–72.<br />

Frith JA, McLeod JG, Hely M. (2000). Acute optic neuritis <strong>in</strong> Australia: a 13 year prospective study. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 68:246.<br />

Frohman L, Wolansky L. (1997). Magnetic resonance imag<strong>in</strong>g of syphilitic optic neuritis=per<strong>in</strong>euritis. J <strong>Neuro</strong>ophthalmol<br />

17:57–59.<br />

Fuhr P, Borggrefe-Chappuis A, Sch<strong>in</strong>dler C, Kappos L. (2001). Visual and motor evoked potentials <strong>in</strong> the course of<br />

multiple sclerosis. Bra<strong>in</strong> 124:2162–2168.<br />

Fujimoto N, Adachi-Usami E, Saito E, Nagata H. (1999). Optic nerve bl<strong>in</strong>dness due to paranasal s<strong>in</strong>us disease.<br />

Ophthalmologica 213:262–264.<br />

Gal<strong>in</strong>do-Rodriguez G, Av<strong>in</strong>a-Zubieta JA, Pizarro S, et al. (1999). Cyclophosphamide pulse therapy <strong>in</strong> optic<br />

neuritis due to systemic lupus erythematosus. Am J Med 106:65–69.<br />

Gerl<strong>in</strong>g J, Jancknecht P, Kommerell G. (1998a). Orbital pa<strong>in</strong> <strong>in</strong> optic neuritis and anterior ischemic<br />

optic neuropathy. <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:93–99.<br />

Gerl<strong>in</strong>g J, Meyer JH, Kommerell G. (1998b). Visual field defects <strong>in</strong> optic neuritis and anterior ischemic optic<br />

neuropathy: dist<strong>in</strong>ctive features. Graefes Arch Cl<strong>in</strong> Experimental Ophthalmol 236:188–192.<br />

Ghezzi A, Mart<strong>in</strong>elli V, Rodegher M, et al. (2000). The prognosis of idiopathic optic neutritis. <strong>Neuro</strong>l Sci 21:<br />

S865–S869.<br />

Ghezzi A, Mart<strong>in</strong>elli V, Torri V. (1999). Long-term follow-up of isolated optic neuritis: the risk of develop<strong>in</strong>g<br />

multiple sclerosis, its outcome, and the prognostic role of paracl<strong>in</strong>ical tests. J <strong>Neuro</strong>l 246:770–775.<br />

Giorgi D, Balacco Gabrieli C. (1999a). Optic neuropathy <strong>in</strong> systemic lupus erythematosus and antiphospholipid<br />

syndrome (APS): cl<strong>in</strong>ical features, pathogenesis, review of the literature and proposed ophthalmological<br />

criteria for APS diagnosis. Cl<strong>in</strong> Rheumatol 18:124–131.<br />

Giorgi D, Balacco Gabrieli C, Bonomo L. (1999b). The association of optic neuropathy with transverse myelitis <strong>in</strong><br />

systemic lupus erythematosus. Rheumatology 38:191–192.<br />

Golnik KC, Newman SA, Wispelway B. (1991). Cryptococcal optic neuropathy <strong>in</strong> acquired deficiency syndrome.<br />

J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 11:96–103<br />

Gould ES, Bird AC, Leaver PK, McDonald WI. (1977). Treatment of optic neuritis by retrobulbar <strong>in</strong>jection of<br />

triamc<strong>in</strong>olone. Br Med J 1:1495–1497.<br />

Greven CM, S<strong>in</strong>gh T, Stanton CA, Mart<strong>in</strong> TJ. (2001). Optic chiasm, optic nerve, and ret<strong>in</strong>al <strong>in</strong>volvement secondary<br />

to Varicella-zoster virus. Arch Ophthalmol 119:608–610.<br />

Grossniklaus HE, Specht CS, Allaire G, et al. (1990). Toxoplasma gondii ret<strong>in</strong>ochoroiditis and optic neuritis <strong>in</strong><br />

acquired immune deficiency syndrome. Ophthalmology 97:1342–1346.


56 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Gunduz K, Ozdermir O. (1994). Bilateral retrobulbar neuritis follow<strong>in</strong>g unilateral herpes tester ophthalmicus.<br />

Ophthalmologica 208:61–64.<br />

Guy JR, Mancuso AA, Quisl<strong>in</strong>g R. (1994). The role of magnetic resonance imag<strong>in</strong>g <strong>in</strong> optic neuritis. Ophthalmol<br />

Cl<strong>in</strong> North Am 7:449–458.<br />

Guy J, Mancuso A, Quisl<strong>in</strong>g R, Beck R, Moster M. (1990). Gadol<strong>in</strong>ium-DTPA enhanced magnetic resonance<br />

imag<strong>in</strong>g <strong>in</strong> optic neuropathies. Ophthalmology 97:592–599.<br />

Hark<strong>in</strong>s T, Ma<strong>in</strong>o JH. (1992). Cytomegalovirus ret<strong>in</strong>itis complicated by optic neuropathy: a longitud<strong>in</strong>al study.<br />

J Am Optom Assoc 63:21–27.<br />

Hatta M, Hayasaka S, Kato T, Kadoi C. (2000). Retrobulbar optic neuritis and rhegmatogenous ret<strong>in</strong>al detachment<br />

<strong>in</strong> a fourteen-year-old girl with ret<strong>in</strong>itis pigmentosa s<strong>in</strong>e pigmento. Ophthalmologica 214:153–155.<br />

Haupert CL, Newman NJ. (1997). Prolonged Uhthoff phenomenon <strong>in</strong> sarcoidosis. Am J Ophthalmol 124:564–566<br />

Hauser SL, Oksenberg JR, L<strong>in</strong>coln R, et al. (2000). Interaction between HLA-DR2 and abnormal bra<strong>in</strong> MRI <strong>in</strong> optic<br />

neuritis and early MS. <strong>Neuro</strong>logy 54:1859–1861.<br />

Ha<strong>in</strong>fellner JA, Schmidbauer M, Schmutzhard E, et al. (1992). Devic’s neuromyelitis optica and Schilder’s<br />

myel<strong>in</strong>oclastic diffuse sclerosis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 55:1194–1196.<br />

Hershewe GL, Corbett JJ, Thompson HS. (1990). The NANOS Devic’s Study Group. Presented at the North<br />

American <strong>Neuro</strong>-Ophthalmology Society Meet<strong>in</strong>g, Steamboat Spr<strong>in</strong>gs, Colorado, February 4–8.<br />

Ho M. (1995). Cytomegalovirus. In: Mandell GL, Bennett JE, Dol<strong>in</strong> R, eds. Pr<strong>in</strong>ciples and Practice of Infectious<br />

Disease. 4th ed. New York, Churchill Liv<strong>in</strong>gstone, pp. 1351–1364.<br />

Honan WP, Heron JR, Foster DH, et al. (1990). Visual loss <strong>in</strong> multiple sclerosis and its relation to previous optic<br />

neuritis, disease duration, and cl<strong>in</strong>ical classification. Bra<strong>in</strong> 113:975–987.<br />

Hull TP, Bates JH. (1997). Optic neuritis after <strong>in</strong>fluenza vacc<strong>in</strong>ation. Am J Ophthalmol 124:703–704.<br />

Hutnik CML, Nicolle DA, Canny CLB. (1996). Papillitis: a rare <strong>in</strong>itial presentation of Crohn’s disease.<br />

Can J Ophthalmol 31:373–376.<br />

Igarishi Y, Oyachi H, Nakamura Y, et al. (1994). <strong>Neuro</strong>myelitis optica. Ophthalmology 208:226–229.<br />

Jacobs LD, Beck RW, Simon JH, et al. (2000). Intramuscular <strong>in</strong>terferon beta-1a therapy <strong>in</strong>itiated dur<strong>in</strong>g a first<br />

demyel<strong>in</strong>at<strong>in</strong>g event <strong>in</strong> multiple sclerosis. N Eng J Med 343:898–904.<br />

Jacobs LD, Kaba SE, Miller CM, et al. (1997). Correlation of cl<strong>in</strong>ical, magnetic resonance imag<strong>in</strong>g, and<br />

cerebrosp<strong>in</strong>al fluid f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> optic neuritis. <strong>An</strong>n <strong>Neuro</strong>l 41:392–398<br />

Jacobs L, Munschauer FE. Kaba SE. (1991). <strong>Cl<strong>in</strong>ical</strong> and magnetic resonance imag<strong>in</strong>g <strong>in</strong> optic neuritis. <strong>Neuro</strong>logy<br />

41:15–19.<br />

Jacobson DM, Marx JJ, Dlesk A. (1991). Frequency and cl<strong>in</strong>ical significance of Lyme seropositivity <strong>in</strong> patients with<br />

isolated optic neuritis. <strong>Neuro</strong>logy 41:706–711.<br />

Ja<strong>in</strong> S, Hiran S, Sarma PS. (1994). Devic’s disease. J Assoc Phys India 42:166.<br />

Jeffrey AR, Buncic JR. (1996). Pediatric Devic’s neuromyelitis optica. J Pediatr Ophthalmol Strabismus 33:223–229.<br />

J<strong>in</strong> Y-P, de Pedro-Cuesta J, Soderstrom M, L<strong>in</strong>k H. (1999). Incidence of optic neuritis <strong>in</strong> Stockholm, Sweden,<br />

1990–1995. II. Time and space patterns. Arch <strong>Neuro</strong>l 56:975–980.<br />

Kakisu Y, Adachi-Usami E, Fujimoto N. (1991). Pattern visually evoked cortical potential and magnetic resonance<br />

Imag<strong>in</strong>g <strong>in</strong> optic neuritis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 11:205–212.<br />

Kapoor R, Miller DH, Jones SJ, et al. (1998). Effects of <strong>in</strong>travenous methylprednisolone on outcome <strong>in</strong> MRI-based<br />

prognostic subgroups <strong>in</strong> acute optic neuritis. <strong>Neuro</strong>logy 50:230–237.<br />

Karma A, Seppala I, Mikkila H, et al. (1995). Diagnosis and cl<strong>in</strong>ical characteristics of ocular Lyme borreliosis.<br />

Am J Ophthalmol 119:127–135.<br />

Kaufman DI. (1998). Peripheral demyel<strong>in</strong>at<strong>in</strong>g and axonal disorders. In: Miller NR, Newman NJ, eds. Walsh and<br />

Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 5th ed. Baltimore, Williams and Wilk<strong>in</strong>s, pp. 5677–5719.<br />

Kaufman DI, Trobe JD, Eggenberger ER, Whitaker JN. (2000). Practice parameter: the role of corticosteroids <strong>in</strong> the<br />

management of acute monosymptomatic optic neuritis. Report of the Quality Standards Subcommittee of the<br />

American Academy of <strong>Neuro</strong>logy. <strong>Neuro</strong>logy 54:2039–2044.<br />

Keltner JL, Johnson CA, Beck RW, Clearly PA, Spurr JO, and the Optic Neuritis Study Group. (1993a). Quality<br />

control functions of the visual field read<strong>in</strong>g center (VFRC) for the optic neuritis treatment trial (ONTT).<br />

Controlled Cl<strong>in</strong> Trials 14:143–159.<br />

Keltner JL, Johnson CA, Spurr JO, Beck RW. (1993b). Basel<strong>in</strong>e visual field profile of optic neuritis: the experience of<br />

the Optic Neuritis Treatment Trial. Arch Ophthalmol 111:231–234.<br />

Keltner JL, Johnson CA, Spurr JO, Beck RW, for the Optic Neuritis Study Group. (1999). Comparison of central<br />

and peripheral visual field properties <strong>in</strong> the Optic Neuritis Treatment Trial. Am J Ophthalmol 128:543–553.<br />

Kerrison JB, Lounsbury D, Lane G, et al. (2001). Optic neuritis follow<strong>in</strong>g anthrax vacc<strong>in</strong>ation. Presented at the 27th


Optic Neuritis 57<br />

annual meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society, Rancho Mirage, California, February<br />

18–22.<br />

Kerrison JB, Lounsbury D, Thirkill CE, et al. (2002). Optic neuritis after anthrax vacc<strong>in</strong>ation. Ophthalmology<br />

109:99–104.<br />

Khan MA, Mahar PS, Raghuraman VU. (1990). <strong>Neuro</strong>myelitis optica (Devic’s disease). Br J Cl<strong>in</strong> Pract 44:667–668.<br />

Komiyama A, Hasegawa O, Nakamura S, et al. (1995). Optic neuritis <strong>in</strong> cerebral toxocariasis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 59:197–198.<br />

Kosmorsky GS, Prayson R. (1996). Primary optic pathway sarcoidosis <strong>in</strong> a 38-year-old white man.<br />

J <strong>Neuro</strong>-ophthalmol 16:188–190.<br />

Kouyoumdjian GA, Lark<strong>in</strong> TP, Blackburn PJ, Mandava N. (2001). Optic disk edema as a presentation of<br />

propionibacterium acnes endophthalmitis. Am J Ophthalmol 132:259–261.<br />

Kupersmith MJ, Alban T, Zeiffer B, Lefton D. (2002a). Contrast-enhanced MRI <strong>in</strong> acute optic neuritis: relationship<br />

to visual performance. Bra<strong>in</strong> 125:812–822.<br />

Kupersmith MJ, Fazzone HE, Lefton D. (2002b). Localization of the pa<strong>in</strong> with optic neuritis. Presented at the 28th<br />

annual meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society, Copper Mounta<strong>in</strong>, Colorado,<br />

February 9–14.<br />

Lee AG, Brazis PW. (1998a). The 5-year risk of MS after optic neuritis. <strong>Neuro</strong>logy 51:1236–1238.<br />

Lee AG, Galetta SL, Lepore FE, Appel SH. (1999). Optic atrophy and chronic acquired polyneuropathy.<br />

J <strong>Neuro</strong>-ophthalmol 19:67–69.<br />

Lee CC, Venketasubramanian N, Lam MS. (1997). Optic neuritis: a rare complication of primary varicella<br />

<strong>in</strong>fection. Cl<strong>in</strong> Infect Dis 24:515–516.<br />

Lee MS, Cooney EL, Stoessel KM, Gariano RF. (1998b). Varicella zoster virus retrobulbar optic neuritis preced<strong>in</strong>g<br />

ret<strong>in</strong>itis <strong>in</strong> patients with acquired deficiency syndrome. Ophthalmology 105:467–471.<br />

Lehky TJ, Flerlage N, Katz D, et al. (1996). Human T-cell lymphotropic virus type II-associated myelopathy:<br />

cl<strong>in</strong>ical and immunologic profiles. <strong>An</strong>n <strong>Neuro</strong>l 40:714–723.<br />

Leiba H, Glaser JS, Schatz NJ, Siatkowski RM. (2000). Postpartum optic neuritis: etiologic and pathophysiologic<br />

considerations. J <strong>Neuro</strong>-ophthalmol 20:85–88.<br />

Lessell S. (1992). Corticosteroid treatment of acute optic neuritis. N Engl J Med 326:634–635.<br />

Lesser RL, Kornmehl EW, Pachner WR, et al. (1990). <strong>Neuro</strong>-ophthalmologic manifestations of Lyme disease.<br />

Ophthalmology 97:699–706.<br />

L<strong>in</strong>ssen WH, Kruisdijk JJ, Barkhof F, Smit LM. (1997). Severe irreversible optic neuritis follow<strong>in</strong>g Mantoux<br />

tubercul<strong>in</strong> sk<strong>in</strong> test <strong>in</strong> child with multiple sclerosis—a case report. <strong>Neuro</strong>pediatrics 28:338–340.<br />

Litoff D, Catalano RA. (1990). Herpes zoster optic neuritis <strong>in</strong> human immunodeficiency syndrome virus <strong>in</strong>fection.<br />

Arch Ophthalmol 108:782–783.<br />

Lossos A, Eliashiv S, Ben-Chetrit E, et al. (1993). Optic neuritis associated with familial Mediterranean fever.<br />

J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:141–143.<br />

Lucch<strong>in</strong>etti CF, Kiers L, O’Duffy A, et al. (1997). Risk factors for develop<strong>in</strong>g multiple sclerosis after childhood<br />

optic neuritis. <strong>Neuro</strong>logy 49:1413–1418.<br />

Malessa R, Agel<strong>in</strong>k MW, Diener H. (1995). Dysfunction of visual pathways <strong>in</strong> HIV-1 <strong>in</strong>fection. J <strong>Neuro</strong>l Sci<br />

130:82–87.<br />

Maltzman JS, Lee AG, and Miller NR. (2000). Optic neuropathy occurr<strong>in</strong>g after bee and wasp st<strong>in</strong>g. Ophthalmology<br />

107:193–195.<br />

Mandler RN, Davis LE, Jeffrey DR, Kornfeld M. (1993). Devic’s neuromyelitis optica: a cl<strong>in</strong>icopathological study<br />

of 8 patients. <strong>An</strong>n <strong>Neuro</strong>l 34:162–168.<br />

Mandler RN, Ahmed W, Dencoff JE. (1998). Devic’s neuromyelitis optica: a prospective study of seven patients<br />

treated with prednisone and azathiopr<strong>in</strong>e. <strong>Neuro</strong>logy 51:1219–1220.<br />

Mansour AM. (1997). Cytomegalovirus optic neuritis. Curr Op<strong>in</strong> Ophthalmol 8:55–58<br />

Mansour AM. (1998). Optic disk tubercle. J <strong>Neuro</strong>-ophthalmol 18:201–203.<br />

Margolis TP, Milner MS, Shama A, et al. (1998). Herpes zoster ophthalmicus <strong>in</strong> patients with human immunodeficiency<br />

virus <strong>in</strong>fection. Am J Ophthalmol 125:285–291.<br />

McKibb<strong>in</strong> M, Cleland PG, Morgan SJ. (1995). Bilateral optic neuritis after hepatitis A. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

58:508.<br />

McLean DR, Russell N, Khan MY. (1992). <strong>Neuro</strong>brucellosis: cl<strong>in</strong>ical and therapeutic features. Cl<strong>in</strong> Infect Dis<br />

15:582–590.<br />

McLeish WM, Pulido JS, Holland S, et al. (1990). The ocular manifestations of syphilis <strong>in</strong> the human<br />

immunodeficiency virus type 1-<strong>in</strong>fected host. Ophthalmology 97:196–203.


58 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Meenken C, van den Horn GJ, de Smer MD, van der Meer JTM. (1998). Optic neuritis herald<strong>in</strong>g varicella zoster<br />

virus ret<strong>in</strong>itis <strong>in</strong> a patient with acquired immunodeficiency syndrome. <strong>An</strong>n <strong>Neuro</strong>l 43:534–536<br />

Menon V, Tandon R, Khanna S, et al. (2000). Cysticercosis of the optic nerve. J <strong>Neuro</strong>-ophthalmol 20:59–60.<br />

Menon V, Tandon R, Sharma T, Gupta A. (1997). Optic neuritis follow<strong>in</strong>g snake bite. Indian J Ophthalmol<br />

45:236–237.<br />

Merandi SF, Kudryk BT, Murtagh FR, Arr<strong>in</strong>gton JA. (1991). Contrast-enhanced MR imag<strong>in</strong>g of optic nerve lesions<br />

<strong>in</strong> patients with acute optic neuritis. AJNR 12:923–926.<br />

Merle D, Smadja D, Bera O, et al. (1997). Uveitis and papillitis <strong>in</strong> association with HTLV-I associated myelopathy.<br />

<strong>An</strong>n Ophthalmol 29:258–261.<br />

Miller NR. (1995). Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 4th ed., vol. 5, pt 1. Baltimore, Williams and<br />

Wilk<strong>in</strong>s, pp. 2895–2896.<br />

Miyashita K, Kigasawa K, Mashima Y, Fuj<strong>in</strong>o T. (1993). Superior altitud<strong>in</strong>al hemianopia and herpes zoster.<br />

<strong>An</strong>n Ophthalmol 25:20–23.<br />

Moorman CM, <strong>An</strong>slow P, Elston JS. (1999). Is sphenoid s<strong>in</strong>us opacity significant <strong>in</strong> patients with optic neuritis. Eye<br />

13:76–82.<br />

Mori T, Terai T, Hatano M, et al. (1997). Stellate ganglion block improved loss of visual acuity caused by<br />

retrobulbar optic neuritis after herpes zoster. <strong>An</strong>esth <strong>An</strong>alg 85:870–871.<br />

Morrissey SP, Miller DH, Kendall BE, et al. (1993). The significance of bra<strong>in</strong> magnetic resonance imag<strong>in</strong>g<br />

abnormalities at presentation with cl<strong>in</strong>ically isolated syndromes suggestive of multiple sclerosis. A 5-year<br />

follow-up study. Bra<strong>in</strong> 116:135–146.<br />

Moschos M. (1990). Acute bilateral optic neuritis. Doc Ophthalmol 73:225–230.<br />

Nadkarni N, Lisak RP. (1993). Guilla<strong>in</strong>-Barré syndrome (GBS) with bilateral optic neuritis and central white<br />

matter disease. <strong>Neuro</strong>logy 43:842–843.<br />

Nakazawa T, Abe T, Ohmura M. (1999). Varicella zoster-associated optic neuropathy with choroidal <strong>in</strong>volvement.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 21:39–45.<br />

Newman NJ, Lessell S. (1992). Bilateral optic neuropathies with remission <strong>in</strong> two HIV-positive men.<br />

J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:1–5.<br />

Newman NJ, Lessell S, W<strong>in</strong>terkorn JS. (1991). Optic chiasmal neuritis. <strong>Neuro</strong>logy 41:1203–1210.<br />

Nichols JW, Goodw<strong>in</strong> JA. (1992). <strong>Neuro</strong>-ophthalmologic complications of AIDS. Sem<strong>in</strong> Ophthalmol 7:24–29.<br />

N<strong>in</strong>omiya M, Ohashi K, Sasaki N, et al. (1990). A case of optic neuritis accompany<strong>in</strong>g systemic lupus<br />

erythematosus several years after onset. Folia Ophthalmol Jpn 41:636.<br />

Noseworthy JH, O’Brien PC, Petterson TM, et al. (2001). A randomized trial of <strong>in</strong>travenous immunoglobul<strong>in</strong> <strong>in</strong><br />

<strong>in</strong>flammatory demyel<strong>in</strong>at<strong>in</strong>g optic neuritis. <strong>Neuro</strong>logy 56:1514–1522.<br />

Ohnuma I, Yamaguchi K, Takahashi S. (1996). Retrobulbar neuritis <strong>in</strong> a patient with mixed connective tissue<br />

disease. Folia Ophthalmol Jpn 47:828–831.<br />

Optic Neuritis Study Group. (1991). The cl<strong>in</strong>ical profile of optic neuritis. Experience of the Optic Neuritis<br />

Treatment Trial. Arch Ophthalmol 109:1673–1678.<br />

Optic Neuritis Study Group. (1997a). The 5-year risk of MS after optic neuritis. Experience of the Optic<br />

Neuritis Treatment Trial. <strong>Neuro</strong>logy 49:1404–1413.<br />

Optic Neuritis Study Group. (1997b). Visual function 5 years after optic neuritis. Experience of the Optic Neuritis<br />

Treatment Trial. Arch Ophthalmol 115:1545–1552<br />

O’Riordan JI, Gallagher HL, Thompson AJ, et al. (1996). <strong>Cl<strong>in</strong>ical</strong>, CSF, and MRI f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> Devic’s neuromyelitis<br />

optica. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 60:382–387.<br />

Patel SS, Rutzen AR, Marx JL, et al. (1996). Cytomegalovirus papillitis <strong>in</strong> patients with acquired immune<br />

deficiency syndrome: visual prognosis of patients treated ganciclovir and foscarnet. Ophthalmology<br />

103:1476–1482.<br />

Paty DW, Li DKB, the UBC MS=MRI Study Group, et al. (1993). Interferon beta-1b is effective <strong>in</strong> relaps<strong>in</strong>gremitt<strong>in</strong>g<br />

multiple sclerosis, II: MRI analysis results of a multicenter, randomized, double-bl<strong>in</strong>d, placebocontrolled<br />

trial. <strong>Neuro</strong>logy 43:662–667.<br />

Paty DW, Oger JJF, Kastrukoff LF, et al. (1988). MRI <strong>in</strong> the diagnosis of MS: a prospective study with comparison<br />

of cl<strong>in</strong>ical evaluation, evoked potentials, oligoclonal band<strong>in</strong>g and CT. <strong>Neuro</strong>logy 38:180–185.<br />

Percy AK, Norbrega FT, Kurland LT. (1992). Optic neuritis and multiple sclerosis. Arch Ophthalmol 87:<br />

135–139.<br />

Perry JD, Girk<strong>in</strong> CA, Miller NR, Mann RB. (1999). Dissem<strong>in</strong>ated histoplasmosis caus<strong>in</strong>g reversible gaze palsy and<br />

optic neuropathy. J <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:140–143.<br />

Phillips PH, Newman NJ, Lynn MJ. (1998). Optic neuritis <strong>in</strong> African Americans. Arch <strong>Neuro</strong>l 55:186–192.<br />

Piccolo G, Franciotta DM, Camana C, et al. (1990). Devic’s neuromyelitis optica: long-term follow-up and serial<br />

CSF f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> two cases. J <strong>Neuro</strong>l 237:262–264.


Optic Neuritis 59<br />

Pierce EA, D’Amico DJ. (1993). Ocular toxoplasmosis: pathogenesis, diagnosis, and management. Sem<strong>in</strong><br />

Ophthalmol 8:40–52.<br />

Quicenco JI, Capparelli E, Sadun AA, et al. (1992). Visual dysfunction without ret<strong>in</strong>itis <strong>in</strong> patients with acquired<br />

immunodeficiency syndrome. Am J Ophthalmol 113:8–13.<br />

Ramelli GP, Deonna T, Roulet E, et al. (1992). Transverse myelitis and optic neuromyelitis <strong>in</strong> children: apropos of 3<br />

case reports. Schweiz Rundsch Med Prax 81:661–663.<br />

Rawson MD, Liversedge LA, Goldfarb G. (1966). Treatment of acute retrobuibar neuritis with corticotroph<strong>in</strong>.<br />

Lancet 2:1044–1046.<br />

Riedel P, Wall M, Grey A, et al. (1998). Autoimmune optic neuropathy. Arch <strong>Neuro</strong>l 116:1121–1124.<br />

R<strong>in</strong>alduzzi S, Brusa A, Jones SJ. (2001). Variation of visual evoked potential delay to stimulation of central, nasal,<br />

and temporal regions of the macula <strong>in</strong> optic neuritis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 70:28–35.<br />

Rizzo JF, Lessell S. (1988). Risk of develop<strong>in</strong>g multiple sclerosis after uncomplicated optic neuritis: a long term<br />

prospective study. <strong>Neuro</strong>logy 38:185–190.<br />

Roarty JD, Fisher EJ, Nussbaum JJ. (1993). Long-term morbidity of cytomegalovirus ret<strong>in</strong>itis <strong>in</strong> patients with<br />

acquired immune deficiency syndrome. Ophthalmology 100:1685–1688.<br />

Rodriguez M, Siva A, Cross SA, et al. (1995). Optic neuritis: a population based study <strong>in</strong> Olmsted County,<br />

M<strong>in</strong>nesota. <strong>Neuro</strong>logy 45:244–250.<br />

Ropper AH, Wijdicks EFM, Truax BT. (1991). Guilla<strong>in</strong>-Barré Syndrome. Philadelphia, FA Davis.<br />

Rose AS, Kuzma JW, Kurtzke JF, et al. (1970). Cooperative study <strong>in</strong> the evaluation of therapy <strong>in</strong> multiple sclerosis.<br />

ACTH vs. placebo—f<strong>in</strong>al report. <strong>Neuro</strong>logy 20:1–59.<br />

Rose GE. (1991). Papillitis, ret<strong>in</strong>al neovascularization and recurrent ret<strong>in</strong>al ve<strong>in</strong> occlusion <strong>in</strong> Toxoplasma<br />

ret<strong>in</strong>ochoroiditis: a case report with uncommon cl<strong>in</strong>ical signs. Aust NZ J Ophthalmol 19:155–157.<br />

Rosenbaum JT, Simpson J, Neuwelt CM. (1997). Successful treatment of optic neuropathy <strong>in</strong> association with<br />

systemic lupus erythematosus us<strong>in</strong>g <strong>in</strong>travenous cyclophosphamide. Br J Ophthalmol 81:130–132.<br />

Sadun AA, Pepose JS, Madigan MC, et al. (1995). AIDS-related optic neuropathy: a histological, virological and<br />

ultrastructural study. Graefes Arch Cl<strong>in</strong> Exp Ophthalmol 233:387–398.<br />

Sakuma R, Fujihara K, Sato N, et al. (1999). Optic-sp<strong>in</strong>al form of multiple sclerosis and anti-thyroid autoantibodies.<br />

J <strong>Neuro</strong>l 246:449–453.<br />

Salzman MB, Sood SK, Slav<strong>in</strong> ML, et al. (1992). Ocular manifestations of Mycoplasma pneumoniae <strong>in</strong>fection.<br />

Cl<strong>in</strong> Infect Dis 14:1137–1139.<br />

Sandberg-Wollheim M. (1975). Optic neuritis: studies on the cerebrosp<strong>in</strong>al fluid <strong>in</strong> relation to cl<strong>in</strong>ical course <strong>in</strong><br />

61 patients. Acta <strong>Neuro</strong>l Scand 52:167–178.<br />

Sandberg-Wollheim M, Bynke H, Cronqvist S, et al. (1990). A long-term prospective study of optic neuritis:<br />

evaluation of risk factors. <strong>An</strong>n <strong>Neuro</strong>l 27:386–393.<br />

Schneck ME, Haegerstrom-Portnoy G. (1997). Color vision defect type and spatial vision <strong>in</strong> the Optic Neuritis<br />

Treatment Trial. Invest Ophthalmol Vis Sci 38:2278–2289.<br />

Schwartzman WA, Patnaik M, <strong>An</strong>gula FJ, et al. (1995). Bartonella (Rochalimaea) antibodies, dementia, and cat<br />

ownership among men <strong>in</strong>fected with immunodeficiency virus. Cl<strong>in</strong> Infect Dis 21:954–959.<br />

Schwartzman WA, Patnaik M, Barka NE, et al. (1994). Rochalimara antibodies <strong>in</strong> HIV associated neurologic<br />

disease. <strong>Neuro</strong>logy 44:1312–1316.<br />

Sedwick LA. (1991). Optic neuritis. <strong>Neuro</strong>l Cl<strong>in</strong> 9:97–112.<br />

Sellebjerg F, Christiansen M, Jensen J, Frederiksen JL. (2000). Immunological effects of oral high-dose methylprednisolone<br />

<strong>in</strong> acute optic neuritis and multiple sclerosis. Eur J <strong>Neuro</strong>l 7:281–289.<br />

Sellebjerg FT, Frederkisen JT. Olsson T. (1994). <strong>An</strong>ti-myel<strong>in</strong> basic prote<strong>in</strong> and anti-proteolipid prote<strong>in</strong> antibodysecret<strong>in</strong>g<br />

cells <strong>in</strong> the cerebrosp<strong>in</strong>al fluid of patients with acute optic neuritis. Arch <strong>Neuro</strong>l 51:1032–1036.<br />

Sellebjerg F, Madsen HO, Frederiksen JL, et al. (1995). Acute optic neuritis: myel<strong>in</strong> basic prote<strong>in</strong> and proteolipid<br />

prote<strong>in</strong> antibodies, aff<strong>in</strong>ity and the HLA system. <strong>An</strong>n <strong>Neuro</strong>l 38:943–950.<br />

Sellebjerg F, Nielsen S, Frederiksen JL, Olesen J. (1999). A randomized, controlled trial of oral high-dose<br />

methylprednisolone <strong>in</strong> acute optic neuritis. <strong>Neuro</strong>logy 52:1479–1484.<br />

Shayegani A, Odel JG, Kazim M, et al. (1996). Varicella-zoster virus retrobulbar optic neuritis <strong>in</strong> a patient with<br />

human immunodeficiency virus. Am J Ophthalmol 112:586–588.<br />

Sheth RD, Goulden KJ, Pryse-Phillips WE. (1993). The focal encephalopathies associated with Mycoplasma<br />

pneumoniae. Can J <strong>Neuro</strong>l Sci 20:319–323.<br />

Silber MH, Willcox PA, Bowen RM, et al. (1990). <strong>Neuro</strong>myelitis optica (Devic’s disease) and pulmonary<br />

tuberculosis. <strong>Neuro</strong>logy 40:934–938.<br />

Silberberg DH. (1993). Corticosteroids and optic neuritis. N Engl J Med 329:1808–1810.


60 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Simon JH, McDonald WI. (2000). Assessment of optic nerve damage <strong>in</strong> multiple sclerosis us<strong>in</strong>g magnetic<br />

resonance imag<strong>in</strong>g. J <strong>Neuro</strong>l Sci 172(suppl 1):S23–S26.<br />

Slamovits TL, Mackl<strong>in</strong> R. (1991a). What to tell the patient with optic neuritis about multiple sclerosis. Surv<br />

Ophthalmol 36:47–50.<br />

Slamovits TL, Rosen CE, Cheng KP, Striph GG. (1991b). Visual recovery <strong>in</strong> patients with optic neuritis and visual<br />

loss to no light perception. Am J Ophthalmol 111:209–214.<br />

Söderström M, L<strong>in</strong>k H, Sun J-B, et al. (1994). Autoimmune T cell repertoire <strong>in</strong> optic neuritis and multiple sclerosis:<br />

T cells recogniz<strong>in</strong>g multiple myel<strong>in</strong> prote<strong>in</strong>s are accumulated <strong>in</strong> cerebrosp<strong>in</strong>al fluid. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 57:544–551.<br />

Söderström M, L<strong>in</strong>k H, Xu Z, Fredriksson S. (1993). Optic neuritis and multiple sclerosis: anti-MBP and anti-MBP<br />

peptide antibody-secret<strong>in</strong>g cells are accumulated <strong>in</strong> CSF. <strong>Neuro</strong>logy 43:1215–1222.<br />

Söderström M, Ya-P<strong>in</strong>g J, Hillert J, L<strong>in</strong>k H. (1998). Optic neuritis. Prognosis for multiple sclerosis from MRI, CSF,<br />

and HLA f<strong>in</strong>d<strong>in</strong>gs. <strong>Neuro</strong>logy 50:708–714.<br />

Song A, Scott IU, Davis JL, Lam BL. (2002). Atypical anterior optic neuropathy caused by toxoplasmosis. Am J<br />

Ophthalmol 133:162–164.<br />

Song HS, Wray SH. (1991). Bee st<strong>in</strong>g optic neuritis. A case report with visual evoked potentials. J Cl<strong>in</strong> <strong>Neuro</strong>ophthalmol<br />

11:45–49.<br />

Sorensen TL, Frederiksen JL, Bronnum-Hansen H, Petersen HC. (1999). Optic neuritis as onset manifestation of<br />

multiple sclerosis. A nationwide, long-term survey. <strong>Neuro</strong>logy 53:473–478.<br />

Staedt D, Kappos L, RohrbachE, Heun R, Ratzka M. (1990). Occurrence of MRI abnormalities <strong>in</strong> patients with<br />

isolated optic neuritis. Eur <strong>Neuro</strong>l 30:305–309.<br />

Steel DH, Waldock A. (1998). Measurement of the ret<strong>in</strong>al nerve fibre layer with scann<strong>in</strong>g laser polarimetry <strong>in</strong><br />

patients with previous demyel<strong>in</strong>at<strong>in</strong>g optic neuritis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 64:505–509.<br />

Stewart O, Chang B, Bradbury J. (1999). Simultaneous adm<strong>in</strong>istration of hepatitis B and polio vacc<strong>in</strong>es associated<br />

with bilateral optic neuritis. Br J Ophthalmol 83:1200–1201.<br />

Straussberg R, Amir J, Cohen HA, et al. (1993). Epste<strong>in</strong>-Barr virus <strong>in</strong>fection associated with encephalitis and optic<br />

neuritis. J Pediatr Ophthalmol Strabismus 30:262–263.<br />

Sugita K, <strong>An</strong>do M, M<strong>in</strong>amitani K, et al. (1991). Magnetic resonance imag<strong>in</strong>g <strong>in</strong> a case of mumps post<strong>in</strong>fectious<br />

encephalitis with asymptomatic optic neuritis. Eur J Pediatr 150:773–775.<br />

Sweeney BJ, Manji H, Gilson RJC, et al. (1993). Optic neuritis and HIV-1 <strong>in</strong>fection. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

56:705–707.<br />

Thompson AJ, Kermode A, MacManus DG, et al. (1990). Patterns of disease activity <strong>in</strong> multiple sclerosis: cl<strong>in</strong>ical<br />

and magnetic resonance imag<strong>in</strong>g study. Br Med J 300:631–634.<br />

Thompson AJ, Miller D, Youl B, et al. (1992). Serial gadol<strong>in</strong>ium-enhanced MRI <strong>in</strong> relaps<strong>in</strong>g=remitt<strong>in</strong>g multiple<br />

sclerosis of vary<strong>in</strong>g disease duration. <strong>Neuro</strong>logy 42:60–63.<br />

Tomsak RL, Lystad LD, Katirji MB, et al. (1992). Rapid response of syphilitic optic neuritis to posterior sub-<br />

Tenon’s steroid <strong>in</strong>jection. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:6–7.<br />

Topaloglu H, Berker M, Kansu T, et al. (1992). Optic neuritis and myelitis after booster tetanus toxoid vacc<strong>in</strong>ation.<br />

Lancet 339:178–179.<br />

Tornerup NR, Fomsgaard A, Nielsen NV. (2000). HSV-1-<strong>in</strong>duced acute ret<strong>in</strong>al necrosis syndrome present<strong>in</strong>g with<br />

severe <strong>in</strong>flammatory orbitopathy, proptosis, and optic nerve <strong>in</strong>volvement. Ophthalmology 107:397–401.<br />

Totan Y, Cekic O. (1999). Bilateral retrobulbar neuritis follow<strong>in</strong>g measles <strong>in</strong> an adult. Eye 13:383–384.<br />

Trobe JD. (1994). High-dose corticosteroid regimen retards development of multiple sclerosis <strong>in</strong> optic neuritis<br />

treatment trial. Arch Ophthalmol 112:35–36.<br />

Trobe JD, Siev<strong>in</strong>g PC, Guire KE, Fendrick AM. (1999). The impact of the Optic Neuritis Treatment Trial on the<br />

practices of ophthalmologists and neurologists. Ophthalmology 106:2047–2053.<br />

van de Geijn EJ, Tukkie R, van Phillips LA, Punt H. (1994). Bilateral optic neuritis with branch ret<strong>in</strong>al artery<br />

occlusion associated with vacc<strong>in</strong>ation. Doc Ophthalmol 86:403–408.<br />

van Engelen BGM, Hommes OR, P<strong>in</strong>ckers A, et al. (1992). Improved vision after <strong>in</strong>travenous immunoglobul<strong>in</strong> <strong>in</strong><br />

stable demyel<strong>in</strong>at<strong>in</strong>g optic neuritis. <strong>An</strong>n <strong>Neuro</strong>l 32:834.<br />

Vaphiades MS, Lee AG. (1999). A bad eye and a sore lip. Surv Ophthalmol 44:148–152.<br />

Vernant J-C, Cabre P, Smadje D, et al. (1997). Recurrent optic neuromyelitis with endocr<strong>in</strong>opathies: a new<br />

syndrome. <strong>Neuro</strong>logy 48:58–64.<br />

Wakakura M, Mashimo K, Oono S, et al. (1999a). Multicenter cl<strong>in</strong>ical trial for evaluat<strong>in</strong>g methylprednisolone<br />

pulse treatment of idiopathic optic neuritis <strong>in</strong> Japan. Jpn J Ophthalmol 43:133–138.<br />

Wakakura M, M<strong>in</strong>ei-Higa R, Oono S, et al. (1999b). Basel<strong>in</strong>e features of idiopathic optic neuritis as determ<strong>in</strong>ed by<br />

a multicenter treatment trial <strong>in</strong> Japan. Jpn J Ophthalmol 43:127–132.


Optic Neuritis 61<br />

Wall M, Johnson CA, Kutzko KE, et al. (1998). Long- and short-term variability of automated perimetry results <strong>in</strong><br />

patients with optic neuritis and healthy subjects. Arch Ophthalmol 116:53–61.<br />

Warren KG, Catz I, Bauer C. (1988). Cerebrosp<strong>in</strong>al fluid antibodies to myel<strong>in</strong> basic prote<strong>in</strong> <strong>in</strong> acute idiopathic<br />

optic neuritis. <strong>An</strong>n <strong>Neuro</strong>l 23:297–299.<br />

Warren KG, Catz I, Johnson E, Mielke B. (1994). <strong>An</strong>ti-myel<strong>in</strong> basic prote<strong>in</strong> and anti-proteolipid prote<strong>in</strong> specific<br />

forms of multiple sclerosis. <strong>An</strong>n <strong>Neuro</strong>l 35:280–289.<br />

W<strong>in</strong>gerchuk DM, Hogancamp WF, O’Brien PC, We<strong>in</strong>shenker BG. (1999). The cl<strong>in</strong>ical course of neuromyelitis<br />

optica (Devic’s disease). <strong>Neuro</strong>logy 53:1107–1114.<br />

W<strong>in</strong>terkorn JMS. (1990). Lyme disease: neurologic and ophthalmologic manifestations. Surv Ophthalmol<br />

35:191–204.<br />

Wolf MD, Folk JC, Goeken NE. (1990). Acute posterior multifocal pigment epitheliopathy and optic neuritis <strong>in</strong> a<br />

family. Am J Ophthalmol 110:89–90.<br />

Yamakawa K, Kuroda H, Fujihara K, et al. (2000). Familial neuromyelitis optica (Devic’s syndrome) with late<br />

onset <strong>in</strong> Japan. <strong>Neuro</strong>logy 55:318–320.<br />

Yau TH, Rivera-Velasquez PM, Mark AS, et al. (1996). Unilateral optic neuritis caused by Histoplasma capsulatum <strong>in</strong><br />

a patient with acquired immunodeficiency syndrome. Am J Ophthalmol 121:324–326.<br />

Yen MY, Liu JH. (1991). Bilateral optic neuritis follow<strong>in</strong>g bacille Calmette-Guér<strong>in</strong> (BCG) vacc<strong>in</strong>ation. J Cl<strong>in</strong> <strong>Neuro</strong>ophthalmol<br />

11:246–249.<br />

Yoshida Y, Saiga T, Takahashi H, Hara A. (1998). Optic neuritis and human T-lymphotropic virus type<br />

1-associated myelopathy: a case report. Ophthalmologica 212:73–76.


This page <strong>in</strong>tentionally left blank


3 r<br />

Optic Disc Edema with a Macular<br />

Star and <strong>Neuro</strong>ret<strong>in</strong>itis<br />

Optic disc edema with a macular star (ODEMS) is a descriptive term encompass<strong>in</strong>g a<br />

heterogeneous group of disorders. In 1916, Leber described patients with idiopathic<br />

unilateral visual loss, optic disc edema, and macular exudate (Leber, 1916). He<br />

<strong>in</strong>correctly theorized that the pathologic process was primarily ret<strong>in</strong>al and called the<br />

condition ‘‘stellate ret<strong>in</strong>opathy.’’ The condition subsequently has been called Leber’s<br />

stellate maculopathy, Leber’s idiopathic stellate neuroret<strong>in</strong>itis, or simply neuroret<strong>in</strong>itis.<br />

In 1977, Gass suggested that this syndrome was caused by a prelam<strong>in</strong>ar disc vasculitis<br />

that results <strong>in</strong> leakage of disc capillaries and concluded that this entity was not a ret<strong>in</strong>al<br />

vasculopathy but a primary optic neuropathy (Gass, 1977).<br />

This syndrome is characterized by swell<strong>in</strong>g of the optic disc, peripapillary and<br />

macular hard exudates that often occur <strong>in</strong> a star pattern, and (often) vitreous cells.<br />

Because the macular exudate likely results from primary optic nerve disease and not a<br />

true ret<strong>in</strong>itis, we prefer the term idiopathic optic disc edema with a macular star (ODEMS)<br />

for idiopathic cases, and use the term neuroret<strong>in</strong>itis when optic disc swell<strong>in</strong>g and a<br />

macular star are associated with ret<strong>in</strong>itis, especially if an <strong>in</strong>fectious cause is documented<br />

(Brazis, 1996).<br />

What Are the <strong>Cl<strong>in</strong>ical</strong> Features of ODEMS<br />

and <strong>Neuro</strong>ret<strong>in</strong>itis?<br />

The cl<strong>in</strong>ical features of ODEMS have been described by a number of authors (Brazis,<br />

1996; Hamard, 1994; K<strong>in</strong>g, 1991) and are summarized <strong>in</strong> Table 3–1. Patients are usually<br />

children or young adults, with the average age of onset be<strong>in</strong>g 20 to 40 years. Men and<br />

women are affected equally. Most cases are unilateral, but bilateral <strong>in</strong>volvement has<br />

been noted to occur <strong>in</strong> up to a third of the cases. Most patients present with acute<br />

unilateral loss of vision. The condition is often pa<strong>in</strong>less, but retrobulbar pa<strong>in</strong>, pa<strong>in</strong> on<br />

eye movement, or associated headache may occur. A nonspecific viral illness precedes<br />

or accompanies the visual loss <strong>in</strong> approximately half of the cases.<br />

63


64 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 3–1. <strong>Cl<strong>in</strong>ical</strong> Characteristics of Optic Disc Edema with Macular Star (ODEMS)<br />

Age at onset: childhood to young adult (6 to 50 years of age)<br />

Gender: men and women affected equally<br />

Bilateral <strong>in</strong>volvement: 5–33%<br />

Pa<strong>in</strong>: occasional<br />

<strong>An</strong>tecedent viral illness: approximately 50%<br />

Initial visual acuity: variable (20=20–light perception)<br />

Dyschromatopsia: often prom<strong>in</strong>ent<br />

Visual field test<strong>in</strong>g: central, cecocentral, arcuate, or altitud<strong>in</strong>al defects; possible generalized<br />

constriction<br />

Relative afferent pupil defect present; but may be absent if bilateral <strong>in</strong>volvement<br />

Optic disc swell<strong>in</strong>g present with subsequent optic atrophy<br />

Macular star present but may take 1 or 2 weeks to develop<br />

Vitreous cells common (90%)<br />

Visual acuity with ODEMS may range from 20=20 to light perception, but most cases<br />

are <strong>in</strong> the 20=40 to 20=200 range. Dyschromatopsia is often present. Perimetry most<br />

often reveals a central or cecocentral scotoma, but other ‘‘optic nerve–type’’ field<br />

abnormalities may occur, <strong>in</strong>clud<strong>in</strong>g arcuate and altitud<strong>in</strong>al defects or generalized<br />

constriction. Most patients have a relative afferent papillary defect unless <strong>in</strong>volvement<br />

is bilateral and relatively symmetric.<br />

Optic disc edema is the earliest sign of ODEMS and may be severe. The disc edema<br />

tends to resolve over 2 weeks to 2 months, but <strong>in</strong> some patients optic atrophy ensues.<br />

Optic disc edema is associated with leakage of disc capillaries with the fluid spread<strong>in</strong>g<br />

from the disc through the outer plexiform layer of the ret<strong>in</strong>a. The serous component of<br />

the fluid accumulation <strong>in</strong> Henle’s layer is reabsorbed, and the lipid precipitate forms a<br />

macular star. The macular star may be present at the onset of visual loss or may be<br />

noted only after 1 to 2 weeks follow<strong>in</strong>g development of the disc edema. The macular<br />

star may even be observed only after the disc swell<strong>in</strong>g is start<strong>in</strong>g to resolve. Patients<br />

with acute disc swell<strong>in</strong>g with a normal macula should thus be reexam<strong>in</strong>ed with<strong>in</strong> 2<br />

weeks to search for the presence of a macular star, especially because it is of prognostic<br />

importance for the patient’s subsequent risk of develop<strong>in</strong>g multiple sclerosis (see<br />

below). Fluoresce<strong>in</strong> angiography typically shows leakage from the optic disc <strong>in</strong> the<br />

middle to late phases, with abnormal permeability of the deep capillaries <strong>in</strong> the optic<br />

nerve head but no perifoveal leakage (Ray, 2001).<br />

ODEMS is often associated with cells <strong>in</strong> the vitreous. Other occasional f<strong>in</strong>d<strong>in</strong>gs<br />

<strong>in</strong>clude cells <strong>in</strong> the anterior chamber, chorioret<strong>in</strong>itis, <strong>in</strong>flammatory sheath<strong>in</strong>g of the<br />

peripapillary ve<strong>in</strong>s, scleritis and uveitis, and (rarely) central or branch ret<strong>in</strong>al artery<br />

occlusions (May, 1995). The association of ODEMS with these latter f<strong>in</strong>d<strong>in</strong>gs suggests a<br />

more diffuse vasculitis or an <strong>in</strong>fectious cause.<br />

What Is the Etiology and Differential of<br />

ODEMS and <strong>Neuro</strong>ret<strong>in</strong>itis?<br />

Most cases of ODEMS are idiopathic and thought to be the result of nonspecific viral<br />

<strong>in</strong>fection or some immune-mediated process. In general, ODEMS is usually a benign,


Optic Disc Edema with a Macular Star and <strong>Neuro</strong>ret<strong>in</strong>itis 65<br />

self-limited <strong>in</strong>flammatory process. A number of <strong>in</strong>fectious agents and <strong>in</strong>flammatory<br />

diseases, however, have been reported to cause ODEMS and neuroret<strong>in</strong>itis. Infectious<br />

etiologies are listed <strong>in</strong> Table 3–2. Some of these <strong>in</strong>fectious agents have been implicated <strong>in</strong><br />

s<strong>in</strong>gle case reports, but it appears that syphilis, cat-scratch disease, Lyme disease, and<br />

perhaps toxoplasmosis are the most common causes of ODEMS and neuroret<strong>in</strong>itis <strong>in</strong><br />

cases where an etiologic agent can be identified. Infectious agents should be aggressively<br />

sought <strong>in</strong> cases of ODEMS and neuroret<strong>in</strong>itis because appropriate antibiotic<br />

treatment might be <strong>in</strong>dicated. Ray and Gragoudas recommended special emphasis on<br />

recent patient travel history (Lyme endemic areas), consumption of unpasteurized or<br />

uncooked foods (toxoplasmosis), sexually transmitted disease exposure (syphilis), and<br />

animal contacts (cat scratch) (Ray, 2001).<br />

ODEMS or neuroret<strong>in</strong>itis may occur as part of syphilitic men<strong>in</strong>gitis (usually bilateral),<br />

or may occur as an isolated entity <strong>in</strong> patients with secondary syphilis, <strong>in</strong> which case it<br />

may be associated with unilateral or bilateral uveitis (Halper<strong>in</strong>, 1992; McCleish, 1990;<br />

N<strong>in</strong>omiya, 1990). ODEMS or neuroret<strong>in</strong>itis is common manifestation of cat-scratch<br />

disease (Bar, 1990; Bhatti, 2001; Carithers, 1991; Chrousos, 1990; Cunn<strong>in</strong>gham, 2000;<br />

Earhart, 2000; Fish, 1992; Ghauri, 1998; Golnik, 1994; Gray, 1999; K<strong>in</strong>g, 1991; Labalette,<br />

Table 3–2. Infectious Etiologies of Optic Disc Edema with Macular Star or <strong>Neuro</strong>ret<strong>in</strong>itis<br />

Viral<br />

Hepatitis B<br />

Herpes simplex<br />

Herpes zoster (Dhar, 1997)<br />

Epste<strong>in</strong>-Barr virus<br />

Influenza A<br />

Mumps (Foster, 1990)<br />

Coxsackie B<br />

Bacteria<br />

Cat-scratch disease (Bartonella henselae) (Bar, 1990; Bhatti, 2001; Carithers, 1991; Chrousos, 1990;<br />

Earhart, 2000; Fish, 1992; Ghauri, 1998; Golnik, 1994; Gray, 1999; K<strong>in</strong>g, 1991; Labalette, 2001;<br />

May, 1995; McCrary, 1994, 1997; Ormerod, 1998; Reed, 1998; Rosen, 1999; Schwartzman, 1994,<br />

1995; Solley, 1999; Suhler, 2000; Thompson, 1999; Ulrich, 1992; Wade, 1999; Zhao, 1991);<br />

Bartonella elizabethae (O’Halloran, 1998); Bartonella grahamii (Kerkoff, 1999)<br />

Tuberculosis (Stechschulte, 1999)<br />

Salmonella<br />

Lyme disease (Bialasiewicz, 1992; Karma, 1995; Lesser, 1990; Schönherr, 1990, 1991; Miller, 1995a)<br />

Syphilis (Halper<strong>in</strong>, 1992; McCleish, 1990; N<strong>in</strong>omiya, 1990)<br />

Leptospirosis<br />

Fungi<br />

Histoplasmosis<br />

Parasites and Protozoa<br />

Toxoplasmosis (Fish, 1993; Moreno, 1992)<br />

Toxocara<br />

Other<br />

Sarcoidosis (Kosmorsky, 1995; Miller, 1995b)


66 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

2001; May, 1995; McCrary, 1994, 1997; Ormerod, 1998; Reed, 1998; Rosen, 1999;<br />

Schwartzman, 1994, 1995; Solley, 1999; Suhler, 2000; Ulrich, 1992; Wade, 1999; Zhao,<br />

1991). In fact, optic neuritis (papillitis) without a macular star has only rarely been<br />

reported with this disease (Brazis, 1986; Golnik, 1994). Cat-scratch disease may cause<br />

ODEMS or may cause a neuroret<strong>in</strong>itis with chorioret<strong>in</strong>itis at times associated with<br />

uveitis, cells <strong>in</strong> the anterior chamber, and even branch or central ret<strong>in</strong>al artery occlusions<br />

(Fish, 1992; Golnik, 1994; May, 1995; Ulrich, 1992; Zhao, 1991). This disease may also<br />

cause a multifocal ret<strong>in</strong>itis with optic disc edema (without macular star), branch ret<strong>in</strong>al<br />

artery occlusion, and vitreitis (Cohen, 1995). Optic disc edema associated with peripapillary<br />

serous ret<strong>in</strong>al detachment, even without macular star formation, may be an<br />

early sign of cat-scratch disease (Wade, 2000). Solley et al studied 24 patients (35 eyes)<br />

with choroidal, ret<strong>in</strong>al, or optic disc manifestations of cat-scratch disease and found that<br />

discrete white ret<strong>in</strong>al or choroidal lesions were the most common posterior segment<br />

f<strong>in</strong>d<strong>in</strong>g (46% of eyes, 63% of patients) followed by macular star (43% of eyes, 63% of<br />

patients) (Solley, 1999). Vascular-occlusive events were also seen (14% of eyes, 21% of<br />

patients) and the site of occlusion was found to be <strong>in</strong>timately associated with the<br />

aforementioned ret<strong>in</strong>al lesions. F<strong>in</strong>al visual acuity was 20=25 or better <strong>in</strong> 26 (74%) of 35<br />

eyes and was similar <strong>in</strong> both treated and untreated patients. Cat-scratch disease,<br />

therefore, should be considered <strong>in</strong> any patient who presents with ODEMS or neuroret<strong>in</strong>itis,<br />

especially if there is associated lymphadenopathy or ret<strong>in</strong>al artery occlusion<br />

(class III, level B). The treatment (Conrad, 2001) of cat-scratch disease is quite variable <strong>in</strong><br />

the literature and has <strong>in</strong>cluded various antibiotic regimens <strong>in</strong>clud<strong>in</strong>g penicill<strong>in</strong>s,<br />

cephalospor<strong>in</strong>s, am<strong>in</strong>oglycosides, tetracycl<strong>in</strong>es, macrolides, qu<strong>in</strong>olones, trimethoprimsulfamethoxazole,<br />

and rifamp<strong>in</strong> (class III, level C). Reed et al reported seven cases, and<br />

concluded that, compared to historic controls, doxycycl<strong>in</strong>e and rifamp<strong>in</strong> shortened the<br />

course of the disease and improved visual recovery (class III, level C) (Reed, 1998). The<br />

ophthalmologic manifestations of cat-scratch disease are outl<strong>in</strong>ed <strong>in</strong> Table 3–3.<br />

ODEMS may also occur with stage II Lyme disease (Bialasiewicz, 1992; Karma, 1995;<br />

Lesser, 1990; Miller, 1995a; Schönherr, 1990, 1991). Toxoplasmosis may also cause<br />

ODEMS or neuroret<strong>in</strong>itis (Fish, 1993; Moreno, 1992). Two features that often occur<br />

with toxoplasmosis neuroret<strong>in</strong>itis, but that are uncommon with idiopathic ODEMS, are<br />

a prom<strong>in</strong>ent anterior chamber <strong>in</strong>flammation and the presence of toxoplasmosis chorioret<strong>in</strong>al<br />

scars. Toxoplasmosis neuroret<strong>in</strong>itis is perhaps more likely to cause recurrent<br />

episodes of ODEMS or neuroret<strong>in</strong>itis, compared to the usual monophasic course of<br />

idiopathic ODEMS.<br />

ODEMS and neuroret<strong>in</strong>itis must be differentiated from other entities <strong>in</strong> which optic<br />

disc swell<strong>in</strong>g occurs with or without macular star formation, <strong>in</strong>clud<strong>in</strong>g vascular causes<br />

(e.g., anterior ischemic optic neuropathy, posterior hyaloid detachment, branch or<br />

central ret<strong>in</strong>al artery occlusion, hypertension, diabetes, polyarteritis nodosa, <strong>in</strong>flammatory<br />

bowel disease, and Eales’ disease), papilledema from <strong>in</strong>creased <strong>in</strong>tracranial<br />

pressure, optic nerve tumors or <strong>in</strong>filtrative processes, diffuse unilateral subacute<br />

neuroret<strong>in</strong>itis (DUSN), and the acute neuroret<strong>in</strong>opathy that may occur associated<br />

with progressive facial hemiatrophy (Parry-Romberg syndrome) (Akura, 2001,<br />

Friedrich, 2001; Garcia-Arumi, 1994; Gass, 1991; Leavitt, 1997; Lee, 2002; Matsuda,<br />

1994; Verm, 1997). With many of these etiologies macular stars are rarely seen<br />

and usually the differential diagnosis is not difficult on cl<strong>in</strong>ical grounds. A<br />

suggested workup for patients with optic disc edema with macular star is outl<strong>in</strong>ed <strong>in</strong><br />

Figure 3–1.


What Is the Prognosis <strong>in</strong> Cases of ODEMS?<br />

Optic Disc Edema with a Macular Star and <strong>Neuro</strong>ret<strong>in</strong>itis 67<br />

Table 3–3. Ophthalmologic Abnormalities <strong>in</strong> Cat-Scratch Disease<br />

(May Be Seen <strong>in</strong> Various Comb<strong>in</strong>ations)<br />

<strong>An</strong>terior segment<br />

Par<strong>in</strong>aud’s oculoglandular syndrome<br />

Follicular conjunctivitis<br />

Conjunctival bacillary angiomatosis<br />

Posterior segment<br />

Optic nerve<br />

Optic disc edema with macular star (ODEMS) or neuroret<strong>in</strong>itis<br />

Optic neuritis (papillitis)<br />

Optic nerve granuloma<br />

Optic disc edema with peripapillary serous ret<strong>in</strong>al detachment<br />

Bilateral disc edema with multifocal ret<strong>in</strong>itis<br />

Vitreous<br />

Vitreitis with or without anterior uveitis<br />

Vitreous hemorrhage<br />

Intermediate uveitis with or without ret<strong>in</strong>al vasculitis<br />

Ret<strong>in</strong>al<br />

Ret<strong>in</strong>al white spot syndrome<br />

Focal choroidal <strong>in</strong>filtrates<br />

Acute multifocal ret<strong>in</strong>itis<br />

Focal or diffuse ret<strong>in</strong>al vasculitis<br />

Branch or central ret<strong>in</strong>al artery occlusions<br />

Branch ret<strong>in</strong>al ve<strong>in</strong> occlusions<br />

Macular edema<br />

Atrophic scar <strong>in</strong> ret<strong>in</strong>al pigment epithelium<br />

Serous ret<strong>in</strong>al detachment<br />

Subret<strong>in</strong>al angiomatous mass lesion<br />

Source: Bafna, 1996; Bar, 1990; Bhatti, 2001; Brazis, 1986; Carithers, 1991;<br />

Chrousos, 1990; Cohen, 1995; Cunn<strong>in</strong>gham, 1997a,b, 2000; Earhart, 2000; Fish,<br />

1992; Gass, 1977; Ghauri, 1998; Golnik, 1994; Gray, 1999; K<strong>in</strong>g, 1991; Lee,<br />

1994; May, 1995; McCrary, 1994, 1997; Ormerod, 1998, 1999; Reed, 1998;<br />

Schwartzman, 1994, 1995; Soheilian, 1996; Solley, 1999; Suhler, 2000; Ulrich,<br />

1992; Wade, 2000; Zacchei, 1995; Zhao, 1991.<br />

ODEMS is usually a benign condition that resolves spontaneously without treatment<br />

(Rosen, 1999). The disc edema and peripapillary ret<strong>in</strong>al detachment tend to resolve over<br />

a period of 2 to 3 months, while the macular star usually beg<strong>in</strong>s to disappear after 1<br />

month. The macular star, however, may persist for up to 1 year. Optic atrophy and<br />

macular ret<strong>in</strong>al pigment epithelial changes may be residuals of previous ODEMS. The<br />

prognosis for visual recovery <strong>in</strong> ODEMS is usually good, but significant residual visual<br />

disability may occasionally occur (Lee, 1998a). Recurrences of ODEMS or neuroret<strong>in</strong>itis<br />

<strong>in</strong> the same or fellow eye have been described <strong>in</strong> idiopathic as well as <strong>in</strong>fectious cases,<br />

especially <strong>in</strong> patients with toxoplasmosis (Fish, 1993; Purv<strong>in</strong>, 1994). Also, Purv<strong>in</strong> and


68 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 3–1. Evaluation of optic disc edema with a macular star (ODEMS) or neuroret<strong>in</strong>itis.


Chioran described an apparently dist<strong>in</strong>ct type of recurrent ODEMS <strong>in</strong> patients who<br />

experienced from two to seven attacks of ODEMS at <strong>in</strong>tervals rang<strong>in</strong>g from 1 to 10 years<br />

(Purv<strong>in</strong>, 1994). The attacks often affected both eyes but never simultaneously. Visual<br />

field defects were of the nerve fiber bundle type <strong>in</strong>stead of the central or cecocentral<br />

scotomas that are most often noted <strong>in</strong> benign ODEMS. Patients with the recurrent form<br />

of the disease may not experience significant improvement <strong>in</strong> optic nerve function.<br />

Although optic neuritis is a risk factor for the development of multiple sclerosis (see<br />

Chapter 2), ODEMS or neuroret<strong>in</strong>itis is not (Optic Neuritis Study Group, 1997). For<br />

example, <strong>in</strong> the Optic Neuritis Treatment Trial (see Chapter 2), among patients with<br />

swollen discs, cl<strong>in</strong>ically def<strong>in</strong>ite multiple sclerosis did not develop <strong>in</strong> any patient who<br />

had macular exudates (Optic Neuritis Study Group, 1997). Because a macular exudate<br />

may not develop <strong>in</strong> cases of ODEMS until 2 weeks after presentation, patients who<br />

demonstrate acute papillitis with a normal macula should be reevaluated with<strong>in</strong> 2 weeks<br />

for the development of a macular star. Its presence makes the subsequent development<br />

of multiple sclerosis extremely unlikely.<br />

In summary, there is no class I or class II evidence for the diagnosis and treatment of<br />

ODEMS. Individual history and exam<strong>in</strong>ation should guide the evaluation focus<strong>in</strong>g on<br />

exposure history (syphilis, Lyme disease, tuberculosis), systemic f<strong>in</strong>d<strong>in</strong>gs (typhus, viral<br />

illness, fungi, tuberculosis, Leptospira), or typical ophthalmoscopic features (e.g., adjacent<br />

chorioret<strong>in</strong>al scar <strong>in</strong> toxoplasmosis). In typical ODEMS, however, most of the cases<br />

rema<strong>in</strong> idiopathic. Cat-scratch disease is emerg<strong>in</strong>g as a common etiology <strong>in</strong> cases with a<br />

proven cause and perform<strong>in</strong>g a Bartonella henselae titer is a reasonable practice option <strong>in</strong><br />

ODEMS (class III, level C). In the absence of risk factors or cl<strong>in</strong>ical suspicion, the yield<br />

for test<strong>in</strong>g for other <strong>in</strong>fectious etiologies is low (class III, level U). Rout<strong>in</strong>e test<strong>in</strong>g even<br />

for treatable disorders such as syphilis (serology), Lyme disease, or tuberculosis (chest<br />

radiography, purified prote<strong>in</strong> derivative sk<strong>in</strong> test) are practice options of uncerta<strong>in</strong> yield<br />

(class III, level U).<br />

There is no proven treatment for idiopathic ODEMS (class III, level C). Steroids have<br />

been used <strong>in</strong> some cases with unclear effect (class III, level U). Aggressive immunosuppressive<br />

agents may be considered <strong>in</strong> the rare recurrent cases (class IV) (Purv<strong>in</strong>,<br />

1994). If a specific <strong>in</strong>fectious agent is discovered, then appropriate antibiotics should be<br />

considered, but the data are limited (class III, level B). Specific attention, however,<br />

should focus on treatable (e.g., cat-scratch disease, Lyme, syphilis, and tuberculosis)<br />

<strong>in</strong>fectious etiologies (class III, level B). Atypical cases (e.g., bilateral) might require<br />

further evaluation (e.g., neuroimag<strong>in</strong>g or lumbar puncture to exclude papilledema) to<br />

exclude other causes of ODEMS (class III).<br />

References<br />

Optic Disc Edema with a Macular Star and <strong>Neuro</strong>ret<strong>in</strong>itis 69<br />

Akura J, Ikeda T, Sato K, Ikeda N. (2001). Macular star associated with posterior hyaloid detachment. Acta<br />

Ophthalmol Scand 79:317–318.<br />

Bafna S, Lee AG. (1996). Bilateral optic disc edema and multifocal ret<strong>in</strong>al lesions without loss of vision <strong>in</strong> cat<br />

scratch disease. Arch Ophthalmol 114:1016–1017.<br />

Bar S, Segal M, Shapira R, Savir H. (1990). <strong>Neuro</strong>ret<strong>in</strong>itis associated with cat scratch disease. Am J Ophthalmol<br />

110:703–705.<br />

Bhatti MT, Asif R, Bhatti LB. (2001). Macular star <strong>in</strong> neuroret<strong>in</strong>itis. Arch <strong>Neuro</strong>l 58:1008–1009.<br />

Bialasiewicz AA. (1992). Augenbefunde bei Lyme-Borreliose. Ophthalmologe 89:W47–W59.<br />

Brazis PW, Lee AG. (1996). Optic disk edema with a macular star. Mayo Cl<strong>in</strong> Proc 71:1162–1166.


70 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Brazis PW, Stokes HR, Erv<strong>in</strong> FR. (1986). Optic neuritis <strong>in</strong> cat scratch disease. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 6:172–174.<br />

Carithers HA, Margileth AM. (1991). Cat-scratch disease. Acute encephalopathy and other neurologic manifestations.<br />

Am J Dis Child 145:98–101.<br />

Chrousos GA, Drack AV, Young M, et al. (1990). <strong>Neuro</strong>ret<strong>in</strong>itis <strong>in</strong> cat scratch disease. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol<br />

10:92–94.<br />

Cohen SM, Davis JL, Gass DM. (1995). Branch ret<strong>in</strong>al arterial occlusions <strong>in</strong> multifocal ret<strong>in</strong>itis with optic nerve<br />

edema. Arch Ophthalmol 113:1271–1276.<br />

Conrad DA. (2001). Treatment of cat-scratch disease. Curr Op<strong>in</strong> Pediatr 13:56–59.<br />

Cunn<strong>in</strong>gham ET, Koehler JE. (2000). Perspective. Ocular bartonellosis. Am J Ophthalmol 130:340–349.<br />

Cunn<strong>in</strong>gham ET Jr, Schatz H, McDonald HR, Johnson RN. (1997a). Acute multifocal ret<strong>in</strong>itis. Am J Ophthalmol<br />

123:347–357.<br />

Cunn<strong>in</strong>gham ET Jr, McDonald HR, Schatz H, et al. (1997b). Inflammatory mass of the optic nerve head associated<br />

with systemic Bartonella henselae <strong>in</strong>fection. Arch Ophthalmol 115:1596–1597.<br />

Dhar MY, Goel JL, Sota LD. (1997). Optic neuroret<strong>in</strong>itis, a rare manifestation of herpes zoster ophthalmicus: a case<br />

report. J Commun Dis 29:57–61.<br />

Earhart KC, Power MH. (2000). Bartonella neuroret<strong>in</strong>itis. N Engl J Med 343:1459.<br />

Fish RH, Hogan RN, Night<strong>in</strong>gale SD, <strong>An</strong>and R. (1992). Peripapillary angiomatosis associated with cat-scratch<br />

neuroret<strong>in</strong>itis. Arch Ophthalmol 110:323.<br />

Fish RH, Hosk<strong>in</strong>s JC, Kl<strong>in</strong>e LB. (1993). Toxoplasmosis neuroret<strong>in</strong>itis. Ophthalmology 100:1177–1182.<br />

Foster RE, Lowder CY, Meisler DM, et al. (1990). Mumps neuroret<strong>in</strong>itis <strong>in</strong> an adolescent. Am J Ophthalmol<br />

110:91–93.<br />

Friedrich Y, Fe<strong>in</strong>er M, Gawi H, Friedman Z. (2001). Diabetic papillopathy with macular star mimick<strong>in</strong>g cl<strong>in</strong>ically<br />

significant diabetic macular edema. Ret<strong>in</strong>a 21:80–82.<br />

Garcia-Arumi J, Salvador F, Corcostegui B, Mateo C. (1994). <strong>Neuro</strong>ret<strong>in</strong>itis associated with melanocytoma of the<br />

optic disk. Ret<strong>in</strong>a 14:173–176.<br />

Gass JDM. (1977). Diseases of the optic nerve that may simulate macular disease. Trans Am Acad Ophthalmol<br />

Otolaryngol 83:763–770.<br />

Gass JDM, Harb<strong>in</strong> TS Jr, Del Piero EJ. (1991). Exudative stellate neuroret<strong>in</strong>opathy and Coat’s syndrome <strong>in</strong> patients<br />

with progressive hemifacial atrophy. Eur J Ophthalmol 1:2–10.<br />

Ghauri RR, Lee AG, Purv<strong>in</strong> V. (1998). Optic disk edema with a macular star. Surv Ophthalmol 43:270–274.<br />

Golnik KC, Marotto ME, Fanous MM, et al. (1994). Ophthalmic manifestations of Rochalimaea species.<br />

Am J Ophthalmol 118:145–151.<br />

Gray AV, Reed JB, Wendel RT, Morse LS. (1999). Bartonella henselae <strong>in</strong>fection associated with peripapillary<br />

angioma, branch ret<strong>in</strong>al artery occlusion, and severe visual loss. Am J Ophthalmol 127:223–224.<br />

Halper<strong>in</strong> LS. (1992). <strong>Neuro</strong>ret<strong>in</strong>itis due to seronegative syphilis associated with human immunodeficiency virus.<br />

J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:171–172.<br />

Hamard P, Hamard H, Ngohou S. (1994). La neuroret<strong>in</strong>ite stellaire idiopathique de Leber. A propos de neuf cas.<br />

J Fr Ophtalmol 17:116–123.<br />

Karma A, Seppala I, Mikkila H, et al. (1995). Diagnosis and cl<strong>in</strong>ical characteristics of ocular Lyme borreliosis.<br />

Am J Ophthalmol 119:127–135.<br />

Kerkoff FT, Bergmans AM, van Der Zee A, Rothova A. (1999). Demonstration of Bartonella grahamii DNA <strong>in</strong><br />

ocular fluids of a patient with neuroret<strong>in</strong>itis. J Cl<strong>in</strong> Microbiol 37:4034–4038.<br />

K<strong>in</strong>g MH, Cartwright MJ, Carney MD. (1991). Leber’s idiopathic stellate neuroret<strong>in</strong>itis. <strong>An</strong>n Ophthalmol 23:58–60.<br />

Kosmorsky GS, Prayson R. (1995). Primary optic pathway sarcoidosis <strong>in</strong> a 38-year-old white man.<br />

J <strong>Neuro</strong>-ophthalmol 16:188–190.<br />

Labalette P, Bermond D, Dedes V, Savage C. (2001). Cat-scratch disease neuroret<strong>in</strong>itis diagnosed by a polymerase<br />

cha<strong>in</strong> reaction approach. Am J Ophthalmology 132:575–576.<br />

Leavitt JA, Pruthi S, Morgenstern BZ. (1997). Hypertensive ret<strong>in</strong>opathy mimick<strong>in</strong>g neuroret<strong>in</strong>itis <strong>in</strong> a twelve-yearold<br />

girl. Surv Ophthalmol 41:477–480.<br />

Leber T. (1916). Die pseudonephritischen Netzhauterkrankungen, die Ret<strong>in</strong>itis stellata: die Purtschersche<br />

Netzhautaffektion nach schwere Schädelverletzung. In: Graefe AC, Saemisch T, eds. Graefe-Saemisch<br />

Handbuch der Gesamten Augenheilkunde. 2nd ed., vol. 7, pt. 2. Leipzig, East Germany, Engelmann.<br />

Lee AG, Beaver HA, Monsul NT, Miller NR. (2002). Acute bilateral optic disk edema with a macular figure <strong>in</strong> a<br />

12-year-old girl. Surv Ophthalmol 47:42–49.<br />

Lee AG, Brazis PW. (1998a). Poor visual outcome follow<strong>in</strong>g optic disc edema with a macular star (neuroret<strong>in</strong>itis).<br />

J <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:57–61.<br />

Lee AG, Orenga-Nania SD, Brazis PW, Lech EM. (1998b). Poor visual outcome follow<strong>in</strong>g optic disc edema with a<br />

macular star (‘‘neuroret<strong>in</strong>itis’’). <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:57–61.


Optic Disc Edema with a Macular Star and <strong>Neuro</strong>ret<strong>in</strong>itis 71<br />

Lee WR, Chawla JC, Reid R. (1994). Bacillary angiomatosis of the conjunctiva. Am J Ophthalmol 118:152–157.<br />

Lesser RL, Kornmehl EW, Pachner AR, et al. (1990). <strong>Neuro</strong>-ophthalmologic manifestations of Lyme disease.<br />

Ophthalmology 97:699–706.<br />

Matsuda A, Ch<strong>in</strong> S, Ohashi T. (1994). A case of neuroret<strong>in</strong>itis associated with long-stand<strong>in</strong>g polyarteritis nodosa.<br />

Ophthalmologica 208:168–171.<br />

May EF, Levi L, Ng JD, Truxal AR. (1995). Rochalimaea neuroret<strong>in</strong>itis and ret<strong>in</strong>al vasculitis. Presented at the<br />

meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society, Tucson, Arizona.<br />

McCleish WM, Pulido JS, Holland S, et al. (1990). The ocular manifestations of syphilis <strong>in</strong> the human<br />

immunodeficiency virus type 1–<strong>in</strong>fected host. Ophthalmology 97:196–203.<br />

McCrary B, Cockerhan W, Pierce P. (1994). <strong>Neuro</strong>ret<strong>in</strong>itis <strong>in</strong> cat-scratch disease associated with the macular star.<br />

Pediatr Infect Dis J 13:938–939.<br />

McCrary B, Cockerham W, Pierce P. (1997). <strong>Neuro</strong>ret<strong>in</strong>itis <strong>in</strong> cat scratch disease associated with macular star.<br />

J Miss State Med Assoc 38:158–159.<br />

Miller NR. (1995a). In: Miller NR, ed. Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. Baltimore: Williams & Wilk<strong>in</strong>s,<br />

pp. 3657–3658.<br />

Miller NR. (1995b). Miller NR, ed. Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. Baltimore: Williams & Wilk<strong>in</strong>s,<br />

pp. 4487–4489.<br />

Moreno RJ, Weisman J, Waller S. (1992). <strong>Neuro</strong>ret<strong>in</strong>itis: an unusual presentation of ocular toxoplasmosis.<br />

<strong>An</strong>n Ophthalmol 24:68–70.<br />

N<strong>in</strong>omiya H, Hamada T, Akiya S, Kazama H. (1990). Three cases of acute syphilitic neuroret<strong>in</strong>itis. Folia Ophthalmol<br />

Jpn 41:2088–2094.<br />

O’Halloran HS, Draud K, M<strong>in</strong>ix M, et al. (1998). Leber’s neuroret<strong>in</strong>itis <strong>in</strong> a patient with serologic evidence of<br />

Bartonella elizabethae. Ret<strong>in</strong>a 18:276–278.<br />

Optic Neuritis Study Group. (1997). The 5-year risk of MS after optic neuritis. Experience of the Optic Neuritis<br />

Treatment Trial. <strong>Neuro</strong>logy 49:1404–1413.<br />

Ormerod LD, Dailey JP (1999). Ocular manifestations of cat-scratch disease. Curr Op<strong>in</strong> Ophthalmol 10:209–216.<br />

Ormerod LD, Skolnick KA, Menosky MM, et al. (1998). Ret<strong>in</strong>al and choroidal manifestations of cat-scratch<br />

disease. Ophthalmology 105:1024–1031.<br />

Purv<strong>in</strong> VA, Chioran G. (1994). Recurrent neuroret<strong>in</strong>itis. Arch Ophthalmol 112:365–371.<br />

Ray S, Gragoudas E. (2001). <strong>Neuro</strong>ret<strong>in</strong>itis. Int Ophthalmol Cl<strong>in</strong> 41:83–102.<br />

Reed JB, Scales DK, Wong MT, et al. (1998). Bartonella henselae neuroret<strong>in</strong>itis <strong>in</strong> cat scratch disease. Diagnosis,<br />

management, and sequelae. Ophthalmology 105:459–466.<br />

Rosen BS, Barry CJ, Nicoll AM, Constable IJ. (1999). Conservative management of documented neuroret<strong>in</strong>itis <strong>in</strong><br />

cat scratch disease associated with Bartonella henselae. Aust NZ J Ophthalmol 27:153–156.<br />

Schönherr U, Lang GE, Maythaler FH. (1991). Bilaterale Lebersche <strong>Neuro</strong>ret<strong>in</strong>itis stellata bei Borrelia burgdorferi-<br />

Serokonversion. Kl<strong>in</strong> Monatsbl Augenheilkd 198:44–47.<br />

Schönherr U, Wilk CM, Lang GE, Naumann GOH. (1990). Intraocular manifestations of Lyme borreliosis.<br />

Presented at the Fourth International Conference on Borreliosis, Stockholm, Sweden, June 18–21.<br />

Schwartzman WA, Patnaik M, Barka NE, et al. (1994). Rochalimara antibodies <strong>in</strong> HIV associated neurologic<br />

disease. <strong>Neuro</strong>logy 44:1312–1316.<br />

Schwartzman WA, Patnaik M, <strong>An</strong>gula FJ, et al. (1995). Bartonella (Rochalimaea) antibodies, dementia, and cat<br />

ownership among men <strong>in</strong>fected with immunodeficiency virus. Cl<strong>in</strong> Infect Dis 21:954–959.<br />

Soheilian M, Markomichelakis N, Foster CS. (1996). Intermediate uveitis and ret<strong>in</strong>al vasculitis as manifestations of<br />

cat scratch disease. Am J Ophthalmol 122:582–584.<br />

Solley WA, Mart<strong>in</strong> DF, Newman NJ, et al. (1999). Cat scratch disease. Posterior segment manifestations.<br />

Ophthalmology 106:1546–1553.<br />

Stechschulte SU, Kim RY, Cunn<strong>in</strong>gham ET. (1999). Tuberculous neuroret<strong>in</strong>itis. J <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:201–204.<br />

Suhler EB, Lauer AK, Rosenbaum JT. (2000). Prevalence of serologic evidence of cat scratch disease <strong>in</strong> patients<br />

with neuroret<strong>in</strong>itis. Ophthalmology 107:871–876.<br />

Thompson PK, Vaphiades MS, Sacccente M. (1999). Cat-scratch disease present<strong>in</strong>g as neuroret<strong>in</strong>itis and peripheral<br />

facial palsy. J <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:240–241.<br />

Ulrich GG, Waecker NJ Jr, Meister SJ, et al. (1992). Cat scratch disease associated with neuroret<strong>in</strong>itis <strong>in</strong> a 6-year-old<br />

girl. Ophthalmology 99:246–249.<br />

Verm A, Lee AG. (1997). Bilateral optic disk edema with macular exudates as the manifest<strong>in</strong>g sign of a cerebral<br />

arteriovenous malformation. Am J Ophthalmol 123:422–424.<br />

Wade NK, Po S, Wong IG, Cunn<strong>in</strong>gham ET Jr. (1999). Bilateral Bartonella-associated neuroret<strong>in</strong>itis. Ret<strong>in</strong>a<br />

19:355–356.


72 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Wade NK, Levi L, Jones MR, et al. (2000). Optic disk edema associated with peripapillary serous ret<strong>in</strong>al<br />

detachment: an early sign of systemic Bartonella henselae <strong>in</strong>fection. Am J Ophthalmol 130:327–334.<br />

Zacchei AC, Newman NJ, Sternberg P. (1995). Serous ret<strong>in</strong>al detachment of the macula associated with cat scratch<br />

disease. Am J Ophthalmol 120:796–797.<br />

Zhao X, Ge B. (1991). Treatment of papillo-ret<strong>in</strong>itis and uveitis with cat scratch disease by comb<strong>in</strong>ation of TCM<br />

and modern drugs. J Trad Ch<strong>in</strong> Med 11:184–186.


4 r<br />

Nonarteritic Ischemic Optic <strong>Neuro</strong>pathy<br />

What Are the <strong>Cl<strong>in</strong>ical</strong> Features for Typical<br />

Nonarteritic AION?<br />

<strong>An</strong>terior ischemic optic neuropathy (AION) is characterized cl<strong>in</strong>ically by the acute onset<br />

of usually unilateral visual loss. Although pa<strong>in</strong> may occur <strong>in</strong> approximately 10% (range<br />

8–30% <strong>in</strong> various series) of patients, the visual loss is typically pa<strong>in</strong>less. Middle-aged to<br />

older patients (usually older than 50) are the predom<strong>in</strong>ant populations at risk for AION.<br />

The ocular exam<strong>in</strong>ation <strong>in</strong> these patients reveals the follow<strong>in</strong>g: (1) ipsilateral visual<br />

acuity and visual field loss; (2) a relative afferent pupillary defect; and (3) edema of the<br />

optic nerve head with or without peripapillary hemorrhages (Arnold, 1994b; Feldon,<br />

1999; Friedland, 1996; Gerl<strong>in</strong>g, 1998a,b; Grosvenor, 1993; Hattenhauer, 1997; Hayreh,<br />

1990a, 1997a; Ischemic Optic <strong>Neuro</strong>pathy Decompression Trial, 1995, 1996; Johnson,<br />

1993, 1994a,b, 1996a,b; Kay, 1991; Lessell, 1999; Moro, 1990; Rizzo, 1991; Sawle, 1990).<br />

The presence of optic disc edema (anterior optic neuropathy) <strong>in</strong> the acute phase is<br />

essential for the diagnosis of AION to be made. Rarely, AION may present with<br />

asymptomatic disc edema without visual loss or field defect (Gordon, 1997) or be<br />

associated with macular edema (Tomsak, 1998). After resolution of the disc edema, the<br />

optic disc develops sector or diffuse pallor. The typical cl<strong>in</strong>ical features of nonarteritic<br />

(NA-AION) are outl<strong>in</strong>ed <strong>in</strong> Table 4–1.<br />

The optic disc appearance may help differentiate AION from optic neuritis (ON),<br />

although there are overlapp<strong>in</strong>g features. Optic disc stereo photos were reviewed by<br />

masked observers (87 AION and 68 ON) (Warner, 1997). Altitud<strong>in</strong>al disc swell<strong>in</strong>g was<br />

more than three times more common <strong>in</strong> AION than ON, although most discs were<br />

diffusely swollen. Most patients with AION had hemorrhages, whereas most ON cases<br />

did not. Almost all discs with ON had normal color or were hyperemic, and only 35% of<br />

discs with AION had pallid swell<strong>in</strong>g. Pallid swell<strong>in</strong>g was so rare <strong>in</strong> ON, however, that<br />

of discs with pallor, 93% had AION. Arterial attenuation was also much more typical of<br />

AION. AION was the cl<strong>in</strong>ical diagnosis <strong>in</strong> 82% of cases with altitud<strong>in</strong>al edema, 81% of<br />

the cases with disc hemorrhage, 93% of the cases with pallid edema, and 90% of the<br />

73


74 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 4–1. Typical <strong>Cl<strong>in</strong>ical</strong> Features of Nonarteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy<br />

(NA-AION)<br />

Age usually over 40 years<br />

Unilateral variable loss of visual acuity and=or visual field<br />

Visual field defects consistent with an optic neuropathy (e.g., central, cecocentral, arcuate, or<br />

altitud<strong>in</strong>al)<br />

Optic disc edema (usually pallid edema) <strong>in</strong> the acute phase followed by optic atrophy that may<br />

be sector or diffuse<br />

Relative afferent pupillary defect <strong>in</strong> unilateral or bilateral but asymmetric cases<br />

Small cup and cup to disc ratio (less than 0.2) (Burde, 1993; Feldon, 1999; Lav<strong>in</strong>, 1994; Salomon,<br />

1999a)<br />

Often associated with underly<strong>in</strong>g vasculopathic risk factors (e.g., hypertension, diabetes, smok<strong>in</strong>g,<br />

ischemic heart disease, hypercholesterolemia) (Chung, 1994; Feldon, 1999; Hayreh, 1994;<br />

Salomon, 1999a)<br />

Lack of premonitory symptoms (e.g., transient visual loss)<br />

Usually visual loss rema<strong>in</strong>s static but may improve slightly or progress<br />

End-stage optic disc appearance is segmental or diffuse pallor without significant cupp<strong>in</strong>g<br />

(unlike arteritic AION) (Danesh-Meyer, 2001)<br />

cases with arterial attenuation. A pale nerve with hemorrhage, regardless of type of<br />

edema, always represented AION (100%). A normal color nerve without hemorrhage<br />

reflected ON <strong>in</strong> 91% of the cases, <strong>in</strong>creased from only 76% if hemorrhage was not<br />

considered. A hyperemic nerve with hemorrhage represented AION <strong>in</strong> 82% of cases, but<br />

if altitud<strong>in</strong>al edema was also present, AION <strong>in</strong>cidence <strong>in</strong>creased to 93%.<br />

Ischemic optic neuropathy (ION) without acute disc edema is referred to as posterior<br />

ischemic optic neuropathy (PION). PION is an atypical presentation of ION but it may<br />

occur <strong>in</strong> several conditions as listed <strong>in</strong> Table 4–2.<br />

Younger patients (less than 40 years of age) with diabetes (Inoue, 1997; Jacobson,<br />

1997), migra<strong>in</strong>e, severe hypertension <strong>in</strong>clud<strong>in</strong>g preeclampsia, or oral contraceptive use<br />

Table 4–2. Conditions Associated with Posterior Ischemic Optic <strong>Neuro</strong>pathy<br />

Atherosclerosis and arteriosclerosis (Sadda, 2001)<br />

Severe hypotension or blood loss<br />

Diabetes (Inoue, 1997)<br />

Collagen vascular disorders (e.g., systemic lupus erythematosus)<br />

Giant cell (temporal) arteritis (Sadda, 2001)<br />

Hematologic disorders<br />

Infection (e.g., Aspergillus, herpes zoster)<br />

Internal carotid artery occlusion or dissection (Biousse, 1998b; Kerty, 1999)<br />

Malignant hypertension<br />

Migra<strong>in</strong>e<br />

After surgical procedures (hypotension, anemia) (Sadda, 2001)<br />

Severe anemia<br />

Radiation therapy<br />

Thromboembolism (e.g., <strong>in</strong>ternal carotid artery disease)<br />

Source: Lee, 1995a, 1996; Sadda, 2001.


may also develop ION. We consider the development of ION <strong>in</strong> patients less than 40<br />

years old to be an atypical presentation (R<strong>in</strong>aldi, 1990). A cl<strong>in</strong>ical presentation of AION<br />

may occur <strong>in</strong> young patients without any known vasculopathic risk factors and has<br />

been termed AION of the young (AIONY). AIONY differs from typical AION <strong>in</strong> that<br />

recurrent attacks are more common than with typical NA-AION.<br />

Bilateral simultaneous <strong>in</strong>volvement may occur <strong>in</strong> NA-AION (up to 15% of cases), but<br />

we consider this also an atypical f<strong>in</strong>d<strong>in</strong>g. Giant cell arteritis (as well as other causes of a<br />

bilateral optic neuropathy) should be excluded <strong>in</strong> these cases (Hayreh, 1998).<br />

Diabetic papillopathy is probably an atypical form of AION described <strong>in</strong> diabetics<br />

who present with m<strong>in</strong>imal visual symptoms. This entity usually resolves <strong>in</strong> weeks to<br />

months. The cl<strong>in</strong>ical features of diabetic papillopathy are outl<strong>in</strong>ed <strong>in</strong> Table 4–3.<br />

What Other Conditions Are Associated with<br />

Ischemic Optic <strong>Neuro</strong>pathy?<br />

ION has been reported <strong>in</strong> association with a number of systemic conditions listed <strong>in</strong><br />

Table 4–4.<br />

What <strong>Cl<strong>in</strong>ical</strong> Features Are Atypical for<br />

<strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy?<br />

Patients with an atypical AION should undergo a complete evaluation to exclude other<br />

causes of an optic neuropathy (e.g., <strong>in</strong>flammatory, <strong>in</strong>filtrative, compressive optic<br />

neuropathies). The cl<strong>in</strong>ical features that are atypical for AION are listed <strong>in</strong> Table 4–5.<br />

Recurrence of NA-AION <strong>in</strong> the same eye is uncommon. Hayreh et al studied 594<br />

consecutive patients with a diagnosis of NA-AION and found that recurrence occurred<br />

<strong>in</strong> the same eye <strong>in</strong> 45 patients (7.6%) with a median follow-up of 3.1 years (Hayreh,<br />

2001b). Although it is uncommon for NA-AION to recur <strong>in</strong> the same eye, it may <strong>in</strong>volve<br />

Table 4–3. <strong>Cl<strong>in</strong>ical</strong> Features of Diabetic Papillopathy<br />

May be unilateral or bilateral (simultaneous or sequential)<br />

May have relative afferent pupillary defect if unilateral or bilateral but asymmetric<br />

May be associated with type I or type II diabetes<br />

Disc swell<strong>in</strong>g is mild to moderate and the disc is consistently hyperemic<br />

Disc edema usually resolves with<strong>in</strong> 1 to 10 months<br />

Macular edema and capillary nonperfusion are frequent associated f<strong>in</strong>d<strong>in</strong>gs<br />

Small cup-to-disc ratio <strong>in</strong> un<strong>in</strong>volved fellow eyes (the ‘‘disc at risk’’)<br />

Significant (55 seconds) delay <strong>in</strong> fluoresce<strong>in</strong> fill<strong>in</strong>g of all or a portion of the optic disc may occur<br />

M<strong>in</strong>imal if any visual symptoms<br />

May have enlarged bl<strong>in</strong>d spot or arcuate defect<br />

Residual visual loss due to associated macular edema and ret<strong>in</strong>opathy<br />

Occasionally residual mild optic atrophy<br />

Source: Arnold, 1997; Burde, 1993; Katz, 1990a; Regillo, 1995; Vaphiades, 2002.<br />

Nonarteritic Ischemic Optic <strong>Neuro</strong>pathy 75


76 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 4–4. Conditions Associated with <strong>An</strong>terior (and Posterior) Ischemic Optic <strong>Neuro</strong>pathy<br />

Systemic vasculopathy<br />

Common<br />

Hypertension (Feldon, 1999; Hayreh, 1990b, 1994b; Salomon, 1999b)<br />

Hypotension<br />

Diabetes mellitus (Feldon, 1999; Hayreh, 1994b; Inoue, 1997; Salomon, 1999b)<br />

Arteriosclerosis, atherosclerosis, and ischemic heart disease (Hayreh, 1994b; Sadda, 2001;<br />

Salomon, 1999b)<br />

Hypercholesterolemia (Salomon, 1999b)<br />

Uncommon<br />

Female carrier of Fabry’s disease (Abe, 1992)<br />

Takayasu’s arteritis (Schmidt, 1997)<br />

Carotid occlusion and dissection (Biousse, 1998a,b; Gotte, 2000; Kerty, 1999; Mokri, 1996;<br />

Rivk<strong>in</strong>, 1990; Strome, 1997)<br />

Carotid artery hypoplasia (Horowitz, 2001)<br />

Thromboangiitis obliterans<br />

Vasospasm (Hayreh, 1997a; Kaiser, 1996)<br />

Migra<strong>in</strong>e<br />

Raynaud’s disease<br />

Acute blood loss or hypotension (Brown, 1994; Chun, 1997; Connolly, 1994; Cull<strong>in</strong>ane, 2000;<br />

Hayreh, 1999; Lee, 1995b; Shaked, 1998; Teshome, 1999)<br />

Systemic <strong>in</strong>flammatory response syndrome (survivors of severe <strong>in</strong>juries) (Cul<strong>in</strong>ane, 2000)<br />

Postsurgical (Sadda, 2001; Williams, 1995)<br />

Cardiopulmonary bypass procedures (Lund, 1994; Moster, 1998; Shapira, 1996; Spoor, 1991)<br />

Lumbar sp<strong>in</strong>e surgery (Alexandrakis, 1999; Brown, 1994; Cheng, 2000; Dilger, 1998; Katz, 1994;<br />

Lee, 1995b; Loftman, 1996; Myers, 1997; Roth, 1997; Smith, 1996; Stevens, 1997)<br />

Abdom<strong>in</strong>al surgery<br />

Radical neck dissection (Fenton, 2001; Kirkali, 1990; Marks, 1990; Nawa, 1992; Schnobel, 1995;<br />

Wilson, 1991)<br />

Leg ve<strong>in</strong> bypass surgery (Remigio, 2000)<br />

Mitral valve surgery<br />

Nasal surgery (<strong>in</strong>tranasal anesthetic) (Sav<strong>in</strong>o, 1990)<br />

Cholecystectomy<br />

Parathyroidectomy<br />

Radical prostatectomy (Williams, 1999)<br />

Liver transplant (Janicki, 2001)<br />

Coronary angiography<br />

After treatment for malignant hypertension (Connolly, 1994)<br />

Hemodialysis (Connolly, 1994)<br />

Nocturnal hypotension (Hayreh, 1994b, 1997c, 1999; Landau, 1996)<br />

Therapeutic phlebotomy<br />

Cardiac arrest<br />

Surgical (nonhypotensive or nonanemic)<br />

Cataract surgery (McCulley, 2001; Perez-Santonja, 1993)<br />

Laser <strong>in</strong> situ keratomileusis (LASIK) (Cameron, 2001; Cornblath, 2002; Lee, 2000)<br />

Secondary <strong>in</strong>traocular lens implantation<br />

After lower lid blepharoplasty (Good, 1999)<br />

(cont<strong>in</strong>ued)


Table 4–4. (cont<strong>in</strong>ued)<br />

Nonarteritic Ischemic Optic <strong>Neuro</strong>pathy 77<br />

After general surgery without significant blood loss<br />

Ret<strong>in</strong>al surgery<br />

Infectious<br />

Aspergillus<br />

Herpes zoster (Atmaca, 1992; Borruat, 1992; Kothe, 1990; Lexa, 1993)<br />

Lyme disease<br />

Recurrent herpes labialis (Johnson, 1996b)<br />

Staphylococcal cavernous s<strong>in</strong>us thrombosis<br />

Syphilis<br />

Acquired immune deficiency syndrome (AIDS)<br />

Elevated titers of IgG antibodies to Chlamydia pneumoniae (Weger, 2002)<br />

Inflammatory disorders (Coppetto, 1992)<br />

Allergic vasculitis<br />

Behçet’s disease<br />

Buerger’s disease<br />

Churg-Strauss disease (Acheson, 1993; Kattah, 1994; Sehgal, 1995; Vitali, 1996)<br />

Crohn’s disease<br />

Mixed connective tissue disease<br />

Polyarteritis nodosa<br />

Postviral vasculitis<br />

Relaps<strong>in</strong>g polychondritis (Massry, 1995)<br />

Rheumatoid arthritis<br />

Sjögren’s syndrome (Mochizuki, 2000; Rosler, 1995)<br />

Systemic lupus erythematosus (Siatkowski, 2001)<br />

HLA-B27 associated anterior uveitis and ankylos<strong>in</strong>g spondylitis (Tham, 2001)<br />

Ocular<br />

Hyperopia (Katz, 1993)<br />

Optic disc drusen (Lee, 2002; Liew, 1999)<br />

Papilledema<br />

Elevated <strong>in</strong>traocular pressure (Kalenak, 1991; Katz, 1992)<br />

Acute angle-closure glaucoma (Slav<strong>in</strong>, 2001)<br />

Birdshot ret<strong>in</strong>ochoroidopathy<br />

Hematologic abnormalities<br />

<strong>An</strong>emia (e.g., iron deficiency anemia) (Golnik, 1990; Kacer, 2001)<br />

Hyperhomocyste<strong>in</strong>emia (Kawasaki, 1999; Pianka, 2000; Weger, 2001)<br />

<strong>An</strong>tiphospholipid antibodies (Aziz, 2000; Galetta, 1991; Ohte, 1995; Re<strong>in</strong>o, 1997; Rosler, 1995)<br />

<strong>An</strong>tiphospholipid antibodies with factor V Leiden mutation (Sr<strong>in</strong>ivasan, 2001)<br />

Activated prote<strong>in</strong> C resistance (Worrall, 1997)<br />

Decreased concentrations of prote<strong>in</strong> C, prote<strong>in</strong> S, or antithromb<strong>in</strong> III (Bertram, 1995)<br />

G-6-PD deficiency syndrome<br />

Leukemia<br />

Lipid abnormalities (Giuffre, 1990; Talks, 1995)<br />

Lupus anticoagulant<br />

Pernicious anemia<br />

Polycythemia vera<br />

(cont<strong>in</strong>ued)


78 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 4–4. (cont<strong>in</strong>ued)<br />

Sickle cell trait and disease (Perlman, 1994)<br />

Thrombocytopenic purpura (Killer, 2000)<br />

Waldenström’s macroglobul<strong>in</strong>emia<br />

Embolic (Horton, 1995)<br />

Miscellaneous<br />

Acute <strong>in</strong>termittent porphyria<br />

Allergic disorders<br />

Serum sickness<br />

Bacille Calmette-Guér<strong>in</strong> (BCG) vacc<strong>in</strong>ation<br />

Urticaria<br />

Qu<strong>in</strong>cke’s edema<br />

Cardiac valvular disease (Hayreh, 1994a)<br />

Cavernous s<strong>in</strong>us thrombosis (Gupta, 1990)<br />

Cervical discopathies and vasospasm<br />

Favism<br />

Gastro<strong>in</strong>test<strong>in</strong>al ulcers (Hayreh, 1994a)<br />

Graves’ disease (Dosso, 1994)<br />

Human lymphocyte antigen-A29 (Johnson, 1993)<br />

Medications<br />

Interferon-alfa treatment (Purv<strong>in</strong>, 1995; Tang, 1995)<br />

Intracarotid carmust<strong>in</strong>e<br />

Sumatriptan for migra<strong>in</strong>e (Chiari, 1994)<br />

Omeprazole for gastric ulcer treatment (Schönhofer, 1997)<br />

Amiodarone (Mäntyjärvi, 1998)<br />

Oxymetazol<strong>in</strong>e nasal spray (nasal decongestant) (Fivgas, 1999)<br />

Sildenafil (Viagra) (Cunn<strong>in</strong>gham, 2001; Egan, 2000; Pomeranz, 2002)<br />

Lymphoma and sepsis (Guyer, 1990)<br />

Migra<strong>in</strong>e (Chiari, 1994)<br />

Postimmunization<br />

Radiation necrosis (Kawasaki, 1998; Parsons, 1994)<br />

Renal failure and uremia (Haider, 1993; Korzets, 1998; W<strong>in</strong>kelmayer, 2001)<br />

Smok<strong>in</strong>g (Chung, 1994; Johnson, 1994b; Talks, 1995)<br />

Trauma (Gadkari, 1990)<br />

After trans-Atlantic airplane journey (Kaiserman, 2002)<br />

Familial AION (Sadun, 1996)<br />

the fellow eye <strong>in</strong> 10 to 73% of cases (Boone, 1996). Beri et al evaluated 438 patients with<br />

AION (Beri, 1987); 388 had NA-AION and 50 had arteritic AION. The risk of bilateral<br />

<strong>in</strong>volvement for the arteritic form was 1.9 times the risk for NA-AION. At 3 years, Beri<br />

et al calculated an <strong>in</strong>cidence of bilateral NA-AION of 26% (Beri, 1987). In patients with<br />

bilateral disease, some authors have noted that the f<strong>in</strong>al outcome between eyes is<br />

similar for acuity, color vision, and visual fields (Boone, 1996). In another study, visual<br />

function <strong>in</strong> the second eye <strong>in</strong> patients with bilateral NA-AION correlated poorly with<br />

the first eye (WuDunn, 1997). In this study, older patients ( > 50 years) with bilateral


NA-AION reta<strong>in</strong>ed better visual function <strong>in</strong> the second eye, whereas <strong>in</strong> younger<br />

patients the extent of visual loss <strong>in</strong> the second eye could not be predicted based on<br />

the visual loss <strong>in</strong> the first eye. Kupersmith et al also reported poor correlation of visual<br />

acuity and field defects <strong>in</strong> the second eye compared to the first <strong>in</strong>volved eye<br />

(Kupersmith, 1997).<br />

The visual loss <strong>in</strong> NA-AION is usually acute and rema<strong>in</strong>s relatively static, but may<br />

spontaneously improve <strong>in</strong> up to 42.7% of patients (Aiello, 1992; Barrett, 1992; IONDT,<br />

1995; Movsas, 1991; Rizzo, 1991). In up to 25% of patients, visual loss may be<br />

progressive over several weeks. In our op<strong>in</strong>ion, gradual and progressive visual loss<br />

should prompt further evaluation, <strong>in</strong>clud<strong>in</strong>g neuroimag<strong>in</strong>g, to exclude other causes of a<br />

cont<strong>in</strong>u<strong>in</strong>g optic neuropathy (e.g., optic nerve sheath men<strong>in</strong>gioma).<br />

What Is the Evaluation and Treatment for<br />

AION?<br />

Nonarteritic Ischemic Optic <strong>Neuro</strong>pathy 79<br />

Table 4–5. <strong>Cl<strong>in</strong>ical</strong> Features Atypical for Nonarteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy<br />

Age younger than 40 years<br />

Bilateral simultaneous onset<br />

Visual field defect not consistent with an optic neuropathy (e.g., bitemporal hemianopsia,<br />

homonymous hemianopsia)<br />

Lack of optic disc edema <strong>in</strong> the acute phase<br />

Lack of relative afferent pupillary defect<br />

Large cup to disc ratio (Parsa, 1998)<br />

End-stage optic disc appearance of cupped disc (present <strong>in</strong> 2% of patients with nonarteritic-AION<br />

vs. 92% of patients with arteritic AION) (Danesh-Meyer, 2001)<br />

Lack of vasculopathic risk factors<br />

Presence of premonitory symptoms of transient visual loss (amaurosis fugax)<br />

Progression of visual loss beyond 2 to 4 weeks<br />

Recurrent episodes <strong>in</strong> the same eye<br />

<strong>An</strong>terior or posterior segment <strong>in</strong>flammation (e.g., vitreous cells)<br />

Patients with typical features of AION (e.g., acute onset, unilateral visual loss, ipsilateral<br />

optic disc edema, older=aged patient) do not require neuroimag<strong>in</strong>g (class II–III, level B).<br />

The major entity that must be excluded <strong>in</strong> AION is giant cell arteritis (GCA) (see<br />

Chapter 5). <strong>An</strong> erythrocyte sedimentation rate (and=or C-reactive prote<strong>in</strong>) and other<br />

appropriate evaluation for GCA should be considered <strong>in</strong> cases of AION <strong>in</strong> patients over<br />

age 50 (class II, level B). Patients with atypical features (Table 4–5) should be evaluated<br />

for other etiologies of an optic neuropathy (see Chapter 1).<br />

Further laboratory studies to <strong>in</strong>vestigate the presence of a hypercoagulable state<br />

could be considered <strong>in</strong> patients with NA-AION who do not have the typical risk factors,<br />

such as older age, diabetes, hypertension, or tobacco use, or <strong>in</strong> young patients with<br />

bilateral or recurrent attacks of NA-AION, but the data are conflict<strong>in</strong>g (class III, level C).<br />

Some authors have recommended that laboratory tests for a hypercoagulable state <strong>in</strong><br />

the follow<strong>in</strong>g patients: (1) young (less than age 45 years) patients with NA-AION;


80 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

(2) NA-AION without a small cup to disc ratio (‘‘disc at risk’’) <strong>in</strong> the fellow eye; (3)<br />

bilateral simultaneous NA-AION; (4) recurrent NA-AION <strong>in</strong> the same eye; (5) NA-<br />

AION <strong>in</strong> a patient with a previous history or family history of recurrent thrombotic<br />

events (Lee, 1999) (class III, level U). Hyperhomocyste<strong>in</strong>emia was discovered <strong>in</strong> two of<br />

12 nondiabetic patients with NA-AION before the age of 50 years (Kawasaki, 1999).<br />

Both of these two patients had experienced NA-AION <strong>in</strong> both eyes with recurrent<br />

episodes (class III).<br />

Unfortunately, although corticosteroids (systemic, retrobulbar, sub-Tenons), anticoagulation,<br />

dipyridamole, acetazolamide, hemodilution, vasodilators, vasopressors,<br />

atrop<strong>in</strong>e, norep<strong>in</strong>ephr<strong>in</strong>e, diphenylhydanto<strong>in</strong>, and hyperbaric oxygen have been tried<br />

<strong>in</strong> the past, there is no proven therapy for NA-AION (Arnold, 1996; Wolfe, 1993). The<br />

natural history of NA-AION <strong>in</strong> the past has been difficult to def<strong>in</strong>e. In the Ischemic<br />

Optic <strong>Neuro</strong>pathy Decompression Trial (IONDT), there was an unexpectedly high rate<br />

of spontaneous (three or more l<strong>in</strong>es from basel<strong>in</strong>e at 6 months) improvement of 42.7%<br />

(class I, level A). This rate is higher than that noted <strong>in</strong> the literature on AION before<br />

1989 (less than 10%). In the literature s<strong>in</strong>ce then, visual improvement rates as high as<br />

33% have been reported (Arnold, 1994b; Rizzo, 1991; Yee, 1993).<br />

We believe that any future treatments for NA-AION will have to prove better than the<br />

natural history data of the IONDT. Most previously published reports on treatment for<br />

NA-AION are limited by retrospective design, nonstandardized methods of data<br />

collection or measurement, small sample sizes, and variable (usually relatively short)<br />

lengths of follow-up.<br />

Medical control of underly<strong>in</strong>g hypertension, diabetes, and other presumed etiologic<br />

vasculopathic risk factors (such as smok<strong>in</strong>g cessation) has been recommended (Chung,<br />

1994; Hayreh, 1994b), but no well-controlled data on the efficacy of such measures <strong>in</strong><br />

reduc<strong>in</strong>g fellow-eye <strong>in</strong>volvement exist (class III, level C). In addition, overaggressive<br />

control of arterial hypertension may be potentially dangerous <strong>in</strong> patients <strong>in</strong> whom acute<br />

and=or nocturnal hypotension is an underly<strong>in</strong>g etiology for NA-AION (Hayreh, 1994b)<br />

(class III, level U). Patients with malignant hypertension <strong>in</strong> whom the blood pressure<br />

is lowered too rapidly may also be at risk for the precipitation of NA-AION <strong>in</strong> the<br />

fellow eye.<br />

Are Additional Studies (e.g., Non<strong>in</strong>vasive<br />

Carotid Doppler Studies, Cardiac Studies,<br />

<strong>Neuro</strong>imag<strong>in</strong>g) Warranted <strong>in</strong> Patients with<br />

NA-AION?<br />

Although Guyer et al reported a significantly higher <strong>in</strong>cidence of cerebrovascular and<br />

cardiovascular disease <strong>in</strong> 200 patients with idiopathic AION (Guyer, 1985, 1988),<br />

Hayreh et al have found no <strong>in</strong>creased risk for subsequent cerebrovascular or cardiovascular<br />

disease (Hayreh, 1994b). Some authors have found no <strong>in</strong>creased <strong>in</strong>cidence of<br />

generalized cerebral vascular disease on magnetic resonance imag<strong>in</strong>g (MRI) of the head<br />

<strong>in</strong> n<strong>in</strong>e patients with NA-AION, but Arnold et al reported an <strong>in</strong>creased number of<br />

central nervous system white matter lesions on bra<strong>in</strong> MRI <strong>in</strong> patients with NA-AION<br />

(Arnold, 1995). Fry et al found no significant difference <strong>in</strong> carotid stenosis <strong>in</strong> 15 patients<br />

with AION versus controls (Fry, 1993). Several authors have reported no significant


association between AION and extracranial carotid artery occlusive disease. AION has<br />

rarely been attributed to embolic disease (Horton, 1995). We do not perform additional<br />

non<strong>in</strong>vasive evaluation of the carotid or cardiac systems <strong>in</strong> patients with NA-AION<br />

unless there are other signs of carotid disease, such as ocular ischemic syndrome or<br />

ret<strong>in</strong>al emboli, or a history of transient or persistent focal neurologic deficits (Horton,<br />

1995) (class III, level U). We also consider MR angiography <strong>in</strong> patients with NA-AION<br />

with associated ipsilateral head or neck pa<strong>in</strong> to evaluate for carotid artery dissection<br />

(Biousse, 1998a,b). <strong>Neuro</strong>imag<strong>in</strong>g studies of the head are not <strong>in</strong>dicated <strong>in</strong> patients with<br />

typical unilateral NA-AION (Arnold, 1995) (class II–III, level B).<br />

Should the Patient with NA-AION Be Placed<br />

on Aspir<strong>in</strong> Therapy?<br />

Nonarteritic Ischemic Optic <strong>Neuro</strong>pathy 81<br />

Aspir<strong>in</strong> is often given to patients follow<strong>in</strong>g the development of NA-AION, but there<br />

does not seem to be any beneficial effect of treatment on eventual visual outcome<br />

(Botelho, 1996). Some authors, however, have suggested that aspir<strong>in</strong> therapy may<br />

reduce the risk of NA-AION <strong>in</strong> the fellow eye (Beck, 1997; Sanderson, 1995). Sanderson<br />

et al performed a retrospective review of 101 patients with AION for over 3 years<br />

(Sanderson, 1995). Fellow-eye <strong>in</strong>volvement occurred <strong>in</strong> 33 patients, of whom 23 did not<br />

take aspir<strong>in</strong> (compared with 47 patients on aspir<strong>in</strong> out of 68 patients without fellow eye<br />

<strong>in</strong>volvement). These authors estimated a threefold reduction of second eye <strong>in</strong>volvement<br />

(p ¼ 0.0005) <strong>in</strong> the aspir<strong>in</strong>-treated group and concluded that aspir<strong>in</strong> therapy significantly<br />

reduces the relative risk of NA-AION <strong>in</strong> the fellow eye. Beck reported on the results of a<br />

survey (270 of 350 neuro-ophthalmologist respondents) that among 5188 ophthalmologists,<br />

60% usually or always prescribed aspir<strong>in</strong> (usually 325 mg per day); 6%<br />

prescribed aspir<strong>in</strong> about half the time; and 34% occasionally or never prescribed<br />

aspir<strong>in</strong>. Among 582 neurologists, the percentages were 71%, 10%, and 19%, respectively<br />

(Beck, 1997). In a retrospective study of 431 patients, Beck et al found that the<br />

cumulative probability of NA-AION <strong>in</strong> the fellow eye was 7% <strong>in</strong> an aspir<strong>in</strong> group<br />

and 15% <strong>in</strong> a nonaspir<strong>in</strong> group and the 5-year cumulative probabilities were 17% and<br />

20%, respectively (Beck, 1997). This study thus suggests a possible short-term benefit of<br />

aspir<strong>in</strong> <strong>in</strong> reduc<strong>in</strong>g the risk of NA-AION <strong>in</strong> the fellow eye. Kupersmith et al found that<br />

aspir<strong>in</strong> taken two or more times per week decreased the <strong>in</strong>cidence (17.5% vs. 53.5%) of<br />

second eye <strong>in</strong>volvement <strong>in</strong> patients with unilateral NA-AION regardless of risk factors<br />

(Kupersmith, 1997). Salomon et al retrospectively evaluated 52 patients (Salomon,<br />

1999b). Second eye <strong>in</strong>volvement was noted <strong>in</strong> 8 of 16 patients (50%) who did not<br />

receive aspir<strong>in</strong>, <strong>in</strong> 3 of 8 patients (38%) who received 100 mg=day aspir<strong>in</strong>, and <strong>in</strong> only 5<br />

of 28 patients (18%) who received aspir<strong>in</strong> 325 mg=day. Moreover, the mean time to<br />

second eye <strong>in</strong>volvement was 63 months <strong>in</strong> patients who did not receive aspir<strong>in</strong>, versus<br />

156 months <strong>in</strong> patients who received aspir<strong>in</strong> 325 mg=day. The authors concluded that<br />

aspir<strong>in</strong> 325 mg=day may be effective <strong>in</strong> reduc<strong>in</strong>g the frequency of second eye <strong>in</strong>volvement<br />

<strong>in</strong> NA-AION (Salomon, 1999b). In light of the possible association between NA-<br />

AION and cerebrovascular and cardiac vasculopathic risk factors (e.g., hypertension,<br />

diabetes) and the recognized reduction <strong>in</strong> morbidity and mortality for patients with<br />

cerebrovascular disease and cardiac disease (e.g., myocardial <strong>in</strong>farction) (Roth, 1994)<br />

treated with aspir<strong>in</strong>, our current practice (until a prospective trial is performed) is to


82 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

offer oral aspir<strong>in</strong> therapy to patients (who have no contra<strong>in</strong>dications to aspir<strong>in</strong>) with<br />

NA-AION (class II–III, level U).<br />

Are There Other Treatments for NA-AION?<br />

A pilot cl<strong>in</strong>ical trial on the efficacy of levodopa <strong>in</strong> NA-AION was published with<br />

<strong>in</strong>terest<strong>in</strong>g results. Johnson et al reported a prospective, randomized, double-masked,<br />

placebo-controlled, cl<strong>in</strong>ical trial of 20 subjects with NA-AION of 30 months’ mean<br />

duration (Johnson, 1996a). Subjects were randomized to low-dose levodopa and<br />

carbidopa or placebo for 3 weeks. At 12 weeks, the levodopa group was provided a<br />

higher, conventional dose of levodopa and carbidopa for three additional weeks. At<br />

12 weeks, the levodopa group experienced a significant (p ¼ 0.16) mean difference <strong>in</strong><br />

improvement of visual acuity of 5.9 letters from the placebo group, and at 24 weeks the<br />

treatment effect rema<strong>in</strong>ed (p ¼ 0.36). There was a mean ga<strong>in</strong> of 7.5 letters <strong>in</strong> the<br />

levodopa group compared to the placebo group, and three subjects experienced a<br />

doubl<strong>in</strong>g of the visual angle, as denoted by a ga<strong>in</strong> of at least 15 letters. No significant<br />

improvement was noted for color vision or visual field (class II–III, level U).<br />

In a follow-up study, Johnson et al further studied the effect of levodopa on visual<br />

function <strong>in</strong> patients treated with<strong>in</strong> 45 days of onset of NA-AION (Johnson, 2000). In a<br />

nonrandomized, retrospective study <strong>in</strong>volv<strong>in</strong>g 37 patients, 18 were treated with<br />

S<strong>in</strong>emet 25–100 (100 mg levodopa=25 mg carbidopa), whereas 19 patients served as<br />

controls. The proportions of patients with worsened, unchanged, and improved visual<br />

acuity at 6 months were compared <strong>in</strong> the two groups. A higher proportion of the<br />

patients <strong>in</strong> the levodopa group had improved visual acuity with a correspond<strong>in</strong>g<br />

lower proportion hav<strong>in</strong>g worsened acuity as compared to control patients. Ten of the<br />

13 patients (76.9%) <strong>in</strong> the levodopa group with 20=40 visual acuity or worse at basel<strong>in</strong>e<br />

had improved visual acuity at 6 months, and none of the 18 patients had worsened<br />

acuity. In contrast, 3 of 10 control patients (30%) with 20=40 visual acuity or worse at<br />

basel<strong>in</strong>e had improved visual acuity at 6 months, and 3 of 19 control patients (15.8%)<br />

had worsened visual acuity. The proportion of patients with worsened, unchanged,<br />

and improved visual fields at 6 months was compared for the two groups and there<br />

was no significant difference. The authors concluded that patients treated with<br />

levodopa with<strong>in</strong> 45 days of onset of NA-AION were more likely to experience<br />

improvement and less likely to have worsened visual acuity than untreated patients<br />

(Johnson, 2000).<br />

Unfortunately, there are many flaws <strong>in</strong> this latter study, and the conclusions are<br />

controversial and may well be erroneous for the follow<strong>in</strong>g reasons (Cox, 2000) (class<br />

II–III, level U). Cox (2000) summarized the controversial po<strong>in</strong>ts:<br />

1. The study was retrospective, unplanned, nonrandomized, and based on a small<br />

sample size.<br />

2. The treatment and control groups were very different, ma<strong>in</strong>ly <strong>in</strong> basel<strong>in</strong>e visual<br />

functions. The control group actually had better mean acuities and mean field scores<br />

at basel<strong>in</strong>e and the imbalance between the groups at basel<strong>in</strong>e makes any results<br />

essentially un<strong>in</strong>terpretable.<br />

3. The study was not randomized, and selection and measurement bias may have been<br />

present.


4. The patients placed on the drug may have expected a better visual outcome and,<br />

thus, ‘‘tested better’’ than the nontreated group.<br />

5. The statistical analysis used was flawed.<br />

It is not the practice of the authors to recommend levodopa for NA-AION based on<br />

the available evidence (class II–III, level U).<br />

Does Optic Nerve Sheath Fenestration<br />

Improve Visual Outcomes <strong>in</strong> NA-AION?<br />

Initial reports of visual improvement follow<strong>in</strong>g optic nerve sheath fenestration (ONSF)<br />

for NA-AION were encourag<strong>in</strong>g, but anecdotal (Kelman, 1991; Manor, 1990; Sergott,<br />

1990; Spoor, 1991). Other reports followed with mixed results (Flaharty, 1993; Glaser,<br />

Table 4–6. Characteristics of Patients with Nonarteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy<br />

Eligible for the Ischemic Optic <strong>Neuro</strong>pathy Decompression Trial<br />

420 patients (258 randomized; 162 not randomized)<br />

62% men; 95% white<br />

Mean age at onset 66.0 (peak age range 60–69)<br />

Hypertension 47%; diabetes 24%<br />

42% recalled onset of visual symptoms with<strong>in</strong> 2 hours of awaken<strong>in</strong>g<br />

Initial VA 20=20 to light perception (LP), with 49% patients better than 20=64, and 34% 20=200<br />

or worse<br />

Mean Westergan erythrocyte sedimentation rate (ESR) 18.4 with 9% greater than 40<br />

Nonrandomized patients were younger, 72% were male, and had lower prevalence of<br />

hypertension and diabetes<br />

45% of patients reported worsen<strong>in</strong>g (subjective) of vision between onset and basel<strong>in</strong>e exam<br />

29% of eligible patients with basel<strong>in</strong>e VA > 20=64 had documented progression to 20=64 or<br />

worse dur<strong>in</strong>g 30-day period<br />

15% of randomized patients smoked or discont<strong>in</strong>ued smok<strong>in</strong>g < 1 year before onset<br />

Earliest symptoms<br />

Intermittent blurr<strong>in</strong>g 5.0%<br />

Blurred vision 36.1%<br />

Scotoma 45.4%<br />

Complete loss of vision 3.8%<br />

Optic disc of affected eye<br />

Swollen 100.0%<br />

Diffuse 75.4%<br />

Focal 24.6%<br />

Disc or ret<strong>in</strong>al hemorrhage 71.8%<br />

Exudates 6.5%<br />

Abnormal ret<strong>in</strong>al vasculature 19.1%<br />

Optic disc nonstudy eye<br />

Pallor 22.5%<br />

Swollen 0.5%<br />

All percentages ¼ randomized þ nonrandomized patients.<br />

Nonarteritic Ischemic Optic <strong>Neuro</strong>pathy 83


84 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

1994; Hayreh, 1990a; Jablons, 1993; Kelman, 1991; McHenry, 1993a,b; Mutlukan, 1990;<br />

Sadun, 1993; Sergott, 1990; Spoor, 1991, 1993; Wall, 1991; Wilson, 1990; Yee, 1993).<br />

Subsequently, a well-designed, masked, prospective, randomized Ischemic Optic<br />

<strong>Neuro</strong>pathy Decompression Trial at 25 cl<strong>in</strong>ical centers was <strong>in</strong>itiated with the support<br />

of the National Eye Institute (Ischemic Optic <strong>Neuro</strong>pathy Decompression Trial [IONDT]<br />

Research Group, 1995). The study <strong>in</strong>clusion criteria were as follows: cl<strong>in</strong>ical syndrome<br />

consistent with NA-AION (e.g., acute, unilateral visual loss, relative afferent pupillary<br />

defect, swollen optic nerve, etc.); age greater than 50 years; visual symptoms for less<br />

than 14 days from onset; and visual acuity of 20=64 or worse. Patients were randomly<br />

assigned to either ONSF (119 patients) or a control group (125 patients). Experienced<br />

Figure 4–1. Evaluation of anterior ischemic optic neuropathy.


protocol-certified study surgeons performed all the surgeries. The primary outcome<br />

measure was a three or more l<strong>in</strong>e improvement of visual acuity after 6 months, and<br />

visual field mean deviation on the Humphrey Field <strong>An</strong>alyzer (Program 24-2) was a<br />

secondary outcome measure. Recruitment was halted <strong>in</strong> September 1994 on the<br />

recommendation of the Data and Safety Monitor<strong>in</strong>g Committee. The cl<strong>in</strong>ical characteristics<br />

of the patients recruited are summarized <strong>in</strong> Table 4–6. After 6 months, 32.6% of the<br />

ONSF (surgery) group had improved three or more l<strong>in</strong>es of visual acuity compared with<br />

42.7% of the control group; but 23.9% of the ONSF group had lost three or more l<strong>in</strong>es of<br />

visual acuity compared with only 12.4% of the control group. Likewise, visual field data<br />

confirmed a lack of benefit for surgery. The 3-month, 12-month, and 24-month data<br />

confirmed the f<strong>in</strong>d<strong>in</strong>gs of the 6-month data (Ischemic Optic <strong>Neuro</strong>pathy Decompression<br />

Trial Research Group, 2000). In addition, there was no <strong>in</strong>dication of benefit from ONSF<br />

<strong>in</strong> the subgroup of patients with progressive visual loss. The authors concluded that<br />

‘‘ONSF is not effective and may be harmful <strong>in</strong> NA-AION’’ (IONDT, 1995), but were<br />

careful to state that they could ‘‘offer no recommendation regard<strong>in</strong>g the safety and<br />

efficacy of this surgery for other conditions’’ (IONDT, 1995). We agree that ONSF should<br />

not be performed for NA-AION (Beck, 1995; IONDT, 1995; Lessell, 1995; Smith, 1995)<br />

(class I, level A).<br />

Our approach to NA-AION is outl<strong>in</strong>ed <strong>in</strong> Figure 4–1.<br />

References<br />

Nonarteritic Ischemic Optic <strong>Neuro</strong>pathy 85<br />

Abe H, Sakai T, Sawaguchi S, et al. (1992). Ischemic optic neuropathy <strong>in</strong> a female carrier with Fabry’s disease.<br />

Ophthalmologica 205:83–88.<br />

Acheson JF, Cockrell OC, Bentley CR, Sanders MD. (1993). Churg-Strauss vasculitis present<strong>in</strong>g with severe visual<br />

loss due to bilateral sequential optic neuropathy. Br J Ophthalmol 77:118–119.<br />

Aiello AL, Sadun AA, Feldon SE. (1992). Spontaneous improvement of progressive anterior ischemic optic<br />

neuropathy. Report of two cases. Arch Ophthalmol 110:1197–1199.<br />

Alexandrakis G, Lam BL. (1999). Bilateral posterior ischemic optic neuropathy after sp<strong>in</strong>al surgery. Am J<br />

Ophthalmol 127:354–355.<br />

Arnold AC, Badr MA, Hepler RS. (1996). Fluoresce<strong>in</strong> angiography <strong>in</strong> nonischemic optic disc edema. Arch<br />

Ophthalmol 114:293–298.<br />

Arnold AC, Hepler RS. (1994a). Fluoresce<strong>in</strong> angiography <strong>in</strong> acute nonarteritic anterior ischemic optic neuropathy.<br />

Am J Ophthalmol 117:222–230.<br />

Arnold AC, Hepler RS. (1994b). Natural history of nonarteritic anterior ischemic optic neuropathy. J <strong>Neuro</strong>ophthalmol<br />

14:66–69.<br />

Arnold AC, Hepler RS, Hamilton DR, Lufk<strong>in</strong> RB. (1995). Magnetic resonance imag<strong>in</strong>g of the bra<strong>in</strong> <strong>in</strong> nonarteritic<br />

anterior ischemic optic neuropathy. J <strong>Neuro</strong>-ophthalmol 15:158–160.<br />

Arnold AC, Hepler RS, Lieber M, Alexander JM. (1996). Hyperbaric oxygen therapy for nonarteritic anterior<br />

ischemic optic neuropathy. Am J Ophthalmol 122:535–541.<br />

Arnold AC, Petrovich M. (1997). Diabetic papillopathy: cl<strong>in</strong>ical features and fluoresce<strong>in</strong> angiographic evidence of<br />

optic disc ischemia. Presented at the 23rd annual meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology<br />

Society, Keystone, Colorado, February 9–13.<br />

Atmaca LS, Ozmert E. (1992). Optic neuropathy and central ret<strong>in</strong>al artery occlusion <strong>in</strong> a patient with herpes zoster<br />

ophthalmicus. <strong>An</strong>n Ophthalmol 24:50–53.<br />

Aziz A, Coneay MD, Robertson HJ, et al. (2000). Acute optic neuropathy and transverse myelopathy <strong>in</strong> patients<br />

with antiphospholipid antibody syndrome: favorable outcome after treatment with anticoagulants and<br />

glucocorticoids. Lupus 9:301–310.<br />

Barrett DA, Glaser JS, Schatz NJ, W<strong>in</strong>terkorn JMS. (1992). Spontaneous recovery of vision <strong>in</strong> progressive anterior<br />

ischemic optic neuropathy. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:219–225.<br />

Beck RW. (1992). Optic neuritis or anterior ischemic optic neuropathy? Arch Ophthalmol 110:1357.<br />

Beck RW. (1995). Optic nerve sheath fenestration for anterior ischemic optic neuropathy? The answer is <strong>in</strong><br />

(editorial). J <strong>Neuro</strong>-ophthalmol 15:61–62.


86 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Beck RW, Corbett JR, Thompson HS, et al. (1985). Decreased visual acuity from optic disc drusen. Arch Ophthalmol<br />

103:1155–1159.<br />

Beck RW, Hayreh SS, Podhajsky PA, Tan E-S, Moke PS. (1997). Aspir<strong>in</strong> therapy <strong>in</strong> nonarteritic anterior ischemic<br />

optic neuropathy. Am J Ophthalmol 123:212–217.<br />

Beri M, Klugman MR, Kohler JA, Hayreh SS. (1987). <strong>An</strong>terior ischemic optic neuropathy VII. Incidence of<br />

bilaterality and various <strong>in</strong>fluenc<strong>in</strong>g factors. Ophthalmology 94:1020–1028.<br />

Bertram B, Remky A, Arend O, et al. (1995). Prote<strong>in</strong> C, prote<strong>in</strong> S, and antithromb<strong>in</strong> III <strong>in</strong> acute ocular occlusive<br />

disease. German J Ophthalmol 4:332–335.<br />

Biousse V, Schaison M, Touboul P-J, et al. (1998a). Ischemic optic neuropathy associated with <strong>in</strong>ternal carotid<br />

artery dissection. Arch <strong>Neuro</strong>l 55:715–719.<br />

Biousse V, Touboul P-J, D’<strong>An</strong>glejan-Chatillon J, et al. (1998b). Ophthalmic manifestations of <strong>in</strong>ternal carotid<br />

dissection. Am J Ophthalmol 126:565–577.<br />

Boone MI, Massry GG, Frankel RA, Holds JB, Chung SM. (1996). Visual outcome <strong>in</strong> bilateral nonarteritic anterior<br />

ischemic optic neuropathy. Ophthalmology 103:1223–1228.<br />

Borruat FX, Herbort CP. (1992). Herpes zoster ophthalmicus. <strong>An</strong>terior ischemic optic neuropathy and acyclovir.<br />

J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:37–40.<br />

Botelho PJ, Johnson LN, Arnold AC. (1996). The effect of aspir<strong>in</strong> on the visual outcome of nonarteritic anterior<br />

ischemic optic neuropathy. Am J Ophthalmol 121:450–451.<br />

Brown RH, Schauble JF, Miller NR. (1994). <strong>An</strong>emia and hypotension as contributors to perioperative loss of<br />

vision. <strong>An</strong>esthesiology 80:222–226.<br />

Burde RM. (1993). Optic disk risk factors for nonarteritic anterior ischemic optic neuropathy (review). Am J<br />

Ophthalmol 116:759–764.<br />

Cameron BD, Saffra NA, Strom<strong>in</strong>ger MB. (2001). Laser <strong>in</strong> situ keratomileusis-<strong>in</strong>duced optic neuropathy.<br />

Ophthalmology 108:660–665.<br />

Cheng MA, Sigurdson W, Tempelhoff R, Lauryssen C. (2000). Visual loss after sp<strong>in</strong>e surgery: a survey.<br />

<strong>Neuro</strong>surgery 46:625–631.<br />

Chiari M, Manzoni GC, Van de Geijn EJ. (1994). Ischemic optic neuropathy after sumatriptan <strong>in</strong> a migra<strong>in</strong>e with<br />

aura patient (letter). Headache 34:237–238.<br />

Chun DM, Lev<strong>in</strong> DK. (1997). Ischemic optic neuropathy after hemorrhage from a cornual ectopic gestation. Am J<br />

Obstet Gynecol 177:1550–1552.<br />

Chung SM, Gay CA, McCrary JA III. (1994). Nonarteritic ischemic optic neuropathy. The impact of tobacco use.<br />

Ophthalmology 101:779–782.<br />

Connolly SE, Gordon KB, Horton JC. (1994). Salvage of vision after hypotension-<strong>in</strong>duced ischemic optic<br />

neuropathy. Am J Ophthalmol 117:235–242.<br />

Coppetto JR, Greco TP. (1992). Autoimmune ischemic optic neuropathy associated with positive rheumatoid<br />

factor and transient nephrosis. <strong>An</strong>n Ophthalmol 24:434–438.<br />

Cornblath WT, Warren F, Tang R. (2002). Optic neuropathy after LASIK. Presented at the 28th annual meet<strong>in</strong>g of<br />

the North American <strong>Neuro</strong>-Ophthalmology Society, Copper Mounta<strong>in</strong>, Colorado, February 9–14.<br />

Cox TA, Beck RW, Ferris FL, Hayreh SS. (2000). Does Levopopa improve visual function <strong>in</strong> NAION?<br />

Ophthalmology 107:1431–1438.<br />

Cull<strong>in</strong>ane DC, Jenk<strong>in</strong>s JM, Reddy S, et al. (2000). <strong>An</strong>terior ischemic optic neuropathy: a complication after<br />

systemic <strong>in</strong>flammatory response syndrome. J Trauma Injury Infect Crit Care 48:381–386.<br />

Cunn<strong>in</strong>gham AV, Smith KH (2001). <strong>An</strong>terior ischemic optic neuropathy associated with Viagra. J <strong>Neuro</strong>-ophthalmol<br />

21:22–25.<br />

Danesh-Meyer HV, Sav<strong>in</strong>o PJ, Sergott RC. (2001). The prevalence of cupp<strong>in</strong>g <strong>in</strong> end-stage arteritic and nonarteritic<br />

anterior ischemic optic neuropathy. Ophthalmology 108:593–598.<br />

Diegel JT. (1994). The ischemic optic neuropathy decompression trial (letter). Arch Ophthalmol 112:1275–1276.<br />

Dilger JA, Tetzlaff JE, Bell GR, et al. (1998). Ischaemic optic neuropathy after sp<strong>in</strong>al fusion. Can J <strong>An</strong>aesth<br />

45:63–66.<br />

Dosso A, Safran AB, Sunaric G, Burger A. (1994). <strong>An</strong>terior ischemic optic neuropathy <strong>in</strong> Graves’ disease.<br />

J <strong>Neuro</strong>-ophthalmol 14:170–174.<br />

Egan R, Pomeranz H. (2000). Sidenafil (Viagra) associated anterior ischemic optic neuropathy. Arch Ophthalmol<br />

118:291–292.<br />

Feldon SE. (1999). <strong>An</strong>terior ischemic optic neuropathy: trouble wait<strong>in</strong>g to happen. Ophthalmology 106:651–652.<br />

Fenton S, Fenton JE, Browne M, et al. (2001). Ischaemic optic neuropathy follow<strong>in</strong>g bilateral neck dissection.<br />

J Laryngol Otol 115:158–160.<br />

Fivgas GD, Newman NJ. (1999). <strong>An</strong>terior ischemic optic neuropathy follow<strong>in</strong>g the use of a nasal decongestant.<br />

Am J Ophthalmol 127:104–106.


Nonarteritic Ischemic Optic <strong>Neuro</strong>pathy 87<br />

Flaharty PM, Sergott RC, Lieb W, Bosley TM, Sav<strong>in</strong>o PJ. (1993). Optic nerve sheath decompression may improve<br />

blood flow <strong>in</strong> anterior ischemic optic neuropathy. Ophthalmology 100:297–302.<br />

Friedland S, W<strong>in</strong>terkorn JM, Burde RM. (1996). Luxury perfusion follow<strong>in</strong>g anterior ischemic optic neuropathy.<br />

J <strong>Neuro</strong>-ophthalmol 16:163–171.<br />

Fry CL, Carter JE, Kanter MC, Tegeler CH, Tuley MR. (1993). <strong>An</strong>terior ischemic optic neuropathy is not associated<br />

with carotid artery atherosclerosis. Stroke 24:539–542.<br />

Gadkari SS, Ladi DS, Gupta S, et al. (1990). Traumatic ischaemic optic neuropathy (a case report). J Postgrad Med<br />

37:179–180.<br />

Galetta SL, Plock GL, Kushner MJ, Wyszynski RE, Brucker AJ. (1991). Ocular thrombosis associated with<br />

antiphospholipid antibodies. <strong>An</strong>n Ophthalmol 23:207–212.<br />

Gerl<strong>in</strong>g J, Jancknecht P, Kommerell G. (1998a). Orbital pa<strong>in</strong> <strong>in</strong> optic neuritis and anterior ischemic optic<br />

neuropathy. <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:93–99.<br />

Gerl<strong>in</strong>g J, Meyer JH, Kommerell G. (1998b). Visual field defects <strong>in</strong> optic neuritis and anterior ischemic optic<br />

neuropathy: dist<strong>in</strong>ctive features. Graefes Arch Cl<strong>in</strong> Exp Ophthalmol 236:188–192.<br />

Giuffre G. (1990). Hematological risk factors for anterior ischemic optic neuropathy. <strong>Neuro</strong>-<strong>ophthalmology</strong><br />

10:197–203.<br />

Glaser JS. (1991). Optic neuritis and ischemic neuropathy: What we thought we already knew. Arch Ophthalmol<br />

109:1666–1667.<br />

Glaser JS, Teimory M, Schatz NJ. (1994). Optic nerve sheath fenestration for progressive ischemic optic<br />

neuropathy. Arch Ophthalmol 112:1047–1050.<br />

Golnik KC, Newman SA. (1990). <strong>An</strong>terior ischemic optic neuropathy associated with macrocytic anemia. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 10:244–247.<br />

Good CD, Cassidy LM, Moseley IF, Sanders MD. (1999). Posterior optic nerve <strong>in</strong>farction after lower lid<br />

blepharoplast. J <strong>Neuro</strong>-Ophthalmol 19:176–179.<br />

Gordon RN, Burde RM, Slamovits T. (1997). Asymptomatic optic disc edema. J <strong>Neuro</strong>-Ophthalmol 17:29–32.<br />

Gotte K, Riedel F, Knorz MC, Hormann K. (2000). Delayed anterior ischemic optic neuropathy after neck<br />

dissection. Arch Otolaryngol Head Neck Surg 126:220–223.<br />

Grosvenor T, Mal<strong>in</strong>ovsky V, Gelv<strong>in</strong> J, Tonekaboni K. (1993). Diagnosis and management of temporal arteritis: a<br />

review and case report. Optom Vision Sci 70:771–777.<br />

Gupta A, Jalali S, Bansal RK, Grewal SP. (1990). <strong>An</strong>terior ischemic optic neuropathy and branch ret<strong>in</strong>al artery<br />

occlusion <strong>in</strong> cavernous s<strong>in</strong>us thrombosis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:193–196.<br />

Guyer DR, Green WR, Schachat AP, Bastacky S, Miller NR. (1990). Bilateral ischemic optic neuropathy and ret<strong>in</strong>al<br />

vascular occlusions associated with lymphoma and sepsis. Ophthalmol 97:882–888.<br />

Guyer DR, Miller NR, Enger CL, F<strong>in</strong>e SL. (1985). The risk of cerebrovascular and cardiovascular disease <strong>in</strong><br />

patients with anterior ischemic optic neuropathy. Arch Ophthalmol 103:1136–1142.<br />

Guyer DR, Miller NR, Enger CL, F<strong>in</strong>e SL. (1988). Incidence of subcortical lesions not <strong>in</strong>creased <strong>in</strong><br />

nonarteritic anterior ischemic optic neuropathy on magnetic resonance imag<strong>in</strong>g (letter). Am J Ophthalmol<br />

105:324.<br />

Haider S, Asbury NJ, and Hamilton DV. (1993). Optic neuropathy <strong>in</strong> uraemic patients on dialysis. Eye 7:148–151.<br />

Hattenhauer MG, Leavitt JA, Hodge DO, et al. (1997). Incidence of nonarteritic ischemic optic neuropathy. Am J<br />

Ophthalmol 123:103–107.<br />

Hayreh SS. (1990a). The role of optic nerve sheath fenestration <strong>in</strong> management of anterior ischemic optic<br />

neuropathy (letter). Arch Ophthalmol 108:1063–1064.<br />

Hayreh SS. (1990b). <strong>An</strong>terior ischaemic optic neuropathy. Differentiation of arteritic from nonarteritic type and its<br />

management. Eye 4:25–41.<br />

Hayreh SS. (1996). Acute ischemic disorders of the optic nerve: pathogenesis, cl<strong>in</strong>ical manifestations, and<br />

management. Ophthalmol Cl<strong>in</strong> North Am 9:407–442.<br />

Hayreh SS. (1997a). <strong>An</strong>terior ischemic optic neuropathy. Cl<strong>in</strong> <strong>Neuro</strong>sci 4:251–263.<br />

Hayreh SS, Jonas JB (2001a). Optic disc morphology after arteritic anterior ischemic optic neuropathy. Ophthalmology<br />

108:1586–1594.<br />

Hayreh SS, Joos KM, Podhajsky PA, Long CR. (1994a). Systemic diseases associated with nonarteritic anterior<br />

ischemic optic neuropathy. Am J Ophthalmol 118:776–780.<br />

Hayreh SS, Piegors DJ, Heistad DD. (1997b). Seroton<strong>in</strong>-<strong>in</strong>duced constriction of ocular arteries <strong>in</strong> atherosclerotic<br />

monkeys: implications for ischemic disorders of the ret<strong>in</strong>a and optic nerve head. Arch Ophthalmol<br />

115:220–228.<br />

Hayreh SS, Podhajsky P, Zimmerman MB. (1999). Role of nocturnal arterial hypotension <strong>in</strong> optic nerve head<br />

ischemic disorders. Ophthalmologica 213:76–96.


88 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Hayreh SS, Podhajsky PS, Zimmerman B. (2001b). Ipsilateral recurrence of nonarteritic anterior ischemic optic<br />

neuropathy. Am J Ophthalmol 132:734–742.<br />

Hayreh SS, Podhajsky PA, Zimmerman B. (1997c). Nonarteritic anterior ischemic optic neuropathy: time of onset<br />

of visual loss. Am J Ophthalmol 124:641–647.<br />

Hayreh SS, Podhajsky PA, Zimmerman B. (1998). Occult giant cell arteritis: ocular manifestations. Am J Ophthalmol<br />

125:521–526.<br />

Hayreh SS, Zimmerman BM, Podhajsky P, Alward WLM. (1994b). Nocturnal arterial hypotension and its role <strong>in</strong><br />

optic nerve head and ocular ischemic disorders. Am J Ophthalmol 117:603–624.<br />

Horowitz J, Melamud A, Sela L, et al. (2001). Internal carotid artery hypoplasia present<strong>in</strong>g as anterior ischemic<br />

optic neuropathy. Am J Ophthalmol 131:673–674.<br />

Horton JC. (1995). Embolic cilioret<strong>in</strong>al artery occlusion with atherosclerosis of the ipsilateral carotid artery. Ret<strong>in</strong>a<br />

15:441–444.<br />

Inoue M, Tsukahara Y. (1997). Vascular optic neuropathy <strong>in</strong> diabetes mellitus. Jpn J Ophthalmol 41:328–331.<br />

Ischemic Optic <strong>Neuro</strong>pathy Decompression Trial Research Group (IONDT). (1995). Optic nerve decompression<br />

for nonarteritic anterior ischemic optic neuropathy (AION) is not effective and may be harmful. JAMA<br />

273:625–632.<br />

Ischemic Optic <strong>Neuro</strong>pathy Decompression Trial Research Group. (IONDT). (1996). Characteristics of patients<br />

with nonarteritic anterior ischemic optic neuropathy eligible for the Ischemic optic neuropathy decompression<br />

trial. Arch Ophthalmol 114:1366–1374.<br />

Ischemic Optic <strong>Neuro</strong>pathy Decompression Trial Research Group. (2000). Ischemic Optic <strong>Neuro</strong>pathy Decompression<br />

Trial. Twenty-four month update. Arch Ophthalmol 118:793–798.<br />

Jablons MM, Glaser JS, Schatz NJ, et al. (1993). Optic nerve sheath fenestration for treatment of progressive<br />

ischemic optic neuropathy: results <strong>in</strong> 26 patients. Arch Ophthalmol 111:84–87.<br />

Jackson TL, Farmer CKT, K<strong>in</strong>gswood C, Vickers S. (1999). Hypotensive ischemic optic neuropathy and peritoneal<br />

dialysis. Am J Ophthalmol 128:109–111.<br />

Jacobson DM, Vierkant RA, Belongia EA. (1997). Nonarteritic anterior ischemic optic neuropathy. A case-control<br />

study of potential risk factors. Arch Ophthalmol 115:1403–1407.<br />

Janicki PK, Pai R, Kelly Wright J, et al. (2001). Ischemic optic neuropathy after liver transplantation. <strong>An</strong>esthesiology<br />

94:361–363.<br />

Johnson LN, Arnold AC. (1994a). Incidence of non-arteritic anterior ischemic optic neuropathy: population based<br />

study <strong>in</strong> the state of Missouri and Los <strong>An</strong>geles County, California. J <strong>Neuro</strong>-ophthalmol 14:38–44.<br />

Johnson LN, Botelho PJ, Kuo HC. (1994b). Is smok<strong>in</strong>g a risk factor for NAAION? (letter). Ophthalmology<br />

101:1322–1324.<br />

Johnson LN, Gould TJ, Krohel GB. (1996a). Effect of levodopa and carbidopa on recovery of visual function <strong>in</strong><br />

patients with nonarteritic anterior ischemic optic neuropathy of longer than six months duration. Am J<br />

Ophthalmol 121:77–83.<br />

Johnson LN, Guy ME, Krohel GB, Madsen RW. (2000). Levodopa may improve vision loss <strong>in</strong> recent-onset,<br />

nonarteritic anterior ischemic optic neuropathy. Ophthalmology 107:521–526.<br />

Johnson LN, Krohel GB, Allen SD, Mozayeni R. (1996b). Recurrent herpes labialis as a potential risk factor for<br />

nonarteritic anterior ischemic optic neuropathy. J Natl Med Assoc 88:369–373.<br />

Johnson LN, Kuo HC, Arnold AC. (1993). HLA-A29 as a potential risk factor for nonarteritic anterior ischemic<br />

optic neuropathy (letter). Am J Ophthalmol 115:540–542.<br />

Kacer B, Hattenbach LO, Horle S, et al. (2001). Central ret<strong>in</strong>al ve<strong>in</strong> occlusion and nonarteritic ischemic optic<br />

neuropathy <strong>in</strong> 2 patients with mild iron deficiency anemia. Ophthalmologica 215:128–131.<br />

Kaiser HJ, Flammer J, Messerli J. (1996). Vasospasm: a risk factor for non-arteritic anterior ischemic optic<br />

neuropathy? <strong>Neuro</strong>-<strong>ophthalmology</strong> 16:5–10.<br />

Kaiserman I, Frucht-Pery J. (2002). <strong>An</strong>terior ischemic optic neuropathy after a trans-Atlantic airplane journey. Am J<br />

Ophthalmol 133:581–583.<br />

Kalenak JW, Kosmorsky GS, Rockwood EJ. (1991). Nonarteritic anterior ischemic optic neuropathy and<br />

<strong>in</strong>traocular pressure. Arch Ophthalmol 109:660–661.<br />

Kattah JC, Chrousos GA, Katz PA, McCasland B, Kolsky MP. (1994). <strong>An</strong>terior ischemic optic neuropathy <strong>in</strong><br />

Churg-Strauss syndrome. <strong>Neuro</strong>logy 44:2200–2202.<br />

Katz B. (1990a). Disc swell<strong>in</strong>g <strong>in</strong> an adult diabetic patient. Surv Ophthalmol 25:158–163.<br />

Katz B. (1992). <strong>An</strong>terior ischemic optic neuropathy and <strong>in</strong>traocular pressure (letter). Arch Ophthalmol 110:596–597.<br />

Katz B, Spencer WH. (1993). Hyperopia as a risk factor for nonarteritic anterior ischemic optic neuropathy. Am J<br />

Ophthalmol 116:754–758.<br />

Katz B, We<strong>in</strong>reb RN, Wheeler DT, Klauber MR. (1990b). <strong>An</strong>terior ischemic optic neuropathy and <strong>in</strong>traocular<br />

pressure. Br J Ophthalmol 74:99–102.


Nonarteritic Ischemic Optic <strong>Neuro</strong>pathy 89<br />

Katz DM, Trobe JD, Cornblath WT, Kl<strong>in</strong>e LB. (1994). Ischemic optic neuropathy after lumbar sp<strong>in</strong>e surgery. Arch<br />

Ophthalmol 112:925–931.<br />

Kawasaki A, Purv<strong>in</strong> VA, Burgett RA. (1999). Hyperhomocyste<strong>in</strong>aemia <strong>in</strong> young patients with non-arteritic<br />

anterior ischaemic optic neuropathy. Br J Ophthalmol 83:1287–1290.<br />

Kawasaki A, Purv<strong>in</strong> VA, Tang R. (1998). Bilateral anterior ischemic optic neuropathy follow<strong>in</strong>g <strong>in</strong>fluenza<br />

vacc<strong>in</strong>ation. J <strong>Neuro</strong>-ophthalmol 18:56–59.<br />

Kay MC. (1991). Ischemic optic neuropathy. <strong>Neuro</strong>l Cl<strong>in</strong> 9:115–129.<br />

Keely KA, Yip B. (1997). Diabetic papillopathy: two case reports <strong>in</strong> <strong>in</strong>dividuals with adult onset diabetes mellitus.<br />

J Am Optom Assoc 68:595–603.<br />

Kelman SE, Elman MJ. (1991). Optic nerve sheath decompression for nonarteritic ischemic optic neuropathy<br />

improves multiple visual function measurements. Arch Ophthalmol 109:667–671.<br />

Kerty E. (1999). The <strong>ophthalmology</strong> of <strong>in</strong>ternal carotid artery dissection. Acta Ophthalmol Scand 77:418–421.<br />

Killer HE, Huber A, Portman C, et al. (2000). Bilateral non-arteritic anterior ischemic optic neuropathy <strong>in</strong> a patient<br />

with autoimmune thrombocytopenia. Eur J Ophthalmol 10:180–182.<br />

Kirkali P, Kansu T. (1990). A case of unilateral posterior ischemic optic neuropathy after radical neck dissection.<br />

<strong>An</strong>n Ophthalmol 22:297–298.<br />

Korzets Z, Zeltzer E, Rathaus M, et al. (1998). Uremic optic neuropathy. A uremic manifestation mandat<strong>in</strong>g<br />

dialysis. Am J Nephrol 18:240–242.<br />

Kosmorsky G, Straga J, Knight C, et al. (1998). The role of transcranial Doppler <strong>in</strong> nonarteritic ischemic optic<br />

neuropathy. Am J Ophthalmol 126:288–290.<br />

Kothe AC, Flanagan J, Trev<strong>in</strong>o RC. (1990). True posterior ischemic optic neuropathy associated with herpes zoster<br />

ophthalmicus. Optom Vis Sci 67:845–849.<br />

Kupersmith MJ, Frohman LP, Sanderson MC, et al. (1997). Aspir<strong>in</strong> reduces the <strong>in</strong>cidence of second eye NAION: a<br />

retrospective study. J <strong>Neuro</strong>-ophthalmol 17:250–253.<br />

Landau K, W<strong>in</strong>terkorn JMS, Mailloux LU, Vetter W, Napolitano B. (1996). 24-hour blood pressure monitor<strong>in</strong>g <strong>in</strong><br />

patients with anterior ischemic optic neuropathy. Arch Ophthalmol 114:570–575.<br />

Lav<strong>in</strong> PJ. (1994). Optic disk risk factors for nonarteritic anterior ischemic optic neuropathy (letter). Am J<br />

Ophthalmol 117:822.<br />

Lee AG. (1995a). Reversible loss of vision due to posterior ischemic optic neuropathy. Can J Ophthalmol 30:327–329.<br />

Lee AG. (1995b). Ischemic optic neuropathy follow<strong>in</strong>g lumbar sp<strong>in</strong>e surgery. J <strong>Neuro</strong>surg 83:348–349.<br />

Lee AG. (1999). Prothrombotic and vascular risk factors <strong>in</strong> nonarteritic anterior ischemic optic neuropathy.<br />

Ophthalmology 106:2231.<br />

Lee AG, Brazis PW, Miller NR. (1996). Posterior ischemic optic neuropathy associated with migra<strong>in</strong>e. Headache<br />

36:506–509.<br />

Lee AG, Kohnen T, Ebner R, et al. (2000). Optic neuropathy associated with laser <strong>in</strong> situ keratomileusis. J Cataract<br />

Refract Surg 26:1581–1584.<br />

Lee AG, Lyle C, Tang R, et al. (2002). Optic nerve head drusen and ischemic optic neuropathy. Presented at the<br />

28th annual meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society. Copper Mounta<strong>in</strong>, Colorado,<br />

February 9–14.<br />

Lessell S. (1995). Surgery for ischemic optic neuropathy (editorial). Arch Ophthalmol 113:273–274.<br />

Lessell S. (1999). Nonarteritic anterior ischemic optic neuropathy. Enigma variations. Arch Ophthalmol 117:386–388.<br />

Lexa FJ, Galetta SL, Yousem DM, et al. (1993). Herpes zoster ophthalmicus with orbital pseudotumor syndrome<br />

complicated by optic nerve <strong>in</strong>farction and cerebral granulomatous angiitis: MR-pathologic correlation. AJ<br />

NR 14:185–190.<br />

Liew SC, Mitchell P. (1999). <strong>An</strong>terior ischaemic optic neuropathy <strong>in</strong> a patient with optic disc drusen. Aust N Z J<br />

Ophthalmol 27:157–160.<br />

Loftman BA, Shapiro J. (1996). Ischemic optic neuropathy (letter). J <strong>Neuro</strong>surg 84:306.<br />

Lund PE, Madsen K. (1994). Bilateral bl<strong>in</strong>dness after cardiopulmonary bypass. J Cardiothorac Vasc <strong>An</strong>esth<br />

8:448–450.<br />

Luscavage LE, Volpe NJ, Liss R (2001). Posterior ischemic optic neuropathy after uncomplicated cataract<br />

extraction. Am J Ophthalmol 132:408–409.<br />

Manor RS. (1990). Nonarteritic ischemic optic neuropathy <strong>in</strong> identical female tw<strong>in</strong>s: improvement of visual<br />

outcome <strong>in</strong> one by optic nerve decompression. (letter). Arch Ophthalmol 108:1067–1068.<br />

Mäntyjärvi M, Tuppura<strong>in</strong>en K, Ikäheimo K. (1998). Ocular side effects of Amiodarone. Surv Ophthalmol<br />

42:360–366.<br />

Marks SC, Jaques DA, Hirata RM, Saunders JR. (1990). Bl<strong>in</strong>dness follow<strong>in</strong>g bilateral radical neck dissection. Head<br />

Neck 12:342–345.


90 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Massry GG, Chung SM, Selhorst JB. (1995). Optic neuropathy, headache, and diplopia with MRI suggestive of<br />

cerebral arteritis <strong>in</strong> relaps<strong>in</strong>g polychondritis. J <strong>Neuro</strong>-ophthalmol 15:171–175.<br />

McCulley TJ, Lam BL, Feuer WJ. (2001). Incidence of nonarteritic anterior ischemic optic neuropathy associated<br />

with cataract extraction. Ophthalmology 108:1275–1278.<br />

McHenry JG, Spoor TC. (1993a). Optic nerve sheath fenestration for treatment of progressive ischemic optic<br />

neuropathy. Arch Ophthalmol 111:1601–1602, 1602–1603.<br />

McHenry JG, Spoor TC. (1993b). The efficacy of optic nerve sheath fenestration for anterior ischemic optic<br />

neuropathy and other optic neuropathies (letter). Am J Ophthalmol 116:254–256.<br />

Mochizuki A, Hayashi A, Hisahara S, Shoji S. (2000). Steroid-responsive Devic’s variant <strong>in</strong> Sjögren’s syndrome.<br />

<strong>Neuro</strong>logy 54:1319–1392.<br />

Mokri B, Silbert PL, Shiev<strong>in</strong>k WI, Piepgras DG. (1996). Cranial nerve palsy <strong>in</strong> spontaneous dissection of the<br />

extracranial <strong>in</strong>ternal carotid artery. <strong>Neuro</strong>logy 46:356–359.<br />

Moody TA, Irv<strong>in</strong>e AR, Cahn PH, Susac JO, Horton JC. (1993). Sudden visual field constriction associated with<br />

optic disc drusen. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:8–13.<br />

Moro F, Doro D, Mantovani E, Sala M. (1990). Ischemic optic neuropathies. Metab Pediatr Syst Ophthalmol 13:75–78.<br />

Moster ML, Katz JB, Sedwick LA. (1998). Visual loss after coronary bypass surgery. Surv Ophthalmol 42:453–457.<br />

Movsas T, Kelman SE, Elman MJ, Miller NR, Dickers<strong>in</strong> K, M<strong>in</strong> Y-I. (1991). The natural course of non-arteritic<br />

ischemic optic neuropathy (abstract). Invest Ophthalmol Vis Sci 42:951.<br />

Mutlukan E, Cullen JF. (1990). Can empty sella syndrome be mistaken for a progressive form of nonarteritic<br />

ischemic optic neuropathy? (letter). Arch Ophthalmol 108:1066–1067.<br />

Myers MA, Hamilton SR, Bogosian AJ, et al. (1997). Visual loss as a complication of sp<strong>in</strong>e surgery: a review of 37<br />

cases. Sp<strong>in</strong>e 22:1325–1329.<br />

Nawa Y, Jaques JD, Miller NR, et al. (1992). Bilateral posterior optic neuropathy after bilateral radical neck<br />

dissection and hypotension. Graefes Arch Cl<strong>in</strong> Exp Ophthalmol 230:301–308.<br />

Ohte A, Kimura T, Kimura W, et al. (1995). A case of optic disc <strong>in</strong>farction due to lupus anticoagulant. Folia<br />

Ophthalmol Jpn 46:783–787.<br />

Parsa CF, Muci-Mendoza R, Hoyt WF. (1998). <strong>An</strong>terior ischemic optic neuropathy <strong>in</strong> a disc with a cup. <strong>An</strong><br />

exception to the rule. J <strong>Neuro</strong>-ophthalmol 18:169–170.<br />

Parsons JT, Bova FL, Fitzgerald CR, Mendenhall WM, Million RR. (1994). Radiation optic neuropathy after<br />

megavoltage external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys 30:755–763.<br />

Perez-Santonja JJ, Bueno JL, Meza J, Garcia-Sandoval B, Serrano JM, Zato MA. (1993). Ischemic optic neuropathy<br />

after <strong>in</strong>traocular lens implantation to correct high myopia <strong>in</strong> a phakic patient. J Cataract Refract Surg<br />

19:651–654.<br />

Perlman JI, Forman S, Gonzalez ER. (1994). Retrobulbar ischemic optic neuropathy associated with sickle cell<br />

disease. J <strong>Neuro</strong>-ophthalmol 14:45–48.<br />

Pianka P, Almog Y, Man O, et al. (2000). Hyperhomocyst<strong>in</strong>emia <strong>in</strong> patients with nonarteritic anterior ischemic<br />

optic neuropathy, central ret<strong>in</strong>al artery occlusion, and central ret<strong>in</strong>al ve<strong>in</strong> occlusion. Ophthalmology<br />

107:1588–1592.<br />

Pomeranz HD, Smith KH, Hart WM Jr, Egan RA. (2002). Sildenafil-associated nonarteritic anterior ischemic optic<br />

neuropathy. Ophthalmology 109:584–587.<br />

Purv<strong>in</strong> VA. (1995). <strong>An</strong>terior ischemic optic neuropathy secondary to <strong>in</strong>terferon alpha. Arch Ophthalmol<br />

113:1041–1044.<br />

Regillo CD, Brown GC, Sav<strong>in</strong>o PJ, et al. (1995). Diabetic papillopathy. Patient characteristics and fundus f<strong>in</strong>d<strong>in</strong>gs.<br />

Arch Ophthalmol 113:889–895.<br />

Re<strong>in</strong>o S, Munoz-Rodriguez FJ, Cervera R, et al. (1997). Optic neuropathy <strong>in</strong> the primary antiphospholipid<br />

syndrome: report of a case and review of the literature. Cl<strong>in</strong> Rheumatol 16:629–631.<br />

Remigio D, Wertenbaker C, Katz DM. (2000). Post-operative bilateral vision loss. Surv Ophthalmol 44:426–432.<br />

R<strong>in</strong>aldi G, Pastori G, Ammirati M, Bellavitis A. (1990). Considerations upon a non-typical anterior ischemic optic<br />

neuropathy. Metab Pediatr Syst Ophthalmol 13:92–95.<br />

Rivk<strong>in</strong> MJ, Hedges TR III, Logigian EL. (1990). Carotid dissection present<strong>in</strong>g as posterior ischemic optic<br />

neuropathy. <strong>Neuro</strong>logy 40:1469.<br />

Rizzo JF III, Lessell S. (1991). Optic neuritis and ischemic optic neuropathy: overlapp<strong>in</strong>g cl<strong>in</strong>ical profiles. Arch<br />

Ophthalmol 109:1668–1672.<br />

Rosler SH, Conway MD, <strong>An</strong>aya JM, et al. (1995). Ischemic optic neuropathy and high-level anticardiolip<strong>in</strong><br />

antibodies <strong>in</strong> primary Sjogren’s syndrome. Lupus 4:155–157.<br />

Roth GJ, Calverly DC. (1994). Aspir<strong>in</strong>, platelets, and thrombosis: theory and practice. Blood 83:885–898.<br />

Roth S, Nunez R, Schreider BD. (1997). Unexpla<strong>in</strong>ed visual loss after lumbar sp<strong>in</strong>al fusion. J <strong>Neuro</strong>surg <strong>An</strong>esthesiol<br />

9:346–348.


Nonarteritic Ischemic Optic <strong>Neuro</strong>pathy 91<br />

Sadda SR, Nee M, Miller NR, et al. (2001). <strong>Cl<strong>in</strong>ical</strong> spectrum of posterior ischemic optic neuropathy. Am J<br />

Ophthalmol 132:743–750.<br />

Sadun AA. (1993). The efficacy of optic nerve sheath decompression for anterior ischemic optic neuropathy and<br />

other optic neuropathies. Am J Ophthalmol 115:384–389.<br />

Sadun F, Wang M, Lev<strong>in</strong> LB, Feldon S. (1996). Familial nonarteritic ischemic optic neuropathy. Presented at the<br />

meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society.<br />

Salomon O, Huna-Brown R, Kurtz S, et al. (1999a). <strong>An</strong>alysis of prothrombotic and vascular factors <strong>in</strong> patients with<br />

nonarteritic anterior ischemic optic neuropathy. Ophthalmology 106:739–742.<br />

Salomon O, Huna-Baron R, Ste<strong>in</strong>berg DM, et al. (1999b). Role of aspir<strong>in</strong> <strong>in</strong> reduc<strong>in</strong>g the frequency of second eye<br />

<strong>in</strong>volvement <strong>in</strong> patients with non-arteritic anterior ischaemic optic neuropathy. Eye 13:357–359.<br />

Sanderson M, Kupersmith M, Frohman L, et al. (1995). Aspir<strong>in</strong> reduces anterior ischemic optic neuropathy <strong>in</strong> the<br />

second eye. ARVO abstracts. Invest Ophthalmol Vis Sci 36:S196.<br />

Sav<strong>in</strong>o PJ, Burde RM, Mills RP. (1990). Visual loss follow<strong>in</strong>g <strong>in</strong>tranasal anesthetic <strong>in</strong>jection. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol<br />

10:140–144.<br />

Sawle GV, James CB, Ross-Russell RW. (1990). The natural history of nonarteritic anterior ischemic optic<br />

neuropathy. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 53:830–833.<br />

Schmidt MH, Fox AJ, Nicolle DA. (1997). Bilateral anterior ischemic optic neuropathy as a presentation of<br />

Takayasu’s disease. J <strong>Neuro</strong>-ophthalmol 17:156–161.<br />

Schnobel GA, Schmidbauer M, Millesi W, Undt G. (1995). Posterior ischemic optic neuropathy follow<strong>in</strong>g bilateral<br />

radical neck dissection. Int J Oral Maxillofac Surg 24:283–287.<br />

Schönhofer PS, Werner B, Tröger U. (1997). Ocular damage associated with proton pump <strong>in</strong>hibitors. Br Med J<br />

314:1805.<br />

Segato T, Peirmarochhi S, Midena E. (1990). The role of fluoresce<strong>in</strong> angiography <strong>in</strong> the <strong>in</strong>terpretation of optic<br />

nerve head diseases. Metab Pediatr Syst Ophthalmol 13:111–114.<br />

Sehgal M, Swanson JW, DeRemee RA, Colby TV. (1995). <strong>Neuro</strong>logic manifestations of Churg-Strauss syndrome.<br />

Mayo Cl<strong>in</strong> Proc 70:337–341.<br />

Sergott RC, Sav<strong>in</strong>o PJ, Bosley TM. (1990). Optic nerve sheath decompression: a cl<strong>in</strong>ical review and proposed<br />

pathophysiologic mechanism. Aust N Z J Ophthalmol 18:365–373.<br />

Shaked G, Gavriel A, Roy-Shapira A. (1998). <strong>An</strong>terior ischemic optic neuropathy after hemorrhagic shock. J Trauma<br />

44:923–925.<br />

Shapira OM, Kimmel WA, L<strong>in</strong>dsey PS, Shahian DM. (1996). <strong>An</strong>terior ischemic optic neuropathy after open heart<br />

operations. <strong>An</strong>n Thoracic Surg 61:660–666.<br />

Siatkowski RM, Scott IU, Verm AM, et al. (2001). Optic neuropathy and chiasmopathy <strong>in</strong> the diagnosis of systemic<br />

lupus erythematosus. J <strong>Neuro</strong>-<strong>ophthalmology</strong> 21:193–198.<br />

Slav<strong>in</strong> ML, Margulis M. (2001). <strong>An</strong>terior ischemic optic neuropathy follow<strong>in</strong>g acute angle-closure glaucoma. Arch<br />

Ophthalmol 119:1215.<br />

Smith DB. (1995). Ischemic optic neuropathy decompression trial (letter). JAMA 274:612.<br />

Smith FP. (1996). Ischemic optic neuropathy (letter). J <strong>Neuro</strong>surg 84:149–150.<br />

Spoor TC, McHenry JG, Lau-Sickon L. (1993). Progressive and static nonarteritic ischemic optic neuropathy<br />

treated by optic nerve sheath decompression. Ophthalmology 100:306–311.<br />

Spoor TC, Wilk<strong>in</strong>son MJ, Ramocki JM. (1991). Optic nerve sheath decompression for the treatment of progressive<br />

nonarteritic ischemic optic neuropathy. Am J Ophthalmol 111:724–728.<br />

Sr<strong>in</strong>ivasan S, Fern A, Watson WH, McColl MD. (2001). Reversal of nonarteritic anterior ischemic optic neuropathy<br />

associated with coexist<strong>in</strong>g primary antiphospholipid syndrome and factor V Leiden mutation. Am J<br />

Ophthalmol 131:671–673.<br />

Stevens WR, Glazer PA, Kelley SD, et al. (1997). Ophthalmic complications after sp<strong>in</strong>al surgery. Sp<strong>in</strong>e 22:1319–1324.<br />

Strome SE, Hill JS, Burnst<strong>in</strong>e MA, et al. (1997). <strong>An</strong>terior ischemic optic neuropathy follow<strong>in</strong>g neck dissection. Head<br />

& Neck 19:148–152.<br />

Swartz NG, Beck RW, Sav<strong>in</strong>o RC, et al. (1995). Pa<strong>in</strong> <strong>in</strong> anterior ischemic optic neuropathy. J <strong>Neuro</strong>-ophthalmol<br />

15:9–10.<br />

Talks SJ, Chong NHV, Gibson JM, et al. (1995). Fibr<strong>in</strong>ogen, cholesterol, and smok<strong>in</strong>g as risk factors for nonarteritic<br />

anterior ischemic optic neuropathy. Eye 9:85.<br />

Tang RA. (1995). Interferon: friend or foe? Arch Ophthalmol 113:987.<br />

Teshome T and Alemayehu W. (1999). Loss of vision from distant haemorrhage: report of four cases. East Afr Med J<br />

76:706–708.<br />

Tham M-B, Cunn<strong>in</strong>gham ET Jr. (2001). <strong>An</strong>terior ischaemic optic neuropathy <strong>in</strong> a patient with HLA-B27 associated<br />

anterior uveitis and ankylos<strong>in</strong>g spondylitis. Br J Ophthalmol 85:754.


92 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Tomsak RL, Zakov ZN. (1998). Nonarteritic anterior ischemic optic neuropathy with macular edema. Visual<br />

improvement and fluoresce<strong>in</strong> angiographic characteristics. J <strong>Neuro</strong>-ophthalmol 18:166–168.<br />

Vaphiades MS, Regillo CD, Arnold AC. (2002). The disk edema dilemma. Surv Ophthalmol 47:183–188.<br />

Vitali C, Genovesi-Ebert F, Romani A, et al. (1996). Ophthalmological and neuro-ophthalmological <strong>in</strong>volvement <strong>in</strong><br />

Churg-Strauss syndrome: a case report. Graefes Arch Cl<strong>in</strong> Exp Ophthalmol 234:404–408.<br />

Wall M, Newman SA. (1991). Optic nerve sheath decompression for the treatment of progressive nonarteritic<br />

ischemic optic neuropathy (letter). Am J Ophthalmol 112:741–742.<br />

Wang MY, Sadun F, Lev<strong>in</strong> LB, et al. (1999). Occurrence of familial nonarteritic anterior ischemic optic neuropathy<br />

<strong>in</strong> a case series. J <strong>Neuro</strong>-ophthalmol 19:144–147.<br />

Warner JEA, Lessell S, Rizzo JF III, Newman NJ. (1997). Does optic disc appearance dist<strong>in</strong>guish ischemic optic<br />

neuropathy from optic neuritis? Arch Ophthalmol 115:1408–1410.<br />

Weger M, Stranger O, Deutschmann H, et al. (2001). Hyperhomocyst(e)<strong>in</strong>aemia, but not MTHFR C677T mutation,<br />

as a risk factor for non-arteritic ischaemic optic neuropathy. Br J Ophthalmology 85:803–806.<br />

Weger M, Haas A, Stanger O, et al. (2002). Chlamydia pneumoniae seropositivity and the risk of nonarteritic<br />

ischemic optic neuropathy. Ophthalmology 109:749–752.<br />

Williams GC, Lee AG, Adler HL, et al. (1999). Bilateral anterior ischemic optic neuropathy and branch ret<strong>in</strong>al<br />

artery occlusion after radical prostatectomy. J Urol 162:1384–1385.<br />

Williams EL, Hart WM Jr, Tempelhoff R. (1995). Postoperative ischemic optic neuropathy. <strong>An</strong>esth <strong>An</strong>alg<br />

80:1018–1029.<br />

Wilson JF, Freeman SB, Breene DP. (1991). <strong>An</strong>terior ischemic optic neuropathy caus<strong>in</strong>g bl<strong>in</strong>dness <strong>in</strong> the head and<br />

neck surgery patient. Arch Otolaryngol Head Neck Surg 117:1304–1306.<br />

Wilson WB. (1990). Does optic nerve sheath decompression help progressive ischemic optic neuropathy? (letter).<br />

Arch Ophthalmol 108:1065–1066.<br />

W<strong>in</strong>kelmayer WC, Eigner M, Berger O, et al. (2001). Optic neuropathy <strong>in</strong> uremia: an <strong>in</strong>terdiscipl<strong>in</strong>ary emergency.<br />

Am J Kidney Dis 37:E23.<br />

Wolfe S, Schulte-Strake U, Bertram B, et al. (1993). Hemodilution therapy <strong>in</strong> patients with acute anterior ischemic<br />

optic neuropathy. Ophthalmology 90:21–26.<br />

Worrall BB, Moazami G, Odel JG, Behrens MM. (1997). <strong>An</strong>terior ischemic optic neuropathy and activated prote<strong>in</strong><br />

C resistance. A case report and review of the literature. J <strong>Neuro</strong>-ophthalmol 17:162–165.<br />

WuDunn D, Zimmerman K, Sadun AA, Feldon SE. (1997). Comparison of visual function <strong>in</strong> fellow eyes after<br />

bilateral nonarteritic anterior ischemic optic neuropathy. Ophthalmology 104:104–111.<br />

Yee RD, Selky AK, Purv<strong>in</strong> VA. (1993). Outcomes of surgical and nonsurgical management of nonarteritic ischemic<br />

optic neuropathy. Trans Am Ophthalmol Soc 91:227–243.


5 r<br />

Arteritic <strong>An</strong>terior Ischemic Optic<br />

<strong>Neuro</strong>pathy and Giant Cell Arteritis<br />

Giant cell (temporal or cranial) arteritis (GCA) is an <strong>in</strong>flammatory vasculopathy of the<br />

elderly that affects medium- to large-sized arteries. GCA may present with numerous<br />

systemic and ocular manifestations (Aburahma, 1992, 1996; Aiello, 1993; Astion, 1994;<br />

Barton, 1991; Berlit, 1992; Buchb<strong>in</strong>der, 1992; Cid, 1998; Cleark<strong>in</strong>, 1992b; Diamond, 1991,<br />

1993; DiBartolomeo, 1992; Evans, 1993; Gabriel, 1995; Gaynes, 1994; Glutz von<br />

Blotsheim, 1997; Grosser, 1999; Hayreh, 1991, 1998b,c; Heathcote, 1999; Hellman,<br />

1993; Hunder, 1990a; Kachroo, 1996; Kattah, 1999; Kyle, 1993; Matzk<strong>in</strong>, 1992; Mizen,<br />

1991; Myles, 1992; Nordborg, 1990; Postel, 1993; Pounta<strong>in</strong>, 1995; Rousseau, 1994;<br />

Salvarani, 1995; Schmidt, 1994; Siatkowski, 1993; Sonnenblick, 1994; Stevens, 1995;<br />

We<strong>in</strong>berg, 1994). Here we concentrate on the ocular manifestations, diagnosis, and<br />

treatment of GCA. Less emphasis is placed on nonocular <strong>in</strong>volvement by GCA.<br />

What <strong>Cl<strong>in</strong>ical</strong> Features Suggest Giant<br />

Cell Arteritis?<br />

GCA usually causes visual loss due to anterior ischemic optic neuropathy (AION). All<br />

patients older than age 50 years with AION should be suspected of hav<strong>in</strong>g GCA. The<br />

<strong>in</strong>dex of suspicion is greater with <strong>in</strong>creas<strong>in</strong>g numbers of typical features of GCA listed<br />

<strong>in</strong> Table 5–1 (Aburahma, 1992, 1996; Aiello, 1993; Astion, 1994; Barton, 1991; Berlit, 1992;<br />

Buchb<strong>in</strong>der, 1992; Cleark<strong>in</strong>, 1992b; Diamond, 1991, 1993; DiBartolomeo, 1992; Evans,<br />

1993; Gabriel, 1995; Gaynes, 1994; Glutz von Blotsheim, 1997; Goh, 2000; Hayreh,<br />

1991, 1998b,c; Hellman, 1993; Hunder, 1990a; Kachroo, 1996; Kyle, 1993; Liu, 1994;<br />

Matzk<strong>in</strong>, 1992; Mizen, 1991; Myles, 1992; Nordborg, 1990; Postel, 1993; Pounta<strong>in</strong>, 1995;<br />

Rousseau, 1994; Salvarani, 1995; Siatkowski, 1993; Sonnenblick, 1994; Stevens, 1995;<br />

We<strong>in</strong>berg, 1994).<br />

93


94 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 5–1. Typical Features of Giant Cell Arteritis (GCA)<br />

Age greater than 50 years (median 75 years)<br />

Acute, often severe, visual loss (usually anterior ischemic optic neuropathy [AION])<br />

Unilateral or bilateral visual loss (higher <strong>in</strong>cidence of bilateral than nonarteritic [NA]-AION)<br />

Pallid swell<strong>in</strong>g of the optic nerve (may be ‘‘chalk white’’)<br />

Optic atrophy eventually (usually <strong>in</strong> 6 to 8 weeks) often with end-stage optic disc appearance of<br />

cupp<strong>in</strong>g with pallor and loss of neuroret<strong>in</strong>al rim (Danesh-Meyer, 2001; Hayreh, 1998c, 2001)<br />

Constitutional signs and symptoms<br />

Headache (4–100%)<br />

Scalp or temporal artery tenderness (28–91%)<br />

Weight loss (16–76%)<br />

Jaw claudication (4–67%) (Lee, 1995)<br />

<strong>An</strong>orexia (14–69%)<br />

Fever (low grade) and diaphoresis (Fife, 1994)<br />

Proximal muscle aches or weakness (28–86%)<br />

Polymyalgia rheumatica<br />

Morn<strong>in</strong>g stiffness last<strong>in</strong>g 30 m<strong>in</strong>utes or more<br />

Proximal jo<strong>in</strong>t pa<strong>in</strong> (e.g., shoulders, hips, neck, or torso)<br />

Fatigue and malaise (12–97%)<br />

Leg claudication (2–43%)<br />

Elevated erythrocyte sedimentation rate (usually > 50 mm per hour by Westergren method)<br />

Temporal artery biopsy positive<br />

Is the <strong>Cl<strong>in</strong>ical</strong> Suspicion for GCA High?<br />

In 1990 the American College of Rheumatology (Hunder, 1990a) analyzed 214 patients<br />

with GCA (196 proven by positive temporal artery biopsy) and compared them with<br />

593 patients with other forms of vasculitis. In their analysis of 33 criteria, the highest<br />

sensitivity criteria for GCA were the follow<strong>in</strong>g:<br />

1. Age >50 years (mean age 69 years, 90% >60 years)<br />

2. Westergren erythrocyte sedimentation rate (ESR) >50 mm=hour<br />

3. Abnormal temporal artery biopsy (TAB)<br />

The highest specificity cl<strong>in</strong>ical criteria were the follow<strong>in</strong>g:<br />

1. Jaw and=or tongue claudication<br />

2. Visual abnormalities (e.g., AION, amaurosis, optic atrophy)<br />

3. Temporal artery abnormalities (e.g., decreased pulse, tenderness, or nodules)<br />

If at least three or more criteria of the follow<strong>in</strong>g five were met, the specificity of<br />

diagnosis was 91.2% and the sensitivity was 93.5%:<br />

1. Age >50 years<br />

2. New headache (localized)<br />

3. Temporal artery abnormality (see above)<br />

4. Elevated ESR ( >50 mm=hour)<br />

5. Abnormal temporal artery biopsy (e.g., necrotiz<strong>in</strong>g arteritis, mult<strong>in</strong>ucleated giant cells)


Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 95<br />

One of these diagnostic criteria (positive temporal artery biopsy) makes the<br />

diagnosis with high specificity and is the ‘‘gold standard’’ for diagnosis. Fernandez-<br />

Herlihy <strong>in</strong>creased the specificity for diagnosis of GCA by def<strong>in</strong><strong>in</strong>g symptom clusters,<br />

for example, jaw claudication with any of the follow<strong>in</strong>g (Fernandez-Herlihy,<br />

1988):<br />

1. Recent headaches and scalp tenderness<br />

2. Scalp tenderness and ESR >50 mm=hour<br />

3. Visual symptoms and ESR >50 mm=hour<br />

A specificity of 90 to 100% could be obta<strong>in</strong>ed if the cluster <strong>in</strong>cluded elevated ESR, scalp<br />

tenderness, jaw claudication, recent visual changes, polymyalgia rheumatica, and a<br />

good response to steroid therapy. A 94.8% sensitivity and 100% specificity were<br />

obta<strong>in</strong>ed if the symptom cluster <strong>in</strong>cluded new-onset headache, jaw claudication, and<br />

abnormal temporal artery exam<strong>in</strong>ation (Mizen, 1991). Vilaseca et al found that simultaneous<br />

jaw claudication, abnormal temporal arteries on exam, and new headache had a<br />

specificity of 94.8% for positive TAB (Vilaseca, 1987). Chmelewski et al compared the<br />

<strong>in</strong>itial cl<strong>in</strong>ical features of 30 patients with positive TAB and 68 with negative TAB<br />

(Chmelewski, 1992). TAB-positive patients had significantly <strong>in</strong>creased <strong>in</strong>cidence of<br />

headache (93% vs. 62%) and jaw claudication (50% vs. 18%). Jaw claudication had a<br />

specificity of 56% as a differentiat<strong>in</strong>g feature, but the specificity of headache was low<br />

(40%). Hayreh et al reported that jaw claudication (p ¼ 0.001) and neck pa<strong>in</strong> (mostly <strong>in</strong><br />

the occipital and back parts of the neck; p ¼ 0.0003) were significant <strong>in</strong>dicators of a<br />

positive TAB <strong>in</strong>dependent of ESR and age, and that these cl<strong>in</strong>ical signs were more<br />

highly correlated to a positive TAB than anorexia, weight loss, fever, and scalp<br />

tenderness (Hayreh, 1997). Hayreh et al felt that the odds of a positive TAB were<br />

9.0 times greater with jaw claudication, 3.3 times greater with neck pa<strong>in</strong>, 3.2 times<br />

greater with a C-reactive prote<strong>in</strong> (CRP) >2.45 mg=dL, 2.1 times greater with an ESR of<br />

47 to 107 mm=hour, 2.7 times greater with an ESR >107 mm=hour, and 2.0 times greater<br />

when the patient was greater than 75 years old (compared with age below 75 years).<br />

The typical features of GCA are listed <strong>in</strong> Table 5–1.<br />

Acute visual loss is reported <strong>in</strong> 7 to 60% (average 36%) of patients with GCA.<br />

Although the usual cause of visual loss <strong>in</strong> GCA is AION or central ret<strong>in</strong>al artery<br />

occlusion (CRAO) (Charness, 1991; Cleark<strong>in</strong>, 1992a; Liu, 1994), cilioret<strong>in</strong>al artery<br />

occlusion, ocular ischemic syndrome, posterior ischemic optic neuropathy (PION),<br />

choroidal ischemia, or rarely occipital lobe ischemia may also occur (Miller, 1991;<br />

Sadda, 2001). In a prospective study of 170 patients with biopsy-proven GCA, 85 (50%)<br />

presented with ocular <strong>in</strong>volvement (Hayreh, 1998b). The ocular f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this study<br />

are outl<strong>in</strong>ed <strong>in</strong> Table 5–2.<br />

Although visual loss and AION <strong>in</strong> GCA tends to be more severe than that seen <strong>in</strong><br />

NA-AION (Hayreh, 1998b), the lack of severe visual loss is not a differentiat<strong>in</strong>g feature.<br />

Patients with AION <strong>in</strong> GCA may have little or no visual loss. On the other hand, very<br />

severe visual loss with AION is a ‘‘red flag’’ for GCA. In a study by Hayreh et al, 54% of<br />

patients with arteritic AION had <strong>in</strong>itial visual acuity of count<strong>in</strong>g f<strong>in</strong>gers to no light<br />

perception (compared to 26% of patients with NA-AION). Light perception was present<br />

<strong>in</strong> 29% and no light perception <strong>in</strong> 4% of AION due to GCA (Hayreh, 1998c). Therefore,<br />

massive early visual loss <strong>in</strong> AION is suggestive of GCA. Up to 25% of GCA patients<br />

have visual acuities of 20=40 or better and 20% of NA-AION patients have <strong>in</strong>itial visual<br />

acuities of count<strong>in</strong>g f<strong>in</strong>gers or worse (Hayreh, 1990). The cl<strong>in</strong>ical features favor<strong>in</strong>g


96 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 5–2. Ocular F<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> 85 Patients with Biopsy-Proven<br />

GCA (Hayreh, 1998b) and Ocular Involvement<br />

F<strong>in</strong>d<strong>in</strong>g<br />

Ocular symptoms<br />

Number of Patients (%)<br />

Visual loss of vary<strong>in</strong>g severity 83 (97.7%)<br />

Amaurosis fugax 26 (30.6%)<br />

Diplopia 5 (5.9%)<br />

Eye pa<strong>in</strong><br />

Ocular signs<br />

7 (8.2%)<br />

Arteritic AION 69 (81.2%)<br />

Central ret<strong>in</strong>al artery occlusion 12 (14.1%)<br />

Cilioret<strong>in</strong>al artery occlusion 12 (14.1%)<br />

Posterior ION 6 (7.1%)<br />

Ocular ischemic syndrome 1 (1.2%)<br />

n ¼ 85 with ocular <strong>in</strong>volvement.<br />

arteritic AION over NA-AION are listed <strong>in</strong> Table 5–3. Other less common ocular<br />

features of GCA are listed <strong>in</strong> Table 5–4.<br />

The differential diagnosis for these ocular conditions (especially unexpla<strong>in</strong>ed diplopia,<br />

ret<strong>in</strong>al or choroidal ischemia, central ret<strong>in</strong>al artery occlusion without visible emboli, or<br />

transient visual loss) should <strong>in</strong>clude GCA. Goldberg reviewed the literature <strong>in</strong> 1983 on<br />

ocular motor paresis <strong>in</strong> GCA and found ocular muscle <strong>in</strong>volvement was reported <strong>in</strong> 59<br />

patients (Goldberg, 1983). The duration of symptoms was transitory to several months.<br />

Many cases had other signs to suggest GCA (e.g., headache, scalp tenderness, optic<br />

nerve, or ret<strong>in</strong>al <strong>in</strong>volvement). The diplopia was often transient, variable, and some-<br />

Table 5–3. Features Suggestive of Arteritic AION Rather than NA-AION<br />

Elderly patients with constitutional symptoms (especially scalp tenderness or jaw claudication)<br />

Polymyalgia rheumatica<br />

Elevated erythrocyte sedimentation rate (ESR) and=or C-reactive prote<strong>in</strong> (CRP)<br />

Amaurosis fugax—likely transient optic nerve ischemia rather than ret<strong>in</strong>al ischemia (Hayreh,<br />

1998b; Liu, 1994; Ronchetto, 1992)<br />

Ocular f<strong>in</strong>d<strong>in</strong>gs (Hayreh, 1990, 1997, 1998b,c; Sadda, 2001):<br />

Posterior ischemic optic neuropathy (PION)<br />

Cup to disc ratio greater than 0.2 <strong>in</strong> fellow eye<br />

Early massive or bilateral simultaneous visual loss<br />

Markedly pallid optic disc edema (chalky white <strong>in</strong> 68.7%)<br />

End-stage optic disc appearance of cupp<strong>in</strong>g (seen <strong>in</strong> 92% of eyes with arteritic AION vs. 2% of<br />

eyes with NA-AION) (Danesh-Meyer, 2001)<br />

Fluoresce<strong>in</strong> angiography f<strong>in</strong>d<strong>in</strong>gs of choroidal nonperfusion or delayed choroidal fill<strong>in</strong>g<br />

(<strong>in</strong>docyan<strong>in</strong>e green angiography provides no additional <strong>in</strong>formation) (Hayreh, 1990; Mack,<br />

1991; Segato, 1990; Siatkowski, 1993; Valmaggia, 1999)<br />

AION associated with choroidal nonfill<strong>in</strong>g<br />

Simultaneous AION with nonembolic cilioret<strong>in</strong>al artery occlusion (CRAO)<br />

Simultaneous AION with choroidal or ret<strong>in</strong>al <strong>in</strong>farction


Table 5–4. Other Ocular Features of GCA<br />

Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 97<br />

Visual loss<br />

Transient visual loss (Hayreh, 1998b; Liu, 1994; Thystrup, 1994)<br />

Alternat<strong>in</strong>g transient visual loss (F<strong>in</strong>elli, 1997)<br />

Alternat<strong>in</strong>g transient visual loss <strong>in</strong>duced by bright light (Galetta, 1997b)<br />

Posture related ret<strong>in</strong>al ischemia<br />

Bilateral transient visual loss with change <strong>in</strong> posture due to vertebrobasilar <strong>in</strong>volvement (Diego,<br />

1998)<br />

Bilateral transient visual loss with change <strong>in</strong> posture due to impend<strong>in</strong>g AION (Diego, 1998)<br />

Nonembolic branch or central ret<strong>in</strong>al artery occlusion (F<strong>in</strong>eman, 1996; Glutz von Blotsheim, 1997;<br />

Hayreh, 1998b; Liu, 1994; Miller, 1991; We<strong>in</strong>, 2000)<br />

Comb<strong>in</strong>ed central ret<strong>in</strong>al artery and ve<strong>in</strong> occlusion<br />

Ophthalmic artery occlusion<br />

Ophthalmic artery microembolism (Schauble, 2000)<br />

Choroidal or ret<strong>in</strong>al ischemia (Glutz von Blotsheim, 1997; Quillen, 1993; Slav<strong>in</strong>, 1994)<br />

Cotton wool spots (Hayreh, 1998b; MacLeod, 1993; Melberg, 1995; Thystrup, 1994)<br />

General anesthesia <strong>in</strong>duced ischemic optic neuropathy<br />

Pre- and perichiasmal ischemia and visual field defects<br />

Postchiasmal ischemic visual field defects (rare)<br />

<strong>An</strong>terior segment ischemia (Birt, 1994)<br />

Episcleritis and scleritis<br />

Iritis<br />

Panuveitis (Rajesh, 2000)<br />

Conjunctivitis<br />

Glaucoma (e.g., acute angle closure glaucoma)<br />

Uveitic glaucoma (Tomsak, 1997)<br />

Transient bilateral corneal edema<br />

Acute hypotony<br />

Marg<strong>in</strong>al corneal ulceration (Tomsak, 1997)<br />

Autonomic pupil abnormalities<br />

Tonic pupil<br />

Light-near dissociation<br />

Horner syndrome (Pascual-Sedano, 1998)<br />

Miosis<br />

Mydriasis<br />

Diplopia<br />

Orbital ischemia<br />

Ophthalmoplegia (Goadsby, 1991) due to ischemia to cranial nerves III, IV, and=or VI (Bondeson,<br />

1997; Diamond, 1991; Killer, 2000)<br />

Bra<strong>in</strong>stem ischemia (rare)<br />

Internuclear ophthalmoplegia (Ahmed, 1999; Askari, 1993; Eggenberger, 1998; Johnston, 1992;<br />

Trend, 1990)<br />

Internuclear ophthalmoplegia with facial nerve palsy (‘‘eight-and-a-half syndrome’’) (Eggenberger,<br />

1998)<br />

One-and-a-half syndrome (Galetta, 1997b)<br />

Nystagmus<br />

(cont<strong>in</strong>ued)


98 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 5–4. (cont<strong>in</strong>ued)<br />

Subjective diplopia by history<br />

Transient diplopia with or without ptosis (Hayreh, 1998b; Liu, 1994)<br />

Divergence <strong>in</strong>sufficiency (Jacobson, 2000)<br />

Transient oculomotor synk<strong>in</strong>esis<br />

Laboratory measures of ischemia<br />

Color Doppler hemodynamics (Ho, 1994)<br />

Decreased ocular pulse<br />

Decreased ocular pulse amplitudes<br />

Orbital <strong>in</strong>volvement<br />

Orbital pseudotumor (Chertok, 1990; de Heide, 1999; Laidlaw, 1990; Lee, 2001; Looney, 1999)<br />

Orbital <strong>in</strong>farction (Borruat, 1993; Chertok, 1990; Laidlaw, 1990)<br />

Ocular ischemic syndrome (Casson, 2001; Hamed, 1992; Hayreh, 1998b; Hwang, 1999); may<br />

be bilateral (Casson, 2001)<br />

Reversible bruit<br />

Optic nerve enhancement on MR imag<strong>in</strong>g (may help <strong>in</strong> differentiation from NA-AION)<br />

(Lee, 1999a)<br />

times not associated with motility exam<strong>in</strong>ation abnormalities. The optic nerve or central<br />

ret<strong>in</strong>al artery <strong>in</strong>volvement followed with<strong>in</strong> several days <strong>in</strong> many patients. Graham<br />

described 10 GCA patients with ophthalmoplegia (four pupil-spar<strong>in</strong>g third nerve<br />

palsies, four sixth nerve palsies, and two multiple ocular motor nerve palsies)<br />

(Graham, 1980). Bondeson described a patient with pupil-spar<strong>in</strong>g third nerve palsy<br />

secondary to GCA (Bondeson, 1997). Brilakis and Lee reviewed 18 previous reports<br />

(81 patients) of diplopia with GCA (Brilakis, 1998). Of these 81 patients, 60 (74%) had<br />

other signs and symptoms of GCA and 21 (26%) had <strong>in</strong>sufficient cl<strong>in</strong>ical <strong>in</strong>formation to<br />

determ<strong>in</strong>e if other signs and symptoms of GCA were present.<br />

Liu et al noted that transient monocular bl<strong>in</strong>dness (18% of patients) and transient<br />

diplopia (15% of patients) were the most common premonitory visual compla<strong>in</strong>t <strong>in</strong><br />

GCA (Liu, 1994). Hayreh also described transient diplopia <strong>in</strong> 5.9% of patients with GCA<br />

(Hayreh, 1998b) and noted that all of the extraocular muscles and the levator palpebrae<br />

superioris are supplied by more than one and up to five vascular branches of the<br />

ophthalmic artery, except for the <strong>in</strong>ferior oblique (with only one branch). This collateral<br />

vascular supply may expla<strong>in</strong> the usual transient nature of diplopia <strong>in</strong> GCA, which is<br />

thought due to ischemia of one or more of the extraocular muscles due to arteritic<br />

occlusion of one or more of the muscular arteries (Hayreh, 1998a).<br />

We do not rout<strong>in</strong>ely obta<strong>in</strong> an ESR on patients with transient or persistent diplopia<br />

without systemic signs of GCA <strong>in</strong> whom there is a clear alternative etiology (e.g., other<br />

vasculopathic risk factors). Nevertheless, we consider the diagnosis of GCA <strong>in</strong> all<br />

patients over 55 years with unexpla<strong>in</strong>ed diplopia (class III, level U). It is our current<br />

practice to evaluate for GCA <strong>in</strong> elderly patients with diplopia that is ill def<strong>in</strong>ed or<br />

transient or if there are other signs or symptoms of GCA (class III, level U).<br />

Caselli and Hunder reviewed the neurologic aspects of GCA and emphasized the<br />

often underrecognized fact that GCA affects the aortic arch and its branches, not just the<br />

superficial temporal arteries. Although GCA does not cause a widespread <strong>in</strong>tracranial<br />

vasculitis, it may <strong>in</strong>volve the cervicocephalic arteries <strong>in</strong>clud<strong>in</strong>g the carotid artery and


vertebral arteries (Caselli, 1993). Less commonly recognized f<strong>in</strong>d<strong>in</strong>gs of GCA are listed<br />

<strong>in</strong> Table 5–5.<br />

Is the ESR Always Elevated <strong>in</strong> GCA?<br />

Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 99<br />

Although the ESR is often elevated <strong>in</strong> GCA (Britta<strong>in</strong>, 1991; We<strong>in</strong>ste<strong>in</strong>, 1994), patients<br />

with biopsy-proven GCA may have a normal ESR (2–30%) (Brigden, 1998; Britta<strong>in</strong>,<br />

1991; Glutz von Blotsheim, 1997; Grodum, 1990; Hayreh, 1997; Jundt, 1991; Litw<strong>in</strong>,<br />

1992; Liu, 1994; Neish, 1991; Salvarani, 2001; Wise, 1991; Zweegman, 1993). Cullen<br />

found an average ESR of 84 mm=hour <strong>in</strong> TAB proven GCA (Cullen, 1967).<br />

What Is the Normal Value for an ESR?<br />

The ESR rises with <strong>in</strong>creas<strong>in</strong>g age. The Westergren method is preferred over the<br />

W<strong>in</strong>trobe method because of the more limited scale of the W<strong>in</strong>trobe ESR. Boyd and<br />

Hoffbrand reported a Westergren ESR normal of 40 mm=hour for persons over age<br />

65 years (Boyd, 1966). Bottiger and Svedberg felt that 30 mm=hour for women and<br />

20 mm=hour for men was a reasonable limit (Bottiger, 1967). Hayreh concluded that a<br />

patient with an ESR >40 mm=hour should be considered to ‘‘suffer from temporal<br />

arteritis, unless proven otherwise.’’<br />

Miller et al measured Westergren ESR <strong>in</strong> 27,912 adults aged 20 to 65 years (Miller,<br />

1983). None of the subjects were anemic. A series of curves of ESR versus age were<br />

derived for men and women with maximum values for 98% of the population.<br />

<strong>An</strong> empiric formula (98% curve) for deriv<strong>in</strong>g the maximum ESR normal is listed as<br />

follows (Miller, 1983; Sox, 1986): for men, age divided by 2; for women, age þ10 divided<br />

by 2.<br />

Hayreh et al suggested a cut-off criterion for an elevated ESR of 33 mm=hour for men<br />

and 35 mm=hour for women with a sensitivity and specificity of 92% (Hayreh, 1997).<br />

In addition, the ESR value at the time of diagnosis may not correlate with the cl<strong>in</strong>ical<br />

features or prognosis for visual loss <strong>in</strong> GCA. Other markers (e.g., CRP, von Willebrand<br />

factor) have also been proposed <strong>in</strong> the evaluation of GCA. Jacobson and Slamovits<br />

found an <strong>in</strong>verse correlation between ESR and hematocrit and felt that the ‘‘ESR may<br />

not reliably <strong>in</strong>dicate active disease <strong>in</strong> a patient with a normal hematocrit’’ (Jacobson,<br />

1987). F<strong>in</strong>ally, it should be emphasized that the diagnosis of GCA is a cl<strong>in</strong>ical diagnosis,<br />

and reliance for such a diagnosis should not be placed on the ESR alone. If the cl<strong>in</strong>ical<br />

suspicion for GCA is high, a repeat ESR, TAB, and treatment with empiric prednisone<br />

should beg<strong>in</strong> regardless of the <strong>in</strong>itial ESR value.<br />

Are There Other Hematologic Tests for the<br />

Diagnosis of GCA?<br />

<strong>An</strong>other acute-phase reactant, CRP, has also been advocated as a marker for GCA<br />

(Hayreh, 1997). Hayreh et al felt that an elevated CRP (above 2.45 mg=dL) was more<br />

sensitive (100%) than the ESR (92%) for the detection of GCA, and that a CRP comb<strong>in</strong>ed<br />

with an ESR gave the best specificity for diagnosis (97%) (Hayreh, 1997).<br />

Other hematologic tests listed <strong>in</strong> Table 5–6 have been reported <strong>in</strong> association with<br />

GCA, but are of uncerta<strong>in</strong> significance (e.g., serum amyloid, von Willebrand’s factor,


100 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 5–5. Less Common Features of GCA<br />

Large vessel <strong>in</strong>volvement (Butt, 1991; Lambert, 1996)<br />

Carotid siphon<br />

Bruits (Caselli, 1988)<br />

Facial artery (Achkar, 1995)<br />

Pa<strong>in</strong> on palpation of external carotid artery (Gonzalez-Gay, 1998b)<br />

Occipital artery pa<strong>in</strong> and occipital neuralgia ( Jundt, 1991)<br />

Subclavian or axillary artery (N<strong>in</strong>et, 1990)<br />

Aortitis or aortic rupture (Evans, 1995; Gersbach, 1993; Lagrand, 1996; Lie, 1995a; Liu, 1995;<br />

Mitnich, 1990; Richardson, 1996)<br />

Aortic aneurysm (Hamano, 1999)<br />

Limb claudication or gangrene (Desmond, 1999; Lie, 1995a; Walz-Leblanc, 1991)<br />

Upper or lower limb ischemia (Garcia Vazquez, 1999)<br />

Unilateral distal extremity swell<strong>in</strong>g and edema (Kontoyianni, 1999)<br />

Raynaud’s phenomenon (Mallia, 1999)<br />

<strong>Neuro</strong>logic features<br />

Central nervous system arteritis (Caselli, 1988, 1990, 1993; Husse<strong>in</strong>, 1990; Reich, 1990)<br />

Acute encephalopathy (Caselli, 1990; Tomer, 1992)<br />

Aseptic men<strong>in</strong>gitis<br />

Cerebellar <strong>in</strong>farction (McLean, 1993)<br />

Diabetes <strong>in</strong>sipidus<br />

Occipital <strong>in</strong>farction and cortical bl<strong>in</strong>dness<br />

Multifocal dural enhancement and enhancement of temporalis muscles on MR imag<strong>in</strong>g ( Joelson, 2000)<br />

Myelopathy (Caselli, 1988)<br />

Cervical radiculopathy (Rivest, 1995)<br />

Quadriplegia (Brennan, 1982)<br />

Transverse myelopathy<br />

Sp<strong>in</strong>al cord <strong>in</strong>farction (Galetta, 1997a)<br />

<strong>Neuro</strong>psychiatric syndromes<br />

Halluc<strong>in</strong>ations<br />

Depression<br />

Behavioral changes<br />

Psychosis and confusion<br />

Seizures<br />

Transient ischemic attacks (Caselli, 1988)<br />

Tremor<br />

Dysarthria precipitated by chew<strong>in</strong>g or prolonged talk<strong>in</strong>g (Lee, 1999b)<br />

Numb ch<strong>in</strong> syndrome (Genereau, 1999)<br />

Proximal muscle weakness with skeletal muscle vasculitis (Lacomas, 1999)<br />

<strong>Neuro</strong>-otologic symptoms (Caselli, 1988)<br />

Deafness (Caselli, 1988; Reich, 1990)<br />

T<strong>in</strong>nitus<br />

Vertigo<br />

Bra<strong>in</strong>stem (Dick, 1991; Gonzalez-Gay, 1998a)<br />

Ataxia, nystagmus, upgaze palsy<br />

Lateral medullary syndrome (Shanahan, 1999)<br />

Vertebrobasilar <strong>in</strong>volvement (Sheehan, 1993)<br />

(cont<strong>in</strong>ued)


Table 5–5. (cont<strong>in</strong>ued)<br />

Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 101<br />

Acute confusional states (Caselli, 1988, 1990)<br />

Cluster headache ( Jiménez-Jiménez, 1998)<br />

Peripheral neuropathies (Caselli, 1988)<br />

Sciatic neuropathy<br />

Carpal tunnel syndrome (Dennis, 1996)<br />

Vernet’s syndrome (affection of n<strong>in</strong>th, tenth, and eleventh cranial nerves due to ischemia of<br />

ascend<strong>in</strong>g pharyngeal artery) (Gout, 1998)<br />

Pa<strong>in</strong> syndromes (headache, neck pa<strong>in</strong>, backache) (Caselli, 1993)<br />

Respiratory tract (Gur, 1996; Rischmueller, 1996; Zenone, 1994)<br />

Cough (Lim, 1999; Olopade, 1997)<br />

Hoarseness<br />

Diaphragmatic weakness (Burton, 1999)<br />

Tongue ischemia (Caselli, 1988)<br />

Seronegative polyarthritis<br />

Coronary arteritis and myocardial <strong>in</strong>farction (Freddo, 1999)<br />

Visceral <strong>in</strong>volvement<br />

Renal <strong>in</strong>volvement (L<strong>in</strong>, 1995)<br />

Visceral angiitis<br />

Liver <strong>in</strong>volvement (Ilan, 1993; Killer, 2000)<br />

Small bowel <strong>in</strong>farction (Phelan, 1993)<br />

Tongue necrosis (Llorente, 1994)<br />

Submandibular swell<strong>in</strong>g (Ruiz-Masera, 1995)<br />

Secondary amyloidosis (Altlparmak, 2001; Stebb<strong>in</strong>g, 1999)<br />

Ischemic sk<strong>in</strong> lesions (Hansen, 1995) and scalp necrosis (Botella-Estrada, 1999; Currey, 1997; Rudd,<br />

1998)<br />

Association with parvovirus B19 <strong>in</strong>fection (Gabriel, 1999; Straud, 1996)<br />

Mortality (Bisgard, 1991; Matteson, 1996)<br />

Myocardial <strong>in</strong>farction and mesenteric <strong>in</strong>farction<br />

plasma viscosity, ant<strong>in</strong>eutrophil cytoplasmic antibodies, and various human lymphocyte<br />

antigen [HLA] types). <strong>An</strong>ticardiolip<strong>in</strong> antibodies were present at the onset <strong>in</strong> 19 of<br />

40 patients with GCA and polymyalgia rheumatica (Manna, 1998). In 56% of these<br />

patients, these antibodies disappeared dur<strong>in</strong>g steroid treatment. Thrombocytosis<br />

occurred <strong>in</strong> 44% of 34 patients <strong>in</strong> one series and the platelet count was reduced by<br />

corticosteroid therapy (Gonzalez-Alegre, 2001). No association was found between the<br />

platelet count and ischemic complications of the disease.<br />

Is a TAB Necessary <strong>in</strong> a Patient with a High<br />

<strong>Cl<strong>in</strong>ical</strong> Suspicion for GCA? Should a<br />

Unilateral or Bilateral TAB Be Performed?<br />

TAB is a relatively easy and safe procedure to perform with low morbidity. There is one<br />

reported case of stroke after TAB, but this is a rare complication (Haist, 1985).


102 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 5–6. Laboratory Abnormalities <strong>in</strong> GCA<br />

<strong>An</strong>ticardiolip<strong>in</strong> antibodies (Kerleau, 1994; Manna, 1998; McHugh, 1990)<br />

<strong>An</strong>t<strong>in</strong>eutrophilic antibodies (Bosch, 1991; McHugh, 1990)<br />

Mild to moderate normochromic, normocytic anemia (Weiss, 1995)<br />

Elevated white blood cell count and platelet count<br />

Thrombocytosis (Gonzalez-Alegre, 2001; L<strong>in</strong>coff, 2000)<br />

Elevated acute-phase reactant prote<strong>in</strong>s (e.g., fibr<strong>in</strong>ogen, von Willebrand factor) (Pounta<strong>in</strong>, 1994)<br />

Abnormal plasma viscosity (Gudmundsson, 1993; Orrell, 1993)<br />

Serum prote<strong>in</strong> electrophoresis abnormalities<br />

Hepatic dysfunction<br />

Elevated endothel<strong>in</strong>-1 plasma levels (Pache, 2002)<br />

Multiple immunologic abnormalities (Bosch, 1991; Radda, 1981; Salvarani, 1991; Wawryk, 1991;<br />

Weyand, 1992, 1994, 1995, 1997)<br />

Immune complexes<br />

T-cell abnormalities<br />

Immunohistochemical abnormalities<br />

HLA-DR4 and -DR3 (Combe, 1998; Gros, 1998)<br />

Complications of TAB <strong>in</strong>clude <strong>in</strong>fection, chronic sk<strong>in</strong> ulceration, transient brow droop,<br />

hemorrhage, damage to the facial nerve, and stroke (Bhatti, 2001b; Danish-Meyer, 2000;<br />

Miller, 2000). Several authors have reported various techniques (Cleark<strong>in</strong>, 1991; Hedges,<br />

1992; Tomsak, 1991). Temporal arteries that are difficult to locate may require the use of<br />

<strong>in</strong>traoperative Doppler for localization (Beckman, 1990). Hall et al performed 134 TABs,<br />

and 46 (34%) showed GCA (Hall, 1983). Of the 88 TABs (66%) that were normal (over a<br />

70-month follow-up period), only eight patients required steroid therapy. Thus, a<br />

negative TAB predicted the absence of steroid therapy requirement <strong>in</strong> 91% and<br />

helped determ<strong>in</strong>e the appropriate treatment <strong>in</strong> 94% of cases. These and other authors<br />

thought that a TAB should be done before patients are committed to long-term<br />

corticosteroid therapy (Hall, 1983) because of the associated significant side effects of<br />

chronic steroid use <strong>in</strong>clud<strong>in</strong>g cush<strong>in</strong>goid features, hypertension, diabetes, osteoporosis,<br />

compression fractures (up to 25% of patients), steroid myopathy, steroid psychosis, and<br />

fluid retention requir<strong>in</strong>g diuretics (Nesher, 1994). Nadeau reviewed four different series<br />

(162 patients) of steroid therapy <strong>in</strong> GCA and found a 38% <strong>in</strong>cidence of complications<br />

(range 12.7 to 60.6%) (Nadeau, 1988). Us<strong>in</strong>g a cl<strong>in</strong>ical decision analysis approach,<br />

Nadeau concluded that when steroid complications were likely, a TAB was useful even<br />

with ‘‘fairly high pre-biopsy probabilities of disease’’ (Nadeau, 1988). In addition,<br />

Hedges et al thought that no laboratory test (i.e., ESR) or frequently observed symptom<br />

or sign of GCA alone or <strong>in</strong> comb<strong>in</strong>ation with other f<strong>in</strong>d<strong>in</strong>gs (e.g., jaw claudication) had<br />

the diagnostic specificity or sensitivity of the TAB (Hedges, 1983).<br />

Patients with a negative unilateral TAB <strong>in</strong> whom there is a strong cl<strong>in</strong>ical suspicion<br />

(see cl<strong>in</strong>ical features and symptom clusters, above) for GCA should be considered for a<br />

contralateral TAB (Coppetto, 1990; Hunder, 1990a). To m<strong>in</strong>imize costs, some authors<br />

have advocated that a frozen section be performed on the symptomatic-side TAB and, if<br />

it is normal, proceed at the same sitt<strong>in</strong>g with a contralateral TAB (Hall, 1984).<br />

Ponge et al analyzed 200 patients who underwent 200 bilateral TAB, all of which were<br />

preceded by Doppler flow studies. Forty-two TABs were positive, 20 bilaterally and 22<br />

unilaterally (Ponge, 1988). In their analysis, they discovered that four patients with


Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 103<br />

GCA would not have been diagnosed if only a unilateral TAB had been performed.<br />

Unilaterally positive TABs have been demonstrated <strong>in</strong> 8 to 14% of retrospective bilateral<br />

TAB series (Hall, 1984). Hall and Hunder retrospectively reviewed 652 TABs at Mayo<br />

Cl<strong>in</strong>ic (Hall, 1984). Of these, 234 (36%) revealed GCA, and 193 (82%) were positive on<br />

unilateral TAB. Bilateral TABs were performed <strong>in</strong> 41 cases (18%) because frozen section<br />

was normal on the first TAB. Of the 193 unilateral TABs, frozen section was abnormal<br />

<strong>in</strong> 188 and normal <strong>in</strong> 5. Thus, 86% of the 234 cases would have been diagnosed by<br />

unilateral TAB alone and 14% were diagnosed only because a TAB was performed on<br />

the contralateral side. Hayreh et al reported 76 of 363 patients who underwent a second<br />

TAB because of a strong cl<strong>in</strong>ical <strong>in</strong>dex of suspicion for GCA (Hayreh, 1997). Seven of<br />

these 76 patients had a positive contralateral TAB. Of the rema<strong>in</strong><strong>in</strong>g 257 patients with a<br />

negative TAB, none developed signs of GCA on follow-up and these authors thought<br />

that this was <strong>in</strong>dicative that a second TAB would not have been positive.<br />

Boyev et al performed a retrospective study to determ<strong>in</strong>e the utility of unilateral<br />

versus bilateral TABs <strong>in</strong> detect<strong>in</strong>g the pathologic changes of GCA (Boyev, 1999). Of<br />

908 specimens exam<strong>in</strong>ed from 758 patients, 300 specimens were simultaneous bilateral<br />

biopsies from 150 patients, 72 specimens were bilateral sequential biopsies from<br />

36 patients, and the rema<strong>in</strong><strong>in</strong>g 536 specimens were unilateral biopsies from 536 patients.<br />

Of the 186 patients who had bilateral simultaneous or nonsimultaneous biopsies,<br />

176 had identical diagnoses on both sides. In four patients, no artery was obta<strong>in</strong>ed<br />

on one side. In each of the rema<strong>in</strong><strong>in</strong>g six patients, five of whom had bilateral<br />

simultaneous biopsies and one of whom had bilateral sequential biopsies performed<br />

8 days apart, the biopsy specimen from one side was <strong>in</strong>terpreted as show<strong>in</strong>g only<br />

arteriosclerotic changes with no evidence of active or healed arteritis, whereas the other<br />

specimen was <strong>in</strong>terpreted as show<strong>in</strong>g either probable healed arteritis (three specimens)<br />

or possible early arteritis (three cases). In none of the six patients with differ<strong>in</strong>g<br />

diagnoses between the two sides was one side <strong>in</strong>terpreted as show<strong>in</strong>g def<strong>in</strong>ite, active<br />

GCA. Five of six patients were subsequently determ<strong>in</strong>ed to have GCA, based on a<br />

comb<strong>in</strong>ation of cl<strong>in</strong>ical f<strong>in</strong>d<strong>in</strong>gs, ESR, and response to treatment with corticosteroids.<br />

The authors concluded that perform<strong>in</strong>g simultaneous or sequential TABs improves the<br />

diagnostic yield <strong>in</strong> at least 3% of cases of GCA, whereas <strong>in</strong> 97% of cases the two<br />

specimens show the same f<strong>in</strong>d<strong>in</strong>gs. Thus, <strong>in</strong> patients <strong>in</strong> whom only one artery can be<br />

biopsied, there is a high probability of obta<strong>in</strong><strong>in</strong>g the correct diagnosis. Nevertheless,<br />

although the improvement <strong>in</strong> diagnostic yield of bilateral TABs is low, the consequences<br />

of both delayed diagnosis and treatment of GCA as well as the use of systemic<br />

corticosteroids <strong>in</strong> patients who do not have GCA are of such severity that consideration<br />

should always be given to perform<strong>in</strong>g bilateral TABs <strong>in</strong> patients suspected of hav<strong>in</strong>g<br />

the disease.<br />

Pless et al reviewed 60 bilateral TAB results and reported a 5% chance of obta<strong>in</strong><strong>in</strong>g a<br />

positive biopsy result on one side and a negative biopsy result on the other side (Pless,<br />

2000), whereas Danesh-Meyer et al found a 1% discordance among 91 bilateral<br />

TABs (Danesh-Meyer, 2000). Danesh-Meyer et al performed a meta-analysis of exist<strong>in</strong>g<br />

literature and concluded that the overall chance of discordance is about 4% (Danesh-<br />

Meyer, 2000). Danesh-Meyer et al suggest that ‘‘consideration of simultaneous bilateral<br />

TABs appears to be a safe and prudent approach for diagnosis of GCA’’ (Danesh-Meyer,<br />

2000), and Pless et al suggest that ‘‘it is reasonable to biopsy both sides at the same<br />

session <strong>in</strong> order to <strong>in</strong>crease the likelihood of achievement of a correct diagnosis’’ (Pless,<br />

2000). In editorials follow<strong>in</strong>g the papers of Danesh-Meyer et al and Pless et al, the<br />

follow<strong>in</strong>g suggestions were noted:


104 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

1. Miller suggested that bilateral TABs should be considered <strong>in</strong> all patients <strong>in</strong> whom the<br />

diagnosis of GCA is suspected. ‘‘The biopsies can be simultaneous or sequential’’<br />

(Miller, 2000).<br />

2. Lessell suggests that ‘‘it makes sense to rout<strong>in</strong>ely perform bilateral biopsies or to<br />

biopsy the other side if the first side has a negative result <strong>in</strong> patients whose<br />

symptoms, signs, and laboratory results po<strong>in</strong>t to the diagnosis of giant cell arteritis’’<br />

(Lessell, 2000).<br />

3. Sav<strong>in</strong>o suggests that ‘‘performance of bilateral temporal artery biopsy, with or<br />

without the aid of frozen sections, appears to be the safest strategy’’ (Sav<strong>in</strong>o, 2000).<br />

We perform unilateral TAB <strong>in</strong> patients <strong>in</strong> all patients (class II–III, level C). If the pre-<br />

TAB <strong>in</strong>dex of suspicion for GCA is low, then we do not perform a second TAB. If the<br />

pre-TAB <strong>in</strong>dex of suspicion for GCA is high, then we consider a contralateral TAB. In<br />

the cases of moderate suspicion we <strong>in</strong>dividualize the decision for contralateral TAB<br />

(class III, level C).<br />

TAB has a variable sensitivity for GCA <strong>in</strong> the literature rang<strong>in</strong>g from 56 to 93%<br />

(Gonzalez-Gay, 2001; Mizen, 1991). The sensitivity improves to 85 to 90% when clear<br />

criteria for negative TAB are established (Nadeau, 1988). Skip lesions may occur<br />

pathologically (even <strong>in</strong> bilateral TAB) and may produce a false-negative rate of at<br />

least 4 to 5% (Kle<strong>in</strong>, 1976). A large segment TAB of a length of at least 2 to 5 cm is often<br />

recommended (Kle<strong>in</strong>, 1976), but other authors have found that even TAB as short as<br />

4 mm (if serially sectioned properly at 1 mm segments and with a m<strong>in</strong>imum of n<strong>in</strong>e<br />

sections from each segment) may result <strong>in</strong> a less than 1% false-negative rate (99%<br />

probability of detect<strong>in</strong>g any evidence of GCA) (Chambers, 1988). Short-length TAB,<br />

<strong>in</strong>sufficient section<strong>in</strong>g (0.25–0.5 mm cross sections through the entire specimen are<br />

recommended) (McDonnell, 1986), and variability <strong>in</strong> the quality and availability of<br />

good ophthalmic pathologic <strong>in</strong>terpretation of specimens contribute to a high falsenegative<br />

rate of 9 to 61% (Mizen, 1991). In addition, although steroid therapy may<br />

produce a false-negative result, TABs may be performed up to a few weeks (or more) of<br />

start<strong>in</strong>g steroid treatment (Achkar, 1994; To, 1994). Rarely, TAB may be positive even<br />

after 6 months of prednisone treatment (Guevara, 1998). Thus, even <strong>in</strong> the sett<strong>in</strong>g of a<br />

negative unilateral (or bilateral) TAB, the patient with a high cl<strong>in</strong>ical suspicion for GCA<br />

should be treated with cont<strong>in</strong>ued empiric corticosteroids (oral prednisone 80 to<br />

120 mg=day). Consideration could be given to a third biopsy of other arteries (e.g.,<br />

occipital, facial, or frontal artery) if the cl<strong>in</strong>ical suspicion for GCA rema<strong>in</strong>s high and<br />

pathologic confirmation is desired (Kattah, 1991; Weems, 1992). We have rarely had to<br />

resort to a third biopsy (class IV, level U). It should also be noted that TABs may<br />

occasionally reveal etiologies other than GCA (e.g., sarcoidosis or Wegener’s granulomatosis)<br />

for temporal artery vasculitis (Levy, 1994; Nish<strong>in</strong>o, 1993) and a tender superficial<br />

temporal artery and decreased pulse on palpation may occur with <strong>in</strong>timal fibrosis<br />

(Petzold, 2002). In a patient thought to have arteritic posterior ION, a TAB revealed lung<br />

adenocarc<strong>in</strong>oma as a cause for the optic neuropathy (Bhatti, 2001a).<br />

What Is the Evaluation for a Patient with a<br />

Moderate <strong>Cl<strong>in</strong>ical</strong> Suspicion for GCA?<br />

Patients with moderate cl<strong>in</strong>ical suspicion for GCA should undergo an ESR and a TAB<br />

(class II–III, level B). Unfortunately, constitutional symptoms and signs may be absent <strong>in</strong>


Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 105<br />

up to 21.2% of cases (‘‘occult’’ GCA) (Desmet, 1990; Hayreh, 1998c; Liu, 1994). In a study<br />

of 85 patients with biopsy proven GCA, occult GCA occurred <strong>in</strong> 18 patients (21.5%)<br />

(Hayreh, 1998c). Ocular symptoms <strong>in</strong> these patients with occult GCA <strong>in</strong>cluded visual<br />

loss <strong>in</strong> 18 patients (100%), amaurosis fugax <strong>in</strong> 6 (33.3%), diplopia <strong>in</strong> 2 (11.1%), and eye<br />

pa<strong>in</strong> <strong>in</strong> 1 (5.6%), whereas ocular ischemia lesions <strong>in</strong>cluded AION <strong>in</strong> 17 (94.4%), central<br />

ret<strong>in</strong>al artery occlusion <strong>in</strong> 2 (11.1%), and cilioret<strong>in</strong>al artery occlusion <strong>in</strong> 2 (11.1%). If the<br />

ESR is elevated, and if a unilateral TAB is negative, then a contralateral TAB should be<br />

performed. Alternatively, a frozen section of the TAB on the symptomatic side could be<br />

performed and, if negative, a simultaneous contralateral TAB is done (Hall, 1984). If<br />

both TABs are negative, alternative etiologies of the elevated ESR should be considered,<br />

such as <strong>in</strong>fections, connective tissue disease, renal disease (especially nephrotic<br />

syndrome and uremia) (Gruener, 1992), malignant neoplasm (21% of negative TAB<br />

were cancer <strong>in</strong> Hedges series), diabetes mellitus (Hedges, 1983), and diffuse dissem<strong>in</strong>ated<br />

atheroembolism (Coppetto, 1984). If the ESR (and=or CRP) are normal, a unilateral<br />

TAB is negative, and the patient has few or nonspecific constitutional symptoms,<br />

then the steroid therapy can be tapered or a contralateral TAB can be performed. If both<br />

TABs are negative, the steroids can be tapered.<br />

What Is the Evaluation of the Patient with a<br />

Low <strong>Cl<strong>in</strong>ical</strong> Suspicion for GCA?<br />

In patients with low cl<strong>in</strong>ical suspicion for GCA (e.g., typical AION <strong>in</strong> a known<br />

vasculopathic patient with no constitutional signs or symptoms), alternative etiologies<br />

(e.g., <strong>in</strong>fection, <strong>in</strong>flammation, collagen vascular disease, underly<strong>in</strong>g malignancy,<br />

diabetes) for a high or even borderl<strong>in</strong>e high ESR should be <strong>in</strong>vestigated (Hedges,<br />

1983). Bedell and Bush suggested that patients with markedly elevated ESR (i.e.,<br />

ESR >100 mm=hour) should be evaluated for underly<strong>in</strong>g disease (Bedell, 1985). Based<br />

<strong>in</strong> part on these recommendations, we suggest the evaluation outl<strong>in</strong>ed <strong>in</strong> Table 5–7 for<br />

patients with an elevated ESR and a low cl<strong>in</strong>ical suspicion for GCA. In patients with a<br />

low cl<strong>in</strong>ical suspicion for GCA and an elevated ESR, a unilateral TAB could be<br />

performed and, if negative, no further evaluation or treatment for GCA is needed<br />

(class III, level C).<br />

Table 5–7. Laboratory Evaluation for Markedly Elevated ESR<br />

Complete blood count with differential<br />

Blood urea nitrogen and creat<strong>in</strong><strong>in</strong>e<br />

Alkal<strong>in</strong>e phosphatase<br />

Serum prote<strong>in</strong> electrophoresis<br />

Serum cholesterol<br />

Pregnancy test<br />

Chest radiography<br />

Consider mammogram and other evaluation for underly<strong>in</strong>g malignancy<br />

Ur<strong>in</strong>e analysis<br />

Purified prote<strong>in</strong> derivative (ppd) and control sk<strong>in</strong> test<strong>in</strong>g<br />

Guaiac tests of stools (six determ<strong>in</strong>ations)


106 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

What Is the Preferred Treatment Regimen<br />

for GCA?<br />

Untreated GCA may result <strong>in</strong> significant visual loss <strong>in</strong> one or both eyes. Therefore, it is<br />

imperative that corticosteroid therapy beg<strong>in</strong> immediately upon cl<strong>in</strong>ical suspicion of<br />

GCA (class II, level B) to prevent visual loss (i.e., before TAB and laboratory confirmation).<br />

Most authors have recommended an <strong>in</strong>itial dose of oral prednisone of 1.0 mg=kg<br />

to 1.5 mg=kg=d (60 to 100 mg per day) (Laidlaw, 1990; Lundberg, 1990; Myles, 1992;<br />

Weisman, 1995) (class III, level C). Although some authors (Aiello, 1993) have reported<br />

that an <strong>in</strong>itial lower dose of 40 mg per day may be adequate to control cl<strong>in</strong>ical<br />

symptoms (Myles, 1992), patients with visual loss probably require higher doses.<br />

Some anecdotal cases of visual improvement have been reported follow<strong>in</strong>g <strong>in</strong>travenous<br />

(IV) corticosteroids for patients with visual loss and GCA (Diamond, 1991; Liu, 1994;<br />

Matzk<strong>in</strong>, 1992; Postel, 1993). Many patients note improvement <strong>in</strong> symptoms with<strong>in</strong> 1 to<br />

2 days of start<strong>in</strong>g steroid therapy, but other patients may cont<strong>in</strong>ue to experience<br />

symptoms of GCA <strong>in</strong>clud<strong>in</strong>g visual loss despite adequate corticosteroid therapy<br />

(Aiello, 1993; Evans, 1994; Liu, 1994; Rauser, 1995). A rapid or premature reduction<br />

of steroid therapy <strong>in</strong> GCA may also precipitate visual loss (Cullen, 1967). Occasionally<br />

new AION may occur <strong>in</strong> patients on ‘‘adequate’’ doses of corticosteroids (Rauser, 1995).<br />

Hwang et al reported a patient who developed bilateral ocular ischemic syndrome<br />

despite corticosteroid treatment (Hwang, 1999).<br />

Jover et al reported a randomized, double-bl<strong>in</strong>d, placebo-controlled study compar<strong>in</strong>g<br />

corticosteroids alone versus corticosteroids comb<strong>in</strong>ed with methotrexate <strong>in</strong> 42 patients<br />

with new-onset GCA (Jover, 2001). The prednisone plus methotrexate group experienced<br />

fewer relapses than the prednisone with placebo group, whereas the rate and<br />

severity of adverse events were similar <strong>in</strong> both groups. The authors suggested that<br />

methotrexate plus corticosteroids is a safe alternative to corticosteroids alone for GCA<br />

and is more effective <strong>in</strong> controll<strong>in</strong>g disease ( Jover, 2001).<br />

Stauton et al described a patient with GCA whose cl<strong>in</strong>ical condition deteriorated<br />

steadily with signs suggest<strong>in</strong>g an evolv<strong>in</strong>g vertebrobasilar stroke dur<strong>in</strong>g corticosteroid<br />

treatment (Stauton, 2000). The authors theorized that the cl<strong>in</strong>ical deterioration might<br />

have actually been <strong>in</strong>duced by the <strong>in</strong>itiation of the corticosteroids.<br />

Should Oral or IV Corticosteroids Be Used<br />

for GCA?<br />

Liu et al reported a 34% chance of visual improvement after corticosteroid therapy.<br />

Additional visual loss occurred <strong>in</strong> 7 of 41 (17%) patients despite corticosteroids (Liu,<br />

1994). Three patients experienced fellow-eye <strong>in</strong>volvement after oral therapy, but none of<br />

those treated with IV steroids developed fellow-eye <strong>in</strong>volvement. Based on these<br />

results, these authors recommended IV therapy (methylprednisolone 250 mg four<br />

times daily for 3 to 5 days) <strong>in</strong> patients with visual loss due to GCA (Liu, 1994).<br />

Matzk<strong>in</strong> et al reported visual recovery <strong>in</strong> two patients with central ret<strong>in</strong>al artery<br />

occlusions due to GCA after treatment with high-dose IV methylprednisolone (Matzk<strong>in</strong>,<br />

1992). Other authors have described anecdotal cases of visual improvement follow<strong>in</strong>g<br />

IV corticosteroids for patients with visual loss and GCA (Aiello, 1993; Diamond, 1991;


Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 107<br />

Liu, 1994; Matzk<strong>in</strong>, 1992; Postel, 1993). Unfortunately, well-controlled prospective data<br />

on oral versus IV corticosteroids are lack<strong>in</strong>g (Cleark<strong>in</strong>, 1992a; Cornblath, 1997).<br />

Cornblath and Eggenberger reviewed charts from two centers and reviewed all<br />

previously reported cases of GCA treated with IV methylprednisolone (Cornblath,<br />

1997). Four patients with GCA exhibited severe progressive visual loss after at least<br />

48 hours of high-dose IV methylprednisolone, and a fifth patient had further loss <strong>in</strong> one<br />

eye and improvement <strong>in</strong> the other eye after 24 hours of treatment. They noted that <strong>in</strong><br />

previous reports of IV methylprednisolone for GCA, 4 patients lost vision and<br />

14 patients recovered vision. They concluded that the results of IV methylprednisolone<br />

treatment of patients with visual loss from GCA are similar to the results of treatment<br />

with oral corticosteroids, with IV methylprednisolone treatment be<strong>in</strong>g more costly and<br />

hav<strong>in</strong>g a small risk of sudden death. In a retrospective study, Chan et al reported visual<br />

acuity improvement <strong>in</strong> 21 of 73 (29%) patients treated promptly with oral or <strong>in</strong>travenous<br />

corticosteroids (Chan, 2001). There was an <strong>in</strong>creased likelihood of improved<br />

vision <strong>in</strong> the group given <strong>in</strong>travenous corticosteroids (40%) compared with those who<br />

received oral steroids (13%). Patients with GCA treated with oral or IV corticosteroids<br />

can have visual loss <strong>in</strong> a previously <strong>in</strong>volved eye or an un<strong>in</strong>volved eye, or can have<br />

visual recovery. Nevertheless, we favor IV steroids <strong>in</strong> patients with severe visual loss of<br />

less than 48 hours’ duration due to GCA, especially if there is bilateral <strong>in</strong>volvement, if<br />

the patient is monocular, or if the patient has lost vision dur<strong>in</strong>g oral steroid therapy<br />

(Hayreh, 1990; Slamovits, 1992) (class III, level C).<br />

Although the visual prognosis after AION or CRAO due to GCA is poor, significant<br />

visual improvement after steroid therapy has been reported <strong>in</strong> a small percentage<br />

of patients (Aiello, 1993; Cleark<strong>in</strong>, 1992a,b; Diamond, 1991). Aiello et al reviewed<br />

245 patients over a 5-year period at the Mayo Cl<strong>in</strong>ic (Aiello, 1993). Of these 245 patients,<br />

34 (14%) permanently lost vision due to GCA. After 5 years, the probability of visual<br />

loss after start<strong>in</strong>g steroid therapy (oral) was 1%. These authors reviewed an additional<br />

857 patients from the literature. Of these 857 patients, 174 (20%) lost vision due to GCA,<br />

and 31 of these 174 patients had visual loss or progression on steroid therapy.<br />

Kupersmith et al studied 22 patients with GCA, 7 of whom (9 eyes) had ischemic<br />

optic nerve <strong>in</strong>jury (Kupersmith, 1999). Four eyes had improved visual acuity of two<br />

l<strong>in</strong>es or more with<strong>in</strong> 1 year of start<strong>in</strong>g corticosteroids, and no patient developed visual<br />

loss as the steroids were reduced. At 1 year, visual acuity, contrast sensitivity, color<br />

vision, and threshold perimetry were not significantly different from 4- to 5-week<br />

determ<strong>in</strong>ations. At 1 year, no significant cataractous or glaucomatous changes were<br />

noted. The authors concluded that patients with GCA-related visual loss can improve<br />

with treatment (start<strong>in</strong>g doses 60 to 1000 mg per day with reduction to daily doses of<br />

40 to 50 mg per day given for 4 to 6 weeks) and that gradual reduction of dose<br />

thereafter, as cl<strong>in</strong>ically permitted, did not result <strong>in</strong> delayed visual loss. There were no<br />

significant dose-related ophthalmic complications.<br />

Gonzalez-Gay et al noted visual <strong>in</strong>volvement <strong>in</strong> 69 of 239 patients with GCA with<br />

predictors of permanent visual loss <strong>in</strong>clud<strong>in</strong>g transient visual loss, jaw claudications,<br />

normal liver enzymes, and absence of constitutional syndrome (Gonzalez-Gay, 1998a).<br />

Partial improvement of vision was noted <strong>in</strong> eight patients, with the only predictor of<br />

improvement be<strong>in</strong>g early corticosteroid treatment (oral or <strong>in</strong>travenous) with<strong>in</strong> the first<br />

day of visual loss.<br />

Consultation with an <strong>in</strong>ternist or rheumatologist is recommended for the detection of<br />

constitutional signs, monitor<strong>in</strong>g of ESR, and management of steroid therapy and


108 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

potential side effects <strong>in</strong> patients with GCA (Mizen, 1991). Hunder emphasized that the<br />

goal of therapy is to use the lowest dose of steroid over the shortest period of time to<br />

adequately control the symptoms of GCA (Hunder, 1990a). Unfortunately, the dosage<br />

and duration of therapy are variable among patients and must be determ<strong>in</strong>ed on an<br />

<strong>in</strong>dividual and empirical basis (Hunder, 1990a). Gradual taper<strong>in</strong>g of the steroid dose by<br />

10% per week as long as symptoms and ESR rema<strong>in</strong> stable is a reasonable approach.<br />

Most patients can be tapered off steroids with<strong>in</strong> 1 year, but some patients (especially<br />

those with neurologic or other systemic symptoms) may require prolonged (years) or<br />

<strong>in</strong>def<strong>in</strong>ite therapy. Recurrences may also occur years later. Turner et al reported a<br />

normalization of the ESR <strong>in</strong> 87% of 47 patients with<strong>in</strong> 4 weeks of treatment (Turner,<br />

1974). Huston et al reported a duration of steroid treatment of 1 to 77 months (median 7<br />

months) (Huston, 1978). Cullen and Coleiro felt that an ESR of less than 20 mm=hour<br />

was a desirable goal (Cullen, 1976). Delecoeullerie et al reported a mean duration of<br />

therapy of 30.9 months <strong>in</strong> 210 patients (Delecoeullerie, 1988), but <strong>An</strong>derson et al<br />

reported an average duration of 5 years (<strong>An</strong>derson, 1986). Taper<strong>in</strong>g of steroids is<br />

equally important as start<strong>in</strong>g therapy <strong>in</strong> GCA because the risk of fracture is <strong>in</strong>creased<br />

sixfold and that of cataract formation fourfold after 5 years of steroid therapy (Robb-<br />

Nicholson, 1988). Recurrent symptoms and=or ESR elevation may prompt <strong>in</strong>creas<strong>in</strong>g<br />

the steroid dosage, but cl<strong>in</strong>ical symptoms may be a better <strong>in</strong>dicator than the ESR alone<br />

(Britta<strong>in</strong>, 1991). As corticosteroid doses are lowered, the ESR may rise and, if it <strong>in</strong>creases<br />

to above normal rates, the taper<strong>in</strong>g schedule may be <strong>in</strong>terrupted for 2 to 4 weeks to<br />

allow stabilization of the ESR. Although a rise <strong>in</strong> the ESR is often associated with cl<strong>in</strong>ical<br />

recurrence of GCA, ischemic complications may occur on steroid therapy despite a<br />

stable ESR. Every-other-day steroid therapy does not seem to sufficiently control disease<br />

activity but may eventually be used once active GCA is under control.<br />

If Major Steroid Complications Occur,<br />

Therapy Is Prolonged, or the Disease Is Still<br />

Active, What Should Be Done?<br />

A repeat TAB could be considered, but it subjects the patient to a second surgical<br />

procedure. In addition, as already stated, a negative TAB (first or second), especially<br />

after prolonged steroid therapy, does not exclude GCA. Nevertheless, Cohen reported<br />

13 patients with known GCA and a ris<strong>in</strong>g ESR with any attempt at taper<strong>in</strong>g steroid<br />

therapy (Cohen, 1973). N<strong>in</strong>e of these patients underwent a second TAB and one of those<br />

had a third TAB to determ<strong>in</strong>e if active GCA was present histologically or whether the<br />

ESR was elevated due to alternative etiologies. Steroid-related complications (e.g.,<br />

cush<strong>in</strong>goid appearance, melena, hematuria, osteoporosis) had developed <strong>in</strong> n<strong>in</strong>e<br />

patients. Five of the 10 second TABs (50%) cont<strong>in</strong>ued to show active <strong>in</strong>flammation,<br />

and patients were cont<strong>in</strong>ued on steroid therapy, whereas the five (50%) patients with<br />

<strong>in</strong>active TAB were tapered off steroids.<br />

If a second TAB is not performed or the cl<strong>in</strong>ical suspicion for active disease rema<strong>in</strong>s<br />

high, then patients with significant contra<strong>in</strong>dications to steroid therapy, those who fail<br />

steroid therapy (Wilke, 1995), and those who develop steroid complications may benefit<br />

from other immunosuppressive agents. Steroid derivatives such as deflazacort<br />

(Cimm<strong>in</strong>o, 1994) and other immunosuppressive regimens such as cyclophosphamide


Figure 5–1. Evaluation of giant cell arteritis.<br />

Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 109


110 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

(Cytoxan), azathiopr<strong>in</strong>e (Imuran), dapsone, and cyclospor<strong>in</strong>e (Sand-immune) have been<br />

employed <strong>in</strong> GCA, but there is little controlled cl<strong>in</strong>ical data regard<strong>in</strong>g their efficacy <strong>in</strong><br />

GCA (de Vita, 1992). No additive effect of cyclospor<strong>in</strong>e compared to corticosteroids<br />

alone was apparent <strong>in</strong> 22 patients with GCA requir<strong>in</strong>g more than 5 mg per day of<br />

prednisone 1 year after onset (Schaufelberger, 1998). Several authors (Hernandez-<br />

Garcia, 1994; van der Veen, 1996) have reported variable responses to methotrexate <strong>in</strong><br />

addition to steroid therapy <strong>in</strong> GCA, and this agent may prove to be a useful steroidspar<strong>in</strong>g<br />

medication for GCA <strong>in</strong> the future. A double-bl<strong>in</strong>d study of methotrexate <strong>in</strong><br />

GCA is under way (Langford, 1997). In addition, DeSilva and Hazleman reported the<br />

use of azathiopr<strong>in</strong>e <strong>in</strong> a double-bl<strong>in</strong>d, placebo-controlled study. There was a statistically<br />

significant reduction <strong>in</strong> mean prednisolone dose after 52 weeks <strong>in</strong> the azathiopr<strong>in</strong>etreated<br />

group (DeSilva, 1986).<br />

Our approach to the patient with GCA is outl<strong>in</strong>ed <strong>in</strong> Figure 5–1.<br />

References<br />

Aburahma AF, Thaxton L. (1996). Temporal arteritis: diagnostic and therapeutic considerations. Am Surg<br />

62:449–451.<br />

Aburahma AF, Wistberger TA. (1992). Diagnos<strong>in</strong>g giant cell temporal arteritis. West Virg<strong>in</strong>ia Med J 88:188–193.<br />

Achkar AA, Lie JT, Gabriel SE, Hunder GG. (1995). Giant cell arteritis <strong>in</strong>volv<strong>in</strong>g the facial artery. J Rheumatol<br />

22:360–362.<br />

Achkar AA, Lie JT, Hunder GG, et al. (1994). How does previous corticosteroid treatment affect the biopsy<br />

f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> giant cell (temporal arteritis). <strong>An</strong>n Intern Med 120:987.<br />

Ahmed I, Zaman M. (1999). Bilateral <strong>in</strong>ternuclear ophthalmoplegia: an <strong>in</strong>itial present<strong>in</strong>g sign of giant cell arteritis.<br />

J Am Geriatr Soc 47:734–736.<br />

Aiello PD, Trautmann JC, McPhee TJ, et al. (1993). Visual prognosis <strong>in</strong> giant cell arteritis. Ophthalmology<br />

100:550–555.<br />

Altlparmak MR, Tabak F, Pamuk ON, et al. (2001). Giant cell arteritis and secondary amyloidosis: the natural<br />

history. Scand J Rheumatol 30:114–116.<br />

<strong>An</strong>derson R, Malwall B, Bengtsson B-A. (1986). Long-term survival <strong>in</strong> giant cell arteritis <strong>in</strong>clud<strong>in</strong>g temporal<br />

arteritis and polymyalgia rheumatica. Acta Med Scand 220:361–364,<br />

<strong>An</strong>derson R, Malwall B, Bengtsson B-A. (1988). Long-term corticosteroid treatment <strong>in</strong> giant cell arteritis. Cl<strong>in</strong> Exp<br />

Immunol 73:82.<br />

Askari A, Jolobe OM, Shepherd DI. (1993). Internuclear ophthalmoplegia and Horner’s syndrome due to<br />

presumed giant cell arteritis. J R Soc Med 86:362.<br />

Astion ML, Wener MH, Thomas RG, Hunder GG, Bloch DA. (1994). Application of neural networks to the<br />

classification of giant cell arteritis. Arthritis Rheum 37:760–770.<br />

Barton JJ, Corbett JJ. (1991). <strong>Neuro</strong>-ophthalmologic vascular emergencies <strong>in</strong> the elderly. Cl<strong>in</strong> Geriatr Med<br />

7:525–548.<br />

Beckman RL, Hartmann BM. (1990). The use of a Doppler flow meter to identify the course of the temporal artery<br />

(letter). J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:304.<br />

Bedell SE, Bush BT. (1985). Erythrocyte sedimentation rate: from folklore to facts. Am J Med 78:1001–1009.<br />

Berlit P. (1992). <strong>Cl<strong>in</strong>ical</strong> and laboratory f<strong>in</strong>d<strong>in</strong>gs with giant cell arteritis. J <strong>Neuro</strong>l Sci 111:1–12.<br />

Bhatti MT, Furman J, Gupta S, et al. (2001a). Superficial temporal artery biopsy diagnostic for lung carc<strong>in</strong>oma.<br />

Am J Ophthalmol 132:135–138.<br />

Bhatti MT, Goldste<strong>in</strong> MH. (2001b). Facial nerve <strong>in</strong>jury follow<strong>in</strong>g superficial temporal artery biopsy. Dermatol Surg<br />

27:15–17.<br />

Birt CM, Slomovic A, Motolko M, Buncic R. (1994). <strong>An</strong>terior segment ischemia <strong>in</strong> giant cell arteritis.<br />

Can J Ophthalmol 29:93–94.<br />

Bisgard C, Sloth H, Keid<strong>in</strong>g N, Juel K. (1991). Excess mortality <strong>in</strong> giant cell arteritis. J Intern Med 230:119–123.<br />

Bondeson J, Asman P. (1997). Giant cell arteritis present<strong>in</strong>g with oculomotor nerve palsy. Scand J Rheumatol<br />

26:327–328.<br />

Borruat FX, Bogousslavsky J, Uffer S, Kla<strong>in</strong>guti G, Schatz NJ. (1993). Orbital <strong>in</strong>farction syndrome. Ophthalmology<br />

100:562–568.


Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 111<br />

Bosch X, Font J, Mirapeix E, et al. (1991). <strong>An</strong>t<strong>in</strong>eutrophil cytoplasmic antibodies <strong>in</strong> giant cell arteritis (letter).<br />

J Rheumatol 18:787.<br />

Botella-Estrada R, Sammart<strong>in</strong> O, Mart<strong>in</strong>ez V, et al. (1999). Magnetic resonance angiography <strong>in</strong> the diagnosis of a<br />

case of giant cell arteritis manifest<strong>in</strong>g as scalp necrosis. Arch Dermatol 135:769–771.<br />

Bottiger LE, Svedberg CA. (1967). Normal erythrocyte sedimentation rate and age. Br Med J 2:85–87.<br />

Boyd RV, Hoffbrand BI. (1966). Erythrocyte sedimentation rate <strong>in</strong> elderly hospital <strong>in</strong>-patients. Br Med J 1:901–902.<br />

Boyev L, Miller NR, Green WR. (1999). Efficacy of unilateral versus bilateral temporal artery biopsies for the<br />

diagnosis of giant cell arteritis. Am J Ophthalmol 128:211–215.<br />

Brigden M. (1998). The erythrocyte sedimentation rate: still a helpful test when used judiciously. Postgrad Med<br />

103:257–262.<br />

Brilakis H, Lee AG. (1998). Ophthalmoplegia <strong>in</strong> treated polymyalgia rheumatica and healed giant cell arteritis.<br />

Strabismus 6:71–75.<br />

Britta<strong>in</strong> GP, McIlwa<strong>in</strong>e GG, Bell JA, Gibson JM. (1991). Plasma viscosity or erythrocyte sedimentation rate <strong>in</strong> the<br />

diagnosis of giant cell arteritis? Br J Ophthalmol 75:656–659.<br />

Buchb<strong>in</strong>der R, Detsky AS. (1992). Management of suspected giant cell arteritis: a decision analysis. J Rheumatol<br />

19:1220–1228.<br />

Burton EA, W<strong>in</strong>er JB, Barber PC. (1999). Giant cell arteritis of the cervical radicular vessels present<strong>in</strong>g with<br />

diaphragmatic weakness. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 67:223–226.<br />

Butt Z, Cullen JF, Mutlukan E. (1991). Pattern of arterial <strong>in</strong>volvement of the head, neck and eyes <strong>in</strong> giant cell<br />

arteritis: three case reports. Br J Ophthalmol 75:368–371.<br />

Caselli RJ. (1990). Giant cell (temporal) arteritis: a treatable cause of multi-<strong>in</strong>farct dementia. <strong>Neuro</strong>logy 40:753–755.<br />

Caselli RJ, Hunder GG. (1993). <strong>Neuro</strong>logic aspects of giant cell (temporal) arteritis. Rheum Dis Cl<strong>in</strong> North Am<br />

19:941–953.<br />

Caselli RJ, Hunder GG, Whisnant JP. (1988). <strong>Neuro</strong>logic disease <strong>in</strong> biopsy-proven giant cell arteritis. <strong>Neuro</strong>logy<br />

38:352–359.<br />

Casson RJ, Flem<strong>in</strong>g <strong>FK</strong>, Shaikh A, James B. (2001). Bilateral ocular ischemic syndrome secondary to giant cell<br />

arteritis. Arch Ophthalmol 119:306–307.<br />

Chambers W, Bernard<strong>in</strong>o V. (1988). Specimen length <strong>in</strong> temporal artery biopsies. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol<br />

8:121–125.<br />

Chan CCK, Pa<strong>in</strong>e M, O’Day J. (2001). Steroid management <strong>in</strong> giant cell arteritis. Br J Ophthalmol 85:1061–1064.<br />

Charness ME, Liu GT. (1991). Central ret<strong>in</strong>al artery occlusion <strong>in</strong> giant cell arteritis. Treatment with nitroglycer<strong>in</strong>.<br />

<strong>Neuro</strong>logy 41:1698–1699.<br />

Chertok P, Leroux JL, LeMarchand M, et al. (1990). Orbital pseudotumor <strong>in</strong> temporal arteritis revealed by<br />

computed tomography. Cl<strong>in</strong> Exp Rheumatol 8:587–589.<br />

Chmelewski WL, McKnight KM, Agudelo CA, Wise CM. (1992). Present<strong>in</strong>g features and outcome <strong>in</strong> patients<br />

undergo<strong>in</strong>g temporal artery biopsy: a review of 98 patients. Arch Intern Med 152:1690–1695.<br />

Cid MC, Font C, Oristrell J, et al. (1998). Association between strong <strong>in</strong>flammatory response and low risk of<br />

develop<strong>in</strong>g visual loss and other cranial ischemic complications <strong>in</strong> giant cell (temporal) arteritis. Arthritis<br />

Rheum 41:26–32.<br />

Cimm<strong>in</strong>o MA, Moggiana G, Montecucco C, et al. (1994). Long term treatment of polymyalgia rheumatica with<br />

deflazacort. <strong>An</strong>n Rheum Dis 43:331.<br />

Cleark<strong>in</strong> LG. (1992a). IV steroids for central ret<strong>in</strong>al artery occlusion <strong>in</strong> giant-cell arteritis (letter). Ophthalmology<br />

99:1482–1483.<br />

Cleark<strong>in</strong> LG, Caballero J. (1992b). Recovery of visual function <strong>in</strong> anterior ischemic optic neuropathy due to giant<br />

cell arteritis. Am J Med 92:703–704.<br />

Cleark<strong>in</strong> LG, Watts MT. (1991). How to perform a temporal artery biopsy. Br J Hosp Med 46:172–174.<br />

Cohen DN. (1973). Temporal arteritis: improvement <strong>in</strong> visual prognosis and management with repeat biopsies.<br />

Trans Am Acad Ophthalmol Otolaryngol 77:74–85.<br />

Combe B, Sany J, Le Quellac A, et al. (1998). Distribution of HLA-DRB1 alleles of patients with polymyalgia<br />

rheumatica and giant cell arteritis <strong>in</strong> a Mediterranean population. J Rheumatol 25:94–98.<br />

Coppetto JR, Lessell S, Lessell IM, Greco TP, Eisenberg MS. (1984). Diffuse dissem<strong>in</strong>ated atheroembolism. Three<br />

cases with neuro-ophthalmic manifestations. Arch Ophthalmol 102:224–228.<br />

Coppetto JR, Monteiro M. (1990). Diagnosis of highly occult temporal arteritis by repeat temporal artery biopsies.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 10:217–218.<br />

Cornblath WT, Eggenberger ER. (1997). Progressive visual loss from giant cell arteritis despite high-dose<br />

<strong>in</strong>travenous methylprednisolone. Ophthalmology 104:854–858.<br />

Costa MM, Romeu JC, da Silva P, de Queiroz V. (1995). Successful treatment of ischaemic optic neuropathy<br />

secondary to giant cell arteritis with <strong>in</strong>travenous pulse of methylprednisolone (letter). Cl<strong>in</strong> Rheumatol<br />

14:713–714.


112 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Cullen JF. (1967). Occult temporal arteritis. A common cause of bl<strong>in</strong>dness <strong>in</strong> old age. Br J Ophthalmol 51:513–525.<br />

Cullen JF, Coleiro JA. (1976). Ophthalmic complications of giant cell arteritis. Surv Ophthalmol 20:247–260.<br />

Currey J. (1997). Scalp necrosis <strong>in</strong> giant cell arteritis and review of the literature. Br J Rheumatol 36:814–816.<br />

Danesh-Meyer HV, Sav<strong>in</strong>o PJ, Eagle RC Jr, et al. (2000). Low diagnostic yield with second biopsies <strong>in</strong> suspected<br />

giant cell arteritis. J <strong>Neuro</strong>-ophthalmol 20:213–215.<br />

Danesh-Meyer HV, Sav<strong>in</strong>o PJ, Sergott RC. (2001). The prevalence of cupp<strong>in</strong>g <strong>in</strong> end-stage arteritic and nonarteritic<br />

anterior ischemic optic neuropathy. Ophthalmology 108:593–598.<br />

de Heide LJ, Talsma MA. (1999). Giant-cell arteritis present<strong>in</strong>g as an orbital pseudotumor. Neth J Med 55:196–198.<br />

Delecoeullerie G, Joly P, DeLara AC, et al. (1988). Polymyalgia rheumatica and temporal arteritis: a retrospective<br />

analysis of prognostic features and different corticosteroid regimens (11 year survey of 210 patients). <strong>An</strong>n<br />

Rheum Dis 47:733–739.<br />

Dennis RH II, Ransome JR. (1996). Giant cell arteritis present<strong>in</strong>g as a carpal tunnel syndrome. J Natl Med Assoc<br />

88:524–525.<br />

DeSilva M, Hazleman BL. (1986). Azathiopr<strong>in</strong>e <strong>in</strong> giant cell arteritis=polymyalgia rheumatica: a double-bl<strong>in</strong>d<br />

study. <strong>An</strong>n Rheum Dis 45:136–138.<br />

Desmet GD, Knockaert DC, Bobbaers HJ. (1990). Temporal arteritis: the silent presentation and delay <strong>in</strong> diagnosis.<br />

J Intern Med 227:237–240.<br />

Desmond J, Hussa<strong>in</strong> ST, Col<strong>in</strong> JF. (1999). Giant cell arteritis as a cause of <strong>in</strong>termittent claudications. Hosp Med<br />

60:302.<br />

de Vita S, Tavoni A, Jeracitano G, Gemignani G, Dolcher MP, Bombardieri S. (1992). Treatment of giant cell<br />

arteritis with cyclophosphamide pulses (letter). J Intern Med 232:373–375.<br />

Diamond JP. (1991). Treatable bl<strong>in</strong>dness <strong>in</strong> temporal arteritis. Br J Ophthalmol 75:432.<br />

Diamond JP. (1993). IV steroid treatment <strong>in</strong> giant cell arteritis (letter). Ophthalmology 100:291–292.<br />

DiBartolomeo AG, Brick JE. (1992). Giant cell arteritis and polymyalgia rheumatica. Postgrad Med 91:107–109.<br />

Dick AD, Millar A, Johnson N. (1991). Bra<strong>in</strong>stem vascular accidents and cranial arteritis. Scott Med J 36:85.<br />

Diego M, Margo CE. (1998). Postural vision loss <strong>in</strong> giant cell arteritis. J <strong>Neuro</strong>-ophthalmol 18:124–126.<br />

Egge K, Midtbo A, Westby R. (1996). Arteritis temporalis. Acta Ophthalmol 44:49–56.<br />

Eggenberger E. (1998). Eight-and-a-half syndrome: one-and-a-half syndrome plus cranial nerve VII palsy.<br />

J <strong>Neuro</strong>ophthalmol 18:114–116.<br />

Ellis JD, Munro P, McGettrick P. (1994). Bl<strong>in</strong>dness with a normal erythrocyte sedimentation rate <strong>in</strong> giant cell<br />

arteritis. Br J Hosp Med 52:358–359.<br />

Evans JM, Batts KP, Hunder GG. (1994). Persistent giant cell arteritis despite corticosteroid treatment. Mayo Cl<strong>in</strong><br />

Proc 69:1060–1061.<br />

Evans JM, O’Fallon WM, Hunder GG. (1995). Increased <strong>in</strong>cidence of aortic aneurysm and dissection <strong>in</strong> giant cell<br />

(temporal) arteritis. A population-based study. <strong>An</strong>n Intern Med 122:502–507.<br />

Evans JM, Vukov LF, Hunder GG. (1993). Polymyalgia rheumatica and giant cell arteritis <strong>in</strong> emergency<br />

department patients. <strong>An</strong>n Emerg Med 22:1633–1635.<br />

Fernandez-Herlihy L. (1988). Temporal arteritis: cl<strong>in</strong>ical aids to diagnosis. J Rheumatol 15:1797.<br />

Fife A, Dorrell L, Snow MH, Ong EL. (1994). Giant cell arteritis—a cause of pyrexia of unknown orig<strong>in</strong>. Scott Med J<br />

39:114–115.<br />

F<strong>in</strong>elli PF. (1997). Alternat<strong>in</strong>g amaurosis fugax and temporal arteritis. Am J Ophthalmol 123:850–851.<br />

F<strong>in</strong>eman MS, Sav<strong>in</strong>o PJ, Federman JL, Eagle RC, Jr. (1996). Branch ret<strong>in</strong>al artery occlusion as the <strong>in</strong>itial sign of<br />

giant cell arteritis. Am J Ophthalmol 122:428–430.<br />

Freddo T, Price M, Kase C, Goldste<strong>in</strong> MP. (1999). Myocardial <strong>in</strong>farction and coronary artery <strong>in</strong>volvement <strong>in</strong> giant<br />

cell arteritis. Optom Vis Sci 76:14–18.<br />

Gabriel S, Espy M, Erdman DD, et al. (1999). The role of parvovirus B19 <strong>in</strong> the pathogenesis of giant cell arteritis.<br />

A prelim<strong>in</strong>ary evaluation. Arthritis Rheum 42:1255–1258.<br />

Gabriel SE, O’Fallon WM, Achkar AA, Lie JT, Hunder GG. (1995). The use of cl<strong>in</strong>ical characteristics to predict the<br />

results of temporal artery biopsy among patients with suspected giant cell arteritis. J Rheumatol 22:93–96.<br />

Galetta SL, Balcer LJ, Lieberman AP, et al. (1997a). Refractory giant cell arteritis with sp<strong>in</strong>al cord <strong>in</strong>farction.<br />

<strong>Neuro</strong>logy 49:1720–1723.<br />

Galetta SL, Balcer LJ, Liu GT. (1997b). Giant cell arteritis with unusual flow-related neuro-ophthalmologic<br />

manifestations. <strong>Neuro</strong>logy 49:1463–1465.<br />

Galetta SL, Raps EC, Wulc AE, et al. (1990). Conjugal temporal arteritis. <strong>Neuro</strong>logy 40:1839–1842.<br />

Garcia Vazquez JM, Carreira JM, Seoane C, Vidal JJ. (1999). Superior and <strong>in</strong>ferior limb ischemia <strong>in</strong> giant cell<br />

arteritis: angiography follow-up. Cl<strong>in</strong> Rheumatol 18:61–65.<br />

Gaynes BI. (1994). Occult giant cell arteritis: a diagnosis of suspicion. J Am Optom Assoc 65:564–571.


Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 113<br />

Genereau T, Lotholary O, Biousse V, Guillev<strong>in</strong> L. (1999). Numb ch<strong>in</strong> syndrome as first sign of temporal arteritis.<br />

J Rheumatol 26:1425–1426.<br />

Gersbach P, Lang H, Kipfer B, Meyer R, Schupbach P. (1993). Impend<strong>in</strong>g rupture of the ascend<strong>in</strong>g aorta due to<br />

giant cell arteritis. Eur J Cardiothorac Surg 7:667–670.<br />

Glutz von Blotsheim S, Borruat FX. (1997). <strong>Neuro</strong>-ophthalmic complications of biopsy-proven giant cell arteritis.<br />

Eur J Ophthalmol 7:375–382.<br />

Goadsby PJ, Mossman S. (1991). Giant cell arteritis and ophthalmoplegia (letter). Aust NZ J Med 21:930.<br />

Goh KY, Lim TH. (2000). Giant cell arteritis caus<strong>in</strong>g bilateral sequential anterior ischaemic optic neuropathy—a<br />

case report. S<strong>in</strong>gapore Med J 41:32–33.<br />

Goldberg RT. (1983). Ocular muscle paresis and cranial arteritis—an unusual case. <strong>An</strong>n Ophthalmol 15:240–243.<br />

Gonzalez-Alegre P, Ruiz-Lopez AD, Abarca-Costalago M, Gonzalez-Santos P. (2001). Increment of the platelet<br />

count <strong>in</strong> temporal arteritis: response to therapy and ischemic complications. Eur <strong>Neuro</strong>l 45:43–45.<br />

Gonzalez-Gay MA, Blanco R, Rodriguez-Valverde V, et al. (1998a). Permanent visual loss and cerebrovascular<br />

accidents <strong>in</strong> giant cell arteritis. Predictors and response to treatment. Arthritis Rheum 41:1497–1504.<br />

Gonzalez-Gay MA, Garcia-Porrua C. (1998b). Carotid tenderness: an om<strong>in</strong>ous sign of giant cell arteritis? Scand J<br />

Rheumatol 27:154–156.<br />

Gonzalez-Gay MA, Garcia-Porrua C, Llorca J, et al. (2001). Biopsy-proven giant cell arteritis: cl<strong>in</strong>ical spectrum and<br />

predictive value for positive temporal artery biopsy. Sem<strong>in</strong> Arthritis Rheum 30:249–256.<br />

Gout O, Viala K, Lyon-Caen O. (1998). Giant cell arteritis and Vernet’s syndrome. <strong>An</strong>n <strong>Neuro</strong>l 50:1862–1864.<br />

Graham E. (1980). Survival <strong>in</strong> temporal arteritis. Trans Ophthalmol Soc UK 100:108–110.<br />

Grodum E, Petersen HA. (1990). Temporal arteritis with normal erythrocyte sedimentation rates present<strong>in</strong>g as<br />

occipital neuralgia. J Intern Med 227:279–280.<br />

Gros F, Maillefert JF, Beh<strong>in</strong> A, et al. (1998). Giant cell arteritis with ocular complications discovered simultaneously<br />

<strong>in</strong> two sisters. Cl<strong>in</strong> Rheumatol 17:58–61.<br />

Grosser SJ, Reddy RK, Tomsak RL, Katz<strong>in</strong> WE. (1999). Temporal arteritis <strong>in</strong> African Americans.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 21:25–31.<br />

Grosvenor T, Mal<strong>in</strong>ovsky V, Gelv<strong>in</strong> J, Tonekaboni K. (1993). Diagnosis and management of temporal arteritis: a<br />

review and case report. Optom Vis Sci 70:771–777.<br />

Gruener G, Merchut MP. (1992). Renal causes of elevated sedimentation rate <strong>in</strong> suspected temporal arteritis. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 12:272–274.<br />

Gudmundsson M, Nordborg E, Bengtsson B-A, et al. (1993). Plasma viscosity <strong>in</strong> giant cell arteritis as a predictor of<br />

disease activity. <strong>An</strong>n Rheum Dis 52:104.<br />

Guevara RA, Newman NJ, Grossniklaus HE. (1998). Positive temporal artery biopsy 6 months after prednisone<br />

treatment. Arch Ophthalmol 116:1252–1253.<br />

Gur H, Whrenfeld M, Izsak E. (1996). Pleural effusion as a present<strong>in</strong>g manifestation of giant cell arteritis. Cl<strong>in</strong><br />

Rheumatol 15:200–203.<br />

Haist SA. (1985). Stroke after temporal artery biopsy. Mayo Cl<strong>in</strong> Proc 60:538.<br />

Hall S, Hunder GG. (1984) Is temporal artery biopsy prudent? Mayo Cl<strong>in</strong> Proc 59:793–796.<br />

Hall S, Lie JT, Kurland LT, Persell<strong>in</strong> S, O’Brien PC, Hunder GG. (1983). The therapeutic impact of temporal artery<br />

biopsy. Lancet 2:1217–1220.<br />

Hamano K, Gohra H, Katoh T, et al. (1999). <strong>An</strong> ascend<strong>in</strong>g aortic aneurysm caused by giant cell arteritis: report of a<br />

case. Surg Today 29:957–959.<br />

Hamed LM, Guy JR, Moster ML, Bosley T. (1992). Giant cell arteritis <strong>in</strong> the ocular ischemic syndrome. Am J<br />

Ophthalmol 113:702–705.<br />

Hansen BL, Junker P. (1995). Giant cell arteritis present<strong>in</strong>g with ischaemic sk<strong>in</strong> lesions of the neck. Br J Rheumatol<br />

34:1182–1184.<br />

Hayreh SS. (1990). <strong>An</strong>terior ischaemic optic neuropathy. Differentiation of arteritic from nonarteritic type and its<br />

management. Eye 4:25–41.<br />

Hayreh SS. (1991). Ophthalmic features of giant cell arteritis. Baillieres Cl<strong>in</strong> Rheumatol 5:431–459.<br />

Hayreh SS. (1998a). Ocular manifestations of giant cell arteritis (reply to correspondence). Am J Ophthalmol<br />

126:742–744.<br />

Hayreh SS, Jonas JB. (2001). Optic disc morphology after arteritic anterior ischemic optic neuropathy.<br />

Ophthalmology 108:1586–1594.<br />

Hayreh SS, Podhajsky PA, Raman R, Zimmerman B. (1997). Giant cell arteritis: validity and reliability of various<br />

diagnostic criteria. Am J Ophthalmol 123:285–296.<br />

Hayreh SS, Podhajsky PA, Zimmerman B. (1998b). Ocular manifestations of giant cell arteritis. Am J Ophthalmol<br />

125:509–520.


114 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Hayreh SS, Podhajsky PA, Zimmerman B. (1998c). Occult giant cell arteritis: ocular manifestations. Am J<br />

Ophthalmol 125:521–526.<br />

Heathcote JG. (1999). Update <strong>in</strong> pathology: temporal arteritis and its ocular manifestations. Can J Ophthalmol<br />

34:63–68.<br />

Hedges TR III. (1992). The importance of temporal artery biopsy <strong>in</strong> the diagnosis of giant cell arteritis. Arch<br />

Ophthalmol 110:1377.<br />

Hedges TR III, Gieger GL, Albert DM. (1983). The cl<strong>in</strong>ical value of negative temporal artery biopsy specimens.<br />

Arch Ophthalmol 101:1251–1254.<br />

Hellman DB. (1993). Immunopathogenesis, diagnosis, and treatment of giant cell arteritis, temporal arteritis,<br />

polymyalgia rheumatica and Takayasu’s arteritis. Curr Op<strong>in</strong> Rheum 5:25–32.<br />

Hernandez-Garcia C, Soriano C, Morado C, et al. (1994). Methotrexate treatment <strong>in</strong> the management of giant cell<br />

arteritis. Scand J Rheum 23:295–298.<br />

Ho AC, Sergott RC, Regillo CD, et al. (1994). Color Doppler hemodynamics of giant cell arteritis. Arch Ophthalmol<br />

112:938–945.<br />

Hunder GG. (1990a). Giant cell (temporal) arteritis. Rheum Dis Cl<strong>in</strong> North Am 16:399.<br />

Hunder GG, Bloch DA, Michel BA, et al. (1990b). The American College of Rheumatology, 1990 criteria for the<br />

classification of giant cell arteritis. Arthritis Rheum 33:1122–1128.<br />

Husse<strong>in</strong> AMA, Hay N. (1990). Case report: cerebral arteritis with unusual distribution. Cl<strong>in</strong> Radiol 41:353.<br />

Huston KA, Hunder GG, Lie JT, Kennedy RH, Elveback LR. (1978). Temporal arteritis: a 25-year epidemiologic,<br />

cl<strong>in</strong>ical, and pathologic study. <strong>An</strong>n Intern Med 88:162–167.<br />

Hwang J-M, Girk<strong>in</strong> CA, Perry JD, et al. (1999). Bilateral ocular ischemic syndrome secondary to giant cell arteritis<br />

progress<strong>in</strong>g despite corticosteroid treatment. Am J Ophthalmol 127:102–104.<br />

Ilan Y, Ben-Chetrit E. (1993). Liver <strong>in</strong>volvement <strong>in</strong> giant cell arteritis. Cl<strong>in</strong> Rheumatol 12:219–222.<br />

Imakita M, Yutani C, Ishibashi-Ueda H. (1993). Giant cell arteritis <strong>in</strong>volv<strong>in</strong>g the cerebral artery. Arch Pathol Lab<br />

Med 117:729–733.<br />

Jacobson DM. (2000). Divergence <strong>in</strong>sufficiency revisited. Natural history of idiopathic cases and neurologic<br />

associations. Arch Ophthalmol 118:1237–1241.<br />

Jacobson DM, Slamovits TL. (1987). Erythrocyte sedimentation rate and its relationship to hematocrit <strong>in</strong> giant cell<br />

arteritis. Arch Ophthalmol 105:965–967.<br />

Jiménez-Jiménez FJ, Garcia-Albea E, Zurdo M, et al. (1998). Giant cell arteritis present<strong>in</strong>g as cluster headache.<br />

<strong>Neuro</strong>logy 51:1787–1788.<br />

Joelson E, Ruthrauff B, Ali F, et al. (2000). Multifocal dural enhancement associated with temporal arteritis.<br />

Arch <strong>Neuro</strong>l 57:119–122.<br />

Johnston JL, Thomson GT, Sharpe JA, Inman RD. (1992). Internuclear ophthalmoplegia <strong>in</strong> giant cell arteritis<br />

(letter). J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 55:84–85.<br />

Jover JA, Hernandez-Garcia C, Morado IC, et al. (2001). Comb<strong>in</strong>ed treatment of giant-cell arteritis with<br />

methotrexate and prednisone. A randomized, double-bl<strong>in</strong>d, placebo-controlled trial. <strong>An</strong>n Intern Med<br />

134:106–114.<br />

Jundt JW, Mock D. (1991). Temporal arteritis with normal erythrocyte sedimentation rates present<strong>in</strong>g as occipital<br />

neuralgia. Arthritis Rheum 34:217–219.<br />

Kachroo A, Tello C, Bais R, Panush RS. (1996). Giant cell arteritis: diagnosis and management. Bull Rheum Dis<br />

45:2–5.<br />

Kattah JC, Cupps T, Manz HJ, el Khodary A, Caputy A. (1991). Occipital artery biopsy: a diagnostic alternative <strong>in</strong><br />

giant cell arteritis. <strong>Neuro</strong>logy 41:949–950.<br />

Kattah JC, Mejico L, Chrousos GA, et al. (1999). Pathologic f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> a steroid-responsive optic nerve <strong>in</strong>farct <strong>in</strong><br />

giant-cell arteritis. <strong>Neuro</strong>logy 53:177–180.<br />

Kerleau JM, Levesque H, Delpech A, et al. (1994). Prevalence and evolution of anticardiolip<strong>in</strong> antibodies <strong>in</strong> giant<br />

cell arteritis dur<strong>in</strong>g corticosteroid therapy. A prospective study of 20 cases. Br J Rheumatol 33:648.<br />

Killer HE, Holtz DJ, Kaiser HJ, Laeng RH. (2000). Diplopia, ptosis, and hepatitis as present<strong>in</strong>g signs and<br />

symptoms of giant cell arteritis. Br J Ophthalmol 84:1318.<br />

Kle<strong>in</strong> RG, Campbell RJ, Hunder GG, Carney JA. (1976). Skip lesions <strong>in</strong> temporal arteritis. Mayo Cl<strong>in</strong> Proc<br />

51:504–510.<br />

Kontoyianni A, Maragou M, Alvanou E, et al. (1999). Unilateral distal extremity swell<strong>in</strong>g with pitt<strong>in</strong>g oedema <strong>in</strong><br />

giant cell arteritis. Cl<strong>in</strong> Rheumatol 18:82–84.<br />

Kranemann CF, Buys YM. (1997). Acute angle-closure glaucoma <strong>in</strong> giant cell arteritis. Can J Ophthalmol 32:389–391.<br />

Kupersmith MJ, Langer R, Mitnick H, et al. (1999). Visual performance <strong>in</strong> giant cell arteritis (temporal arteritis)<br />

after 1 year of therapy. Br J Ophthalmol 83:796–801.


Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 115<br />

Kyle V, Hanzleman BL. (1993). The cl<strong>in</strong>ical and laboratory course of polymyalgia rheumatica=giant cell arteritis<br />

after the first two months of treatment. <strong>An</strong>n Rheum Dis 52:847–850.<br />

Lacomas D, Giuliani MJ, Wasko MC, Oddis CV. (1999). Giant cell arteritis present<strong>in</strong>g with proximal weakness and<br />

skeletal muscle vasculitis. Muscle Nerve 22:142–144.<br />

Lagrand WK, Hoogendoorn M, Bakker K, teVelde J, Labrie A. (1996). Aortoduodenal fistula as an unusual<br />

manifestation of giant-cell arteritis. Eur J Vasc Endovasc Surg 11:502–503.<br />

Laidlaw PAH, Smith PEM, Hudgson P. (1990). Orbital pseudotumor secondary to giant cell arteritis: an<br />

unreported condition. Br Med J 300:784.<br />

Lambert M, Weber A, Boland B, DePlaen JF, Donckier J. (1996). Large vessel vasculitis without temporal artery<br />

<strong>in</strong>volvement: isolated form of giant cell arteritis? Cl<strong>in</strong> Rheumatol 15:174–180.<br />

Langford CA, Sneller MC, Hoffman GS. (1997). Methotrexate use <strong>in</strong> systemic vasculitis. Rheum Dis Cl<strong>in</strong> North Am<br />

23:841–853.<br />

Lee AG. (1995). Jaw claudication: a sign of giant cell arteritis. J Am Dent Assoc 126:1028–1029.<br />

Lee AG, Eggenberger ER, Kaufman DI, Manrique C. (1999a). Optic nerve enhancement on magnetic resonance<br />

imag<strong>in</strong>g <strong>in</strong> arteritic ischemic optic neuropathy. J <strong>Neuro</strong>-ophthalmol 19:235–237.<br />

Lee AG, Tang RA, Feldon SE, et al. (2001). Orbital presentations of giant cell arteritis. Graefes Arch Cl<strong>in</strong> Exp<br />

Ophthalmol 239:509–513.<br />

Lee CC, Su WW, Hunder GG. (1999b). Dysarthria associated with giant cell arteritis. J Rheumatol 26:931–932.<br />

Lessell S. (1995). Surgery for ischemic optic neuropathy (editorial). Arch Ophthalmol 113:273–274.<br />

Lessell S. (2000). Bilateral temporal artery biopsies <strong>in</strong> giant cell arteritis. J <strong>Neuro</strong>-ophthalmol 20:220–221.<br />

Lev<strong>in</strong> LA. (1995). Clarify<strong>in</strong>g the treatment of nonarteritic anterior ischemic optic neuropathy (editorial).<br />

JAMA 273:666–667.<br />

Levy MH, Margo CE. (1994). Temporal artery biopsy and sarcoidosis. Am J Ophthalmol 117:409–410.<br />

Lie JT. (1995a). Aortic and extracranial large vessel giant cell arteritis: a review of 72 cases with histopathologic<br />

documentation. Sem<strong>in</strong> Arthritis Rheum 24:422–431.<br />

Lie JT, Tokugawa DA. (1995b). Bilateral lower limb gangrene and stroke as <strong>in</strong>itial manifestations of systemic giant<br />

cell arteritis <strong>in</strong> an African-American. J Rheumatol 22:363–366.<br />

Lim KH, Liam CK, Vasudevan AE, Wong CM. (1999). Giant cell arteritis present<strong>in</strong>g as chronic cough and<br />

prolonged fever. Respirology 4:299–301.<br />

L<strong>in</strong> JL, Hsueh S. (1995). Giant cell arteritis <strong>in</strong>duced renal artery aneurysm (letter). Cl<strong>in</strong> Nephrol 43:66–68.<br />

L<strong>in</strong>coff NS, Erlich PD, Brass LS. (2000). Thrombocytosis <strong>in</strong> temporal arteritis. Ris<strong>in</strong>g platelet counts: a red flag for<br />

giant cell arteritis. J <strong>Neuro</strong>-ophthalmol 20:67–72.<br />

Litw<strong>in</strong> MS, Henderson DR, Kirkham B. (1992). Normal sedimentation rates and giant cell arteritis. Arch Intern Med<br />

152:209.<br />

Liu GT, Glaser JS, Schatz NJ, Smith JL. (1994). Visual morbidity <strong>in</strong> giant cell arteritis. Ophthalmology 101:1779–1785.<br />

Liu G, Shupak R, Chiu BK. (1995). Aortic dissection <strong>in</strong> giant-cell arteritis. Sem<strong>in</strong> Arthritis Rheum 25:160–171.<br />

Liu NH, LaBree LD, Feldon SE, Rao NA. (2001). The epidemiology of giant cell arteritis. A 12-year retrospective<br />

study. Ophthalmology 108:1145–1149.<br />

Llorente Pendas S, DeVicente Rodriguez JC, et al. (1994). Tongue necrosis as a complication of giant cell arteritis.<br />

Oral Surg Oral Med Oral Pathol 78:448–451.<br />

Looney BD. (1999). Unilateral proptosis result<strong>in</strong>g from giant-cell arteritis. J Am Optom Assoc 70:443–449.<br />

Lundberg I, Hedfors E. (1990). Restricted dose and duration of corticosteroid treatment <strong>in</strong> patients with<br />

polymyalgia rheumatica and temporal arteritis. J Rheumatol 17:1340–1345.<br />

Mack HG, O’Day J, Currie JN. (1991) Delayed choroidal perfusion <strong>in</strong> giant cell arteritis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol<br />

11:221–227.<br />

MacLeod JD, Rizk SN. (1993). Cotton-wool spots <strong>in</strong> giant cell arteritis (letter). Eye 7:715–716.<br />

Mallia C, Coleiro B, Crockford M, Ellul B. (1999). Raynaud’s phenomenon caused by giant cell arteritis. Adv Exp<br />

Med Biol 455:517–520.<br />

Manna R, Latteri M, Cristiano G, et al. (1998). <strong>An</strong>ti-cardiolip<strong>in</strong> antibodies <strong>in</strong> giant cell arteritis and polymyalgia<br />

rheumatica: a study of 40 cases. Br J Rheumatol 315:549–550.<br />

Matteson EL, Gold KN, Block DA, Hunder GG. (1996). Long-term survival of patients with giant cell arteritis <strong>in</strong><br />

the American College of Rheumatology giant cell arteritis classification criteria cohort. Am J Med<br />

100:193–196.<br />

Matzk<strong>in</strong> DC, Slamovits TL, Sachs R, Burde RM. (1992). Visual recovery <strong>in</strong> two patients after <strong>in</strong>travenous<br />

methylprednisolone treatment of central ret<strong>in</strong>al artery occlusion secondary to giant-cell arteritis.<br />

Ophthalmology 99:68–71.<br />

McDonnell PJ, Moore GW, Miller NR, Hutch<strong>in</strong>s GM, Green WR. (1986). Temporal arteritis: a cl<strong>in</strong>icopathologic<br />

study. Ophthalmology 93:518–530.


116 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

McHugh NJ, James IE, Plant GT. (1990). <strong>An</strong>ticardiolip<strong>in</strong> and ant<strong>in</strong>eutrophil antibodies <strong>in</strong> giant cell arteritis.<br />

J Rheumatol 17:916–922.<br />

McLean CA, Gonzales MF, Dowl<strong>in</strong>g JP. (1993). Systemic giant cell arteritis and cerebellar <strong>in</strong>farction. Stroke<br />

24:899–902.<br />

Melberg NS, Grand MG, Diekert JP, et al. (1995). Cotton-wool spots and the early diagnosis of giant cell arteritis.<br />

Ophthalmology 102:1611–1614.<br />

Miller A, Green M. (1983). Simple rule for calculat<strong>in</strong>g normal erythrocyte sedimentation rate. Br Med J 286:266.<br />

Miller NR. (1991). Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 4th ed. Baltimore, Williams & Wilk<strong>in</strong>s,<br />

pp. 2601–2627.<br />

Miller NR. (2000). Giant cell arteritis. J <strong>Neuro</strong>-ophthalmol 20:219–221.<br />

Mitnich HJ, Tunick PA, Rotterdam H, et al. (1990). <strong>An</strong>temortem diagnosis of giant cell aortitis. J Rheumatol 17:708.<br />

Mizen TR. (1991). Giant cell arteritis: diagnostic and therapeutic considerations. Ophthalmol Cl<strong>in</strong> North Am 4:547–556.<br />

Myles AB, Perera T, Ridley MG. (1992). Prevention of bl<strong>in</strong>dness <strong>in</strong> giant cell arteritis by corticosteroid treatment.<br />

Br J Rheumatol 31:103–105.<br />

Nadeau SE. (1988). Temporal arteritis: a decision-analytical approach to temporal artery biopsy. Acta <strong>Neuro</strong>l Scand<br />

78:90–100.<br />

Neish PR, Sergent JS. (1991). Giant cell arteritis: a case with unusual neurologic manifestations and a normal<br />

sedimentation rate. Arch Intern Med 151:378–380.<br />

Nesher G, Sonnenblick M, Friedlander Y. (1994). <strong>An</strong>alysis of steroid related complications and mortality <strong>in</strong><br />

temporal arteritis: a 15 year survey of 43 patients. J Rheumatol 21:1283.<br />

N<strong>in</strong>et JP, Bachet P, Dumontet CM, et al. (1990). Subclavian and axillary <strong>in</strong>volvement <strong>in</strong> temporal arteritis and<br />

polymyalgia rheumatica. Am J Med 88:13.<br />

Nish<strong>in</strong>o H, DeRemee RA, Rub<strong>in</strong>o FA, Parisi JE. (1993). Wegener’s granulomatosis associated with vasculitis of the<br />

temporal artery: report of five cases. Mayo Cl<strong>in</strong> Proc 68:115–121.<br />

Nordborg E, Bengtsson BA. (1990). Epidemiology of biopsy-proven giant cell arteritis (GCA). J Intern Med 227:233.<br />

Olopade CO, Sekosan M, Schraufnagel DE. (1997). Giant cell arteritis manifest<strong>in</strong>g as chronic cough and fever of<br />

unknown orig<strong>in</strong>. Mayo Cl<strong>in</strong> Proc 72:1048–1050.<br />

Orgull S, Gass A, Flammer J. (1994). Optic disc cupp<strong>in</strong>g <strong>in</strong> arteritic anterior ischemic optic neuropathy.<br />

Ophthalmologica 208:336–338.<br />

Orrell RW, Johnson MH. (1993). Plasma viscosity and the diagnosis of giant cell arteritis. Br J Cl<strong>in</strong> Pract 47:71–72.<br />

Pache M, Kaiser HJ, Haufschild T, et al. (2002). Increased endothel<strong>in</strong>-1 plasma levels <strong>in</strong> giant cell arteritis: a report<br />

on four patients. Am J Ophthalmol 133:160–162.<br />

Pascual-Sedano B, Roig C. (1998). Horner’s syndrome due to giant cell arteritis. <strong>Neuro</strong>-<strong>ophthalmology</strong> 20:75–77.<br />

Pedro-Botet J, Coll J, Lopez MJ, Grau JM. (1996). Pericardial effusion and giant cell arteritis (letter). Br J Rheumatol<br />

35:194–195.<br />

Petzold A, Plant GT, Scaravilli F. (2002). Rapidly develop<strong>in</strong>g <strong>in</strong>timal fibrosis mimick<strong>in</strong>g giant cell arteritis. Br J<br />

Ophthalmol 86:114–115.<br />

Phelan MJ, Kok K, Burrow C, Thompson RN. (1993). Small bowel <strong>in</strong>farction <strong>in</strong> association with giant cell arteritis.<br />

Br J Rheumatol 32:63–65.<br />

Pless M, Rizzo JF III, Lamk<strong>in</strong> JC, Lessell S. (2000). Concordance of bilateral temporal artery biopsy <strong>in</strong> giant cell<br />

arteritis. J <strong>Neuro</strong>-ophthalmol 20:216–218.<br />

Ponge T, Barrier JH, Grolleau JY, et al. (1988). The efficacy of selective unilateral temporal artery biopsy versus<br />

bilateral biopsies for diagnosis of giant cell arteritis. J Rheumatol 15:997.<br />

Postel EA, Pollock SC. (1993). Recovery of vision <strong>in</strong> a 47-year-old man with fulm<strong>in</strong>ant giant cell arteritis. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 13:262–270.<br />

Pounta<strong>in</strong> G, Calv<strong>in</strong> J, Hazleman BL. (1994). Alpha 1-antichymotryps<strong>in</strong>, C-reactive prote<strong>in</strong> and erythrocyte<br />

sedimentation rate <strong>in</strong> polymyalgia rheumatica and giant cell arteritis. Br J Rheumatol 33:550–554.<br />

Pounta<strong>in</strong> G, Hazleman B. (1995). ABC of rheumatology. Polymyalgia rheumatica and giant cell arteritis. Br Med J<br />

310:1057–1059.<br />

Quillen DA, Cantore WA, Schwartz SR, Brod RD, Saddani JW. (1993). Choroidal nonperfusion <strong>in</strong> giant cell<br />

arteritis. Am J Ophthalmol 116:171–175.<br />

Radda TM, Pehamberger H, Smolen J, Menzel J. (1981). Ocular manifestation of temporal arteritis: immunological<br />

studies. Arch Ophthalmol 99:487–488.<br />

Rajesh CV, Cole M. (2000). Panuveitis as a present<strong>in</strong>g feature of giant cell arteritis. Br J Ophthalmol 84:340.<br />

Rauser M, Rismondo V. (1995). Ischemic optic neuropathy dur<strong>in</strong>g corticosteroid therapy for giant cell arteritis<br />

(letter). Arch Ophthalmol 113:707–708.<br />

Reich KA, Giansiracusa DF, Strongwater SL. (1990). <strong>Neuro</strong>logic manifestations of giant cell arteritis. Am J Med<br />

89:67–72.


Arteritic <strong>An</strong>terior Ischemic Optic <strong>Neuro</strong>pathy and Giant Cell Arteritis 117<br />

Richardson MP, Lever AM, F<strong>in</strong>k AM, Dixon AK, Hazleman BL. (1996). Survival after aortic dissection <strong>in</strong> giant cell<br />

arteritis (letter). <strong>An</strong>n Rheum Dis 55:332–333.<br />

Rischmueller M, Davies RP, Smith MD. (1996). Three year follow-up of a case of giant cell arteritis present<strong>in</strong>g with<br />

a chronic cough and upper limb ischaemic symptoms. Br J Rheumatol 35:800–802.<br />

Rivest D, Brunet D, Desbiens R, Bouchard JP. (1995). C-5 radiculopathy as a manifestation of giant cell arteritis.<br />

<strong>Neuro</strong>logy 45:1222–1224.<br />

Robb-Nicholson C, Chang RW, <strong>An</strong>derson S, et al. (1988). Diagnostic value of history and exam<strong>in</strong>ation <strong>in</strong> giant cell<br />

arteritis: a cl<strong>in</strong>ical pathological study of 81 temporal artery biopsies. J Rheumatol 15:1793.<br />

Ronchetto F. (1992). Transient monocular bl<strong>in</strong>dness <strong>in</strong> a patient with giant-cell arteritis. Pathogenetic and<br />

therapeutic considerations (letter). Recent Prog Med 83:241–242.<br />

Rousseau P. (1994). Giant cell arteritis. Arch Fam Med 3:628–632.<br />

Rudd JC. (1998). Ischemic scalp necrosis preced<strong>in</strong>g loss of visual acuity <strong>in</strong> giant cell arteritis. Arch Ophthalmol<br />

116:1690–1691.<br />

Ruiz-Masera JJ, Alamillos-Granados FJ, Dean-Ferrer A, et al. (1995). Submandibular swell<strong>in</strong>g as the first<br />

manifestation of giant cell arteritis. Report of a case. J Craniomaxillofac Surg 23:119–121.<br />

Russell RW. (1996). Giant cell arteritis—a cl<strong>in</strong>ical review. Curr Med Drugs 7:3–8.<br />

Sadda SR, Nee M, Miller NR, et al. (2001). <strong>Cl<strong>in</strong>ical</strong> spectrum of posterior ischemic optic neuropathy. Am J<br />

Ophthalmol 132:743–750.<br />

Salvarani C, Gabriel SE, O’Fallon WM, Hunder GG. (1995). The <strong>in</strong>cidence of giant cell arteritis <strong>in</strong> Olmsted County,<br />

M<strong>in</strong>nesota: apparent fluctuations <strong>in</strong> cyclic pattern. <strong>An</strong>n Intern Med 123:192–194.<br />

Salvarani C, Hunder GG. (2001). Giant cell arteritis with low erythrocyte sedimentation rate: frequency of<br />

occurrence <strong>in</strong> a population-based study. Arthritis Rheum 45:140–145.<br />

Salvarani C, Macchioni P, Zizzi F, et al. (1991). Epidemiologic and immunogenic aspects of polymyalgia<br />

rheumatica and giant cell arteritis <strong>in</strong> northern Italy. Arthritis Rheum 34:351–356.<br />

Sav<strong>in</strong>o PJ. (2000). Giant cell arteritis. J <strong>Neuro</strong>-ophthalmol 20:221.<br />

Schauble B, Wijman CAC, Kole<strong>in</strong>i B, Babikian VL. (2000). Ophthalmic artery microembolism <strong>in</strong> giant cell arteritis.<br />

J <strong>Neuro</strong>-ophthalmol 20:273–275.<br />

Schaufelberger C. (1998). No additive effect of cyclospor<strong>in</strong> A compared with glucocorticoid treatment alone <strong>in</strong><br />

giant cell arteritis: results of an open, controlled, randomized study. Br J Rheumatol 37:464–465.<br />

Schmidt D, Loffler KU. (1994). Temporal arteritis. Comparison of histological and cl<strong>in</strong>ical f<strong>in</strong>d<strong>in</strong>gs. Acta Ophthalmol<br />

72:319–325.<br />

Schwartz NG, Beck RW, Sav<strong>in</strong>o PJ, et al. (1995). Pa<strong>in</strong> <strong>in</strong> anterior ischemic optic neuropathy. J <strong>Neuro</strong>-ophthalmol<br />

15:9–10.<br />

Segato T, Piermarocchi S, Midena E. (1990). The role of fluoresce<strong>in</strong> angiography <strong>in</strong> the <strong>in</strong>terpretation of optic nerve<br />

head diseases. Metab Pediatr Syst Ophthalmol 13:111–114.<br />

Sehgal M, Swanson JW, DeRemee RA, Cobly TV. (1995). <strong>Neuro</strong>logic manifestations of Churg-Strauss syndrome.<br />

Mayo Cl<strong>in</strong> Proc 70:337–341.<br />

Shanahan EM, Hutch<strong>in</strong>son M, Hanley SD, Bresnihan B. (1999). Giant cell arteritis present<strong>in</strong>g as lateral medullary<br />

syndrome. Rheumatology 38:188–189.<br />

Sheehan MM, Keohane C, Twomey C. (1993). Fatal vertebral giant cell arteritis. J Cl<strong>in</strong> Pathol 46:1129–1131.<br />

Siatkowski RM, Gass JDM, Glaser JS, Smith JL, Schatz NJ, Schiffman J. (1993). Fluoresce<strong>in</strong> angiography <strong>in</strong> the<br />

diagnosis of giant cell arteritis. Am J Ophthalmol 115:57–63.<br />

Slamovits TL, Matzk<strong>in</strong> SC, Burde RM, Sachs R. (1992). IV steroids for central ret<strong>in</strong>al artery occlusion <strong>in</strong> giant cell<br />

arteritis. (letter). Ophthalmology 99:1482–1484.<br />

Slav<strong>in</strong> ML, Barnondes MJ. (1994). Visual loss caused by choroidal ischemia preced<strong>in</strong>g anterior ischemic optic<br />

neuropathy <strong>in</strong> giant cell arteritis. Am J Ophthalmol 117:81–86.<br />

Sonnenblick M, Nesher G, Friedlander Y, Rub<strong>in</strong>ow A. (1994). Giant cell arteritis <strong>in</strong> Jerusalem: a 12-year<br />

epidemiologic study. Br J Rheumatol 33:938–941.<br />

Sox HC, Liang MH. (1986). The erythrocyte sedimentation rate: guidel<strong>in</strong>es for rational use. <strong>An</strong>n Intern Med<br />

104:515–523.<br />

Stauton H, Safford F, Leader M, O’Riorda<strong>in</strong> D. (2000). Deterioration of giant cell arteritis with corticosteroid<br />

therapy. Arch <strong>Neuro</strong>l 57:581–584.<br />

Stebb<strong>in</strong>g J, Buetens O, Hellmann D, Stone J. (1999). Secondary amyloidosis associated with giant cell<br />

arteritis=polymyalgia rheumatica. J Rheumatol 26:2698–2700.<br />

Stevens RJ, Hughes RA. (1995). The aetiopathogenesis of giant cell arteritis. Br J Rheumatol 34:960.<br />

Straud R, Corman LC. (1996). Association of parvovirus B19 <strong>in</strong>fection with giant cell arteritis. Cl<strong>in</strong> Infect Dis<br />

22:1123.


118 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Thystrup J, Knudsen GM, Mogensen AM, Fledelius HC. (1994). Atypical visual loss <strong>in</strong> giant cell arteritis.<br />

Acta Ophthalmol 72:759–764.<br />

To KW, Enzer YR, Tsiaras WG. (1994). Temporal artery biopsy after one month of corticosteroid therapy.<br />

Am J Ophthalmol 117:265.<br />

Tomer Y, Neufeld MY, Shoenfeld Y. (1992). Coma with triphasic wave pattern <strong>in</strong> EEG as a complication of<br />

temporal arteritis. <strong>Neuro</strong>logy 42:439.<br />

Tomsak RL. (1997). Handbook of Treatment <strong>in</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. Newton, MA, Butterworth-He<strong>in</strong>emann.<br />

Tomsak RL. (1991). Superficial temporal artery biopsy: a simplified technique. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 11:<br />

202–204.<br />

Trend P, Graham E. (1990). Internuclear ophthalmoplegia <strong>in</strong> giant cell arteritis (letter). J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 53:532.<br />

Turner RG, Henry J, Friedmann AI, et al. (1974). Giant cell arteritis. Postgrad Med J 50:265.<br />

Valmaggia C, Speiser P, Bischoff P, Neiderberger H. (1999). Indocyan<strong>in</strong>e green versus fluoresce<strong>in</strong> angiography <strong>in</strong><br />

the differential diagnosis of arteritic and nonarteritic anterior ischemic optic neuropathy. Ret<strong>in</strong>a 19:131–134.<br />

van der Veen MJ, D<strong>in</strong>ant HJ, van Booma-Frankfort C, van Albada-Kuipers GA, Biljsma JW. (1996). Can<br />

methotrexate be used as a steroid spar<strong>in</strong>g agent <strong>in</strong> the treatment of polymyalgia rheumatica and giant<br />

cell arteritis? <strong>An</strong>n Rheum Dis 55:219–223.<br />

Vilaseca J, Gonzalez A, Cid MC, Lopez-Vivancos J, Ortega A. (1987). <strong>Cl<strong>in</strong>ical</strong> usefulness of temporal artery biopsy.<br />

<strong>An</strong>n Rheum Dis 46:282–285.<br />

Walz-Leblanc BA, Ameli FM, Keystone EC. (1991). Giant cell arteritis present<strong>in</strong>g as limb claudication. Report and<br />

review of the literature. J Rheumatol 18:470–472.<br />

Wawryk SO, Ayberk H, Boyd AW, Rode J. (1991). <strong>An</strong>alysis of adhesion molecules <strong>in</strong> the immunopathogenesis of<br />

giant cell arteritis. J Cl<strong>in</strong> Pathol 44:497–501.<br />

Weems JJ Jr. (1992). Diagnosis of giant cell arteritis by occipital artery biopsy (letter). Am J Med 93:231–232.<br />

We<strong>in</strong> FB, Miller NR. (2000). Unilateral central ret<strong>in</strong>al artery occlusion followed by contralateral anterior ischemic<br />

optic neuropathy <strong>in</strong> giant cell arteritis. Ret<strong>in</strong>a 20:301–303.<br />

We<strong>in</strong>berg DA, Sav<strong>in</strong>o PJ, Sergott RC, Bosley TM. (1994). Giant cell arteritis. Corticosteroids, temporal artery<br />

biopsy and bl<strong>in</strong>dness. Arch Fam Med 3:623–627.<br />

We<strong>in</strong>ste<strong>in</strong> A, Del Guidice J. (1994). The erythrocyte sedimentation rate—time honored and tradition bound.<br />

J Rheumatol 21:1177.<br />

Weisman MH. (1995). Corticosteroids <strong>in</strong> the treatment of rheumatologic diseases. Curr Op<strong>in</strong> Rheumatol 7:183–190.<br />

Weiss LM, Gonzalez E, Miller SB, Agudelo CA. (1995). Severe anemia as the present<strong>in</strong>g manifestation of giant cell<br />

arteritis. Arthritis Rheum 38:434–436.<br />

Weyand CM, Bartley GB. (1997). Giant cell arteritis: new concepts <strong>in</strong> pathogenesis and implications for management.<br />

Am J Ophthalmol 123:392–395.<br />

Weyand CM, Gorozny JJ. (1995). Giant cell arteritis as an antigen driven disease. Rheum Dis Cl<strong>in</strong> North Am<br />

21:1027–1039.<br />

Weyand CM, Hicok KC, Hunder GG, Goronzy JJ. (1992). The HLA-DRB1 locus as a genetic component <strong>in</strong> giant<br />

cell arteritis: mapp<strong>in</strong>g of a disease-l<strong>in</strong>ked sequence motif to the antigen-b<strong>in</strong>d<strong>in</strong>g site of the HLA-DR<br />

molecule. J Cl<strong>in</strong> Invest 90:2355–2361.<br />

Weyand CM, Schonberger J, Ippitz U, Hunder NNH, Hicok KC, Goronzy JJ. (1994). Dist<strong>in</strong>ct vascular lesions <strong>in</strong><br />

giant cell arteritis share identical T cell clonotypes. J Exp Med 179:695–703.<br />

Wilke WS, Hoffman GS. (1995). Treatment of corticosteroid-resistant giant cell arteritis. Rheum Dis Cl<strong>in</strong> North Am<br />

21:59–71.<br />

Wise CM, Agudelo CA, Chmeleski WL, McKnight KM. (1991). Temporal arteritis with low erythrocyte<br />

sedimentation rate: a review of five cases. Arthritis Rheum 34:217–219.<br />

Zenone T, Souquet PJ, Bohas C, Vital Durand D, Bernard JP. (1994). Unusual manifestations of giant cell arteritis:<br />

pulmonary nodules, cough, conjunctivitis and otitis with deafness. Eur Respir J 7:2252–2254.<br />

Zweegman S, Makk<strong>in</strong>k B, Stehouwer CD. (1993). Giant-cell arteritis with normal erythrocyte sedimentation rate:<br />

case report and review of the literature. Nether J Med 42:128–131.


6 r<br />

Traumatic Optic <strong>Neuro</strong>pathy<br />

What Is the Traumatic Optic <strong>Neuro</strong>pathy?<br />

Traumatic optic neuropathy (TON) is a cl<strong>in</strong>ical diagnosis that presents with typical<br />

cl<strong>in</strong>ical features. Table 6–1 summarizes these features. The <strong>in</strong>cidence of TON after<br />

craniofacial trauma is probably 2 to 5%. Multiple mechanisms have been proposed <strong>in</strong><br />

TON. Table 6–2 lists the major theories for pathogenesis of TON.<br />

What Is the Evaluation of Traumatic Optic<br />

<strong>Neuro</strong>pathy?<br />

Once the cl<strong>in</strong>ical diagnosis of TON is made, neuroimag<strong>in</strong>g should be performed if<br />

possible. The <strong>in</strong>cidence of visible canal fracture <strong>in</strong> TON is variable and does not<br />

correlate well with the severity of visual loss (Goldberg, 1992; Seiff, 1990; Ste<strong>in</strong>sapir,<br />

Table 6–1. <strong>Cl<strong>in</strong>ical</strong> Features of Traumatic Optic <strong>Neuro</strong>pathy<br />

History of direct or <strong>in</strong>direct impact <strong>in</strong>jury to the head, face, or orbit<br />

Unilateral or bilateral visual loss<br />

Variable loss of visual acuity (range 20=20 to no light perception)<br />

Variable loss of visual field<br />

Relative afferent pupillary defect (unilateral or bilateral but asymmetric cases)<br />

Commonly normal or less commonly swollen optic nerve (Brodsky, 1995)<br />

Eventual ipsilateral optic atrophy<br />

Exclusion of other etiologies of visual loss <strong>in</strong> the sett<strong>in</strong>g of trauma:<br />

Open globe<br />

Traumatic cataract<br />

Vitreous hemorrhage<br />

Ret<strong>in</strong>al detachment<br />

119


120 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 6–2. Proposed Mechanisms of Traumatic<br />

Optic <strong>Neuro</strong>pathy<br />

Compressive or direct mechanical <strong>in</strong>jury<br />

Laceration<br />

Optic nerve contusion, edema, and swell<strong>in</strong>g<br />

Avulsion or transection<br />

Bone fragment or fracture<br />

Hemorrhage<br />

Retrobulbar with <strong>in</strong>creased <strong>in</strong>traorbital pressure<br />

Subperiosteal hematoma<br />

Optic nerve sheath hematoma<br />

Vascular <strong>in</strong>jury<br />

Vasospasm<br />

Ischemia<br />

Infarction<br />

Source: Aitken, 1991; Mauriello, 1992; Miller, 1990;<br />

Ste<strong>in</strong>sapir, 1994a; Volpe, 1991; Wol<strong>in</strong>, 1990.<br />

1994a). Computed tomography (CT) may be the best imag<strong>in</strong>g study for the evaluation<br />

of TON, detailed exam<strong>in</strong>ation for bone fractures, evaluation of bone anatomy (Goldberg,<br />

1992), and detection of acute hemorrhage (Knox, 1990; Seiff, 1990). Crowe et al<br />

described a case of an <strong>in</strong>trasheath and <strong>in</strong>trachiasmal hemorrhage and delayed visual<br />

loss (Crowe, 1989). Chou et al <strong>in</strong> 1996 summarized the literature on TON from 1922 to<br />

1990 and reported optic canal fracture <strong>in</strong> 92 of 431 cases (21%) (Chou, 1996).<br />

The role of magnetic resonance imag<strong>in</strong>g (MRI) <strong>in</strong> TON has yet to be clearly def<strong>in</strong>ed<br />

(Takehara, 1994). In addition, MRI is generally not available <strong>in</strong> the acute sett<strong>in</strong>g and is<br />

less useful than CT imag<strong>in</strong>g for the detection of acute hemorrhage, canal fractures, and<br />

bone anatomy (class III, level C).<br />

What Is the Treatment of Traumatic Optic<br />

<strong>Neuro</strong>pathy?<br />

The natural history of TON is not well def<strong>in</strong>ed but up to 20 to 38% of untreated patients<br />

may improve over time. Hughes described 56 cases of untreated TON, of which 44%<br />

were permanently bl<strong>in</strong>d and 16% ga<strong>in</strong>ed useful vision (Hughes, 1962). There is,<br />

however, no large, well-controlled randomized prospective data regard<strong>in</strong>g the treatment<br />

of TON (class III, level U). The literature on medical and surgical treatment of<br />

TON is difficult to summarize accurately because of the variations <strong>in</strong> cl<strong>in</strong>ical presentation,<br />

treatment modalities (e.g., steroids alone, steroids with surgery, surgery alone),<br />

surgical techniques and approaches, study <strong>in</strong>clusion criteria, and outcome measures,<br />

and because of recruitment bias and small sample sizes (class III–IV, level U). Cook et al<br />

<strong>in</strong> 1996 reviewed all cases of TON published <strong>in</strong> the English-language literature and<br />

performed a meta-analysis of treatment results (Cook, 1996). Patients were classified<br />

<strong>in</strong>to one of four grades (Table 6–3) depend<strong>in</strong>g on visual acuity and the location and type<br />

of fracture. Recovery of vision was significantly better <strong>in</strong> patients who underwent<br />

treatment compared with observation alone. No significant difference <strong>in</strong> improvement<br />

was noted <strong>in</strong> patients treated with corticosteroids alone, surgical decompression alone,


Table 6–3. Grades of Traumatic Optic <strong>Neuro</strong>pathy<br />

Grade 1: Acuity better than 20=200 without posterior orbital<br />

fracture<br />

Grade 2: Acuity 20=200 to light perception (LP) without a<br />

posterior orbital fracture<br />

Grade 3: Acuity of no light perception (NLP) or presence of<br />

nondisplaced posterior orbital fracture and some<br />

rema<strong>in</strong><strong>in</strong>g vision<br />

Grade 4: NLP and a displaced posterior orbital fracture<br />

Source: Cook, 1996.<br />

Traumatic Optic <strong>Neuro</strong>pathy 121<br />

or a comb<strong>in</strong>ation of those modalities. The prognosis for visual recovery worsened with<br />

<strong>in</strong>creas<strong>in</strong>g severity of grade. Recovery of vision was better <strong>in</strong> patients without orbital<br />

fractures and <strong>in</strong> those with anterior rather than posterior fractures.<br />

Chou et al <strong>in</strong> 1996 summarized the treatment results from the literature (28 reports)<br />

and found improvement <strong>in</strong> 94 (53%) of 176 medical treatment patients; 219 (46%) of 477<br />

surgical treatment patients; and 25 of 81 (31%) patients without treatment (Chou, 1996).<br />

These authors divided the patients undergo<strong>in</strong>g medical and surgical treatment <strong>in</strong>to two<br />

groups: patients with no light perception (NLP) vision and those with better than light<br />

perception (LP) vision. They reported that the NLP group had an improvement rate of<br />

36% (14 of 39 patients) follow<strong>in</strong>g medical treatment and 34% (19 of 56 patients)<br />

follow<strong>in</strong>g surgical treatment, versus the better than LP group that had an improvement<br />

rate of 70% (55 of 79) after medical treatment and 70% (69 of 98) after surgical treatment<br />

(class II, level C) (Chou, 1996).<br />

Lev<strong>in</strong> et al studied a total of 133 patients with TON (127 unilateral and 6 bilateral)<br />

who had <strong>in</strong>itial visual assessment with<strong>in</strong> 3 days of <strong>in</strong>jury and at least 1 month of followup<br />

(Lev<strong>in</strong>, 1999). On the basis of treatment received with<strong>in</strong> 7 days of <strong>in</strong>jury, patients<br />

with unilateral <strong>in</strong>juries were categorized as be<strong>in</strong>g <strong>in</strong> one of three treatment groups: (1)<br />

untreated (n ¼ 9), (2) corticosteroids (n ¼ 85), or (3) optic canal decompression (n ¼ 33).<br />

Corticosteroid therapy was categorized accord<strong>in</strong>g to <strong>in</strong>itial daily dose of methylprednisolone<br />

(or equivalent corticosteroid) as (1) megadose for 55400 mg (40%), (2) very<br />

high dose for 2000–5399 mg (18%), (3) high dose for 500–1999 mg (16%), (4) moderate<br />

dose for 100–499 mg (9%), and (5) low dose for


122 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

subgroups could have been missed. These results were thought to provide sufficient<br />

evidence to conclude that neither corticosteroid treatment nor optic canal surgery<br />

should be considered the standard of care for patients with TON. The authors felt<br />

that it is therefore cl<strong>in</strong>ically reasonable to treat or not treat on an <strong>in</strong>dividual patient basis<br />

(class II, level C).<br />

The study of Lev<strong>in</strong> et al had several potential problems:<br />

1. The study was not randomized, controlled, or masked, and treatment decisions<br />

followed the <strong>in</strong>vestigators ‘‘customary practice.’’<br />

2. Selection bias may have been present.<br />

3. Some patients were <strong>in</strong>itially treated with corticosteroids, and it is possible that the<br />

decision to perform surgery was related to a lack of positive response to the steroid<br />

treatment. This could have biased the results by remov<strong>in</strong>g nonresponders from the<br />

steroid group and add<strong>in</strong>g patients less likely to improve to the surgery group.<br />

4. Although the data suggested that neither the presence nor the absence of any<br />

particular CT f<strong>in</strong>d<strong>in</strong>g (e.g., optic nerve compression from a bone fragment or<br />

comm<strong>in</strong>uted canal fracture) affected visual outcome, a standardized methodology<br />

was not used for either CT technique or grad<strong>in</strong>g, and the number of patients with<br />

specific CTf<strong>in</strong>d<strong>in</strong>gs was small.<br />

How Much and What Dose of Corticosteroids<br />

Should Be Used?<br />

Although the ma<strong>in</strong>stay of medical treatment for TON has been corticosteroids, there is<br />

no prospective well-controlled study (i.e., no class I evidence) to support the efficacy of<br />

treatment or the validity of the various steroid preparations, dosages, or duration of<br />

therapy (<strong>An</strong>derson, 1982; Lam, 1990; Mauriello, 1992; Volpe, 1991). <strong>An</strong>derson et al<br />

proposed dexamethasone 3 to 5 mg=kg=day for all patients with TON and advocated<br />

surgery for patients with delayed visual loss who failed medical treatment or those with<br />

<strong>in</strong>itial visual improvement followed by worsen<strong>in</strong>g despite medical treatment (<strong>An</strong>derson,<br />

1982). Three (50%) of six patients had visual recovery after steroids, and four patients<br />

underwent transethmoidal-sphenoidal decompression with return of vision <strong>in</strong> one case<br />

(25%). Seiff reported a nonconsecutive, nonrandomized retrospective series of 36<br />

patients with TON (Seiff, 1990). Eighteen patients experienced visual improvement,<br />

<strong>in</strong>clud<strong>in</strong>g 5 of 15 (33%) patients who did not receive corticosteroids, and 13 of 21 (62%)<br />

patients treated with dexamethasone 1 mg=kg=day. This difference was not found to be<br />

statistically significant. Spoor et al reported an uncontrolled, nonconsecutive, retrospective<br />

series of 22 eyes <strong>in</strong> 21 patients with TON (Spoor, 1990). Of these 21 patients, 8<br />

received <strong>in</strong>travenous (IV) dexamethasone 20 mg every 6 hours and 13 received IV<br />

methylprednisolone (MP) 30 mg=kg load followed by 15 mg=kg every 6 hours. Visual<br />

improvement occurred <strong>in</strong> 7 of 9 patients <strong>in</strong> the dexamethasone group, and 12 of the 13<br />

patients <strong>in</strong> the MP group. Lessell described 33 cases of TON. Vision improved <strong>in</strong> 5 of 25<br />

untreated cases, 1 of 4 treated with corticosteroids, and 3 of 4 treated with transethmoidal<br />

decompression (Lessell, 1989). Kitthawees<strong>in</strong> and Yospaiboon (2001) performed a<br />

randomized, double-bl<strong>in</strong>d study compar<strong>in</strong>g dexamethasone and methylprednisolone <strong>in</strong><br />

20 patients with TON. There were no significant differences <strong>in</strong> visual improvement


etween the two groups. Chen et al (1998) reviewed 30 cases of TON (Chen, 1998).<br />

Thirteen of 21 cases treated with IV methylprednisolone improved and patients with<br />

vision better than light perception had a better prognosis.<br />

Because there are no double-masked, placebo-controlled, prospective, randomized<br />

data for the treatment of TON, many authors have advocated high doses of IV<br />

corticosteroids for TON, extrapolat<strong>in</strong>g the data on the use of higher dose MP for central<br />

nervous system (CNS) <strong>in</strong>jury (Bracken, 1990, 1993). The first National Acute Sp<strong>in</strong>al<br />

Cord Injury Study (NASCIS 1) (Bracken, 1993) was a non–placebo-controlled study that<br />

concluded there was no beneficial effect of MP 1000 mg bolus followed by 1000 mg per<br />

day for 10 days (‘‘high dose’’) compared with MP 100 mg bolus, then 100 mg per day for<br />

10 days (‘‘standard dose’’). NASCIS 2 was a multicenter, placebo-controlled, randomized,<br />

double-masked study of acute sp<strong>in</strong>al cord <strong>in</strong>jury that showed that treatment<br />

with<strong>in</strong> 8 hours with MP 30 mg=kg bolus followed by 5.4 mg=kg=hour for 24 hours<br />

resulted <strong>in</strong> significant improvement <strong>in</strong> motor and sensory function compared to<br />

placebo. MP delivered after 8 hours did not improve neurologic outcome. It was<br />

thought that MP <strong>in</strong> the 15 to 30 mg=kg dose range had a different pharmacologic effect<br />

on CNS <strong>in</strong>jury parameters <strong>in</strong>clud<strong>in</strong>g blood flow, calcium homeostasis, energy metabolism,<br />

and cl<strong>in</strong>ical outcome (Bracken, 1990, 1993). The traditional dose calculation for an<br />

equivalent dose of dexamethasone compared with MP has been based on the glucocorticoid<br />

potency of 5:1. Ste<strong>in</strong>sapir and Goldberg emphasized <strong>in</strong> 1994 that the potency<br />

ratio for dexamethasone to MP <strong>in</strong> CNS <strong>in</strong>jury may be closer to 2:1 and therefore that<br />

dexamethasone 15 mg=kg may be required (compared to the dose of 3 to 6 mg=kg<br />

recommended by <strong>An</strong>derson and other authors) for the adequate treatment of TON<br />

(Ste<strong>in</strong>sapir, 1994a). In a more recent review, Ste<strong>in</strong>sapir (1999) questioned the evidence<br />

that high-dose methylprednisolone is beneficial <strong>in</strong> TON. In one study us<strong>in</strong>g a crush<br />

<strong>in</strong>jury model <strong>in</strong> rats, there was a dose-dependent decrease <strong>in</strong> the number of axons <strong>in</strong> the<br />

methylprednisolone-treated animals compared with sal<strong>in</strong>e-treated controls (Ste<strong>in</strong>sapir,<br />

1994a). Despite these limitations, we summarize <strong>in</strong> Table 6–4 one protocol for the<br />

treatment of TON (class II–IV, level C).<br />

Table 6–4. Traumatic Optic <strong>Neuro</strong>pathy Protocol (class II–IV, level C)<br />

Diagnose TON appropriately (exclude alternative etiologies <strong>in</strong>clud<strong>in</strong>g open globe) (class III, level B).<br />

Perform canthotomy or cantholysis if the orbit is tense. Dra<strong>in</strong> subperiosteal hematoma if present<br />

(class III–IV, level C).<br />

Consider start<strong>in</strong>g IV corticosteroids (one regimen: methylprednisolone 30 mg=kg IV bolus, then<br />

5.4 mg=kg=hour IV for 48 hours or 15 mg=kg every 6 hours) even <strong>in</strong> patients with NLP vision<br />

(Joseph, 1990; Lessell, 1989; Spoor, 1990) (class III, level C).<br />

Perform high-resolution computed tomography (CT) scan of the optic canal and orbit. Consider optic<br />

nerve decompression if bony fragments imp<strong>in</strong>g<strong>in</strong>g on the optic nerve present (class III, level U).<br />

If vision improves on IV methylprednisolone after 48 hours, then start rapid oral taper of prednisone<br />

(class III, level C).<br />

If there is no cl<strong>in</strong>ical response after 48 hours or if vision deteriorates dur<strong>in</strong>g the steroid taper, then<br />

surgical decompression of the optic canal is offered especially for patients with severe visual loss<br />

(worse than 20=800) (class III, level C).<br />

Source: Repr<strong>in</strong>ted from Ste<strong>in</strong>sapir, 1994a, with permission from Elsevier Science.<br />

Traumatic Optic <strong>Neuro</strong>pathy 123


124 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

What Is the Surgical Treatment of Traumatic<br />

Optic <strong>Neuro</strong>pathy?<br />

Multiple surgical approaches (e.g., lateral facial, transantral, transconjunctival=<br />

<strong>in</strong>tranasal endoscopic, sublabial transnasal, transfrontal, transethmoidal, or a comb<strong>in</strong>ation<br />

of these approaches, extracranial versus <strong>in</strong>tracranial, etc.) and surgical <strong>in</strong>dications<br />

have been offered for the treatment of TON. Unfortunately, there is no well-controlled<br />

prospective class I data to support the use of any one surgical approach to the optic<br />

nerve over another (<strong>An</strong>and, 1991; Fernandez, 1994; Friedman, 1991; Girard, 1992;<br />

Joseph, 1990; Knox, 1990; Kuppersmith, 1997; Lev<strong>in</strong>, 1994; Luxenberger, 1998;<br />

Ste<strong>in</strong>sapir, 1994a). Of particular <strong>in</strong>terest is the literature from Japan concern<strong>in</strong>g TON.<br />

Several papers have suggested that TON is much more common <strong>in</strong> Japan and more<br />

responsive to surgical treatment. Fukado reported 460 canal fractures on stereoscopic<br />

radiography of the optic canal <strong>in</strong> 500 patients with loss of vision follow<strong>in</strong>g head trauma<br />

(Fukado, 1972, 1975). Of 400 patients who underwent transethmoidal canal decompression,<br />

almost 100% had improvement. Several authors have raised serious questions<br />

about these studies, <strong>in</strong>clud<strong>in</strong>g the validity of the diagnostic criteria for canal fracture,<br />

the lack of complete ocular exam<strong>in</strong>ation data <strong>in</strong>clud<strong>in</strong>g visual field <strong>in</strong>formation, the<br />

paucity of bilateral cases, the high percentage of improvement after surgery, and the<br />

suspiciously high frequency of canal fracture (Kennerdell, 1976). Niho et al reported an<br />

80% success rate <strong>in</strong> 25 patients with TON and transsphenoidal decompression of the<br />

canal (Niho, 1970). Matsuzaki et al reported optic canal fractures <strong>in</strong> 52% of 33 patients<br />

with TON (Matsuzaki, 1982). Vision improved <strong>in</strong> 36% of the 11 cases undergo<strong>in</strong>g<br />

surgical decompression of the canal (8 transcranial and 3 transethmoidal). Vision<br />

improved <strong>in</strong> 50% of the 22 patients treated medically with prednisone (40–<br />

100 mg=day for 5 to 7 days), mannitol, and urok<strong>in</strong>ase (if per<strong>in</strong>eural hematoma was<br />

suspected). Fujitani et al reported 110 cases of TON, of which 43 cases underwent<br />

medical therapy with prednisone 60 mg=day and 70 eyes underwent transethmoidal<br />

decompression. The medically treated group had a 44% improvement rate versus a 47%<br />

improvement rate after surgery (Fujitani, 1986). M<strong>in</strong>e et al studied 34 patients with<br />

<strong>in</strong>direct TON (M<strong>in</strong>e, 1999). Twelve cases (13 eyes) underwent surgery and 24 patients<br />

(24 eyes) were managed without surgery. When <strong>in</strong>itial visual acuity was hand motions<br />

or better, vision improved significantly more <strong>in</strong> patients with surgery than <strong>in</strong> those<br />

without surgery. Age and optic canal fracture did not affect visual improvement or<br />

<strong>in</strong>fluence the decision for or aga<strong>in</strong>st surgery.<br />

Joseph et al reported 14 patients <strong>in</strong> a retrospective, nonconsecutive study with TON<br />

treated with transethmoidal-sphenoidal canal decompression and dexamethasone preand<br />

postoperatively. Eleven of the 14 patients improved, <strong>in</strong>clud<strong>in</strong>g 3 of 5 patients who<br />

presented with NLP vision ( Joseph, 1990). Luxenberger et al retrospectively studied 14<br />

patients who underwent optic nerve decompression surgery (with<strong>in</strong> 48 hours <strong>in</strong> 67%)<br />

and megadose corticosteroid therapy and noted improvement <strong>in</strong> 7 patients (50%)<br />

(Luxenberger, 1998). However, <strong>in</strong> this study there was no formal measurement of <strong>in</strong>itial<br />

vision, the def<strong>in</strong>ition of visual improvement was not stated, and the length of follow-up<br />

was not stated. Li et al reported the results of 45 consecutive patients treated with<br />

extracranial optic nerve decompression after at least 12 to 24 hours of corticosteroid<br />

therapy without improvement and noted visual improvement <strong>in</strong> 32 patients after<br />

surgery (71%) (Li, 1999b). Wang et al (2001) reviewed 61 consecutive, nonrandomized


Figure 6–1. Evaluation and treatment of traumatic optic neuropathy.<br />

Traumatic Optic <strong>Neuro</strong>pathy 125


126 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

patients with TON. There was no significant difference <strong>in</strong> visual improvement <strong>in</strong><br />

patients treated with surgical versus nonsurgical means. No light perception vision,<br />

however, or the presence of an orbital fracture (presumably a marker of more severe<br />

trauma), were poor prognostic <strong>in</strong>dicators. In this series, 29 of 34 patients (85%) with<br />

orbital fractures presented with no light perception. Lubben et al (2001) reported a<br />

retrospective analysis of 65 cases of TON who underwent optic nerve decompression.<br />

Thirteen of their 65 patients were comatose and the surgical <strong>in</strong>dication for TON was<br />

based on the f<strong>in</strong>d<strong>in</strong>g of a canal or orbital apex lesion. We generally do not recommend<br />

surgery for comatose patients who cannot provide visual <strong>in</strong>formation. Kountakis et al<br />

(2000) performed a retrospective review of TON treated with endoscopic optic nerve<br />

decompression. Eleven of 34 patients treated with high-dose steroids improved and 23<br />

did not improve. Of these 23 patients, 17 underwent endoscopic optic nerve decompression<br />

and 14 of 17 (82%) had improved visual acuity. These authors suggested that<br />

patients with visual acuity better than 20=200 had a better prognosis with steroids alone<br />

than patients with worse than 20=400 visual acuity.<br />

Unfortunately, until a randomized, prospective, double-masked, placebo-controlled<br />

cl<strong>in</strong>ical trial is performed, the treatment of TON will rema<strong>in</strong> controversial (class II–III,<br />

level U). The approach to TON is outl<strong>in</strong>ed <strong>in</strong> Figure 6–1.<br />

References<br />

Agarwal A, Mahapatra AK. (1999). Visual outcome <strong>in</strong> optic nerve <strong>in</strong>jury patients without <strong>in</strong>itial light perception.<br />

Ind J Ophthalmol 47:233–236.<br />

Aitken P, Sofferman R. (1991). Traumatic optic neuropathy. Ophthalmol Cl<strong>in</strong> North Am 4:479–490.<br />

<strong>An</strong>and VK, Sherwood C, Al-Mefty O. (1991). Optic nerve decompression via transethmoidal and supraorbital<br />

approaches. Op Tech Otolaryngol Head Neck Surg 2:157–166.<br />

<strong>An</strong>derson RL, Panje WR, Gross CE. (1982). Optic nerve bl<strong>in</strong>dness follow<strong>in</strong>g blunt forehead trauma. Ophthalmology<br />

89:445–455.<br />

Berestka JS, Rizzo JF III. (1994). Controversy <strong>in</strong> the management of traumatic optic neuropathy. Int Ophthalmol<br />

Cl<strong>in</strong> 34:87–96.<br />

Bilyk JR, Joseph MP. (1994). Traumatic optic neuropathy. Sem<strong>in</strong> Ophthalmol 9:200–211.<br />

Bracken MB, Holford TR. (1993). Effects of tim<strong>in</strong>g of methylprednisolone or naloxone adm<strong>in</strong>istration on recovery<br />

of segmental and long-tract neurologic function <strong>in</strong> NASCIS 2. J <strong>Neuro</strong>surg 79:500–507.<br />

Bracken MB, Shepard MJ, Coll<strong>in</strong>s WF, et al. (1990). A randomized controlled trial of methylprednisolone or<br />

naloxone <strong>in</strong> the treatment of acute sp<strong>in</strong>al cord <strong>in</strong>jury. Results of the Second National Acute Sp<strong>in</strong>al Cord<br />

Injury Study. N Engl J Med 322:1405–1411.<br />

Brodsky MC, Wald KJ, Chen S, Weiter JJ. (1995). Protracted posttraumatic optic disc swell<strong>in</strong>g. Ophthalmology<br />

192:1628–1631.<br />

Chen HY, Tsai RK, Wang HZ (1998). Intravenous methylprednisolone <strong>in</strong> treatment of traumatic optic neuropathy<br />

(abstract). Kaosh<strong>in</strong>g J Med Sci 14:577–583.<br />

Chou PI, Sadun AA, Chen YC, Su WY, L<strong>in</strong> SZ, Lee CC. (1996). <strong>Cl<strong>in</strong>ical</strong> experiences <strong>in</strong> the management of<br />

traumatic optic neuropathy. <strong>Neuro</strong>-<strong>ophthalmology</strong> 18:325–336.<br />

Cook MW, Lev<strong>in</strong> LA, Joseph MP, P<strong>in</strong>czower EF. (1996). Traumatic optic neuropathy. A meta-analysis. Arch<br />

Otolaryngol Head Neck Surg 122:389–392.<br />

Crowe NW, Nickles TP, Troost T, Elster AD. (1989). Intrachiasmal hemorrhage: a cause of delayed post-traumatic<br />

bl<strong>in</strong>dness. <strong>Neuro</strong>logy 39:863–865.<br />

Fernandez CIS, Rollon A, Padilla JDG. (1994). Posttraumatic amaurosis with partial return of visual acuity. J Oral<br />

Maxillofacial Surg 52:1077–1079.<br />

Friedman M. (1991). Optic nerve decompression. Op Tech Otolaryngol Head Neck Surg 2:149.<br />

Fujitani T, Inoue K, Takahashi T, et al. (1986). Indirect traumatic optic nerve neuropathy-visual outcome of<br />

operative and non-operative cases. Jpn J Ophthalmol 30:125–134.<br />

Fukado Y. (1972). Results <strong>in</strong> 350 cases of surgical decompression of the optic nerve. Trans Asia Pacif Acad<br />

Ophthalmol 4:96–99.


Traumatic Optic <strong>Neuro</strong>pathy 127<br />

Fukado Y. (1975). Results <strong>in</strong> 400 cases of surgical decompression of the optic nerve. Mod Prob Ophthalmol 14:474–<br />

481.<br />

Girard BC, Bouzas EA, Lama SG, et al. (1992). Visual improvement after transethmoidal-sphenoid decompression<br />

<strong>in</strong> optic nerve <strong>in</strong>juries. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:142.<br />

Goldberg RA, Hannani K, Toga AW. (1992). Microanatomy of the orbital apex: computed tomography and<br />

microplann<strong>in</strong>g of soft and hard tissue. Ophthalmology 99:1447–1452.<br />

Hughes B. (1962). Indirect <strong>in</strong>jury of the optic nerve and chiasm. Bull Johns Hopk<strong>in</strong>s Hosp 111:98–126.<br />

Joseph MP, Lessell S, Rizzo J, Momose KJ. (1990). Extracranial optic nerve decompression for traumatic optic<br />

neuropathy. Arch Ophthalmol 108:1091–1093.<br />

Kennerdell JS, Amsbaugh GA, Myers EN. (1976). Transantral-ethmoidal decompression of optic canal fracture.<br />

Arch Ophthalmol 94:1040–1043.<br />

Kitthawees<strong>in</strong> K, Yospaiboon. (2001). Dexamethasone and methylprednisolone <strong>in</strong> treatment of <strong>in</strong>direct traumatic<br />

optic neuropathy (abstract). J Med Assoc Thai 84:628–634.<br />

Knox BE, Gates GA, Berry SM. (1990). Optic nerve decompression via the lateral facial approach. Laryngoscope<br />

100:458–462.<br />

Kountakis SE, Maillard AA, El-Harazi SM, et al. (2000). Endoscopic optic nerve decompression for traumatic<br />

bl<strong>in</strong>dness. Otolaryngol Head Neck Surg 123:34–37.<br />

Kuppersmith RB, Alford EL, Patr<strong>in</strong>ely JR, Lee AG, Parke RB, Holds JB. (1997). Comb<strong>in</strong>ed transconjunctival=<br />

<strong>in</strong>tranasal endoscopic approach to the optic canal <strong>in</strong> traumatic optic neuropathy. Laryngoscope 107:<br />

311–315.<br />

Lam BL, We<strong>in</strong>geist TA. (1990). Corticosteroid-responsive traumatic optic neuropathy. Am J Ophthalmol 109:99–101.<br />

Lessell S. (1989). Indirect optic nerve trauma. Arch Ophthalmol 107:382–386.<br />

Lev<strong>in</strong> LA, Beck RW, Joseph MP, et al. (The International Optic Nerve Trauma Study Group). (1999). The treatment<br />

of traumatic optic neuropathy. The International Optic Nerve Trauma Study. Ophthalmology 106:168–1277.<br />

Lev<strong>in</strong> LA, Joseph MP, Rizzo JF III. (1994). Optic canal decompression <strong>in</strong> <strong>in</strong>direct optic nerve trauma. Ophthalmology<br />

101:566.<br />

Li KK, Teknos TN, Lai A, et al. (1999a). Extracranial optic nerve decompression: a 10-year review of 92 patients. J<br />

Craniofac Surg 10:454–459.<br />

Li KK, Teknos TN, Lai A, et al. (1999b). Traumatic optic neuropathy: results <strong>in</strong> 45 consecutive surgically treated<br />

patients. Otolaryngol Head Neck Surg 120:5–11.<br />

Lubben B, Stoll W, Grenzebach U. (2001). Optic nerve decompression <strong>in</strong> the comatose and conscious patients after<br />

trauma. Laryngoscope 111:320–328.<br />

Luxenberger W, Stammberger H, Jebeles JA, Walch C. (1998). Endoscopic optic nerve decompression: the Granz<br />

experience. Laryngoscope 108:873–882.<br />

Mahapatra AK, Tandon DA. (1993). Traumatic optic neuropathy <strong>in</strong> children—a prospective study. Pediatr<br />

<strong>Neuro</strong>surg 19:34.<br />

Matsuzaki H, Kunita M, Kawai K. (1982). Optic nerve damage <strong>in</strong> head trauma: cl<strong>in</strong>ical and experimental studies.<br />

Jpn J Ophthalmol 26:447–461.<br />

Mauriello JA, DeLuca J, Krieger A, Schulder M, Frohman L. (1992). Management of traumatic optic neuropathy—<br />

a study of 23 patients. Br J Ophthalmol 76:349–352.<br />

Miller NR. (1990). The management of traumatic optic neuropathy (editorial). Arch Ophthalmol 108:1086–1087.<br />

M<strong>in</strong>e S, Yamakami I, Yamaura A, et al. (1999). Outcome of traumatic optic neuropathy. Comparison between<br />

surgical and nonsurgical treatment. Acta <strong>Neuro</strong>chir 141:27–30.<br />

Niho S, Niho M, Niho K. (1970). Decompression of the optic canal by the transethmoidal route and decompression<br />

of the superior orbital fissure. Can J Ophthalmol 5:22–40.<br />

Pomeranz HD, Rizzo JF, Lessell S. (1999). Treatment of traumatic optic neuropathy. Int Ophthalmol Cl<strong>in</strong> 39:185–194.<br />

Seiff RR. (1990). High dose corticosteroids for treatment of vision loss due to <strong>in</strong>direct <strong>in</strong>jury to the optic nerve.<br />

Ophthalmic Surg 21:389–395.<br />

Spoor TC, Hartel WC, Lens<strong>in</strong>k DB, Wilk<strong>in</strong>son MJ. (1990). Treatment of traumatic optic neuropathy with<br />

corticosteroids. Am J Ophthalmol 110:665–669.<br />

Ste<strong>in</strong>sapir KD. (1999). Traumatic optic neuropathy. Curr Op<strong>in</strong> Ophthalmol 10:340–342.<br />

Ste<strong>in</strong>sapir KD, Goldberg RA. (1994a). Traumatic optic neuropathy. Surv Ophthalmol 38:487–518.<br />

Ste<strong>in</strong>sapir KD, S<strong>in</strong>ha S, Hovda DA, Goldberg RA. (1994b). Axonal loss and dynamic changes <strong>in</strong> cerebral glucose<br />

metabolism follow<strong>in</strong>g optic nerve trauma. Invest Ophthalmol Vis Sci 35:1544.<br />

Sullivan G, Helveston EM. (1969). Optic atrophy after seem<strong>in</strong>gly trivial trauma. Arch Ophthalmol 81:159–161.<br />

Takehara S, Tanaka T, Uemura K, et al. (1994). Optic nerve <strong>in</strong>jury demonstrated by MRI with STIR sequences.<br />

<strong>Neuro</strong>radiology 36:512.


128 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Volpe N, Lessell S, Kl<strong>in</strong>e L. (1991). Traumatic optic neuropathy: diagnosis and management. Int Ophthalmol Cl<strong>in</strong><br />

31:142–156.<br />

Wang BH, Robertson BC, Girotto JA, et al. (2001). Traumatic optic neuropathy: a review of 61 patients. Plast<br />

Reconstr Surg 107:1655–1664.<br />

Wol<strong>in</strong> M, Lav<strong>in</strong> P. (1990). Spontaneous visual recovery from traumatic optic neuropathy after blunt head <strong>in</strong>jury.<br />

Am J Ophthalmol 109:430–435.


7 r<br />

Papilledema<br />

What Is the Def<strong>in</strong>ition of Papilledema?<br />

The term papilledema is frequently applied to optic disc swell<strong>in</strong>g from any cause, but it<br />

should be used cl<strong>in</strong>ically only for disc swell<strong>in</strong>g that results from <strong>in</strong>creased <strong>in</strong>tracranial<br />

pressure. The ma<strong>in</strong> reason for apply<strong>in</strong>g the term judiciously is that to most neuroophthalmologists<br />

papilledema implies an etiology, and thus <strong>in</strong>appropriate or unnecessary<br />

test<strong>in</strong>g could result from miscommunication between providers.<br />

Other forms of optic disc swell<strong>in</strong>g due to local or systemic etiologies should be named<br />

accord<strong>in</strong>g to their presumed etiology (e.g., optic neuritis, anterior ischemic optic<br />

neuropathy, etc). It is usually not possible to determ<strong>in</strong>e the etiology of disc swell<strong>in</strong>g<br />

from the ophthalmoscopic appearance of the disc alone. The history and neuroophthalmologic<br />

exam<strong>in</strong>ation, especially the visual fields, are necessary to reach an<br />

etiologic diagnosis. It is also important to note that optic disc swell<strong>in</strong>g may not develop<br />

if optic atrophy is present. For example, <strong>in</strong> patients with prior ‘‘bow-tie atrophy’’ of the<br />

optic nerve from a suprasellar mass, disc swell<strong>in</strong>g may affect only the superior and<br />

<strong>in</strong>ferior aspects of the nerve (‘‘tw<strong>in</strong> peaks papilledema’’) (Ing, 1996).<br />

The symptoms associated with optic disc swell<strong>in</strong>g depend on the underly<strong>in</strong>g etiology.<br />

In general, swollen optic discs from any cause may be associated with transient visual<br />

obscurations (see Chapter 8) (Sadun, 1984). These are typically unilateral or bilateral<br />

dimm<strong>in</strong>g or black<strong>in</strong>g out of vision that usually lasts seconds and may be precipitated by<br />

changes <strong>in</strong> posture (e.g., bend<strong>in</strong>g or straighten<strong>in</strong>g).<br />

What Are the Features that Dist<strong>in</strong>guish Real<br />

Papilledema from Pseudopapilledema?<br />

True disc swell<strong>in</strong>g must be dist<strong>in</strong>guished from pseudopapilledema (e.g., anomalously<br />

elevated discs caused by optic nerve head drusen) (Kurz-Lev<strong>in</strong>, 1999). Pseudopapilledema<br />

is a relatively common f<strong>in</strong>d<strong>in</strong>g, and optic disc drusen are among the most<br />

frequent etiologies. Drusen of the disc may be obvious, t<strong>in</strong>y, or buried. Other disc<br />

129


130 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

anomalies that may be mistaken for papilledema <strong>in</strong>clude small, ‘‘crowded’’ hyperopic<br />

discs and tilted or anomalous discs. With pseudopapilledema the peripapillary nerve<br />

fiber layer is normal, venous pulsations are usually present, there is no vascular<br />

engorgement or hemorrhages, there are no cotton-wool spots, and the discs do not<br />

leak dye on fluoresce<strong>in</strong> angiography. Myel<strong>in</strong>ated nerve fibers may occasionally resemble<br />

disc swell<strong>in</strong>g but are characterized by a white feathery nerve fiber layer appearance.<br />

Hyaloid traction on the optic disc and epipapillary glial tissue may occasionally also be<br />

mistaken for disc swell<strong>in</strong>g. Ophthalmoscopic criteria that might dist<strong>in</strong>guish pseudopapilledema<br />

from true papilledema <strong>in</strong>clude the follow<strong>in</strong>g (Glaser, 1990):<br />

1. <strong>An</strong> absent central cup with a small disc diameter<br />

2. Vessels aris<strong>in</strong>g from the central apex of the disc<br />

3. <strong>An</strong>omalous branch<strong>in</strong>g of vessels (e.g., bifurcations, trifurcations) with <strong>in</strong>creased<br />

number of disc vessels<br />

4. Visible ‘‘glow’’ of drusen seen with disc transillum<strong>in</strong>ation<br />

5. Irregular optic disc marg<strong>in</strong>s with derangement of peripapillary ret<strong>in</strong>al pigment<br />

epithelium<br />

6. Absence of superficial capillary telangiectasia on the optic disc head<br />

7. No hemorrhages (although subret<strong>in</strong>al hemorrhages may occur with disc drusen)<br />

8. No exudates or cotton-wool spots<br />

What Evaluation Is Necessary for Optic Disc<br />

Drusen?<br />

Most cases of pseudopapilledema can be diagnosed cl<strong>in</strong>ically and simply documented<br />

photographically. In difficult cases, further test<strong>in</strong>g may be useful <strong>in</strong> the diagnosis of<br />

drusen. Disc drusen may show autofluorescence noted prior to <strong>in</strong>jection of fluoresce<strong>in</strong><br />

angiography dye. Although generally not required for the diagnosis, computed<br />

tomography (CT) imag<strong>in</strong>g may demonstrate the calcified drusen <strong>in</strong> the optic nerve.<br />

Buried drusen may also be visible on orbital ultrasound.<br />

Kurz-Lev<strong>in</strong> and Landau retrospectively reviewed 142 patients (261 eyes) with<br />

suspected optic disc drusen (Kurz-Lev<strong>in</strong>, 1999). Evaluations <strong>in</strong>cluded B-scan echography,<br />

orbital CT scan, and=or pre<strong>in</strong>jection control photography for autofluorescence.<br />

Thirty-six of the 261 eyes were evaluated us<strong>in</strong>g all three techniques, and drusen of the<br />

optic nerve head were diagnosed <strong>in</strong> 21 eyes. B-scan ultrasonography was positive <strong>in</strong> all<br />

21 eyes. N<strong>in</strong>e cases had positive CT scans f<strong>in</strong>d<strong>in</strong>gs, and 10 had positive pre<strong>in</strong>jection<br />

control photographs. In 82 eyes with suspected buried drusen of the optic nerve head,<br />

B-scan echography showed drusen <strong>in</strong> 39 eyes, compared with 15 eyes <strong>in</strong> which drusen<br />

were shown us<strong>in</strong>g pre<strong>in</strong>jection control photography. No drusen were seen on pre<strong>in</strong>jection<br />

control photography or CT scan that were missed on B-scan echography. The<br />

authors concluded that drusen of the optic nerve head are diagnosed most reliably<br />

us<strong>in</strong>g B-scan echography compared with both pre<strong>in</strong>jection control photography and CT<br />

scans. Pre<strong>in</strong>jection control photography is usually positive when there are visible<br />

drusen of the optic disc, and therefore its cl<strong>in</strong>ical use is limited. Likewise, CT scan is<br />

an expensive and less sensitive test for the detection of buried drusen of the optic nerve<br />

head. We recommend B-scan ultrasonography for the detection of buried drusen as the<br />

<strong>in</strong>itial diagnostic study (class III, level C).


Is the Disc Swell<strong>in</strong>g Caused by Optic<br />

<strong>Neuro</strong>pathy or Papilledema?<br />

Disc swell<strong>in</strong>g due to raised <strong>in</strong>tracranial pressure (i.e., papilledema) is usually bilateral<br />

and symmetric <strong>in</strong> both eyes. Unilateral disc swell<strong>in</strong>g is most commonly caused by local<br />

pathology with<strong>in</strong> the optic nerve or orbit. Unilateral papilledema, however, can occur,<br />

although most of these cases are actually bilateral but asymmetric disc swell<strong>in</strong>g (Chari,<br />

1991; Huna-Baron, 2001; Killer, 2001; Lepore, 1992; Strom<strong>in</strong>ger, 1992; To, 1990). If one<br />

optic nerve is atrophic, it may not swell, and unilateral disc swell<strong>in</strong>g may occur from<br />

<strong>in</strong>creased <strong>in</strong>tracranial pressure <strong>in</strong> these cases (e.g., Foster Kennedy syndrome). These<br />

optic neuropathies are discussed <strong>in</strong> Chapters 1 through 6. Processes caus<strong>in</strong>g optic<br />

neuropathies associated with disc swell<strong>in</strong>g are usually unilateral, but may be bilateral,<br />

and are listed <strong>in</strong> Table 7–1. Other processes that may mimic papilledema and that may<br />

present with bilateral optic disc swell<strong>in</strong>g with little or no visual acuity impairment, color<br />

vision loss, or visual field defects and normal <strong>in</strong>tracranial pressure are listed <strong>in</strong> Table 7–2.<br />

Certa<strong>in</strong> <strong>in</strong>flammatory or <strong>in</strong>fectious processes, such as syphilis, sarcoidosis, HIVassociated<br />

men<strong>in</strong>goradiculitis, and viral men<strong>in</strong>goencephalitis that affect the men<strong>in</strong>ges<br />

may cause optic disc swell<strong>in</strong>g due to per<strong>in</strong>euritis (Hyk<strong>in</strong>, 1991; Nakamura, 1999;<br />

Prevett, 1997). Cat-scratch disease and Lyme disease may also cause bilateral disc<br />

edema with normal visual fields and vision (Bafna, 1996; Fedorowski, 1996, Rothermel,<br />

2001).<br />

What Are the <strong>Cl<strong>in</strong>ical</strong> Features of<br />

Papilledema?<br />

The cl<strong>in</strong>ical features and stages of papilledema are outl<strong>in</strong>ed <strong>in</strong> Tables 7–3 and 7–4. The<br />

Frisen papilledema grad<strong>in</strong>g scale is listed <strong>in</strong> Table 7–5. Features helpful <strong>in</strong> differentiat<strong>in</strong>g<br />

true optic disc edema from pseudo-disc edema (e.g., buried disc drusen) are<br />

outl<strong>in</strong>ed <strong>in</strong> Table 7–6.<br />

Table 7–1. Bilateral Optic <strong>Neuro</strong>pathies with Optic Disc Edema<br />

Papilledema 131<br />

Infectious (e.g., <strong>in</strong>fectious optic neuritis, men<strong>in</strong>gitis, neuroret<strong>in</strong>itis, uveitis associated disc edema,<br />

cat-scratch disease, Lyme disease)<br />

Demyel<strong>in</strong>at<strong>in</strong>g (e.g., multiple sclerosis)<br />

Inflammatory (e.g., systemic lupus erythematosus, sarcoidosis) (Sherman, 1999)<br />

Vascular conditions, <strong>in</strong>clud<strong>in</strong>g arteritic and nonarteritic anterior ischemic optic neuropathy, disc<br />

swell<strong>in</strong>g <strong>in</strong> diabetics (diabetic papillopathy), central ret<strong>in</strong>al ve<strong>in</strong> occlusion, and carotidcavernous<br />

s<strong>in</strong>us fistula<br />

Infiltrative (e.g., carc<strong>in</strong>omatous men<strong>in</strong>gitis, sarcoid)<br />

Compressive (e.g., neoplastic thyroid ophthalmopathy)<br />

Hereditary (e.g., Leber’s hereditary optic neuropathy)<br />

Traumatic (rare)<br />

Paraneoplastic optic neuropathy<br />

Mechanical (e.g., hypotony)<br />

Chronic respiratory disease (O’Halloran, 1999)


132 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 7–2. Etiologies for Bilateral Optic Disc Edema with Normal Visual Function<br />

Hypertensive optic neuropathy and ret<strong>in</strong>opathy (Lee, 2002a; Wall, 1995a)<br />

Blood dyscrasias (e.g., anemia, polycythemia, dysprote<strong>in</strong>emia)<br />

Cyanotic congenital heart disease: disc swell<strong>in</strong>g may be due to decreased arterial oxygen saturation<br />

and polycythemia<br />

Sleep apnea: probably by a mechanism similar to that <strong>in</strong> congenital cyanotic heart disease<br />

(Purv<strong>in</strong>, 2000)<br />

Sp<strong>in</strong>al cord tumors (often with myelopathy: e.g., back pa<strong>in</strong>, leg weakness, sensory changes,<br />

bladder <strong>in</strong>volvement, etc.)<br />

Acute <strong>in</strong>flammatory demyel<strong>in</strong>at<strong>in</strong>g polyradiculoneuropathy (AIDP or Guilla<strong>in</strong>-Barré syndrome) and<br />

chronic <strong>in</strong>flammatory demyel<strong>in</strong>at<strong>in</strong>g polyradiculoneuropathy (CIDP) (Morrison, 1999)<br />

POEMS (peripheral neuropathy, organomegaly, endocr<strong>in</strong>opathy, monoclonal gammopathy, and<br />

sk<strong>in</strong> changes)<br />

Crow-Fukase syndrome (peripheral polyneuropathy, organomegaly, lymphadenopathy,<br />

Castleman’s disease, endocr<strong>in</strong>opathy, gammopathy, or myeloma and sk<strong>in</strong> changes (Boll<strong>in</strong>g,<br />

1990; Wong, 1998)<br />

Hypoparathyroidism (primary or surgically <strong>in</strong>duced) (McLean, 1998)<br />

Uremia—these patients may have normal or <strong>in</strong>creased <strong>in</strong>tracranial pressure<br />

Hypoxemia and anemia<br />

Diabetic papillopathy (see Chapter 4)<br />

What Studies Should Be Performed to<br />

Investigate the Patient with Papilledema?<br />

All patients with papilledema require a thorough neurologic and neuro-ophthalmologic<br />

history and physical exam<strong>in</strong>ation. In general, the syndromes caus<strong>in</strong>g <strong>in</strong>creased <strong>in</strong>tracranial<br />

pressure are listed <strong>in</strong> Table 7–7.<br />

Table 7–3. The <strong>Cl<strong>in</strong>ical</strong> Features of Papilledema<br />

Usually bilateral but may be unilateral or asymmetric (Killer, 2001)<br />

Usually preserved visual acuity and color vision early<br />

May have transient visual loss last<strong>in</strong>g seconds (obscurations of vision)<br />

Visual field defects<br />

Enlarged bl<strong>in</strong>d spot<br />

Generalized constriction<br />

Glaucomatous-like defects<br />

Eventual peripheral constriction, especially nasally<br />

No afferent pupillary defect unless severe and asymmetric disc edema<br />

Fluoresce<strong>in</strong> angiography<br />

Early disc capillary dilation, dye leakage, and microaneurysm formation<br />

Late leakage of dye beyond disc marg<strong>in</strong>s<br />

May be normal <strong>in</strong> early papilledema<br />

Echography may show <strong>in</strong>creased diameter of optic nerve with fluid <strong>in</strong> the optic nerve sheath


Table 7–4. The Stages of Papilledema<br />

Papilledema 133<br />

Early papilledema<br />

M<strong>in</strong>imal disc hyperemia with capillary dilation<br />

Early opacification of nerve fiber layer (peripapillary ret<strong>in</strong>a loses its superficial l<strong>in</strong>ear and<br />

curvil<strong>in</strong>ear light reflex and appears red without luster)<br />

Early swell<strong>in</strong>g of disc<br />

Absence of venous pulsations<br />

Peripapillary ret<strong>in</strong>al nerve fiber layer hemorrhage<br />

Fully developed papilledema<br />

Engorged and tortuous ret<strong>in</strong>al ve<strong>in</strong>s<br />

May have spl<strong>in</strong>ter hemorrhages at or adjacent to the disc marg<strong>in</strong><br />

Disc surface grossly elevated<br />

Surface vessels become obscured by now opaque nerve fiber layer<br />

May have cotton wool spots<br />

Paton’s l<strong>in</strong>es (circumferential ret<strong>in</strong>al folds) or choroidal folds<br />

May have exudates (e.g., macular star or hemistar)<br />

May have hemorrhages or fluid <strong>in</strong> the macula that may decrease vision<br />

In acute cases (e.g., subarachnoid hemorrhage), subhyaloid hemorrhages may occur that may<br />

break <strong>in</strong>to vitreous (Terson’s syndrome)<br />

Rarely macular or peripapillary subret<strong>in</strong>al neovascularization<br />

Chronic papilledema<br />

Hemorrhages and exudates slowly resolve<br />

Central cup, which is <strong>in</strong>itially reta<strong>in</strong>ed even <strong>in</strong> severe cases, ultimately becomes obliterated<br />

Initial disc hyperemia changes to a milky gray<br />

Small hard exudates that are refractile and drusen-like may appear on disc surface<br />

Visual field loss <strong>in</strong>clud<strong>in</strong>g nerve fiber layer defects may develop<br />

Optociliary ‘‘shunt’’ (collaterals) vessels may develop<br />

Atrophic papilledema (pale disc edema)<br />

Optic disc pallor with nerve fiber bundle visual field defects<br />

Ret<strong>in</strong>al vessels become narrow and sheathed<br />

Occasional pigmentary changes or choroidal folds <strong>in</strong> macula<br />

Selective loss of peripheral axons while spar<strong>in</strong>g central axons (usually preservation of good central<br />

visual acuity)<br />

In all patients with bilateral optic disc swell<strong>in</strong>g, the blood pressure should be checked<br />

to evaluate for possible malignant hypertension. Blood dyscrasia should be considered<br />

if there are other suggestive ret<strong>in</strong>al vascular f<strong>in</strong>d<strong>in</strong>gs (e.g., <strong>in</strong>complete or complete<br />

central ret<strong>in</strong>al ve<strong>in</strong> occlusion with optic disc edema). <strong>Neuro</strong>imag<strong>in</strong>g is required <strong>in</strong> all<br />

patients (class II, level B).<br />

CT imag<strong>in</strong>g is the preferred study <strong>in</strong> evaluat<strong>in</strong>g acute vascular processes<br />

(e.g., subarachnoid, epidural, subdural, or <strong>in</strong>tracerebral hemorrhage, acute <strong>in</strong>farction)<br />

or <strong>in</strong> acute head trauma (e.g., rule out fracture, acute bleed). CT scan may be used <strong>in</strong><br />

patients with contra<strong>in</strong>dications to magnetic resonance imag<strong>in</strong>g (MRI) (e.g., pacemakers,<br />

metallic clips <strong>in</strong> head, metallic foreign bodies), and obese or claustrophobic patients.<br />

Otherwise, MRI is the modality of choice <strong>in</strong> papilledema. MR angiography or MR<br />

venography may be useful for suspected arterial disease or venous obstruction. If


134 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 7–5. Frisen Papilledema Grad<strong>in</strong>g System<br />

Stage 0: Normal optic disc<br />

Stage 1<br />

Obscuration of the nasal border of the disc<br />

No elevation of the disc borders<br />

Disruption of the normal radial nerve fiber layer (NFL) arrangement with grayish opacity<br />

accentuat<strong>in</strong>g nerve fiber bundles<br />

Normal temporal disc marg<strong>in</strong><br />

Subtle grayish halo with temporal gap<br />

Stage 2<br />

Obscuration of all borders<br />

Elevation of nasal border<br />

Complete peripapillary halo<br />

Stage 3<br />

Obscuration of all borders<br />

Elevation of all borders<br />

Increased diameter of the optic nerve head<br />

Obscuration of one or more segments of major blood vessels leav<strong>in</strong>g the disc<br />

Peripapillary halo—irregular outer fr<strong>in</strong>ge with f<strong>in</strong>ger-like extensions<br />

Stage 4<br />

Elevation of entire nerve head<br />

Obscuration of all borders<br />

Peripapillary halo<br />

Total obscuration on the disc of a segment of a major blood vessel<br />

Stage 5<br />

Dome-shaped protrusions represent<strong>in</strong>g anterior expansion of the optic nerve head<br />

Peripapillary halo is narrow and smoothly demarcated<br />

Total obscuration of a segment of a major blood vessel may or may be present<br />

Obliteration of the optic cup<br />

Source: Repr<strong>in</strong>ted from Friedman, 2001, with permission from Elsevier Science.<br />

Table 7–6. Differentiat<strong>in</strong>g True Optic Disc Edema from Pseudopapilledema<br />

Optic Disc Edema Pseudopapilledema<br />

Disc vasculature obscured Disc marg<strong>in</strong> vasculature clear<br />

Elevation of peripapillary NFL Elevation conf<strong>in</strong>ed to disc<br />

Obscured peripapillary NFL Sharp peripapillary NFL<br />

Venous congestion No venous congestion<br />

Exudates=cotton wool spots No exudates=cotton wool spots<br />

Loss of cup late Small cupless disc<br />

Normal disc vessels <strong>An</strong>omalous disc vessels<br />

No circumpapillary light reflex Crescent circumpapillary light reflex<br />

Absent venous pulsations With or without spontaneous venous pulsations<br />

NFL, nerve fiber layer.


Table 7–7. Syndromes Caus<strong>in</strong>g Increased Intracranial Pressure<br />

Primary causes<br />

Idiopathic pseudotumor cerebri syndrome (idiopathic <strong>in</strong>tracranial hypertension) with papilledema<br />

or without papilledema<br />

Secondary causes<br />

Hydrocephalus<br />

Shunt failure <strong>in</strong> patient with hydrocephalus (ventriculomegaly may be absent)<br />

Mass lesions—tumor, hemorrhage, large <strong>in</strong>farction, abscess<br />

Men<strong>in</strong>gitis=encephalitis<br />

Subarachnoid hemorrhage<br />

Trauma<br />

Arteriovenous malformations with high blood flow overload<strong>in</strong>g venous return<br />

Intracranial or extracranial venous obstruction<br />

Secondary pseudotumor cerebri syndrome due to certa<strong>in</strong> systemic diseases, drugs, or pregnancy<br />

Source: J.J. Corbett, personal communication.<br />

neuroimag<strong>in</strong>g shows no structural lesion or hydrocephalus, then lumbar puncture is<br />

warranted. Studies should <strong>in</strong>clude an accurate open<strong>in</strong>g pressure, cerebrosp<strong>in</strong>al fluid<br />

(CSF) cell count and differential, glucose, prote<strong>in</strong>, cytology, Venereal Disease Research<br />

Laboratory (VDRL) test, and appropriate studies for microbial agents.<br />

Patients with a history of a ventriculoperitoneal shunt for hydrocephalus may<br />

develop papilledema, visual loss, or signs of a dorsal midbra<strong>in</strong> syndrome (see<br />

Chapter 14) due to shunt failure. Usually CT or MRI reveals recurrence of the<br />

hydrocephalus. Shunt malfunction may occur without ventriculomegaly, perhaps due<br />

to poor ventricular compliance and ‘‘stiff ventricles’’ (Katz, 1994; Lee, 1996; Newman,<br />

1994a). Thus shunt revision is <strong>in</strong>dicted when there are signs or symptoms of <strong>in</strong>creased<br />

<strong>in</strong>tracranial pressure, even if ventriculomegaly is absent, to prevent deterioration of<br />

visual function and potentially irreversible visual loss.<br />

What Is the Pseudotumor Cerebri Syndrome?<br />

Papilledema 135<br />

Pseudotumor cerebri is a diagnosis of exclusion. The modified Dandy criteria <strong>in</strong>clude (1)<br />

normal neuroimag<strong>in</strong>g studies (usually MRI); (2) normal CSF contents; (3) elevated<br />

open<strong>in</strong>g pressure; and (4) signs and symptoms related only to <strong>in</strong>creased <strong>in</strong>tracranial<br />

pressure (e.g., headache, papilledema, nonlocaliz<strong>in</strong>g sixth nerve palsy). Pseudotumor<br />

cerebri (PTC) is usually idiopathic but may be due to certa<strong>in</strong> systemic diseases, drugs,<br />

pregnancy, and <strong>in</strong>tracranial or extracranial venous obstruction.<br />

Obstruction or impairment of <strong>in</strong>tracranial venous dra<strong>in</strong>age may result <strong>in</strong> cerebral<br />

edema with <strong>in</strong>creased <strong>in</strong>tracranial pressure and papilledema. Tumors that occlude the<br />

posterior portion of the superior sagittal s<strong>in</strong>us or other cerebral venous s<strong>in</strong>uses may<br />

cause <strong>in</strong>creased <strong>in</strong>tracranial pressure. Septic or aseptic thrombosis or ligation of the<br />

cavernous s<strong>in</strong>us, lateral s<strong>in</strong>us, sigmoid s<strong>in</strong>us, or superior sagittal s<strong>in</strong>us may mimic PTC<br />

(Çelebisoy, 1999; Couban, 1991; Cremer, 1996; Daif, 1995; Gironell, 1997; Horton, 1992;<br />

Kim, 2000; Lam, 1992; Van den Br<strong>in</strong>k, 1996). A patient with neurofibromatosis type 2<br />

developed papilledema from obstruction of cerebrosp<strong>in</strong>al outflow at the arachnoid


136 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

granulations by diffuse convexity men<strong>in</strong>giomatosis (Thomas, 1999). Kieper et al noted<br />

that 5 of 107 patients who underwent suboccipital craniotomy or translabyr<strong>in</strong>th<strong>in</strong>e<br />

craniectomy developed PTC (Kieper, 1999). In each patient, the transverse s<strong>in</strong>us on the<br />

treated side was thrombosed, and patency of the contralateral s<strong>in</strong>us was confirmed on<br />

MRI. PTC has also been described after arteriovenous malformation embolization<br />

(Kollar, 1999). Sluggish flow <strong>in</strong> a venous varix after embolization, result<strong>in</strong>g <strong>in</strong><br />

thrombosis that was propagated to ve<strong>in</strong> of Galen, was the proposed mechanism.<br />

Ligation of one or both jugular ve<strong>in</strong>s (e.g., radical neck dissection), thrombosis of a<br />

central <strong>in</strong>travenous catheter <strong>in</strong> the chest or neck, subclavian ve<strong>in</strong> catheterization and<br />

arteriovenous fistula, the superior vena cava syndrome, or a glomus jugular tumor<br />

impair<strong>in</strong>g venous dra<strong>in</strong>age may also cause <strong>in</strong>creased <strong>in</strong>tracranial pressure. Osteopetrosis<br />

caus<strong>in</strong>g obstruction of venous outflow at the jugular foramen has also been<br />

reported (Ageli, 1994; Kiers, 1991; Lam, 1992; Siatkowski, 1999). Venous s<strong>in</strong>us thrombosis<br />

may be the mechanism for PTC reported <strong>in</strong> several conditions <strong>in</strong>clud<strong>in</strong>g systemic<br />

lupus erythematosus, essential thrombocythemia, prote<strong>in</strong> S deficiency, antithromb<strong>in</strong> III<br />

deficiency, the antiphospholipid antibody syndrome, activated prote<strong>in</strong> C resistance,<br />

paroxysmal nocturnal hemoglob<strong>in</strong>uria, Behçet’s disease, men<strong>in</strong>geal sarcoidosis,<br />

lymphoma, hypervitam<strong>in</strong>osis A, mastoiditis, and trich<strong>in</strong>osis (Akova, 1993; Biousse,<br />

1999; Daif, 1995; Farah, 1998; Gironell, 1997; Hauser, 1996; Leker, 1998; Mokri, 1993;<br />

Pelton, 1999; Provenzale, 1998). In fact, elevated <strong>in</strong>tracranial venous pressure is thought<br />

by some authors to be the universal mechanism of PTC of vary<strong>in</strong>g etiologies, <strong>in</strong>clud<strong>in</strong>g<br />

idiopathic PTC (Cremer, 1996; Karahalios, 1996; K<strong>in</strong>g, 1995). Higg<strong>in</strong>s et al presented a<br />

case of PTC thought secondary to bilateral transverse s<strong>in</strong>us stenosis discovered on<br />

venography that was treated successfully by <strong>in</strong>sert<strong>in</strong>g a self-expand<strong>in</strong>g stent across<br />

the stenosis <strong>in</strong> the right transverse s<strong>in</strong>us (Higg<strong>in</strong>s, 2002). These authors suggest that the<br />

transverse s<strong>in</strong>us pathology was not thrombosis but an idiopathic narrow<strong>in</strong>g of the<br />

transverse s<strong>in</strong>us bilaterally.<br />

Biousse et al noted that central venous thrombosis (CVT) can present with all the<br />

classic criteria for idiopathic pseudotumor cerebri, <strong>in</strong>clud<strong>in</strong>g normal CT imag<strong>in</strong>g and<br />

CSF contents (Biousse, 1999). Of 160 consecutive patients with CVT, 59 patients (37%)<br />

presented with isolated <strong>in</strong>tracranial hypertension. <strong>Neuro</strong>imag<strong>in</strong>g revealed <strong>in</strong>volvement<br />

of more than one venous s<strong>in</strong>us <strong>in</strong> 35 patients (59%); CT imag<strong>in</strong>g was normal <strong>in</strong> 27 of 50<br />

patients (54%). The superior sagittal s<strong>in</strong>us was <strong>in</strong>volved <strong>in</strong> 32 patients (54%) (isolated <strong>in</strong><br />

7) and the lateral s<strong>in</strong>us <strong>in</strong> 47 (80%) (isolated <strong>in</strong> 17). The straight s<strong>in</strong>us was thrombosed<br />

<strong>in</strong> eight patients, cortical ve<strong>in</strong>s were <strong>in</strong>volved <strong>in</strong> two patients, and deep cerebral<br />

ve<strong>in</strong>s <strong>in</strong> three, always <strong>in</strong> association with thrombosis <strong>in</strong> the superior sagittal s<strong>in</strong>us<br />

or lateral s<strong>in</strong>uses. Lumbar puncture was performed <strong>in</strong> 44 patients and showed elevated<br />

open<strong>in</strong>g pressure <strong>in</strong> 25 of 32 (78%) and abnormal CSF contents <strong>in</strong> 11 (25%). Etiologic<br />

risk factors <strong>in</strong>cluded local causes (7), surgery (1), <strong>in</strong>flammatory disease (18), <strong>in</strong>fection<br />

(2), cancer (1), postpartum (1), coagulopathies (11), and oral contraception (7).<br />

The cause was unknown <strong>in</strong> 11 cases (19%). <strong>An</strong>ticoagulants were used <strong>in</strong> 41 of 59<br />

patients (69%), steroids or acetazolamide <strong>in</strong> 26 (44%), therapeutic lumbar puncture <strong>in</strong> 44<br />

(75%), and surgical shunt <strong>in</strong> 1. Three patients had optic atrophy with severe visual loss,<br />

one died from carc<strong>in</strong>omatous men<strong>in</strong>gitis, and 55 (93%) had complete recovery<br />

(although visual field test<strong>in</strong>g was not systematically performed). The authors emphasized<br />

that MRI and MR venography should be considered <strong>in</strong> presumed isolated<br />

<strong>in</strong>tracranial hypertension.


Papilledema 137<br />

Among the 59 patients with isolated <strong>in</strong>creased <strong>in</strong>tracranial hypertension, 33 (56%)<br />

were female, but the authors did not record the patients’ weights. They note, however,<br />

that be<strong>in</strong>g a young, obese woman does not protect a patient from develop<strong>in</strong>g CVT, and<br />

therefore should not be used on an <strong>in</strong>dividual basis to rule out CVT. When MRI is not<br />

available, the authors suggest that conventional angiography be performed and, <strong>in</strong>deed,<br />

<strong>in</strong> another prospective study of 24 patients with apparently idiopathic PTC, angiography<br />

disclosed CVT <strong>in</strong> six patients (Teh<strong>in</strong>drazanarivelo, 1992). Increased blood flow<br />

and venous hypertension have also been implicated as the mechanism of papilledema<br />

noted <strong>in</strong> some patients with cerebral arteriovenous malformations (AVMs), especially<br />

dural AVMs and fistulas (Adelman, 1998; Çelebisoy, 1999; Chimowitz, 1990; Cockerell,<br />

1993; Cognard, 1998; David, 1995; Mart<strong>in</strong>, 1998; Rosenfield, 1991). Thus, we consider<br />

MR venography (and, <strong>in</strong> selected cases, MR angiography or even formal angiography)<br />

to <strong>in</strong>vestigate the possibility of venous s<strong>in</strong>us occlusion <strong>in</strong> patients with PTC, especially<br />

<strong>in</strong> patients with features not typical for idiopathic PTC (e.g., <strong>in</strong> th<strong>in</strong> patients, men, the<br />

elderly) (class III, level C). However, we found MR venography to be normal <strong>in</strong> 22<br />

consecutive obese females with idiopathic PTC (Lee and Brazis, 2000).<br />

K<strong>in</strong>g et al found that when transducer-measured <strong>in</strong>tracranial venous pressure is high<br />

<strong>in</strong> patients with idiopathic PTC, reduction of CSF pressure by removal of CSF<br />

predictably lowers the venous s<strong>in</strong>us pressure (K<strong>in</strong>g, 2002). This study <strong>in</strong>dicates that<br />

the <strong>in</strong>creased venous pressure <strong>in</strong> idiopathic PTC patients is caused by the elevated<br />

<strong>in</strong>tracranial pressure and not the reverse. Accord<strong>in</strong>g to Corbett and Digre, ‘‘The chicken<br />

is the CSF pressure elevation and the egg is the venous s<strong>in</strong>us pressure elevation’’<br />

(Corbett, 2002).<br />

The idiopathic narrow<strong>in</strong>g of the venous s<strong>in</strong>uses bilaterally noted <strong>in</strong> the case of PTC<br />

described by Higg<strong>in</strong>s et al may conceivably have been transverse s<strong>in</strong>us compression<br />

from <strong>in</strong>creased <strong>in</strong>tracranial pressure (Higg<strong>in</strong>s, 2002). Thus, venous occlusive disease<br />

and elevated venous pressure may well not be the mechanism of PTC <strong>in</strong> most idiopathic<br />

cases.<br />

Many systemic diseases, drugs, vitam<strong>in</strong> deficiencies and excesses, pregnancy, and<br />

hereditary conditions have been associated with the pseudotumor cerebri syndrome<br />

(secondary pseudotumor cerebri). These reported etiologies are listed <strong>in</strong> Table 7–8. In<br />

general, many of these reported associations may be co<strong>in</strong>cidental and anecdotal. Of<br />

those listed <strong>in</strong> Table 7–8, the etiologies most firmly associated with pseudotumor cerebri<br />

<strong>in</strong>clude drugs and systemic diseases (Ireland, 1990).<br />

Drugs<br />

The drugs or drug conditions associated with pseudotumor cerebri are hypervitam<strong>in</strong>osis<br />

A, steroid withdrawal, anabolic steroids, lithium, nalidixic acid, the <strong>in</strong>secticide<br />

chlordecone (Kepone), isoret<strong>in</strong>o<strong>in</strong>, ketoprofen (Orudis) or <strong>in</strong>domethac<strong>in</strong> <strong>in</strong> Bartter’s<br />

syndrome, thyroid replacement <strong>in</strong> hypothyroid children, danazol, all-trans-ret<strong>in</strong>oic<br />

acid (ATRA) or tret<strong>in</strong>o<strong>in</strong>, cyclospor<strong>in</strong>e, exogenous growth hormone, and probably<br />

tetracycl<strong>in</strong>e and m<strong>in</strong>ocycl<strong>in</strong>e.<br />

Systemic Diseases<br />

The systemic diseases or syndromes associated with pseudotumor cerebri are Behçet’s<br />

syndrome, renal failure, Addison’s disease, hypoparathyroidism, systemic lupus


138 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 7–8. Reported Etiologies of Secondary Pseudotumor Cerebri (PTC)<br />

Nutritional causes<br />

Hypervitam<strong>in</strong>osis A (Alemayehu, 1995; Donahue, 2000; Moskowitz, 1993; Scott, 1997; Sharieff,<br />

1996; Sirdofsky, 1994)<br />

Excessive carrot <strong>in</strong>take to ma<strong>in</strong>ta<strong>in</strong> weight loss likely exacerbated papilledema <strong>in</strong> one patient with<br />

PTC, due to high vitam<strong>in</strong> A levels (Donahue, 2000)<br />

Hypovitam<strong>in</strong>osis A (Panozzo, 1998)<br />

Vitam<strong>in</strong> D–deficient rickets (Alpan, 1991)<br />

Multiple vitam<strong>in</strong> deficiencies (Scott, 1997; Van Gelder, 1991)<br />

Parenteral hyperalimentation<br />

Drugs and other exogenous agents<br />

Nalidixic acid (Mukherjee, 1990; Scott, 1997)<br />

Tetracycl<strong>in</strong>e (Cuddihy, 1994; Gardner, 1995; Scott, 1997)<br />

M<strong>in</strong>ocycl<strong>in</strong>e (Chiu, 1998; Donnet, 1992; Lewis, 1997; Moskowitz, 1993; Torres, 1997)<br />

Nitrofuranto<strong>in</strong><br />

Penicill<strong>in</strong><br />

Ofloxac<strong>in</strong> (Getenet, 1993)<br />

Ciprofloxac<strong>in</strong> (W<strong>in</strong>row, 1990)<br />

Amiodarone (Ahmad, 1996; Borruat, 1993)<br />

Lithium (Ames, 1994; Dommisse, 1991; Lev<strong>in</strong>e, 1990)<br />

Phenyto<strong>in</strong><br />

Cytos<strong>in</strong>e arab<strong>in</strong>oside (Sacchi, 1999)<br />

Etret<strong>in</strong>ate<br />

Leuprorel<strong>in</strong> acetate (Arber, 1990)<br />

Ketam<strong>in</strong>e<br />

Indomethac<strong>in</strong> <strong>in</strong> Bartter’s syndrome<br />

Ketoprofen <strong>in</strong> Bartter’s syndrome<br />

Insecticide exposure: l<strong>in</strong>dane, chlordecone (Kepone) (Verderber, 1991)<br />

Steroids, <strong>in</strong>clud<strong>in</strong>g topical steroid and anabolic steroids (Scott, 1997)<br />

Steroid withdrawal (Liu, 1994; Scott, 1997)<br />

Oxytoc<strong>in</strong> (Mayer-Hubner, 1996)<br />

Growth hormone (Blethen, 1995; Francois, 1997; Koller, 1997; Malozowski, 1995; Maneatis, 2000;<br />

Rogers, 1999)<br />

Beta-human chorionic gonadotrop<strong>in</strong> (Haller, 1993)<br />

Depo-Provera (depot medroxyprogesterone)<br />

L-thyrox<strong>in</strong>e therapy for juvenile hypothyroidism (Campos, 1995; Misra, 1992; Raghavan, 1997)<br />

Endocr<strong>in</strong>e and metabolic dysfunction and pregnancy<br />

Pregnancy (<strong>in</strong>clud<strong>in</strong>g ectopic pregnancy) and postpartum (Daif, 1995; Koppel, 1990; McDonnell,<br />

1997; Shapiro, 1995)<br />

Menarche<br />

Turner syndrome<br />

Hyperthyroidism<br />

Hypothyroidism (Adams, 1994)<br />

Addison’s disease and crisis (Alexandrakis, 1993; Condulis, 1997; Leggio, 1995)<br />

Hypoparathyroidism and pseudohypoparathyroidism (Mada Mohan, 1993)<br />

Cush<strong>in</strong>g’s disease and post–pituitary surgery for Cush<strong>in</strong>g’s disease (Parfitt, 1994)<br />

Polycystic ovaries (Au Eong, 1997)<br />

(cont<strong>in</strong>ued)


Table 7–8. (cont<strong>in</strong>ued)<br />

Papilledema 139<br />

Catch-up growth follow<strong>in</strong>g severe nonorganic (physical and emotional abuse <strong>in</strong>clud<strong>in</strong>g food<br />

deprivation) failure to thrive (Alison, 1997)<br />

Familial hypomagnesemia-hypercalcuria (Gregoric, 2000)<br />

Rickets (Salaria, 2001)<br />

Systemic illnesses (<strong>in</strong>clud<strong>in</strong>g some caus<strong>in</strong>g venous occlusion)<br />

Systemic lupus erythematosus (Chaves-Carballo, 1999; Chevalier, 1992; Daif, 1995; Green, 1995;<br />

Horoshovski, 1995; Scott, 1997; Vachvanichsanong, 1992)<br />

Behçet’s syndrome (Bosch, 1995; Daif, 1995; Farah, 1998; Kansu, 1991)<br />

Cystic fibrosis (Bikangaga, 1996; Lucidi, 1993; Nasr, 1995; Scott, 1997)<br />

Reye’s syndrome<br />

<strong>An</strong>tiphospholipid antibody syndrome (Daif, 1995; Leker, 1998; Mokri, 1993; Orefice, 1995)<br />

Hematologic abnormalities and malignancies<br />

Iron-deficiency anemia (Scott, 1997; Tugal, 1994)<br />

Pernicious anemia and other megaloblastic anemias (Van Gelder, 1991)<br />

Thrombocythemia and thrombocytosis (Sussman, 1997; Teh<strong>in</strong>drazanarivelo, 1990)<br />

Cryofibr<strong>in</strong>ogenemia<br />

Abnormal fibr<strong>in</strong>ogen or <strong>in</strong>creased serum fibr<strong>in</strong>ogen (Sussman, 1997)<br />

Cryoglobul<strong>in</strong>emia<br />

Hodgk<strong>in</strong>’s disease<br />

Castleman’s disease<br />

Leukemia (Guymer, 1993; Saitoh, 2000)<br />

Myeloma (Wasan, 1992)<br />

Prote<strong>in</strong> S deficiency (Daif, 1995)<br />

Activated prote<strong>in</strong> C resistance (Provenzale, 1998)<br />

<strong>An</strong>tithromb<strong>in</strong> III deficiency (Daif, 1995; Sussman, 1997)<br />

<strong>An</strong>ticardiolip<strong>in</strong> antibodies (Kesler, 2000)<br />

Hemophilia A (factor VIII deficiency) (Jacome, 2001)<br />

Multicentric angiofollicular lymph node hyperplasia (Feigert, 1990)<br />

Paroxysmal nocturnal hemoglob<strong>in</strong>uria (Hauser, 1996)<br />

Thrombocytopenic purpura<br />

Polycythemia (Sussman, 1997)<br />

Chronic respiratory <strong>in</strong>sufficiency and the Pickwickian syndrome (Wol<strong>in</strong>, 1995)<br />

Sleep apnea (Lee, 2002b)<br />

Chronic renal failure and uremia (Chang, 1992; Guy, 1990; Scott, 1997)<br />

Renal or bone marrow transplantation (Avery, 1991, Katz, 1997; Obeid, 1997; Sheth, 1994)<br />

Infections and <strong>in</strong>flammatory diseases<br />

HIV <strong>in</strong>fection and AIDS (Gross, 1991; Javeed, 1995; Schwarz, 1995; Travero, 1993)<br />

Lyme disease (Kan, 1998; Scott, 1997)<br />

Typhoid fever (Moodley, 1990; Vargas, 1990)<br />

Familial Mediterranean fever (Gokalp, 1992)<br />

Trich<strong>in</strong>osis<br />

Chickenpox<br />

Otitis media (Scott, 1997)<br />

Acute purulent s<strong>in</strong>usitis (Kumar, 1999)<br />

<strong>Neuro</strong>sarcoidosis (Akova, 1993; Pelton, 1999; Redwood, 1990)<br />

Tolosa-Hunt syndrome (Nezu, 1995)<br />

(cont<strong>in</strong>ued)


140 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 7–8. (cont<strong>in</strong>ued)<br />

Mucopolysaccharidoses (Sheridan, 1994)<br />

After occipitocervical arthrodesis and immobilization <strong>in</strong> a halo vest (Daftari, 1995)<br />

Chiari I malformation (Milhorat, 1999)<br />

Guilla<strong>in</strong>-Barré syndrome (Weiss, 1991)<br />

Chronic <strong>in</strong>flammatory demyel<strong>in</strong>at<strong>in</strong>g polyradiculoneuropathy (CIDP) (Fant<strong>in</strong>, 1993; Kaufman,<br />

1998; Midroni, 1996)<br />

Multiple sclerosis (Newman, 1994b)<br />

Crohn’s disease (Scott, 1997)<br />

Peripheral nerve sheath tumor of thigh (Hills, 1998)<br />

Familial pseudotumor cerebri (possible autosomal recessive or dom<strong>in</strong>ant transmission) (Fujiwara,<br />

1997; Kharode, 1992; Sant<strong>in</strong>elli, 1998)<br />

Homozygous tw<strong>in</strong>s (Fujiwara, 1997)<br />

erythematosus, and sarcoidosis (most of these likely cause pseudotumor cerebri<br />

syndrome by venous s<strong>in</strong>us obstruction or impairment of venous s<strong>in</strong>us dra<strong>in</strong>age).<br />

What Is Idiopathic Pseudotumor Cerebri?<br />

Idiopathic PTC (idiopathic <strong>in</strong>tracranial hypertension) is a disease typically of obese<br />

women <strong>in</strong> the childbear<strong>in</strong>g years (Arseni, 1992; Corbett, 1982; Ireland, 1990; Ja<strong>in</strong>, 1992;<br />

Kesler, 2001a; Radhakrishnan, 1994; Soler, 1998; Walker, 2001; Wall, 1991). Approximately<br />

10 to 15% of cases are male (Digre, 1988), and, when it occurs <strong>in</strong> children, there is<br />

usually no gender preference (Balcar, 1999; C<strong>in</strong>cirip<strong>in</strong>i, 1999; Lessell, 1992; Scott, 1997),<br />

although <strong>in</strong> some series girls outnumber boys (Gordon, 1997). Children with PTC,<br />

especially younger children, are less likely to be obese than adults with PTC (Balcar,<br />

1999; C<strong>in</strong>cirip<strong>in</strong>i, 1999; Scott, 1997). Even though men with PTC are less likely to be<br />

obese than woman, they tend to be more obese than controls (Digre, 1988). In a study<br />

from Israel, 18 of 134 patients with idiopathic PTC were men and 25% of the men were<br />

significantly overweight, as compared to 78% of the women (Kesler, 2001b). The<br />

occurrence of PTC <strong>in</strong> a man, especially a th<strong>in</strong> man, should raise the possibility of<br />

venous occlusive disease or a secondary PTC syndrome. African-American men appear<br />

to be at greater risk of visual loss. The <strong>in</strong>cidence of idiopathic PTC is approximately 1 or<br />

2 per 100,000, with a higher <strong>in</strong>cidence <strong>in</strong> obese women between the ages of 15 and 44<br />

years (4 to 21 per 100,000) (Kesler, 2001a; Radhakrishnan, 1993a,b). Table 7–9 lists the<br />

diagnostic criteria for idiopathic PTC.<br />

What Are the Risk Factors and <strong>Cl<strong>in</strong>ical</strong><br />

Characteristics of Idiopathic PTC?<br />

The most important risk factors for the development of idiopathic PTC <strong>in</strong>clude female<br />

sex, obesity, and recent weight ga<strong>in</strong> (Giuseffi, 1991; Ireland, 1990). Several conditions<br />

previously associated with idiopathic PTC are no more common <strong>in</strong> PTC than <strong>in</strong><br />

controls. In a retrospective case-control study of 40 patients with idiopathic PTC and<br />

39 age- and sex-matched controls, all forms of menstrual abnormalities, <strong>in</strong>cidence of


Table 7–9. Criteria for the Diagnosis of Idiopathic PTC<br />

Papilledema 141<br />

Increased <strong>in</strong>tracranial pressure must be documented <strong>in</strong> an alert and oriented patient without<br />

localiz<strong>in</strong>g neurologic f<strong>in</strong>d<strong>in</strong>gs (except for cranial nerve VI palsy)<br />

Sp<strong>in</strong>al fluid pressures between 200 and 250 mm H 2O may occur normally <strong>in</strong> obese patients, and<br />

when elevated sp<strong>in</strong>al fluid pressure is suspected, confirmation requires values greater than<br />

250 mm H2O (Corbett, 1983)<br />

The cerebrosp<strong>in</strong>al fluid should have normal contents (<strong>in</strong>clud<strong>in</strong>g prote<strong>in</strong> and glucose) with no<br />

cytologic abnormalities; occasionally the cerebrosp<strong>in</strong>al fluid prote<strong>in</strong> level may be low<br />

<strong>Neuro</strong>imag<strong>in</strong>g (MR imag<strong>in</strong>g with and without contrast and possibly MR venography) should be<br />

normal with no evidence of hydrocephalus, mass lesion, men<strong>in</strong>geal enhancement, or venous<br />

occlusive disease; neuroimag<strong>in</strong>g may often show the follow<strong>in</strong>g, which may be helpful <strong>in</strong><br />

establish<strong>in</strong>g the diagnosis of PTC (percentages from Brodsky and Vaphiades, 1998):<br />

Flatten<strong>in</strong>g of the posterior sclera (80% of patients)<br />

Distention of perioptic subarachnoid space (50% of patients)<br />

Enhancement (with gadol<strong>in</strong>ium) of the prelam<strong>in</strong>ar optic nerve (45% of patients)<br />

Empty sella (70% of patients)<br />

Intraocular protrusion of the prelam<strong>in</strong>ar optic nerve (30% of patients)<br />

Vertical tortuosity of the orbital optic nerve (40% of patients) (Brodsky, 1998; Gibby, 1993; Jacobson,<br />

1990; Manfre, 1995)<br />

No secondary cause (secondary PTC) is evident<br />

pregnancy, antibiotic use, and oral contraceptive use were equal <strong>in</strong> both groups (Ireland,<br />

1990). In another study compar<strong>in</strong>g 50 PTC patients with 100 age-matched controls, iron<br />

deficiency anemia, thyroid dysfunction, pregnancy, antibiotic <strong>in</strong>take, and the use of oral<br />

contraceptives were no more common <strong>in</strong> PTC patients than <strong>in</strong> controls (Giuseffi, 1991).<br />

The reason that obesity predisposes to PTC is unclear. Central obesity may raise<br />

<strong>in</strong>traabdom<strong>in</strong>al pressure, which <strong>in</strong>creases pleural pressure and cardiac fill<strong>in</strong>g pressure,<br />

<strong>in</strong>clud<strong>in</strong>g central venous pressure, lead<strong>in</strong>g to <strong>in</strong>creased <strong>in</strong>tracranial venous pressure<br />

and <strong>in</strong>creased <strong>in</strong>tracranial pressure (Sugerman, 1997). As noted above, elevated<br />

<strong>in</strong>tracranial venous pressure is thought by some authors to be the universal mechanism<br />

of PTC of various etiologies, <strong>in</strong>clud<strong>in</strong>g idiopathic PTC. However, the study of K<strong>in</strong>g et al<br />

cited above <strong>in</strong>dicates that the <strong>in</strong>creased venous pressure <strong>in</strong> idiopathic PTC patients is<br />

caused by the elevated <strong>in</strong>tracranial pressure and not the reverse (K<strong>in</strong>g, 2002). Idiopathic<br />

PTC may share a common pathogenesis with orthostatic edema, a condition <strong>in</strong> which<br />

there is evidence of dependent edema after prolonged stand<strong>in</strong>g (Friedman, 1998b).<br />

Seventy-seven percent of PTC patients had evidence of peripheral edema and 80% had<br />

significant orthostatic retention of sodium and water. Excretions of a standard sal<strong>in</strong>e<br />

load and of a tap water load were significantly impaired <strong>in</strong> the upright posture <strong>in</strong> the<br />

PTC patients with orthostatic edema compared to lean and obese but otherwise normal<br />

subjects. Orthostatic retention of water and sodium and consequent edema is similar <strong>in</strong><br />

patients with idiopathic PTC and orthostatic edema. This suggests that these two<br />

disorders may have a common pathogenesis.<br />

Elevated vitam<strong>in</strong> A levels have been noted <strong>in</strong> patients with idiopathic PTC (Jacobson,<br />

1999). Serum ret<strong>in</strong>ol concentrations were significantly higher <strong>in</strong> patients with idiopathic<br />

PTC compared to controls (Selhorst, 2000), even after adjust<strong>in</strong>g for age and body mass<br />

<strong>in</strong>dex. Patients may <strong>in</strong>gest an abnormally large amount of vitam<strong>in</strong> A, metabolize it


142 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

abnormally, or be unusually sensitive to its effects. Alternatively, elevated levels of<br />

serum ret<strong>in</strong>ol may reflect an epiphenomenon of another variable not measured or a<br />

nonspecific effect of elevated ret<strong>in</strong>ol b<strong>in</strong>d<strong>in</strong>g capacity (Jacobson, 1999).<br />

Endocr<strong>in</strong>ologic abnormalities may be more common <strong>in</strong> men with PTC (Lee, 2002c). In<br />

a study of eight men with PTC, two had abnormal estradiol levels, four had abnormal<br />

follicle-stimulat<strong>in</strong>g hormone (FSH) and lute<strong>in</strong>iz<strong>in</strong>g hormone (LH) levels, and seven had<br />

low testosterone levels (Lee, 2002c).<br />

What Are the Symptoms of PTC?<br />

The most common symptoms of PTC <strong>in</strong>clude headache, transient obscurations of<br />

vision, pulsatile t<strong>in</strong>nitus, and diplopia (Giuseffi, 1991; Ireland, 1990; Wall, 1991). In a<br />

prospective study of 50 idiopathic PTC patients (92% women; mean age, 32 years; 92%<br />

obese), symptoms <strong>in</strong>cluded headache (94%), transient visual obscurations (68%),<br />

<strong>in</strong>tracranial noises (58%), susta<strong>in</strong>ed visual loss (26%), photopsia (54%), diplopia<br />

(38%), and retrobulbar pa<strong>in</strong> (44%) (Wall, 1991). The headaches <strong>in</strong> patients with PTC<br />

may be constant or <strong>in</strong>termittent, and <strong>in</strong> 93% of patients they are reported to be the most<br />

severe headache ever (Wall, 1990). The headache may often be pulsatile, be of gradually<br />

<strong>in</strong>creas<strong>in</strong>g <strong>in</strong>tensity dur<strong>in</strong>g the day, awaken the patient at night, be precipitated by<br />

changes <strong>in</strong> posture, and be transiently relieved by lumbar puncture (Wall, 1990). Pa<strong>in</strong> <strong>in</strong><br />

a cervical nerve root distribution (possibly from a dilated nerve root sleeve) or retroocular<br />

pa<strong>in</strong> with eye movement, uncommon with other headache disorders, may help<br />

to differentiate this headache syndrome (Wall, 1990). There is no clear correlation<br />

between the height of CSF pressure and the severity of the headache. Transient visual<br />

obscurations last seconds, may be unilateral or bilateral, and related to changes <strong>in</strong><br />

posture. They do not correlate with the degree of <strong>in</strong>tracranial hypertension or the extent<br />

of disc swell<strong>in</strong>g, and are not considered to be harb<strong>in</strong>gers of permanent visual loss<br />

(Corbett, 1982; Giuseffi, 1991). Intracranial noises are common with PTC and are<br />

perhaps due to transmission of <strong>in</strong>tensified vascular pulsations via CSF under high<br />

pressure to the walls of the venous s<strong>in</strong>uses (Sismanis, 1990). The pulsatile t<strong>in</strong>nitus may<br />

be audible to others (Biousse, 1998). In fact, PTC without papilledema has been reported<br />

<strong>in</strong> patients with pulsatile t<strong>in</strong>nitus (Felton, 1995; Wang, 1996). Diplopia is often mild and<br />

usually due to a sixth cranial nerve palsy, presumably a nonlocaliz<strong>in</strong>g sign of raised<br />

<strong>in</strong>tracranial pressure.<br />

In a study of 101 patients with PTC, other m<strong>in</strong>or symptoms <strong>in</strong>cluded neck stiffness <strong>in</strong><br />

31 patients, distal extremity paresthesias <strong>in</strong> 31, t<strong>in</strong>nitus <strong>in</strong> 27, jo<strong>in</strong>t pa<strong>in</strong>s <strong>in</strong> 13, low back<br />

pa<strong>in</strong> <strong>in</strong> 13, and gait <strong>in</strong>stability <strong>in</strong> 4 (Round, 1988). These m<strong>in</strong>or symptoms resolved<br />

promptly upon lower<strong>in</strong>g of the <strong>in</strong>tracranial pressure. Stiff neck and strabismus may be<br />

the most common present<strong>in</strong>g symptoms <strong>in</strong> children with PTC (C<strong>in</strong>cirip<strong>in</strong>i, 1999). Sleeprelated<br />

breath<strong>in</strong>g problems are common <strong>in</strong> PTC patients and may be a risk factor<br />

(Marcus, 2001). Patients with idiopathic PTC are significantly more affected by hardships<br />

associated with health problems than age- and weight-matched controls and have<br />

higher levels of depression and anxiety (Kle<strong>in</strong>schmidt, 2000). Other rare and exceptional<br />

cl<strong>in</strong>ical abnormalities that have been described <strong>in</strong> patients with PTC are listed <strong>in</strong><br />

Table 7–10.


Table 7–10. Rare and Exceptional F<strong>in</strong>d<strong>in</strong>gs Described with PTC<br />

What Are the Signs of Pseudotumor Cerebri?<br />

Papilledema 143<br />

Fourth cranial nerve palsy (Lee, 1995; Speer, 1999)<br />

Third cranial nerve palsy<br />

Sixth cranial nerve palsy (unilateral) without papilledema (Krishna, 1998)<br />

Bilateral sixth and fourth cranial nerve palsies (Patton, 2000)<br />

Skew deviation<br />

Complete external ophthalmoplegia (Friedman, 1998a)<br />

Bilateral total <strong>in</strong>ternal and external ophthalmoplegia<br />

Internuclear ophthalmoplegia with vertical gaze paresis with or without ptosis (Friedman, 1997,<br />

1998a)<br />

Vertical gaze palsy (Friedman, 1998a)<br />

Divergence <strong>in</strong>sufficiency (Jacobson, 2000)<br />

Sensory exotropia or comitant esotropia <strong>in</strong> children (C<strong>in</strong>cirip<strong>in</strong>i, 1999)<br />

Ptosis (Friedman, 1998a)<br />

Lid retraction (Friedman, 1998a)<br />

Trigem<strong>in</strong>al neuropathy (Davenport, 1994)<br />

Unilateral or bilateral facial nerve palsy (Bakshi, 1992; Capobianco, 1997; Selky, 1994a)<br />

Hemifacial spasm (Mayer, 1996; Selky, 1994a)<br />

Cerebrosp<strong>in</strong>al fluid rh<strong>in</strong>orrhea (Camras, 1998; Clark, 1994)<br />

Transient partial pituitary deficiency (De Paepe, 1993)<br />

Fatal tonsillar herniation after lumbar puncture (Sullivan, 1991)<br />

Atypical ophthalmoscopic f<strong>in</strong>d<strong>in</strong>gs and visual abnormalities:<br />

Visual field loss despite resolution of papilledema (Golnik, 1999)<br />

Gaze-evoked amaurosis (O’Duffy, 1998)<br />

Acute visual loss secondary to anterior ischemic optic neuropathy<br />

Acute visual loss due to central ret<strong>in</strong>al artery occlusion<br />

Acute visual loss due to branch ret<strong>in</strong>al artery occlusion (Lam, 1992; Liu, 1994)<br />

Acute visual loss due to central ret<strong>in</strong>al ve<strong>in</strong> occlusion (Chern, 1991)<br />

Visual loss (occasionally acute) due to macular disease, <strong>in</strong>clud<strong>in</strong>g chorioret<strong>in</strong>al striae, pigmentary<br />

disturbances, exudates, macular edema, nerve fiber layer hemorrhages, subret<strong>in</strong>al<br />

hemorrhages from neovascular membranes, or subret<strong>in</strong>al scars (Akova, 1994; Carter, 1995;<br />

Liu, 1994; Talks, 1998)<br />

Acquired hyperopia with choroidal folds (Jacobson, 1995; Talks, 1998)<br />

Coexistence with optic nerve head drusen (Krasnitz, 1997)<br />

Optociliary ‘‘shunt’’ (collaterals) vessels (may resolve after ONSF) (Brazier, 1996)<br />

Papilledema is found <strong>in</strong> most cases of PTC. It may be asymmetric, rarely unilateral, and<br />

even occasionally absent (Chari, 1991; Greenfield, 1997; Krishna, 1998; Marcelis, 1991;<br />

Mathew, 1996; Saito, 1999; Tourn, 1996; Wall, 1998; Wang, 1996). In one series, 10% of<br />

478 patients with PTC had asymmetric papilledema, and visual loss was most<br />

pronounced <strong>in</strong> the eye with the higher grade of papilledema (Wall, 1998). If optic<br />

atrophy is present unilaterally, the disc swell<strong>in</strong>g will be unilateral <strong>in</strong> the opposite eye,<br />

thus mimick<strong>in</strong>g the Foster Kennedy syndrome (Tourn, 1996). In the patient described by


144 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Saito et al with unilateral disc swell<strong>in</strong>g as a manifestation of PTC related to cyclospor<strong>in</strong><br />

therapy for leukemia, the right disc was thought to be spared because of leukemic<br />

<strong>in</strong>filtration caus<strong>in</strong>g constriction of the optic nerve sheath (Saito, 1999). If no papilledema<br />

is evident, there is no risk of visual loss no matter how high the <strong>in</strong>tracranial pressure; <strong>in</strong><br />

the <strong>in</strong>dividual patient, the severity of papilledema cannot predict the severity of visual<br />

loss. Isolated <strong>in</strong>tracranial pressure without papilledema may present as chronic daily<br />

headache. Quattrone et al <strong>in</strong>vestigated 114 consecutive patients with chronic daily<br />

headache with MR venography and found that 11 (9.6%) had cerebral venous thrombosis<br />

affect<strong>in</strong>g one or both transverse s<strong>in</strong>uses and half of these patients had isolated<br />

<strong>in</strong>tracranial hypertension without papilledema (Quattrone, 2001).<br />

Visual field loss is the major causes of morbidity <strong>in</strong> PTC (Corbett, 1982; Wall, 1991).<br />

Visual acuity loss and optic atrophy may occur <strong>in</strong> some patients. Hypertension and<br />

recent weight ga<strong>in</strong> have been reported to be significant risk factors for visual loss<br />

(Corbett, 1982). Often the patient is unaware of peripheral visual field dysfunction, and<br />

Snellen acuity test<strong>in</strong>g is a poor <strong>in</strong>dicator of early visual deficit <strong>in</strong> PTC. The papilledema<br />

causes optic nerve fiber loss that results <strong>in</strong> field constriction and nerve fiber bundle<br />

defects (Corbett, 1982; Wall, 1991). Optic nerve diameter changes on ultrasound <strong>in</strong> PTC<br />

are associated with perimetric threshold loss; PTC functional deficits may thus be<br />

related to the degree of distention of optic nerve sheaths as a result of an <strong>in</strong>creased CSF<br />

pressure (Salgarello, 1996). Bl<strong>in</strong>d spot enlargement is commonly encountered, yet it is<br />

more a reflection of the disc swell<strong>in</strong>g itself <strong>in</strong>stead of optic nerve damage and is<br />

improved with refraction. Acute visual acuity loss is rare but may occur by the<br />

mechanisms listed <strong>in</strong> Table 7–10 (e.g., anterior ischemic optic neuropathy, ret<strong>in</strong>al<br />

artery or ve<strong>in</strong> occlusion, or subret<strong>in</strong>al hemorrhage from neovascular membranes).<br />

The frequency of visual field loss and acuity loss with PTC is variable, but <strong>in</strong> one<br />

study field loss was noted <strong>in</strong> 75% of eyes us<strong>in</strong>g manual strategies and 78% of eyes us<strong>in</strong>g<br />

automated threshold perimetry (Wall, 1987). Motion perimetry abnormalities correlate<br />

well with static perimetry abnormalities <strong>in</strong> patients with PTC, and <strong>in</strong>deed may identify<br />

nerve fiber bundle defects not detected with conventional perimetry (Wall, 1995).<br />

Contrast sensitivity test<strong>in</strong>g is also a relatively sensitive means of assess<strong>in</strong>g optic<br />

nerve damage <strong>in</strong> patients with PTC (Stavroua, 1997). Rowe and Sarkies, however,<br />

noted that visual field test<strong>in</strong>g, as opposed to visual acuity and contrast sensitivity<br />

test<strong>in</strong>g, is the most sensitive <strong>in</strong>dicator of visual loss <strong>in</strong> PTC patients (Rowe, 1998).<br />

What Is the Evaluation of Pseudotumor<br />

Cerebri?<br />

All patients with PTC require a thorough history, especially regard<strong>in</strong>g medication use,<br />

pregnancy, <strong>in</strong>tercurrent illnesses, and recent weight ga<strong>in</strong>. Most cases do not require<br />

laboratory evaluation (class II, level C). Some patients may require blood work (e.g.,<br />

sedimentation rate, complete blood count, syphilis serology, calcium, phosphate,<br />

creat<strong>in</strong><strong>in</strong>e, and electrolytes). All patients should undergo complete ophthalmologic<br />

exam<strong>in</strong>ations <strong>in</strong>clud<strong>in</strong>g formal perimetry (e.g., Goldmann and=or automated) and optic<br />

disc stereo photography. Secondary causes of PTC should especially be considered <strong>in</strong><br />

men, <strong>in</strong> th<strong>in</strong> patients, and <strong>in</strong> patients younger than 15 years or older than 45 years<br />

(atypical PTC).


Cognard et al noted that dural arteriovenous fistulas may present with isolated<br />

<strong>in</strong>tracranial hypertension, mimick<strong>in</strong>g idiopathic PTC, and thought that cerebral angiography<br />

should be performed to evaluate for their presence <strong>in</strong> all patients with PTC<br />

(Cognard, 1998). Biousse et al noted that CVT may present with PTC, and that this<br />

diagnosis should be considered even <strong>in</strong> women with the typical body habitus of<br />

idiopathic PTC (Biousse, 1999). In another prospective study of 24 patients with<br />

apparently idiopathic pseudotumor cerebri, angiography disclosed CVT <strong>in</strong> six patients<br />

(Teh<strong>in</strong>drazanarivelo, 1992). We recommend that patients with PTC undergo MRI of the<br />

head (class II–III, level B) with MR venography to evaluate for venous occlusive disease,<br />

but we recommend cerebral angiography only <strong>in</strong> select cases (class III, level C). If<br />

venous occlusive disease is discovered, then evaluation for a hypercoagulable state and<br />

vasculitis should be performed (class III, level C).<br />

What Is the Treatment for PTC?<br />

The treatment of PTC has two major goals: the alleviation of symptoms and preservation<br />

of visual function. We suggest a management plan, adapted from that<br />

recommended by Corbett and Thompson, which is outl<strong>in</strong>ed <strong>in</strong> Table 7–11.<br />

What Is the Medical Management of PTC?<br />

Papilledema 145<br />

Some patients require no treatment if symptoms are m<strong>in</strong>imal and visual function is<br />

normal. All patients require serial monitor<strong>in</strong>g of visual function, especially visual fields,<br />

to observe closely for signs of visual impairment. The use of visual evoked responses<br />

and repeated measurements of <strong>in</strong>tracranial pressure by lumbar puncture do not provide<br />

data that help to guide therapeutic decisions (Corbett, 1989). Weight reduction, <strong>in</strong>clud<strong>in</strong>g<br />

surgically <strong>in</strong>duced weight reduction <strong>in</strong> morbidly obese patients, may improve the<br />

papilledema and reduce <strong>in</strong>tracranial pressure (Johnson, 1998; Kupersmith, 1997, 1998;<br />

Newborg, 1974; Sugerman, 1995). For example, <strong>in</strong> one study, n<strong>in</strong>e patients placed on a<br />

salt-restricted, rapid weight reduction rice diet showed improvement <strong>in</strong> papilledema<br />

(mean weight 261 pounds before treatment and 187 pounds after treatment) (Newborg,<br />

1974). In another study, all eight morbidly obese patients with PTC who underwent<br />

gastric surgery had complete resolution of their papilledema. There was resolution or<br />

marked reduction <strong>in</strong> headache, resolution of t<strong>in</strong>nitus, and a decrease <strong>in</strong> CSF pressure<br />

from a mean of 353 to a mean of 168 mm of H2O follow<strong>in</strong>g a mean weight loss of 57 kg<br />

when measured at 34 months after surgery (Sugerman, 1995). In another study of 24<br />

severely obese women with idiopathic PTC, 23 were treated by gastric bypass surgery<br />

and one underwent laparoscopic adjustable gastric b<strong>in</strong>d<strong>in</strong>g (Sugerman, 1999). At 1 year<br />

after surgery, 19 patients lost an average of 45 12 kg, which was 71% 18% of their<br />

excess weight. Five patients were lost to follow-up and four were followed for less than<br />

1 year after their surgery. Surgically <strong>in</strong>duced weight loss was associated with resolution<br />

of headache and pulsatile t<strong>in</strong>nitus <strong>in</strong> all but one patient with<strong>in</strong> 4 months of the<br />

procedure. Of the 19 patients not lost to follow-up, 2 rega<strong>in</strong>ed the weight with<br />

recurrence of their headache and pulsatile t<strong>in</strong>nitus. The authors concluded that bariatric<br />

surgery should be considered the ‘‘procedure of choice for severely obese patients<br />

with PTC and is shown to have a much higher rate of success than CSF-peritoneal


146 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 7–11. Management of Idiopathic PTC<br />

Confirm cl<strong>in</strong>ical diagnosis (diagnosis of exclusion)<br />

Medical treatment recommendations<br />

Acetazolamide (e.g., Diamox sequels 500 mg qhs for 3 days then 500 mg bid—up to 2 to<br />

4 g per day) if no contra<strong>in</strong>dications<br />

Consider furosemide (Lasix) if acetazolamide-<strong>in</strong>tolerant<br />

Other medications have not been proven but may <strong>in</strong>deed be useful (e.g., topiramate,<br />

methazolamide)<br />

Avoid corticosteroids if possible (cause weight ga<strong>in</strong> and other side effects) except possibly IV<br />

steroids for acute visual loss<br />

Expla<strong>in</strong> medication side effects of acetazolamide<br />

Paresthesias, anorexia, malaise, t<strong>in</strong>-like taste, and fatigue may limit use<br />

May cause nausea and vomit<strong>in</strong>g, electrolyte changes, kidney stones<br />

Avoid if severe allergic reaction to sulfa drugs (obta<strong>in</strong> <strong>in</strong>formation about type of reaction)<br />

Caution dur<strong>in</strong>g pregnancy:<br />

Relatively contra<strong>in</strong>dicated, especially dur<strong>in</strong>g first 20 weeks<br />

Potential teratogenicity (category C agent)<br />

Consult with obstetrics and gynecology if benefit outweighs risk<br />

Usually avoid diuretics and caloric restriction if pregnant<br />

Encourage weight reduction<br />

Treat headache symptomatically<br />

Consider diagnosis of and treat associated sleep apnea<br />

Surgical treatment (if fail, <strong>in</strong>tolerant to, or noncompliant with maximal medical therapy)<br />

Optic nerve sheath fenestration<br />

Lumboperitoneal shunt procedure<br />

Indications for surgery:<br />

New worsen<strong>in</strong>g of visual field defect*<br />

Enlargement of previously exist<strong>in</strong>g visual field defect*<br />

Reduced visual acuity not due to macular edema<br />

Presence of severe visual loss (20=40 or worse) <strong>in</strong> one or both eyes at time of <strong>in</strong>itial exam<strong>in</strong>ation<br />

<strong>An</strong>ticipated hypotension <strong>in</strong>duced by treatment of high blood pressure or renal dialysis<br />

Psychosocial reasons, such as patient’s <strong>in</strong>ability to perform visual field studies, noncompliance<br />

with medications, or it<strong>in</strong>erant lifestyle<br />

Headache unresponsive to standard headache medications<br />

Follow-up visit <strong>in</strong>tervals<br />

Return monthly (similar <strong>in</strong>terval) until disc edema resolved (usually several months)<br />

Perform formal visual fields and complete eye exam<br />

Stereo optic disc photographs (at <strong>in</strong>itial evaluation and with changes <strong>in</strong> disc)<br />

*Bl<strong>in</strong>d spot enlargement should not be considered significant visual loss (refractive).<br />

shunt<strong>in</strong>g ... as well as provid<strong>in</strong>g resolution of additional obesity co-morbidity’’<br />

(Sugerman, 1999). In a retrospective study, Kupersmith et al noted that weight reduction<br />

sped recovery from PTC <strong>in</strong> women but may not have def<strong>in</strong>itely improved the eventual<br />

visual outcome (Kupersmith, 1997). Kupersmith et al later noted that weight reduction<br />

was associated with a more rapid recovery of papilledema and visual field dysfunction<br />

<strong>in</strong> patients with idiopathic PTC (weight loss greater than or equal to 2.5 kg dur<strong>in</strong>g any


3-month <strong>in</strong>terval <strong>in</strong> the study) (Kupersmith, 1998). Johnson et al noted that approximately<br />

6% weight loss was associated with resolution of marked papilledema <strong>in</strong> obese<br />

PTC patients (Johnson, 1998).<br />

Medical treatments for PTC <strong>in</strong>clude carbonic anhydrase <strong>in</strong>hibitors (e.g., acetazolamide),<br />

loop diuretics, and corticosteroids. Acetazolamide <strong>in</strong> doses up to 2 to 4 g per<br />

day has proven effective <strong>in</strong> some patients with PTC (Schoeman, 1994). Acetazolamide<br />

should probably be avoided dur<strong>in</strong>g pregnancy, especially dur<strong>in</strong>g the first 20 weeks,<br />

because of potential teratogenic effects <strong>in</strong> animals. The teratogenic effect <strong>in</strong> humans is<br />

not well documented. Caloric restriction and the use of other diuretics are also relatively<br />

contra<strong>in</strong>dicated dur<strong>in</strong>g pregnancy. Other carbonic anhydrase <strong>in</strong>hibitors, such as methazolamide<br />

(Neptazane), are often used <strong>in</strong> acetazolamide-<strong>in</strong>tolerant patients but their<br />

efficacy has not been proven. Furosemide (Lasix) <strong>in</strong>hibits CSF production and may have<br />

an additive effect with acetazolamide. The use of furosemide alone has not been<br />

systematically studied. There is one report of eight children treated with comb<strong>in</strong>ed<br />

therapy of acetazolamide and furosemide. All patients had a rapid cl<strong>in</strong>ical response<br />

with resolution of papilledema, reduction <strong>in</strong> the mean CSF pressure after the first<br />

week of treatment, and normalization of pressure with<strong>in</strong> 6 weeks of start<strong>in</strong>g therapy<br />

(Schoeman, 1994).<br />

Digox<strong>in</strong> has also been reported to be a successful treatment <strong>in</strong> one small group of<br />

patients (Goodw<strong>in</strong>, 1990). Intravenous <strong>in</strong>domethac<strong>in</strong> transiently reduced <strong>in</strong>tracranial<br />

pressure <strong>in</strong> seven patients with PTC, and five patients treated with oral <strong>in</strong>domethac<strong>in</strong><br />

(75 mg per day) along with acetazolamide reported improvement <strong>in</strong> headaches and<br />

t<strong>in</strong>nitus and improvement <strong>in</strong> papilledema and visual fields (Forderreuther, 2000). This<br />

drug might be an alternative for the treatment of PTC. Corticosteroids may be<br />

efficacious <strong>in</strong> the short run, but the complications of this medication, especially <strong>in</strong> the<br />

chronic treatment of an already obese <strong>in</strong>dividual, have resulted <strong>in</strong> most cl<strong>in</strong>icians<br />

suggest<strong>in</strong>g that their use be avoided (Corbett, 1989). Liu et al treated four patients with<br />

acute, severe visual loss associated with PTC with a comb<strong>in</strong>ation of high-dose<br />

methylprednisolone (250 mg four times a day for 5 days followed by an oral taper),<br />

acetazolamide, and ranitid<strong>in</strong>e (Liu, 1994). In addition to severe disc edema, one patient<br />

had a serous detachment of both maculae and lipid deposition, one had unilateral<br />

macular star, and one had a monocular branch ret<strong>in</strong>al artery occlusion. These latter<br />

three patients experienced rapid and last<strong>in</strong>g improvement <strong>in</strong> visual acuity, visual fields,<br />

papilledema, and symptoms, whereas the fourth patient did not improve and required<br />

optic nerve sheath fenestration. The authors suggested this comb<strong>in</strong>ation treatment for<br />

patients with acute, severe visual loss associated with florid papilledema and suggested<br />

surgical treatment if no immediate improvement occurs (Liu, 1994).<br />

What About Repeated Lumbar Punctures?<br />

Papilledema 147<br />

Repeated lumbar punctures have never been systematically studied for the treatment of<br />

PTC. As these procedures are uncomfortable, of questionable benefit, and potentially<br />

associated with complications (e.g., <strong>in</strong>fection, <strong>in</strong>trasp<strong>in</strong>al epidermoid tumors [Corbett,<br />

1983]), we feel that they should not be performed therapeutically, except perhaps with<br />

PTC <strong>in</strong> pregnancy (class III, level C).


148 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

What Is the Surgical Management of PTC?<br />

When medical therapy fails or when visual dysfunction deteriorates, surgical therapies<br />

for PTC should be considered (Corbett, 1989). The <strong>in</strong>dications for surgical therapy, as<br />

suggested by Corbett and Thompson, are outl<strong>in</strong>ed <strong>in</strong> Table 7–11 (Corbett, 1989). The<br />

two ma<strong>in</strong> procedures performed <strong>in</strong>clude lumboperitoneal shunt (LPS) and optic nerve<br />

sheath fenestration (ONSF). Various authorities have vehemently advocated one or the<br />

other procedure and both have their advantages and disadvantages, but there has been<br />

no prospective study compar<strong>in</strong>g the efficacy of the two procedures.<br />

Lumboperitoneal shunt can relieve headache, diplopia, and papilledema, and can<br />

reverse visual loss (<strong>An</strong>giari, 1992; Burgett, 1997; Eggenberger, 1996; Johnston, 1988a,b;<br />

Lundar, 1990; Rosenberg, 1993). This procedure may be performed if warranted <strong>in</strong><br />

pregnancy (Shapiro, 1995). Eggenberger et al retrospectively studied 27 patients with<br />

PTC treated with at least one LPS to ascerta<strong>in</strong> the efficacy of this treatment<br />

(Eggenberger, 1996). The <strong>in</strong>dications for LPS were <strong>in</strong>tractable headache <strong>in</strong> 18 patients<br />

(67%) and progressive optic neuropathy <strong>in</strong> 14 patients (52%). Visual function returned<br />

to normal <strong>in</strong> both eyes of six patients, showed no change <strong>in</strong> either eye <strong>in</strong> four patients,<br />

and improved <strong>in</strong> at least one eye <strong>in</strong> the rema<strong>in</strong><strong>in</strong>g four. Four patients had unilateral and<br />

one had bilateral sixth nerve palsies; all completely resolved postsurgery. The average<br />

duration of follow-up for this population was 77 months (mean 47 months). A<br />

function<strong>in</strong>g LPS was successful <strong>in</strong> alleviat<strong>in</strong>g symptoms <strong>in</strong> all of the patients studied<br />

and no patient with a function<strong>in</strong>g shunt compla<strong>in</strong>ed of shunt-related symptoms, such as<br />

low-pressure headache or abdom<strong>in</strong>al pa<strong>in</strong>, with<strong>in</strong> 2 months after the shunt was<br />

performed.<br />

The major complication of LPS is shunt failure requir<strong>in</strong>g revision. The authors<br />

concluded that placement of a LPS is a satisfactory treatment for the majority of<br />

patients with PTC who require surgical therapy for the disorder even though some<br />

patients ultimately require multiple shunt revisions.<br />

Rosenberg et al reviewed the efficacy of cerebrosp<strong>in</strong>al diversion procedures for PTC<br />

<strong>in</strong> patients from six different <strong>in</strong>stitutions (Rosenberg, 1993). Thirty-seven patients<br />

underwent a total of 73 LPS and 10 ventricular shunts. Only 14 patients rema<strong>in</strong>ed<br />

‘‘cured’’ after a s<strong>in</strong>gle surgical procedure. The average time between shunt <strong>in</strong>sertion and<br />

shunt replacement was 9 months, although 64% of the shunts lasted less than 6 months.<br />

Shunt failure (recurrent papilledema or <strong>in</strong>creased CSF pressure on lumbar puncture)<br />

(55%) and low-pressure headaches (21%) were the most common <strong>in</strong>dications for<br />

reoperation. Other reasons for shunt replacement <strong>in</strong>cluded <strong>in</strong>fection, abdom<strong>in</strong>al pa<strong>in</strong>,<br />

radicular pa<strong>in</strong>, operative complications, and CSF leak. The vision of most patients<br />

improved (13) or stabilized (13) postoperatively. However, three patients who had<br />

<strong>in</strong>itially improved subsequently lost vision, six had a postoperative decrease <strong>in</strong> vision,<br />

two patients improved <strong>in</strong> one eye but worsened postoperatively <strong>in</strong> the other, and four<br />

lost vision despite apparently adequate shunt function. Shunt failure with relapse of<br />

PTC occurred as late as 7 years after <strong>in</strong>sertion. The authors concluded that CSF<br />

diversion procedures have a significant failure rate as well as a high frequency of<br />

side effects. Johnston et al reported 36 patients who dur<strong>in</strong>g follow-up required a total<br />

of 85 shunt<strong>in</strong>g procedures with an overall complication rate of 52% and a failure rate of<br />

48% (Johnston, 1988a).<br />

Burgett et al retrospectively analyzed cl<strong>in</strong>ical data from 30 patients who underwent<br />

LPS for PTC and found LPS an effective means of acutely lower<strong>in</strong>g <strong>in</strong>tracranial pressure


(Burgett, 1997). Symptoms of <strong>in</strong>creased <strong>in</strong>tracranial pressure improved <strong>in</strong> 82% of<br />

patients, and five patients (29%) demonstrated total resolution of all symptoms.<br />

Among 14 patients with impaired visual acuity, 10 (71%) improved by at least two<br />

Snellen l<strong>in</strong>es. Worsen<strong>in</strong>g of vision occurred <strong>in</strong> only one eye. Of 28 eyes with abnormal<br />

Goldmann perimetry, 18 (64%) improved and none worsened. The <strong>in</strong>cidence of serious<br />

complications was low, but the major drawback was a need for frequent revisions <strong>in</strong> a<br />

few patients (30 patients underwent a total of 126 revisions with the mean revision rate<br />

of 4.2 per patient). The authors suggested that LPS should be considered the first<br />

surgical procedure for patients with PTC with severe visual loss at presentation or with<br />

<strong>in</strong>tractable headache (with or without visual loss). After shunt<strong>in</strong>g, it is important to<br />

identify patients who are shunt <strong>in</strong>tolerant (Burgett, 1997).<br />

Thus, CSF diversion procedures, especially LPS, are often effective <strong>in</strong> controll<strong>in</strong>g PTC,<br />

and although placement of the shunt is generally safe, any operation performed under<br />

general anesthesia carries some risk, and there is at least one perioperative death<br />

reported follow<strong>in</strong>g LPS (Eisenberg, 1971). Shunt obstruction is the most common<br />

complication (Burgett, 1997; Chumas, 1993b; Eggenberger, 1996; Rosenberg, 1993)<br />

followed by secondary <strong>in</strong>tracranial hypotension caused by excessive dra<strong>in</strong>age of the<br />

CSF via the LPS (Burgett, 1997; Chumas, 1993b; Eggenberger, 1996; Johnston, 1988a,b;<br />

Rosenberg, 1993; Sell, 1995). Symptoms of <strong>in</strong>tracranial hypotension <strong>in</strong>clude nausea and<br />

vomit<strong>in</strong>g, nuchal rigidity, disturbances of vision, vertigo, t<strong>in</strong>nitus, and reduced hear<strong>in</strong>g<br />

(the latter three are thought due to a decreased <strong>in</strong>tralabyr<strong>in</strong>th<strong>in</strong>e pressure gradient<br />

across the cochlear aqueduct). Complications of LPS are listed <strong>in</strong> Table 7–12.<br />

Optic nerve sheath fenestration has been proven to prevent deterioration <strong>in</strong> vision<br />

and, <strong>in</strong> some cases, improve visual function <strong>in</strong> patients with PTC (Acheson, 1994;<br />

<strong>An</strong>derson, 1992; Bourman, 1988; Brazier, 1996; Carter, 1995; Corbett, 1988b; Goh, 1997;<br />

Horton, 1992; Kelman, 1991, 1992; Lee, 1998; Liu, 1994; Mauriello, 1995; Mittra, 1993;<br />

Pearson, 1991; Sergott, 1988; Spoor, 1991, 1993, 1995; Talks, 1998). For example, <strong>in</strong> one<br />

study 26 patients underwent 40 ONSFs for relief of visual loss or to preserve vision (16<br />

unilateral and 12 bilateral operations) (Knight, 1986). Papilledema disappeared or was<br />

Table 7–12. Complications of Lumboperitoneal Shunts (LPSs)<br />

Papilledema 149<br />

Shunt obstruction (Burgett, 1997; Chumas, 1993b; Eggenberger, 1996; Rosenberg, 1993)<br />

Intracranial hypotension (Burgett, 1997; Chumas, 1993b; Eggenberger, 1996; Johnston, 1988a,b;<br />

Rosenberg, 1993; Sell, 1995)<br />

Cerebrosp<strong>in</strong>al fluid leak<br />

Lumbar radiculopathy (Eggenberger, 1996; Johnston, 1988a,b; Rosenberg, 1993; Sell, 1995)<br />

Shunt or disc space <strong>in</strong>fection (Cabezudo, 1990; Eggenberger, 1996; Johnston, 1988a,b; Rosenberg,<br />

1993)<br />

Abdom<strong>in</strong>al pa<strong>in</strong>, bowel perforation, or migration or dislocation of the peritoneal end of the catheter<br />

(Chumas, 1993b; Eggenberger, 1996; Rosenberg, 1993)<br />

Tonsillar herniation (symptomatic or asymptomatic) and syr<strong>in</strong>gomyelia (Chumas, 1993a,b;<br />

Cognard, 1998)<br />

Subdural hemorrhage<br />

Visual loss from ret<strong>in</strong>al ischemia<br />

Bilateral visual loss and simultagnosia from bilateral parieto-occipital <strong>in</strong>farction related to rupture of<br />

a previously asymptomatic <strong>in</strong>tracranial aneurysm after LPS (Miller, 1997)<br />

Rarely, death (Eisenberg, 1971)


150 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

strik<strong>in</strong>gly reduced <strong>in</strong> 24 of 28 patients. The other four patients had gliotic discs (two<br />

patients) or were followed up for only a short time. Visual acuity improved <strong>in</strong> 12 of 40<br />

eyes and rema<strong>in</strong>ed the same <strong>in</strong> 22 of 40 eyes. In six eyes, the visual acuity decreased.<br />

The visual fields improved <strong>in</strong> 21 of 40 eyes and rema<strong>in</strong>ed the same <strong>in</strong> 10 eyes; five of the<br />

10 eyes that did not change had poor vision before surgery. Eight eyes <strong>in</strong> five patients<br />

cont<strong>in</strong>ued to lose acuity postoperatively. <strong>An</strong> additional two eyes developed visual field<br />

loss with preserved visual acuity. In another study, 23 patients with chronic papilledema<br />

had ONSF and 21 of the 23 patients demonstrated improvement <strong>in</strong> visual function<br />

(Sergott, 1988). Twelve of 21 patients with bilateral visual loss had improved visual<br />

function bilaterally after unilateral surgery, and 6 of 21 patients needed bilateral surgery.<br />

ONSF improved vision <strong>in</strong> six patients who failed to recover vision after LPS.<br />

Kelman et al performed ONSF on 17 patients with severe visual acuity or field loss<br />

(Kelman, 1992). Postoperatively, visual acuity improved or stabilized <strong>in</strong> 33 of 34 eyes<br />

(97%) and the visual fields improved <strong>in</strong> 20 of 21 eyes that underwent surgery. Kelman<br />

et al also performed ONSF <strong>in</strong> 12 patients (16 eyes) with function<strong>in</strong>g LPS and progressive<br />

visual loss (Kelman, 1991), and all patients demonstrated improvement <strong>in</strong> visual<br />

function. Liu et al reported a woman with PTC treated with an LPS who developed<br />

acute pallid disc swell<strong>in</strong>g with peripapillary hemorrhages and visual acuity of no light<br />

perception (NLP) OD and 20=70 OS <strong>in</strong> association with LPS failure (Liu, 1996). The<br />

patient underwent ONSF and LPS revision and her visual acuity improved to 20=20 OU<br />

and the papilledema resolved. Pearson et al operated upon n<strong>in</strong>e patients (14 eyes), and<br />

visual function showed significant improvement or stabilized <strong>in</strong> all but one patient<br />

(Pearson, 1991). Spoor et al performed ONSF <strong>in</strong> 53 patients (101 eyes) with PTC and<br />

visual loss (Spoor, 1991). Sixty-n<strong>in</strong>e eyes (85 patients) with acute papilledema uniformly<br />

had improved visual function after ONSF. Of the 32 eyes with chronic papilledema<br />

(18 patients), only 10 improved. Thirteen eyes required secondary or tertiary ONSF after<br />

an <strong>in</strong>itial successful result. Eleven of 13 eyes had improved visual function after repeat<br />

ONSF. Goh et al described 29 eyes of patients with PTC who underwent ONSF for<br />

visual loss <strong>in</strong> spite of Diamox treatment (Goh, 1997). Visual acuity and visual fields were<br />

compared before and after operation (with<strong>in</strong> 1 and 6 months). The mean follow-up of<br />

this study was 15.7 months (range 1 to 50 months). Visual acuity improved <strong>in</strong> four eyes<br />

(14%), was unchanged <strong>in</strong> 22 eyes (76%), and worsened <strong>in</strong> three eyes (10%). Visual fields<br />

improved <strong>in</strong> 10 (48%) eyes, rema<strong>in</strong>ed unchanged <strong>in</strong> 8 (38%) eyes, and worsened <strong>in</strong> 3<br />

(14%) eyes (6 lost to follow-up). There were four repeat surgeries <strong>in</strong> which vision was<br />

lost <strong>in</strong> one eye.<br />

Banta et al reported 158 ONSFs <strong>in</strong> 86 patients with PTC with visual loss despite<br />

medical treatment (Banta, 2000). Visual acuity stabilized or improved <strong>in</strong> 148 of 158<br />

(94%) eyes and visual fields stabilized or improved <strong>in</strong> 71 of 81 (88%) eyes. Surgical<br />

complications, most often benign and transient, occurred <strong>in</strong> 39 of 86 patients. Diplopia<br />

occurred <strong>in</strong> 30 patients, with 87% resolv<strong>in</strong>g spontaneously (2 patients required<br />

prismatic correction, and 2 other patients underwent subsequent strabismus surgery).<br />

Only one eye <strong>in</strong> one patient had permanent severe visual loss (count f<strong>in</strong>gers acuity)<br />

secondary to an operative complication (presumed traumatic optic neuropathy). One<br />

patient had total ophthalmoplegia and bl<strong>in</strong>dness after surgery (orbital apex compression<br />

syndrome) that completely resolved over 1 month with steroid therapy. Visual loss<br />

occurred <strong>in</strong> 16 of 158 (10%) eyes after <strong>in</strong>itially successful primary ONSF with time from<br />

surgery to failure variable (up to 5 years postsurgery). No specific risk factors that<br />

predisposed patients to ONSF failure were discovered. N<strong>in</strong>e eyes <strong>in</strong> six patients


Papilledema 151<br />

underwent repeat ONSF for progressive visual loss after an <strong>in</strong>itially successful ONSF.<br />

The only complication encountered on repeat ONSF was transient diplopia <strong>in</strong> two<br />

patients. Two patients who underwent repeat ONSF required a CSF diversion procedure<br />

to halt progressive visual loss, and two patients with stable visual function after<br />

repeat ONSF required CSF diversion procedures for <strong>in</strong>tractable headaches. Three<br />

patients with progressive visual loss after <strong>in</strong>itially successful primary ONSF underwent<br />

CSF diversion procedures <strong>in</strong>stead of repeat ONSF. After ONSF, many patients <strong>in</strong>itially<br />

had symptomatic improvement of headaches, but only 8 of 61 (13%) patients with<br />

headache as a present<strong>in</strong>g symptom had subjective improvement. N<strong>in</strong>e patients underwent<br />

CSF diversion procedures for <strong>in</strong>tractable headaches after ONSF despite stable<br />

visual parameters. The authors noted that the patient population with a significant<br />

headache component would likely benefit from an <strong>in</strong>itial CSF diversion procedure. The<br />

authors concluded that ONSF is a safe and effective means of stabiliz<strong>in</strong>g visual acuity<br />

and visual fields <strong>in</strong> patients with PTC with progressive visual loss despite maximum<br />

medical therapy.<br />

Mittra et al exam<strong>in</strong>ed changes <strong>in</strong> color Doppler imag<strong>in</strong>g before and after ONSF for<br />

PTC (Mittra, 1993). Their results suggest that some of the visual loss from chronic<br />

papilledema may be due to ischemia, and worsen<strong>in</strong>g visual acuity correlates with<br />

greater impairment of the retrobulbar circulation. One of the mechanisms by which<br />

ONSF improves visual function may thus be reversal of this ischemic process.<br />

Talks et al reported 24 patients with PTC who required ONSF (Talks, 1998). Twentyone<br />

of the 48 eyes (44%) had macular changes, <strong>in</strong>clud<strong>in</strong>g choroidal folds (n<strong>in</strong>e patients),<br />

circumferential (Paton’s) l<strong>in</strong>es (four), nerve fiber layer hemorrhages (three), macular<br />

stars (five), macular edema (six), ret<strong>in</strong>al pigment epithelial changes (four), and subret<strong>in</strong>al<br />

hemorrhage lead<strong>in</strong>g to a macular scar (one). Significant visual loss attributable to<br />

the macular changes was found <strong>in</strong> five eyes <strong>in</strong> the short term and three eyes <strong>in</strong> the long<br />

term. The two eyes that improved had macular stars; of the three eyes that did not<br />

improve, two had ret<strong>in</strong>al pigment epithelial changes and one had subret<strong>in</strong>al hemorrhage<br />

lead<strong>in</strong>g to a macular scar. The authors concluded that the majority of macular<br />

changes <strong>in</strong> PTC patients resolve and do not add to visual loss from optic nerve damage.<br />

Patients with marked macular edema, however, are at the most risk for permanent<br />

visual loss and should be considered for early surgical treatment.<br />

ONSF has also been effective <strong>in</strong> children with PTC (Lee, 1998). Of 12 patients with<br />

PTC (less than 16 years of age) reviewed, 67% had improved visual acuity, 33% had<br />

improved visual fields, and 17% had worsen<strong>in</strong>g of visual acuity and visual fields<br />

postoperatively (Lee, 1998).<br />

Headaches may be relieved <strong>in</strong> over half of the patients with PTC undergo<strong>in</strong>g ONSF<br />

(Corbett, 1989). For example, with unilateral decompression, headaches were improved<br />

or were relieved <strong>in</strong> 13 of 17 patients <strong>in</strong> one series (Sergott, 1988) and <strong>in</strong> 10 of 16 patients<br />

<strong>in</strong> another study (Corbett, 1989), whereas 91% of patients (10=11) had relief of headache<br />

after ONSF <strong>in</strong> a third study (Kosmorsky, 1993). ONSF may also relieve papilledema and<br />

improve vision when performed on patients with PTC secondary to occlusion of the<br />

dural s<strong>in</strong>uses (Horton, 1992; Mittra, 1993).<br />

Thus, some reports have suggested that ONSF is more effective and associated with<br />

fewer complications than LPS (Corbett, 1988b; Sergott, 1988). Because of these reports,<br />

many physicians have abandoned LPS <strong>in</strong> favor of ONSF for the majority of their<br />

patients with PTC who require surgery (Eggenberger, 1996). Long-term follow-up data<br />

suggest, however, that ONSF may not be as effective as orig<strong>in</strong>ally claimed. Up to 33% of


152 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

patients undergo<strong>in</strong>g ONSF for PTC who show <strong>in</strong>itial improvement <strong>in</strong> visual function<br />

later show deterioration <strong>in</strong> visual field and acuity (Spoor, 1993, 1995). In a study of the<br />

long-term effectiveness of ONSF for PTC, Spoor and McHenry reviewed 32 series of<br />

postoperative visual fields <strong>in</strong> patients who were undergo<strong>in</strong>g ONSF for PTC who had<br />

stable visual acuity and four or more fields dur<strong>in</strong>g 6 to 60 months of follow-up (Spoor,<br />

1993). The authors then extended the review to <strong>in</strong>clude all patients (54 patients, 75 eyes)<br />

who underwent ONSF for PTC, who were followed up with serial automated perimetry.<br />

Fifty-two eyes (68%) showed improvement (36%) or stabilization (32%) of visual<br />

function, whereas 24 eyes (32%) experienced deterioration of visual function after an<br />

<strong>in</strong>itially successful ONSF. The probability of failure from 3 to 5 years was 0.35 by lifetable<br />

analysis. The authors concluded that ONSF effectively stabilizes or improves<br />

visual function <strong>in</strong> the majority of patients with PTC and visual loss. It may fail at any<br />

time after surgery, however, and patients need rout<strong>in</strong>e follow-up with automated<br />

perimetry to detect deterioration of visual function. Some of these late failures may<br />

be prevented by better and different operative techniques (Sergott, 1988; Spoor, 1995).<br />

Also, Acheson et al reported 14 patients (11 with idiopathic PTC and three with dural<br />

venous s<strong>in</strong>us occlusion) who underwent eight unilateral and six bilateral ONSF<br />

(Acheson, 1994). Visual acuity and fields either improved or stabilized <strong>in</strong> 17 out of 20<br />

eyes, and three deteriorated. Of the eight patients undergo<strong>in</strong>g unilateral surgery, the<br />

other eye rema<strong>in</strong>ed stable <strong>in</strong> seven and deteriorated <strong>in</strong> one. Four patients required<br />

ONSF despite previous shunt<strong>in</strong>g or subtemporal decompression. Five patients required<br />

shunt<strong>in</strong>g or subtemporal decompression after ONSF because of persistent headache <strong>in</strong><br />

three cases and for uncontrolled visual failure <strong>in</strong> two cases. No patient lost vision as a<br />

direct complication of surgery.<br />

Thus, vision can be saved after shunt failure, and <strong>in</strong> other cases may be ma<strong>in</strong>ta<strong>in</strong>ed<br />

without the need for a shunt. Shunt<strong>in</strong>g may still be required, however, after ONSF,<br />

especially for persistent headache. Mauriello et al reviewed the records of 108 patients<br />

with pseudotumor who underwent ONSF and who showed visual loss with<strong>in</strong> 1 month<br />

of surgery (Mauriello, 1995). Five patients, <strong>in</strong>clud<strong>in</strong>g two with renal failure and<br />

hypertension, had visual loss with<strong>in</strong> 1 month of ONSF. The first had an abrupt decrease<br />

<strong>in</strong> vision 6 days after ONSF, and <strong>in</strong> this patient a vessel on the nerve sheath bled <strong>in</strong>to the<br />

surgical site. After high-dose <strong>in</strong>travenous (IV) steroids failed to improve vision,<br />

emergency LPS resulted <strong>in</strong> full visual recovery. <strong>An</strong> apparent <strong>in</strong>fectious optic neuropathy<br />

developed <strong>in</strong> the second patient 3 days after surgery. After 72 hours of IV antibiotics,<br />

visual acuity improved from 20=600 to 20=15. The other three patients had gradual<br />

visual loss after ONSF, which stabilized after LPSs. These authors reviewed ONSF<br />

failures <strong>in</strong> the literature and showed that four of seven patients with abrupt visual loss<br />

with<strong>in</strong> the first 2 weeks of ONSF had no improvement <strong>in</strong> vision despite various<br />

treatments, <strong>in</strong>clud<strong>in</strong>g shunts. The series of Corbett et al of 40 ONSF <strong>in</strong> 28 patients<br />

<strong>in</strong>cluded six patients who lost vision with<strong>in</strong> the first 2 weeks of surgery (Corbett,<br />

1988b). Only one of these six patients had return of vision, and this patient had a<br />

dramatic decrease of vision from 20=30 <strong>in</strong> the <strong>in</strong>volved eye to NLP 3 hours postoperatively<br />

after retrobulbar hemorrhage, with acuity improv<strong>in</strong>g to 20=20 after surgical<br />

dra<strong>in</strong>age of the retrobulbar hematoma. The other five patients had no visual recovery<br />

despite LPS, cont<strong>in</strong>uous lumbar dra<strong>in</strong>age, and repeat ONSF <strong>in</strong> one patient who had<br />

<strong>in</strong>trasheath hemorrhage due to cough<strong>in</strong>g (this patient went from 20=30 to 20=200 10 days<br />

postoperatively). Intravenous steroids appeared to enhance visual recovery <strong>in</strong> one<br />

patient of Flynn et al who went from 20=400 to NLP 5 hours postoperatively but


who improved to 20=800 after <strong>in</strong>travenous dexamethasone (Flynn, 1994). Mauriello et al<br />

concluded that avoidance of bleed<strong>in</strong>g dur<strong>in</strong>g ONSF may prevent fibrous occlusion of<br />

the surgical site, and that patients with no identifiable cause for visual loss after ONSF<br />

who do not respond to IV steroids should be evaluated for emergency LPS (Mauriello,<br />

1995). Also, postoperative <strong>in</strong>fectious optic neuropathy should be considered <strong>in</strong> the<br />

differential of abrupt visual loss after ONSF. If ONSF fails, the authors favor LPS rather<br />

than repeat ONSF.<br />

Numerous complications have also been reported after ONSF (Brodsky, 1997; Corbett,<br />

1988b; Flynn, 1994; Plotnik, 1993; Smith, 1992). Plotnik and Kosmorsky reported<br />

postoperative complications <strong>in</strong> 15 of the 38 eyes (39%) undergo<strong>in</strong>g ONSF (Plotnik,<br />

1993). Temporary motility disorders (due to extraocular muscle damage or damage to<br />

their nerve or blood supply) occurred <strong>in</strong> 29% and all resolved, the longest by 9 weeks.<br />

Pupillary dysfunction occurred <strong>in</strong> four eyes (11%) and consisted of sectorial tonic pupils<br />

(due to damage to short ciliary nerves or their blood supply caus<strong>in</strong>g iris sph<strong>in</strong>cter palsy)<br />

that lasted 2 to 8 weeks <strong>in</strong> three eyes but persisted <strong>in</strong> one eye for 12 weeks. Four eyes<br />

(11%) had postoperative vascular complications, <strong>in</strong>clud<strong>in</strong>g two with central ret<strong>in</strong>al<br />

artery occlusions, one supertemporal branch ret<strong>in</strong>al artery occlusion, and one episode of<br />

transient outer ret<strong>in</strong>al ischemia. Both eyes with the central ret<strong>in</strong>al artery occlusions had<br />

poor visual outcomes, and eyes that had undergone prior ONSF were significantly more<br />

likely to have vascular complications than those without a previous operation. The<br />

<strong>in</strong>cidence of vascular complications was 67% <strong>in</strong> eyes that had undergone prior ONSF<br />

and 6% <strong>in</strong> those that had never undergone a previous ONSF. The complications<br />

reported with ONSF are listed <strong>in</strong> Table 7–13.<br />

Table 7–13. Complications of Optic Nerve Sheath Fenestration (ONSF)<br />

Papilledema 153<br />

Ocular motility disorders (e.g., temporary horizontal motility disorder caused by dis<strong>in</strong>sertion of the<br />

medial rectus muscle or comb<strong>in</strong>ed third and sixth nerve palsies)<br />

Transient or permanent diffuse or sectorial tonic pupils<br />

Conjunctival blebs with dellen formation<br />

Chemosis<br />

Chorioret<strong>in</strong>al scar from excessive traction on the globe<br />

Peripapillary hemorrhages thought secondary to short ciliary vessel <strong>in</strong>jury<br />

Orbital hemorrhage<br />

Trauma to the optic nerve<br />

Myel<strong>in</strong>ated nerve fibers (noted 5 months and 6 years postoperatively, thought to be stimulated by<br />

trauma associated with surgery)<br />

Microhyphemas<br />

Orbital apex syndrome (? steroid responsive)<br />

Subconjunctival Tenon’s cysts<br />

Streptococcal corneal ulcers<br />

Dacryocystitis<br />

Intraoperative angle closure glaucoma<br />

Deterioration of visual function, transient bl<strong>in</strong>dness, choroidal <strong>in</strong>farction (fundus changes with<br />

choroidal <strong>in</strong>farction may not be evident for several weeks after operation)<br />

Central or branch ret<strong>in</strong>al artery occlusion<br />

Death<br />

Source: Banta, 2000; Bourman, 1988; Brodsky, 1997; Corbett, 1988b; Flynn, 1994; Plotnik, 1993; Smith, 1992.


154 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

From the above summary, it is evident that both ONSF and LPS may improve vision<br />

and prevent deterioration of vision <strong>in</strong> patients with PTC (class II–III, level B). Both<br />

procedures have their advantages and disadvantages, and either may fail with time no<br />

matter what procedure is used. Approximately one third of patients undergo<strong>in</strong>g ONSF<br />

will not experience headache relief and only about 75% of ONSFs appear to be<br />

function<strong>in</strong>g 6 months after surgery. The probability of function<strong>in</strong>g of ONSF steadily<br />

decreases thereafter such that 66% are function<strong>in</strong>g at 12 months, 55% at 3 years, 38% at<br />

Figure 7–1. Evaluation of bilateral optic disc swell<strong>in</strong>g.


5 years, and 16% at 6 years after surgery (Spoor, 1993). Thus, these patients must have<br />

their visual function followed for years as deterioration may require repeat procedures<br />

for ONSF failures. Although patients may be treated with a second ONSF after <strong>in</strong>itial<br />

failure, eyes that have more than one ONSF are less likely to improve after surgery and<br />

more likely to experience significant vascular complication than are eyes that undergo a<br />

s<strong>in</strong>gle surgery (Plotnik, 1993). On the other hand, LPS is fraught with many complications,<br />

although headache due to PTC is probably better controlled by LPS. Also, LPS<br />

failure is common, although most shunt failures occur with<strong>in</strong> 2 to 3 months of the <strong>in</strong>itial<br />

LPS (cumulative risk, 37%) and only rarely is the first shunt revision required more than<br />

1 year after <strong>in</strong>itial LPS (Eggenberger, 1996). Thus, a patient with PTC who undergoes an<br />

LPS and who ma<strong>in</strong>ta<strong>in</strong>s a function<strong>in</strong>g shunt for more than 1 year has a lower risk of<br />

requir<strong>in</strong>g a shunt revision over subsequent years (Eggenberger, 1996). Patients undergo<strong>in</strong>g<br />

LPS, however, also need careful follow-up after their procedure because of the<br />

possibility of late failures. LPS failure has been reportedly successfully treated by repeat<br />

LPS or by ONSF.<br />

The evaluation of the patient with optic disc swell<strong>in</strong>g is summarized <strong>in</strong> Figure 7–1.<br />

References<br />

Papilledema 155<br />

Acheson JF, Green WT, Sanders MD. (1994). Optic nerve sheath decompression for the treatment of visual failure<br />

<strong>in</strong> chronic raised <strong>in</strong>tracranial pressure. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 57:1426–1429.<br />

Adams C, Dean HJ, Israels SJ, et al. (1994). Primary hypothyroidism with <strong>in</strong>tracranial hypertension and pituitary<br />

hyperplasia. Pediatr <strong>Neuro</strong>l 10:166–168.<br />

Adelman JU. (1998). Headache and papilledema secondary to dural arteriovenous malformation. Headache<br />

38:621–623.<br />

Ageli SI, Sato Y, Gantz BJ. (1994). Glomus jugulare tumors masquerad<strong>in</strong>g as benign <strong>in</strong>tracranial hypertension.<br />

Arch Otolaryngol 120:1277–1280.<br />

Ahmad S. (1996). Amiodarone and reversible benign <strong>in</strong>tracranial hypertension. Cardiology 87:90.<br />

Akova YA, Kansu T, Duman S. (1993). Pseudotumor cerebri secondary to dural s<strong>in</strong>us thrombosis <strong>in</strong> neurosarcoidosis.<br />

J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:188–189.<br />

Akova YA, Kansu T, Yazar Z, et al. (1994). Macular subret<strong>in</strong>al neovascular membrane associated with<br />

pseudotumor cerebri. J <strong>Neuro</strong>-ophthalmol 14:193–195.<br />

Alemayehu W. (1995). Pseudotumor cerebri (toxic effect of the ‘‘magic bullet’’). Ethiop Med J 33:265–270.<br />

Alexandrakis G, Filatov V, Walsh T. (1993). Pseudotumor cerebri <strong>in</strong> a 12-year-old boy with Addison’s disease.<br />

Am J Ophthalmol 116:650–651.<br />

Alison L, Hobbs CJ, Hanks HG, Butler G. (1997). Non-organic failure to thrive complicated by benign <strong>in</strong>tracranial<br />

hypertension dur<strong>in</strong>g catch-up growth. Acta Paediatr 86:1141–1143.<br />

Alpan G, Glick B, Peleg O, Eyal F. (1991). Pseudotumor cerebri and coma <strong>in</strong> vitam<strong>in</strong> D–dependent rickets.<br />

Cl<strong>in</strong> Pediatr 30:254–256.<br />

Ames D, Wirsh<strong>in</strong>g WC, Cokely HT, Lo LL. (1994). The natural course of pseudotumor cerebri <strong>in</strong> lithium-treated<br />

patients. J Cl<strong>in</strong> Psychpharmacol 14:286–287.<br />

<strong>An</strong>derson RL, Flaharty PM. (1992). Treatment of pseudotumor cerebri by primary and secondary optic nerve<br />

sheath decompression. Am J Ophthalmol 113:599–601.<br />

<strong>An</strong>giari P, Corrad<strong>in</strong>i L, Corsi M, Merli GA. (1992). Pseudotumor cerebri. Lumboperitoneal shunt <strong>in</strong> long last<strong>in</strong>g<br />

cases. J <strong>Neuro</strong>surg Sci 36:145–149.<br />

Arber N, Shir<strong>in</strong> H, Fadial R, et al. (1990). Pseudotumor cerebri associated with leuprorel<strong>in</strong> acetate. Lancet 335:668.<br />

Arseni C, Simoca I, Jipescu I, et al. (1992). Pseudotumor cerebri: risk factors, cl<strong>in</strong>ical course, prognostic criteria.<br />

Romanian J <strong>Neuro</strong>l Psychiatry 30:115–132.<br />

Au Eong KG, Hariharan S, Chau EC, et al. (1997). Idiopathic <strong>in</strong>tracranial hypertension, empty sella turcica and<br />

polycystic ovary syndrome—a case report. S<strong>in</strong>gapore Med J 38:129–130.<br />

Avery R, Jabs D, W<strong>in</strong>gard J, et al. (1991). Optic disk edema after bone marrow transplantation. Possible role of<br />

cyclospor<strong>in</strong>e toxicity. Ophthalmology 98:1294–1301.


156 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Bafna S, Lee AG. (1996). Bilateral optic disc edema and multifocal ret<strong>in</strong>al lesions without loss of vision <strong>in</strong> cat<br />

scratch disease. Arch Ophthalmol 114:1016–1017.<br />

Bakshi SK, Oak JL, Chawla KP, et al. (1992). Facial nerve <strong>in</strong>volvement <strong>in</strong> pseudotumor cerebri. J Postgrad Med<br />

38:144–145.<br />

Balcar LJ, Liu GT, Forman S, et al. (1999). Idiopathic <strong>in</strong>tracranial hypertension: relation of age and obesity <strong>in</strong><br />

children. <strong>Neuro</strong>logy 52:870–872.<br />

Bandyopadhyay S. (2001). Pseudotumor cerebri. Arch <strong>Neuro</strong>l 58:1699–1701.<br />

Banta JT, Farris BK. (2000). Pseudotumor cerebri and optic nerve sheath decompression. Ophthalmology<br />

107:1907–1912.<br />

Bikangaga P, Canny GJ. (1996). Benign <strong>in</strong>tracranial hypertension <strong>in</strong> <strong>in</strong>fants with cystic fibrosis. Arch Pediatr Adolesc<br />

Med 150:551–552.<br />

Biousse V, Ameri A, Bousser M-G. (1999). Isolated <strong>in</strong>tracranial hypertension as the only sign of cerebral venous<br />

thrombosis. <strong>Neuro</strong>logy 53:1537–1542.<br />

Biousse V, Newman NJ, Lessell S. (1998). Audible pulsatile t<strong>in</strong>nitus <strong>in</strong> idiopathic <strong>in</strong>tracranial hypertension.<br />

<strong>Neuro</strong>logy 50:1185–1186.<br />

Blethen SL. (1995). Complications of growth hormone therapy <strong>in</strong> children. Curr Op<strong>in</strong> Pediatr 7:466–471.<br />

Boll<strong>in</strong>g JP, Brazis PW. (1990). Optic disk swell<strong>in</strong>g with peripheral neuropathy, organomegaly, endocr<strong>in</strong>opathy,<br />

monoclonal gammopathy, and sk<strong>in</strong> changes (POEMS syndrome). Am J Ophthalmol 109:503–510.<br />

Borruat FX, Regli F. (1993). Pseudotumor cerebri as a complication of amiodarone therapy. Am J Ophthalmol<br />

116:776–777.<br />

Bosch JA, Valdes M, Solans R, et al. (1995). Sk<strong>in</strong> hyper-reactivity <strong>in</strong> a patient with benign <strong>in</strong>tracranial hypertension<br />

as an early manifestation of Behçet’s disease. Br J Rheumatol 34:184.<br />

Bourman ND, Spoor TC, Ramocki JM. (1988). Optic nerve sheath decompression for pseudotumor cerebri. Arch<br />

Ophthalmol 106:1378–1383.<br />

Brazier DJ, Sanders MD. (1996). Disappearance of optociliary shunt vessels after optic nerve sheath decompression.<br />

Br J Ophthalmol 80:186–187.<br />

Brodsky MC, Rettele GA. (1997). Protracted postsurgical bl<strong>in</strong>dness with visual recovery follow<strong>in</strong>g optic nerve<br />

sheath fenestration. Arch Ophthalmol 115:1473–1474.<br />

Brodsky MC, Vaphiades M. (1998). Magnetic resonance imag<strong>in</strong>g <strong>in</strong> pseudotumor cerebri. Ophthalmology<br />

105:1686–1693.<br />

Burgett RA, Purv<strong>in</strong> VA, Kawasaki A. (1997). Lumboperitoneal shunt<strong>in</strong>g for pseudotumor cerebri. <strong>Neuro</strong>logy<br />

49:734–739.<br />

Cabezudo JM, Olabe J, Bacci F. (1990). Infection of the <strong>in</strong>tervertebral disc space after placement of a percutaneous<br />

lumboperitoneal shunt for benign <strong>in</strong>tracranial hypertension. <strong>Neuro</strong>surgery 26:1008–1009.<br />

Campos SP, Olitsky S. (1995). Idiopathic <strong>in</strong>tracranial hypertension after L-thyrox<strong>in</strong>e therapy for acquired primary<br />

hypothyroidism. Cl<strong>in</strong> Pediatr 34:334–337.<br />

Camras LR, Ecanow JS, Abood CA. (1998). Spontaneous cerebrosp<strong>in</strong>al fluid rh<strong>in</strong>orrhea <strong>in</strong> a patient with<br />

pseudotumor cerebri. J <strong>Neuro</strong>imag<strong>in</strong>g 8:41–42.<br />

Capobianco DJ, Brazis PW, Chesire WP. (1997). Idiopathic <strong>in</strong>tracranial hypertension and seventh nerve palsy.<br />

Headache 37:286–288.<br />

Carter SR, Seiff SR. (1995). Macular changes <strong>in</strong> pseudotumor cerebri before and after optic nerve sheath<br />

fenestration. Ophthalmology 102:937–941.<br />

Çelebisoy N, Seçil Y, Yüceyar N, Ertek<strong>in</strong> C. (1999). Occult cerebral vascular causes of pseudotumor cerebri.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 21:157–163.<br />

Chang D, Nagamoto G, Smith WE. (1992). Benign <strong>in</strong>tracranial hypertension and chronic renal failure. Cleve Cl<strong>in</strong> J<br />

Med 59:419–422.<br />

Chari C, Rao NS. (1991). Benign <strong>in</strong>tracranial hypertension—its unusual manifestations. Headache 31:599–600.<br />

Chaves-Carballo E, Dabbagh O, Bahabri S. (1999). Pseudotumor cerebri and leukoencephalopathy <strong>in</strong> childhood<br />

lupus. Lupus 8:81–84.<br />

Chen HY, Tsai RK, Di Capua HM, Rosati P, et al. (1993). Benign <strong>in</strong>tracranial hypertension <strong>in</strong> an older child with<br />

cystic fibrosis. Pediatr <strong>Neuro</strong>l 9:494–495.<br />

Chen HY, Tsai RK, Huang SM. (1998). ATRA-<strong>in</strong>duced pseudotumor cerebri—one case report. Kaohsiung J Med Sci<br />

14:58–60.<br />

Chern S, Margargal LE, Brav SS. (1991). Bilateral central ret<strong>in</strong>al ve<strong>in</strong> occlusion as an <strong>in</strong>itial manifestation of<br />

pseudotumor cerebri. <strong>An</strong>n Ophthalmol 23:54–57.<br />

Chevalier X, de Bandt M, Bourgeois P, Kahn MF. (1992). Primary Sjögren’s syndrome preced<strong>in</strong>g the presentation<br />

of systemic lupus erythematosus as a benign <strong>in</strong>tracranial hypertension syndrome. <strong>An</strong>n Rheum Dis<br />

51:808–809.


Papilledema 157<br />

Chimowitz MI, Little JR, Awad IA, et al. (1990). Intracranial hypertension associated with unruptured cerebral<br />

arteriovenous malformations. <strong>An</strong>n <strong>Neuro</strong>l 27:474–479.<br />

Chiu AM, Chuenkongkaew L, Cornblath WT, et al. (1998). M<strong>in</strong>ocycl<strong>in</strong>e treatment and pseudotumor cerebri<br />

syndrome. Am J Ophthalmol 126:116–121.<br />

Chumas PD, Armstrong DC, Drake JM, et al. (1993a). Tonsillar herniation: the rule rather than the exception after<br />

lumboperitoneal shunt<strong>in</strong>g <strong>in</strong> the pediatric population. J <strong>Neuro</strong>surg 78:568–573.<br />

Chumas PD, Kulkarni AV, Drake JM, et al. (1993b). Lumboperitoneal shunt<strong>in</strong>g: a retrospective study <strong>in</strong> the<br />

pediatric population. <strong>Neuro</strong>surgery 32:376–383.<br />

C<strong>in</strong>cirip<strong>in</strong>i GS, Donahue S, Borchert MS. (1999). Idiopathic <strong>in</strong>tracranial hypertension <strong>in</strong> prepubertal pediatric<br />

patients: characteristics, treatment, and outcome. Am J Ophthalmol 127:178–182.<br />

Clark D, Bullock T, Hui T, Firth J. (1994). Benign <strong>in</strong>tracranial hypertension: a cause of CSF rh<strong>in</strong>orrhea. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 57:847–849.<br />

Cockerell OC, Lai HM, Ross-Russell RW. (1993). Pseudotumor cerebri associated with arteriovenous malformations.<br />

Postgrad Med J 69:637–640.<br />

Cognard C, Casasco A, Toevi M, et al. (1998). Dural arteriovenous fistulas as a cause of <strong>in</strong>tracranial hypertension<br />

due to impairment of cranial venous outflow. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 65:308–316.<br />

Condulis N, Germa<strong>in</strong> G, Charest N, et al. (1997). Pseudotumor cerebri: a present<strong>in</strong>g manifestation of Addison’s<br />

disease. Cl<strong>in</strong> Pediatr 36:711–713.<br />

Corbett JJ, Digre K. (2002). Idiopathic <strong>in</strong>tracranial hypertension. <strong>An</strong> answer to, ‘‘the chicken or the egg?’’ <strong>Neuro</strong>logy<br />

58:5–6.<br />

Corbett JJ, Jacobson DM, Maurer RC, et al. (1988a). Enlargement of the bl<strong>in</strong>d spot caused by papilledema.<br />

Am J Ophthalmol 105:261–265.<br />

Corbett JJ, Mehta MP. (1983). Cerebrosp<strong>in</strong>al fluid pressure <strong>in</strong> normal obese subjects and patients with<br />

pseudotumor cerebri. <strong>Neuro</strong>logy 33:1386–1388.<br />

Corbett JJ, Nerad JA, Tse D, et al. (1988b). Result of optic nerve sheath fenestration for pseudotumor cerebri. The<br />

lateral orbitotomy approach. Arch Ophthalmol 106:1391–1397.<br />

Corbett JJ, Thompson HS. (1989). The rational management of idiopathic <strong>in</strong>tracranial hypertension. Arch <strong>Neuro</strong>l<br />

46:1049–1051.<br />

Corbett JJ, Sav<strong>in</strong>o PJ, Thompson HS, et al. (1982). Visual loss <strong>in</strong> pseudotumor cerebri: follow-up of 57 patients<br />

from 5 to 41 years and a profile of 14 patients with permanent severe visual loss. Arch <strong>Neuro</strong>l 39:461–474.<br />

Couban S, Maxner CE. (1991). Cerebral venous s<strong>in</strong>us thrombosis present<strong>in</strong>g as idiopathic <strong>in</strong>tracranial hypertension.<br />

Can Med Assoc J 145:657–659.<br />

Cremer PD, Thompson EO, Johnston IH, Halmagyi GM. (1996). Pseudotumor cerebri and cerebral venous<br />

hypertension. <strong>Neuro</strong>logy 47:1602–1603.<br />

Cruz OA, Fogg SG, Roper-Hall G. (1996). Pseudotumor cerebri associated with cyclospor<strong>in</strong>e use. Am J Ophthalmol<br />

122:436–437.<br />

Cuddihy J. (1994). Case report of benign <strong>in</strong>tracranial hypertension secondary to tetracycl<strong>in</strong>e. Irish Med J 87:90.<br />

Daftari TK, Heller JG, Newman NJ. (1995). Pseudotumor cerebri after occipitocervical arthrodesis and immobilization<br />

<strong>in</strong> a halo vest. A case report. J Bone Jo<strong>in</strong>t Surg 77A:455–458.<br />

Daif A, Awada A, al-Rajeh S, et al. (1995). Cerebral venous thrombosis <strong>in</strong> adults. A study of 40 cases from Saudi<br />

Arabia. Stroke 26:1193–1195.<br />

Davenport RJ, Will RG, Galloway PJ. (1994). Isolated <strong>in</strong>tracranial hypertension present<strong>in</strong>g with trigem<strong>in</strong>al<br />

neuropathy. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 57:381.<br />

David CA, Peerless SJ. (1995). Pseudotumor syndrome result<strong>in</strong>g from cerebral arteriovenous malformation: case<br />

report. <strong>Neuro</strong>surgery 36:588–590.<br />

De Paepe L, Abs R, Verlooy J, et al. (1993). Benign <strong>in</strong>tracranial hypertension as a cause of transient partial pituitary<br />

deficiency. J <strong>Neuro</strong>l Sci 114:152–155.<br />

Digre KB, Corbett JJ. (1988). Pseudotumor cerebri <strong>in</strong> men. Arch <strong>Neuro</strong>l 45:866–872.<br />

Dommisse J. (1991). Pseudotumor cerebri associated with lithium therapy <strong>in</strong> two patients. J Cl<strong>in</strong> Psychiatry 52:239.<br />

Donahue SP. (2000). Recurrence of idiopathic <strong>in</strong>tracranial hypertension after weight loss: the carrot craver.<br />

Am J Ophthalmol 130:850–851.<br />

Donnet A, Dufour H, Graziani N, Grisoli F. (1992). M<strong>in</strong>ocycl<strong>in</strong>e and benign <strong>in</strong>tracranial hypertension. Biomed<br />

Pharmacother 46:171–172.<br />

Dudenhoefer EJ, Cornblath WT, Schatz MP. (1998). Scalp necrosis with giant cell arteritis. Ophthalmology 105:1875–<br />

1878.<br />

Eggenberger ER, Miller NR, Vitale S. (1996). Lumboperitoneal shunt for the treatment of pseudotumor cerebri.<br />

<strong>Neuro</strong>logy 46:1524–1530.<br />

Eisenberg HM, Davidson RI, Shillito J. (1971). Lumboperitoneal shunts: review of 34 cases. J <strong>Neuro</strong>surg 35:427–431.


158 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Evers JP, Jacobson RJ, P<strong>in</strong>cus J, Zwiebel JA. (1992). Pseudotumor cerebri follow<strong>in</strong>g high-dose cytos<strong>in</strong>e arab<strong>in</strong>oside.<br />

Br J Haematol 80:559–560.<br />

Fanoous M, Hamed LM, Margo CE. (1991). Pseudotumor cerebri associated with danazol withdrawal. JAMA<br />

266:1218–1219.<br />

Fant<strong>in</strong> A, Feist RM, Reddy CV. (1993). Intracranial hypertension and papilloedema <strong>in</strong> chronic <strong>in</strong>flammatory<br />

demyel<strong>in</strong>at<strong>in</strong>g polyneuropathy. Br J Ophthalmol 77:193.<br />

Farah S, Al-Shubaili A, Montaser A, et al. (1998). Behcet’s syndrome: a report of 41 patients with emphasis on<br />

neurological manifestations. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 64:382–384.<br />

Fedorowski JJ, Hyman C. (1996). Optic disk edema as the present<strong>in</strong>g sign of Lyme disease. Cl<strong>in</strong> Infect Dis 23:639–<br />

640.<br />

Feigert JM, Sweet DL, Coleman M, et al. (1990). Multicentric angiofollicular lymph node hyperplasia with<br />

peripheral neuropathy, pseudotumor cerebri, IgA dysprote<strong>in</strong>emia, and thrombocytosis <strong>in</strong> women. A dist<strong>in</strong>ct<br />

syndrome. <strong>An</strong>n Intern Med 113:362–367.<br />

Felton WL, Sismanis A. (1995). Idiopathic <strong>in</strong>tracranial hypertension without papilledema <strong>in</strong> patients with<br />

pulsatile t<strong>in</strong>nitus. Presented at the North American <strong>Neuro</strong>-Ophthalmology meet<strong>in</strong>g, Tucson, Arizona.<br />

Flynn WJ, Westfall CT, Weisman JS. (1994). Transient bl<strong>in</strong>dness after optic nerve sheath fenestration.<br />

Am J Ophthalmol 117:678–679.<br />

Forderreuther S, Straube A. (2000). Indomethac<strong>in</strong> reduces CSF pressure <strong>in</strong> <strong>in</strong>tracranial hypertension. <strong>Neuro</strong>logy<br />

55:1043–1045.<br />

Fort JA, Smith LD. (1999). Pseudotumor cerebri secondary to <strong>in</strong>termediate-dose cytarab<strong>in</strong>e HCl. <strong>An</strong>n Pharmacother<br />

33:576–578.<br />

Francois I, Casteels I, Silberste<strong>in</strong> J, et al. (1997). Empty sella, growth hormone deficiency and pseudotumor cerebri:<br />

effect of <strong>in</strong>itiation, withdrawal and resumption of growth hormone therapy. Eur J Pediatr 156:69–70.<br />

Friedman DI. (2001). Papilledema and pseudotumor cerebri. Ophthalmol Cl<strong>in</strong> North Am 14:129–147.<br />

Friedman DI, Forman S, Levi L, et al. (1997). Unusual ocular motility disturbances <strong>in</strong> pseudotumor cerebri.<br />

Presented at the 23rd annual meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society, Keystone,<br />

Colorado, February 9–13.<br />

Friedman DI, Forman S, Levi L, et al. (1998a). Unusual ocular motility disturbances with <strong>in</strong>creased <strong>in</strong>tracranial<br />

pressure. <strong>Neuro</strong>logy 50:1893–1896.<br />

Friedman DI, Streeten DHP. (1998b). Idiopathic <strong>in</strong>tracranial hypertension and orthostatic edema may share a<br />

common pathogenesis. <strong>Neuro</strong>logy 50:1099–1104.<br />

Fujiwara S, Sawamura Y, Kato T, Abe H, Katusima H. (1997). Idiopathic <strong>in</strong>tracranial hypertension <strong>in</strong> female<br />

homozygous tw<strong>in</strong>s. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 62:652–654.<br />

Galm O, Fabry U, Osieka R. (2000). Pseudotumor cerebri after treatment of relapsed acute promyelocytic leukemia<br />

with arsenic trioxide. Leukemia 14:343–344.<br />

Gardner K, Cox T, Digre KB. (1995). Idiopathic <strong>in</strong>tracranial hypertension associated with tetracycl<strong>in</strong>e use <strong>in</strong><br />

fraternal tw<strong>in</strong>s: case report and review. <strong>Neuro</strong>logy 45:6–10.<br />

Getenet JC, Croisile B, Vighetto A, et al. (1993). Idiopathic <strong>in</strong>tracranial hypertension after ofloxac<strong>in</strong> treatment.<br />

Acta <strong>Neuro</strong>l Scand 87:503–504.<br />

Gibby WA, Cohen MS, Goldberg HI, Sergott RC. (1993). Pseudotumor cerebri: CT f<strong>in</strong>d<strong>in</strong>gs and correlation with<br />

vision loss. Am J Radiol 160:143–146.<br />

Gironell A, Marti-Fabregas J, Bello J, Avila A. (1997). Non-Hodgk<strong>in</strong>’s lymphoma as a new cause of non-thrombotic<br />

superior sagittal s<strong>in</strong>us occlusion. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 63:121–122.<br />

Giuseffi V, Wall M, Siegel PZ, Roojas PB. (1991). Symptoms and disease associations <strong>in</strong> idiopathic <strong>in</strong>tracranial<br />

hypertension (pseudotumor cerebri): a case-control study. <strong>Neuro</strong>logy 41:239–244.<br />

Glaser JS. (1990). <strong>Neuro</strong>-<strong>ophthalmology</strong>. 2nd ed. Philadelphia, JP Lipp<strong>in</strong>cott, p. 106.<br />

Goh KY, Schatz NJ, Glaser JS. (1997). Optic nerve sheath fenestration for pseudotumor cerebri. J <strong>Neuro</strong><strong>ophthalmology</strong><br />

17:86–91.<br />

Gokalp HZ, Baskaya MK, Ayd<strong>in</strong> V. (1992). Pseudotumor cerebri with familial Mediterranean fever. Cl<strong>in</strong> <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg 94:261–263.<br />

Golnik KC, Devoto TM, Kersten RC, Kulw<strong>in</strong> D. (1999). Visual loss <strong>in</strong> idiopathic <strong>in</strong>tracranial hypertension after<br />

resolution of papilledema. Ophthalmic Plast Reconstr Surg 15:442–444.<br />

Goodw<strong>in</strong> JA. (1990). Treatment of idiopathic <strong>in</strong>tracranial hypertension with digox<strong>in</strong>. <strong>An</strong>n <strong>Neuro</strong>l 28:248.<br />

Gordon K. (1997). Pediatric pseudotumor cerebri: descriptive epidemiology. Can J <strong>Neuro</strong>l Sci 24:2192–21.<br />

Graybill JR, Sobel J, Saag M, et al. (2000). Diagnosis and management of <strong>in</strong>creased <strong>in</strong>tracranial pressure <strong>in</strong> patients<br />

with AIDS and cryptococcal men<strong>in</strong>gitis. The NIAID Mycoses study group and AIDS cooperative treatment<br />

groups. Cl<strong>in</strong> Infect Dis 30:47–54.


Papilledema 159<br />

Green L, V<strong>in</strong>ker S, Amital H, et al. (1995). Pseudotumor cerebri <strong>in</strong> systemic lupus erythematosus. Sem<strong>in</strong> Arthritis<br />

Rheum 25:103–108.<br />

Greenfield DS, Wanichwecharungruang B, Liebman JM, Ritch R. (1997). Pseudotumor cerebri appear<strong>in</strong>g with<br />

unilateral papilledema after trabeculectomy. Arch Ophthalmol 115:423–426.<br />

Gregoric A, Bracic K, Novljan G, Marcun-Varda N. (2000). Pseudotumor cerebri <strong>in</strong> a child with familial<br />

hypomagnesemia-hypercalciuria. Pediatr Nephrol 14:269–270.<br />

Gross FJ, M<strong>in</strong>del JS. (1991). Pseudotumor cerebri and Guilla<strong>in</strong>-Barré syndrome associated with human immunodeficiency<br />

virus <strong>in</strong>fection. <strong>Neuro</strong>logy 41:1845–1846.<br />

Guy J, Johnston PK, Corbett JJ, Day AL, Glaser JS. (1990). Treatment of visual loss <strong>in</strong> pseudotumor cerebri<br />

associated with uremia. <strong>Neuro</strong>logy 40:28–32.<br />

Guymer RH, Cairns JD, O’Day J. (1993). Benign <strong>in</strong>tracranial hypertension <strong>in</strong> chronic myeloid leukemia. Aust N Z J<br />

Ophthalmol 21:181–185.<br />

Haller JS, Meyer DR, Cromie W, Fagles N, Hayes S. (1993). Pseudotumor cerebri follow<strong>in</strong>g beta-human chorionic<br />

gonadotrop<strong>in</strong> hormone treatment for undescended testicles. <strong>Neuro</strong>logy 43:448–449.<br />

Hauser D, Barzilai N, Zalish M, et al. (1996). Bilateral papilledema with ret<strong>in</strong>al hemorrhages <strong>in</strong> association<br />

with cerebral venous s<strong>in</strong>us thrombosis and paroxysmal nocturnal hemoglob<strong>in</strong>uria. Am J Ophthalmol 122:<br />

592–593.<br />

Hedges TR III, Legge RH, Peli E, Yardley CJ. (1995). Ret<strong>in</strong>al nerve fiber layer changes and visual field loss <strong>in</strong><br />

idiopathic <strong>in</strong>tracranial hypertension. Ophthalmology 102:1242–1247.<br />

Higg<strong>in</strong>s JN, Owler BK, Cous<strong>in</strong>s C, Pickard JD. (2002). Venous s<strong>in</strong>us stent<strong>in</strong>g for refractory benign <strong>in</strong>tracranial<br />

hypertension. Lancet 359:228–230.<br />

Hills C, Sohn RS. (1998). Peripheral nerve sheath tumor presents as idiopathic <strong>in</strong>tracranial hypertension. <strong>Neuro</strong>logy<br />

50:308–309.<br />

Horoshovski D, Amital H, Katz M, Shoenfeld Y. (1995). Pseudotumor cerebri <strong>in</strong> SLE. Cl<strong>in</strong> Rheumatol 14:708–710.<br />

Horton JC, Seiff SR, Pitts LH, et al. (1992). Decompression of the optic nerve sheath for vision-threaten<strong>in</strong>g<br />

papilledema caused by dural s<strong>in</strong>us occlusion. <strong>Neuro</strong>surgery 31:203–212.<br />

Huna-Baron R, Landau K, Rosenberg M, et al. (2001). Unilateral swollen disc due to <strong>in</strong>creased <strong>in</strong>tracranial<br />

pressure. <strong>Neuro</strong>logy 56:1588–1590.<br />

Hyk<strong>in</strong> PG, Spalton DJ. (1991). Bilateral per<strong>in</strong>euritis of the optic nerves. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 54:375–376.<br />

Ing EB, Leavitt JA, Younge BR. (1996). Papilledema follow<strong>in</strong>g bowtie optic atrophy. Arch Ophthalmol 114:356–357.<br />

Ireland B, Corbett JJ, Wallace RB. (1990). The search for the cause of idiopathic <strong>in</strong>tracranial hypertension: a<br />

prelim<strong>in</strong>ary case-control study. Arch <strong>Neuro</strong>l 47:315–320.<br />

Jacobson DM. (1995). Intracranial hypertension and the syndrome of acquired hyperopia with choroidal folds.<br />

J <strong>Neuro</strong>-ophthalmol 15:178–185.<br />

Jacobson DM. (2000). Divergence <strong>in</strong>sufficiency revisited. Natural history of idiopathic cases and neurologic<br />

associations. Arch Ophthalmol 118:1237–1241.<br />

Jacobson DM, Berg R, Wall M, et al. (1999). Serum vitam<strong>in</strong> A concentration is elevated <strong>in</strong> idiopathic <strong>in</strong>tracranial<br />

hypertension. <strong>Neuro</strong>logy 53:1114–1118.<br />

Jacobson DM, Karanjia PN, Olson KA, Warner JJ. (1990). Computed tomography ventricular size has no<br />

predictive value <strong>in</strong> diagnos<strong>in</strong>g pseudotumor cerebri. <strong>Neuro</strong>logy 40:1454–1455.<br />

Jacome DE. (2001). Idiopathic <strong>in</strong>tracranial hypertension and hemophilia A. Headache 41:595–598.<br />

Ja<strong>in</strong> N, Rosner F. (1992). Idiopathic <strong>in</strong>tracranial hypertension: report of seven cases. Am J Med 93:391–395.<br />

Javeed N, Shaikh J, Jayaram S. (1995). Recurrent pseudotumor cerebri <strong>in</strong> an HIV-positive patient. AIDS 9:817–819.<br />

Johnson LN, Krohel GB, Madsen RW, March GA Jr. (1998). The role of weight loss and acetazolamide <strong>in</strong> the<br />

treatment of idiopathic <strong>in</strong>tracranial hypertension (pseudotumor cerebri). Ophthalmology 105:2313–2317.<br />

Johnston I, Besser M, Morgan M. (1988a). Cerebrosp<strong>in</strong>al fluid diversion <strong>in</strong> the treatment of benign <strong>in</strong>tracranial<br />

hypertension. J <strong>Neuro</strong>surg 69:195–202.<br />

Johnston I, Paterson A, Besser M. (1988b). The treatment of benign <strong>in</strong>tracranial hypertension: a review of 134<br />

cases. Surg <strong>Neuro</strong>l 69:195–202.<br />

Kan L, Sood SK, Maytal J. (1998). Pseudotumor cerebri <strong>in</strong> Lyme disease: a case report and literature review. Pediatr<br />

<strong>Neuro</strong>l 18:439–441.<br />

Kansu T, Kansu E, Zileli T, Kirkali P. (1991). <strong>Neuro</strong>-ophthalmologic manifestations of Behçet’s disease.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 11:7–11.<br />

Karahalios D, Rekate HL, Khayata MH, Apostolides, PJ. (1996). Elevated <strong>in</strong>tracranial venous pressure as a<br />

universal mechanism <strong>in</strong> pseudotumor cerebri of vary<strong>in</strong>g etiologies. <strong>Neuro</strong>logy 46:198–202.<br />

Katz B, Moster ML, Slav<strong>in</strong> ML. (1997). Disk edema subsequent to renal transplantation. Surv Ophthalmol<br />

41:315–320.


160 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Katz DM, Trobe JD, Muraszko KM, Dauser RC. (1994). Shunt failure without ventriculomegaly proclaimed by<br />

ophthalmic f<strong>in</strong>d<strong>in</strong>gs. J <strong>Neuro</strong>surg 81:721–725.<br />

Kaufman DI. (1998). Peripheral demyel<strong>in</strong>at<strong>in</strong>g and axonal disorders. In: Miller NR, Newman NJ, eds. Walsh and<br />

Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 5th ed. Baltimore, Williams & Wilk<strong>in</strong>s, pp. 5677–5719.<br />

Kelman SE, Heaps R, Wolf A, Elman MJ. (1992). Optic nerve decompression surgery improves visual function <strong>in</strong><br />

patients with pseudotumor cerebri. <strong>Neuro</strong>surgery 30:391–395.<br />

Kelman SE, Sergott RC, Cioffi GA, et al. (1991). Modified optic nerve sheath decompression <strong>in</strong> patients with<br />

function<strong>in</strong>g lumboperitoneal shunts and progressive visual loss. Ophthalmology 98:1449–1453.<br />

Kesler A, Ellis MH, Reshef T, et al. (2000). Idiopathic <strong>in</strong>tracranial hypertension and anticardiolip<strong>in</strong> antibodies.<br />

J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 68:379–380.<br />

Kesler A, Gadoth N. (2001a). Epidemiology of idiopathic <strong>in</strong>tracranial hypertension. J <strong>Neuro</strong>-ophthalmol 21:12–14.<br />

Kesler A, Goldhammer Y, Gadoth N. (2001b). Do men with pseudotumor cerebri share the same characteristics as<br />

women? A retrospective review of 141 cases. J <strong>Neuro</strong>-ophthalmol 21:15–17.<br />

Kessler LA, Novelli PM, Reigel DH. (1998). Surgical treatment of benign <strong>in</strong>tracranial hypertension—subtemporal<br />

decompression revisited. Surg <strong>Neuro</strong>l 50:73–76.<br />

Kharode C, McAbee G, Sherman J, Kaufman M. (1992). Familial <strong>in</strong>tracranial hypertension: report of a case and<br />

review of the literature. J Child <strong>Neuro</strong>l 7:196–198.<br />

Kieper GL, Sherman JD, Tomsick TA, Tew JM JR. (1999). Dural s<strong>in</strong>us thrombosis and pseudotumor cerebri: unexpected<br />

complications of suboccipital craniotomy and translabyr<strong>in</strong>th<strong>in</strong>e craniectomy. J <strong>Neuro</strong>surg 91:192–199.<br />

Kiers L, K<strong>in</strong>g JO. (1991). Increased <strong>in</strong>tracranial pressure follow<strong>in</strong>g bilateral neck dissection and radiotherapy.<br />

Aust NZ J Surg 61:459–461.<br />

Killer HE, Flammer J (2001). Unilateral papilledema caused by a fronto-temporo-parietal arachnoid cyst.<br />

Am J Ophthalmol 132:589–591.<br />

Kim AW, Trobe JD. (2000). Syndrome simulat<strong>in</strong>g pseudotumor cerebri caused by partial transverse s<strong>in</strong>us<br />

obstruction <strong>in</strong> metastatic prostate cancer. Am J Ophthalmol 129:254–256.<br />

K<strong>in</strong>g JO, Mitchell PJ, Thompson KR, Tress BM. (1995). Cerebral venography and manometry <strong>in</strong> idiopathic<br />

<strong>in</strong>tracranial hypertension. <strong>Neuro</strong>logy 45:2224–2228.<br />

K<strong>in</strong>g JO, Mitchell PJ, Thompson KR, Tress BM. (2002). Manometry comb<strong>in</strong>ed with cervical puncture <strong>in</strong> idiopathic<br />

<strong>in</strong>tracranial hypertension. <strong>Neuro</strong>logy 58:26–30.<br />

Kle<strong>in</strong>schmidt JJ, Digre KB, Hanover R. (2000). Idiopathic <strong>in</strong>tracranial hypertension. Relationship to depression,<br />

anxiety, and quality of life. <strong>Neuro</strong>logy 54:319–324.<br />

Knight RS, Fielder AR, Firth JL. (1986). Benign <strong>in</strong>tracranial hypertension: visual loss and optic nerve sheath<br />

fenestration. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 49:243–250.<br />

Kollar C, Parker G, Johnston I. (2001). Endovascular treatment of cranial venous s<strong>in</strong>us obstruction result<strong>in</strong>g <strong>in</strong><br />

pseudotumor syndrome. Report of three cases. J <strong>Neuro</strong>surg 94:646–651.<br />

Kollar CD, Johnston IH. (1999). Pseudotumor cerebri after arteriovenous malformation embolization. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 67:249.<br />

Koller EA, Stadel BV, Malozowski SN. (1997). Papilledema <strong>in</strong> 15 renally compromised patients treated with<br />

growth hormone. Pediatr Nephrol 11:451–454.<br />

Koppel BS, Kaunitz AM, Tuchman AJ. (1990). Pseudotumor cerebri follow<strong>in</strong>g eclampsia. Eur <strong>Neuro</strong>l 30:6–8.<br />

Kosmorsky GS, Boyle KA. (1993). Relief of headache after ONSD. 19th annual meet<strong>in</strong>g of the North American<br />

<strong>Neuro</strong>-Ophthalmologic Society, Big Sky, Montana.<br />

Krasnitz I, Beiran I, Mezer E, Miller B. (1997). Coexistence of optic nerve head drusen and pseudotumor cerebri: a<br />

cl<strong>in</strong>ical dilemma. Eur J Ophthalmol 7:383–386.<br />

Krishna R, Kosmorsky GS, Wright KW. (1998). Pseudotumor cerebri s<strong>in</strong>e papilledema with unilateral sixth nerve<br />

palsy. J <strong>Neuro</strong>-ophthalmol 18:53–55.<br />

Kumar RK, Ghali M, Dragojevic F, Young F. (1999). Papilloedema secondary to acute purulent s<strong>in</strong>usitis. J Paedriatr<br />

Child Health 35:396–398.<br />

Kupersmith MJ, Gemell L, Turb<strong>in</strong> R, et al. (1997). Effect of weight loss on pseudotumor cerebri <strong>in</strong> women.<br />

<strong>Neuro</strong>logy 48(suppl):A386.<br />

Kupersmith MJ, Gamell L, Turb<strong>in</strong> R, et al. (1998). Effects of weight loss on the course of idiopathic <strong>in</strong>tracranial<br />

hypertension. <strong>Neuro</strong>logy 50:1094–1098.<br />

Kurz-Lev<strong>in</strong> MM, Landau K. (1999). A comparison of imag<strong>in</strong>g techniques for diagnos<strong>in</strong>g drusen of the optic nerve<br />

head. Arch Ophthalmol 117:1045–1049.<br />

Lam BL, Schatz NJ, Glaser JS, Bowen BC. (1992). Pseudotumor cerebri from cranial venous obstruction.<br />

Ophthalmology 99:706–712.<br />

Lam BL, Siatkowski RM, Fox GM, Glaser JS. (1992). Visual loss <strong>in</strong> pseudotumor cerebri from branch ret<strong>in</strong>al artery<br />

occlusion. Am J Ophthalmol 113:334–336.


Papilledema 161<br />

Lee AG. (1995). Fourth nerve palsy <strong>in</strong> pseudotumor cerebri. Strabismus 3:57–59.<br />

Lee AG. (1996). Visual loss as the manifest<strong>in</strong>g symptom of ventriculoperitoneal shunt malfunction. Am J<br />

Ophthalmol 122:127–129.<br />

Lee AG, Beaver HA, Monsul NT, Miller NR. (2002a). Acute bilateral optic disk edema with a macular star figure <strong>in</strong><br />

a 12-year-old girl. Surv Ophthalmol 47:42–49.<br />

Lee AG, Brazis PW. (2000). Magnetic resonance venography <strong>in</strong> idiopathic pseudotumor cerebri. J <strong>Neuro</strong>-ophthalmol<br />

20:12–13.<br />

Lee AG, Golnik K, Kardon R, et al. (2002b). Sleep apnea and <strong>in</strong>tracranial hypertension <strong>in</strong> men. Ophthalmology<br />

109:482–485.<br />

Lee AG, Kardon RH, Wall M, Schlechte J. (2002c). Endocr<strong>in</strong>ologic abnormalities <strong>in</strong> pseudotumor cerebri <strong>in</strong> men.<br />

Presented at the 28th annual meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society. Copper<br />

Mounta<strong>in</strong>, Colorado, February 9–14, 2002.<br />

Lee AG, Patr<strong>in</strong>ely JR, Edmond JC. (1998). Optic nerve sheath decompression <strong>in</strong> pediatric pseudotumor cerebri.<br />

Ophthalmic Surg Lasers 29:514–517.<br />

Leggio MG, Cappa A, Mol<strong>in</strong>ari M, et al. (1995). Pseudotumor cerebri as present<strong>in</strong>g syndrome of Addisonian crisis.<br />

Ital J <strong>Neuro</strong>l Sci 16:387–389.<br />

Leker RR, Ste<strong>in</strong>er I. (1998). <strong>An</strong>ticardiolip<strong>in</strong> antibodies are frequently present <strong>in</strong> patients with idiopathic<br />

<strong>in</strong>tracranial hypertension. Arch <strong>Neuro</strong>l 55:817–820.<br />

Lepore FE. (1992). Unilateral and highly asymmetric papilledema <strong>in</strong> pseudotumor cerebri. <strong>Neuro</strong>logy 42:676–678.<br />

Lessell S. (1992). Pediatric pseudotumor cerebri (idiopathic <strong>in</strong>tracranial hypertension). Surv Ophthalmol<br />

37:155–166.<br />

Lev<strong>in</strong>e SH, Puchalski C. (1990). Pseudotumor cerebri associated with lithium therapy <strong>in</strong> two patients. J Cl<strong>in</strong><br />

Psychiatry 51:251–253.<br />

Lewis PA, Kearrney PJ. (1997). Pseudotumor cerebri <strong>in</strong>duced by m<strong>in</strong>ocycl<strong>in</strong>e treatment for acne vulgaris. Acta<br />

Derm Venereol 77:83.<br />

Liu GT, Kay MD, Bienfang DC, Schatz NJ. (1994). Pseudotumor cerebri associated with corticosteroid withdrawal<br />

<strong>in</strong> <strong>in</strong>flammatory bowel disease. Am J Ophthalmol 15:352–357.<br />

Liu GT, Volpe NJ, Schatz NJ, Galetta SL, Farrar JT, Raps EC. (1996). Severe sudden visual loss caused by<br />

pseudotumor cerebri and lumboperitoneal shunt failure. Am J Ophthalmol 122:129–131.<br />

Lucidi V, Di Capua M, Rosati P, Papadatou B, Castro M. (1993). Benign <strong>in</strong>tracranial hypertension <strong>in</strong> an older child<br />

with cystic fibrosis. Pediatr <strong>Neuro</strong>l 9:494–495.<br />

Lundar T, Nornes H. (1990). Pseudotumor cerebri. <strong>Neuro</strong>surgical considerations. Acta <strong>Neuro</strong>chir 51:366–368.<br />

Mada Mohan P, Noushad TP, Sarita P, et al. (1993). Hypoparathyroidism with benign <strong>in</strong>tracranial hypertension.<br />

J Assoc Physicians India 41:752–753.<br />

Mahmoud HH, Hurwitz CA, Roberts WM, et al. (1993). Tret<strong>in</strong>o<strong>in</strong> toxicity <strong>in</strong> children with acute promyelocytic<br />

leukaemia. Lancet 342:1394–1395.<br />

Malozowski S, Tanner LA, Wysowski DK, et al. (1995). Benign <strong>in</strong>tracranial hypertension <strong>in</strong> children with growth<br />

hormone deficiency treated with growth hormone. J Pediatr 126:996–999.<br />

Maneatis T, Baptista J, Connelly K, Blethen S. (2000). Growth hormone safety update from the National<br />

Cooperative Growth Study. J Pediatr Endocr<strong>in</strong>ol 13(suppl 2):1035–1044.<br />

Manfre L, Lagalla R, Mangiameli A, et al. (1995). Idiopathic <strong>in</strong>tracranial hypertension: Orbital MRI. <strong>Neuro</strong>radiology<br />

37:459–461.<br />

Marcelis J, Silberste<strong>in</strong> SD. (1991). Idiopathic <strong>in</strong>tracranial hypertension without papilledema. Arch <strong>Neuro</strong>l<br />

48:392–399.<br />

Marcus DM, Lynn J, Miller JJ, et al. (2001). Sleep disorders: a risk factor for pseudotumor cerebri?<br />

J <strong>Neuro</strong>-<strong>ophthalmology</strong> 21:121–123.<br />

Mart<strong>in</strong> TJ, Bell DA, Wilson JA. (1998). Papilledema <strong>in</strong> a man with an ‘‘occult’’ dural arteriovenous malformation.<br />

J <strong>Neuro</strong>-ophthalmol 18:49–52.<br />

Mathew NT, Ravishankar K, San<strong>in</strong> LC. (1996). Coexistence of migra<strong>in</strong>e and idiopathic <strong>in</strong>tracranial hypertension<br />

without papilledema. <strong>Neuro</strong>logy 46:1226–1230.<br />

Mauriello JA, Shaderowfsky P, Gizzi M, Frohman L. (1995). Management of visual loss after optic nerve sheath<br />

decompression <strong>in</strong> patients with pseudotumor cerebri. Ophthalmology 102:441–445.<br />

Mayer Benegas N, Volpe NJ, Liu GT, Galetta SL. (1996). Hemifacial spasm and idiopathic <strong>in</strong>tracranial hypertension.<br />

J <strong>Neuro</strong>-ophthalmol 16:70.<br />

Mayer-Hubner B. (1996). Pseudotumor cerebri from <strong>in</strong>tranasal oxytoc<strong>in</strong> and excessive fluid <strong>in</strong>take. Lancet 347:623<br />

McDonnell GV, Patterson VH, McK<strong>in</strong>stry S. (1997). Cerebral venous thrombosis occurr<strong>in</strong>g dur<strong>in</strong>g an ectopic<br />

pregnancy and complicated by <strong>in</strong>tracranial hypertension. Br J Cl<strong>in</strong> Pract 51:194–197.


162 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

McLean C, Lobo R, Brazier OJ. (1998). Optic disc <strong>in</strong>volvement <strong>in</strong> hypocalcaemia with hypoparathyroidism:<br />

papilloedema or optic neuropathy? <strong>Neuro</strong>-<strong>ophthalmology</strong> 117–124.<br />

Midroni G, Dyck PJ. (1996). Chronic <strong>in</strong>flammatory demyel<strong>in</strong>at<strong>in</strong>g polyneuropathy: unusual cl<strong>in</strong>ical features and<br />

therapeutic responses. <strong>Neuro</strong>logy 46:1206–1212.<br />

Milhorat TH, Chou MW, Tr<strong>in</strong>idad EM, et al. (1999). Chiari I malformation redef<strong>in</strong>ed: cl<strong>in</strong>ical and radiographic<br />

f<strong>in</strong>d<strong>in</strong>gs for 354 symptomatic patients. <strong>Neuro</strong>surgery 44:1005–1017.<br />

Miller NR. (1997). Bilateral visual loss and simultagnosia after lumboperitoneal shunt for pseudotumor cerebri.<br />

J <strong>Neuro</strong>-ophthalmol 17:36–38.<br />

Misra M, Khan GM, Rath S. (1992). Eltrox<strong>in</strong> <strong>in</strong>duced pseudotumor cerebri—a case report. Indian J Ophthalmol 40:117.<br />

Mittra RA, Sergott RC, Flaharty PM, et al. (1993). Optic nerve decompression improves hemodynamic parameters<br />

<strong>in</strong> papilledema. Ophthalmology 100:987–997.<br />

Mokri B, Jack CR Jr, Petty GW. (1993). Pseudotumor syndrome associated with cerebral venous s<strong>in</strong>us occlusion<br />

and antiphospholipid antibodies. Stroke 24:469–472.<br />

Moodley M, Coovadia HM. (1990). Benign <strong>in</strong>tracranial hypertension <strong>in</strong> typhoid fever. A case report. South Afr Med<br />

J78:608–609.<br />

Morrison KE, Davies PTG. (1999). Chronic <strong>in</strong>flammatory demyel<strong>in</strong>at<strong>in</strong>g polyneuropathy present<strong>in</strong>g with headache<br />

and papilledema. Headache 39:299–300.<br />

Moskowitz Y, Leibowitz E, Ronen M, Aviel E. (1993). Pseudotumor cerebri <strong>in</strong>duced by vitam<strong>in</strong> A comb<strong>in</strong>ed with<br />

m<strong>in</strong>ocycl<strong>in</strong>e. <strong>An</strong>n Ophthalmol 25:306–308.<br />

Mukherjee A, Dutta P, Lahiri M, et al. (1990). Benign <strong>in</strong>tracranial hypertension after nalidixic acid overdose <strong>in</strong><br />

<strong>in</strong>fant. Lancet 335:1602.<br />

Naderi S, Nukala S, Marruenda F, et al. (1999). Pseudotumor cererbi <strong>in</strong> acute promyelocytic leukemia:<br />

improvement despite cont<strong>in</strong>ued ATRA therapy. <strong>An</strong>n Hematol 78:333–334.<br />

Nagamoto G, Smith WE. (1992). Benign <strong>in</strong>tracranial hypertension and chronic renal failure. Cleve Cl<strong>in</strong> J Med<br />

59:419–422.<br />

Nakamura N, Hara R, Kimura R, et al. (1999). Optic per<strong>in</strong>euritis not associated with syphilitic <strong>in</strong>fection.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 21:135–145.<br />

Nasr SZ, Schaffert D. (1995). Symptomatic <strong>in</strong>crease <strong>in</strong> <strong>in</strong>tracranial pressure follow<strong>in</strong>g pancreatic enzyme<br />

replacement therapy for cystic fibrosis. Pediatr Pulmonol 19:396–397.<br />

Newborg B. (1974). Pseudotumor cerebri treated with rice reduction diet. Arch Intern Med 133:802–807.<br />

Newman NJ, Sedwick LA, Boghen DR. (1994a). Bilateral visual loss and disc edema <strong>in</strong> a 15-year-old girl.<br />

Surv Ophthalmol 38:365–370.<br />

Newman NJ, Selzer KA, Bell RA. (1994b). Association of multiple sclerosis and <strong>in</strong>tracranial hypertension. J <strong>Neuro</strong><strong>ophthalmology</strong><br />

14:189–192.<br />

Nezu A, Kimura S, Osaka H. (1995). Tolosa-Hunt syndrome with pseudotumor cerebri. Report of an unusual case.<br />

Bra<strong>in</strong> Dev 17:216–218.<br />

Obeid T, Awada A, Huraib S, et al. (1997). Pseudotumor cerebri <strong>in</strong> renal transplant recipients: a diagnostic<br />

challenge. J Nephrol 10:258–260.<br />

O’Duffy D, James B, Elston J. (1998). Idiopathic <strong>in</strong>tracranial hypertension present<strong>in</strong>g with gaze-evoked amaurosis.<br />

Acta Ophthalmol Scand 76:119–120.<br />

O’Halloran HS, Berger JR, Baker RS, et al. (1999). Optic nerve edema as a consequence of respiratory disease.<br />

<strong>Neuro</strong>logy 53:2204–2205.<br />

Orefice G, De Joanna G, Coppola M, et al. (1995). Benign <strong>in</strong>tracranial hypertension: a non-thrombotic complication<br />

of the primary antiphospholipid syndrome? Lupus 4:324–326.<br />

Panozzo G, Babighian S, Bonora A. (1998). Association of xerophthalmia, flecked ret<strong>in</strong>a, and pseudotumor cerebri<br />

caused by hypovitam<strong>in</strong>osis A. Am J Ophthalmol 125:708–710.<br />

Parfitt VJ, Dearlove JC, Savage D, et al. (1994). Benign <strong>in</strong>tracranial hypertension after pituitary surgery for<br />

Cush<strong>in</strong>g’s disease. Postgrad Med J 70:115–117.<br />

Patton N, Beatty S, Lloyd IC. (2000). Bilateral sixth and fourth nerve palsies <strong>in</strong> idiopathic <strong>in</strong>tracranial<br />

hypertension. J R Soc Med 93:80–81.<br />

Pears J, Sandercock PA. (1990). Benign <strong>in</strong>tracranial hypertension associated with danazol. Scott Med J 35:49.<br />

Pearson PA, Baker RS, Khorram D, Smith TJ. (1991). Evaluation of optic nerve sheath fenestration <strong>in</strong> pseudotumor<br />

cerebri us<strong>in</strong>g automated perimetry. Ophthalmology 98:99–105.<br />

Pelton RW, Lee AG, Orengo-Nania SD, Patr<strong>in</strong>ely JR. (1999). Bilateral optic disk edema caused by sarcoidosis<br />

mimick<strong>in</strong>g pseudotumor cerebri. Am J Ophthalmol 127:229–230.<br />

Plotnik, JL, Kosmorsky, GS. (1993). Operative complications of optic nerve sheath decompression. Ophthalmology<br />

100:683–690.


Papilledema 163<br />

Prevett MC, Plant GT. (1997). Intracranial hypertension and HIV associated men<strong>in</strong>goradiculitis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 62:407–409.<br />

Provenzale JM, Barboriak DP, Ortel TL. (1998). Dural s<strong>in</strong>us thrombosis associated with activated prote<strong>in</strong> C<br />

resistance: MR imag<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs and proband identification. Am J Radiol 170:499–502.<br />

Purv<strong>in</strong> VA, Kawasaki A, Yee RD (2000). Papilledema and obstructive sleep apnea syndrome. Arch Ophthalmol<br />

118:1626–1630.<br />

Quattrone A, Bono F, Oliveri RL, et al. (2001). Cerebral venous thrombosis and isolated <strong>in</strong>tracranial hypertension<br />

without papilledema <strong>in</strong> CDH. <strong>Neuro</strong>logy 57:31–36.<br />

Raghavan S, DiMart<strong>in</strong>o-Nardi J, Saenger P, L<strong>in</strong>der B. (1997). Pseudotumor cerebri <strong>in</strong> an <strong>in</strong>fant after L-thyrox<strong>in</strong>e<br />

therapy for transient neonatal hypothyroidism. J Pediatr 130:478–480.<br />

Redwood MD, W<strong>in</strong>er JB, Rossor M. (1990). <strong>Neuro</strong>sarcoidosis present<strong>in</strong>g as benign <strong>in</strong>tracranial hypertension. Eur<br />

<strong>Neuro</strong>l 30:282–283.<br />

Radhakrishnan K, Ahlskog JE, Garrity JA, Kurland LT. (1994). Idiopathic <strong>in</strong>tracranial hypertension. Mayo Cl<strong>in</strong> Proc<br />

69:169–180.<br />

Radhakrishnan K, Ahlskog JE, Cross SA, Kurland LT, O’Fallon WM. (1993a). Idiopathic <strong>in</strong>tracranial<br />

hypertension (pseudotumor cerebri): descriptive epidemiology <strong>in</strong> Rochester, M<strong>in</strong>n, 1976 to 1990. Arch<br />

<strong>Neuro</strong>l 50:78–80.<br />

Radhakrishnan K, Thacker AK, Bohlaga NH, Maloo JC, Gerryo SE. (1993b). Epidemiology of idiopathic<br />

<strong>in</strong>tracranial hypertension: a prospective and case-control study. J <strong>Neuro</strong>l Sci 116:18–28.<br />

Rogers AH, Rogers GL, Bremer DL, McGregor ML (1999). Pseudotumor cerebri <strong>in</strong> children receiv<strong>in</strong>g recomb<strong>in</strong>ant<br />

human growth hormone. Ophthalmology 106:1186–1190.<br />

Rosenberg, ML, Corbett, JJ, Smith, C, et al. (1993). Cerebrosp<strong>in</strong>al fluid diversion procedures <strong>in</strong> pseudotumor<br />

cerebri. <strong>Neuro</strong>logy 43:1071–1072.<br />

Rosenfeld JV, Widaa HA, Adams CB. (1991). Cerebral arteriovenous malformation caus<strong>in</strong>g benign <strong>in</strong>tracranial<br />

hypertension - case report. <strong>Neuro</strong>l Med Chir 31:523–525.<br />

Rothermel H, Hedges TR 3rd, Steere AC (2001). Optic neuropathy <strong>in</strong> children with Lyme disease. Pediatrics<br />

108:477–481.<br />

Round R, Keane JR. (1988). The m<strong>in</strong>or symptoms of <strong>in</strong>creased <strong>in</strong>tracranial pressure: 101 patients with benign<br />

<strong>in</strong>tracranial hypertension. <strong>Neuro</strong>logy 38:1461–1464.<br />

Rowe FJ, Sarkies NJ. (1998). Assessment of visual function <strong>in</strong> idiopathic <strong>in</strong>tracranial hypertension: a prospective<br />

study. Eye 12:111–118.<br />

Sacchi S, Kantarjian HM, Freireich EJ, et al. (1999). Unexpected high <strong>in</strong>cidence of severe toxicities associated with<br />

alpha <strong>in</strong>terferon, low-dose cytos<strong>in</strong>e arab<strong>in</strong>oside and all-trans ret<strong>in</strong>oic acid <strong>in</strong> patients with chronic<br />

myelogenous leukemia. Leuk Lymphoma 35:483–489.<br />

Sadun AA, Currie JN, Lessell S. (1984). Transient visual obscurations with elevated discs. <strong>An</strong>n <strong>Neuro</strong>l 16:489–494.<br />

Saito J, Kami M, Taniguchi F, et al. (1999). Case report. Unilateral papilledema after bone marrow transplantation.<br />

Bone Marrow Transplant 23:963–965.<br />

Saitoh S, Momoi MY, Gunji Y. (2000). Pseudotumor cerebri manifest<strong>in</strong>g as a symptom of acute promyelocytic<br />

leukemia. Pediatr Int 42:97–99.<br />

Sakamaki Y, Nakamura R, Uchida M, et al. (1990). A case of pseudotumor cerebri follow<strong>in</strong>g glucocorticoid<br />

therapy <strong>in</strong> which warfar<strong>in</strong> prevented recurrence. Jpn J Med 29:566–570.<br />

Salaria M, Poddar B, Parmar V. (2001). Rickets present<strong>in</strong>g as pseudotumor cerebri and seizures. Indian J Pediatr<br />

68:181.<br />

Salgarello T, Tamburrelli C, Fals<strong>in</strong>i B, et al. (1996). Optic nerve diameters and perimetric thresholds <strong>in</strong> idiopathic<br />

<strong>in</strong>tracranial hypertension. Br J Ophthalmol 80:509–514.<br />

Sant<strong>in</strong>elli R, Tolone C, Toraldo R, et al. (1998). Familial idiopathic <strong>in</strong>tracranial hypertension with sp<strong>in</strong>al and<br />

radicular pa<strong>in</strong>. Arch <strong>Neuro</strong>l 55:854–856.<br />

Schoeman JF. (1994). Childhood pseudotumor cerebri: cl<strong>in</strong>ical and <strong>in</strong>tracranial pressure response to acetazolamide<br />

and furosemide treatment <strong>in</strong> a case series. J Child <strong>Neuro</strong>l 9:130–134.<br />

Schroeter T, Lanvers C, Herd<strong>in</strong>g H, Suttorp M. (2000). Pseudotumor cerebri <strong>in</strong>duced by all-trans-ret<strong>in</strong>oic acid <strong>in</strong> a<br />

child treated for acute promyelocytic leukemia. Med Pediatr Oncol 34:284–286.<br />

Schwarz S, Husstedt IW, Georgiadis D, et al. (1995). Benign <strong>in</strong>tracranial hypertension <strong>in</strong> an HIV-<strong>in</strong>fected patient:<br />

headache as the only present<strong>in</strong>g sign. AIDS 9:657–658.<br />

Scott IU, Siatkowski RM, Eneyni M, Brodsky MC, Lam BL. (1997). Idiopathic <strong>in</strong>tracranial hypertension <strong>in</strong> children<br />

and adolescents. Am J Ophthalmol 124:253–255.<br />

Selhorst JB, Kulkantrakorn K, Corbett JJ, et al. (2000). Ret<strong>in</strong>ol-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> <strong>in</strong> idiopathic <strong>in</strong>tracranial<br />

hypertension (IIH). J <strong>Neuro</strong>-ophthalmol 20:250–252.<br />

Selky AK, Dobyns WB, Yee RD. (1994a). Idiopathic <strong>in</strong>tracranial hypertension and facial diplegia. <strong>Neuro</strong>logy 44:457.


164 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Selky AK, Purv<strong>in</strong> VA. (1994b). Hemifacial spasm. <strong>An</strong> unusual manifestation of idiopathic <strong>in</strong>tracranial hypertension.<br />

J <strong>Neuro</strong>-ophthalmol 14:196–198.<br />

Sell JJ, Ruppe FW, Orrison WW Jr. (1995). Iatrogenically <strong>in</strong>duced <strong>in</strong>tracranial hypotension syndrome. Am J Radiol<br />

165:1513–1515.<br />

Selleri C, Pane F, Notaro R, et al. (1996). All-trans-ret<strong>in</strong>oic acid (ATRA) responsive sk<strong>in</strong> relapses of acute<br />

promyelocytic leukaemia followed by ATRA-<strong>in</strong>duced pseudotumor cerebri. Br J Haematol 92:937–940.<br />

Sergott RC, Sav<strong>in</strong>o PJ, Bosley TM. (1988). Optic nerve sheath decompression provides long-term visual<br />

improvement for pseudotumor cerebri. Arch Ophthalmol 106:1384–1390.<br />

Shapiro S, Yee R, Brown H. (1995). Surgical management of pseudotumor cerebri <strong>in</strong> pregnancy: case report.<br />

<strong>Neuro</strong>surgery 37:829–831.<br />

Sharieff GQ, Hanten K. (1996). Pseudotumor cerebri and hypercalcemia result<strong>in</strong>g from vitam<strong>in</strong> A toxicity.<br />

<strong>An</strong>n Emerg Med 27:518–521.<br />

Sheridan M, Johnston I. (1994). Hydrocephalus and pseudotumor cerebri <strong>in</strong> the mucopolysaccharidoses. Childs<br />

Nerv Syst 10:148–150.<br />

Sherman MD, Own KH. (1999). Interstitial nephritis and uveitis present<strong>in</strong>g with bilateral optic disk edema. Am J<br />

Ophthalmol 127:609–610.<br />

Sheth KJ, Kivl<strong>in</strong> JD, Leichter HE, et al. (1994). Pseudotumor cerebri with vision impairment <strong>in</strong> two children with<br />

renal transplantation. Pediatr Nephrol 8:91–93.<br />

Siatkowski RM, Vilar NF, Sternau L, Co<strong>in</strong> CG. (1999). Bl<strong>in</strong>dness from bad bones. Surv Ophthalmol 43:487–490.<br />

Sirdofsky M, Kattah J, Macedo P. (1994). Intracranial hypertension <strong>in</strong> a diet<strong>in</strong>g patient. J <strong>Neuro</strong>-ophthalmol 14:9–11.<br />

Sismanis A, Butts FM, Hughes GB. (1990). Objective t<strong>in</strong>nitus <strong>in</strong> benign <strong>in</strong>tracranial hypertension. <strong>An</strong> update.<br />

Laryngoscope 100:33–36.<br />

Smith KH, Wilk<strong>in</strong>son JT, Br<strong>in</strong>dley GO. (1992). Comb<strong>in</strong>ed third and sixth nerve paresis follow<strong>in</strong>g optic nerve<br />

sheath fenestration. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:85–87.<br />

Soler D, Cox T, Bullock P, et al. (1998). Diagnosis and management of benign <strong>in</strong>tracranial hypertension. Arch Dis<br />

Child 78:89–94.<br />

Speer C, Pearlman J, Phillips PH, et al. (1999). Fourth nerve palsy <strong>in</strong> pediatric pseudotumor cerebri. Am J<br />

Ophthalmol 127:236–237.<br />

Spoor TC, McHenry JG. (1993). Long-term effectiveness of optic nerve sheath decompression for pseudotumor<br />

cerebri. Arch Ophthalmol 111:632–635.<br />

Spoor TC, McHenry JG, Sh<strong>in</strong> DH. (1995). Long-term results us<strong>in</strong>g adjunctive mitomyc<strong>in</strong> C <strong>in</strong> optic nerve sheath<br />

decompression for pseudotumor cerebri. Ophthalmology 102:2024–2028.<br />

Spoor TC, Ramocki JM, Madison MP, et al. (1991). Treatment of pseudotumor cerebri by primary and secondary<br />

optic nerve sheath decompression. Am J Ophthalmol 112:177–185.<br />

Stavroua P, Honan WP. (1997). Contrast sensitivity <strong>in</strong> benign <strong>in</strong>tracranial hypertension. <strong>Neuro</strong>-<strong>ophthalmology</strong><br />

17:127–134.<br />

Strom<strong>in</strong>ger MB, Weiss GB, Mehler MF. (1992). Asymptomatic unilateral papilledema <strong>in</strong> pseudotumor cerebri. J<br />

Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:238–241.<br />

Sugerman HJ, DeMaria EJ, Felton WL, et al. (1997). Increased <strong>in</strong>tra-abdom<strong>in</strong>al pressure and cardiac fill<strong>in</strong>g<br />

pressure <strong>in</strong> obesity-associated pseudotumor cerebri. <strong>Neuro</strong>logy 49:507–511.<br />

Sugerman HJ, Felton WL 3rd, Salvant JB Jr, et al. (1995). Effects of surgically <strong>in</strong>duced weight loss on idiopathic<br />

<strong>in</strong>tracranial hypertension <strong>in</strong> morbid obesity. <strong>Neuro</strong>logy 45:1655–1659.<br />

Sugerman HJ, Felton WL 3rd, Sismanis A, et al. (1999). Gastric surgery for pseudotumor cerebri associated with<br />

severe obesity. <strong>An</strong>n Surg 229:634–640.<br />

Sullivan HC. (1991). Fatal tonsillar herniation <strong>in</strong> pseudotumor cerebri. <strong>Neuro</strong>logy 41:1142–1144.<br />

Sussman J, Leach M, Greaves M, et al. (1997). Potentially prothrombotic abnormalities of coagulation <strong>in</strong> benign<br />

<strong>in</strong>tracranial hypertension. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 62:229–233.<br />

Suzuki H, Takanashi J, Kobayashi K, et al (2001). MR imag<strong>in</strong>g of idiopathic <strong>in</strong>tracranial hypertension. AJNR<br />

22:196–199.<br />

Talks SJ, Mossa F, Elston JS. (1998). The contribution of macular changes to visual loss <strong>in</strong> benign <strong>in</strong>tracranial<br />

hypertension. Eye 12:806–808.<br />

Teh<strong>in</strong>drazanarivelo A, Bousser MG. (1990). Possible benign <strong>in</strong>tracranial hypertension and essential thrombocythaemia.<br />

J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 53:819.<br />

Teh<strong>in</strong>drazanarivelo A, Evard S, Schaison M, et al. (1992). Prospective study of cerebral s<strong>in</strong>us venous thrombosis <strong>in</strong><br />

patients present<strong>in</strong>g with benign <strong>in</strong>tracranial hypertension. Cerebrovasc Dis 2:22–27.<br />

Thomas DA, Trobe JD, Cornblath WT. (1999). Visual loss secondary to <strong>in</strong>creased <strong>in</strong>tracranial pressure <strong>in</strong><br />

neurofibromatosis type 2. Arch Ophthalmol 117:1650–1653.<br />

To KW, Warren FA. (1990). Unilateral papilledema <strong>in</strong> pseudotumor cerebri. Arch Ophthalmol 108:644–645.


Papilledema 165<br />

Torres M, May E, Watanabe F, et al. (1997). Intracranial hypertension associated with m<strong>in</strong>ocycl<strong>in</strong>e. Presented at the<br />

23rd <strong>An</strong>nual Meet<strong>in</strong>g of the North American <strong>Neuro</strong> Ophthalmology Society, Keystone, Colorado, February<br />

9–13.<br />

Tourn N, Sharpe JA. (1996). Pseudotumor cerebri mimick<strong>in</strong>g Foster Kennedy syndrome. <strong>Neuro</strong>-<strong>ophthalmology</strong><br />

16:55–57.<br />

Travero F, Stagnaro R, Fazio B. (1993). Benign <strong>in</strong>tracranial hypertension with HIV <strong>in</strong>fection. Eur <strong>Neuro</strong>l 33:191–192.<br />

Tugal O, Jacobson R, Berez<strong>in</strong> S, et al. (1994). Recurrent benign <strong>in</strong>tracranial hypertension due to iron deficiency<br />

anemia. Case report and review of the literature. Am J Pediatr Hematol Oncol 16:266–270.<br />

Tulipan N, Lav<strong>in</strong> PJ, Copeland M. (1998). Stereotactic ventriculoperitoneal shunt for idiopathic <strong>in</strong>tracranial<br />

hypertension: technical note. <strong>Neuro</strong>surgery 43:175–176.<br />

Vachvanichsanong P, Dissaneewate P, Vasikananont P. (1992). Pseudotumor cerebri <strong>in</strong> a boy with systemic lupus<br />

erythematosus. Am J Dis Child 146:1417–1419.<br />

Van den Br<strong>in</strong>k WA, Pieterman H, Avezaat CJ. (1996). Sagittal s<strong>in</strong>us occlusion, caused by an overly<strong>in</strong>g depressed<br />

cranial fracture, present<strong>in</strong>g with late signs and symptoms of <strong>in</strong>tracranial hypertension: case report.<br />

<strong>Neuro</strong>surgery 38:1044–1046.<br />

Van Gelder T, van Gemert HM, Tjiong HL. (1991). A patient with megaloblastic anaemia and idiopathic<br />

<strong>in</strong>tracranial hypertension. Case history. Cl<strong>in</strong> <strong>Neuro</strong>l <strong>Neuro</strong>surg 93:321–322.<br />

Varadi G, Lossos A, Or R, et al. (1995). Successful allogenic bone marrow transplantation <strong>in</strong> a patient with<br />

ATRA-<strong>in</strong>duced pseudotumor cerebri. Am J Hematol 50:147–148.<br />

Vargas JA, Garcia-Mer<strong>in</strong>o A, Rodriguez E, Villagra A. (1990). Pseudotumor cerebri complicat<strong>in</strong>g typhoid fever.<br />

Eur <strong>Neuro</strong>l 30:345–346.<br />

Verderber L, Lav<strong>in</strong> P, Wesley R. (1991). Pseudotumor cerebri and chronic benzene hexacloride (l<strong>in</strong>dane) exposure.<br />

J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 54:113.<br />

Verm A, Lee AG. (1997). Bilateral optic disk edema with macular exudates as the manifest<strong>in</strong>g sign of a cerebral<br />

arteriovenous malformation. Am J Ophthalmol 123:422–424.<br />

Visani G, Bontempo G, Manfroi S, et al. (1996). All-trans-ret<strong>in</strong>oic acid and pseudotumor cerebri <strong>in</strong> a young adult<br />

with acute promyelocytic leukemia: a possible disease association. Haematologica 81:152–154.<br />

Walker RWH. (2001). Idiopathic <strong>in</strong>tracranial hypertension: any light on the mechanism of the raised pressure?<br />

J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 71:1–5.<br />

Wall M. (1990). The headache profile of idiopathic <strong>in</strong>tracranial hypertension. Cephalgia 10:331–335.<br />

Wall M. (2000). Idiopathic <strong>in</strong>tracranial hypertension: mechanisms of visual loss and disease management.<br />

Sem<strong>in</strong> <strong>Neuro</strong>l 20:89–95.<br />

Wall M, Breen L, W<strong>in</strong>terkorn J. (1995a). Optic disk edema with cotton-wool spots. Surv Ophthalmol 39:502–508.<br />

Wall M, George D. (1987). Visual loss <strong>in</strong> pseudotumor cerebri. Incidence and defects related to visual field<br />

strategy. Arch <strong>Neuro</strong>l 44:170–175.<br />

Wall M, George D. (1991). Idiopathic <strong>in</strong>tracranial hypertension. A prospective study of 50 patients. Bra<strong>in</strong><br />

114:155–180.<br />

Wall M, Montgomery EB. (1995b). Us<strong>in</strong>g motion perimetry to detect visual field defects <strong>in</strong> patients with idiopathic<br />

<strong>in</strong>tracranial hypertension: a comparison with conventional automated perimetry. <strong>Neuro</strong>logy 45:1169–1175.<br />

Wall M, White WN 2nd. (1998). Asymmetric papilledema <strong>in</strong> idiopathic <strong>in</strong>tracranial hypertension: prospective<br />

<strong>in</strong>terocular comparison of sensory visual function. Invest Ophthalmol Vis Sci 39:134–142.<br />

Wang S-J, Silberste<strong>in</strong> SD, Patterson S, Young WB. (1996). Idiopathic <strong>in</strong>tracranial hypertension without papilledema.<br />

A case-control study <strong>in</strong> a headache center. <strong>Neuro</strong>logy 51:245–249.<br />

Wasan H, Mansi JL, Benjam<strong>in</strong> S, et al. (1992). Myeloma and benign <strong>in</strong>tracranial hypertension. Br Med J 304:685.<br />

Watnick RL, Trobe JD. (1989). Bilateral optic nerve compression as a mechanism for the Foster-Kennedy<br />

syndrome. Ophthalmology 96:1793–1798.<br />

Weiss GB, Bajwa ZH, Mehler MF. (1991). Co-occurrence of pseudotumor cerebri and Guilla<strong>in</strong>-Barré syndrome <strong>in</strong><br />

an adult. <strong>Neuro</strong>logy 41:603–604.<br />

W<strong>in</strong>row AP, Supramaniam G. (1990). Benign <strong>in</strong>tracranial hypertension after ciprofloxac<strong>in</strong> adm<strong>in</strong>istration. Arch Dis<br />

Child 65:1165–1166.<br />

Wol<strong>in</strong> MJ, Brannon WL. (1995). Disk edema <strong>in</strong> an overweight woman. Surv Ophthalmol 39:307–314.<br />

Wong VA, Wade NK. (1998). POEMS syndrome: an unusual cause of bilateral disk swell<strong>in</strong>g. Am J Ophthalmol<br />

126:452–454.<br />

Yokokura M, Hatake K, Komatsu N, et al. (1994). Toxicity of tret<strong>in</strong>o<strong>in</strong> <strong>in</strong> acute promyelocytic leukaemia. Lancet<br />

343:361–362.


This page <strong>in</strong>tentionally left blank


8 r<br />

Transient Visual Loss<br />

What Questions Should Be Asked of a Patient<br />

with Transient Visual Loss?<br />

The most important questions that need to be addressed <strong>in</strong> the assessment of the patient<br />

with transient visual loss (TVL) <strong>in</strong>clude the follow<strong>in</strong>g:<br />

1. Is the visual loss monocular or b<strong>in</strong>ocular? Monocular TVL implies disease of the eye,<br />

ret<strong>in</strong>a, optic nerve, orbit, circulation to the eye (e.g., heart, aorta, carotid artery,<br />

ophthalmic artery, central ret<strong>in</strong>al artery), or migra<strong>in</strong>e. B<strong>in</strong>ocular TVL implies bilateral<br />

eye disease, disease affect<strong>in</strong>g the circulation to both eyes (e.g., bilateral carotid<br />

stenosis), <strong>in</strong>creased <strong>in</strong>tracranial pressure with papilledema, vertebrobasilar ischemia<br />

or <strong>in</strong>sufficiency, or migra<strong>in</strong>e.<br />

2. What is the temporal profile of the transient loss of vision? For example, TVL <strong>in</strong> one<br />

eye last<strong>in</strong>g seconds is characteristic of transient obscurations of vision result<strong>in</strong>g from<br />

optic nerve ischemia or papilledema. Monocular TVL last<strong>in</strong>g 2 to 30 m<strong>in</strong>utes is<br />

characteristic of TVL associated with carotid artery disease.<br />

3. What are the precipitants of the visual loss? For example, patients with an<br />

<strong>in</strong>traorbital mass may develop TVL only <strong>in</strong> certa<strong>in</strong> eye positions due to the mass<br />

compress<strong>in</strong>g the ipsilateral optic nerve or optic nerve circulation (gaze-evoked<br />

amaurosis). Monocular or b<strong>in</strong>ocular TVL due to carotid disease may occur follow<strong>in</strong>g<br />

exposure to bright light.<br />

4. Are optic nerve or ret<strong>in</strong>al vessel abnormalities evident on funduscopic exam<strong>in</strong>ation?<br />

For example, the fundus exam may reveal papilledema <strong>in</strong> transient obscurations<br />

of vision, ret<strong>in</strong>al emboli <strong>in</strong> carotid or cardiac disease, and disc anomalies <strong>in</strong><br />

monocular TVL.<br />

This chapter discusses various entities that may cause monocular or b<strong>in</strong>ocular TVL.<br />

Approaches to patients with monocular and b<strong>in</strong>ocular transient visual loss are given <strong>in</strong><br />

Figures 8–1 and 8–2, respectively.<br />

167


168 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 8–1. Evaluation of monocular transient visual loss (TVL).<br />

Does Monocular TVL Occur Only <strong>in</strong> Certa<strong>in</strong><br />

Positions of Gaze (Gaze-Evoked TVL)?<br />

Patients who experience TVL evoked by eccentric position of gaze (gaze-evoked TVL)<br />

usually have an <strong>in</strong>traorbital mass that <strong>in</strong>termittently compresses the circulation to the<br />

optic nerve or ret<strong>in</strong>a (Bremner, 1999; Danish-Meyer, 2001; Knapp, 1992; Kohmoto, 1993;<br />

Mezer, 1997; Smith, 1998). The visual loss immediately clears when the direction of gaze<br />

is changed. The most common lesions are orbital cavernous hemangiomas or optic<br />

nerve sheath men<strong>in</strong>giomas. Other orbital lesions produc<strong>in</strong>g this sign <strong>in</strong>clude osteomas,<br />

neurofibromas, gliomas, medial rectus granular myoblastoma, metastases, varices,<br />

orbital trauma, thyroid eye disease, and <strong>in</strong>traocular foreign body (buckshot pellet).<br />

The exam<strong>in</strong>ation may be normal or show evidence of an optic neuropathy with an<br />

afferent pupil defect, color vision impairment, disc edema, and optociliary collateral<br />

vessels. Other signs of orbital tumor, such as proptosis, limitation of extraocular muscle


Figure 8–2. Evaluation of b<strong>in</strong>ocular transient visual loss (TVL).<br />

Transient Visual Loss 169


170 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 8–2. (cont<strong>in</strong>ued )<br />

movement, swell<strong>in</strong>g of the eyelids, chemosis, and conjunctival congestion, may be<br />

evident. Evaluation requires magnetic resonance imag<strong>in</strong>g (MRI) or computed tomography<br />

(CT) scans of the orbital structures. Intermittent visual loss and exophthalmos<br />

may occur with bend<strong>in</strong>g over or the Valsalva maneuver (Sobottka Ventura, 2001). Gazeevoked<br />

monocular TVL has also been noted <strong>in</strong> patients with pseudotumor cerebri


(O’Duffy, 1998). It has been hypothesized that <strong>in</strong> an eccentric position of gaze, ischemic<br />

compression of a tense dilated optic nerve sheath results <strong>in</strong> elevation of <strong>in</strong>trasheath<br />

pressure compromis<strong>in</strong>g blood flow to the ret<strong>in</strong>a or optic nerve (Miller, 1991; O’Duffy,<br />

1998).<br />

Does the Visual Loss Occur After Prolonged<br />

Read<strong>in</strong>g (Read<strong>in</strong>g-Evoked TVL)?<br />

Read<strong>in</strong>g may also <strong>in</strong>duce monocular TVL. Manor et al described a 49-year-old man with<br />

a 5-year history of dimm<strong>in</strong>g of central vision <strong>in</strong> the left eye provoked only dur<strong>in</strong>g<br />

read<strong>in</strong>g (Manor, 1996). <strong>An</strong> orbital apex tumor situated lateral to and above the optic<br />

nerve was found. This read<strong>in</strong>g-evoked visual dimm<strong>in</strong>g may be a variant of gaze-evoked<br />

TVL. The optic nerve, displaced laterally and superiorly and stretched by the act of<br />

read<strong>in</strong>g, may have been compressed between the tumor and the contracted <strong>in</strong>ferior<br />

rectus muscle. Thus, orbital neuroimag<strong>in</strong>g is appropriate <strong>in</strong> patients with read<strong>in</strong>g<strong>in</strong>duced<br />

TVL.<br />

Intermittent angle closure glaucoma may cause TVL, and read<strong>in</strong>g-<strong>in</strong>duced TVL has<br />

been reported <strong>in</strong> one case. O’Sullivan et al described a 66-year-old patient with episodes<br />

of monocular TVL last<strong>in</strong>g 3 m<strong>in</strong>utes to several hours that were precipitated by read<strong>in</strong>g,<br />

writ<strong>in</strong>g, or watch<strong>in</strong>g television (O’Sullivan, 1995). Ophthalmologic exam was normal<br />

but read<strong>in</strong>g over 4 hours <strong>in</strong>duced corneal edema, a poorly reactive semidilated pupil,<br />

and a shallow anterior chamber with <strong>in</strong>traocular pressure of 50 mm Hg. The <strong>in</strong>termittent<br />

angle closure glaucoma and the patient’s symptoms were treated successfully<br />

by iridotomies.<br />

Do the Episodes of Monocular TVL Last<br />

Seconds?<br />

Transient Visual Loss 171<br />

Episodes of TVL last<strong>in</strong>g less than 60 seconds may occur <strong>in</strong> patients with papilledema<br />

(Wall, 1991). These transient obscurations of vision may occur <strong>in</strong> one or both eyes<br />

(<strong>in</strong>dividually or simultaneously) and typically last only a few seconds, though <strong>in</strong> rare<br />

cases they may last for hours. The episodes may be precipitated by changes <strong>in</strong> position,<br />

and are thought to be related to the effects of <strong>in</strong>creased <strong>in</strong>tracranial pressure on the flow<br />

of blood to the eye, perhaps where the central ret<strong>in</strong>al artery penetrates the optic nerve<br />

sheath to enter the substance of the nerve (Miller, 1991). Similar monocular TVL last<strong>in</strong>g<br />

seconds may occur <strong>in</strong> optic nerve sheath men<strong>in</strong>giomas unrelated to <strong>in</strong>creased <strong>in</strong>tracranial<br />

pressure. The pathogenesis of these episodes <strong>in</strong> men<strong>in</strong>gioma is unknown and<br />

may be caused by the effect of the men<strong>in</strong>gioma on the central ret<strong>in</strong>al artery where it<br />

enters the optic nerve (Miller, 1991). Transient obscurations of vision may also occur <strong>in</strong><br />

an eye with congenital abnormalities of the optic disc, such as peripapillary staphyloma<br />

(see below), or optic disc drusen. A case of ice-pick headaches associated with<br />

monocular visual loss with sc<strong>in</strong>tillat<strong>in</strong>g scotoma last<strong>in</strong>g seconds has been described<br />

<strong>in</strong> a patient with a history of migra<strong>in</strong>e with visual aura (Ammache, 2000). The patient<br />

was treated with oxygen <strong>in</strong>halation and <strong>in</strong>domethac<strong>in</strong> with complete resolution of the<br />

symptoms. F<strong>in</strong>ally, carotid atherosclerotic disease may rarely cause very brief episodes


172 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

of transient visual loss, but more often attacks of TVL with carotid disease last 2 to 15<br />

m<strong>in</strong>utes (see below).<br />

Patients with transient visual obscurations first require ophthalmologic exam<strong>in</strong>ation.<br />

If papilledema is evident (Chapter 7), these patients must have an MRI scan of the bra<strong>in</strong>.<br />

If this study is normal, a sp<strong>in</strong>al tap is <strong>in</strong>dicated to <strong>in</strong>vestigate the possibility of <strong>in</strong>fection<br />

or pseudotumor cerebri (idiopathic <strong>in</strong>tracranial hypertension). Patients with drusen or<br />

other optic disc anomalies caus<strong>in</strong>g monocular TVL may require no further evaluation. If<br />

there are signs of an optic neuropathy on the side of the TVL (e.g., relative afferent<br />

pupillary defect, ipsilateral swollen or atrophic optic nerve, etc.), then MRI with<br />

attention to the orbit is warranted to evaluate a compressive lesion. Patients without<br />

apparent disc abnormalities should be screened for carotid atherosclerotic disease or<br />

other sources of emboli (see below). In selected cases, MRI should be performed to<br />

<strong>in</strong>vestigate the possibility of a structural bra<strong>in</strong> lesion such as optic nerve sheath<br />

men<strong>in</strong>gioma.<br />

Do the Episodes of Monocular TVL Last<br />

M<strong>in</strong>utes?<br />

Monocular TVL last<strong>in</strong>g 5 to 60 m<strong>in</strong>utes (usually 2 to 30 m<strong>in</strong>utes) is strongly suggestive<br />

of thromboembolic disease. Ret<strong>in</strong>al emboli may arise from the aorta (Romano, 1998), the<br />

carotid artery, or the heart. Patients often describe the TVL as a veil or shade descend<strong>in</strong>g<br />

or ascend<strong>in</strong>g over a portion of their visual field. Other patients compla<strong>in</strong> of patchy<br />

visual loss (‘‘Swiss cheese’’ pattern) or peripheral constriction with central visual<br />

spar<strong>in</strong>g (Bruno, 1990). Some episodes of monocular TVL are accompanied by a<br />

sensation of color or other photopsias. These may superficially be similar to migra<strong>in</strong>e,<br />

consist<strong>in</strong>g of showers of stationary flecks of light that disperse quickly (Bruno, 1990;<br />

Goodw<strong>in</strong>, 1987; Pess<strong>in</strong>, 1977). Most episodes of embolic monocular TVL last 2 to 30<br />

m<strong>in</strong>utes. Marshall and Meadows found that <strong>in</strong> 51 of 67 patients (76%) episodes lasted 30<br />

m<strong>in</strong>utes or less, with 29 patients (43%) experienc<strong>in</strong>g episodes last<strong>in</strong>g 5 m<strong>in</strong>utes or less<br />

(Marshall, 1968). Pess<strong>in</strong> et al noted that attacks lasted less than 15 m<strong>in</strong>utes <strong>in</strong> 30 of 33<br />

patients, and <strong>in</strong> 14 patients (42%) the episodes lasted 5 m<strong>in</strong>utes or less (Pess<strong>in</strong>, 1977).<br />

Among 35 patients evaluated by Goodw<strong>in</strong> et al, 22 patients (63%) had attacks last<strong>in</strong>g 5<br />

m<strong>in</strong>utes or less, 8 (23%) had episodes last<strong>in</strong>g 6 to 15 m<strong>in</strong>utes, and 6 patients (17%) had<br />

episodes last<strong>in</strong>g more than 15 m<strong>in</strong>utes (Goodw<strong>in</strong>, 1987). Episodes of monocular TVL<br />

due to thromboembolic disease rarely last several hours.<br />

Patients with thromboembolic disease may demonstrate emboli with<strong>in</strong> the ret<strong>in</strong>al<br />

vessels. Emboli may be composed of clotted blood, fibr<strong>in</strong>, platelets, atheromatous tissue,<br />

white cells, calcium, <strong>in</strong>fectious organisms (septic emboli), air, fat, tumor cells, amniotic<br />

fluid, or foreign materials (e.g., talc, artificial valve material, catheters, silicone,<br />

cornstarch, mercury, corticosteroids). The most common types of emboli seen <strong>in</strong><br />

atherosclerotic disease of the aorta=carotid arteries or cardiac disease <strong>in</strong>clude the<br />

follow<strong>in</strong>g:<br />

1. Cholesterol emboli (Hollenhorst plaques) are bright, glisten<strong>in</strong>g, yellow or coppercolored<br />

fragments, most often seen <strong>in</strong> peripheral arterioles <strong>in</strong> the temporal fundus.<br />

These emboli most often arise from atheromatous plaques <strong>in</strong> the aorta or carotid<br />

bifurcation.


Transient Visual Loss 173<br />

2. Platelet-fibr<strong>in</strong> emboli are dull, white, gray, often elongated, and subject to fragmentation<br />

and distal movement. These emboli most often lodge at bifurcations of ret<strong>in</strong>al<br />

vessels and arise from the walls of atherosclerotic arteries or from the heart,<br />

especially from heart valves. They may also be seen <strong>in</strong> coagulopathies.<br />

3. Calcific emboli tend to be large, ovoid or rectangular, and chalky-white. These emboli<br />

often occur over or adjacent to the optic disc. They usually arise from cardiac (aortic<br />

or mitral) valves and less often from the aorta or carotid artery. Unlike cholesterol<br />

emboli, which often disappear <strong>in</strong> a few days, calcific emboli may rema<strong>in</strong> permanently<br />

visible.<br />

Sharma et al found the sensitivity and specificity of visible ret<strong>in</strong>al emboli for the<br />

detection of hemodynamically significant (def<strong>in</strong>ed as greater than or equal to 60%)<br />

carotid stenosis to be 39% and 68%, respectively, <strong>in</strong> patients with acute ret<strong>in</strong>al artery<br />

occlusion (Sharma, 1998). The presence of a visible embolus generated a likelihood ratio<br />

of 1.24, whereas the absence of a visible embolus generated a likelihood of 0.88. The<br />

authors concluded that the presence of a visible embolus is a poor diagnostic test for<br />

the detection of hemodynamically significant carotid artery stenosis <strong>in</strong> the sett<strong>in</strong>g of<br />

acute ret<strong>in</strong>al artery occlusion. Kle<strong>in</strong> et al described the prevalence at basel<strong>in</strong>e and the<br />

5-year <strong>in</strong>cidence of ret<strong>in</strong>al emboli <strong>in</strong> the Beaver Dam Study. They reported the<br />

associated risk factors, the relationship of ret<strong>in</strong>al emboli at basel<strong>in</strong>e to stroke, and<br />

ischemic heart disease mortality <strong>in</strong> these patients. The study consisted of 4,926 patients,<br />

aged 43 to 86 years at basel<strong>in</strong>e (Kle<strong>in</strong>, 1999). The prevalence of ret<strong>in</strong>al emboli at basel<strong>in</strong>e<br />

was 1.3% and the 5-year <strong>in</strong>cidence was 0.9%. The prevalence of ret<strong>in</strong>al emboli was<br />

associated with high pulse pressure, hypertension, diabetes mellitus, past and current<br />

smok<strong>in</strong>g, cardiovascular disease, and the presence of ret<strong>in</strong>opathy. Patients with ret<strong>in</strong>al<br />

emboli had a significantly higher risk of dy<strong>in</strong>g with stroke than those without ret<strong>in</strong>al<br />

emboli.<br />

TVL may also occur from ocular hypoperfusion rather than embolization. In some<br />

patients, monocular TVL may occur when the patient is exposed to bright light. These<br />

patients usually have severe, ipsilateral carotid occlusive disease. Bilateral, simultaneous<br />

TVL <strong>in</strong>duced by exposure to bright light may rarely occur with bilateral severe<br />

carotid stenosis or occlusion (Kaiboriboon, 2001). The light-<strong>in</strong>duced TVL probably<br />

reflects the <strong>in</strong>ability of a borderl<strong>in</strong>e ocular circulation to susta<strong>in</strong> the <strong>in</strong>creased ret<strong>in</strong>al<br />

metabolic activity associated with light exposure. Alternat<strong>in</strong>g transient visual loss to<br />

bright light has also been described with giant cell arteritis (Galetta, 1997).<br />

One prospective study assessed the cl<strong>in</strong>ical features of monocular TVL and the<br />

likelihood of atherosclerotic lesions of the <strong>in</strong>ternal carotid artery (ICA) (Donders, 2001).<br />

Of the 337 patients, 159 had a normal ICA on the relevant side, 33 had a stenosis of 0 to<br />

69%, 100 had a stenosis of 70 to 99%, and 45 had an ICA occlusion. <strong>An</strong> altitud<strong>in</strong>al onset<br />

or disappearance of symptoms was associated with atherosclerotic lesions of the<br />

ipsilateral ICA. A severe (70 to 99%) stenosis was also associated with duration of<br />

TVL between 1 and 10 m<strong>in</strong>utes, and with a speed of onset <strong>in</strong> seconds. <strong>An</strong> ICA occlusion<br />

was associated with attacks be<strong>in</strong>g provoked by light, an altitud<strong>in</strong>al character, and the<br />

occurrence of more than 10 attacks.<br />

TVL may also occur with carotid artery dissection. In a review of the cl<strong>in</strong>ical features<br />

of 146 patients with extracranial carotid artery dissection, 41 patients (28%) had<br />

monocular TVL. The TVL was pa<strong>in</strong>ful <strong>in</strong> 31 cases, associated with a Horner’s syndrome<br />

<strong>in</strong> 13 cases, and described as ‘‘sc<strong>in</strong>tillations’’ or ‘‘flash<strong>in</strong>g lights’’ (often related to


174 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

postural changes suggest<strong>in</strong>g choroidal hypoperfusion) <strong>in</strong> 23 cases (Biousse, 1998b). Two<br />

of 23 patients with spontaneous carotid artery dissection experienced transient monocular<br />

bl<strong>in</strong>dness; <strong>in</strong> one of these patients, episodes were provoked by sitt<strong>in</strong>g up from a<br />

sup<strong>in</strong>e position (Kerty, 1999).<br />

Postprandial transient visual loss has also been described (Lev<strong>in</strong>, 1997). In one<br />

patient, episodes of splotchy visual loss occurred unilaterally on the left 1 hour after<br />

eat<strong>in</strong>g her largest meal of the day. The episodes lasted approximately 3 hours and were<br />

occasionally accompanied by numbness and weakness of the contralateral arm. Severe<br />

left carotid stenosis was noted. In a second patient, blotchy bilateral transient visual loss<br />

episodes last<strong>in</strong>g 2 m<strong>in</strong>utes to 1.5 hours were precipitated by eat<strong>in</strong>g or stand<strong>in</strong>g from a<br />

sitt<strong>in</strong>g or ly<strong>in</strong>g position. This second patient was found to have complete occlusion of<br />

the right carotid artery and moderate stenosis of the left carotid artery. The authors<br />

proposed that postprandial visual loss may be a symptom of critical carotid stenosis,<br />

with ret<strong>in</strong>al and choroidal hypoperfusion probably caused by a comb<strong>in</strong>ation of mesenteric<br />

steal, decreased cardiac output, and abnormal vasomotor control (Lev<strong>in</strong>, 1997).<br />

Venous stasis ret<strong>in</strong>opathy (hypotensive ret<strong>in</strong>opathy), associated with severe carotid<br />

or ophthalmic artery occlusive disease, may also be associated with TVL (Gass, 1997).<br />

This syndrome is characterized by visual loss and ischemic ret<strong>in</strong>al <strong>in</strong>farction often<br />

accompanied by signs of ciliary artery obstruction, pallor of the disc, and hypotony.<br />

Venous stasis ret<strong>in</strong>opathy may simulate Purtscher’s ret<strong>in</strong>opathy (multifocal areas of<br />

ischemia) and be associated with a variety of fundus pictures (Gass, 1997):<br />

1. M<strong>in</strong>imal or no ophthalmoscopic changes <strong>in</strong> some patients with monocular TVL.<br />

2. Few widely scattered blot and dot hemorrhages and mild dilation of ret<strong>in</strong>al ve<strong>in</strong>s<br />

(venous stasis ret<strong>in</strong>opathy), usually <strong>in</strong> patients with m<strong>in</strong>imal visual compla<strong>in</strong>ts.<br />

3. Dilation of the ret<strong>in</strong>al arterial tree, dilation of the ret<strong>in</strong>al ve<strong>in</strong>s, and cotton-wool<br />

patches.<br />

4. Ret<strong>in</strong>al capillary changes, <strong>in</strong>clud<strong>in</strong>g microaneurysms, cystoid macular edema, and<br />

angiographic evidence of areas of capillary nonperfusion that may be conf<strong>in</strong>ed to the<br />

areas along the horizontal raphe.<br />

5. Larger areas of peripheral capillary nonperfusion, ret<strong>in</strong>al neovascularization, and<br />

hemorrhage.<br />

6. <strong>An</strong>y degree of branch ret<strong>in</strong>al ve<strong>in</strong> occlusion, branch ret<strong>in</strong>al ve<strong>in</strong> occlusion, branch<br />

ret<strong>in</strong>al artery occlusion, and central ret<strong>in</strong>al artery occlusion.<br />

7. Ischemic optic neuropathy.<br />

8. Fluoresce<strong>in</strong> angiography show<strong>in</strong>g diffuse ret<strong>in</strong>al capillary telangiectasia, delayed<br />

ret<strong>in</strong>al artery circulation time, late sta<strong>in</strong><strong>in</strong>g of the disc, and aggregations of microaneurysms<br />

around the preequatorial zone mimick<strong>in</strong>g idiopathic juxtafoveal ret<strong>in</strong>al<br />

telangiectasia.<br />

9. <strong>An</strong>y of the above associated with panuveitis, neovascular glaucoma, and a rapidly<br />

progress<strong>in</strong>g cataract (ocular ischemic syndrome).<br />

Venous stasis ret<strong>in</strong>opathy may be difficult to differentiate from central ret<strong>in</strong>al ve<strong>in</strong><br />

occlusion (CRVO). Helpful differentiat<strong>in</strong>g features <strong>in</strong>clude the follow<strong>in</strong>g:<br />

1. The ret<strong>in</strong>al ve<strong>in</strong>s are irregular <strong>in</strong> caliber with venous stasis ret<strong>in</strong>opathy.<br />

2. Hemorrhages, microaneurysms, and capillary dilations are often peripheral rather<br />

than <strong>in</strong> the posterior pole with venous stasis ret<strong>in</strong>opathy (with CRVO these changes<br />

are often diffuse rather than peripheral).


Transient Visual Loss 175<br />

3. Venous stasis ret<strong>in</strong>opathy is not associated with disc edema or optociliary ve<strong>in</strong>s<br />

(compared with CRVO).<br />

The ocular ischemic syndrome (Gass, 1997; Malhotra, 2000) is a progressive disorder<br />

due to hypoperfusion of eye that may be associated with TVL and ocular discomfort or<br />

frank pa<strong>in</strong> localized to the orbit and upper face that is often decreased when the patient<br />

lies down. Rubeosis iridis <strong>in</strong> an older nondiabetic patient without evidence of venous<br />

obstructive disease or other predispos<strong>in</strong>g cause is suggestive of the ocular ischemic<br />

syndrome. In persons over the age of 50 with new-onset iritis, the possibility of ocular<br />

ischemic syndrome should be considered. It is usually due to atherosclerotic carotid or<br />

ophthalmic artery disease. Other less common causes for venous stasis ret<strong>in</strong>opathy and<br />

the ocular ischemic syndrome <strong>in</strong>clude giant cell arteritis, carotid artery dissection,<br />

cavernous s<strong>in</strong>us thrombosis, Takayasu’s disease, fibromuscular dysplasia, mucormycosis,<br />

herpes zoster ophthalmicus, myelofibrosis, vasospasm, and postaneurysm repair<br />

(Borruat, 1993; Casson, 2001; Gupta, 1990; Hamed, 1992; Hwang, 1999; Lewis, 1993;<br />

Meire, 1991; W<strong>in</strong>terkorn, 1995; Zimmerman, 1995). Four of seven patients with<br />

maxillofacial arteriovenous malformations (AVMs) that had been treated previously<br />

with proximal ligation of the supply<strong>in</strong>g external carotid artery had signs of ocular<br />

ischemia (<strong>An</strong>dracchi, 2000). These four patients had significant ophthalmic artery<br />

supply by the malformations, suggest<strong>in</strong>g that when the ophthalmic arterial blood<br />

supply is recruited, an ophthalmic artery ‘‘steal’’ phenomenon occurs, caus<strong>in</strong>g ocular<br />

ischemia. This ‘‘steal’’ may be precipitated or worsened by previous surgical proximal<br />

ligation of external carotid arterial branches that are potential collaterals with the<br />

ophthalmic artery but fail to occlude the arteriovenous shunt.<br />

Giant cell arteritis (GCA) may produce attacks of TVL last<strong>in</strong>g m<strong>in</strong>utes to hours<br />

<strong>in</strong>dist<strong>in</strong>guishable from those produced by atheromatous disease (Hayreh, 1998a,b) (see<br />

Chapter 5). TVL probably results from <strong>in</strong>termittent <strong>in</strong>flammatory occlusion of the<br />

ophthalmic, posterior ciliary, or central ret<strong>in</strong>al arteries. A postural form of TVL has<br />

been described <strong>in</strong> giant cell arteritis and a tenuous optic disc perfusion (Wykes, 1984).<br />

Alternat<strong>in</strong>g monocular TVL may occur with GCA (F<strong>in</strong>elli, 1997) and may be <strong>in</strong>duced by<br />

bright light (Galetta, 1997).<br />

TVL may also occur <strong>in</strong> association with antiphospholipid antibodies, hyperviscosity<br />

and hypercoagulable states, polycythemia vera, systemic lupus erythematosus (SLE),<br />

and hepatitis C–associated type II cryoglobul<strong>in</strong>emia-mediated systemic vasculitis with<br />

mononeuritis multiplex. AVMs may divert blood flow from or reduce blood flow <strong>in</strong> the<br />

ophthalmic artery (ophthalmic steal syndrome) (Case Records of the MGH, 1999;<br />

Donders, 1998; Lev<strong>in</strong>e, 1990). The TVL may alternate from eye to eye. Donders et al<br />

noted that TVL occurred <strong>in</strong> 6% of patients with SLE (Donders, 1998). In patients with<br />

SLE, there was no relationship between TVL and the presence of antiphospholipid<br />

antibodies or livedo reticularis. Five of 10 patients with SLE had TVL <strong>in</strong> either eye<br />

(alternat<strong>in</strong>g TVL).<br />

Vasospasm, especially associated with migra<strong>in</strong>e, may also produce TVL without any<br />

of the visual phenomena typically seen dur<strong>in</strong>g a migra<strong>in</strong>e attack (Bernard, 1999; Booy,<br />

1990; Burger, 1991; O’Sullivan, 1992; W<strong>in</strong>terkorn, 1993). Vasospasm of the ret<strong>in</strong>al vessels<br />

has been documented by ophthalmoscopy dur<strong>in</strong>g some attacks of monocular TVL. TVL,<br />

likely due to vasospasm and migra<strong>in</strong>e, may be <strong>in</strong>duced by exercise or sexual <strong>in</strong>tercourse<br />

(Jehn, 2002; Teman, 1995). Exercise-<strong>in</strong>duced TVL may last m<strong>in</strong>utes to hours (Jehn, 2002).<br />

TVL <strong>in</strong> young <strong>in</strong>dividuals is often benign and related to migra<strong>in</strong>e. Tipp<strong>in</strong> et al reviewed


176 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

83 cases of TVL or ocular <strong>in</strong>farction before age 45 years. These authors found that<br />

cerebral transient ischemic attacks occurred <strong>in</strong> n<strong>in</strong>e patients but no case of stroke was<br />

found (Tipp<strong>in</strong>, 1989). Forty-one percent of the patients had headaches or orbital pa<strong>in</strong><br />

accompany<strong>in</strong>g their TVL spells and an additional 25.3% had severe headaches <strong>in</strong>dependent<br />

of the visual loss. Of the orig<strong>in</strong>al 83 patients, 42 were reexam<strong>in</strong>ed after a mean<br />

period of 5.8 years. None of the patients <strong>in</strong> this group had a stroke. The cl<strong>in</strong>ical status at<br />

follow-up did not correlate with duration of visual loss (TVL or ocular <strong>in</strong>farction),<br />

frequency (s<strong>in</strong>gle or recurrent episodes), gender, presence of headache or heart disease,<br />

cigarette smok<strong>in</strong>g, use of oral contraceptives, or abnormal f<strong>in</strong>d<strong>in</strong>gs on echocardiogram<br />

or blood studies. The authors concluded that TVL and ocular <strong>in</strong>farction occurr<strong>in</strong>g <strong>in</strong> the<br />

younger patient are probably associated with a more benign cl<strong>in</strong>ical course than that<br />

seen <strong>in</strong> older persons, and that migra<strong>in</strong>e is a likely cause for visual loss <strong>in</strong> a majority <strong>in</strong><br />

this group. O’Sullivan et al described n<strong>in</strong>e young adults (median age 19.5 years) who<br />

suffered from TVL (O’Sullivan, 1992). The attacks of TVL were short <strong>in</strong> duration and<br />

associated with premonitory symptoms <strong>in</strong> five patients and a migra<strong>in</strong>ous headache <strong>in</strong><br />

two. In five patients the visual loss progressed <strong>in</strong> a lacunar pattern (vision was lost <strong>in</strong> a<br />

series of blobs), unlike the ‘‘curta<strong>in</strong>’’ pattern characteristic of TVL <strong>in</strong> older patients.<br />

Investigation revealed no evidence of an embolic or atheromatous etiology. In two<br />

patients a m<strong>in</strong>or abnormality was found on echocardiography. The authors conclude<br />

that TVL <strong>in</strong> young adults has a different cl<strong>in</strong>ical pattern and may have a different<br />

etiology, possibly migra<strong>in</strong>e, compared with that seen <strong>in</strong> older patients. The pattern of<br />

visual loss <strong>in</strong> some of the cases suggests that the choroidal circulation rather than the<br />

ret<strong>in</strong>al circulation is primarily affected.<br />

TVL last<strong>in</strong>g 15 to 20 m<strong>in</strong>utes (occasionally up to 7 hours) may occur dur<strong>in</strong>g episodes<br />

of spontaneous anterior chamber hemorrhage (hyphema) (Kosmorsky, 1985; Miller,<br />

1991). In these patients TVL may be associated with erythropsia (see<strong>in</strong>g red) and color<br />

desaturation. Such hemorrhages are most likely to occur after cataract extraction and are<br />

particularly apt to occur after placement of an iris fixation lens implant. Other potential<br />

causes of spontaneous anterior chamber hemorrhages <strong>in</strong>clude vascular anomalies of the<br />

iris (e.g., <strong>in</strong> myotonic dystrophy or Sturge-Weber syndrome), microhemangiomas,<br />

diffuse hemangiomatosis of childhood, neoplasms (e.g., melanoma or ret<strong>in</strong>oblastoma),<br />

diseases of blood or vessels (e.g., leukemia, hemophilia, scurvy, lymphoma), rubeosis<br />

iridis, severe iritis, fibrovascular membranes, juvenile xanthogranuloma, occult trauma<br />

or delayed bleed<strong>in</strong>g after trauma, hydro-ophthalmos, malignant exophthalmos, histiocytosis<br />

X, and postsclerotomy with cautery (Kosmorsky, 1985). Episodes of TVL last<strong>in</strong>g<br />

up to 24 hours have been described with recurrent hyphema after deep sclerotomy with<br />

collagen implant (DSCI) (Ambres<strong>in</strong>, 2001). The uveitis-glaucoma-hyphema (UGH)<br />

syndrome is an unusual cause of monocular TVL follow<strong>in</strong>g cataract extraction and<br />

<strong>in</strong>traocular lens implantation (Cates, 1998). Patients may present with the full triad or<br />

with its <strong>in</strong>dividual elements, with symptoms often develop<strong>in</strong>g at an <strong>in</strong>terval, often<br />

years, after cataract surgery. Table 8–1 compares the symptoms of TVL <strong>in</strong> ret<strong>in</strong>al emboli<br />

compared with the UGH syndrome (Cates, 1998).<br />

Intermittent angle closure glaucoma may also cause brief episodes of monocular TVL<br />

that are usually, though not always, associated with ipsilateral eye pa<strong>in</strong> and occasionally<br />

simultaneous dilation of the pupil (Miller, 1991). Exercise-<strong>in</strong>duced visual disturbances<br />

may also occur dur<strong>in</strong>g attacks of pigmentary glaucoma (Jehn, 2002). Episodes of<br />

monocular TVL last<strong>in</strong>g 2 to 3 m<strong>in</strong>utes <strong>in</strong>duced by changes <strong>in</strong> posture have been<br />

described follow<strong>in</strong>g scleral buckle procedure, likely due to <strong>in</strong>termittent obstruction of


Transient Visual Loss 177<br />

Table 8–1. Comparison Between the Classic Symptoms of Visual Loss <strong>in</strong> Patients with<br />

Transient Visual Loss (TVL) Due to Ret<strong>in</strong>al Emboli and the Uveitis-Glaucoma-Hyphema<br />

(UGH) Syndrome<br />

TVL Due to Ret<strong>in</strong>al Embolus TVL Due to UGH Syndrome<br />

Speed of onset Sudden (seconds) Gradual (m<strong>in</strong>utes)<br />

Recovery Rapid (seconds to m<strong>in</strong>utes) Slow (hours to days)<br />

Character Dark curta<strong>in</strong> over vision Gradual mist<strong>in</strong>g of vision<br />

Erythropsia (red vision)<br />

Location Sector loss Diffuse<br />

Pa<strong>in</strong> None With or without ache <strong>in</strong> affected eye<br />

the central ret<strong>in</strong>al artery blood flow by the encircl<strong>in</strong>g element (F<strong>in</strong>eman, 1999). F<strong>in</strong>ally,<br />

TVL may also be associated with the congenital anomalies, peripapillary staphyloma,<br />

and morn<strong>in</strong>g glory syndrome (Ebner, 1995; Gass, 1997; Zarnegar, 1995). Episodes of<br />

TVL with these anomalies may last 15 to 20 seconds (obscurations of vision) or up to 20<br />

m<strong>in</strong>utes, the latter mimick<strong>in</strong>g TVL with thromboembolic disease. The episodes of TVL<br />

<strong>in</strong> peripapillary staphyloma may be associated with <strong>in</strong>termittent dilation of the ret<strong>in</strong>al<br />

ve<strong>in</strong>s and may be orthostatic.<br />

Patients with monocular TVL last<strong>in</strong>g m<strong>in</strong>utes associated with visible ret<strong>in</strong>al emboli<br />

need to be evaluated for carotid and aortic vascular disease and cardiac valvular<br />

disease. Stroke risk factors (e.g., smok<strong>in</strong>g, hypertension, diabetes mellitus, hyperlipidemia,<br />

etc.) should be evaluated and controlled. Studies to evaluate the carotid arteries<br />

<strong>in</strong>clude carotid Doppler and ultrasound. Some patients may require MR angiography<br />

and conventional angiography. Cardiac <strong>in</strong>vestigations <strong>in</strong>clude transthoracic and transesophageal<br />

echocardiography and cardiac MRI. In a study of 18 patients with branch or<br />

central ret<strong>in</strong>al artery occlusion, transesophageal echocardiogram revealed a possible<br />

cardiac or thoracic source of embolus <strong>in</strong> 13 patients (72%), whereas a potential carotid<br />

source of embolus was present <strong>in</strong> three of 16 patients (19%) (Kramer, 2001).<br />

Hurwitz et al performed a prospective cl<strong>in</strong>ical and arteriographic study compar<strong>in</strong>g<br />

patients with monocular TVL and patients with other transient hemispheral cerebral<br />

ischemic attacks (Hurwitz, 1985). In their 93 patients with monocular TVL, a potentially<br />

operable atherosclerotic carotid lesion (def<strong>in</strong>ed as 5 50% stenosis or ulceration on the<br />

side of TVL) was found <strong>in</strong> 66% of the patients, and the 7-year cumulative rate of cerebral<br />

<strong>in</strong>farction <strong>in</strong> these patients was 14%. In 212 patients with other hemispheric transient<br />

ischemic attacks, an operable carotid lesion was found <strong>in</strong> 51% of patients, with the<br />

7-year cumulative rate of <strong>in</strong>farction 27%. Therefore, <strong>in</strong> approximately two thirds of<br />

patients with monocular TVL, a potentially operable carotid lesion may be found.<br />

In patients with monocular TVL (or other carotid distribution transient ischemic<br />

attacks or nondisabl<strong>in</strong>g stroke) and ipsilateral carotid stenosis of 70 to 99%, carotid<br />

endarterectomy may be <strong>in</strong>dicated. Surgery may be recommended <strong>in</strong> this sett<strong>in</strong>g if the<br />

patient is a good surgical candidate and the perioperative morbidity and mortality of<br />

the surgeon is <strong>in</strong> the 2% or less range (North American Symptomatic Carotid<br />

Endarterectomy Trial Collaborators, 1991). Carotid endarterectomy <strong>in</strong> this group<br />

reduces the 2-year ipsilateral stroke rate from 26 to 9%, and decreases the major or<br />

fatal ipsilateral stroke rate from 13.1 to 2.5%. The benefit of surgery <strong>in</strong> the 70% or greater


178 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

stenosis patients is greatest among men, <strong>in</strong> patients with a recent stroke as a qualify<strong>in</strong>g<br />

event, and <strong>in</strong> patients with hemispheric (versus visual) symptoms (Barnett, 1998). The<br />

benefit of surgery is twice as great for patients with 90 to 99% carotid stenosis versus 70<br />

to 79% stenosis. The frequency of major functional impairment was much lower <strong>in</strong> the<br />

surgical group than <strong>in</strong> the medical group (Haynes, 1994). In patients with monocular<br />

TVL, other carotid distribution transient ischemic attack or nondisabl<strong>in</strong>g stroke, and 50<br />

to 69% ipsilateral carotid stenosis, the 5-year rate of any ipsilateral stroke was 15.7% <strong>in</strong><br />

the surgical group and 22.2% <strong>in</strong> the medical group (Barnett, 1998). Among patients<br />

with < 50% stenosis, the stroke rate was not significantly lower <strong>in</strong> the surgery group<br />

(14.9%) than <strong>in</strong> the medical group (18.7%). Therefore, carotid endarterectomy <strong>in</strong> patients<br />

with symptomatic carotid stenosis of 50 to 69% yields only moderate reduction <strong>in</strong> stroke<br />

risk, with the absolute risk reduction be<strong>in</strong>g about 10% at 5 years. Among patients with<br />

<strong>in</strong>ternal carotid artery stenosis, the prognosis is better for those present<strong>in</strong>g with<br />

transient monocular bl<strong>in</strong>dness than for those present<strong>in</strong>g with hemispheric transient<br />

ischemic attacks (Benavente, 2001). Decisions about treatment must take <strong>in</strong>to account<br />

the recognized risk patient factors, and the surgical perioperative complication rates<br />

must be 6% or less. In the patient with less than 50% carotid stenosis, a cardiac or aortic<br />

embolic source should be sought and, if none is found, the treatment is aspir<strong>in</strong> plus<br />

control of stroke risk factors. In patients with emboli from a cardiac valvular source,<br />

especially those with cardiac dysrhythmias such as atrial fibrillation, anticoagulation is<br />

warranted if the patient is an appropriate medical candidate. Patients older than 55<br />

years with a history of monocular TVL last<strong>in</strong>g m<strong>in</strong>utes without visible ret<strong>in</strong>al emboli<br />

should have an evaluation for giant cell arteritis (e.g., erythrocyte sedimentation rate,<br />

temporal artery biopsy) (class II, level C).<br />

Patients with evidence of monocular TVL result<strong>in</strong>g from ocular hypoperfusion (e.g.,<br />

venous stasis ret<strong>in</strong>opathy and the ocular ischemic syndrome) might have decreased<br />

ret<strong>in</strong>al artery pressure on ophthalmodynamometry. The patient should be <strong>in</strong>vestigated<br />

for carotid stenosis and, if this is <strong>in</strong>significant, ophthalmic artery stenosis or occlusion is<br />

<strong>in</strong>ferred. When carotid stenosis is severe, endarterectomy may be used to reestablish<br />

flow (Kawaguchi, 2001; Rennie, 2002); when the <strong>in</strong>ternal carotid artery is totally<br />

occluded, a superficial temporal artery to middle cerebral artery bypass procedure<br />

may be considered if the external carotid is patent (Kawaguchi, 1999). With early<br />

treatment, resolution of the hypoperfusion syndrome may occur; unfortunately, no<br />

therapy is clearly effective. In one study, carotid endarterectomy was effective for<br />

improv<strong>in</strong>g or prevent<strong>in</strong>g the progress of chronic ocular ischemia caused by <strong>in</strong>ternal<br />

carotid stenosis; visual acuity improved <strong>in</strong> 5 of 11 patients and had not worsened <strong>in</strong> the<br />

other 6 (Kawaguchi, 2001). Reestablishment of flow <strong>in</strong> a previously stenotic <strong>in</strong>ternal<br />

carotid artery may actually produce further visual difficulties by <strong>in</strong>creas<strong>in</strong>g perfusion to<br />

the ciliary arteries and caus<strong>in</strong>g dramatic <strong>in</strong>crease <strong>in</strong> <strong>in</strong>traocular pressure. Carotid<br />

endarterectomy or superficial temporal artery to middle cerebral artery bypass procedure<br />

have been comb<strong>in</strong>ed with laser panret<strong>in</strong>al photocoagulation, peripheral ret<strong>in</strong>al<br />

cryotherapy, or both. These latter procedures are thought to decrease the oxygen<br />

requirement of the eye and thus reduce the drive for neovascularization. Rarely, the<br />

ocular ischemic syndrome may be improved by the calcium channel blocker, verapamil<br />

(W<strong>in</strong>terkorn, 1995).<br />

If no thromboembolic source for the episodes of TVL is documented, then further<br />

studies should be considered. These <strong>in</strong>clude MRI of the bra<strong>in</strong> with MR angiography to<br />

<strong>in</strong>vestigate for possible bra<strong>in</strong> ischemia or less likely a vascular malformation, and


laboratory studies, <strong>in</strong>clud<strong>in</strong>g sedimentation rate, complete blood count, antiphospholipid<br />

antibodies, ant<strong>in</strong>uclear antibodies, collagen vascular disease profile, and studies to<br />

<strong>in</strong>vestigate the presence of dysprote<strong>in</strong>emia (class III–IV, level U).<br />

Young patients (< 45 years old) with monocular TVL are unlikely to have significant<br />

carotid disease. A cardiac embolic source as well as a vasculitis or coagulopathy must be<br />

sought. As noted above, monocular TVL <strong>in</strong> younger patients has a more benign cl<strong>in</strong>ical<br />

course than that found <strong>in</strong> an older population, and migra<strong>in</strong>e is a likely cause for many<br />

episodes. Calcium channel blockers (e.g., verapamil or nifedip<strong>in</strong>e), if not otherwise<br />

contra<strong>in</strong>dicated, may be considered <strong>in</strong> some of these patients to reduce the frequency of<br />

episodes of TVL (Teman, 1995; W<strong>in</strong>terkorn, 1993).<br />

F<strong>in</strong>ally, all patients with monocular TVL last<strong>in</strong>g m<strong>in</strong>utes should have a complete<br />

ophthalmoscopic exam<strong>in</strong>ation to <strong>in</strong>vestigate such conditions as <strong>in</strong>termittent angle<br />

closure glaucoma, morn<strong>in</strong>g glory syndrome, and peripapillary staphyloma. Spontaneous<br />

anterior chamber hemorrhage (hyphema) should also be considered, especially <strong>in</strong><br />

patients with associated erythropsia and <strong>in</strong> those who have undergone cataract<br />

extraction.<br />

Episodes of monocular TVL last<strong>in</strong>g hours are rare. However, such spells may occur<br />

with thromboembolic disease, as a postprandial phenomenon associated with critical<br />

carotid stenosis, and with migra<strong>in</strong>e. Monocular TVL last<strong>in</strong>g hours may be a symptom of<br />

impend<strong>in</strong>g central ret<strong>in</strong>al ve<strong>in</strong> occlusion (Biousse, 1997).<br />

<strong>An</strong> approach to the evaluation of patients with monocular TVL is presented <strong>in</strong><br />

Figure 8–1.<br />

Are the Episodes of TVL B<strong>in</strong>ocular?<br />

Transient Visual Loss 179<br />

Transient visual obscurations last<strong>in</strong>g seconds may occur <strong>in</strong> one or both eyes <strong>in</strong> patients<br />

with <strong>in</strong>creased <strong>in</strong>tracranial pressure and papilledema. Also, patients with bilateral<br />

severe carotid occlusive disease may rarely have bilateral TVL on exposure to bright<br />

light. Otherwise, episodes of bilateral simultaneous TVL are usually due to migra<strong>in</strong>e,<br />

bilateral occipital lobe ischemia (e.g., vertebrobasilar <strong>in</strong>sufficiency), or other occipital<br />

lesions.<br />

The presence of a small area of visual loss or a mild disturbance of vision that<br />

progressively <strong>in</strong>creases over 15 m<strong>in</strong>utes or longer (march and buildup) is highly<br />

characteristic of migra<strong>in</strong>e (Russell, 1996). This visual abnormality is usually bilateral<br />

and homonymous. The patient need not have headaches for this diagnosis to be made.<br />

Most patients describe abnormal positive visual symptoms associated with the<br />

episodes. Most commonly, fortification spectra are described around an area of scotoma.<br />

These sc<strong>in</strong>tillations or distortions with<strong>in</strong> the area of visual disturbance may resemble<br />

‘‘heat waves’’ or ‘‘water runn<strong>in</strong>g down a glass.’’ The typical migra<strong>in</strong>e visual aura starts<br />

as a flicker<strong>in</strong>g, uncolored, zigzag l<strong>in</strong>e <strong>in</strong> the center of the visual field that gradually<br />

progresses and expands toward the periphery of one hemifield and often leaves a<br />

temporary scotoma (Fisher, 1999). A migra<strong>in</strong>ous visual accompaniment often occurs <strong>in</strong><br />

<strong>in</strong>dividuals over age 50 and often occurs <strong>in</strong> the absence of headache <strong>in</strong> this age group<br />

(Wijman, 1998). These episodes probably are not associated with an <strong>in</strong>creased stroke<br />

risk. The spells are usually stereotyped, beg<strong>in</strong> gradually, and progress, last several<br />

m<strong>in</strong>utes to 1 hour, and usually <strong>in</strong>clude positive visual phenomena (bright images,<br />

colors, movement of images) and affect both eyes. In a study by Wijman et al, the


180 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

migra<strong>in</strong>ous visual accompaniments were never accompanied by headache <strong>in</strong> 58% of<br />

patients, and 42% of <strong>in</strong>dividuals had no history of recurrent headache (Wijman, 1998).<br />

The risk of stroke <strong>in</strong> these patients was 11.5%, significantly less than the 33.3% noted <strong>in</strong><br />

patients with transient ischemic attacks but not significantly different from the rate of<br />

13.6% <strong>in</strong> those with neither migra<strong>in</strong>ous accompaniments nor transient ischemic attacks.<br />

Associated symptoms may <strong>in</strong>clude nausea, aphasia, eye pa<strong>in</strong>, diplopia, dizz<strong>in</strong>ess,<br />

t<strong>in</strong>nitus, numbness, and paresthesias.<br />

Rarely, the positive visual phenomena of migra<strong>in</strong>e may persist for months to years,<br />

unassociated with electroencephalographic or MRI f<strong>in</strong>d<strong>in</strong>gs (Liu, 1995). Patients with<br />

persistent migra<strong>in</strong>ous visual phenomena (migra<strong>in</strong>e aura status) may demonstrate<br />

occipital hypoperfusion on bra<strong>in</strong> s<strong>in</strong>gle photon emission tomography (SPECT) (Chen,<br />

2001; Luda, 1991). This persistent migra<strong>in</strong>ous phenomena may be responsive to<br />

lamotrig<strong>in</strong>e (Chen, 2001). In another form of migra<strong>in</strong>e aura status, patients may<br />

experience a large number of consecutive (mostly) visual auras, very often without<br />

headache. Between the auras, the patient is without symptoms. Episodes can last for<br />

weeks, and with<strong>in</strong> this period several migra<strong>in</strong>e auras can occur on one day. Haan et al<br />

described three such patients with migra<strong>in</strong>e aura status treated successfully with<br />

acetazolamide (Haan, 2000).<br />

Abnormal visual disturbances similar to those with migra<strong>in</strong>e, often associated with<br />

headache, may rarely occur with cerebral structural lesions, such as AVMs of the<br />

occipital lobe or bra<strong>in</strong> tumors, but these usually do not have the characteristic buildup<br />

and resolution of visual symptoms. Instead, these lesions usually produce symptoms<br />

that steadily <strong>in</strong>crease <strong>in</strong> frequency and duration until they are present daily.<br />

Occipital lobe tumors may rarely produce sc<strong>in</strong>tillat<strong>in</strong>g scotomas that mimic migra<strong>in</strong>e<br />

(Biousse, 1998a; Miller, 1991; Pep<strong>in</strong>, 1990; Riaz, 1991). In most of these cases, the tumors<br />

were diagnosed only after the patients eventually developed papilledema or when a<br />

homonymous visual field defect was documented. Riaz et al described three patients<br />

with classical migra<strong>in</strong>e for many years’ duration that preceded the diagnosis of<br />

men<strong>in</strong>gioma (Riaz, 1991). In two patients, the tumors were occipital and <strong>in</strong> one<br />

frontotemporal. Visual symptoms <strong>in</strong> two of these patients were exceptional by their<br />

constant localization to the same hemianopic field, whereas <strong>in</strong> the third patient they<br />

<strong>in</strong>volved either hemianopic field. The visual phenomena sometimes occurred <strong>in</strong>dependent<br />

of headache.<br />

Arteriovenous malformations of the occipital lobes may also produce visual symptoms<br />

and headache that may simulate migra<strong>in</strong>e (Haas, 1991; Kupersmith, 1996, 1999;<br />

Kurita, 2000; Spier<strong>in</strong>gs, 2001). Visual symptoms with occipital AVMs are usually brief,<br />

episodic, unformed, and not associated with the angular, sc<strong>in</strong>tillat<strong>in</strong>g figures that occur<br />

with migra<strong>in</strong>e. They also tend to occur consistently <strong>in</strong> the same visual field. However,<br />

the cl<strong>in</strong>ical symptoms classically noted with migra<strong>in</strong>e may occasionally occur with<br />

occipital AVMs. Kupersmith et al described the cl<strong>in</strong>ical presentations of 70 patients with<br />

occipital AVMs (Kupersmith, 1996). At the time of presentation, headache was present<br />

<strong>in</strong> 39 (56%); the headache was throbb<strong>in</strong>g <strong>in</strong> 19 cases (27%) with preced<strong>in</strong>g homonymous<br />

positive visual phenomena with migra<strong>in</strong>e-like features <strong>in</strong> the field contralateral to the<br />

AVM <strong>in</strong> 15 cases. A visual disturbance <strong>in</strong> the opposite field, not necessarily associated<br />

with headache, occurred <strong>in</strong> 39 patients (56%). Patients often described episodes of<br />

sc<strong>in</strong>tillat<strong>in</strong>g scotomas, jagged flicker<strong>in</strong>g fortification images, transient and permanent<br />

homonymous hemianopia, blurred vision <strong>in</strong> a hemifield, hemifield spots, tunnel vision,<br />

and diplopia. Three patients had transient field loss as a prodrome to grand mal


Transient Visual Loss 181<br />

seizures and two others had episodes of flicker<strong>in</strong>g vision associated with seizure<br />

activity on electroencephalography. Only 5 of the 23 patients with visual symptoms<br />

who had a homonymous field defect did not have recurrent headaches. Fifteen<br />

additional patients without visual symptoms, 8 of whom had no recurrent headaches,<br />

had homonymous visual field defects. The authors concluded that if ‘‘migra<strong>in</strong>e’’<br />

headache or visual symptoms are restricted to one side of the head (even if the visual<br />

field exam is normal), then a neuroimag<strong>in</strong>g study should be performed to <strong>in</strong>vestigate<br />

the possibility of an occipital AVM. Migra<strong>in</strong>e <strong>in</strong> this sett<strong>in</strong>g is a diagnosis of exclusion.<br />

Whereas some features of headache and visual symptoms are similar for occipital AVMs<br />

and migra<strong>in</strong>e, the two disorders are usually dist<strong>in</strong>guishable. Kurita and Sh<strong>in</strong> described<br />

a man with periodic right-sided throbb<strong>in</strong>g headaches heralded by a visual prodrome of<br />

sc<strong>in</strong>tillat<strong>in</strong>g bright lights <strong>in</strong> the left visual field last<strong>in</strong>g several m<strong>in</strong>utes (Kurita, 2000).<br />

The headaches decreased 18 months after radiosurgery for a right occipital AVM.<br />

Positive visual phenomena resembl<strong>in</strong>g migra<strong>in</strong>e have also been described with cerebral<br />

venous s<strong>in</strong>us thrombosis (Newman, 1989). F<strong>in</strong>ally, sc<strong>in</strong>tillat<strong>in</strong>g scotomas occasionally<br />

occur <strong>in</strong> patients with SLE, but it is not clear if they are a manifestation of a<br />

cerebrovascular disorder related to lupus or simply the coexistence of two separate<br />

disease processes (Miller, 1991).<br />

Panayiotopoulos et al described n<strong>in</strong>e patients with idiopathic occipital epilepsy and<br />

visual seizures (Panayiotopoulos, 1999). The ictal elementary visual halluc<strong>in</strong>ations were<br />

stereotyped for each patient, usually last<strong>in</strong>g seconds. They consisted of ma<strong>in</strong>ly multiple,<br />

bright colored, small circular spots, circles, or balls. Mostly, they appeared <strong>in</strong> a temporal<br />

hemifield, often mov<strong>in</strong>g contralaterally or <strong>in</strong> the center, where they may be flash<strong>in</strong>g.<br />

They may be multiple and <strong>in</strong>crease <strong>in</strong> size <strong>in</strong> the course of a seizure and may progress to<br />

extraoccipital manifestations and convulsions. Bl<strong>in</strong>dness occurred usually from the<br />

beg<strong>in</strong>n<strong>in</strong>g and postictal headache, often <strong>in</strong>dist<strong>in</strong>guishable from migra<strong>in</strong>e, was common.<br />

Three of n<strong>in</strong>e patients had ictal bl<strong>in</strong>dness as the only seizure manifestation. Most<br />

patients responded to carbamazep<strong>in</strong>e. Elementary visual halluc<strong>in</strong>ations <strong>in</strong> occipital<br />

seizures are entirely different from the visual aura of migra<strong>in</strong>e. They are ma<strong>in</strong>ly colored,<br />

have a circular pattern, have the same onset regard<strong>in</strong>g localization, are often brief<br />

(last<strong>in</strong>g seconds, occasionally m<strong>in</strong>utes), develop rapidly, and then <strong>in</strong>dividual components<br />

may multiply or move together to the contralateral side. They often occur daily<br />

and may be associated with other seizure manifestations. Conversely, the visual aura of<br />

migra<strong>in</strong>e start with predom<strong>in</strong>antly flicker<strong>in</strong>g achromatic or black and white (rarely<br />

colored) l<strong>in</strong>ear and zigzag patterns <strong>in</strong> the center of vision that gradually expand over<br />

m<strong>in</strong>utes toward the periphery of one hemifield and often leave a scotoma. Migra<strong>in</strong>e<br />

rarely occurs daily.<br />

Dreier et al described two patients with migra<strong>in</strong>e who experienced migra<strong>in</strong>ous auralike<br />

symptoms several m<strong>in</strong>utes after the onset of acute headache <strong>in</strong>duced by subarachnoid<br />

hemorrhage (Dreier, 2001). The cases suggest that subarachnoid hemorrhage<br />

is a trigger for migra<strong>in</strong>ous aura.<br />

Symptoms similar to the sc<strong>in</strong>tillat<strong>in</strong>g scotomas of migra<strong>in</strong>e may also occur with acute<br />

vitreous or ret<strong>in</strong>al detachment (Miller, 1991). In these patients, the visual symptoms are<br />

clearly monocular, last longer than typical migra<strong>in</strong>ous visual aura, and occur without<br />

any associated headache. Sc<strong>in</strong>tillat<strong>in</strong>g scotomas, as well as monocular TVLs, have also<br />

been described associated with <strong>in</strong>ternal carotid artery dissection (Biousse, 1998b;<br />

Ramadan, 1991). The first of the three patients described by Ramadan et al developed<br />

sudden severe right occipital headache followed m<strong>in</strong>utes later by nausea and bright


182 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

dots <strong>in</strong> both visual fields that spread centrifugally dur<strong>in</strong>g a 10-m<strong>in</strong>ute period and<br />

persisted for several hours (Ramadan, 1991). The second perceived sc<strong>in</strong>tillat<strong>in</strong>g and<br />

nonmarch<strong>in</strong>g ‘‘snowflakes’’ <strong>in</strong> the entire visual field of the right eye that lasted 10<br />

m<strong>in</strong>utes, dur<strong>in</strong>g which time the right eye lost vision. This was followed by right<br />

frontotemporal sharp pa<strong>in</strong> that lasted for another hour. The third patient noted the<br />

abrupt onset of see<strong>in</strong>g stationary, sharp-edged gray shapes (triangles, squares, and<br />

zigzag l<strong>in</strong>es), outl<strong>in</strong>ed <strong>in</strong> bright red and blue and superimposed on a glar<strong>in</strong>g background.<br />

These positive visual phenomena were perceived <strong>in</strong> the left eye and lasted for 3<br />

days. She later developed another episode of visual phenomena <strong>in</strong> the left eye<br />

associated with left supraorbital and temporal throbb<strong>in</strong>g headache. The first patient’s<br />

episode was b<strong>in</strong>ocular but atypical for classic migra<strong>in</strong>e <strong>in</strong> that the positive visual<br />

phenomena lasted for hours; <strong>in</strong> the other two patients the symptoms were monocular,<br />

and <strong>in</strong> one of these the positive symptoms lasted for days, aga<strong>in</strong> atypical features for<br />

classic migra<strong>in</strong>e. As noted above, <strong>in</strong> a study of 146 patients with extracranial carotid<br />

artery dissection, 41 patients (28%) had transient monocular visual loss that was<br />

described as ‘‘sc<strong>in</strong>tillations’’ or ‘‘flash<strong>in</strong>g lights’’ (often related to postural changes<br />

suggest<strong>in</strong>g choroidal hypoperfusion) <strong>in</strong> 23 cases (Biousse, 1998b).<br />

Patients with restrictive thyroid ophthalmopathy may occasionally compla<strong>in</strong> of<br />

flash<strong>in</strong>g lights <strong>in</strong> the superior visual field on upgaze, possibly phosphenes as a result<br />

of either compression of the globe by a tight <strong>in</strong>ferior rectus muscle or traction on the<br />

<strong>in</strong>sertion of the <strong>in</strong>ferior rectus muscle (Danks, 1998). Twelve of 30 patients with thyroid<br />

ophthalmopathy had flash<strong>in</strong>g lights on upward gaze and all had tight <strong>in</strong>ferior rectus<br />

muscles (Danks, 1998).<br />

B<strong>in</strong>ocular episodes of TVL may be due to bilateral occipital ischemia secondary to<br />

disease of the vertebrobasilar circulation (rarely bilateral ret<strong>in</strong>al ischemia from systemic<br />

hypotension or bilateral carotid disease). Episodes of visual loss or blurr<strong>in</strong>g <strong>in</strong> patients<br />

with vertebrobasilar transient ischemic attacks (TIAs) usually occur <strong>in</strong> association with<br />

other symptoms of transient bra<strong>in</strong>stem, cerebellar, or posterior cerebral ischemia,<br />

<strong>in</strong>clud<strong>in</strong>g vertigo, dysarthria, dysphagia, diplopia, weakness, sensory disturbances<br />

(especially perioral numbness), coord<strong>in</strong>ation difficulties, and gait <strong>in</strong>stability. Visual<br />

loss or blurr<strong>in</strong>g of vision <strong>in</strong> these patients is bilateral and symmetric, may be<br />

hemianopic or diffuse, and usually lasts several m<strong>in</strong>utes or occasionally less than a<br />

m<strong>in</strong>ute (but not seconds, as noted with obscurations of vision noted with papilledema<br />

and <strong>in</strong>creased <strong>in</strong>tracranial pressure). The sc<strong>in</strong>tillat<strong>in</strong>g and expand<strong>in</strong>g scotomas of<br />

migra<strong>in</strong>e rarely occur with vertebrobasilar TIAs, and migra<strong>in</strong>ous visual phenomena<br />

usually last 20 to 30 m<strong>in</strong>utes, somewhat longer than visual loss noted with vertebrobasilar<br />

TIAs. Also, Hilton-Jones et al described a patient with a large frontal lobe tumor<br />

who experienced frequent, stereotyped episodes of bilateral, simultaneous visual loss<br />

last<strong>in</strong>g 5 to 30 m<strong>in</strong>utes (Hilton-Jones, 1982). This patient reportedly did not have<br />

papilledema.<br />

Other unusual causes of transient bilateral visual loss should be mentioned. For<br />

example, transient bilateral bl<strong>in</strong>dness last<strong>in</strong>g m<strong>in</strong>utes to hours may rarely occur with<br />

giant cell arteritis, due to either vertebrobasilar <strong>in</strong>sufficiency or bilateral impend<strong>in</strong>g<br />

anterior ischemic optic neuropathy (Diego, 1998). Bilateral blurred vision last<strong>in</strong>g<br />

m<strong>in</strong>utes to several hours dur<strong>in</strong>g sexual arousal may be associated with narrow-angle<br />

glaucoma (Friedberg, 1999). As noted above, transient bilateral bl<strong>in</strong>dness may be the<br />

sole manifestation of occipital epilepsy (Panayiotopoulos, 1999). In fact, prolonged (48<br />

hour) visual loss may occur with occipital seizures (status epilepticus amauroticus)


(Sawchuk, 1997). Transient bilateral cortical bl<strong>in</strong>dness last<strong>in</strong>g 24 hours has been<br />

described with preeclampsia (Kesler, 1998), and transient cortical bl<strong>in</strong>dness last<strong>in</strong>g<br />

hours, days, or even several weeks may occur after cerebral angiography (Gibson, 1982).<br />

Temporary bilateral bl<strong>in</strong>dness (pupils normal or nonreactive) may occur with irritability,<br />

confusion, bradycardia, nausea, hypertension, dyspnea, and seizures dur<strong>in</strong>g or<br />

after transurethral prostatic resection (TURP) (Barletta, 1994). This TURP syndrome is<br />

thought due to excessive absorption of nonelectrolyte irrigat<strong>in</strong>g fluid through the<br />

prostatic venous s<strong>in</strong>uses <strong>in</strong>to the general circulation. Glyc<strong>in</strong>e toxicity on the optic<br />

nerves or cortex, due to excessive glyc<strong>in</strong>e absorption, is the likely mechanism of visual<br />

loss. The symptoms and signs of the TURP syndrome resolve with<strong>in</strong> 24 hours with<br />

<strong>in</strong>travenous pyridox<strong>in</strong>e and arg<strong>in</strong><strong>in</strong>e hydrochloride.<br />

Bilateral TVL last<strong>in</strong>g several weeks may occur with the reversible posterior leukoencephalopathy<br />

due to immunosuppressive therapy (cyclospor<strong>in</strong>e or tacrolimus) after<br />

transplantation. Patients on <strong>in</strong>terferon-a for myeloma or <strong>in</strong>terleuk<strong>in</strong>-2 therapy for<br />

malignancy or HIV disease may develop TVL. TVL may occur <strong>in</strong> eclampsia, acute<br />

hypertensive encephalopathy associated with renal disease, or acute <strong>in</strong>termittent<br />

porphyria (H<strong>in</strong>chey, 1996; Karp, 1996; Kuperschmidt, 1995).<br />

What Is the Evaluation for B<strong>in</strong>ocular TVL?<br />

Transient Visual Loss 183<br />

The evaluation of patients with bilateral TVL depends on a thorough history, especially<br />

directed at the characteristics and temporal course of the episodes of TVL and any<br />

associated symptoms, and a complete neuro-ophthalmologic exam<strong>in</strong>ation, <strong>in</strong>clud<strong>in</strong>g<br />

visual field test<strong>in</strong>g. If the episodes last seconds and papilledema is present, then MRI is<br />

<strong>in</strong>dicated. If MRI is negative, then a sp<strong>in</strong>al tap is warranted. If episodes of bilateral<br />

visual loss occur only on exposure to bright light, then evaluation of the carotid arteries<br />

is <strong>in</strong>dicated. Patients with typical expand<strong>in</strong>g migra<strong>in</strong>e sc<strong>in</strong>tillations and positive<br />

phenomena last<strong>in</strong>g 20 to 30 m<strong>in</strong>utes that have been noted to occur on different sides<br />

at different times and headaches that have been documented to occur on different sides<br />

at different times usually do not require further workup. Abnormalities on visual field<br />

exam<strong>in</strong>ation suggest<strong>in</strong>g a retrochiasmal lesion or atypical migra<strong>in</strong>e-like phenomena<br />

should prompt neuroimag<strong>in</strong>g (class III–IV, level C). Patients with visual symptoms that<br />

are brief, episodic, unformed, and not associated with the angular, sc<strong>in</strong>tillat<strong>in</strong>g figures<br />

might also require MRI or MR angiography (class III–IV, level U). When either<br />

‘‘migra<strong>in</strong>e’’ headache or visual symptoms are restricted to one side of the head (even<br />

if the visual field exam is normal), a neuroimag<strong>in</strong>g study for occipital AVM is reasonable<br />

(class III–IV, level U). Patients with migra<strong>in</strong>e and symptoms or signs of collagen<br />

vascular disease require a collagen vascular disease profile. Electroencephalography or<br />

a trial of anticonvulsant medications is warranted if occipital epilepsy is likely (class III,<br />

level U).<br />

The evaluation and treatment of patients with vertebrobasilar TIAs is controversial.<br />

MRI and MR angiography are usually suggested, especially to evaluate the vertebrobasilar<br />

circulation, and <strong>in</strong>traarterial angiography may be considered. A cardiac embolic<br />

source should always be considered and, if warranted, transthoracic or transesophageal<br />

echocardiography may be performed (class III–IV, level C). Treatment <strong>in</strong>cludes control<br />

of stroke risk factors and antiplatelet drugs or anticoagulation.


184 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

<strong>An</strong> approach to the evaluation of patients with bilateral TVL is presented <strong>in</strong><br />

Figure 8–2.<br />

References<br />

Ambres<strong>in</strong> A, Borruat F-X, Mermoud A. (2001). Recurrent transient visual loss after deep sclerotomy. Arch<br />

Ophthalmol 119:1213–1214.<br />

Ammache Z, Graber M, Davis P. (2000). Idiopathic stabb<strong>in</strong>g headache associated with monocular visual loss. Arch<br />

<strong>Neuro</strong>l 57:745–746.<br />

<strong>An</strong>dracchi S, Kupersmith MJ, Nelson MJ, et al. (2000). Visual loss from arterial steal <strong>in</strong> patients with maxillofacial<br />

arteriovenous malformation. Ophthalmology 107:730–736.<br />

Barletta JP, Fanous MM, Hamed LM. (1994). Temporary bl<strong>in</strong>dness <strong>in</strong> the TUR syndrome. J <strong>Neuro</strong>-ophthalmol<br />

14:6–8.<br />

Barnett HJM, Taylor DW, Eliasziw M, et al. (1998). Benefit of carotid endarterectomy <strong>in</strong> patients with symptomatic<br />

moderate or severe stenosis. New Engl J Med 339:1415–1425.<br />

Benavente O, Eliasziw M, Streifler JY, et al. (2001). Prognosis after transient monocular bl<strong>in</strong>dness with carotidartery<br />

stenosis. New Engl J Med 345:1084–1090.<br />

Bernard GA, Bennett JL. (1999). Vasospastic amaurosis fugax. Arch Ophthalmol 117:1568.<br />

Biousse V, Newman NJ, Lee AG, et al. (1998a). Intracranial Ew<strong>in</strong>g’s sarcoma. J <strong>Neuro</strong>-ophthalmol 18:187–191.<br />

Biousse V, Newman NJ, Sternberg P Jr. (1997). Ret<strong>in</strong>al ve<strong>in</strong> occlusion and transient monocular visual loss<br />

associated with hyperhomocyst<strong>in</strong>emia. Am J Ophthalmol 1997;124:257–260.<br />

Biousse V, Touboul P-J, D’<strong>An</strong>glejan-Chatillon J, et al. (1998b). Ophthalmic manifestations of <strong>in</strong>ternal carotid<br />

dissection. Am J Ophthalmol 126:565–577.<br />

Booy R. (1990). Amaurosis fugax <strong>in</strong> young women. Lancet 335:1538.<br />

Borruat F-X, Bogousslavsky J, Uffer S, et al. (1993). Orbital <strong>in</strong>farction syndrome. Ophthalmology 100:562–568.<br />

Bremner FD, Sanders MD, Sranford MR. (1999). Gaze-evoked amaurosis <strong>in</strong> dysthyroid orbitopathy. Br J<br />

Ophthalmol 83:501.<br />

Bruno A, Corbett JJ, Boller J, et al. (1990). Transient monocular visual loss patterns and associated vascular<br />

abnormalities. Stroke 21:34–39.<br />

Burger SK, Saul RF, Selhorst JB, Thurston SE. (1991). Transient monocular bl<strong>in</strong>dness caused by vasospasm. N Engl<br />

J Med 325:870–873.<br />

Case Records of the Massachusetts General Hospital. (1999). Case 3-1999. N Engl J Med 340:300–307.<br />

Casson RJ, Flem<strong>in</strong>g <strong>FK</strong>, Shaikh A, James B. (2001). Bilateral ocular ischemic syndrome secondary to giant cell<br />

arteritis. Arch Ophthalmol 119:306–307.<br />

Cates CA, Newman DK. (1998). Transient monocular visual loss due to uveitis-glaucoma-hyphaema (UGH)<br />

syndrome. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 65:131–132.<br />

Chen W-T, Fuh J-L, Lu S-R, Wang S-J. (2001). Persistent migra<strong>in</strong>ous phenomena might be responsive to<br />

lamotrig<strong>in</strong>e. Headache 41:823–825.<br />

Danesh-Meyer HV, Sav<strong>in</strong>o PJ, Bilyk JR, et al. (2001). Gaze-evoked amaurosis produced by <strong>in</strong>traorbital buckshot<br />

pellet. Ophthalmology 108:201–206.<br />

Danks JJ, Harrad RA. (1998). Flash<strong>in</strong>g lights <strong>in</strong> thyroid eye disease: a new symptom described and (possibly)<br />

expla<strong>in</strong>ed. Br J Ophthalmol 82:1309–1311.<br />

Diego M, Margo CE. (1998). Postural vision loss <strong>in</strong> giant cell arteritis. J <strong>Neuro</strong>-ophthalmol 18:124–126.<br />

Donders RCJM for the Dutch TMB Study Group. (2001). <strong>Cl<strong>in</strong>ical</strong> features of transient monocular bl<strong>in</strong>dness and<br />

the likelihood of atherosclerotic lesions of the <strong>in</strong>ternal carotid artery. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

71:247–249.<br />

Donders RCJM, Kappelle LJ, Derksen RHWM, et al. (1998). Transient monocular bl<strong>in</strong>dness and antiphospholipid<br />

antibodies <strong>in</strong> systemic lupus erythematosus. <strong>Neuro</strong>logy 51:535–540.<br />

Dreier JP, Sakowitz OW, Unterberg AW, et al. (2001). Migra<strong>in</strong>ous aura start<strong>in</strong>g several m<strong>in</strong>utes after the onset of<br />

subarachnoid hemorrhage. <strong>Neuro</strong>logy 57:1344–1345.<br />

Ebner R. (1995). Morn<strong>in</strong>g glory syndrome, amaurosis fugax, and cortical laser tomography. Presented at the North<br />

American <strong>Neuro</strong>-Ophthalmology Society annual meet<strong>in</strong>g, Tucson, Arizona.<br />

F<strong>in</strong>elli PF. (1997). Alternat<strong>in</strong>g amaurosis fugax and temporal arteritis. Am J Ophthalmol 123:850–851.<br />

F<strong>in</strong>eman MS, Regillo CD, Sergott RC, et al. (1999). Transient visual loss and decreased ocular blood flow velocities<br />

follow<strong>in</strong>g a scleral buckl<strong>in</strong>g procedure. Arch Ophthalmol 117:1647–1648.


Transient Visual Loss 185<br />

Fisher CM. (1999). Late-life (migra<strong>in</strong>ous) sc<strong>in</strong>tillat<strong>in</strong>g zigzags without headache: one person’s 27-year experience.<br />

Headache 39:391–397.<br />

Friedberg DN, Fox LE. (1999). Blurred vision dur<strong>in</strong>g sexual arousal associated with narrow-angle glaucoma. Am J<br />

Ophthalmol 128:647–648.<br />

Galetta SL, Balcar LJ, Liu GT. (1997). Giant cell arteritis with unusual flow-related neuro-ophthalmologic<br />

manifestations. <strong>Neuro</strong>logy 49:1463–1465.<br />

Gass JDM. (1997). Stereoscopic Atlas of Macular Disease. Diagnosis and Treatment. 4th ed. St. Louis, Mosby, pp.<br />

464–466, 984–985.<br />

Gibson JM, Cullen JF. (1982). Bl<strong>in</strong>dness and visual field defects follow<strong>in</strong>g cerebral angiography. <strong>Neuro</strong><strong>ophthalmology</strong><br />

2:297–303.<br />

Goodw<strong>in</strong> JA, Gorelick P, Helgason CM. (1987). Symptoms of amaurosis fugax <strong>in</strong> atherosclerotic carotid artery<br />

disease. <strong>Neuro</strong>logy 37:829–832.<br />

Gupta A, Jalali S, Bansal RK, Grewal SPS. (1990). <strong>An</strong>terior ischemic optic neuropathy and branch ret<strong>in</strong>al artery<br />

occlusion <strong>in</strong> cavernous s<strong>in</strong>us thrombosis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:193–196.<br />

Haan J, Sluis P, Sluis LH, Ferrari MD. (2000). Acetazolamide treatment for migra<strong>in</strong>e aura status. <strong>Neuro</strong>logy<br />

55:1588–1589.<br />

Haas DC. (1991). Arteriovenous malformations and migra<strong>in</strong>e: case reports and analysis of the relationship.<br />

Headache 31:509–513.<br />

Hamed LM, Guy JR, Moster ML, Bosley T. (1992). Giant cell arteritis <strong>in</strong> the ocular ischemic syndrome. Am J<br />

Ophthalmol 113:702–705.<br />

Hardy TG, O’Day J. (1998). Ret<strong>in</strong>al arteriovenous malformation with fluctuat<strong>in</strong>g vision and ischemic central<br />

ret<strong>in</strong>al ve<strong>in</strong> occlusion and its sequelae: 25-year follow-up of a case. J <strong>Neuro</strong>-ophthalmol 18:233–236.<br />

Haynes RB, Taylor DW, Sackett DL, et al. (1994). Prevention of functional impairment by endarterectomy for<br />

symptomatic high-grade carotid stenosis. JAMA 271:1256–1259.<br />

Hayreh SS, Podhajsky PA, Zimmerman B. (1998a). Ocular manifestations of giant cell arteritis. Am J Ophthalmol<br />

125:509–520.<br />

Hayreh SS, Podhajsky PA, Zimmerman B. (1998b). Occult giant cell arteritis: ocular manifestations. Am J<br />

Ophthalmol 125:521–526.<br />

Hilton-Jones D, Ponsford JR, Graham N. (1982). Transient visual obscurations, without papilloedema. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 45:832–834.<br />

H<strong>in</strong>chey J, Chaves C, Appignani B, et al. (1996). A reversible posterior leukoencephalopathy syndrome. N Engl<br />

J Med 334:494–500.<br />

Hurwitz BJ, Heyman A, Wilk<strong>in</strong>son WE, et al. (1985). Comparison of amaurosis fugax and transient cerebral<br />

ischemia. A prospective cl<strong>in</strong>ical, arteriographic study. <strong>An</strong>n <strong>Neuro</strong>l 18:698–704.<br />

Hwang J-M, Girk<strong>in</strong> CA, Perry JD, et al. (1999). Bilateral ocular ischemic syndrome secondary to giant cell arteritis<br />

progress<strong>in</strong>g despite corticosteroid treatment. Am J Ophthalmol 127:102–104.<br />

Jehn A, Dettwiler BF, Fleischhauer J, et al. (2002). Exercise-<strong>in</strong>duced vasospastic amaurosis fugax. Arch Ophthalmol<br />

120:220–222.<br />

Kaiboriboon K, Piriyawat P, Selhorst JB. (2001). Light-<strong>in</strong>duced amaurosis fugax. Am J Ophthalmol 131:674–676.<br />

Karp BI, Yang JC, Khorsand M, et al. (1996). Multiple cerebral lesions complicat<strong>in</strong>g therapy with <strong>in</strong>terleuk<strong>in</strong>-2.<br />

<strong>Neuro</strong>logy 47:417–424.<br />

Kawaguchi S, Sakaki T, Morimoto T, et al. (1999). Effects of bypass on ocular ischaemic syndrome caused by<br />

reversed flow <strong>in</strong> the ophthalmic artery. Lancet 354:2052–2053.<br />

Kawaguchi S, Okuno S, Sakaki T, Nishikawa N. (2001). Effect of carotid endarterectomy on chronic ocular<br />

ischemic syndrome due to <strong>in</strong>ternal carotid artery stenosis. <strong>Neuro</strong>surgery 48:328–333.<br />

Kerty E. (1999). The <strong>ophthalmology</strong> of <strong>in</strong>ternal carotid artery dissection. Acta Ophthalmol Scand 77:418–421.<br />

Kesler A, Kaneti H, Kidron D. (1998). Transient cortical bl<strong>in</strong>dness <strong>in</strong> preeclampsia with <strong>in</strong>dication of generalized<br />

vascular endothelial damage. J <strong>Neuro</strong>-ophthalmol 18:163–165.<br />

Kle<strong>in</strong> R, Kle<strong>in</strong> BEK, Jensen SC, et al. (1999). Ret<strong>in</strong>al emboli and stroke. The Beaver Dam Eye Study. Arch<br />

Ophthalmol 117:1063–1068.<br />

Knapp ME, Flaharty PM, Sergott RC, et al. (1992). Gaze-<strong>in</strong>duced amaurosis from central ret<strong>in</strong>al artery<br />

compression. Ophthalmology 99:238–240.<br />

Kohmoto H, Oohira A. (1993). Gaze-evoked scotomata <strong>in</strong> metastatic orbital tumor. <strong>Neuro</strong>-<strong>ophthalmology</strong><br />

13:223–226.<br />

Kosmorsky GS, Rosenfeld SI, Burde RM. (1985). Transient monocular obscuration? Amaurosis fugax: a case<br />

report. Br J Ophthalmol 69:688–690.<br />

Kramer M, Goldenberg-Cohen N, Shapira Y, et al. (2001). Role of transesophageal echocardiography <strong>in</strong> the<br />

evaluation of patients with ret<strong>in</strong>al artery occlusion. Ophthalmology 108:1461–1464.


186 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Kuperschmidt H, Bont A, Schnorf H, et al. (1995). Transient cortical bl<strong>in</strong>dness and bioccipital bra<strong>in</strong> lesions <strong>in</strong> two<br />

patients with acute <strong>in</strong>termittent porphyria. <strong>An</strong>n Intern Med 123:598–600.<br />

Kupersmith MJ, Berenste<strong>in</strong> A, Nelson PK, et al. (1999). Visual symptoms with dural arteriovenous malformations<br />

dra<strong>in</strong><strong>in</strong>g <strong>in</strong>to occipital ve<strong>in</strong>s. <strong>Neuro</strong>logy 52:156–162.<br />

Kupersmith MJ, Vargas ME, Yashar A, et al. (1996). Occipital arteriovenous malformations: visual disturbances<br />

and presentation. <strong>Neuro</strong>logy 46:953–957.<br />

Kurita H, Sh<strong>in</strong> M. (2000). Resolution of migra<strong>in</strong>e with aura caused by an occipital arteriovenous malformation.<br />

Arch <strong>Neuro</strong>l 57:1219–1220.<br />

Lev<strong>in</strong> LA, Mootha VV. (1997). Postprandial transient visual loss. A symptom of critical carotid stenosis.<br />

Ophthalmology 104:297–401.<br />

Lev<strong>in</strong>e SR, Deegan MJ, Futrell N, Welch KMA. (1990). Cerebrovascular and neurologic disease associated with<br />

antiphospholipid antibodies. 48 cases. <strong>Neuro</strong>logy 40:1181–1189.<br />

Lewis JR, Glaser JS, Schatz NJ, Hutson DG. (1993). Pulseless (Takayasu) disease with ophthalmic manifestations.<br />

J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:242–249.<br />

Liu GT, Schatz NJ, Galetta SL, et al. (1995). Persistent positive visual phenomena <strong>in</strong> migra<strong>in</strong>e. <strong>Neuro</strong>logy<br />

45:664–668.<br />

Luda E, Bo E, Sicuro L, et al. (1991). Susta<strong>in</strong>ed visual aura: a totally new variation of migra<strong>in</strong>e. Headache<br />

31:582–583.<br />

Malhotra R, Gregory-Evans K. (2000). Management of ocular ischemic syndrome. Br J Ophthalmol 84:1428–1431.<br />

Manor RS, Yassur Y, Hoyt WF. (1996). Read<strong>in</strong>g-<strong>in</strong>duced visual dimm<strong>in</strong>g. Am J Ophthalmol 121:212–213.<br />

Marshall J, Meadows S. (1968). The natural history of amaurosis fugax. Bra<strong>in</strong> 91:419–434.<br />

Meire FM, De Laey JJ, van Thienen MN, Schudd<strong>in</strong>ck L. (1991). Ret<strong>in</strong>al manifestations <strong>in</strong> fibromuscular dysplasia.<br />

Eur J Ophthalmol 1:63–68.<br />

Mezer E, Gdal-On M, Miller B. (1997). Orbital metastasis of renal cell carc<strong>in</strong>oma masquerad<strong>in</strong>g as amaurosis<br />

fugax. Eur J Ophthalmol 7:301–304.<br />

Miller NR. (1991). Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 4th ed. Baltimore, Williams & Wilk<strong>in</strong>s,<br />

pp. 2300–2307, 2526–2528.<br />

Newman DS, Lev<strong>in</strong>e SR, Curtis VL, Welch KMA. (1989). Migra<strong>in</strong>e-like visual phenomena associated with cerebral<br />

venous thrombosis. Headache 29:82–85.<br />

North American Symptomatic Carotid Endarterectomy Trial Collaborators. (1991). Beneficial effects of carotid<br />

endarterectomy <strong>in</strong> symptomatic patients with high-grade carotid stenosis. N Engl J Med 325:445–453.<br />

O’Duffy D, James B, Elston J. (1998). Idiopathic <strong>in</strong>tracranial hypertension present<strong>in</strong>g with gaze-evoked amaurosis.<br />

Acta Ophthalmol Scand 76:119–120.<br />

O’Sullivan E, Shaunak S, Matthews T, et al. (1995). Transient monocular bl<strong>in</strong>dness. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

59:559.<br />

O’Sullivan E, Rossor M, Elston JS. (1992). Amaurosis fugax <strong>in</strong> young people. Br J Ophthalmol 76:660–662.<br />

Panayiotopoulos CP. (1999). Elementary visual halluc<strong>in</strong>ations, bl<strong>in</strong>dness, and headache <strong>in</strong> idiopathic occipital<br />

epilepsy: differentiation from migra<strong>in</strong>e. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 66:536–540.<br />

Pep<strong>in</strong> EP. (1990). Cerebral metastasis present<strong>in</strong>g as migra<strong>in</strong>e with aura. Lancet 336:127–128.<br />

Pess<strong>in</strong> MS, Duncan GD, Mohr JP, Poskanzer DC. (1977). <strong>Cl<strong>in</strong>ical</strong> and angiographic features of carotid transient<br />

ischemic attacks. N Engl J Med 296:358–362.<br />

Ramadan NM, Tietjen GE, Lev<strong>in</strong>e SR, Welch KMA. (1991). Sc<strong>in</strong>tillat<strong>in</strong>g scotomata associated with <strong>in</strong>ternal carotid<br />

artery dissection. Report of three cases. <strong>Neuro</strong>logy 41:1084–1087.<br />

Rennie CA, Flanagan DW. (2002). Resolution of proliferative venous stasis ret<strong>in</strong>opathy after carotid endarterectomy.<br />

Br J Ophthalmol 86:117–118.<br />

Riaz G, Selhorst JB, Hennessey, JJ. (1991). Men<strong>in</strong>geal lesions mimick<strong>in</strong>g migra<strong>in</strong>e. <strong>Neuro</strong>-<strong>ophthalmology</strong> 11:41–48.<br />

Romano JG, Babikian VL, Wijman CAC, Hedges TR III. (1998). Ret<strong>in</strong>al ischemia <strong>in</strong> aortic arch syndrome. J <strong>Neuro</strong>ophthalmol<br />

18:237–241.<br />

Russell MB, Olesen J. (1996). A nosographic analysis of the migra<strong>in</strong>e aura <strong>in</strong> a general population. Bra<strong>in</strong><br />

119:355–361.<br />

Sawchuk KSLJ, Churchill S, Feldman E, Drury I. (1997). Status epilepticus amauroticus. <strong>Neuro</strong>logy 49:1467–1469.<br />

Sharma S, Brown GC, Pater JL, Cruess AF. (1998). Does a visible ret<strong>in</strong>al embolus <strong>in</strong>crease the likelihood of<br />

hemodynamically significant carotid artery stenosis <strong>in</strong> patients with acute ret<strong>in</strong>al arterial occlusion? Arch<br />

Ophthalmol 116:1602–1606.<br />

Smith L, Kriss A, Gregson R, et al. (1998). Gaze evoked amaurosis <strong>in</strong> neurofibromatosis type II. Br J Ophthalmol<br />

82:584–585.


Transient Visual Loss 187<br />

Sobottka Ventura AC, Remi<strong>in</strong>da L, Mojon DS. (2001). Intermittent visual loss and exophthalmos due to the blue<br />

rubber bleb nevus syndrome. Am J Ophthalmol 132:132–135.<br />

Spier<strong>in</strong>gs ELH. (2001). Daily migra<strong>in</strong>e with visual aura associated with an occipital arteriovenous malformation.<br />

Headache 41:193–197.<br />

Teman AJ, W<strong>in</strong>terkorn JMS, We<strong>in</strong>er D. (1995). Transient monocular bl<strong>in</strong>dness associated with sexual <strong>in</strong>tercourse.<br />

N Engl J Med 333:393.<br />

Tipp<strong>in</strong> J, Corbett JJ, Kerber RE, et al. (1989). Amaurosis fugax and ocular <strong>in</strong>farction <strong>in</strong> adolescents and young<br />

adults. <strong>An</strong>n <strong>Neuro</strong>l 26:69–77.<br />

Wall M, George D. (1991). Idiopathic <strong>in</strong>tracranial hypertension: a prospective study of 50 patients. Bra<strong>in</strong><br />

114:155–180.<br />

Wijman CAC, Wolf PA, et al. (1998). Migra<strong>in</strong>ous visual accompaniments are not rare <strong>in</strong> late life: the Fram<strong>in</strong>gham<br />

Study. Stroke 29:1539–1543.<br />

W<strong>in</strong>terkorn JMS, Beckman RL. (1995). Recovery from ocular ischemic syndrome after treatment with verapamil.<br />

J <strong>Neuro</strong>-ophthalmol 15:209–211.<br />

W<strong>in</strong>terkorn JMS, Kupersmith, MJ, Wirtschafter, JD, Forman, S. (1993). Brief report: treatment of vasospastic<br />

amaurosis fugax with calcium-channel blockers. N Engl J Med 329:396–398.<br />

Wykes WN, Adams GGW, Cullen JF. (1984). Temporal arteritis: visual loss associated with posture. <strong>Neuro</strong><strong>ophthalmology</strong><br />

4:107–109.<br />

Zarnegar SR, Chung S, Selhorst JB. (1995). <strong>An</strong> unusual cause of amaurosis fugax. Presented at the North American<br />

<strong>Neuro</strong>-Ophthalmology annual meet<strong>in</strong>g, Tucson, Arizona.<br />

Zimmerman CF, Van Patten PD, Golnik KC, et al. (1995). Orbital <strong>in</strong>farction syndrome after surgery for <strong>in</strong>tracranial<br />

aneurysms. Ophthalmology 102:594–598.


This page <strong>in</strong>tentionally left blank


9 r<br />

Visual Field Defects<br />

What Is the Topographical Diagnosis of Visual<br />

Field Defects?<br />

The localization of visual field defects is outl<strong>in</strong>ed <strong>in</strong> Figure 9–1.<br />

Is the Visual Field Defect Unilateral?<br />

Lesions affect<strong>in</strong>g the ret<strong>in</strong>a, nerve fiber layer, or optic nerve produce visual field defects<br />

<strong>in</strong> the ipsilateral eye that correspond <strong>in</strong> position, shape, extent, and <strong>in</strong>tensity to the<br />

lesion. The lesion may be <strong>in</strong>flammatory, ischemic, degenerative, or neoplastic. Because<br />

the nerve fiber layer aris<strong>in</strong>g from the peripheral ret<strong>in</strong>a arches over the fovea, superior or<br />

<strong>in</strong>ferior nerve fiber layer damage results <strong>in</strong> arcuate-shaped visual field defects. Rarely,<br />

patients with a lesion of the anterior occipital lobe may have a unilateral, contralateral<br />

visual field defect (see monocular temporal crescent).<br />

Is a Ret<strong>in</strong>al Lesion Responsible for the Visual<br />

Field Defect?<br />

Almost all ret<strong>in</strong>al lesions result<strong>in</strong>g <strong>in</strong> visual field loss are visible ophthalmoscopically.<br />

Careful attention should be directed to the ret<strong>in</strong>a and ret<strong>in</strong>al nerve fiber layer<br />

correspond<strong>in</strong>g to the visual field defect. Patients with macular disease also may<br />

compla<strong>in</strong> of metamorphopsia, micropsia, and positive photopsias (e.g., flash<strong>in</strong>g<br />

lights) that are unusual <strong>in</strong> patients with optic neuropathies. Easily visible ret<strong>in</strong>al lesions<br />

are not discussed <strong>in</strong> detail. Table 9–1 lists some ret<strong>in</strong>al disorders that may be difficult to<br />

visualize without careful attention to the macula with high magnification and stereoscopic<br />

view<strong>in</strong>g. In some cases the ret<strong>in</strong>a may appear normal or near normal, and<br />

ancillary test<strong>in</strong>g may be required to def<strong>in</strong>e the etiology as ret<strong>in</strong>al (e.g., fluoresce<strong>in</strong><br />

angiography or focal, multi-focal, or full field electroret<strong>in</strong>ography).<br />

189


190 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 9–1. Evaluation of visual field defects.


Table 9–1. Subtle Ret<strong>in</strong>al Diseases that May Cause Visual<br />

Field Loss<br />

Cystoid macular edema<br />

Epiret<strong>in</strong>al membrane<br />

Outer ret<strong>in</strong>al <strong>in</strong>flammatory diseases<br />

Multiple evanescent white dot syndrome (MEWDS)<br />

Acute macular neuroret<strong>in</strong>itis (AMN)<br />

Acute ret<strong>in</strong>al pigment epitheliitis<br />

Acute multifocal placoid pigment epitheliopathy (AMPPE)<br />

Acute zonal occult outer ret<strong>in</strong>opathy (AZOOR)<br />

Serous detachment of the macula<br />

Cone-rod dystrophy<br />

Ret<strong>in</strong>itis pigmentosa s<strong>in</strong>e pigmento<br />

Cancer-associated ret<strong>in</strong>opathy (CAR)<br />

Melanoma-associated ret<strong>in</strong>opathy (MAR)<br />

<strong>An</strong>nular or r<strong>in</strong>g scotomas may occur with ret<strong>in</strong>opathies or optic neuropathies.<br />

Etiologies of annular or r<strong>in</strong>g scotomas <strong>in</strong>clude pigmentary ret<strong>in</strong>opathies, ret<strong>in</strong>itis,<br />

choroiditis, bl<strong>in</strong>d<strong>in</strong>g diffuse light, ret<strong>in</strong>al migra<strong>in</strong>e, myopia, cancer-associated ret<strong>in</strong>opathy<br />

(CAR), open angle glaucoma (from coalescence of upper and lower arcuate<br />

scotomas), and optic neuropathies (e.g., anterior ischemic optic neuropathy, AION).<br />

Bilateral annular or r<strong>in</strong>g scotomas may be due to bilateral ret<strong>in</strong>al or optic nerve disease<br />

but may also occur with bilateral occipital pole damage or occur on a functional<br />

(nonorganic) basis.<br />

Is There Evidence for an Optic <strong>Neuro</strong>pathy?<br />

Visual Field Defects 191<br />

Central visual field defects (unilateral or bilateral) are the result of damage to the<br />

papillomacular bundle or optic nerve. <strong>An</strong>y visual field defect produced by a ret<strong>in</strong>al<br />

lesion may be produced by a lesion of the optic nerve (Miller, 1998) and virtually any<br />

etiology may be responsible (e.g., glaucomatous, degenerative, ischemic, traumatic,<br />

<strong>in</strong>flammatory, <strong>in</strong>filtrative, compressive, vascular optic neuropathy). Patients with a<br />

unilateral visual field defect and evidence for an optic neuropathy should undergo<br />

evaluation for an optic neuropathy (see Chapter 1). Patients with a unilateral hemianopic<br />

visual field defect (junctional scotoma of Traquair) may harbor a lesion of the<br />

optic nerve at the junction of the optic nerve and chiasm.<br />

In assess<strong>in</strong>g optic nerve–related visual field defects, several anatomic po<strong>in</strong>ts are<br />

worth remember<strong>in</strong>g:<br />

1. Fibers from peripheral ganglion cells occupy a more peripheral position of the optic<br />

disc, whereas fibers from ganglion cells located closer to the disc occupy a more<br />

central position.<br />

2. Peripheral fibers course peripherally through the entire extent of the optic nerve.<br />

3. The papillomacular bundle occupies a large sector-shaped region of the temporal<br />

disc. This bundle of fibers moves centrally <strong>in</strong> the more distal (posterior) portions of<br />

orbital optic nerve.


192 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

4. All ret<strong>in</strong>al fibers reta<strong>in</strong> their relative positions throughout the visual pathways except<br />

<strong>in</strong> the optic tract and at the lateral geniculate nucleus, where there is a rotation of 90<br />

degrees that becomes ‘‘straightened out’’ <strong>in</strong> the optic radiations.<br />

Is the Monocular Temporal Crescent Affected<br />

<strong>in</strong> Isolation?<br />

Although monocular peripheral temporal visual field defects are most often the result of<br />

ret<strong>in</strong>al or optic nerve disease, a lesion of the peripheral nasal fibers <strong>in</strong> the anterior<br />

occipital lobe may also produce a unilateral (monocular) temporal crescent-shaped<br />

visual field defect from 60 to 90 degrees (‘‘half-moon syndrome’’) (Chavis, 1997).<br />

Although retrochiasmal lesions <strong>in</strong> the visual pathway usually result <strong>in</strong> homonymous<br />

visual field loss, the monocular temporal crescent is the one exception. Homonymous<br />

visual field loss with spar<strong>in</strong>g of this temporal crescent or selective <strong>in</strong>volvement of<br />

this area localizes the lesion to the occipital lobe, and neuroimag<strong>in</strong>g should be directed<br />

to the contralateral calcar<strong>in</strong>e cortex (Landau, 1995; Lepore, 2001).<br />

Is the Visual Field Defect Bilateral?<br />

Bilateral lesions of the ret<strong>in</strong>a or optic nerve may result <strong>in</strong> bilateral visual field defects.<br />

Table 9–2 reviews the cl<strong>in</strong>ical features of bilateral superior or <strong>in</strong>ferior altitud<strong>in</strong>al defects<br />

and bilateral central or cecocentral scotomas. In the absence of evidence for bilateral<br />

ret<strong>in</strong>al disease or bilateral optic neuropathy, bilateral visual field loss results from<br />

disease affect<strong>in</strong>g the optic chiasm or retrochiasmal pathways.<br />

Is the Visual Field Defect Junctional <strong>in</strong><br />

Nature?<br />

Nerve fibers orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong> the ret<strong>in</strong>a follow a specific topographic arrangement <strong>in</strong> the<br />

optic nerve and chiasm. Compressive lesions at the junction of the <strong>in</strong>tracranial optic<br />

nerve and optic chiasm may produce characteristic visual field defects. Optic nerve<br />

<strong>in</strong>volvement at the junction of the optic chiasm results <strong>in</strong> unilateral visual field loss<br />

(optic neuropathy). If fibers from the <strong>in</strong>feronasal ret<strong>in</strong>a of the contralateral eye<br />

(Wilbrand’s knee) are <strong>in</strong>volved, there will also be a superotemporal visual field defect<br />

<strong>in</strong> the contralateral eye.<br />

The <strong>in</strong>tracranial optic nerves extend posteriorly from the optic foramen and jo<strong>in</strong> at the<br />

optic chiasm. With<strong>in</strong> the chiasm, fibers from the nasal ret<strong>in</strong>a of each eye cross <strong>in</strong>to<br />

the contralateral optic tract, and fibers from the temporal ret<strong>in</strong>a pass uncrossed <strong>in</strong>to the<br />

ipsilateral optic tract. With<strong>in</strong> the <strong>in</strong>tracranial optic nerve, the crossed (nasal ret<strong>in</strong>al) and<br />

uncrossed (temporal ret<strong>in</strong>al) fibers are anatomically separated at the junction of the<br />

optic nerve and chiasm. In addition, <strong>in</strong>ferior nasal cross<strong>in</strong>g fibers may loop anteriorly<br />

for a short distance <strong>in</strong>to the contralateral optic nerve. These fibers are often referred to as<br />

the anterior knee or Wilbrand’s knee.


Visual Field Defects 193<br />

Table 9–2. <strong>Cl<strong>in</strong>ical</strong> Features and Etiologies of Bilateral Superior or Inferior Altitud<strong>in</strong>al<br />

Defects and Bilateral Central or Cecocentral Scotomas<br />

Bilateral superior or <strong>in</strong>ferior (altitud<strong>in</strong>al hemianopia)<br />

Most caused by bilateral optic nerve or ret<strong>in</strong>al disease<br />

Rarely large prechiasmal lesion compresses both nerves <strong>in</strong>feriorly to cause bilateral superior<br />

hemianopia; compression of nerves from below may also elevate them aga<strong>in</strong>st the dural<br />

shelves extend<strong>in</strong>g out from the <strong>in</strong>tracranial end of the optic canals and cause bilateral <strong>in</strong>ferior<br />

altitud<strong>in</strong>al defects<br />

Bilateral symmetric damage to postchiasmal pathways may cause bilateral altitud<strong>in</strong>al defects;<br />

bilateral lesions of medial aspect of lateral geniculate body may cause bilateral <strong>in</strong>ferior<br />

hemianopias<br />

Bilateral occipital lesions may cause bilateral <strong>in</strong>ferior, and less often, superior hemianopias<br />

Bilateral ‘‘checker board’’ altitud<strong>in</strong>al hemianopia—superior defect <strong>in</strong> one eye and <strong>in</strong>ferior <strong>in</strong> the<br />

other eye<br />

Bilateral optic neuropathies<br />

May cause b<strong>in</strong>ocular diplopia because of vertical hemifield slide—preexist<strong>in</strong>g m<strong>in</strong>or phoria<br />

becomes a tropia because of vertical or horizontal separation or overlap of two nonoverlapp<strong>in</strong>g<br />

hemifields; this phenomenon may also occur with broad arcuate defects<br />

Bilateral cecocentral or central scotomas<br />

May be bilateral optic neuropathy of any cause (e.g., compressive) but more common etiologies<br />

<strong>in</strong>clude:<br />

Toxic or nutritional amblyopia<br />

Bilateral demyel<strong>in</strong>at<strong>in</strong>g optic neuritis<br />

Syphilis<br />

Leber’s hereditary optic neuropathy<br />

Bilateral macular disease<br />

Bilateral occipital lesions <strong>in</strong>volv<strong>in</strong>g macular projections<br />

Lesions at the junction of the optic nerve and chiasm may produce specific types of<br />

visual field defects that allow topographic localization. Selective compression of the<br />

crossed or uncrossed visual fibers at the junction may result <strong>in</strong> a unilateral temporal or<br />

nasal hemianopic field defect, respectively. In addition, <strong>in</strong>volvement of the <strong>in</strong>feronasal<br />

fibers of the anterior knee (Wilbrand’s knee) results <strong>in</strong> a superotemporal visual field<br />

defect contralateral to the lesion.<br />

In 1927, H. M. Traquair used the term junctional scotoma to refer to a unilateral<br />

temporal hemicentral field defect due to compression of the nasal fibers cross<strong>in</strong>g <strong>in</strong> the<br />

<strong>in</strong>tracranial optic nerve at the junction of the optic nerve and chiasm. Miller emphasized<br />

that the junctional scotoma described by Traquair refers to a strictly unilateral temporal<br />

scotoma that is assumed to arise from a lesion at the junction of the optic nerve and<br />

chiasm (Miller, 1998). Unfortunately, some confusion has arisen regard<strong>in</strong>g the use of the<br />

term junctional scotoma. As opposed to the defect described by Traquair, some authors<br />

have used the term to refer to an ipsilateral optic neuropathy with a contralateral<br />

superotemporal visual field defect. This superotemporal defect is caused by compression<br />

of the <strong>in</strong>feronasal fibers from the contralateral eye travel<strong>in</strong>g <strong>in</strong> Wilbrand’s knee.<br />

To clarify this dist<strong>in</strong>ction, Miller, cit<strong>in</strong>g J. Lawton Smith, recommended that the<br />

unilateral temporal visual field defect described by Traquair should be referred to as the<br />

‘‘junctional scotoma of Traquair’’ to differentiate it from the contralateral superotemporal<br />

defect more commonly referred to as the ‘‘junctional scotoma’’ (Miller, 1998).


194 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Recently, the existence of Wilbrand’s knee has come <strong>in</strong>to question. Wilbrand was<br />

restricted to exam<strong>in</strong><strong>in</strong>g human subjects who had undergone enucleation. In the<br />

enucleated eye, the nerve fibers atrophied and became dist<strong>in</strong>ct from the nerve fibers<br />

of the normal eye as seen on myel<strong>in</strong> sta<strong>in</strong><strong>in</strong>g. Horton, utiliz<strong>in</strong>g axon label<strong>in</strong>g techniques<br />

<strong>in</strong> nonenucleated monkeys, was unable to demonstrate cross<strong>in</strong>g fibers loop<strong>in</strong>g <strong>in</strong>to the<br />

contralateral optic nerve (Wilbrand’s knee) (Horton, 1997). In one monkey that had<br />

undergone enucleation 4 years previously, however, nerve fiber topography similar to<br />

that described by Wilbrand was found. Horton hypothesized that Wilbrand’s knee may<br />

be an artifact of enucleation caused by atrophy of the optic nerve and not a normal<br />

anatomic f<strong>in</strong>d<strong>in</strong>g. Nevertheless, whether Wilbrand’s knee exists anatomically, the<br />

localiz<strong>in</strong>g value of junctional visual field loss to the junction of the optic nerve and<br />

chiasm rema<strong>in</strong>s undim<strong>in</strong>ished because chiasmal compression alone may result <strong>in</strong> the<br />

contralateral superotemporal visual field defect (junctional scotoma). Karanjia and<br />

Jacobson described a junctional scotoma due to a focal lesion (pituitary tumor) of the<br />

prechiasmatic segment of the distal optic nerve and stressed the ‘‘exquisite localiz<strong>in</strong>g<br />

value’’ of a junctional scotoma (Karanjia, 1999).<br />

Trobe and Glaser noted that junctional visual field loss was due to a mass lesion <strong>in</strong> 98<br />

out of 100 cases (Trobe, 1983). The differential diagnosis of a junctional syndrome<br />

<strong>in</strong>cludes pituitary tumors, suprasellar men<strong>in</strong>giomas, supracl<strong>in</strong>oid aneurysms, craniopharyngiomas,<br />

and gliomas (Hershenfeld, 1993). Chiasmal neuritis, pachymen<strong>in</strong>gitis,<br />

and trauma are rare etiologies of the junctional syndrome. Junctional visual field<br />

abnormalities may also occur on a functional (nonorganic) basis.<br />

Patients with the junctional scotoma of Traquair or the junctional scotoma should be<br />

considered to have a compressive lesion at the junction of the optic nerve and chiasm<br />

until proven otherwise. <strong>Neuro</strong>imag<strong>in</strong>g studies, preferably magnetic resonance imag<strong>in</strong>g<br />

(MRI), should be directed to this location. Patients with junctional scotoma may be<br />

unaware of a small superotemporal visual field defect, and patients present<strong>in</strong>g with<br />

strictly unilateral visual compla<strong>in</strong>ts may be misdiagnosed as hav<strong>in</strong>g an optic neuritis or<br />

other unilateral optic neuropathy. Therefore, <strong>in</strong> any patient with presumed unilateral<br />

visual loss, careful visual field test<strong>in</strong>g should be performed <strong>in</strong> the contralateral<br />

asymptomatic eye.<br />

Is a Bitemporal Hemianopsia Present?<br />

Bitemporal hemianopsia may be peripheral, paracentral, or central. The visual field<br />

defect may ‘‘split’’ or ‘‘spare’’ the macular central field. The bitemporal defect usually is<br />

the result of a compressive mass lesion at the level of the optic chiasm (Miller, 1998).<br />

Tables 9–3 and 9–4 list the possible etiologies of a chiasmal lesion. Pseudochiasmal<br />

visual field defects (i.e., bitemporal defects that do not respect the vertical midl<strong>in</strong>e) may<br />

be due to tilted discs, colobomas, bilateral nasal ret<strong>in</strong>al disease (e.g., schisis), glaucoma,<br />

and bilateral optic neuropathies. <strong>Neuro</strong>imag<strong>in</strong>g (preferably MRI) should be directed at<br />

the optic chiasm <strong>in</strong> all patients with bitemporal defects that respect the vertical midl<strong>in</strong>e.<br />

Certa<strong>in</strong> anatomic relationships are important <strong>in</strong> evaluat<strong>in</strong>g chiasmal visual field<br />

defects:


Table 9–3. Compressive Chiasmal Syndromes<br />

Visual Field Defects 195<br />

Most common<br />

Pituitary apoplexy (Bills, 1993; Biousse, 2001; Embil, 1997)<br />

Pituitary tumor (especially pituitary adenoma) (Abe, 1998; Ikeda, 1995; Kerrison, 2000;<br />

Kupersmith, 1994; Lee, 1998; Peter, 1995; Petruson, 1995)<br />

Optic chiasm diastasis from pituitary tumor (Duru, 1999)<br />

Men<strong>in</strong>gioma (K<strong>in</strong>jo, 1995)<br />

Craniopharyngioma (Fahlbusch, 1999; Honegger, 1999; Mikelberg, 1993)<br />

Dysgerm<strong>in</strong>oma<br />

Suprasellar aneurysm<br />

Chiasmal glioma (Cirak, 2000; Miyairi, 2000; Rossi, 1994)<br />

Less common<br />

Abscess<br />

<strong>An</strong>aplastic astrocytoma (Miyairi, 2000)<br />

Arachnoid cyst<br />

Aspergillosis<br />

Cavernous hemangioma (Cobbs, 2001; Hwang, 1993)<br />

Chiasmal hematoma (chiasmal apoplexy) (Pakzaban, 2000)<br />

Chondroma<br />

Chordoma<br />

Choristomas<br />

Colloid cyst of the third ventricle<br />

Dermoid<br />

Dolichoectatic <strong>in</strong>ternal carotid arteries (Jacobson, 1999; Slav<strong>in</strong>, 1990b)<br />

Ependymoma<br />

Epidermoid<br />

Esthesioneuroblastoma<br />

Extramedullary hematopoiesis (Aarabi, 1998)<br />

Fibrous dysplasia<br />

Gangliocytoma (McCowen, 1999)<br />

Ganglioglioma (Liu, 1996)<br />

Giant cell tumor of bone<br />

Glioma<br />

Granular cell myoblastoma<br />

Hemangioblastoma (Saw<strong>in</strong>, 1996)<br />

Hemangioma (Bourekas, 2000)<br />

Hemangiopericytoma<br />

Histiocytosis X<br />

Hydrocephalus and distention of the third ventricle<br />

Intrasellar<br />

Langerhans’ cell histiocytoma (Job, 1999)<br />

Leukemia and lymphoma (Lee, 2001; McFadzean, 1990)<br />

Lipoma<br />

Lymphocytic hypophysitis (Abe, 1995; Beressi, 1994; Honegger, 1997; Jabre, 1997; Kerrison, 1997;<br />

Kristof, 1999; Lee, 1994; Naik, 1994; Nishioka, 1997; Stelmach, 1991; Thodou, 1995; Tubridy,<br />

2001)<br />

(cont<strong>in</strong>ued)


196 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 9–3. (cont<strong>in</strong>ued)<br />

Lymphohistiocytosis (Galetta, 1991)<br />

Melanoma (Aub<strong>in</strong>, 1997)<br />

Men<strong>in</strong>geal carc<strong>in</strong>omatosis<br />

Metastatic disease to bra<strong>in</strong> or pituitary gland (Baeesa, 1999)<br />

Mucocele or mucopyocele<br />

Multiple myeloma<br />

Nasopharyngeal cancer<br />

Nonneoplastic pituitary gland enlargement<br />

Paraganglioma<br />

Plasmacytoma<br />

Rathke cleft cyst (El-Mahdy, 1998; Fischer, 1994; Rao, 1995; Voelker, 1991; Yamamoto, 1993)<br />

Rhabdomyosarcoma (Arita, 2001)<br />

Sarcoid granuloma<br />

Sarcoma<br />

Schwannoma<br />

Septum pellucidum cyst<br />

S<strong>in</strong>us tumors<br />

Sphenoid s<strong>in</strong>us<br />

Syphilitic granuloma<br />

Teratoma<br />

Vascular malformation<br />

Venous aneurysm aris<strong>in</strong>g from carotid-cavernous s<strong>in</strong>us fistula (Wolansky, 1997)<br />

Venous angioma<br />

The ratio of crossed to uncrossed fibers is 53:47.<br />

Uncrossed fibers, both dorsal and ventral, ma<strong>in</strong>ta<strong>in</strong> their relative position at the<br />

lateral aspects of the chiasm and pass directly <strong>in</strong>to the ipsilateral optic tract.<br />

Dorsal extramacular cross<strong>in</strong>g fibers from each eye decussate posteriorly <strong>in</strong> the chiasm<br />

and then directly enter the dorsomedial aspect of contralateral optic tract.<br />

Macular fibers that cross do so <strong>in</strong> the central and posterior portions of chiasm.<br />

Some <strong>in</strong>feronasal ret<strong>in</strong>a fibers, primarily peripheral fibers, may loop <strong>in</strong> Wilbrand’s<br />

loop (although anatomic existence of this structure is questioned).<br />

Is a B<strong>in</strong>asal Hemianopsia Present?<br />

Most organic nasal visual field defects are actually arcuate <strong>in</strong> nature. Bilateral irregular<br />

nasal defects may be associated with optic disc drusen, but such defects do not obey the<br />

vertical midl<strong>in</strong>e and <strong>in</strong> fact are generally arcuate <strong>in</strong> nature. B<strong>in</strong>asal defects are usually<br />

due to bilateral <strong>in</strong>traocular disease of the ret<strong>in</strong>a or optic nerve (e.g., chronic papilledema,<br />

ischemic optic neuropathy, glaucoma, optic nerve drusen, or ret<strong>in</strong>al disease such<br />

as sector ret<strong>in</strong>itis pigmentosa or ret<strong>in</strong>oschisis). Rarely compression of the lateral chiasm<br />

may result <strong>in</strong> a b<strong>in</strong>asal defect. Bilateral nasal defect may occur with hydrocephalus with<br />

third ventricle enlargement caus<strong>in</strong>g lateral displacement of optic nerves aga<strong>in</strong>st the


Table 9–4. Other Causes of Chiasmal Syndrome<br />

Visual Field Defects 197<br />

Hydrocephalus (Bogdanovic, 2000)<br />

Cobalam<strong>in</strong> deficiency (Wilhelm, 1993)<br />

Demyel<strong>in</strong>at<strong>in</strong>g disease (Newman, 1991; Wilhelm, 1993)<br />

Empty sella syndrome (primary or secondary) (Kosmorsky, 1997)<br />

Chiasmal ischemia<br />

Optochiasmatic arachnoiditis<br />

Foreign body–<strong>in</strong>duced granuloma (e.g., musl<strong>in</strong>)<br />

Idiopathic<br />

Infection<br />

Chronic fungal <strong>in</strong>fection<br />

Cryptococcus<br />

Cysticercosis (Chang, 2001)<br />

Encephalitis<br />

Epste<strong>in</strong>-Barr virus (Beiran, 2000)<br />

Men<strong>in</strong>gitis<br />

Mucormycosis (Lee, 1996)<br />

Nasopharyngeal and s<strong>in</strong>us <strong>in</strong>fections<br />

Syphilis<br />

Tuberculosis<br />

Inflammatory<br />

Collagen vascular disease (e.g., systemic lupus erythematosus) (Frohman, 2001; Siatkowski,<br />

2001)<br />

Rheumatoid pachymen<strong>in</strong>gitis<br />

Sarcoid<br />

Multiple sclerosis<br />

Posthemorrhagic<br />

Posttraumatic<br />

Radiation necrosis<br />

Shunt catheter<br />

Toxic (see toxic optic neuropathies)<br />

Tobacco-alcohol toxicity (Danesh-Meyer, 2000)<br />

Ethchlorvynol (Placidyl)<br />

Phenipraz<strong>in</strong>e (Catron)<br />

Trauma, <strong>in</strong>clud<strong>in</strong>g postsurgical (Carter, 1998; Dom<strong>in</strong>go, 1993; He<strong>in</strong>z, 1994)<br />

Fat pack<strong>in</strong>g after transsphenoidal hypophysectomy (McHenry, 1993)<br />

Tether<strong>in</strong>g scar tissue caus<strong>in</strong>g delayed visual deterioration after pituitary surgery (Czech, 1999)<br />

Vascular occlusion<br />

Vasculitis (Wilhelm, 1993)<br />

Hereditary (probably autosomal recessive) chiasmal optic neuropathy (Pomeranz, 1999)<br />

Nonorganic (functional) (Miele, 2000)


198 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

supracl<strong>in</strong>oid portion of the <strong>in</strong>ternal carotid arteries. B<strong>in</strong>asal defects have also been<br />

described <strong>in</strong> patients with primary empty sella syndrome and with other suprasellar<br />

lesions (Charteris, 1996).<br />

<strong>An</strong> unusual b<strong>in</strong>asal visual field impairment has been noted with spontaneous<br />

<strong>in</strong>tracranial hypotension from a dural cerebrosp<strong>in</strong>al fluid leak (Horton, 1994). Some<br />

of these patients have a b<strong>in</strong>asal defect with peripheral depressions most severe <strong>in</strong><br />

the upper nasal quadrants but also <strong>in</strong>volv<strong>in</strong>g the lower nasal and upper temporal<br />

quadrants.<br />

Is a Homonymous Hemianopsia Present?<br />

Homonymous visual field impairments appear with lesions of the retrochiasmal pathways.<br />

Those affect<strong>in</strong>g the optic tract and lateral geniculate body tend to be <strong>in</strong>congruous,<br />

but the more posteriorly the lesion is located <strong>in</strong> the optic radiation, the greater the<br />

congruity of the defects. In general, tumors produce slop<strong>in</strong>g field defects, whereas<br />

vascular lesions produce sharp field defects. The localization of homonymous field<br />

defects depends on the nature of the field defect and associated neuro-ophthalmologic<br />

and neurologic f<strong>in</strong>d<strong>in</strong>gs. Homonymous field defects may be caused by lesions affect<strong>in</strong>g<br />

the optic tract, lateral geniculate body, optic radiations, or occipital lobe. Rarely, an<br />

occipital lesion may cause a monocular field defect (see monocular crescent, above). In<br />

general, complete homonymous hemianopias are nonlocaliz<strong>in</strong>g and may be seen with<br />

any lesions of the retrochiasmal pathway, <strong>in</strong>clud<strong>in</strong>g lesions of the lateral geniculate<br />

body, optic radiations, and striate cortex.<br />

Is the Homonymous Hemianopia Caused by<br />

an Optic Tract Lesion?<br />

In the optic tract, macular fibers lie dorsolaterally, peripheral fibers from the upper<br />

ret<strong>in</strong>a are situated dorsomedially, and peripheral fibers from the lower ret<strong>in</strong>a run<br />

ventrolaterally. Complete unilateral optic tract lesions cause a complete macular<br />

splitt<strong>in</strong>g homonymous hemianopia, usually without impaired visual acuity, unless<br />

the lesion extends to <strong>in</strong>volve the optic chiasm or nerve. Partial optic tract lesions are<br />

more common than complete lesions and result <strong>in</strong> an <strong>in</strong>congruous field defect that may<br />

be scotomatous. (The only other postchiasmatic location for a lesion caus<strong>in</strong>g a<br />

scotomatous hemianopic visual field defect is the occipital lobe.) Optic tract lesions<br />

are often associated with a relative afferent pupillary defect (RAPD) <strong>in</strong> the eye with the<br />

temporal field loss (contralateral to the side of the lesion). <strong>An</strong> afferent pupillary defect <strong>in</strong><br />

the contralateral eye <strong>in</strong> a patient with normal visual acuity bilaterally and a complete<br />

homonymous hemianopia is usually <strong>in</strong>dicative of optic tract <strong>in</strong>volvement (Miller, 1998).<br />

Wilhelm et al described a possible exception to this cl<strong>in</strong>ical rule. These authors<br />

described a RAPD contralateral to the lesions <strong>in</strong> 16 of 43 patients with congruous<br />

homonymous hemianopias (optic tract lesions excluded) (Wilhelm, 1996). Responsible<br />

lesions were postgeniculate and closer than 10 mm to the lateral geniculate nucleus. A<br />

RAPD did not occur <strong>in</strong> lesions farther than 18 mm from the lateral geniculate nucleus.<br />

The authors postulated that the RAPD was probably not caused by a lesion of the visual<br />

pathway per se, but by a lesion of <strong>in</strong>tercalated neurons between the visual pathways


and the pupillomotor centers <strong>in</strong> the pretectal area of the midbra<strong>in</strong>. <strong>An</strong>other abnormality<br />

of the pupil that may occur with optic tract lesions is due to concurrent third nerve<br />

<strong>in</strong>volvement by the pathologic process caus<strong>in</strong>g the tract damage. In these cases, the<br />

pupil ipsilateral to the lesion may be large and poorly reactive. F<strong>in</strong>ally, many patients<br />

with chronic optic tract lesions develop bilateral optic atrophy with a characteristic<br />

‘‘wedge,’’ ‘‘band,’’ or ‘‘bow-tie’’ pallor <strong>in</strong> the contralateral eye (identical to that seen <strong>in</strong><br />

some patients with bitemporal visual field loss from chiasmal lesions), and a more<br />

generalized pallor <strong>in</strong> the ipsilateral optic nerve associated with loss of nerve fiber layer<br />

<strong>in</strong> the superior and <strong>in</strong>ferior arcuate regions correspond<strong>in</strong>g to the bulk of temporal fibers<br />

subserv<strong>in</strong>g the nasal visual fields (hemianopic optic atrophy) (Miller, 1998). Hemianopic<br />

optic atrophy <strong>in</strong>dicates postchiasmal, preoptic radiation <strong>in</strong>volvement (i.e., optic tract or<br />

lateral geniculate body damage), but has also been rarely described <strong>in</strong> congenital<br />

retrogeniculate lesions (Miller, 1998).<br />

Etiologies of optic tract lesions <strong>in</strong>clude space-occupy<strong>in</strong>g lesions (e.g., glioma, men<strong>in</strong>gioma,<br />

craniopharyngioma, metastasis, pituitary adenoma, ectopic p<strong>in</strong>ealoma, abscess,<br />

sella arachnoidal cyst), aneurysms, arteriovenous malformations, dolichoectatic basilar<br />

arteries, demyel<strong>in</strong>at<strong>in</strong>g disease, and trauma, <strong>in</strong>clud<strong>in</strong>g neurosurgical procedures (e.g.,<br />

temporal lobectomy, <strong>in</strong>sertion of <strong>in</strong>traventricular shunt) (Chun, 1998; Freitag, 2000;<br />

Groomm, 1997; Guirgis, 2001; Liu, 1997; Miller, 1998; Molia, 1996; Shults, 1993; Slav<strong>in</strong>,<br />

1990a; Vargas, 1994). Patients undergo<strong>in</strong>g posterior pallidotomy for park<strong>in</strong>sonism may<br />

develop mild to moderate contralateral homonymous superior quadrantanopias associated<br />

with small paracentral scotomas likely due to optic tract damage (Biousse, 1998).<br />

A congenital optic tract syndrome has also been described (Murphy, 1997). A complete<br />

neurologic exam<strong>in</strong>ation and MRI, with specific attention to the optic tract region,<br />

are warranted <strong>in</strong> all patients suspected of hav<strong>in</strong>g an optic tract lesion. If MRI fails to<br />

reveal the responsible lesion, then MR angiography or cerebral angiography may be<br />

warranted <strong>in</strong> nontraumatic cases to <strong>in</strong>vestigate the presence of vascular lesions (e.g.,<br />

aneurysm).<br />

Is the Homonymous Hemianopia Caused by a<br />

Lesion of the Lateral Geniculate Body?<br />

Visual Field Defects 199<br />

In the lateral geniculate body, axons from ganglion cells superior to fovea are located<br />

medially, axons orig<strong>in</strong>at<strong>in</strong>g from ganglion cells <strong>in</strong>ferior to fovea are located laterally,<br />

and macular fibers term<strong>in</strong>ate <strong>in</strong> a large central area. As axons leave the lateral geniculate<br />

body they re-rotate back to their orig<strong>in</strong>al positions so that with<strong>in</strong> the optic radiations<br />

and the striate cortex, fibers that have synapsed with axons from superior ret<strong>in</strong>as are<br />

located <strong>in</strong> superior radiations and above the calcar<strong>in</strong>e fissure <strong>in</strong> the striate cortex,<br />

whereas fibers that have synapsed with axons from the <strong>in</strong>ferior ret<strong>in</strong>as are located <strong>in</strong> the<br />

<strong>in</strong>ferior optic radiations and below the calcar<strong>in</strong>e fissure. Upper field fibers orig<strong>in</strong>ate <strong>in</strong><br />

the medial aspect of lateral geniculate nucleus and travel through the parietal lobes,<br />

whereas lower fields orig<strong>in</strong>ate from the lateral aspect of the lateral geniculate body and<br />

make a loop <strong>in</strong> the temporal lobe (Meyer’s loop or the Meyer-Archambault loop).<br />

Lateral geniculate body lesions may also cause a complete macular splitt<strong>in</strong>g homonymous<br />

hemianopia (Miller, 1998). Partial lesions result <strong>in</strong> an <strong>in</strong>congruous homonymous<br />

field defect. Hemianopic optic atrophy may develop and no RAPD is usually evident.


200 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Although the study of Wilhelm et al suggests that a RAPD may occasionally be present<br />

with lateral geniculate body or parageniculate optic radiation lesions (Wilhelm, 1996),<br />

this observation has not been confirmed by other <strong>in</strong>vestigators.<br />

Although lesions of the optic tract or lateral geniculate body often cause <strong>in</strong>congruous<br />

field defects, two relatively specific patterns of congruous homonymous field defects<br />

with abruptly slop<strong>in</strong>g borders, associated with sectorial optic atrophy, have been<br />

attributed to focal lesions of the lateral geniculate body caused by <strong>in</strong>farction <strong>in</strong> the<br />

territory of specific arteries. Occlusion of the anterior choroidal artery may cause a<br />

homonymous defect <strong>in</strong> the upper and lower quadrants with spar<strong>in</strong>g of a horizontal<br />

sector (quadruple sectoranopia) (Luco, 1992). This defect occurs because the lateral<br />

geniculate body is organized <strong>in</strong> projection columns oriented vertically that represent<br />

sectors of the field parallel to the horizontal meridians, and the anterior choroidal artery<br />

supplies the hilum and anterolateral part of the nucleus. Bilateral lateral geniculate<br />

lesions may therefore cause bilateral hourglass-shaped visual field defects (Donahue,<br />

1995) or bilateral bl<strong>in</strong>dness. In three reported cases of isolated bilateral <strong>in</strong>volvement of<br />

the lateral geniculate bodies, the pathogenesis <strong>in</strong>cluded anterior choroidal syphilitic<br />

arteritis, methanol toxicity-produc<strong>in</strong>g coagulative necrosis of the lateral geniculate body,<br />

and geniculate myel<strong>in</strong>olysis associated with the rapid correction of hyponatremia,<br />

respectively (Donahue, 1995). Barton described another patient with bilateral sectoranopia<br />

(‘‘hourglass’’ pattern) due to probable osmotic demyel<strong>in</strong>ation (Barton, 2001).<br />

Interruption of the posterior lateral choroidal artery that perfuses the central portion of<br />

the lateral geniculate causes a horizontal homonymous sector defect (wedge shaped)<br />

(Borruat, 1995; Luco, 1992; Neau, 1996; We<strong>in</strong>, 2000). In posterior lateral choroidal<br />

territory <strong>in</strong>farction, the homonymous quadrantanopia may be associated with hemisensory<br />

loss and neuropsychological dysfunction (transcortical aphasia, memory disturbances),<br />

and delayed contralateral abnormal movements (Neau, 1996). A homonymous<br />

horizontal sectoranopia is not diagnostic of a lateral geniculate body lesion, however, as<br />

a similar sector defect may occur with lesions affect<strong>in</strong>g the optic radiations (Carter, 1985)<br />

or, rarely, the occipital cortex <strong>in</strong> the region of the calcar<strong>in</strong>e fissure (Grossman, 1990),<br />

the temporooccipital junction, the parietotemporal region, or <strong>in</strong> the distribution of<br />

the superficial sylvian artery territory (Growchowicki, 1991). F<strong>in</strong>ally, a patient has<br />

been described with bilateral lateral geniculate lesions with bilateral sector defects<br />

with preservation of the visual fields <strong>in</strong> an hourglass distribution (Greenfield, 1996).<br />

The patient was a 28-year-old woman who developed <strong>in</strong>congruous b<strong>in</strong>asal and bitemporal<br />

visual field defects 1 week after hav<strong>in</strong>g a febrile gastroenteritis, characterized<br />

by severe diarrhea, while travel<strong>in</strong>g <strong>in</strong> Mexico. MRI demonstrated bilaterally <strong>in</strong>creased<br />

signal <strong>in</strong>tensity with<strong>in</strong> the lateral geniculate bodies. The severe diarrhea was thought to<br />

be associated with an aseptic bilateral lateral geniculitis result<strong>in</strong>g <strong>in</strong> the hourglassshaped<br />

visual fields.<br />

Patients with lesions of the lateral geniculate body may have no other signs or<br />

symptoms of neurologic <strong>in</strong>volvement or may have associated f<strong>in</strong>d<strong>in</strong>gs related to<br />

thalamic or corticosp<strong>in</strong>al tract <strong>in</strong>volvement. Etiologies for lateral geniculate damage<br />

<strong>in</strong>clude <strong>in</strong>farction, arteriovenous malformation, trauma, tumor, <strong>in</strong>flammatory disorders,<br />

demyel<strong>in</strong>at<strong>in</strong>g disease, and toxic exposure (e.g., methanol) (Borruat, 1995; Donahue,<br />

1995; Greenfield, 1996; Groomm, 1997; Kosmorsky, 1998; Luco, 1992; Neau, 1996). MRI,<br />

with attention to the lateral geniculate region, is <strong>in</strong>dicated <strong>in</strong> all cases (Borruat, 1995;<br />

Horton, 1990; Neau, 1996).


Is the Lesion Caus<strong>in</strong>g the Homonymous<br />

Hemianopia Located <strong>in</strong> the Optic Radiations?<br />

Visual Field Defects 201<br />

Lesions of the proximal portion of the optic radiations may result <strong>in</strong> a complete<br />

homonymous hemianopia with macular splitt<strong>in</strong>g. Superior homonymous quadrantic<br />

defects (‘‘pie-<strong>in</strong>-the-sky’’ field defects) may result from a lesion <strong>in</strong> the temporal<br />

(Meyer’s) loop of the optic radiations or <strong>in</strong> the <strong>in</strong>ferior bank of the calcar<strong>in</strong>e fissure.<br />

In a study of 30 patients with superior quadrantanopias, lesions were occipital <strong>in</strong> 83%,<br />

temporal <strong>in</strong> 13%, and parietal <strong>in</strong> 3% (Jacobson, 1997). In temporal lobe lesions, the<br />

superior quadrantic defect is usually, but not always, <strong>in</strong>congruous (Miller, 1998), and<br />

the <strong>in</strong>ferior marg<strong>in</strong>s of the defects may have slop<strong>in</strong>g borders and may cross beyond the<br />

horizontal midl<strong>in</strong>e. Also, the ipsilateral nasal field defect is often denser and comes<br />

closer to fixation than the defect <strong>in</strong> the contralateral eye. Macular vision may or may not<br />

be <strong>in</strong>volved with the quadrantic defect (Miller, 1998).<br />

Although visual field defects often may occur <strong>in</strong> isolation with temporal lobe lesions<br />

(Jacobson, 1997), other signs of neurologic impairment may be evident (Brazis, 2001).<br />

With dom<strong>in</strong>ant temporal lobe <strong>in</strong>volvement, aphasic syndromes may occur, whereas<br />

nondom<strong>in</strong>ant lesions may be associated with impaired recognition of facial emotional<br />

expression, sensory amusia (<strong>in</strong>ability to appreciate various characteristics of music), and<br />

aprosodias (impaired appreciation of emotional overtones of spoken language). Other<br />

abnormalities seen with temporal lobe dysfunction <strong>in</strong>clude memory impairment and<br />

seizures. Etiologies for temporal lobe dysfunction <strong>in</strong>clude space-occupy<strong>in</strong>g lesions (e.g.,<br />

tumors, abscesses, hemorrhage), arteriovenous malformations, <strong>in</strong>farction, <strong>in</strong>fections,<br />

congenital malformations, demyel<strong>in</strong>at<strong>in</strong>g disease, and trauma (e.g., temporal<br />

lobectomy) (Hughes, 1999; Slav<strong>in</strong>, 1990b). MRI is required <strong>in</strong> all patients.<br />

Hughes et al studied the visual field defects <strong>in</strong> 32 patients after temporal lobe<br />

resection (Hughes, 1999). Visual field defects were present <strong>in</strong> 31 of the 32 patients,<br />

but none of the patients were aware of the deficits. Po<strong>in</strong>ts nearest fixation were<br />

relatively spared, and defects were greatest <strong>in</strong> the sector closest to the vertical meridian<br />

<strong>in</strong> the eye ipsilateral to the resection. Ipsilateral and contralateral field defects differed <strong>in</strong><br />

topography and <strong>in</strong> depth. Thus this study demonstrated that certa<strong>in</strong> fibers from the<br />

ipsilateral eye travel more anteriorly and laterally <strong>in</strong> Meyer’s loop and supports the<br />

hypothesis that visual field defects due to anterior retrogeniculate lesions are <strong>in</strong>congruous<br />

because of anatomic differences <strong>in</strong> the afferent pathway (Hughes, 1999). There is<br />

no difference <strong>in</strong> the <strong>in</strong>cidence of visual field defects produced by anterior temporal<br />

lobectomy versus amygdalohippocampectomy (which spares lateral temporal anatomy)<br />

for patients with <strong>in</strong>tractable epilepsy (Egan, 2000).<br />

Involvement of the optic radiations <strong>in</strong> the depth of the parietal lobe gives rise to a<br />

congruous homonymous hemianopia, denser below than above (‘‘pie-on-the-floor’’<br />

defect). Such defects are usually more congruous than those produced by lesions of<br />

the temporal lobe, and because the entire optic radiation passes through the parietal<br />

lobe, large lesions may produce complete homonymous hemianopia with macular<br />

splitt<strong>in</strong>g (Miller, 1998). Patients may often be unaware of their visual field defects.<br />

Patients do not have associated pupillary abnormalities, and optic atrophy does not<br />

occur unless the responsible lesion is congenital.<br />

In a study of 41 patients with <strong>in</strong>ferior quadrantanopias, 76% were due to occipital<br />

lesions, 22% to parietal lesions, and 2% to temporal lesions (Jacobson, 1997). In patients


202 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

with occipital lesions, the field defects often occurred <strong>in</strong> isolation, whereas other<br />

localiz<strong>in</strong>g signs of parietal <strong>in</strong>volvement were evident <strong>in</strong> 89% of patients with parietal<br />

lesions. Thus, although visual field defects may occur <strong>in</strong> relative isolation with<br />

parietal lobe lesions, lesions <strong>in</strong> this location more often betray themselves by other<br />

signs of neurologic dysfunction (Brazis, 2001). Parietal lobe lesions may be associated<br />

with contralateral somatosensory impairment, <strong>in</strong>clud<strong>in</strong>g impaired object recognition,<br />

impaired position sense, impaired touch and pa<strong>in</strong> sensation, and tactile ext<strong>in</strong>ction.<br />

Dom<strong>in</strong>ant parietal lesions may cause apraxia, f<strong>in</strong>ger agnosia, acalculia, right-left<br />

disorientation, alexia, and aphasic disturbances, whereas nondom<strong>in</strong>ant lesions may<br />

be associated with anosognosia (denial of neurologic impairment), autotopagnosia<br />

(failure to recognize hemiplegic limbs as belong<strong>in</strong>g to self), spatial disorientation,<br />

hemispatial neglect, constructional apraxia (abnormal draw<strong>in</strong>g and copy<strong>in</strong>g), and<br />

dress<strong>in</strong>g apraxia. Pathologic processes associated with parietal dysfunction are essentially<br />

the same as those that may cause temporal lobe dysfunction and are best<br />

evaluated by MRI.<br />

Lepore studied n<strong>in</strong>e patients with alexia without agraphia and found that three had<br />

complete right homonymous hemianopia, two had complete right homonymous hemianopia<br />

with additional b<strong>in</strong>ocular or monocular left field loss, two had right superior<br />

quadrantanopia, and the last two had bilateral superior or <strong>in</strong>ferior quadrantanopia<br />

(Lepore, 1998). Right superior quadrant vision was impaired <strong>in</strong> eight patients, and no<br />

patient demonstrated an isolated right <strong>in</strong>ferior quadrantanopia or an isolated left<br />

homonymous field defect. No patient atta<strong>in</strong>ed 20=20 visual acuity bilaterally. Lepore<br />

concluded that bilateral visual field loss and decreased visual acuity occur <strong>in</strong> many cases<br />

of alexia without agraphia. The frequent presence of a right superior quadrantic field<br />

defect implies a critical role <strong>in</strong> read<strong>in</strong>g for the ventral outflow pathways of the dom<strong>in</strong>ant<br />

calcar<strong>in</strong>e cortex. Although right homonymous hemianopia and a left occipital lobe and<br />

splenium lesions rema<strong>in</strong> the paradigm for alexia without agraphia, bilateral field loss,<br />

decreased visual acuity, and bihemispheric disease are common and may adversely<br />

affect the <strong>in</strong>tegrity of neural read<strong>in</strong>g mechanisms.<br />

Is the Visual Field Defect Caused by an<br />

Occipital Lesion?<br />

Homonymous quadrantic visual field defects may occur with unilateral occipital lesions<br />

(Horton, 1991a). Superior quadrantic defects may be seen with <strong>in</strong>ferior calcar<strong>in</strong>e lesions,<br />

and <strong>in</strong>ferior quadrantic defects may occur with superior calcar<strong>in</strong>e lesions. A patient<br />

with a neurologically isolated quadrantanopia is likely to have a lesion <strong>in</strong> the occipital<br />

lobe, although, <strong>in</strong> the case of a superior quadrantanopia, the possibility of a temporal<br />

lobe lesion cannot be excluded us<strong>in</strong>g cl<strong>in</strong>ical criteria only (Jacobson, 1997). As noted<br />

above, quadrantanopias caused by lesions of the parietal lobe usually are associated<br />

with other localiz<strong>in</strong>g signs (Jacobson, 1997). Often field defects due to calcar<strong>in</strong>e lesions<br />

have a sharp horizontal edge that would not be caused by tumors or missile <strong>in</strong>juries<br />

because it is unlikely that they would <strong>in</strong>jure only one bank of the calcar<strong>in</strong>e fissure and<br />

leave the fellow calcar<strong>in</strong>e bank untouched. Horton and Hoyt suggest that a lesion of the<br />

extrastriate cortex (areas V2 and V3) would be more likely to expla<strong>in</strong> the sharp<br />

horizontal edge of the defect because areas V2 and V3 are divided along the horizontal


Visual Field Defects 203<br />

meridian <strong>in</strong>to separate halves flank<strong>in</strong>g the striate (V1) cortex and, consequently, the<br />

upper and lower quadrants <strong>in</strong> extrastriate cortex are physically isolated on opposite<br />

sides of the striate cortex (Horton, 1991b). Although a lesion <strong>in</strong> this location (e.g., a<br />

tumor) may have irregular marg<strong>in</strong>s, if it crosses the representation of the horizontal<br />

meridian <strong>in</strong> extrastriate cortex it will produce a quadrantic visual field defect with a<br />

sharp horizontal border because of the split layout of the upper and lower quadrants of<br />

V2=V3. Thus, a homonymous quadrantanopia respect<strong>in</strong>g the horizontal meridian is not<br />

a ‘‘pathognomonic’’ sign of extrastriate cortical disease but may occur with striate<br />

lesions (McFadzean, 1997). A congruous <strong>in</strong>ferior quadrantanopia with borders aligned<br />

on both the vertical and horizontal meridians has also been described with a lesion of<br />

the superior fibers of the optic radiations near the contralateral trigone where<br />

the fascicles of visual axons become compact as they approach the calcar<strong>in</strong>e cortex<br />

(Borruat, 1993).<br />

Gray et al report two patients with unique homonymous hemianopias from occipital<br />

lesions (Gray, 1998). One patient had vertical meridian spar<strong>in</strong>g and the other displayed<br />

horizontal meridian spar<strong>in</strong>g. MRI correlation with the defects confirmed that the<br />

vertical hemianopic meridian is represented along the border of the calcar<strong>in</strong>e lip and<br />

the horizontal meridian lies at the base of the calcar<strong>in</strong>e banks deep with<strong>in</strong> the calcar<strong>in</strong>e<br />

fissure. Galetta and Grossman reported two patients further demonstrat<strong>in</strong>g that the<br />

horizontal meridian is represented at the calcar<strong>in</strong>e fissure base <strong>in</strong> the primary visual<br />

cortex (Galetta, 2000).<br />

Medial occipital lesions cause highly congruous homonymous field defects (Horton,<br />

1994; Pess<strong>in</strong>, 1987a,b). When both the upper and the lower calcar<strong>in</strong>e cortices are<br />

affected, a complete homonymous hemianopia, usually with macular spar<strong>in</strong>g, develops.<br />

Spar<strong>in</strong>g of the central 5 degrees of vision (macular spar<strong>in</strong>g) is common with occipital<br />

lesions, probably due to a comb<strong>in</strong>ation of a large macular representation and dual blood<br />

supply (Miller, 1998). The central 10 to 15 degrees of vision fill a majority of the total<br />

surface area of the occipital cortex (as much as 50 to 60%) (Gray, 1997; Horton, 1994;<br />

McFadzean, 1994; Wong, 1999). We consider macular spar<strong>in</strong>g to be present when at least<br />

5 degrees of central visual field is spared; macular spar<strong>in</strong>g of 3 degrees or less may be<br />

due to wander<strong>in</strong>g fixation and may not be cl<strong>in</strong>ically mean<strong>in</strong>gful. Patients with purely<br />

occipital lesions are often aware of the hemianopia, whereas patients with larger or<br />

more anterior lesions, affect<strong>in</strong>g parietal regions or associative pathways to the primary<br />

or secondary visual association cortex, may be unaware of their deficit. Celesia et al,<br />

however, prospectively studied 32 consecutive patients with homonymous field defects<br />

due to ischemic <strong>in</strong>farcts and found hemianopic anosognosia, def<strong>in</strong>ed as the unawareness<br />

of visual loss <strong>in</strong> the homonymous hemifield (or hemiquadrant) <strong>in</strong> 20 patients (63%)<br />

(Celesia, 1997). Hemianopic anosognosia occurred predom<strong>in</strong>antly <strong>in</strong> right-sided lesions<br />

(16 of 26 patients or 62%), but also was present <strong>in</strong> 4 of 6 patients (67%) with left-sided<br />

lesions. Hemianopic anosognosia was associated with somatic anosognosia <strong>in</strong> 9 patients<br />

and hem<strong>in</strong>eglect <strong>in</strong> 17 patients. Eight patients had pure homonymous hemianopia<br />

without cognitive, motor, or somatosensory deficits; four of these patients had awareness<br />

of visual defect and three had hemianopic anosognosia. Patients <strong>in</strong> these two<br />

groups had similar anatomic lesions. Patients with phosphenes, photopsias, or visual<br />

halluc<strong>in</strong>ations were usually aware of their visual field loss. The authors suggest that<br />

hemianopic anosognosia is most often related to failure of discovery of the deficits,<br />

occasionally with severe visual hem<strong>in</strong>eglect, sometimes to generalized cognitive impairment,<br />

or to a comb<strong>in</strong>ation of these factors. The authors further conclude (1) there is no


204 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

specific cortical area for conscious visual perception; (2) visual awareness is processed<br />

by a distributed network <strong>in</strong>clud<strong>in</strong>g multiple visual cortices, parietal and frontal lobes,<br />

the pulv<strong>in</strong>ar, and the lateral geniculate bodies (lesions localized at various nodes or<br />

centers <strong>in</strong> the network may produce similar phenomena); and (3) both hemispheres are<br />

<strong>in</strong>volved <strong>in</strong> visual process<strong>in</strong>g and conscious awareness.<br />

Lesions of the striate cortex may be classified as anterior, <strong>in</strong>termediate, or posterior<br />

(Horton, 1994; Landau, 1995; McFadzean, 1994; Miller, 1998). <strong>An</strong>terior lesions lie<br />

adjacent to the parieto-occipital fissure and affect the monocular temporal crescent of<br />

the contralateral visual field (temporal crescent or half-moon syndrome). This area<br />

constitutes less than 10% of the total surface area of the striate cortex and the defect<br />

beg<strong>in</strong>s approximately 60 degrees from fixation. Both upper and lower temporal<br />

crescents may be scotomatous <strong>in</strong> the field of one eye, or only the upper or lower<br />

temporal crescent may be <strong>in</strong>volved. Conversely, the temporal crescent may be spared<br />

with lesions that destroy the entire calcar<strong>in</strong>e cortex except for the anterior tip (Landau,<br />

1995; Lepore, 2001). Posterior lesions are located <strong>in</strong> the posterior 50 to 60% of the striate<br />

cortex, <strong>in</strong>clud<strong>in</strong>g the occipital pole and operculum, affect macular vision (i.e., the central<br />

10 degrees <strong>in</strong> the contralateral hemifield), and therefore cause scotomatous defects.<br />

Intermediate lesions lie between the anterior and posterior conf<strong>in</strong>es and affect from 10<br />

to 60 degrees <strong>in</strong> the contralateral hemifield.<br />

The most common cause of unilateral occipital disease is <strong>in</strong>farction <strong>in</strong> the distribution<br />

of the posterior cerebral artery (Belden, 1999; Pess<strong>in</strong>, 1987a,b). Other etiologies <strong>in</strong>clude<br />

venous <strong>in</strong>farction, hemorrhage, arteriovenous malformation and fistulas, tumor,<br />

abscess, and trauma (Bartolomei, 1998; Kupersmith, 1996, 1999; Liu, 1997; Molia,<br />

1996). Thus, MRI is warranted <strong>in</strong> all patients.<br />

Bilateral occipital lobe lesions may occur from a s<strong>in</strong>gle or from consecutive events and<br />

may cause bilateral homonymous scotomas, usually with some macular spar<strong>in</strong>g (‘‘r<strong>in</strong>g’’<br />

scotomas) that respects the vertical midl<strong>in</strong>e (Miller, 1998). In some cases there may be<br />

‘‘tunnel’’ or ‘‘keyhole’’ fields with bilateral complete homonymous hemianopias except<br />

for macular spar<strong>in</strong>g. Careful test<strong>in</strong>g <strong>in</strong> these cases reveals that the macular spar<strong>in</strong>g<br />

respects the vertical midl<strong>in</strong>e. Bilateral lesions affect<strong>in</strong>g the superior or <strong>in</strong>ferior calcar<strong>in</strong>e<br />

cortices may produce bilateral altitud<strong>in</strong>al defects that may mimic the visual field<br />

abnormalities seen with bilateral optic nerve or ret<strong>in</strong>al disease (Hansen, 1993;<br />

Lakhanpal, 1990). Bilateral upper calcar<strong>in</strong>e bank lesions may have associated neurologic<br />

f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>clud<strong>in</strong>g Bal<strong>in</strong>t’s syndrome (apraxia of gaze, optic ataxia, decreased visual<br />

attention, and simultanagnosia), abnormal depth perception, defective revisualization<br />

of spatial relations, topographic disorientation, and disorientation to place (Brazis, 2001;<br />

Caplan, 1990). Bilateral lesions of the <strong>in</strong>ferior banks of the calcar<strong>in</strong>e fissure may be<br />

associated with prosopagnosia (<strong>in</strong>ability to identify faces visually), cerebral dyschromatopsia,<br />

amnesia, and difficulty revisualiz<strong>in</strong>g the morphology and appearance of people<br />

and objects (Brazis, 2001; Caplan, 1990). Bilateral lesions of the visual cortices, often due<br />

to large bilateral posterior cerebral artery <strong>in</strong>farcts <strong>in</strong>volv<strong>in</strong>g both banks of the calcar<strong>in</strong>e<br />

fissure and both temporal lobes, cause cortical bl<strong>in</strong>dness often associated with agitated<br />

delirium and amnesia (Brazis, 2001; Caplan, 1990).<br />

Cortical bl<strong>in</strong>dness implies visual impairment due to discrete <strong>in</strong>volvement of the<br />

occipital cortices bilaterally, whereas cerebral bl<strong>in</strong>dness is a more general term <strong>in</strong>dicat<strong>in</strong>g<br />

visual loss from any process affect<strong>in</strong>g the retrogeniculate visual pathways. The essential<br />

features of cortical and cerebral bl<strong>in</strong>dness <strong>in</strong>clude complete loss of all visual sensation<br />

<strong>in</strong>clud<strong>in</strong>g all appreciation of light and dark; loss of reflex lid closure to bright


illum<strong>in</strong>ation and to threaten<strong>in</strong>g gestures; retention of the reflex constriction of the pupils<br />

to illum<strong>in</strong>ation and to convergence movements; and <strong>in</strong>tegrity of the normal structure of<br />

the ret<strong>in</strong>a as verified by ophthalmoscopy (Miller, 1998).<br />

There are many etiologies of cerebral and cortical bl<strong>in</strong>dness, <strong>in</strong>clud<strong>in</strong>g hypoxia,<br />

<strong>in</strong>farction, hemorrhage, eclampsia, hypertensive encephalopathy, tentorial herniation<br />

from cerebral mass, tumor, arteriovenous malformation, <strong>in</strong>fection (e.g., progressive<br />

multifocal leukoencephalopathy, Jakob-Creutzfeldt disease, subacute scleros<strong>in</strong>g panencephalitis,<br />

HIV encephalitis, syphilis, encephalitis, abscess), <strong>in</strong>flammation (e.g., sarcoidosis),<br />

demyel<strong>in</strong>at<strong>in</strong>g disease, trauma, metabolic disorders (e.g., adrenoleukodystrophy,<br />

hypoglycemia, porphyria, mitochondrial encephalopathies), tox<strong>in</strong>s (e.g., lead, mercury,<br />

ethanol, carbon monoxide), medications (e.g., cyclospor<strong>in</strong>e, tacrolimus, <strong>in</strong>terleuk<strong>in</strong>-2),<br />

radiation encephalopathy, Alzheimer’s disease, postictal after seizures, and complications<br />

of cerebral angiography (Belden, 1999; Blake, 1999; H<strong>in</strong>chey, 1996; Karp, 1996;<br />

Kuperschmidt, 1995; Miller, 1998; Ormerod, 1996; Pomeranz, 1998; Steg, 1999). Occasionally,<br />

patients with cortical bl<strong>in</strong>dness deny their visual defect (<strong>An</strong>ton’s syndrome).<br />

What If a Homonymous Visual Field Defect Is<br />

Present But <strong>Neuro</strong>imag<strong>in</strong>g Is Normal?<br />

Visual Field Defects 205<br />

As noted above, MRI is <strong>in</strong>dicated <strong>in</strong> all patients with a homonymous visual field defect,<br />

except <strong>in</strong> acute or traumatic cases, <strong>in</strong> which computed tomography (CT) imag<strong>in</strong>g is<br />

usually adequate, or <strong>in</strong> patients <strong>in</strong> whom MRI is contra<strong>in</strong>dicated (e.g., ferromagnetic<br />

aneurysmal clip, metallic fragments, pacemakers, etc.). There are several cl<strong>in</strong>ical<br />

situations <strong>in</strong> which MRI may be normal <strong>in</strong> a patient with a homonymous hemianopia<br />

(Brazis, 2000):<br />

1. Homonymous hemianopia or cortical bl<strong>in</strong>dness may be an early or <strong>in</strong>itial f<strong>in</strong>d<strong>in</strong>g <strong>in</strong><br />

some patients with the Heidenha<strong>in</strong> variant of Jakob-Creutzfeldt disease, and <strong>in</strong> most<br />

of these patients rout<strong>in</strong>e MRI or CT is normal (Aguglia, 1991; Brazis, 2000; Felton,<br />

1996; Jacobs, 2001; Vargas, 1995; Warren, 1992). Some patients, however, will have<br />

symmetric hyper<strong>in</strong>tensities <strong>in</strong> the basal ganglia and=or gray matter of the occipital<br />

cortex on T2-weighted and proton-weighted images (Kropp, 1999), and some will<br />

have abnormalities <strong>in</strong> the cortex, basal ganglia, and thalamus on diffusion-weighted<br />

MRI (Bahn, 1997, 1999; Jacobs, 2001; Mittal, 2002; Na, 1999; Zerr, 2000a,b). Bilateral<br />

symmetric, high signal <strong>in</strong>tensities on T2-weighted images were present <strong>in</strong> the basal<br />

ganglia of 109 (67%) of 162 patients with Jakob-Creutzfeldt disease, and thus MRI<br />

was thought to be reasonably sensitive (67%) and highly specific (93%) <strong>in</strong> the<br />

diagnosis of this entity (Schroter, 2000). The electroencephalogram (EEG) is often<br />

<strong>in</strong>itially normal <strong>in</strong> these patients, although it usually eventually shows characteristic<br />

periodic complexes <strong>in</strong> most patients. Patients soon also develop mentation impairment,<br />

myoclonus, and other signs of Jakob-Creutzfeldt disease, but <strong>in</strong>itially the<br />

diagnosis may be quite difficult. Abnormalities <strong>in</strong> the cerebrosp<strong>in</strong>al fluid, such as the<br />

presence of 14-3-3 prote<strong>in</strong> or neuron-specific enolase, may assist <strong>in</strong> the diagnosis<br />

(Aksamit, 2001; Green, 2001; Hsich, 1996; Kropp, 1999; Lemstra, 2000; Poser, 1999;<br />

Zerr, 1995, 1998, 2000a,b). For example, the presence of the 14-3-3 bra<strong>in</strong> prote<strong>in</strong> <strong>in</strong> the<br />

cerebrosp<strong>in</strong>al fluid has a positive predictive value for Jakob-Creutzfeldt disease of<br />

94.7%, whereas its absence has a negative predictive value of 92.4% (Hsich, 1996;


206 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Zerr, 1998). In other studies, the sensitivity was 94 to 97% and the specificity 74 to<br />

87% (Lemstra, 2000; Zerr, 2000a,b). False negatives have been documented (Chapman,<br />

2000) and false positives have been noted with herpes simplex encephalitis,<br />

men<strong>in</strong>goencephalitis, stroke, hypoxic bra<strong>in</strong> <strong>in</strong>jury, carc<strong>in</strong>omatous men<strong>in</strong>gitis, vascular<br />

dementia, Hashimoto’s encephalopathy, <strong>in</strong>tracerebral metastasis, frontotemporal<br />

dementia, dementia with Lewy bodies, and Alzheimer’s disease (Burkhard, 2001;<br />

Chapman, 2000; Hernandez Echebarria, 2000; Lemstra, 2000; Zerr, 1998). The 14-3-3<br />

prote<strong>in</strong> assay may be positive <strong>in</strong> paraneoplastic neurologic disorders that may mimic<br />

Jakob-Creutzfeldt disease, but the immunoblast<strong>in</strong>g pattern of this prote<strong>in</strong> dist<strong>in</strong>guishes<br />

most patients with paraneoplastic disorders from those with Jakob-<br />

Creutzfeldt disease (Saiz, 1999).<br />

2. Some patients with Alzheimer’s disease or Lewy body disease may develop a<br />

homonymous field defect (Bashir, 1998; Brazis, 2000; Trick, 1995). MRI may be<br />

normal or show only diffuse atrophy, and the EEG is normal or shows only mild<br />

diffuse slow<strong>in</strong>g. This diagnosis is suspected <strong>in</strong> patients with a slowly progressive<br />

dementia without other ‘‘focal’’ neurologic f<strong>in</strong>d<strong>in</strong>gs, and the dementia usually far<br />

outweighs the visual field impairment.<br />

3. Most patients with field defects from cerebral <strong>in</strong>farction or hypoxia demonstrate MRI<br />

changes compatible with ischemia. However, Moster et al described two patients,<br />

one with bilateral homonymous congruous hemianopic central scotomata after<br />

carbon monoxide poison<strong>in</strong>g and the other with bilateral congruous <strong>in</strong>ferior visual<br />

scotomata after global hypoxia, who were <strong>in</strong>itially diagnosed with ‘‘functional’’<br />

visual loss (Moster, 1996). Neither CT nor MRI adequately demonstrated the source<br />

of the visual dysfunction, but s<strong>in</strong>gle photon emission computed tomography<br />

(SPECT) <strong>in</strong> one patient and positron emission tomography (PET) imag<strong>in</strong>g <strong>in</strong> the<br />

other confirmed the organic substrate of the visual impairment. Wang et al also<br />

reported two patients with organophosphate <strong>in</strong>toxication associated with cortical<br />

visual loss who had normal MRI but abnormal hypometabolism of the visual cortex<br />

demonstrated on PET scann<strong>in</strong>g (Wang, 1999). Brazis et al also presented a patient<br />

with a homonymous field defect secondary to cerebral <strong>in</strong>farction with normal MRI<br />

(Brazis, 2000). Functional imag<strong>in</strong>g techniques, such as SPECT or PET, should thus be<br />

considered <strong>in</strong> patients with suspected cortical visual loss and normal CT or MRI<br />

studies. Functional MRI is also a promis<strong>in</strong>g method for the objective detection of<br />

abnormalities <strong>in</strong> the afferent visual system (Miki, 1996).<br />

4. Transient homonymous hemianopia with normal CT imag<strong>in</strong>g has rarely been<br />

reported with nonketotic hyperglycemia (Brazis, 2000; Harden, 1991). These patients<br />

had other positive visual phenomena associated with a homonymous hemianopia.<br />

Thus, nonketotic hyperglycemia may present with positive visual phenomena<br />

associated with a homonymous field defect and normal neuroimag<strong>in</strong>g.<br />

5. Functional (nonorganic) hemianopias are associated with normal imag<strong>in</strong>g studies<br />

(Keane, 1998; Mart<strong>in</strong>, 1998; Thompson, 1996). One method of determ<strong>in</strong><strong>in</strong>g if a field<br />

defect is nonorganic is to test saccadic eye movements <strong>in</strong>to the supposedly absent<br />

portion of the field, with the patient assum<strong>in</strong>g that eye movements and not visual<br />

fields are be<strong>in</strong>g tested. Demonstrat<strong>in</strong>g ‘‘hemianopic’’ defects with both eyes open is<br />

often useful (Keane, 1998). <strong>An</strong>other method is to place a 30-diopter Fresnel prism <strong>in</strong>to<br />

the upper quadrants of a trial frame (Carlow, 1995). After visual fields are obta<strong>in</strong>ed<br />

without the prism, the prism is placed first base-out and then base-<strong>in</strong> and with each<br />

change the fields are repeated. Patients with pathologic hemianopsias shift their


superior field 15 degrees to the right or to the left of the central vertical meridian with<br />

the prism base <strong>in</strong> or out, respectively, whereas patients with suspected functional<br />

hemifield defect do not shift their superior sectors <strong>in</strong> a similar fashion.<br />

What Treatments Can Be Offered to Patients<br />

with Homonymous Hemianopias?<br />

Treatment of processes caus<strong>in</strong>g visual field impairment is directed at the underly<strong>in</strong>g<br />

etiology. Unfortunately, patients with homonymous hemianopias have a consistently<br />

poor rehabilitation outcome, with no more than 20% of patients undergo<strong>in</strong>g spontaneous<br />

recovery with<strong>in</strong> the first several months of bra<strong>in</strong> <strong>in</strong>jury (Kerkhoff, 1992, 1994).<br />

Smith suggested the use of Fresnel press-on prisms <strong>in</strong> patients with homonymous<br />

hemianopia (Smith, 1981). The prism is placed on the outside half of the lens ipsilateral<br />

to the hemianopia with the base toward that side (e.g., for a patient with a right<br />

homonymous hemianopia, a 15- to 30-diopter prism is placed base-out on the right half<br />

of the right lens). The goal is to <strong>in</strong>crease the patient’s scann<strong>in</strong>g skills. Although prisms<br />

may help some patients, and although patients with the prisms perform significantly<br />

better than controls on visual perception tasks, there is overall no difference <strong>in</strong> activities<br />

of daily liv<strong>in</strong>g function<strong>in</strong>g (Rossi, 1990).<br />

Read<strong>in</strong>g problems are common <strong>in</strong> patients with homonymous field defects (Leff,<br />

2000). Patients with right hemianopias cannot see which letters or words follow those<br />

they have already read, and patients with left hemianopias often lose their place when<br />

read<strong>in</strong>g, often beg<strong>in</strong>n<strong>in</strong>g aga<strong>in</strong> on an unrelated l<strong>in</strong>e. A right homonymous hemianopia<br />

also disrupts the motor preparation of read<strong>in</strong>g saccades dur<strong>in</strong>g text read<strong>in</strong>g (Leff, 2000).<br />

A ruler to guide the patient’s vision is often useful, and some patients with hemianopias<br />

can improve their read<strong>in</strong>g by turn<strong>in</strong>g the material 90 degrees and read<strong>in</strong>g vertically <strong>in</strong><br />

their <strong>in</strong>tact hemifields. Hemianopic patients may also be tra<strong>in</strong>ed to perform large<br />

saccades <strong>in</strong>to the bl<strong>in</strong>d field and to search their entire field <strong>in</strong> various patterns, result<strong>in</strong>g<br />

<strong>in</strong> some visual improvement (Kerkoff, 1994, 2000).<br />

Patients with cortical or cerebral bl<strong>in</strong>dness with some visual preservation may benefit<br />

by referral to low-vision specialists for <strong>in</strong>struction <strong>in</strong> various visual aids to assist read<strong>in</strong>g<br />

and other daily activities.<br />

What Should Be Done with an Unexpla<strong>in</strong>ed<br />

Visual Field Defect?<br />

Visual Field Defects 207<br />

Patients with an unexpla<strong>in</strong>ed unilateral or bilateral visual field defect should have<br />

careful attention paid to the correspond<strong>in</strong>g areas of the ret<strong>in</strong>a and optic nerve on<br />

ophthalmoscopy. Some patients may have occult ret<strong>in</strong>al and=or choroidal vascular<br />

disease that may be detected only by timed and directed (to the location predicted by<br />

the visual field defect) fluoresce<strong>in</strong> angiography (Rizzo, 1993). Visual defects respect<strong>in</strong>g<br />

the vertical midl<strong>in</strong>e with a bitemporal or homonymous ‘‘flavor’’ should undergo a<br />

neuroimag<strong>in</strong>g study. Rarely, patients with unilateral or bilateral nasal defects respect<strong>in</strong>g<br />

the vertical midl<strong>in</strong>e may harbor an underly<strong>in</strong>g compressive lesion (Miller, 1998). In


208 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

addition, apparently altitud<strong>in</strong>al (superior or <strong>in</strong>ferior) bilateral visual field defects may<br />

actually represent bilateral lesions of the optic nerves or retrochiasmal pathway.<br />

Constriction of the visual fields may occur <strong>in</strong> media opacities, miotic pupils, or<br />

uncorrected refractive error; as an artifact of test<strong>in</strong>g; <strong>in</strong> occult ret<strong>in</strong>al disease (e.g.,<br />

ret<strong>in</strong>itis pigmentosa, cancer-associated ret<strong>in</strong>opathy, etc.); with any optic neuropathy<br />

(e.g., optic neuritis, ischemic optic neuropathy, glaucoma, etc.); with bilateral retrochiasmal<br />

lesions (e.g., occipital stroke); or <strong>in</strong> nonorganic patients. In fact, any comb<strong>in</strong>ation<br />

of these entities (e.g., an optic neuropathy and a retrochiasmal homonymous<br />

hemianopsia) may produce any number of comb<strong>in</strong>ations of associated visual field<br />

defects. The simple algorithm presented obviously cannot account for every one of these<br />

comb<strong>in</strong>ations. Electrophysiologic test<strong>in</strong>g such as electroret<strong>in</strong>ography, visual evoked<br />

potentials, and other ancillary test<strong>in</strong>g such as fluoresce<strong>in</strong> angiography may disclose an<br />

abnormality <strong>in</strong> the ret<strong>in</strong>a or optic nerve even <strong>in</strong> the absence of an ophthalmoscopically<br />

visible lesion. Pattern visual evoked potentials aid <strong>in</strong> the diagnosis of functional visual<br />

loss (Xu, 2001).<br />

References<br />

Aarabi B, Haghshenas M, Rakeii V. (1998). Visual failure caused by suprasellar extramedullary hematopoiesis <strong>in</strong><br />

beta thalassemia: case report. <strong>Neuro</strong>surgery 42:922–926.<br />

Abe T, Matsumoto K, Kuwazawa J, et al. (1998). Headache associated with pituitary adenoma. Headache<br />

38:782–786.<br />

Abe T, Matsumoto K, Sanno N, Osamura Y. (1995). Lymphocytic hypophysitis: case report. <strong>Neuro</strong>surgery<br />

36:1016–1019.<br />

Aguglia U, Gambarelli D, Farnarier G, Quattrone A. (1991). Different susceptibilities of the geniculate and<br />

extrageniculate visual pathways to human Creutzfeldt-Jacob disease (a comb<strong>in</strong>ed neurophysiologicalneuropathological<br />

study). Electroencephalogr Cl<strong>in</strong> <strong>Neuro</strong>physiol 78:413–423.<br />

Aksamit AJ, Preissner CM, Homburger A. (2001). Quantitation of 14-3-3 and neuron-specific enolase prote<strong>in</strong>s <strong>in</strong><br />

CSF <strong>in</strong> Creutzfeldt-Jakob disease. <strong>Neuro</strong>logy 57:728–730.<br />

<strong>An</strong>derson JR, <strong>An</strong>toun N, Burnet N, et al. (1999). <strong>Neuro</strong>logy of the pituitary gland. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

66:703–721.<br />

Arita K, Sugiyama K, Tom<strong>in</strong>aga A, Yamasaki F. (2001). Intrasellar rhabdomyosarcoma: case report. <strong>Neuro</strong>surgery<br />

48:677–680.<br />

Aub<strong>in</strong> MJ, Hardy J, Comtois R. (1997). Primary sellar haemorrhagic melanoma: case report and review of the<br />

literature. Br J <strong>Neuro</strong>surg 11:80–83.<br />

Baeesa SS, Benoit BG. (1999). Solitary metastasis of breast carc<strong>in</strong>oma <strong>in</strong> the optic chiasm. Br J <strong>Neuro</strong>surg<br />

13:319–321.<br />

Bahn MM, Kado DK, L<strong>in</strong> W, Pearlman AL. (1997). Bra<strong>in</strong> magnetic resonance diffusion abnormalities <strong>in</strong><br />

Creutzfeldt-Jacob disease. Arch <strong>Neuro</strong>l 54:1411–1415.<br />

Bahn MM, Parchi P. (1999). Abnormal diffusion-weighted magnetic resonance images <strong>in</strong> Creutzfeldt-Jakob<br />

disease. Arch <strong>Neuro</strong>l 56:577–583.<br />

Bartolomei J, Wecht DA, Chaloupka J, et al. (1998). Occipital lobe vascular malformations: prevalence of visual<br />

field deficits and prognosis after therapeutic <strong>in</strong>tervention. <strong>Neuro</strong>surgery 43:415–423.<br />

Barton JJS. (2001). Bilateral sectoranopia from probable osmotic demyel<strong>in</strong>ation. <strong>Neuro</strong>logy 57:2318–2319.<br />

Bashir K, Elble RJ, Ghobrial M, Struble RG. (1998). Hemianopsia <strong>in</strong> dementia with Lewy bodies. Arch <strong>Neuro</strong>l<br />

55:1132–1135.<br />

Beiran I, Krasnitz I, Zimhoni-Eibsitz M, et al. (2000). Paediatric chiasmal neuritis—typical of post-Epste<strong>in</strong>-Barr<br />

virus <strong>in</strong>fection? Acta Ophthalmol 78:226–227.<br />

Belden JR, Caplan LR, Pess<strong>in</strong> MS, Kwan E. (1999). Mechanism and cl<strong>in</strong>ical features of posterior border-zone<br />

<strong>in</strong>farcts. <strong>Neuro</strong>logy 53:1312–1318.<br />

Beressi N, Cohen R, Beressi J-P, et al. (1994). Pseudotumoral lymphocytic hypophysitis successfully treated by<br />

corticosteroid alone: first case report. <strong>Neuro</strong>surgery 35:505–508.<br />

Bills DC, Meyer FB, Laws ER, et al. (1993). A retrospective analysis of pituitary apoplexy. <strong>Neuro</strong>surgery 33:602–609.


Visual Field Defects 209<br />

Biousse V, Newman NJ, Carroll C, et al. (1998). Visual fields <strong>in</strong> patients with posterior Gpi pallidotomy. <strong>Neuro</strong>logy<br />

50:258–265.<br />

Biousse V, Newman NJ, Oyesiku NM. (2001). Precipitat<strong>in</strong>g factors <strong>in</strong> pituitary apoplexy. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 71:542–545.<br />

Blake PY, Miller NR. (1999). Progressive bilateral homonymous visual field defects caused by a left hemispheral<br />

arteriovenous malformation: resolution after embolization. <strong>Neuro</strong>-Ophthalmology 21:17–23.<br />

Bogdanovic MD, Plant GT. (2000). Chiasmal compression due to obstructive hydrocephalus. J <strong>Neuro</strong>-ophthalmol<br />

20:266–267.<br />

Borchert MS, Lessell S, Hoyt WF. (1996). Hemifield slide diplopia from altitud<strong>in</strong>al visual field defects. J <strong>Neuro</strong>ophthalmol<br />

16:107–109.<br />

Borruat F-X, Maeder P. (1995). Sectoranopia after head trauma: evidence of lateral geniculate body lesion on MRI.<br />

<strong>Neuro</strong>logy 45:590–592.<br />

Borruat F-X, Siatkowski RM, Schatz NJ, Glaser JS. (1993). Congruous quadrantanopia and optic radiation lesion.<br />

<strong>Neuro</strong>logy 43:1430–1432.<br />

Bourekas EC, Tzalonikou M, Christofordis GA. (2000). Case 1. Cavernous hemangioma of the optic chiasm. AJR<br />

175:888; 891.<br />

Brazis PW, Lee AG, Graff-Radford N, et al. (2000). Homonymous visual field defects <strong>in</strong> patients without<br />

correspond<strong>in</strong>g structural lesions on neuroimag<strong>in</strong>g. J <strong>Neuro</strong>-Ophthalmol 20:92–96.<br />

Brazis PW, Masdeu JC, Biller J. (2001). Localization <strong>in</strong> <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>logy. 4th ed. Philadelphia, Lipp<strong>in</strong>cott Williams<br />

& Wilk<strong>in</strong>s, pp. 453–521.<br />

Burkhard PR, Sanchez, J-C, Landis T, Hochstrasser DF. (2001). CSF detection of the 14-3-3 prote<strong>in</strong> <strong>in</strong> unselected<br />

patients with dementia. <strong>Neuro</strong>logy 56:1528–1533.<br />

Caplan LR. (1990). Visual perception abnormalities. Presented at the 42nd annual meet<strong>in</strong>g of the American<br />

Academy of <strong>Neuro</strong>logy, Miami, Florida.<br />

Carlow TJ. (1995). Functional hemianopsia: identified with Fresnel prisms and quantitative perimetry. Presented<br />

at the North American <strong>Neuro</strong>-Ophthalmology Society meet<strong>in</strong>g, Tucson, Arizona.<br />

Carter JE, O’Connor P, Shacklett D, Rosenberg M. (1985). Lesions of the optic radiations mimick<strong>in</strong>g lateral<br />

geniculate nucleus visual field defects. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 48:982–988.<br />

Carter K, Lee AG, Tang RA, et al. (1998). <strong>Neuro</strong>-ophthalmologic complications of s<strong>in</strong>us surgery. <strong>Neuro</strong><strong>ophthalmology</strong><br />

19:75–82.<br />

Celesia GG, Brigell MG, Vaphiades MS. (1997). Hemianopic anosognosia. <strong>Neuro</strong>logy 49:88–97.<br />

Chang GY, Keane JR. (2001). Visual loss <strong>in</strong> cysticercosis: analysis of 23 patients. <strong>Neuro</strong>logy 57:545–548.<br />

Chapman T, McKeel DW Jr, Morris JC. (2000). Mislead<strong>in</strong>g results with the 14-3-3 assay for the diagnosis of<br />

Creutzfeldt-Jakob disease. <strong>Neuro</strong>logy 55:1396–1397.<br />

Charteris DG, Cullen JF. (1996). B<strong>in</strong>asal field defects <strong>in</strong> primary empty sella syndrome. J <strong>Neuro</strong>-ophthalmol<br />

16:110–114.<br />

Chavis PS, Al-Hazmi A, Clunie D, Hoyt WF. (1997). Temporal crescent syndrome with magnetic resonance<br />

correlation. J <strong>Neuro</strong>-Ophthalmol 17:151–155<br />

Chun BB, Lee AG, Coughl<strong>in</strong> WF, et al. (1998). Unusual presentation of sellar arachnoid cyst. J <strong>Neuro</strong>-Ophthalmol<br />

18:246–249.<br />

Cirak B, Unal O, Arslan H, C<strong>in</strong>ai A. (2000). Chiasmatic glioblastoma of childhood. A case report. Acta Radiol<br />

41:375–376.<br />

Cobbs CS, Wilson CB. (2001). Intrasellar cavernous hemangioma. J <strong>Neuro</strong>surg 94:520–522.<br />

Czech T, Wolfsberger S, Reitner A, Gorzer H. (1999). Delayed visual deterioration after surgery for pituitary<br />

adenoma. Acta <strong>Neuro</strong>chir 141:45–51.<br />

Danesh-Meyer H, Kubis KC, Wolf MA, Lessell S. (2000). Chiasmopathy? Surv Ophthalmol 44:329–335.<br />

Dom<strong>in</strong>go Z, de Villiers JC. (1993). Post-traumatic chiasmatic disruption. Br J <strong>Neuro</strong>surg 7:141–147.<br />

Donahue SP, Kardon RH, Thompson HS. (1995). Hourglass-shaped visual fields as a sign of bilateral lateral<br />

geniculate myel<strong>in</strong>olysis. Am J Ophthalmol 119:378–380.<br />

Duru S, Ceylan S, Ceylan S. (1999). Optic chiasm diastasis <strong>in</strong> a pituitary tumor. Case illustration. J <strong>Neuro</strong>surg<br />

90:363.<br />

Egan RA, Shults WT, So N, et al. (2000). Visual field deficits <strong>in</strong> conventional anterior temporal lobectomy versus<br />

amygdalohippocampectomy. <strong>Neuro</strong>logy 55:1818–1822.<br />

El-Mahdy W, Powell M. (1998). Transsphenoidal management of 28 symptomatic Rathke’s cleft cysts, with special<br />

reference to visual and hormonal recovery. <strong>Neuro</strong>surgery 42:7–17.<br />

Embil JM, Kramer M, K<strong>in</strong>near S, Bruce Light R. (1997). A bl<strong>in</strong>d<strong>in</strong>g headache. Lancet 349:182.<br />

Fahlbusch R, Honegger J, Paulus W, et al. (1999). Surgical treatment of craniopharyngiomas: experience with 168<br />

patients. J <strong>Neuro</strong>surg 90:237–250.


210 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Felton WL. (1996). Presented at the 28th <strong>An</strong>nual Meet<strong>in</strong>g of the Frank B. Walsh Meet<strong>in</strong>g, Salt Lake City, Utah,<br />

February 10–11.<br />

Fischer EG, DeGirolami U, Suojanen JN. (1994). Reversible visual deficit follow<strong>in</strong>g debulk<strong>in</strong>g of a Rathke’s cleft<br />

cyst: a tethered chiasm? J <strong>Neuro</strong>surg 81:459–462.<br />

Freitag SK, Miller NR, Kosmorsky G. (2000). Visual loss <strong>in</strong> a 42-year-old man. Surv Ophthalmol 44:507–512.<br />

Frohman LP, Frieman BJ, Wolansky L. (2001). Reversible bl<strong>in</strong>dness result<strong>in</strong>g from optic chiasmitis secondary to<br />

systemic lupus erythematosus. J <strong>Neuro</strong>-Ophthalmol 21:18–21.<br />

Galetta SL, Grossman RI. (2000). The representation of the horizontal meridian <strong>in</strong> the primary visual cortex.<br />

J <strong>Neuro</strong>-Ophthalmol 20:89–91.<br />

Galetta SL, Stadmauer EA, Hicks DA, et al. (1991). Reactive lymphohistiocytosis with recurrence <strong>in</strong> the optic<br />

chiasm. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 11:25–30.<br />

Gray LG, Galetta SL, Schatz NJ. (1998). Vertical and horizontal meridian spar<strong>in</strong>g <strong>in</strong> occipital lobe homonymous<br />

hemianopias. <strong>Neuro</strong>logy 50:1170–1173.<br />

Gray LG, Galetta SL, Siegal T, Schatz NJ. (1997). The central visual field <strong>in</strong> homonymous hemianopia. Evidence<br />

for unilateral foveal representation. Arch <strong>Neuro</strong>l 54:312–317.<br />

Green AJE, Thompson EJ, Stewart GE, et al. (2001). Use of 14-3-3 and other bra<strong>in</strong>-specific prote<strong>in</strong>s <strong>in</strong> CSF <strong>in</strong> the<br />

diagnosis of variant Creutzfeldt-Jacob disease. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 70:744–748.<br />

Greenfield DS, Siatkowski RM, Schatz NJ, Glaser JS. (1996). Bilateral lateral geniculitis associated with severe<br />

diarrhea. Am J Ophthalmol 122:280–281.<br />

Groomm, Kay MD, Vic<strong>in</strong>anza-Adami C, Sant<strong>in</strong>i R. (1997). Optic tract syndrome secondary to metastatic breast<br />

cancer. Am J Ophthalmol 125:115–118.<br />

Grossman M, Galetta SL, Nichols CW, Grossman RI. (1990). Horizontal homonymous sectoral field defect after<br />

ischemic <strong>in</strong>farction of the occipital lobe. Am J Ophthalmol 109:234–236.<br />

Growchowicki M, Vighetto A. (1991). Homonymous horizontal sectoranopia: report of four cases. Br J Ophthalmol 75:624.<br />

Guirgis MF, Lam BL, Falcone SF. (2001). Optic tract compression from dolichoectatic basilar artery. Am J<br />

Ophthalmol 132:282–286.<br />

Hansen HV. (1993). Bilateral <strong>in</strong>ferior altitud<strong>in</strong>al hemianopia. <strong>Neuro</strong>-<strong>ophthalmology</strong> 13:81.<br />

Harden CL, Rosenbaum DH, Daras M. (1991). Hyperglycemia present<strong>in</strong>g with occipital seizures. Epilepsia<br />

32:215–220.<br />

He<strong>in</strong>z GW, Nunery WR, Grossman CB. (1994). Traumatic chiasmal syndrome associated with midl<strong>in</strong>e basilar<br />

skull fractures. Am J Ophthalmol 117:90–96.<br />

Hernandez Echebarria LE, Saiz A, Graus F, et al. (2000). Detection of 14-3-3 prote<strong>in</strong> <strong>in</strong> the CSF of a patient with<br />

Hashimoto’s encephalopathy. <strong>Neuro</strong>logy 54:1539–1540.<br />

Hershenfeld SA, Sharpe JS. (1993). Monocular temporal hemianopia. Br J Ophthalmol 77:422–427.<br />

H<strong>in</strong>chey J, Chaves C, Appignani B, et al. (1996). A reversible posterior leukoencephalopathy syndrome. N Engl<br />

J Med 334:494–500.<br />

Honegger J, Fahlbusch R, Bornemann A, et al. (1997). Lymphocytic and granulomatous hypophysitis: experience<br />

with n<strong>in</strong>e cases. <strong>Neuro</strong>surgery 40:713–723.<br />

Honegger J, Buchfelder M, Fahlbusch R. (1999). Surgical treatment of craniopharyngiomas: endocr<strong>in</strong>ological<br />

results. J <strong>Neuro</strong>surg 90:251–257.<br />

Horton JC. (1997). Wilbrand’s knee of the primate optic chiasm is an artefact of monocular enucleation. Trans Am<br />

Ophthalmol Soc 95:579–609.<br />

Horton JC, Fishman RA. (1994). <strong>Neuro</strong>visual f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> the syndrome of spontaneous <strong>in</strong>tracranial hypotension<br />

from dural cerebrosp<strong>in</strong>al fluid leak. Ophthalmology 101:244–251.<br />

Horton JC, Hoyt WF. (1991a). Quadrantic visual field defects. A hallmark of lesions <strong>in</strong> extrastriate (V2=V3) cortex.<br />

Bra<strong>in</strong> 114:1703–1718.<br />

Horton JC, Hoyt WF. (1991b). The representation of the visual field <strong>in</strong> human striate cortex. A revision of the<br />

classic Holmes map. Arch Ophthalmol 109:816–824.<br />

Horton JC, Landau K, Maeder P, Hoyt WF. (1990). Magnetic resonance imag<strong>in</strong>g of the human lateral geniculate<br />

body. Arch <strong>Neuro</strong>l 47:1201–1206.<br />

Hsich G, Kenney K, Gibbs CJ, et al. (1996). The 14-3-3 bra<strong>in</strong> prote<strong>in</strong> <strong>in</strong> cerebrosp<strong>in</strong>al fluid as a marker for<br />

transmissible spongiform encephalopathy. N Engl J Med 335:924–930.<br />

Hughes TS, Abou-Khalil B, Lav<strong>in</strong> PJM, et al. (1999). Visual field defects after temporal lobe resection.<br />

A prospective quantitative analysis. <strong>Neuro</strong>logy 53:167–172.<br />

Hwang JF, Yau CW, Huang KI, Tasi CY. (1993). Apoplectic optochiasmal syndrome due to <strong>in</strong>tr<strong>in</strong>sic cavernous<br />

hemangioma. Case report. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:232–236.<br />

Ikeda H, Yoshimoto T. (1995). Visual disturbances <strong>in</strong> patients with pituitary adenoma. Acta <strong>Neuro</strong>l Scand<br />

92:157–160.


Visual Field Defects 211<br />

Jabre A, Rosales R, Reed JE, Spatz EL. (1997). Lymphocytic hypophysitis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 63:672–673.<br />

Jacobs DA, Lesser RL, Mourelatos Z, et al. (2001). The Heidenha<strong>in</strong> variant of Creutzfeldt-Jakob disease: cl<strong>in</strong>ical,<br />

pathologic, and neuroimag<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs. J <strong>Neuro</strong>-Ophthalmol 21:99–102.<br />

Jacobson DM. (1997). The localiz<strong>in</strong>g value of a quadrantanopsia. Arch <strong>Neuro</strong>l 54:401–404.<br />

Jacobson, DM. (1999). Symptomatic compression of the optic nerve by the carotid artery. <strong>Cl<strong>in</strong>ical</strong> profile of 18<br />

patients with 24 affected eyes identified by magnetic resonance imag<strong>in</strong>g. Ophthalmology 106:1994–2004.<br />

Job OM, Schatz NJ, Glaser JS. (1999). Visual loss with Langerhans cell histiocytosis: multifocal central nervous<br />

system <strong>in</strong>volvement. J <strong>Neuro</strong>-Ophthalmol 19:49–53.<br />

Karanjia N, Jacobson DM. (1999). Compression of the prechiasmatic optic nerve produces a junctional scotoma.<br />

Am J Ophthalmol 128:256–258.<br />

Karp BI, Yang JC, Khorsand M, et al. (1996). Multiple cerebral lesions complicat<strong>in</strong>g therapy with <strong>in</strong>terleuk<strong>in</strong>-2.<br />

<strong>Neuro</strong>logy 47:417–424.<br />

Keane JR. (1998). Patterns of hysterical hemianopia. <strong>Neuro</strong>logy 51:1230–1231.<br />

Kerkhoff G. (2000). <strong>Neuro</strong>visual rehabilitation: recent developments and future directions. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 68:691–706.<br />

Kerkhoff G, MunB<strong>in</strong>ger U, Meier EK. (1994). <strong>Neuro</strong>visual rehabilitation <strong>in</strong> cerebral bl<strong>in</strong>dness. Arch <strong>Neuro</strong>l<br />

51:474–481.<br />

Kerkhoff G, MunB<strong>in</strong>ger U, Haaf E, et al. (1992). Rehabilitation of homonymous scotomata <strong>in</strong> patients with<br />

postgeniculate damage of the visual system: saccadic compensation tra<strong>in</strong><strong>in</strong>g. Restorative <strong>Neuro</strong>l <strong>Neuro</strong>sci<br />

4:245–254.<br />

Kerrison JB, Lee AG, We<strong>in</strong>ste<strong>in</strong> JM. (1997). Acute loss of vision dur<strong>in</strong>g pregnancy due to a suprasellar mass. Surv<br />

Ophthalmol 41:402–408.<br />

Kerrison JB, Lynn MJ, Baer CA, et al. (2000). Stages of improvement <strong>in</strong> visual fields after pituitary tumor resection.<br />

Am J Ophthalmol 130:813–820.<br />

K<strong>in</strong>jo T, al-Mefty O, Ciric I. (1995). Diaphragma sellae men<strong>in</strong>giomas. <strong>Neuro</strong>surgery 36:1082–1092.<br />

Kosmorsky G, Lancione RR Jr. (1998). When fight<strong>in</strong>g makes you see black holes <strong>in</strong>stead of stars. J <strong>Neuro</strong>-<br />

Ophthalmol 18:255–257.<br />

Kosmorsky GS, Straga JM. (1997). A descent th<strong>in</strong>g to do for the chiasm. J <strong>Neuro</strong>-ophthalmol 17:53–56.<br />

Kristof RA, Van Roost D, Kl<strong>in</strong>gmüller D, et al. (1999). Lymphocytic hypophysitis: non-<strong>in</strong>vasive diagnosis and<br />

treatment by high dose methylprednisolone pulse therapy? J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 67:398–402.<br />

Kropp S, Schulz-Schaeffer WJ, F<strong>in</strong>kenstaedt M, et al. (1999). The Heidenha<strong>in</strong> variant of Creutzfeldt-Jacob disease.<br />

Arch <strong>Neuro</strong>l 56:55–61.<br />

Kuperschmidt H, Bont A, Schnorf H, et al. (1995). Transient cortical bl<strong>in</strong>dness and bioccipital bra<strong>in</strong> lesions <strong>in</strong> two<br />

patients with acute <strong>in</strong>termittent porphyria. <strong>An</strong>n Intern Med 123:598–600.<br />

Kupersmith MJ, Berenste<strong>in</strong> A, Nelson PK, et al. (1999). Visual symptoms with dural arteriovenous malformations<br />

dra<strong>in</strong><strong>in</strong>g <strong>in</strong>to occipital ve<strong>in</strong>s. <strong>Neuro</strong>logy 52:156–162.<br />

Kupersmith MJ, Rosenberg C, Kle<strong>in</strong>berg D. (1994). Visual loss <strong>in</strong> pregnant women with pituitary adenomas. <strong>An</strong>n<br />

Intern Med 121:473–477.<br />

Kupersmith MJ, Vargas ME, Yashar A, et al. (1996). Occipital arteriovenous malformations: visual disturbances<br />

and presentation. <strong>Neuro</strong>logy 46:953–957.<br />

Lakhanpal A, Selhorst JB. (1990). Bilateral altitud<strong>in</strong>al visual fields. <strong>An</strong>n Ophthalmol 22:112–117.<br />

Landau K, Wichmann W, Valavanis A. (1995). The miss<strong>in</strong>g temporal crescent. Am J Ophthalmol 119:345–349.<br />

Lee AG, Sforza PD, Fard AK, et al. (1998). Pituitary adenoma <strong>in</strong> children. J <strong>Neuro</strong>-Ophthalmol 18:102–105.<br />

Lee AG, Tang RA, Roberts D, et al. (2001). Primary central nervous system lymphoma <strong>in</strong>volv<strong>in</strong>g the optic chiasm<br />

<strong>in</strong> AIDS. J <strong>Neuro</strong>-Ophthalmol 21:95–98.<br />

Lee BL, Holland GN, Glasgow BJO. (1996). Chiasmal <strong>in</strong>farction and sudden bl<strong>in</strong>dness caused by mucormycosis <strong>in</strong><br />

AIDS and diabetes mellitus. Am J Ophthalmol 122:895–896.<br />

Lee J-H, Laws ER, Guthrie BL, et al. (1994). Lymphocytic hypophysitis: occurrence <strong>in</strong> two men. <strong>Neuro</strong>surgery<br />

34:159–163.<br />

Leff AP, Scott SK, Crewes H, et al. (2000). Impaired read<strong>in</strong>g <strong>in</strong> patients with right hemianopia. <strong>An</strong>n <strong>Neuro</strong>l<br />

47:171–178.<br />

Lemstra AW, van Meegen MT, Vreyl<strong>in</strong>g JP, et al. (2000). 14-3-3 test<strong>in</strong>g <strong>in</strong> diagnos<strong>in</strong>g Creutzfeldt-Jacob disease. A<br />

prospective study <strong>in</strong> 112 patients. <strong>Neuro</strong>logy 55:514–516.<br />

Lepore FE. (2001). The preserved temporal crescent: the cl<strong>in</strong>ical implications of an ‘‘endangered’’ f<strong>in</strong>d<strong>in</strong>g.<br />

<strong>Neuro</strong>logy 57:1918–1921.<br />

Lepore FE. (1998). Visual deficits <strong>in</strong> alexia without agraphia. <strong>Neuro</strong>-Ophthalmology 19:1–6.<br />

Liu GT, Galetta SL. (1997). Homonymous hemifield loss <strong>in</strong> childhood. <strong>Neuro</strong>logy 49:1748–1749.


212 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Liu GT, Galetta SL, Rorke LB, et al. (1996). Gangliogliomas <strong>in</strong>volv<strong>in</strong>g the optic chiasm. <strong>Neuro</strong>logy 46:1669–1673.<br />

Luco C, Hoppe A, Schweitzer M, et al. (1992). Visual field defects <strong>in</strong> vascular lesions of the lateral geniculate body.<br />

J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 55:12–15.<br />

Mart<strong>in</strong> TJ. (1998). Threshold perimetry of each eye with both eyes open <strong>in</strong> patients with monocular functional<br />

(nonorganic) and organic vision loss. Am J Ophthalmol 125:857–864.<br />

McCowen KC, Glickman JN, Black PM, et al. (1999). Gangliocytoma masquerad<strong>in</strong>g as a prolact<strong>in</strong>oma. Case<br />

report. <strong>Neuro</strong>logy 91:490–495.<br />

McFadzean R, Brosnahan D, Hadley D, Mutlukan E. (1994). Representation of the visual field <strong>in</strong> the occipital<br />

striate cortex. Br J Ophthalmol 78:185–190.<br />

McFadzean RM, Hadley DM. (1997). Homonymous quadrantanopia respect<strong>in</strong>g the horizontal meridian. A feature<br />

of striate and extrastriate cortical disease. <strong>Neuro</strong>logy 49:1741–1746.<br />

McFadzean RM, McIlwa<strong>in</strong>e GG, McLellan D. (1990). Hodgk<strong>in</strong>’s disease at the optic chiasm. J Cl<strong>in</strong> <strong>Neuro</strong>ophthalmol<br />

10:248–254.<br />

McHenry JG, Spoor TC. (1993). Chiasmal compression from fat pack<strong>in</strong>g after transsphenoidal resection of<br />

<strong>in</strong>trasellar tumor <strong>in</strong> two patients. Am J Ophthalmol 116:253.<br />

Miele DL, Odel JG, Behrens MM, et al. (2000). Functional bitemporal quadrantopia and the multifocal visual<br />

evoked potential. J <strong>Neuro</strong>-Ophthalmol 20:159–162.<br />

Mikelberg FS, Yidegiligne HM. (1993). Axonal loss <strong>in</strong> band atrophy of the optic nerve <strong>in</strong> craniopharyngioma: a<br />

quantitative analysis. Can J Ophthalmol 28:69–71.<br />

Miki A, Nakajima T, Fujita M, et al. (1996). Functional magnetic resonance imag<strong>in</strong>g <strong>in</strong> homonymous hemianopsia.<br />

Am J Ophthalmol 121:258–266.<br />

Miller NR, Newman NJ. (1998). Topical diagnosis of lesions <strong>in</strong> the visual sensory pathway. In: Miller NR,<br />

Newman NJ, eds. Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 5th ed. Baltimore, Williams & Wilk<strong>in</strong>s,<br />

pp. 237–386.<br />

Mittal S, Farmer P, Kal<strong>in</strong>a P, et al. (2002). Correlation of diffusion-weighted magnetic resonance imag<strong>in</strong>g with<br />

neuropathology <strong>in</strong> Creutzfeldt-Jakob disease. Arch <strong>Neuro</strong>l 59:128–134.<br />

Miyairi Y, Tada T, Tanaka Y, et al. (2000). <strong>An</strong>aplastic astrocytoma <strong>in</strong>vad<strong>in</strong>g the optic chiasm through the optic<br />

pathway. Case illustration. J <strong>Neuro</strong>surg 93:716.<br />

Mojon DS, Odel JG, Rios RJ, Hirano M. (1997). Pituitary adenoma revealed by paracentral junctional scotoma of<br />

Traquair. Ophthalmologica 211:104–108.<br />

Molia L, W<strong>in</strong>terkorn JMS, Schneider SJ. (1996). Hemianopic visual field defects <strong>in</strong> children with <strong>in</strong>tracranial<br />

shunts: report of two cases. <strong>Neuro</strong>surgery 39:599–603.<br />

Morita A, Meyer FB, Laws ER Jr. (1998). Symptomatic pituitary metastases. J <strong>Neuro</strong>surg 89:69–73.<br />

Moster ML, Galetta SI, Schatz NJ. (1996). Physiologic functional imag<strong>in</strong>g <strong>in</strong> ‘‘functional’’ visual loss. Surv<br />

Ophthalmol 40:395–399.<br />

Murphy MA, Grosof DH, Hart WM Jr. (1997). Congenital optic tract syndrome: magnetic resonance imag<strong>in</strong>g and<br />

scann<strong>in</strong>g laser ophthalmoscopy f<strong>in</strong>d<strong>in</strong>gs. J <strong>Neuro</strong>-Ophthalmol 17:226–230.<br />

Na DL, Suh CK, Choi SH, et al. (1999). Diffusion-weighted magnetic resonance imag<strong>in</strong>g <strong>in</strong> probable Creutzfeldt-<br />

Jacob disease. A cl<strong>in</strong>ical-anatomic correlation. Arch <strong>Neuro</strong>l 56:951–957.<br />

Naik RG, Amm<strong>in</strong>i A, Shah P, et al. (1994). Lymphocytic hypophysitis. Case report. J <strong>Neuro</strong>surg 80:925–927.<br />

Neau J-P, Bogousslavsky J. (1996). The syndrome of posterior choroidal artery territory <strong>in</strong>farction. <strong>An</strong>n <strong>Neuro</strong>l<br />

39:779–788.<br />

Newman NJ, Lessell S, W<strong>in</strong>terkorn MS. (1991). Optic chiasmal neuritis. <strong>Neuro</strong>logy 41:1203–1210.<br />

Nishioka H, Ito H, Fuskushima C. (1997). Recurrent lymphocytic hypophysitis. <strong>Neuro</strong>surgery 41:684–687.<br />

Ormerod LD, Rhodes RH, Gross SA, et al. (1996). Ophthalmologic manifestations of acquired immune deficiency<br />

syndrome-associated progressive multifocal leukoencephalopathy. Ophthalmology 103:899–906.<br />

Pakzaban P, Westmark K, Westmark R. (2000). Chiasmal apoplexy due to hemorrhage from a pituitary adenoma<br />

<strong>in</strong>to the optic chiasm: case report. <strong>Neuro</strong>surgery 46:1511–1514.<br />

Pess<strong>in</strong> MS, Kwan ES, DeWitt LD, et al. (1987a). Posterior cerebral artery stenosis. <strong>An</strong>n <strong>Neuro</strong>l 1:85–89.<br />

Pess<strong>in</strong> MS, Lathi ES, Cohen MB, et al. (1987b). <strong>Cl<strong>in</strong>ical</strong> features and mechanism of occipital <strong>in</strong>farction. <strong>An</strong>n <strong>Neuro</strong>l<br />

21:290–299.<br />

Peter M, DeTribolet N. (1995). Visual outcome after transsphenoidal surgery for pituitary adenomas. Br J<br />

<strong>Neuro</strong>surg 9:151–157.<br />

Petruson B, Jakobsson KE, Elfverson J, Bengtsson BA. (1995). Five-year follow-up of nonsecret<strong>in</strong>g pituitary<br />

adenomas. Arch Otolaryngol Head Neck Surg 121:317–322.<br />

Pomeranz HD, Henson JW, Lessell S. (1998). Radiation-associated cerebral bl<strong>in</strong>dness. Am J Ophthalmol<br />

126:609–611.


Visual Field Defects 213<br />

Pomeranz HD, Lessell S. (1999). A hereditary chiasmal optic neuropathy. Arch Ophthalmol 117:128–131.<br />

Poon A, McNeill P, Harper A, O’Day J. (1995). Patterns of visual loss associated with pituitary macroadenomas.<br />

Aust NZ J Ophthalmol 23:107–115.<br />

Poser S, Mollenhauer B, Kraub A, et al. (1999). How to improve the cl<strong>in</strong>ical diagnosis of Creutzfeldt-Jacob disease.<br />

Bra<strong>in</strong> 122:2345–2351.<br />

Rao GP, Blyth CP, Jeffreys R. (1995). Ophthalmic manifestations of Rathke’s cleft cysts. Am J Ophthalmol 119:86–91.<br />

Rizzo JF III. (1993). Occult ret<strong>in</strong>al and choroidal vascular disease. The value of timed and directed fluoresce<strong>in</strong><br />

angiography. Ophthalmology 100:1407–1416.<br />

Rossi LN, Pastor<strong>in</strong>o G, Scotti G, et al. (1994). Early diagnosis of optic glioma <strong>in</strong> children with neurofibromatosis<br />

type 1. Childs Nerv Syst 10:426–429.<br />

Rossi PW, Keyfets S, Red<strong>in</strong>g MJ. (1990). Fresnel prisms improve visual perception <strong>in</strong> stroke patients with<br />

homonymous hemianopia or unilateral visual neglect. <strong>Neuro</strong>logy 40:1597–1599.<br />

Saiz A, Graus F, Dalmau J, et al. (1999). Detection of 14-3-3 bra<strong>in</strong> prote<strong>in</strong> <strong>in</strong> the cerebrosp<strong>in</strong>al fluid of patients with<br />

paraneoplastic neurological disorders. <strong>An</strong>n <strong>Neuro</strong>l 46:774–777.<br />

Saw<strong>in</strong> PD, Follett KA, Wen BC, Laws ER Jr. (1996). Symptomatic <strong>in</strong>trasellar hemangioblastoma <strong>in</strong> a child treated<br />

with subtotal resection and adjuvant radiosurgery. Case report. J <strong>Neuro</strong>surg 84:1046–1050.<br />

Schroter A, Zerr I, Henkel K, et al. (2000). Magnetic resonance imag<strong>in</strong>g <strong>in</strong> the cl<strong>in</strong>ical diagnosis of Creutzfeldt-<br />

Jacob disease. Arch <strong>Neuro</strong>l 57:1751–1757.<br />

Shults WT, Hamby S, Corbett JJ, et al. (1993). <strong>Neuro</strong>-ophthalmic complications of <strong>in</strong>tracranial catheters.<br />

<strong>Neuro</strong>surgery 33:135–138.<br />

Siatkowski RM, Scott IU, Verm AM, et al. (2001). Optic neuropathy and chiasmopathy <strong>in</strong> the diagnosis of systemic<br />

lupus erythematosus. J <strong>Neuro</strong>-ophthalmol 21:193–198.<br />

Slav<strong>in</strong> ML. (1990a). Acute homonymous field loss: really a diagnostic dilemma. Surv Ophthalmol 34:399–407.<br />

Slav<strong>in</strong> ML. (1990b). Bitemporal hemianopia associated with dolichoectasia of the <strong>in</strong>tracranial carotid arteries. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 10:80–81.<br />

Slav<strong>in</strong> ML, Lam BL, Decker RE, et al. (1993). Chiasmal compression from fat pack<strong>in</strong>g after transsphenoidal<br />

resection of <strong>in</strong>trasellar tumor <strong>in</strong> two patients. Am J Ophthalmol 115:368–371.<br />

Smith JL. (1981). New pearls check list. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 1:78.<br />

Steg RE, Kess<strong>in</strong>ger A, Wszolek ZK. (1999). Case report. Cortical bl<strong>in</strong>dness and seizures <strong>in</strong> a patient receiv<strong>in</strong>g<br />

<strong>FK</strong>506 after bone marrow transplantation. Bone Marrow Transplant 23:959–962.<br />

Stelmach M, O’Day J. (1991). Rapid change <strong>in</strong> visual fields associated with suprasellar lymphocytic hypophysitis.<br />

J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 11:19–24.<br />

Thodou E, Asa SL, Kontogeorgos G, et al. (1995). <strong>Cl<strong>in</strong>ical</strong> case sem<strong>in</strong>ar: lymphocytic hypophysitis: cl<strong>in</strong>icopathologic<br />

f<strong>in</strong>d<strong>in</strong>gs. J Cl<strong>in</strong> Endocr<strong>in</strong>ol MeTab 80:2302–2311.<br />

Thompson JC, Kosmorsky GS, Ellis BD. (1996). Fields of dreamers and dreamed-up fields. Functional and fake<br />

perimetry. Ophthalmology 103:117–125.<br />

Trick GL, Trick LR, Morris P, Wolf M. (1995). Visual field loss <strong>in</strong> senile dementia of the Alzheimer’s type. <strong>Neuro</strong>logy<br />

45:68–74.<br />

Trobe JD, Glaser JS. (1983). The Visual Fields Manual: A Practical Guide to Test<strong>in</strong>g and Interpretation. Ga<strong>in</strong>esville,<br />

Triad, p. 176.<br />

Tubridy N, Molloy J, Saunders D, et al. (2001). Postpartum pituitary hypophysitis. J <strong>Neuro</strong>-Ophthalmol 21:106–108.<br />

Vargas ME, Kupersmith MJ, Sav<strong>in</strong>o PJ, et al. (1995). Homonymous field defect as the first manifestation of<br />

Creutzfeldt-Jacob disease. Am J Ophthalmol 119:497–504.<br />

Vargas ME, Kupersmith MJ, Setton, A, et al. (1994). Endovascular treatment of giant aneurysm which cause visual<br />

loss. Ophthalmology 101:1091–1098.<br />

Voelker JL, Campbell RL, Muller J. (1991). <strong>Cl<strong>in</strong>ical</strong>, radiographic, and pathological features of symptomatic<br />

Rathke’s cleft cysts. J <strong>Neuro</strong>surg 74:535–544.<br />

Wang A-G, Liu R-S, Liu J-H, et al. (1999). Positron emission tomography scan <strong>in</strong> cortical visual loss <strong>in</strong> patients<br />

with organophosphate <strong>in</strong>toxication. Ophthalmology 106:1287–1291.<br />

Warren FE, Vargas ME, Seidman I, Kupersmith MJ. (1992). Homonymous field defect <strong>in</strong> an HIV negative, at risk<br />

<strong>in</strong>dividual. Presented at the 24th <strong>An</strong>nual Frank B. Walsh Society meet<strong>in</strong>g, Los <strong>An</strong>geles, California, February<br />

28–29.<br />

We<strong>in</strong> F, Miller NR, Vaphiades MS. (2000). <strong>An</strong> unusual homonymous visual field defect. Surv Ophthalmol<br />

44:324–328.<br />

Wilhelm H, Grodd W, Schiefer U, Zrenner E. (1993). Uncommon chiasmal lesions: demyel<strong>in</strong>at<strong>in</strong>g disease,<br />

vasculitis, and cobalam<strong>in</strong> deficiency. Germ J Ophthalmol 2:234–240.


214 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Wilhelm H, Wilhelm B, Petersen D, et al. (1996). Relative afferent pupillary defects <strong>in</strong> patients with geniculate and<br />

retrogeniculate lesions. <strong>Neuro</strong>-<strong>ophthalmology</strong> 16:219–224.<br />

Wolansky LJ, Shaderowsky PD, Sander R, et al. (1997). Optic chiasmal compression by venous aneurysm:<br />

magnetic resonance imag<strong>in</strong>g diagnosis. J <strong>Neuro</strong>imag<strong>in</strong>g 7:46–47.<br />

Wong AMF, Sharpe JA. (1999). Representation of the visual field <strong>in</strong> the human occipital cortex. A magnetic<br />

resonance imag<strong>in</strong>g and perimetric correlation. <strong>Neuro</strong>logy 117:208–217.<br />

Xu S, Meyer D, Yoser S, et al. (2001). Pattern visual evoked potential <strong>in</strong> the diagnosis of functional visual loss.<br />

Ophthalmology 108:76–81.<br />

Yamamoto M, Jimbo M, Ide M, et al. (1993). Recurrence of symptomatic Rathke’s cleft cyst: a case report. Surg<br />

<strong>Neuro</strong>l 39:263–268.<br />

Zerr I, Bodemer M, Gefeller O, et al. (1998). Detection of 14-3-3 prote<strong>in</strong> <strong>in</strong> the cerebrosp<strong>in</strong>al fluid supports the<br />

diagnosis of Creutzfeldt-Jakob disease. <strong>An</strong>n <strong>Neuro</strong>l 43:32-40.<br />

Zerr I, Bodemer M, Racker S, et al. (1995). Cerebrosp<strong>in</strong>al concentration of neuron-specific enolase <strong>in</strong> diagnosis of<br />

Creutzfeldt-Jacob disease. Lancet 345:1609–1610.<br />

Zerr I, Pocchiari M, Coll<strong>in</strong>s S, et al. (2000a). <strong>An</strong>alysis of EEG and CSF 14-3-3 prote<strong>in</strong>s as aids to the diagnosis of<br />

Creutzfeldt-Jakob disease. <strong>Neuro</strong>logy 55:811–815.<br />

Zerr I, Schulz-Schaeffer WJ, Giese A, et al. (2000b). Current cl<strong>in</strong>ical diagnosis <strong>in</strong> Creutzfeldt-Jakob disease:<br />

identification of uncommon variants. <strong>An</strong>n <strong>Neuro</strong>l 48:323–329.


10 r<br />

Diplopia<br />

In this chapter we divide diplopia <strong>in</strong>to several categories: monocular versus b<strong>in</strong>ocular<br />

and horizontal versus vertical. The evaluation for diplopia is outl<strong>in</strong>ed <strong>in</strong> Figure 10–1.<br />

Is the Diplopia Monocular?<br />

Monocular diplopia can usually be diagnosed by the history alone. Diplopia that is<br />

present monocularly rema<strong>in</strong>s present despite cover<strong>in</strong>g the fellow eye and then disappears<br />

when the <strong>in</strong>volved eye is occluded. It may occur unilaterally or bilaterally. The<br />

second image is often described as a less clear and partially superimposed ‘‘ghost<br />

image’’ or a ‘‘halo’’ on the first image. A p<strong>in</strong>hole may dramatically reduce the patient’s<br />

symptoms. Patients without a clear history of monocular diplopia can be asked to keep<br />

a diary of their symptoms with specific <strong>in</strong>structions to document the details for review<br />

at a future visit. A p<strong>in</strong>hole can be given to patients with suspected monocular diplopia<br />

to try at home. This ‘‘take home’’ p<strong>in</strong>hole can be made <strong>in</strong> the office out of a bus<strong>in</strong>ess<br />

card or a note card us<strong>in</strong>g a pen or pencil to make a small-diameter hole. The patient can<br />

then try the p<strong>in</strong>hole at home dur<strong>in</strong>g the episode of diplopia to test if it resolves the<br />

symptoms.<br />

Monocular diplopia usually implies a problem with<strong>in</strong> the eye itself and may respond<br />

to refraction, artificial tear trial, or contact lens trial. Table 10–1 lists the ocular causes of<br />

monocular diplopia. Monocular diplopia usually does not require any further neuroophthalmologic<br />

evaluation.<br />

<strong>An</strong>other less common form of monocular diplopia is cerebral polyopia (Jones, 1999).<br />

Cerebral polyopia usually can be dist<strong>in</strong>guished from monocular diplopia due to ocular<br />

disease because all of the images are seen with equal clarity, the multiple images do not<br />

resolve with a p<strong>in</strong>hole, and the images are unchanged <strong>in</strong> appearance whether the<br />

patient is view<strong>in</strong>g b<strong>in</strong>ocularly or monocularly. Some patients see only two images,<br />

whereas others may see many or even hundreds of images occurr<strong>in</strong>g <strong>in</strong> a grid-like<br />

pattern (‘‘entomopia’’ or ‘‘<strong>in</strong>sect eye’’) (Lopez, 1993). Some patients experience the<br />

215


216 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 10–1. Evaluation of diplopia.


polyopia only <strong>in</strong> certa<strong>in</strong> positions of gaze. Patients with cerebral polyopia often have<br />

associated signs of occipital or parieto-occipital region damage, such as homonymous<br />

visual field defects, difficulty with visually guided reach<strong>in</strong>g, cerebral achromatopsia or<br />

dyschromatopsia, object agnosia, and abnormal visual afterimages. These patients<br />

require neuroimag<strong>in</strong>g (e.g., magnetic resonance imag<strong>in</strong>g, MRI), to <strong>in</strong>vestigate the<br />

etiology of the polyopia. Cerebral <strong>in</strong>farction is the most common etiology, although<br />

cerebral polyopia may also occur with tumors, multiple sclerosis, encephalitis, seizures,<br />

and with migra<strong>in</strong>e (Jones, 1999).<br />

Is the Diplopia B<strong>in</strong>ocular?<br />

Table 10–1. Ocular Causes of Monocular Diplopia<br />

Refractive error (Woods, 1996) <strong>in</strong>clud<strong>in</strong>g astigmatism<br />

Poorly fitt<strong>in</strong>g contact lens<br />

Corneal abnormalities<br />

Keratoconus<br />

Corneal surface abnormality<br />

Tear film disorders <strong>in</strong>clud<strong>in</strong>g dry eye<br />

Refractive surgery<br />

Corneal transplant<br />

Lid abnormalities (e.g., chalazion, lid position abnormalities)<br />

Iris abnormalities (e.g., iridotomy=iridectomy, miotic pupils)<br />

Lens abnormalities<br />

Cataract<br />

Subluxation or dislocation<br />

Intraocular lens (e.g., position<strong>in</strong>g holes, decentered lens)<br />

Ret<strong>in</strong>al abnormalities (e.g., epiret<strong>in</strong>al membrane, scar)<br />

A history of b<strong>in</strong>ocular diplopia is associated with ocular misalignment. Identification of<br />

specific cl<strong>in</strong>ical signs and symptoms may allow identification of specific etiologies for<br />

the diplopia.<br />

Is the Diplopia Transient or Persistent?<br />

Diplopia 217<br />

Diplopia may be noted only <strong>in</strong> certa<strong>in</strong> fields of gaze (e.g., only on look<strong>in</strong>g down <strong>in</strong> some<br />

patients with fourth nerve palsies) and may fluctuate dur<strong>in</strong>g the day (e.g., diplopia <strong>in</strong><br />

thyroid ophthalmopathy may be more apparent <strong>in</strong> the early morn<strong>in</strong>g). Patients with<br />

truly <strong>in</strong>termittent diplopia may be asymptomatic at exam<strong>in</strong>ation and eye misalignment<br />

may be subtle or not demonstrated. Table 10–2 lists the causes of transient diplopia.<br />

These etiologies are discussed <strong>in</strong> more detail <strong>in</strong> subsequent sections on horizontal and<br />

vertical diplopia.


218 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Is This an Ocular Motor Cranial <strong>Neuro</strong>pathy?<br />

Ocular motor cranial nerve palsies are discussed <strong>in</strong> the chapters on third nerve palsies<br />

(Chapter 11), fourth nerve palsies (Chapter 12), and sixth nerve palsies (Chapter 13).<br />

Is There Evidence for a Restrictive<br />

Ophthalmoplegia Due to Orbital Disease?<br />

Orbital signs, such as proptosis, chemosis, and <strong>in</strong>jection, should be looked for <strong>in</strong><br />

patients with diplopia. Forced ductions may reveal a restrictive component to the<br />

diplopia. Orbital wall fracture, orbital tumors, orbital <strong>in</strong>flammatory disease, or trauma<br />

may result <strong>in</strong> a restrictive strabismus. Orbital imag<strong>in</strong>g is <strong>in</strong>dicated <strong>in</strong> these patients.<br />

Is This Myasthenia Gravis?<br />

Table 10–2. Causes of Transient Diplopia<br />

Transient ischemia<br />

Transient ocular muscle ischemia (e.g., giant cell arteritis)<br />

Vertebrobasilar artery ischemia<br />

Decompensation of preexist<strong>in</strong>g phoria<br />

Ret<strong>in</strong>al hemifield slide phenomena<br />

Myasthenia gravis<br />

Muscle or mechanical<br />

Thyroid ophthalmopathy<br />

Brown’s syndrome<br />

Silent s<strong>in</strong>us syndrome<br />

Intermittent phenomena<br />

Migra<strong>in</strong>e<br />

<strong>Neuro</strong>myotonia<br />

Intermittent or paroxysmal skew deviation<br />

Superior oblique myokymia<br />

Paroxysmal superior rectus and levator palpebrae spasm<br />

Increased <strong>in</strong>tracranial pressure<br />

Multiple sclerosis (days to weeks)<br />

The evaluation and management of myasthenia gravis is discussed <strong>in</strong> Chapter 15. <strong>An</strong>y<br />

patient with pa<strong>in</strong>less, pupil-spar<strong>in</strong>g, nonproptotic ophthalmoplegia or diplopia should<br />

be evaluated for the possible diagnosis of myasthenia gravis.<br />

Is This Thyroid Eye Disease?<br />

Although transient or persistent diplopia and ophthalmoplegia may occur without<br />

other signs of thyroid eye disease, identification of the dist<strong>in</strong>ctive signs of thyroid


disease as described <strong>in</strong> Chapter 16 is essential <strong>in</strong> the evaluation of any patient with<br />

diplopia.<br />

Is This a Supranuclear Process?<br />

In a patient with negative forced ductions and no evidence for restrictive ophthalmoplegia,<br />

the doll’s-head maneuver (rapid forced head movements horizontally<br />

and vertically to activate the vestibulo-ocular reflex) may overcome a supranuclear<br />

ophthalmoplegia (see Chapter 14). Failure of the doll’s-head maneuver to overcome the<br />

ophthalmoplegia suggests an <strong>in</strong>franuclear etiology.<br />

Is the Deviation Vertical or Horizontal?<br />

If there are no dist<strong>in</strong>ctive or obvious signs to <strong>in</strong>dicate diagnosis of a specific etiology for<br />

the diplopia, then the vertical or horizontal nature of the deviation may allow further<br />

classification of the problem.<br />

What Are Phorias and Tropias? How Does the<br />

Exam<strong>in</strong>er Assess Horizontal Eye Muscle<br />

Function?<br />

A phoria is a latent ocular misalignment that is kept <strong>in</strong> check by fusion. Fusion is the<br />

process of merg<strong>in</strong>g images from each eye <strong>in</strong>to a s<strong>in</strong>gle perception. Sensory fusion is the<br />

cortical <strong>in</strong>tegration of two images, whereas motor fusion represents the corrective<br />

movements of the eyes required to ma<strong>in</strong>ta<strong>in</strong> eye alignment on the target of regard.<br />

Breakdown of fusion due to fatigue, stress, or illness may allow a preexist<strong>in</strong>g phoria to<br />

become an <strong>in</strong>termittent or manifest tropia. The degree of eye deviation may be<br />

approximately equal <strong>in</strong> all directions of gaze (comitant) or less commonly may vary<br />

<strong>in</strong> different positions of gaze (<strong>in</strong>comitant). Horizontal deviations from decompensation<br />

of prior childhood strabismus are typically comitant. Breakdown of acquired deviations,<br />

such as an old fourth nerve palsy, may be <strong>in</strong>comitant.<br />

Ductions (each eye mov<strong>in</strong>g separately) and versions (the eyes mov<strong>in</strong>g conjugately)<br />

must always be assessed. In assess<strong>in</strong>g normal eye excursion, an imag<strong>in</strong>ary vertical l<strong>in</strong>e<br />

through the lower lacrimal punctum should co<strong>in</strong>cide with a boundary l<strong>in</strong>e between the<br />

<strong>in</strong>ner third and outer two thirds of cornea. If more cornea is hidden, adduction is<br />

excessive; if more cornea is visible and if some sclera is visible, adduction is limited. If<br />

abduction is normal, the corneal limbus should touch the outer canthus. If the limbus<br />

passes that po<strong>in</strong>t and some of the cornea is hidden, abduction is excessive; if some of the<br />

sclera rema<strong>in</strong>s visible, abduction is limited (von Noorden, 1996).<br />

What Are the Causes of B<strong>in</strong>ocular Horizontal<br />

Diplopia (Esotropia and Exotropia)?<br />

Diplopia 219<br />

Horizontal b<strong>in</strong>ocular diplopia is usually due to disease processes affect<strong>in</strong>g the medial<br />

and=or lateral rectus muscles, the <strong>in</strong>nervation of these muscles (<strong>in</strong>clud<strong>in</strong>g ocular motor


220 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

cranial nerves and neuromuscular junction), or processes affect<strong>in</strong>g fusion or convergence<br />

and divergence mechanisms (Brazis, 1999). By def<strong>in</strong>ition, patients with horizontal<br />

diplopia compla<strong>in</strong> that the two images are side by side. The separation of images may<br />

vary or rema<strong>in</strong> unchanged at far or near fixation. For example, the image separation<br />

from a left abducens nerve palsy is typically worse at a distance than at close range and<br />

worse on left gaze.<br />

Table 10–3 categorizes the causes of b<strong>in</strong>ocular horizontal diplopia as either disorders<br />

caus<strong>in</strong>g esotropia (ET) or disorders caus<strong>in</strong>g exotropia (XT). Congenital and childhood<br />

strabismus syndromes (Table 10–4) are mentioned but not discussed <strong>in</strong> depth. For a<br />

thorough discussion of childhood strabismus syndromes, the reader is referred to the<br />

excellent text of von Noorden (von Noorden, 1996).<br />

What Are the Childhood Strabismus<br />

Syndromes Caus<strong>in</strong>g Esotropia and Exotropia?<br />

Childhood strabismus syndromes may be confused with acquired causes of ET and XT<br />

<strong>in</strong> adulthood. Most childhood ETs are comitant and present at an early age with<br />

‘‘crossed-eyes’’ or amblyopia. Childhood comitant ETs may be due to hyperopia or<br />

impaired accommodation or convergence (Mohney, 2001). Incomitant childhood ETs<br />

<strong>in</strong>clude A-pattern and V-pattern esodeviations, <strong>in</strong> which the esodeviation is worse on<br />

upward and downward gaze, respectively, retraction syndromes (see below), and<br />

mechanical-restrictive esodeviation due to congenital fibrosis of the medial rectus<br />

muscle. Some patients with congenital nystagmus are able to decrease the amplitude<br />

or frequency of their nystagmus by convergence (nystagmus blockage syndrome) and<br />

thus an esotropia develops.<br />

Occasionally, adults with a long-stand<strong>in</strong>g, essentially asymptomatic, esophoria may<br />

present with diplopia due to ‘‘decompensation’’ (Kushner, 2001). This decompensation<br />

of a long-stand<strong>in</strong>g esophoria may occur after head trauma, with chang<strong>in</strong>g refractive<br />

needs, when the patient receives drugs that depress the central nervous system<br />

(e.g., alcohol or sedatives), with systemic illnesses, or for unclear reason. History and<br />

exam<strong>in</strong>ation often reveal supportive evidence for a long-stand<strong>in</strong>g strabismus, <strong>in</strong>clud<strong>in</strong>g<br />

a history of childhood strabismus or patch<strong>in</strong>g, the presence of an old head turn, and<br />

horizontal comitance.<br />

Childhood XT is less frequent than childhood ET. The XT may be <strong>in</strong>termittent or<br />

persistent, and sometimes adults with exophoria or <strong>in</strong>termittent XT may present with<br />

diplopia due to the <strong>in</strong>ability to adequately compensate for the eye misalignment<br />

(decompensation of exophoria).<br />

Duane’s retraction syndrome is characterized by a narrow<strong>in</strong>g of the palpebral fissure<br />

and globe retraction on adduction (Chung, 2000). Three forms have been described<br />

(DeResp<strong>in</strong>is, 1993). In type I, abduction is limited but adduction is normal or only<br />

slightly limited. In type II, adduction is impaired but abduction is normal or slightly<br />

limited. In type III, both adduction and abduction are impaired. Eye deviation may or<br />

may not be present <strong>in</strong> primary position but if it is present, then ET is usually present <strong>in</strong><br />

type I and III patients, whereas XT is more frequent <strong>in</strong> type II patients. Although many<br />

patients adopt a head turn to ma<strong>in</strong>ta<strong>in</strong> s<strong>in</strong>gle b<strong>in</strong>ocular vision, these patients rarely<br />

compla<strong>in</strong> of spontaneous diplopia. They do have diplopia recognition, if specifically


Table 10–3. Etiologies of Esotropia=Exotropia and Acquired Horizontal Diplopia<br />

Diplopia 221<br />

Esotropia<br />

Childhood strabismus syndromes (see Table 10–4)<br />

Change of angle of preexist<strong>in</strong>g childhood strabismus or loss of suppression scotoma<br />

Decompensation of a long-stand<strong>in</strong>g esophoria<br />

Consecutive esotropia (after strabismus surgery)<br />

Optical causes (e.g., optical center change <strong>in</strong> glasses, over-m<strong>in</strong>us <strong>in</strong> accommodative<br />

esophoria)<br />

Sensory esotropia (usually not associated with diplopia)<br />

Disorders of muscle and restrictive syndromes<br />

Orbital myositis (orbital pseudotumor)<br />

Thyroid eye disease<br />

Medial orbital wall fracture<br />

Postsurgical esotropia<br />

Isolated lateral rectus weakness<br />

Muscle trauma<br />

Progressive external ophthalmoplegia syndromes<br />

<strong>An</strong>omalous orbital structures, such as extraocular muscles <strong>in</strong>sert<strong>in</strong>g <strong>in</strong>to an abnormal location,<br />

fibrous bands, and discrete anomalous muscles (Lueder, 2002)<br />

Other orbital disease processes<br />

Disorders of the neuromuscular junction (e.g., myasthenia gravis)<br />

Disorders of cranial nerves<br />

Sixth nerve palsy<br />

Ocular neuromyotonia<br />

Central disorders<br />

Cyclic esotropia<br />

Periodic alternat<strong>in</strong>g esotropia<br />

Divergence <strong>in</strong>sufficiency or paralysis<br />

Acute acquired comitant esotropia<br />

Spasm of the near reflex<br />

Midbra<strong>in</strong> pseudo–sixth nerve palsy<br />

Thalamic esotropia<br />

Acquired motor fusion deficiency<br />

Hemifield slide phenomena<br />

Exotropia<br />

Childhood strabismus syndromes (see Table 10–4)<br />

Change of angle of preexist<strong>in</strong>g childhood strabismus or loss of suppression scotoma<br />

Decompensation of a long-stand<strong>in</strong>g exophoria<br />

Consecutive exotropia (after strabismus surgery)<br />

Exotropia secondary to vitreous hemorrhage<br />

Optical causes<br />

Sensory exotropia (often not associated with diplopia)<br />

Disorders of the muscle<br />

Orbital myositis (orbital pseudotumor)<br />

Thyroid eye disease (uncommon)<br />

Postsurgical exotropia<br />

(cont<strong>in</strong>ued)


222 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 10–3. (cont<strong>in</strong>ued)<br />

Isolated medial rectus weakness<br />

Muscle trauma<br />

Progressive external ophthalmoplegia syndromes<br />

Other orbital disease processes<br />

Disorders of the neuromuscular junction (e.g., myasthenia gravis)<br />

Disorders of cranial nerves<br />

Third nerve palsy<br />

Ocular neuromyotonia<br />

Central disorders<br />

Acquired motor fusion deficiency<br />

Internuclear ophthalmoplegia (WEMINO syndrome and WEBINO syndrome) and the one-anda-half<br />

syndrome (paralytic pont<strong>in</strong>e exotropia)<br />

Vitam<strong>in</strong> E deficiency (e.g., abetalipoprote<strong>in</strong>emia)<br />

Convergence <strong>in</strong>sufficiency and paralysis<br />

Hemifield slide phenomena<br />

asked, and state that they do recognize two images when their eyes are misaligned. In<br />

all types, there may be a vertical deviation of the adduct<strong>in</strong>g eye with ‘‘up-shoots’’ and<br />

‘‘down-shoots.’’ Duane’s retraction syndrome is predom<strong>in</strong>antly congenital and is<br />

thought to be due to anomalous <strong>in</strong>nervation of the lateral rectus muscle by the <strong>in</strong>ferior<br />

division of the oculomotor nerve (DeResp<strong>in</strong>is, 1993). <strong>An</strong> acquired Duane’s-like<br />

syndrome has been described <strong>in</strong> patients with pont<strong>in</strong>e glioma, with rheumatoid<br />

arthritis, follow<strong>in</strong>g trigem<strong>in</strong>al rhizotomy, and after removal of an orbital cavernous<br />

hemangioma by lateral orbitotomy.<br />

Consecutive esotropia refers to esodeviation that occurs iatrogenically after surgical<br />

overcorrection of an exodeviation (patients who are surgically undercorrected may<br />

also still be diplopic postoperatively). Consecutive exotropia similarly results from<br />

surgical overcorrection of ET or may arise spontaneously <strong>in</strong> a previously esotropic<br />

patient, especially <strong>in</strong> association with poor vision <strong>in</strong> the deviat<strong>in</strong>g eye (sensory<br />

exotropia).<br />

What Are Sensory Esotropia and Sensory<br />

Exotropia?<br />

Sensory deviations <strong>in</strong>clud<strong>in</strong>g ET or XT result from reduced visual acuity <strong>in</strong> one eye.<br />

These patients do not compla<strong>in</strong> of diplopia because of the visual loss. Loss of fusion <strong>in</strong><br />

cases of visual loss may allow a preexist<strong>in</strong>g phoria to become manifest. Sidikaro and<br />

von Noorden reported 121 patients with sensory heterotropias and noted that ET and<br />

XT occurred with almost equal frequency when the onset of visual impairment occurred<br />

at birth or between birth and age 5 (Sidikaro, 1982). Sensory XT, however, predom<strong>in</strong>ates<br />

<strong>in</strong> older children and adults.


Table 10–4. Classification of Childhood Strabismus Syndromes<br />

Esodeviations<br />

Comitant esodeviation<br />

Accommodative esotropia<br />

Refractive<br />

Nonrefractive<br />

Hypoaccommodative<br />

Partially accommodative esotropia<br />

Nonaccommodative esotropia<br />

Infantile (onset birth to 6 months)<br />

Acquired (<strong>in</strong>cludes esotropia with myopia, cyclic esotropia, and some cases of divergence<br />

<strong>in</strong>sufficiency)<br />

Microtropia<br />

Nystagmus blockage syndrome<br />

Incomitant esodeviation<br />

A- and V-pattern esotropia<br />

Duane’s retraction syndrome type I and III<br />

Congenital mechanical-restrictive esodeviations (e.g., congenital fibrosis)<br />

Secondary esodeviation<br />

Sensory esotropia<br />

Consecutive esotropia (after strabismus surgery)<br />

Exodeviations<br />

Primary<br />

Duane’s syndrome type II<br />

Restrictive—congenital fibrosis<br />

Secondary<br />

Sensory exotropia<br />

Consecutive exotropia (after strabismus surgery)<br />

Source: Repr<strong>in</strong>ted from von Noorden, 1996, with permission from Elsevier Science.<br />

What Disorders of the Extraocular Muscles<br />

Are Associated with Horizontal Diplopia?<br />

Diplopia 223<br />

Orbital pseudotumor is an idiopathic orbital <strong>in</strong>flammatory condition characterized<br />

by the follow<strong>in</strong>g features: (1) typically unilateral but may be bilateral; (2) cl<strong>in</strong>ical signs<br />

of orbital mass effect and <strong>in</strong>flammation (e.g., proptosis, chemosis, pa<strong>in</strong>, <strong>in</strong>jection,<br />

ophthalmoplegia); (3) orbital imag<strong>in</strong>g shows focal or diffuse <strong>in</strong>flammatory lesion; (4)<br />

histopathology reveals a fibro-<strong>in</strong>flammatory lesion; and (5) no other identifiable local or<br />

systemic causes (Lacey, 1999; Mombaerts, 1996).<br />

When the <strong>in</strong>flammatory process is conf<strong>in</strong>ed to one or multiple extraocular muscles,<br />

the process is referred to as orbital myositis, although some authors feel that orbital<br />

pseudotumor and orbital myositis may be dist<strong>in</strong>ct cl<strong>in</strong>icotherapeutic entities<br />

(Mombaerts, 1997). Patients present with acute or subacute orbital pa<strong>in</strong> and diplopia.<br />

F<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>clude conjunctival chemosis and <strong>in</strong>jection, ptosis, and proptosis. <strong>An</strong>gleclosure<br />

glaucoma may rarely occur (Bernard<strong>in</strong>o, 2001). The process may be unilateral or


224 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

bilateral and usually resolves with corticosteroid therapy (Mombaerts, 1997) or radiation<br />

therapy. The illness is often monophasic but recurrent episodes may occur.<br />

Characteristics associated with recurrences <strong>in</strong>clude male gender, lack of proptosis,<br />

eyelid retraction, horizontal extraocular muscle <strong>in</strong>volvement, multiple or bilateral<br />

extraocular muscle <strong>in</strong>volvement, muscle tendon spar<strong>in</strong>g on neuroimag<strong>in</strong>g, and lack<br />

of response to steroids or nonsteroidal anti<strong>in</strong>flammatory agents (Mannor, 1997). Orbital<br />

myositis may be associated with systemic diseases, such as Crohn’s disease (Squires,<br />

1991), celiac disease, Churg-Strauss syndrome (Takahashi, 2001), systemic lupus erythematosus<br />

(Lacey, 1999; Serop, 1994), Whipple’s disease (Orssaud, 1992), rheumatoid<br />

arthritis, l<strong>in</strong>ear scleroderma (Ramboer, 1997; Serup, 1994; Suttorp-Schulten, 1990),<br />

and Wegener’s granulomatosis. Recurrent orbital myositis may occasionally be<br />

familial (Maurer, 1999) and orbital myositis may occasionally be paraneoplastic<br />

(Harris, 1994).<br />

<strong>Neuro</strong>imag<strong>in</strong>g reveals enlarged, irregular muscles usually with tend<strong>in</strong>ous <strong>in</strong>sertion<br />

<strong>in</strong>volvement (as opposed to tendon spar<strong>in</strong>g <strong>in</strong> thyroid ophthalmopathy). Intracranial<br />

extension of the <strong>in</strong>flammatory process is rare (De Jesús, 1996). The differential diagnosis<br />

of orbital pseudotumor is outl<strong>in</strong>ed <strong>in</strong> Table 10–5.<br />

Orbital polymyositis and giant cell myocarditis is a rare, dist<strong>in</strong>ct nosologic entity<br />

characterized by progressive, often pa<strong>in</strong>ful bilateral ophthalmoplegia with thickened<br />

extraocular muscles and cardiac arrhythmia often lead<strong>in</strong>g to death (Kattah, 1990; Leib,<br />

1994; Stevens, 1996). Pathologically, the extraocular and cardiac muscles showed diffuse<br />

mononuclear and giant cell <strong>in</strong>flammation. Cardiac transplantation may be lifesav<strong>in</strong>g<br />

(Leib, 1994).<br />

Biopsy may be required to exclude other diseases, except <strong>in</strong> pure myositic locations,<br />

<strong>in</strong> which the cl<strong>in</strong>icopathologic picture is rather unique and surgical biopsy may damage<br />

the muscle, and <strong>in</strong> posterior locations, <strong>in</strong> which the optic nerve may be at risk dur<strong>in</strong>g<br />

surgery (Mombaerts, 1996). Pathologic studies <strong>in</strong> orbital myositis reveal <strong>in</strong>flammatory<br />

<strong>in</strong>filtrate composed ma<strong>in</strong>ly of small well-differentiated mature lymphocytes, admixed<br />

with plasma cells, <strong>in</strong> a diffuse or multifocal pattern. The muscle fibers are swollen and<br />

separated by edema and fibrosis with loss of normal striations and degeneration of<br />

muscle fibers (Mombaerts, 1996). Other atypical histopathologic patterns, such as<br />

extensive sclerosis, true vasculitis, granulomatous <strong>in</strong>flammation, and tissue eos<strong>in</strong>ophilia,<br />

can be used for subclassification of orbital pseudotumor <strong>in</strong> general (Mombaerts,<br />

1996). There is no unequivocal correlation between cl<strong>in</strong>icotherapeutic outcome and<br />

these atypical f<strong>in</strong>d<strong>in</strong>gs.<br />

Thyroid eye disease (thyroid orbitopathy, thyroid ophthalmopathy, or Graves’<br />

disease) is a disorder characterized cl<strong>in</strong>ically by lid retraction, lid lag <strong>in</strong> downward<br />

gaze, exophthalmos, diplopia (due to extraocular muscle <strong>in</strong>flammation or fibrosis),<br />

potential visual loss due to compressive optic neuropathy or corneal damage, and signs<br />

and symptoms of orbital congestion (Bartley, 1994, 1995a,b, 1996a,b). The restrictive<br />

extraocular muscle <strong>in</strong>volvement may be confirmed by impaired ocular motility dur<strong>in</strong>g<br />

the forced duction test. The extraocular muscles predom<strong>in</strong>antly affected <strong>in</strong>clude the<br />

<strong>in</strong>ferior, medial, and superior rectus muscles, and as the process causes muscle tightness<br />

or restriction, the diplopia is worse <strong>in</strong> the direction opposite to that of the <strong>in</strong>volved<br />

muscle(s) action. Thus, hypertropia and esotropia are quite common <strong>in</strong> thyroid eye<br />

disease but exotropia is uncommon because lateral rectus muscle is usually not<br />

markedly <strong>in</strong>volved. In fact, if a patient with thyroid eye disease is noted to be exotropic,<br />

superimposed myasthenia gravis should be considered, as there is an <strong>in</strong>creased risk of


Table 10–5. Differential Diagnosis of Orbital Pseudotumor<br />

Diplopia 225<br />

Thyroid eye disease (see Table 10–6)<br />

Orbital cellulitis (e.g., orbital apex syndrome)<br />

Bacterial<br />

Fungal<br />

Aspergillosis (Hutnik, 1997; Lev<strong>in</strong>, 1996; Slav<strong>in</strong>, 1991)<br />

Mucormycosis (Balch, 1997; Dooley, 1992; Downie, 1993; Johnson, 1999)<br />

Bipolaris hawaiiensis (Mask<strong>in</strong>, 1989)<br />

Act<strong>in</strong>omycosis (Sullivan, 1992)<br />

Cysticercosis (Lacey, 1999)<br />

Trich<strong>in</strong>osis (Behrens-Baumann, 1990)<br />

Low-flow dural-cavernous s<strong>in</strong>us fistula<br />

Neoplastic<br />

Metastatic<br />

Breast cancer (false ‘‘orbital pseudotumor’’ presentation) (Goldberg, 1990a,b; Lacey, 1999;<br />

Toller, 1998)<br />

Lymphoid hyperplasia<br />

Non-Hodgk<strong>in</strong>’s lymphoma and Hodgk<strong>in</strong>’s disease<br />

S<strong>in</strong>us histiocytosis with massive lymphadenopathy (Rosai-Dorfman disease)<br />

Sem<strong>in</strong>oma (bilateral nonspecific <strong>in</strong>flammatory or Graves-like orbitopathy not due to direct<br />

orbital metastasis)<br />

Infiltrative<br />

Erdheim-Chester disease (idiopathic <strong>in</strong>filtration of the heart, lungs, retroperitoneum, bones, and<br />

other tissues by xanthomatous histiocytes and Touton giant cells) (Esmaeli, 2001; Shields, 1991;<br />

Valmaggia, 1997)<br />

Orbital amyloidosis (Çeviker, 1997; Lacey, 1999; Murdoch, 1996)<br />

Inflammatory<br />

Sarcoidosis (Cornblath, 1993; Lacey, 1999; Patel, 1994; Segal, 2000; Takahashi, 2000)<br />

Giant cell arteritis (de Heide, 1999)<br />

Orbital polymyositis and giant cell myocarditis<br />

Systemic <strong>in</strong>flammatory diseases (Wegener’s granulomatosis, systemic lupus erythematosus)<br />

(Woo, 2001)<br />

myasthenia gravis <strong>in</strong> patients with thyroid eye disease (Lee 1997; Vargas, 1993). Thyroid<br />

eye disease is further discussed <strong>in</strong> Chapter 16. Thyroid eye disease and orbital myositis<br />

may resemble each other cl<strong>in</strong>ically. Differential features are outl<strong>in</strong>ed <strong>in</strong> Table 10–6.<br />

The diagnosis of myasthenia gravis (MG) should be considered <strong>in</strong> all patients with<br />

pa<strong>in</strong>less ptosis and=or ocular motor weakness without pupillary <strong>in</strong>volvement or<br />

proptosis. Weakness and fatigue conf<strong>in</strong>ed to the extraocular muscles or lids comb<strong>in</strong>ed<br />

with orbicularis oculi paresis is especially suggestive of this diagnosis. MG may cause<br />

hypertropia, esotropia, or exotropia, and can mimic many neurogenic conditions<br />

<strong>in</strong>clud<strong>in</strong>g abducens nerve palsies, gaze abnormalities, divergence paresis, and <strong>in</strong>ternuclear<br />

ophthalmoplegia. Therefore, <strong>in</strong> any patient with an abnormality of horizontal<br />

gaze, MG should at least be considered. MG is discussed further <strong>in</strong> Chapter 15.<br />

Orbital trauma may result <strong>in</strong> horizontal diplopia due to a fracture of the medial<br />

orbital wall <strong>in</strong> isolation or accompanied by fracture of the orbital floor or other orbital


226 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 10–6. <strong>Cl<strong>in</strong>ical</strong> Differential Diagnosis of Orbital<br />

Myositis and Thyroid Eye Disease<br />

Orbital Myositis Thyroid Eye Disease<br />

Males and females<br />

equally affected<br />

Females predom<strong>in</strong>ate<br />

Acute or subacute onset Gradual onset<br />

Often severe orbital pa<strong>in</strong> Pa<strong>in</strong>less or ‘‘foreign<br />

body’’ sensation<br />

Motility problems early Motility problems late<br />

May have limited ductions Restrictive ductions<br />

No lid lag or retraction Lid lag and retraction<br />

<strong>Neuro</strong>imag<strong>in</strong>g of orbit<br />

Enlarged muscles irregular Enlarged muscles<br />

often smooth<br />

Tendon spared Tendon may be <strong>in</strong>volved<br />

Often unilateral Often bilateral<br />

bones (Eitzen, 1991; Merle, 1998; von Noorden, 1996). Medial rectus muscle <strong>in</strong>carceration<br />

may lead to ET with impaired abduction or XT with impaired adduction. Medial<br />

orbital wall <strong>in</strong>jury may occur iatrogenically dur<strong>in</strong>g endoscopic transnasal s<strong>in</strong>us surgery<br />

(Eitzen, 1991; von Noorden, 1996). Also, medial or lateral orbital surgery (e.g., optic<br />

nerve sheath fenestration) may directly <strong>in</strong>jure the medial or lateral rectus muscles,<br />

result<strong>in</strong>g <strong>in</strong> <strong>in</strong>itial muscle paresis, sometimes followed eventually by scarr<strong>in</strong>g and<br />

restrictive ET or XT, respectively. Other ocular surgeries (e.g., pterygium surgery, scleral<br />

buckle, and glaucoma setons) may also result <strong>in</strong> horizontal diplopia.<br />

Isolated medial rectus paresis is rare and results <strong>in</strong> XT, due to unopposed action of the<br />

lateral rectus muscle. The XT is worse on gaze to the opposite side and is associated<br />

with impaired adduction on the side of the weak muscle. Impaired monocular<br />

adduction is more often noted with <strong>in</strong>ternuclear ophthalmoplegia than isolated<br />

medial rectus palsy due to a partial third nerve palsy. Isolated medial rectus muscle<br />

paresis may occur with MG, orbital myositis, muscle trauma, or orbital disease. Lesions<br />

of the oculomotor nerve cause medial rectus paresis but not <strong>in</strong> isolation. Because the<br />

neurons controll<strong>in</strong>g the medial rectus muscle probably lie at three different locations<br />

with<strong>in</strong> the oculomotor nucleus, it is unlikely that a medial rectus paralysis could be the<br />

sole manifestation of a bra<strong>in</strong>stem oculomotor nuclear lesion.<br />

Although isolated lateral rectus paresis is most often due to lesions of the sixth cranial<br />

nerve, other processes, <strong>in</strong>clud<strong>in</strong>g MG, orbital myositis, muscle trauma, and orbital<br />

lesions, may impair the muscle directly.<br />

What Disorders of the Cranial Nerves Cause<br />

Horizontal Diplopia?<br />

Unilateral sixth cranial nerve <strong>in</strong>jury results <strong>in</strong> an <strong>in</strong>comitant esodeviation that is<br />

worsened with gaze <strong>in</strong>to the field of the weak lateral rectus muscle. Patients may


employ a compensatory face turn <strong>in</strong> the direction of the paralyzed lateral rectus muscle<br />

to limit diplopia. Abduction is often limited on the side of the lesion. With bilateral<br />

paralysis, both eyes may be <strong>in</strong> a position of adduction and the esotropia <strong>in</strong>creases upon<br />

look<strong>in</strong>g to the left or right. MG may mimic an isolated sixth nerve palsy, so <strong>in</strong> some<br />

patients with isolated abduction paresis a Tensilon test should be considered, especially<br />

if there are signs of fatigability of the muscle paresis or associated ptosis. Sixth cranial<br />

nerve palsies are further discussed <strong>in</strong> Chapter 13.<br />

Lesions of the third cranial nerve may cause an XT because of weakness of the medial<br />

rectus muscle with the eye deviat<strong>in</strong>g toward the side of the preserved lateral rectus<br />

muscle. This XT is usually associated with other signs of third nerve affection, <strong>in</strong>clud<strong>in</strong>g<br />

paresis of eye elevation and depression, ptosis, and pupillary <strong>in</strong>volvement. Third cranial<br />

nerve palsies are further discussed <strong>in</strong> Chapter 11.<br />

Ocular neuromyotonia (ONM) is a rare disorder characterized by episodic (last<strong>in</strong>g<br />

seconds to m<strong>in</strong>utes) horizontal or vertical diplopia, occurr<strong>in</strong>g either spontaneously or<br />

follow<strong>in</strong>g susta<strong>in</strong>ed (10 to 20 seconds) eccentric gaze (Abdulla, 1999; Barroso, 1993;<br />

Chung, 1997; Ezra, 1996b; Frohman, 1995; Fu, 1995; Haupert, 1997; Helmchen, 1992;<br />

Morrow, 1996; Newman, 1993; Yee, 1998). Most patients have had prior radiation<br />

therapy to the sellar or parasellar region (months to years before onset of the ONM) for<br />

tumors, <strong>in</strong>clud<strong>in</strong>g chordoma, pituitary tumors, craniopharyngioma, chondrosarcoma,<br />

rhabdomyosarcoma, thalamic glioma, s<strong>in</strong>onasal carc<strong>in</strong>oma, and medulloblastoma. In<br />

some cases, however, no responsible structural lesion or history of radiation therapy is<br />

noted. Rarely ONM may be due to a compressive lesion, such as an aneurysm (Abdulla,<br />

1999; Ezra, 1996b), dolichoectatic basilar artery (Tilikete, 2000), thyroid eye disease<br />

(Chung, 1997), Paget’s disease of bone (Boschi, 1997), or after cavernous s<strong>in</strong>us<br />

thrombosis secondary to mucormycosis (Harrison, 1997). One patient had fourth<br />

nerve <strong>in</strong>volvement where spasms of the superior oblique muscle were <strong>in</strong>duced only<br />

by alcohol <strong>in</strong>take (Ezra, 1996b), whereas another developed ONM several years after<br />

myelography with thorium dioxide (Thorotrast) (Yee, 1998).<br />

ONM is thought to reflect impaired muscle relaxation due to <strong>in</strong>appropriate<br />

discharges from oculomotor, trochlear, or abducens neurons or axons with unstable<br />

cellular membranes. Patients with ONM often benefit from membrane stabiliz<strong>in</strong>g agents<br />

such as carbamazep<strong>in</strong>e. One patient noted that she could term<strong>in</strong>ate episodes of<br />

episodic ocular depression <strong>in</strong>stantly by forcefully direct<strong>in</strong>g her gaze upward, and<br />

thus stretch<strong>in</strong>g the affected muscle might also prove to be an effective way of end<strong>in</strong>g<br />

attacks (Safran, 1998). Patients with unexpla<strong>in</strong>ed transient episodic diplopia should thus<br />

be specifically tested for diplopia and ocular misalignment follow<strong>in</strong>g susta<strong>in</strong>ed<br />

eccentric gaze.<br />

What Central Disorders Cause Horizontal<br />

Diplopia?<br />

Diplopia 227<br />

Central disorders caus<strong>in</strong>g horizontal diplopia <strong>in</strong>clude cyclic esotropia, periodic alternat<strong>in</strong>g<br />

esotropia, divergence <strong>in</strong>sufficiency and paralysis, convergence spasm, convergence<br />

<strong>in</strong>sufficiency and paralysis, acquired motor fusion deficiency, <strong>in</strong>ternuclear<br />

ophthalmoplegia and the one-and-a-half syndrome, vitam<strong>in</strong> E deficiency, and the<br />

hemifield slip phenomenon. Exotropia due to vitreous hemorrhage is <strong>in</strong>cluded here,


228 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

as the diplopia may be due to impaired fusional mechanisms. Internuclear ophthalmoplegia,<br />

the one-and-a-half syndrome, and the motility disorder associated with vitam<strong>in</strong> E<br />

deficiency (abetalipoprote<strong>in</strong>emia) may all cause horizontal diplopia (and occasionally<br />

vertical diplopia when associated with skew deviation) and are discussed <strong>in</strong> Chapter 17.<br />

What Is Cyclic Esotropia?<br />

Cyclic esotropia is a rare condition characterized by a regularly recurr<strong>in</strong>g ET that often<br />

occurs with regular 48-hour cycles (Riordan-Eva, 1993; Tapiero, 1995). There is often a<br />

24-hour period of normal b<strong>in</strong>ocular vision followed by a 24-hour period of manifest ET;<br />

72-hour and 96-hour cycles have also been reported. The ET may eventually become<br />

constant. Cyclic ET usually appears <strong>in</strong> young children but may also occur <strong>in</strong> adults<br />

(Riordan-Eva, 1993; Tapiero, 1995). The condition usually starts without precipitant but<br />

has been described after strabismus surgery for <strong>in</strong>termittent XT, after cataract surgery,<br />

after traumatic aphakia, after surgical removal of a third ventricular astrocytoma, and <strong>in</strong><br />

association with optic atrophy or ret<strong>in</strong>al detachment (Riordan-Eva, 1993). The etiology<br />

of this condition is unknown, with possible causes be<strong>in</strong>g oculomotor nerve hyperactivity<br />

(although there are no associated abnormalities of the pupil or lid), abducens nerve<br />

dysfunction, strabismus be<strong>in</strong>g <strong>in</strong>terrupted by periodic <strong>in</strong>tervals of fusion, or, most<br />

likely, a disorder of central mechanisms.<br />

What Is Periodic Alternat<strong>in</strong>g Esotropia?<br />

Periodic alternat<strong>in</strong>g esotropia (PAE) is a rare cyclic disorder typically associated with<br />

periodic alternat<strong>in</strong>g nystagmus or periodic alternat<strong>in</strong>g gaze (PAG) (Hamed, 1992).<br />

While one eye ma<strong>in</strong>ta<strong>in</strong>s fixation, the other eye undergoes a phase of wax<strong>in</strong>g then<br />

wan<strong>in</strong>g <strong>in</strong>ward deviation. The cycle is completed by a phase of vary<strong>in</strong>g <strong>in</strong>ward<br />

deviation <strong>in</strong> the eye that was <strong>in</strong>itially fixat<strong>in</strong>g after a transition period of orthotropia<br />

dur<strong>in</strong>g which fixation changes. This condition is <strong>in</strong>variably associated with severe bra<strong>in</strong><br />

dysfunction and is especially noted <strong>in</strong> young children with ataxia or hydrocephalus.<br />

What Constitutes Divergence Insufficiency<br />

and Divergence Paralysis?<br />

Weakness of divergence is characterized by <strong>in</strong>termittent or constant ET at distance with<br />

fusion at near (Akman, 1995; Arai, 1990; Fril<strong>in</strong>g, 1993; Jacobson, 2000; Lepore, 1999;<br />

Lewis, 1996; Schanzer, 1998; von Noorden, 1996). Abduction by duction and version<br />

test<strong>in</strong>g is relatively full bilaterally. The angle of strabismus rema<strong>in</strong>s unchanged<br />

(comitant) or may be decreased on gaze to either side. Fusional divergence is reduced<br />

or absent. Fusional divergence is measured by plac<strong>in</strong>g prisms of progressively larger<br />

strength base-<strong>in</strong> over one eye while the subject is fixat<strong>in</strong>g at distance and near and<br />

not<strong>in</strong>g when the fixation image appears double (break po<strong>in</strong>t). Patients with divergence<br />

weakness should also demonstrate normal speed and amplitude of horizontal saccades<br />

(Leigh, 1999).


Diplopia 229<br />

When ET at distance due to divergence impairment occurs <strong>in</strong> an otherwise healthy<br />

<strong>in</strong>dividual, it is referred to as ‘‘divergence <strong>in</strong>sufficiency’’ or ‘‘primary divergence<br />

<strong>in</strong>sufficiency,’’ whereas when it occurs associated with neurologic disease it is called<br />

‘‘divergence paralysis’’ or ‘‘secondary divergence <strong>in</strong>sufficieny.’’ Divergence <strong>in</strong>sufficiency<br />

(primary) is usually observed <strong>in</strong> young adults, is self-limited, and may be treated with<br />

base-out prisms or occasionally surgery (Akman, 1995; Arai, 1990; Fril<strong>in</strong>g, 1993;<br />

Jacobson, 2000; Lewis, 1996; Schanzer, 1998; von Noorden, 1996). In one study, 95%<br />

of patients with primary divergence <strong>in</strong>sufficiency were older than 50 years and<br />

symptoms resolved <strong>in</strong> 40% of patients after a median of 5 months (Jacobson, 2000).<br />

Divergence paralysis (secondary divergence <strong>in</strong>sufficiency) is usually noted with bra<strong>in</strong>stem<br />

disease. It has been reported with multiple sclerosis, <strong>in</strong>tracranial masses (e.g.,<br />

pontomedullary glioma), bra<strong>in</strong>stem hemorrhage or <strong>in</strong>farction, head trauma, <strong>in</strong>creased<br />

<strong>in</strong>tracranial pressure (e.g., pseudotumor cerebri, neurobrucellosis, frontal lobe glioblastoma),<br />

the spontaneous <strong>in</strong>tracranial hypotension syndrome, cerebellar lesions, craniocervical<br />

junction abnormalities (e.g., Chiari malformation), hydrocephalus, men<strong>in</strong>gitis,<br />

encephalitis, syphilis, clivus lymphoma, acute lymphoblastic leukemia, chronic lymphocytic<br />

leukemia, diazepam <strong>in</strong>gestion, giant cell arteritis, Fisher’s syndrome, Wernicke’s<br />

encephalopathy, Park<strong>in</strong>son’s disease, Machado-Joseph disease, progressive supranuclear<br />

palsy, and after lumbar puncture or epidural block (Akman, 1995; Arai, 1990;<br />

Brown, 1999; Fril<strong>in</strong>g, 1993; Horton, 1994; Jacobson, 2000; Lepore, 1999; Lewis, 1996;<br />

Mokri, 1997; Ohyagi, 2000; Schanzer, 1998; Tekeli, 1999; Vers<strong>in</strong>o, 1996). Abducens nerve<br />

palsy may also cause esotropia that is worse at a distance than near, and <strong>in</strong>deed some<br />

authors believe that divergence paralysis does not exist and that all such cases actually<br />

represent bilateral abducens nerve palsies. However, three f<strong>in</strong>d<strong>in</strong>gs occur with divergence<br />

paralysis but not with bilateral sixth nerve palsies: (1) fusional divergence is<br />

reduced or absent, (2) the esotropia not only rema<strong>in</strong>s unchanged dur<strong>in</strong>g horizontal gaze<br />

but may even decrease, and (3) saccadic velocities are normal.<br />

In a study of 17 adults with divergence weakness, none of the patients were found to<br />

have concurrent neurologic disease (Wigg<strong>in</strong>s, 1999). Thirteen patients rema<strong>in</strong>ed stable,<br />

three improved, and one progressed. Sixteen patients were treated successfully: 12 with<br />

prisms and four with strabismus surgery; one patient was not treated. The authors<br />

concluded that divergence weakness is usually an isolated condition that tends to<br />

rema<strong>in</strong> stable and respond to treatment with prisms or strabismus surgery. In another<br />

study of 15 patients with divergence paresis, three cases were idiopathic and the rest<br />

were associated with diverse central nervous system diseases (Lepore, 1999). Although<br />

six of these patients had posterior fossa disease, neuroimag<strong>in</strong>g showed no common<br />

circumscribed lesion site or evidence of <strong>in</strong>creased <strong>in</strong>tracranial pressure, and thus<br />

divergence paresis was considered a nonlocaliz<strong>in</strong>g cause of horizontal diplopia.<br />

Divergence paresis may be mimicked by myasthenia gravis (Lepore, 1999).<br />

As noted above, unilateral or bilateral abducens nerve paresis may cause an acute ET<br />

with the deviation greater at distance than near. This deviation may eventually become<br />

comitant (‘‘spread of comitance’’), <strong>in</strong> which case it will be difficult to recognize the<br />

paretic element. Acute acquired comitant ET may occur <strong>in</strong> childhood and may be<br />

benign (von Noorden, 1996). For example, it may develop after artificial <strong>in</strong>terruption of<br />

fusion by occlusion of one eye. A previous esophoria may decompensate and become<br />

manifest after fusion has been disrupted. Acquired comitant ET <strong>in</strong> childhood may also<br />

occur with central nervous system tumors, especially bra<strong>in</strong>stem and cerebellar tumors<br />

and tumors of the corpus callosum, and with Chiari I malformation. Thus, these


230 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

patients must undergo neuroimag<strong>in</strong>g (Biousse, 2000; Hoyt, 1995; Lewis, 1996; Lopresto<br />

Weeks, 1999; Simon, 1996). It has also been described after head trauma <strong>in</strong> a child on<br />

carbamazep<strong>in</strong>e (Fukuo, 1998). The mechanism of acute acquired comitant ET is<br />

unknown.<br />

What Is Convergence Spasm?<br />

Convergence spasm usually occurs on a functional basis. Patients exhibit <strong>in</strong>termittent<br />

episodes of susta<strong>in</strong>ed maximal convergence associated with accommodative spasm<br />

(<strong>in</strong>duced myopia) and miosis (Al-D<strong>in</strong>, 1994; Goldste<strong>in</strong>, 1996; von Noorden, 1996). The<br />

spasm may be triggered by ask<strong>in</strong>g the patient to fixate an object held closely before the<br />

eyes; after the fixation object has been removed, the eyes will rema<strong>in</strong> <strong>in</strong> a convergent<br />

position (von Noorden, 1996). Quick saccades back and forth <strong>in</strong> the horizontal plane<br />

may also <strong>in</strong>duce the spasm.<br />

Patients with spasm of the near reflex often compla<strong>in</strong> of headache, diplopia,<br />

photophobia, and blurred vision and often have tunnel visual fields. Patients may<br />

<strong>in</strong>itially be thought to have unilateral or bilateral abducens nerve paresis or myasthenia<br />

gravis. Observation of miosis dur<strong>in</strong>g the spasm <strong>in</strong> a patient with apparent unilateral or<br />

bilateral limitation of abduction and severe myopia (8 to 10 diopters) <strong>in</strong>dicates the<br />

correct diagnosis (Al-D<strong>in</strong>, 1994; Goldste<strong>in</strong>, 1996; Newman, 1989; Postert, 1997). This<br />

miosis generally resolves as soon as either eye is occluded (Newman, 1989). Also,<br />

despite apparent weakness of abduction, patients have full abduction when one eye is<br />

patched or dur<strong>in</strong>g duction test<strong>in</strong>g. Convergence spasm may occasionally be confused<br />

with divergence paralysis <strong>in</strong> that <strong>in</strong> both <strong>in</strong>stances there is ET at distance fixation. With<br />

convergence spasm, however, fusional divergence is normal and visual acuity at<br />

distance is decreased.<br />

Spasm of the near reflex may rarely be associated with organic disease of the central<br />

and ocular motor system. Increased or susta<strong>in</strong>ed convergence may be seen with lesions<br />

of the diencephalic-mesencephalic junction. For example, a pseudo–sixth nerve palsy<br />

may occur from midbra<strong>in</strong> lesions (midbra<strong>in</strong> pseudo–sixth nerve palsy), perhaps due to<br />

an excess of convergence tone (Pullic<strong>in</strong>o, 2000). In a study of patients with pseudoabducens<br />

palsy and ‘‘top-of-the-basilar’’ <strong>in</strong>farcts, the smallest <strong>in</strong>farcts produc<strong>in</strong>g an<br />

ipsilateral pseudoabducens palsy were located just rostral to the oculomotor nucleus,<br />

near the midbra<strong>in</strong>-diencephalic junction (Pullic<strong>in</strong>o, 2000). Two patients with only<br />

contralateral pseudoabducens palsy had subthalamic and thalamic <strong>in</strong>farction, and<br />

four patients with bilateral pseudoabducens palsy had larger <strong>in</strong>farcts <strong>in</strong>volv<strong>in</strong>g the<br />

midbra<strong>in</strong>. All patients with pseudoabducens palsy had upgaze palsy. The authors<br />

concluded that lesions near the midbra<strong>in</strong>-diencephalic junction are important for the<br />

development of pseudoabducens palsy and that this abnormality and convergenceretraction<br />

nystagmus are both manifestations of abnormal vergence activity. Inhibitory<br />

descend<strong>in</strong>g pathways for convergence may pass through the thalamus and decussate <strong>in</strong><br />

the subthalamic region (Pullic<strong>in</strong>o, 2000). A case of pseudo–sixth nerve palsy has been<br />

ascribed to bra<strong>in</strong>stem <strong>in</strong>farction due to deep cerebral venous thrombosis (Bernste<strong>in</strong>,<br />

2001). Acute esotropia has been described with contralateral thalamic <strong>in</strong>farction <strong>in</strong> the<br />

territory of the mesencephalic artery (acute thalamic esotropia). Tonic activation of the<br />

medial rectus muscle <strong>in</strong> these cases could result from damage to direct <strong>in</strong>hibitory<br />

projections from the thalamus or impairments of <strong>in</strong>puts to midbra<strong>in</strong> neurons <strong>in</strong>volved


<strong>in</strong> vergence control. Acute thalamic hemorrhage may cause bilateral asymmetric<br />

esotropia with the contralateral eye more affected than the ipsilateral eye<br />

(Hertle, 1990). Bilateral pseudo–sixth nerve palsies have been described with symmetric<br />

bilateral paramedian thalamic lesions without midbra<strong>in</strong> <strong>in</strong>volvement (Wiest, 2000).<br />

Other etiologies of <strong>in</strong>creased or susta<strong>in</strong>ed spasm of the near reflex <strong>in</strong>clude Wernicke-<br />

Korsakoff syndrome, Arnold-Chiari malformation, encephalitis, hepatic encephalopathy,<br />

neurosyphilis, vertebrobasilar ischemia, multiple sclerosis, labyr<strong>in</strong>th<strong>in</strong>e fistula,<br />

trauma, posterior fossa tumor, pituitary adenoma, phenyto<strong>in</strong> <strong>in</strong>toxication, cyclic oculomotor<br />

palsy, Raeder’s paratrigem<strong>in</strong>al syndrome, ocular <strong>in</strong>flammation, Fisher’s<br />

syndrome, and ocular myasthenia gravis (Al-D<strong>in</strong>, 1994; Goldste<strong>in</strong>, 1996; Hertle, 1990;<br />

Postert, 1997; Thompson, 1998; von Noorden, 1996).<br />

What Constitutes Convergence Insufficiency<br />

and Convergence Paralysis?<br />

Patients with an exodeviation greater at close range than at a distance have convergence<br />

<strong>in</strong>sufficiency type XT. Adduction is usually normal, there is a remote near po<strong>in</strong>t of<br />

convergence, and fusional convergence is decreased at near fixation (von Noorden,<br />

1996). This condition is common among teenagers and college students, especially those<br />

with an <strong>in</strong>creased visual work load, but may also be seen <strong>in</strong> the elderly. It often<br />

develops at times of stress or fatigue, but also may be noted dur<strong>in</strong>g systemic <strong>in</strong>fection or<br />

after head trauma. Acquired cerebral lesions, especially affect<strong>in</strong>g the nondom<strong>in</strong>ant<br />

parietal lobe, may rarely be responsible (Ohtsuka, 1988). Patients with convergence<br />

<strong>in</strong>sufficiency typically compla<strong>in</strong> of eyestra<strong>in</strong> and ache. After brief periods of read<strong>in</strong>g,<br />

the letters will blur and run together and often diplopia occurs dur<strong>in</strong>g near work.<br />

Typically, the patient will close or cover one eye while read<strong>in</strong>g to obta<strong>in</strong> relief from<br />

visual fatigue.<br />

Patients with convergence paralysis, as opposed to convergence <strong>in</strong>sufficiency, often<br />

harbor a lesion of the midbra<strong>in</strong>. Diplopia exists only at near fixation, adduction is<br />

normal, and the patient is unable to converge. Preservation of accommodation or<br />

pupillary miosis at close range confirms an organic etiology. Other signs of midbra<strong>in</strong><br />

damage usually are present <strong>in</strong>clud<strong>in</strong>g impaired vertical gaze, upbeat or downbeat<br />

nystagmus, convergence-retraction nystagmus, and eyelid retraction. Many conditions<br />

are associated with convergence paralysis, <strong>in</strong>clud<strong>in</strong>g Park<strong>in</strong>son’s disease, progressive<br />

supranuclear palsy, dorsal midbra<strong>in</strong> tumors, midbra<strong>in</strong> hemorrhage or <strong>in</strong>farction, multiple<br />

sclerosis, encephalitis, metabolic causes, trauma, subdural hematoma, and drugs<br />

(Racette, 1999; Spierer, 1995). Dissociated unilateral convergence paralysis has been<br />

described with thalamotectal hemorrhage (L<strong>in</strong>dner, 1992). Selective convergence loss<br />

with light-near dissociation has been described with bilateral paramedian thalamic<br />

<strong>in</strong>farction (Wiest, 2000).<br />

What Is Acquired Motor Fusion Deficiency?<br />

Diplopia 231<br />

Motor fusion is a function of the extrafoveal ret<strong>in</strong>al periphery (von Noorden, 1996).<br />

Acquired motor fusional deficiency is a rare condition that represents loss of both<br />

fusional convergence and divergence that may occur after head trauma, stroke, bra<strong>in</strong>


232 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

tumor, or neurosurgery (von Noorden, 1996). It is assumed to be due to midbra<strong>in</strong><br />

damage. The patients compla<strong>in</strong> of eyestra<strong>in</strong> and are unable to ma<strong>in</strong>ta<strong>in</strong> s<strong>in</strong>gle vision for<br />

any length of time. Despite apparent ocular alignment, patients compla<strong>in</strong> of transient or<br />

permanent diplopia. Fusional amplitudes are absent, but stereopsis and sensory fusion<br />

are <strong>in</strong>tact dur<strong>in</strong>g brief episodes of fusion. There is no effective therapy.<br />

Why Is Vitreous Hemorrhage Sometimes<br />

Associated with a Secondary Exotropia?<br />

Fujikado et al described eight patients with exotropia and b<strong>in</strong>ocular diplopia after<br />

recovery from vitreous hemorrhage (Fujikado, 1997). Vitreous hemorrhages were<br />

bilateral <strong>in</strong> three patients and unilateral <strong>in</strong> five patients. Diplopia occurred <strong>in</strong> all<br />

patients after vitrectomy. Exotropia was present <strong>in</strong> all of the patients, and seven of<br />

the eight also had vertical strabismus with an average deviation of six prism diopters.<br />

The authors concluded that diplopia after vitrectomy for long-stand<strong>in</strong>g vitreous<br />

hemorrhage may occur due to fusion impairment comparable to that occasionally<br />

seen after surgery for traumatic cataract.<br />

What Is the Hemifield Slide Phenomenon?<br />

The hemifield slide or slip phenomenon is a rare cause of <strong>in</strong>termittent b<strong>in</strong>ocular<br />

diplopia noted <strong>in</strong> some patients with lesions of the optic chiasm. This phenomenon<br />

occurs with complete or nearly complete bitemporal hemianopic visual field defects<br />

with disruption of ocular fusion and decompensation of a previous phoria. The<br />

underly<strong>in</strong>g pathophysiology is loss of b<strong>in</strong>ocularity due to lack of cortical representation<br />

of correspond<strong>in</strong>g po<strong>in</strong>ts <strong>in</strong> the visual field from each eye (i.e., transection of the chiasm<br />

creates two <strong>in</strong>dependent, free-float<strong>in</strong>g hemifields, with each eye project<strong>in</strong>g only to the<br />

ipsilateral visual cortex). Patients compla<strong>in</strong> of <strong>in</strong>termittent diplopia and difficulty with<br />

near work (e.g., thread<strong>in</strong>g a needle or sew<strong>in</strong>g). On exam<strong>in</strong>ation, no ocular motor palsy<br />

is noted despite the patients’ compla<strong>in</strong>ts of diplopia. If the eyes <strong>in</strong>termittently converge<br />

(esotropia), a blank space is produced between the vertical meridians as the eyes ‘‘slip’’<br />

<strong>in</strong>ward and the rema<strong>in</strong><strong>in</strong>g hemifields drift apart horizontally. Ocular divergence<br />

(exotropia) causes overlapp<strong>in</strong>g of the vertical meridians, result<strong>in</strong>g <strong>in</strong> superimposition<br />

of images from noncorrespond<strong>in</strong>g ret<strong>in</strong>al areas. Hemifield slide diplopia may also occur<br />

from altitud<strong>in</strong>al visual field defects (Borchert, 1996). Two cases have been described <strong>in</strong><br />

which heteronymous altitud<strong>in</strong>al field defects resulted <strong>in</strong> loss of fusion and transient<br />

overlap of preserved hemifields. This phenomenon resulted <strong>in</strong> compla<strong>in</strong>ts of diplopia<br />

similar to that described with bitemporal hemianopsia. The patients had superior<br />

altitud<strong>in</strong>al field defects <strong>in</strong> one eye and <strong>in</strong>ferior defects <strong>in</strong> the other. One compla<strong>in</strong>ed<br />

of vertical diplopia and the other had vertical and horizontal diplopia.<br />

How Does One Exam<strong>in</strong>e a Patient with the<br />

Compla<strong>in</strong>t of Vertical Diplopia?<br />

Patients with vertical diplopia compla<strong>in</strong> of see<strong>in</strong>g two images, one atop or diagonally<br />

displaced from the other. The evaluation of these patients starts with a careful history,


Diplopia 233<br />

<strong>in</strong>clud<strong>in</strong>g queries concern<strong>in</strong>g previous eye muscle surgeries, childhood strabismus, and<br />

history of patch<strong>in</strong>g or orthoptic exercises. The exam<strong>in</strong>er must question whether the<br />

diplopia is monocular, and thus usually due to abnormalities of the ocular media<br />

<strong>in</strong>clud<strong>in</strong>g refractive error, or b<strong>in</strong>ocular and due to impaired ocular motility. Often, by<br />

ask<strong>in</strong>g some pert<strong>in</strong>ent questions and by observ<strong>in</strong>g the posture of the patient’s head, a<br />

likely diagnosis can be reached even before physical exam<strong>in</strong>ation beg<strong>in</strong>s (Spector, 1993;<br />

von Noorden, 1996). If the patient compla<strong>in</strong>s of vertical diplopia <strong>in</strong> primary gaze, often<br />

one of the vertically act<strong>in</strong>g extraocular muscles is underact<strong>in</strong>g: the right and=or left<br />

<strong>in</strong>ferior rectus, superior rectus, <strong>in</strong>ferior oblique, or superior oblique. Then one asks if the<br />

vertical separation between images is worse on gaze to the left or right. If, for example,<br />

vertical separation of images is worse on gaze to the right, then four of the eight<br />

extraocular muscles may be underact<strong>in</strong>g (the right superior or <strong>in</strong>ferior rectus or the left<br />

<strong>in</strong>ferior or superior oblique). If the separation is worse on gaze to the right and down,<br />

the right <strong>in</strong>ferior rectus or left superior oblique must be underact<strong>in</strong>g; if the image<br />

separation worsens or improves with left or right head tilt, torsional abnormalities,<br />

especially due to oblique muscle <strong>in</strong>volvement, should be suspected.<br />

Patients with b<strong>in</strong>ocular vertical diplopia may adopt a compensatory head, face, or<br />

ch<strong>in</strong> position to move their eyes <strong>in</strong>to a gaze angle that achieves b<strong>in</strong>ocular s<strong>in</strong>gle vision.<br />

Underaction of the superior or <strong>in</strong>ferior rectus muscles is compensated by neck flexion or<br />

extension (ch<strong>in</strong> down or ch<strong>in</strong> up), which seeks to avoid the eye position of maximum<br />

image separation. Torsional diplopia is usually caused by underaction of the superior or<br />

<strong>in</strong>ferior oblique muscles and may be associated with an angular head tilt. This head tilt<br />

is assumed to avoid the vertical and torsional image separation.<br />

The three-step test is important <strong>in</strong> the evaluation of vertical diplopia:<br />

1. Determ<strong>in</strong>e whether there is a right or left hypertropia or hyperphoria <strong>in</strong> primary<br />

position. For example, if there is a right hypertropia <strong>in</strong> primary position, there is<br />

paresis of the right eye depressors (right <strong>in</strong>ferior rectus or superior oblique) or left<br />

eye elevators (left superior rectus or <strong>in</strong>ferior oblique).<br />

2. Compare the amount of vertical deviation <strong>in</strong> right and left gaze. For example, if the<br />

right hypertropia <strong>in</strong>creases <strong>in</strong> left gaze, either the right superior oblique or the left<br />

superior rectus is underact<strong>in</strong>g.<br />

3. Compare the vertical deviation <strong>in</strong> right head tilt and left head tilt (Bielschowsky<br />

maneuver). For example, if the vertical deviation <strong>in</strong>creases with right head tilt, the<br />

right superior oblique must be weak; if the hyperdeviation <strong>in</strong>creases on left head tilt,<br />

the left superior rectus is weak.<br />

Ocular torsion may be measured with the double Maddox rod test, which utilizes a<br />

red Maddox rod over the right eye and a white Maddox rod over the left eye <strong>in</strong> a trial<br />

frame. A th<strong>in</strong> base-down prism may be placed before one eye to separate the horizontal<br />

l<strong>in</strong>es <strong>in</strong>duced. The tilt of the ret<strong>in</strong>al image is opposite the tilt of the horizontal l<strong>in</strong>e, as<br />

seen by the patient. Therefore, when the l<strong>in</strong>e is seen slanted toward the nose, an<br />

excyclodeviation is present, whereas if the tilt is toward the temple, an <strong>in</strong>cyclodeviation<br />

is present. A simple mnemonic is that the l<strong>in</strong>e is always tilted <strong>in</strong> the direction <strong>in</strong> which<br />

the offend<strong>in</strong>g muscle would rotate the eye if it were act<strong>in</strong>g alone (von Noorden, 1996).<br />

For example, a patient with right superior oblique muscle palsy will describe the red<br />

l<strong>in</strong>e to be lower than the white l<strong>in</strong>e and relatively <strong>in</strong>torted or slanted toward the nose.<br />

The Maddox rod is then turned until the two l<strong>in</strong>es are parallel and the magnitude of the<br />

cyclotropia can be read off the trial frame. Cyclodeviation may also be noted with


234 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

<strong>in</strong>direct ophthalmoscopy (von Noorden, 1996). Normally, the average location of the<br />

fovea <strong>in</strong> relation to the optic nerve head is 0.3 disc diameters below a horizontal l<strong>in</strong>e<br />

extend<strong>in</strong>g through the geometric center of the optic disc. From this position, an<br />

imag<strong>in</strong>ary horizontal l<strong>in</strong>e will cross the optic nerve head just below the halfway<br />

po<strong>in</strong>t between its geometric center and lower pole. Incyclotropia is present when the<br />

fovea appears above a l<strong>in</strong>e extend<strong>in</strong>g horizontally from the center of the optic nerve<br />

head, and excyclotropia is present when the fovea is below a l<strong>in</strong>e extend<strong>in</strong>g horizontally<br />

from just below the lower pole of the optic disc. F<strong>in</strong>ally, if restrictive ophthalmopathy is<br />

thought to be responsible for vertical misalignment, the forced duction test can be used<br />

to differentiate whether limitation of ocular movement is due to paresis of extraocular<br />

muscle or tether<strong>in</strong>g of the antagonist extraocular muscle.<br />

What Are the Etiologies of Vertical Diplopia?<br />

B<strong>in</strong>ocular vertical diplopia may be due to supranuclear processes, ocular motor nerve<br />

dysfunction, neuromuscular junction disease, diseases of eye muscle, mechanical<br />

processes caus<strong>in</strong>g vertical eye misalignment, and even ret<strong>in</strong>al disease (Brazis, 1998a).<br />

Etiologies responsible for vertical b<strong>in</strong>ocular diplopia and hypertropia=hyperphoria are<br />

outl<strong>in</strong>ed <strong>in</strong> Table 10–7.<br />

What Supranuclear Processes May Cause<br />

Vertical Diplopia?<br />

Monocular elevation paresis (‘‘double elevator palsy’’) may occur on a peripheral basis<br />

(e.g., due to primary <strong>in</strong>ferior rectus restriction, primary superior rectus palsy, myasthenia<br />

gravis, or a fascicular third nerve lesion) or with pretectal supranuclear lesions.<br />

Supranuclear monocular elevation paresis may be congenital (Bell, 1990; Ziffer, 1992) or<br />

acquired, with the latter due to a lesion contralateral to the paretic eye or ipsilateral to<br />

the paretic eye that <strong>in</strong>terrupt efferents from the rostral <strong>in</strong>terstitial nucleus of the MLF<br />

to the superior rectus and <strong>in</strong>ferior oblique subnuclei (Hommel, 1990; Thomke, 1992).<br />

Double elevator palsy may simply be an asymmetric upgaze palsy that cl<strong>in</strong>ically<br />

presents as monocular elevation paresis <strong>in</strong> the more severely affected eye (Thomke,<br />

1992). Patients do not have subjective diplopia <strong>in</strong> primary position and demonstrate<br />

limitation of monocular elevation that is the same from primary position, adduction, or<br />

abduction, confirm<strong>in</strong>g a supranuclear basis for the elevation impairment. Patients may<br />

have associated pupillary abnormalities, convergence impairment, and other neurologic<br />

signs of bra<strong>in</strong>stem <strong>in</strong>volvement but do not have ptosis, lid retraction, proptosis, positive<br />

forced ductions, or a positive Tensilon test. A vertical one-and-a-half syndrome, with<br />

vertical upgaze palsy and monocular paresis of downgaze on the side of the lesion or<br />

contralateral to the lesion, and skew deviation, vertical misalignment result<strong>in</strong>g from<br />

supranuclear derangements, may also cause vertical diplopia and are described <strong>in</strong><br />

Chapter 14. The ocular tilt reaction (OTR), discussed <strong>in</strong> Chapter 14, may also be<br />

associated with vertical diplopia. A tonic OTR may simulate superior oblique palsy<br />

(Donahue, 1999). Five patients with OTR had a three-step test suggest<strong>in</strong>g superior<br />

oblique palsy (bilateral <strong>in</strong> one patient). However, no patient had the expected excyclotorsion<br />

of the hypertropic eye. Two patients had conjugate ocular torsion (<strong>in</strong>torsion of


Table 10–7. Etiologies of B<strong>in</strong>ocular Vertical Diplopia and Hypertropia=Hyperphoria<br />

Diplopia 235<br />

Supranuclear causes<br />

Supranuclear monocular elevation paresis (congenital or acquired)<br />

Skew deviation<br />

Vertical one-and-a-half syndrome<br />

Wernicke’s syndrome<br />

Paroxysmal superior rectus and levator palpebrae spasm with multiple sclerosis<br />

Vitreous hemorrhage<br />

Ocular motor nerve dysfunction<br />

Third nerve palsy<br />

Fourth nerve palsy<br />

Hypertropia (small) accompany<strong>in</strong>g sixth nerve palsy<br />

Superior oblique myokymia<br />

Ocular neuromyotonia<br />

Ophthalmoplegic migra<strong>in</strong>e<br />

Wernicke’s syndrome<br />

Fisher’s syndrome<br />

Guilla<strong>in</strong>-Barré syndrome<br />

Decompensation of a long-stand<strong>in</strong>g phoria<br />

Increased <strong>in</strong>tracranial pressure<br />

<strong>Neuro</strong>muscular junction disease<br />

Myasthenia gravis<br />

Botulism<br />

Diseases of the eye muscle<br />

Isolated paresis of a vertical-act<strong>in</strong>g extraocular muscle (e.g., due to congenital causes, myasthenia<br />

gravis, Graves’ disease, botulism, trauma, postsurgery, trochleitis, orbital metastasis, orbital<br />

pseudotumor, muscle ischemia form giant cell arteritis, etc.)<br />

Superior oblique muscle<br />

Inferior oblique muscle<br />

Superior rectus muscle<br />

Inferior rectus muscle<br />

Decompensation of a long-stand<strong>in</strong>g phoria<br />

Graves’ disease<br />

Chronic progressive external ophthalmoplegia (CPEO) syndromes<br />

After surgery (e.g., cataract operation)<br />

Congenital strabismus syndromes<br />

Dissociated vertical deviation (DVD)<br />

Congenital ‘‘double elevator’’ palsy (monocular elevation deficiency)<br />

Double depressor paralysis (unilateral paralysis of the <strong>in</strong>ferior rectus and superior oblique; may be<br />

congenital or acquired)<br />

Physiologic hyperdeviation on lateral gaze (asymptomatic)<br />

Mechanical processes caus<strong>in</strong>g vertical eye misalignment<br />

Graves’ disease<br />

Brown’s superior oblique tendon sheath syndrome<br />

Congenital<br />

Acquired (e.g., superomedial orbital trauma, tenosynovitis or myositis, adhesions, metastasis to<br />

the superior oblique muscle, frontal s<strong>in</strong>us osteoma, pans<strong>in</strong>usitis, psoriasis, peribulbar<br />

anesthesia, blepharoplasty, maxillofacial or s<strong>in</strong>us surgery, and superior oblique tuck)<br />

(cont<strong>in</strong>ued)


236 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 10–7. (cont<strong>in</strong>ued)<br />

Superior oblique click syndrome (e.g., due to schwannoma or giant cell tumor of sheath of<br />

superior oblique tendon)<br />

Acquired Brown’s syndrome associated with underaction of the ipsilateral superior oblique muscle<br />

(‘‘can<strong>in</strong>e tooth syndrome’’)<br />

Orbital floor blowout fracture<br />

Maxillary s<strong>in</strong>usitis (silent s<strong>in</strong>us syndrome)<br />

Direct trauma to the extraocular muscles (e.g., <strong>in</strong>tramuscular hematoma)<br />

Congenital <strong>in</strong>ferior rectus fibrosis<br />

<strong>An</strong>omalous orbital structures, such as extraocular muscles <strong>in</strong>sert<strong>in</strong>g <strong>in</strong>to an abnormal location,<br />

fibrous bands, and discrete anomalous muscles (Lueder, 2002)<br />

Strabismus fixus (generalized fibrosis of extraocular muscles)<br />

Postoperative sequelae (<strong>in</strong>clud<strong>in</strong>g ret<strong>in</strong>al detachment surgery, orbital surgery, strabismus surgery,<br />

and cataract surgery)<br />

Orbital <strong>in</strong>flammation (myositis) and pseudotumor<br />

Metastatic <strong>in</strong>filtration of extraocular muscles<br />

Orbital tumors<br />

Fallen eye syndrome (long-stand<strong>in</strong>g superior oblique muscle paresis <strong>in</strong> patients who habitually<br />

fixate with the paretic eye may develop hypodeviation of the un<strong>in</strong>volved eye caused by<br />

contracture of the contralateral <strong>in</strong>ferior rectus muscle)<br />

Ris<strong>in</strong>g eye syndrome (long-stand<strong>in</strong>g <strong>in</strong>ferior oblique muscle palsy may result <strong>in</strong> contracture and<br />

fibrosis of the contralateral superior rectus<br />

Miscellaneous<br />

Hemifield slip phenomenon from dense bitemporal hemianopsia or heteronymous altitud<strong>in</strong>al field<br />

defects<br />

Foveal displacement syndrome (e.g., due to subret<strong>in</strong>al or preret<strong>in</strong>al neovascular membranes)<br />

the hypertropic eye and extorsion of the hypotropic eye) and two patients had only<br />

<strong>in</strong>torsion of the hypotropic eye. All had neurologic deficits consistent with more<br />

widespread bra<strong>in</strong>stem disease. The authors concluded that vertical ocular deviations<br />

that three-step to a superior oblique palsy are not always caused by fourth nerve<br />

weakness. When a patient with an apparent fourth nerve palsy has ocular torsion<br />

<strong>in</strong>consistent with a superior oblique (SO) palsy, OTR should be suspected, especially if<br />

posterior fossa or vestibular dysfunction coexist. Because results of the Bielschowsky<br />

head tilt test may be positive <strong>in</strong> patients with the OTR, the feature dist<strong>in</strong>guish<strong>in</strong>g OTR<br />

from SO palsy is the direction of torsion. The authors advocate a fourth step—<br />

evaluation of ocular torsion—<strong>in</strong> addition to the standard three steps.<br />

Wernicke’s syndrome is due to thiam<strong>in</strong>e deficiency and is especially seen with chronic<br />

alcohol abuse. Patients with Wernicke’s encephalopathy may compla<strong>in</strong> of vertical<br />

diplopia due to a supranuclear or nuclear lesion. This is associated with other signs<br />

of bra<strong>in</strong>stem and cerebellar dysfunction (e.g., nystagmus, gaze palsies, gait ataxia),<br />

confusion, memory impairment, and peripheral polyneuropathy.<br />

Paroxysmal superior rectus and levator palpebrae spasm is a rare and unique disorder<br />

described <strong>in</strong> a s<strong>in</strong>gle patient with multiple sclerosis (Ezra, 1996a). Paroxysms of vertical<br />

diplopia and lid retraction <strong>in</strong> this patient lasted 3 to 4 seconds and exam<strong>in</strong>ation revealed<br />

<strong>in</strong>termittent right hypertropia, lid retraction, and restriction of downgaze. MRI revealed<br />

multiple lesions consistent with multiple sclerosis, <strong>in</strong>clud<strong>in</strong>g a lesion <strong>in</strong> the midbra<strong>in</strong> <strong>in</strong>


the region of the third nerve fascicle. Carbamazep<strong>in</strong>e stopped all of the symptoms that<br />

were believed due to spontaneous spasm of the superior rectus=levator complex.<br />

What Cranial Nerve Impairments Cause<br />

Vertical Diplopia?<br />

Diplopia 237<br />

Third nerve palsies may cause vertical and horizontal b<strong>in</strong>ocular diplopia and are<br />

discussed <strong>in</strong> Chapter 11. Fourth cranial nerve palsies are a common cause of acquired<br />

b<strong>in</strong>ocular vertical diplopia (von Noorden, 1986, 1996) and are discussed <strong>in</strong> Chapter 12.<br />

Increased <strong>in</strong>tracranial pressure may rarely cause transient diplopia (Harr<strong>in</strong>gton,<br />

1953). A patient has been described with recurrent attacks of a right third nerve palsy<br />

caus<strong>in</strong>g diplopia <strong>in</strong> a sett<strong>in</strong>g of headaches, papilledema, periodic ur<strong>in</strong>ary <strong>in</strong>cont<strong>in</strong>ence,<br />

and other neurologic f<strong>in</strong>d<strong>in</strong>gs. The transient third nerve palsy lasted about 5 m<strong>in</strong>utes<br />

and eventually the patient developed a persistent third nerve palsy. At autopsy,<br />

the patient had right frontal and temporal bra<strong>in</strong> metastases with herniation of the<br />

hippocampal gyrus that stretched the right third nerve.<br />

Superior oblique myokymia (SOM) is a rare disorder of unknown etiology characterized<br />

symptomatically by oscillopsia, episodic vertical or torsional diplopia, or both. This<br />

disorder is discussed <strong>in</strong> Chapter 17. Ocular neuromyotonia (ONM) may also cause<br />

vertical diplopia and is discussed above.<br />

Ophthalmoplegic migra<strong>in</strong>e usually starts <strong>in</strong> the first decade of life and usually affects<br />

the oculomotor nerve, although rare trochlear nerve or multiple ocular motor nerve<br />

<strong>in</strong>volvement has been described (Miller, 1991). <strong>Cl<strong>in</strong>ical</strong> criteria essential for the<br />

diagnosis of ophthalmoplegic migra<strong>in</strong>e <strong>in</strong>clude (1) a history of typical migra<strong>in</strong>e<br />

headache (severe, throbb<strong>in</strong>g, unilateral but occasionally bilateral or alternat<strong>in</strong>g), with<br />

headaches possibly last<strong>in</strong>g hours or days; (2) ophthalmoplegia that may <strong>in</strong>clude one or<br />

more nerves and may alternate sides with attacks (extraocular muscle paralysis may<br />

occur with the first attack of headache or, rarely, precede it; usually, however, the<br />

paralysis appears subsequent to an established migra<strong>in</strong>e pattern; and (3) exclusion of<br />

other causes, by neuroimag<strong>in</strong>g, surgery, or autopsy. Friedman et al studied 5000 patients<br />

with migra<strong>in</strong>e and found eight examples (0.16%) of ophthalmoplegic migra<strong>in</strong>e (Friedman,<br />

1962). All eight patients had recurrent attacks of headache (usually orbital),<br />

usually accompanied by nausea and vomit<strong>in</strong>g, and an ipsilateral third nerve palsy.<br />

The third nerve paresis reached a maximum as the headache began to resolve and<br />

persisted for 1 to 4 weeks. The third nerve paralysis dur<strong>in</strong>g the attack is often complete<br />

or nearly so, but partial third nerve paresis, <strong>in</strong>clud<strong>in</strong>g superior division third nerve<br />

paresis, may occur (Katz, 1989). Most patients have normal neuro-ophthalmologic<br />

exam<strong>in</strong>ations between attacks, but some patients may demonstrate partial third nerve<br />

paresis or even signs of aberrant regeneration. The differential diagnosis of ophthalmoplegic<br />

migra<strong>in</strong>e is that of pa<strong>in</strong>ful ophthalmoplegia <strong>in</strong> general; dur<strong>in</strong>g the <strong>in</strong>itial attack,<br />

structural lesions, especially aneurysms, should be suspected, and the evaluation is that<br />

as described for third nerve palsies (Chapter 11). The diagnosis should thus be made<br />

with caution, especially if the first attack occurs <strong>in</strong> adulthood, and only after other<br />

causes of pa<strong>in</strong>ful ophthalmoplegia have been excluded by appropriate laboratory and<br />

neuroimag<strong>in</strong>g studies (Harr<strong>in</strong>gton, 1953).


238 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Fisher’s syndrome (ophthalmoplegia associated with ataxia and areflexia) or<br />

Guilla<strong>in</strong>-Barré syndrome (associated with diffuse muscle paresis, areflexia, etc.) may<br />

also be associated with vertical diplopia (Spector, 1993). Miller Fisher syndrome,<br />

Guilla<strong>in</strong>-Barré syndrome with ophthalmoplegia, Bickerstaff’s bra<strong>in</strong>stem encephalitis,<br />

and acute ophthalmoparesis without ataxia are all commonly associated with a<br />

common autoantibody (anti-GQ1b IgG antibodies) (Odaka, 2001; Yuki, 2001).<br />

Although patients with sixth cranial nerve palsies ma<strong>in</strong>ly compla<strong>in</strong> of horizontal<br />

b<strong>in</strong>ocular diplopia with esotropia or esophoria on exam<strong>in</strong>ation, some patients compla<strong>in</strong><br />

of vertical as well as horizontal diplopia (Slav<strong>in</strong>, 1989). Hyperdeviation with sixth nerve<br />

palsies may occur <strong>in</strong> primary gaze but is usually most prom<strong>in</strong>ent to the side of the palsy<br />

with the hyperdeviation measur<strong>in</strong>g 4 to 16 prism diopters. Vertical ductions <strong>in</strong> patients<br />

with isolated sixth nerve palsies with hyperdeviation are normal, no torsion is evident<br />

on double Maddox rod test<strong>in</strong>g, and head tilt test is almost always negative. In rare<br />

cases, up- or down-shoot<strong>in</strong>g of the paretic eye may be noted on attempted abduction.<br />

The hyperdeviation may be due to mechanical factors (decreased vertical stabilization<br />

of globe due to weak lateral rectus) or vertical substitution movement <strong>in</strong> face of one<br />

paretic muscle (Slav<strong>in</strong>, 1989). Although hyperdeviation may occur with isolated sixth<br />

nerve palsies, one must always be concerned that the hyperdeviation <strong>in</strong> a patient with a<br />

sixth nerve palsy reflects concomitant <strong>in</strong>volvement of the third or fourth cranial nerve<br />

(e.g., with cavernous s<strong>in</strong>us pathology), associated skew deviation, or myasthenia gravis.<br />

Conditions suggest<strong>in</strong>g additional causes for a hyperdeviation with a sixth nerve palsy<br />

<strong>in</strong>clude a positive head tilt test, cyclotropia on double Maddox rod test<strong>in</strong>g, concomitant<br />

nystagmus or other signs of bra<strong>in</strong>stem dysfunction, associated ptosis, or decreased<br />

vertical muscle ductions.<br />

What Disease Processes Affect<strong>in</strong>g the<br />

<strong>Neuro</strong>muscular Junction Cause Vertical<br />

Diplopia?<br />

A common cause of <strong>in</strong>termittent diplopia is myasthenia gravis. The ocular misalignment<br />

worsens with fatigue and improves with rest or Tensilon <strong>in</strong>jection. Myasthenia<br />

gravis may masquerade as a fourth nerve palsy with vertical duction limitations,<br />

cyclotropia, and a positive head tilt test. Increased vertical deviation with gaze hold<strong>in</strong>g<br />

and improvement of the deviation after eye closure <strong>in</strong> these cases are suggestive of<br />

myasthenia gravis. Botulism may also be associated with vertical diplopia.<br />

What Disease Processes Affect<strong>in</strong>g the<br />

Extraocular Muscles Cause Vertical Diplopia?<br />

Isolated paresis of a vertical-act<strong>in</strong>g extraocular muscle may cause vertical b<strong>in</strong>ocular<br />

diplopia. In all such cases, myasthenia gravis should be considered. Other etiologies of<br />

isolated vertical-act<strong>in</strong>g extraocular muscle palsy <strong>in</strong>clude local trauma (e.g., cataract<br />

surgery), vascular disease (especially muscle ischemia with giant cell arteritis), thyroid<br />

ophthalmopathy, congenital causes, and the etiologies of restrictive ophthalmopathy<br />

noted below (von Noorden, 1991, 1996). Isolated superior rectus palsy causes ipsilateral


Diplopia 239<br />

hypotropia <strong>in</strong> primary position, impaired eye elevation <strong>in</strong> abduction, small excyclotropia,<br />

and absent Bell’s phenomenon. Head tilt is usually toward the sound side but<br />

may be toward the side of palsy. Superior rectus palsy may be associated with<br />

ipsilateral ptosis, especially <strong>in</strong> congenital cases. Also, a pseudoptosis may be noted<br />

on the side of hypotropia when the nonparetic eye fixates. Isolated <strong>in</strong>ferior rectus palsy<br />

is often congenital and results <strong>in</strong> hypertropia <strong>in</strong> primary gaze, <strong>in</strong>cyclotropia, impaired<br />

depression of the eye <strong>in</strong> abduction, pseudoptosis of the sound eye when the paretic eye<br />

fixates, and a head tilt to either side. Isolated <strong>in</strong>ferior oblique muscle paresis is rare and<br />

results <strong>in</strong> hypotropia <strong>in</strong> primary gaze, impaired elevation <strong>in</strong> adduction, <strong>in</strong>cyclotropia,<br />

and a head tilt, most often toward the paralyzed side. The head tilt test is positive on<br />

tilt<strong>in</strong>g the head toward the normal side. Although superior oblique muscle paresis is<br />

most often due to fourth nerve palsies, this muscle may also be affected by myasthenia<br />

gravis, botulism, trochleitis, orbital metastasis, orbital pseudotumor (myositis), and<br />

trauma to the trochlea (Moster, 1992; Spector, 1993; von Noorden, 1986). Occasionally<br />

damage to the trochlea (e.g., due to dog bite or frontal s<strong>in</strong>us surgery) may cause<br />

acquired Brown’s syndrome (see below) associated with underaction of the ipsilateral<br />

superior oblique muscle referred to as the ‘‘can<strong>in</strong>e tooth syndrome.’’ Isolated superior<br />

oblique myositis may cause mild limitation of elevation of the eye <strong>in</strong> adduction<br />

(Stidham, 1998).<br />

Rarely, vertical b<strong>in</strong>ocular diplopia may occur from chronic progressive external<br />

ophthalmoplegia (often associated with ptosis, orbicularis oculi paresis, and occasionally<br />

pigmentary ret<strong>in</strong>opathy). These patients more often have m<strong>in</strong>imal or no diplopia<br />

despite prom<strong>in</strong>ent external ophthalmoplegia.<br />

Decompensation of a long-stand<strong>in</strong>g phoria may cause hypertropia and vertical<br />

diplopia (Burde, 1991). A phoria will become manifest and break down <strong>in</strong>to a tropia<br />

if fusion is broken. This occurs transiently by occlud<strong>in</strong>g or blurr<strong>in</strong>g vision <strong>in</strong> one eye,<br />

when a patient is tired, when a patient has taken a central nervous system depressant<br />

such as alcohol or sedative medications, or dur<strong>in</strong>g a febrile illness. More persistent<br />

decompensation may occur after head trauma, with chang<strong>in</strong>g refractive needs, and<br />

often for unclear reasons. <strong>Neuro</strong>-ophthalmologic history and exam<strong>in</strong>ation often reveal<br />

supportive evidence for a long-stand<strong>in</strong>g strabismus <strong>in</strong>clud<strong>in</strong>g a history of childhood<br />

strabismus or patch<strong>in</strong>g, the presence of a head tilt or turn (old photos), and large vertical<br />

fusional amplitude (6 to 20 prism diopters). Vertical fusional amplitudes are measured<br />

by present<strong>in</strong>g vertically oriented prisms of gradually <strong>in</strong>creas<strong>in</strong>g strength <strong>in</strong> front of one<br />

eye after first neutraliz<strong>in</strong>g any manifest tropia. The amount of prism needed to produce<br />

diplopia over that needed to neutralize the tropia (if present) represents the fusional<br />

amplitude (normal vertical fusional amplitudes are two to four prism diopters).<br />

A number of congenital conditions may be associated with vertical deviation of the<br />

eyes without vertical diplopia. These conditions <strong>in</strong>clude congenital strabismus<br />

syndromes, dissociated vertical deviation, congenital double elevator or double depressor<br />

palsy, and asymptomatic physiologic hyperdeviation on lateral gaze. Congenital<br />

strabismus syndromes may be associated with overaction of the <strong>in</strong>ferior or superior<br />

oblique muscles, caus<strong>in</strong>g V-pattern exotropia or esotropia and A-pattern exotropia or<br />

esotropia, respectively. Patients with these patterns of congenital strabismus do not<br />

have hyperdeviation <strong>in</strong> primary gaze, do not have a positive head tilt test, do not have<br />

ductional limitation, and do not have cyclodeviation. Dissociated vertical (hyper)deviation<br />

(DVD), characterized by upward turn of the nonfixat<strong>in</strong>g eye, may also accompany<br />

congenital strabismus, especially esotropia. Monocular occlusion of either eye produces


240 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

elevation of the occluded eye without correspond<strong>in</strong>g depression of the uncovered eye<br />

(i.e., DVD does not follow Her<strong>in</strong>g’s law). The eye under cover ‘‘floats’’ up and out and<br />

may also excyclotort. After removal of the cover, the eye makes a slow downward<br />

movement to reach midl<strong>in</strong>e accompanied by <strong>in</strong>cycloduction. The deviation is often<br />

variable, bilateral, and asymmetric. There is no ductional limitation, head tilt test is<br />

negative, and the deviation is not gaze dependent. Congenital ‘‘double elevator’’ palsy<br />

(monocular elevation deficiency) may be due to <strong>in</strong>ferior rectus restriction (with positive<br />

forced ductions to elevation, no muscle paralysis, and normal saccades of the superior<br />

rectus), elevator weakness (with negative forced ductions, evidence of paralysis of<br />

vertical muscles, and reduced saccadic velocities <strong>in</strong> upgaze of the affected eye), or a<br />

comb<strong>in</strong>ation of <strong>in</strong>ferior rectus restriction and weak elevators (with positive forced<br />

ductions <strong>in</strong> elevation, reduced upward vertical saccadic velocities <strong>in</strong> <strong>in</strong>volved eye, and<br />

variable muscle paresis). Von Noorden noted that one must consider the possibility that<br />

double elevator paralysis is a misnomer and that generalized weakness of elevation is<br />

caused by a superior rectus palsy of long stand<strong>in</strong>g, the deviation hav<strong>in</strong>g spread<br />

throughout the entire upward field of gaze and the <strong>in</strong>ferior rectus hav<strong>in</strong>g become<br />

contracted (von Noorden, 1996). Double depressor paralysis (unilateral paralysis of the<br />

<strong>in</strong>ferior rectus and superior oblique) is rare and may be congenital or acquired (von<br />

Noorden, 1996). Aga<strong>in</strong>, von Noorden suspects that so-called double depressor paralyses<br />

are caused by <strong>in</strong>ferior rectus muscle paralysis of long stand<strong>in</strong>g and secondary superior<br />

rectus contracture (von Noorden, 1996).<br />

It should be noted that many patients may have asymptomatic physiologic hyperdeviation<br />

on lateral gaze. Slav<strong>in</strong> et al noted a physiologic hyperdeviation of greater than<br />

two prism diopters that simulates overaction of the <strong>in</strong>ferior oblique muscle, <strong>in</strong> 77% of<br />

normal subjects (Slav<strong>in</strong>, 1988). The hyperdeviation occurred <strong>in</strong> any field of gaze and<br />

never measured greater than 10 prism diopters. Forty-seven percent of the patients<br />

showed an isolated left hyperdeviation <strong>in</strong> right upgaze and right hyperdeviation <strong>in</strong> left<br />

upgaze, 32% had either a right hyperdeviation <strong>in</strong> left upgaze or a left hyperdeviation <strong>in</strong><br />

right upgaze, and <strong>in</strong> 85% of patients a V pattern of less than 15 prism diopters was<br />

detected. No patient had hyperdeviation <strong>in</strong> primary gaze or hyperdeviation <strong>in</strong>duced by<br />

head tilt, and no patients compla<strong>in</strong>ed of vertical diplopia. Thus, physiologic hyperdeviation<br />

should not be considered to expla<strong>in</strong> a hyperdeviation if there is a primary<br />

position hyperdeviation, if hyperdeviation is <strong>in</strong>duced by head tilt <strong>in</strong> primary gaze, if<br />

there is a significant downgaze hyperdeviation, if there is duction limitation, or if there<br />

is an uncrossed hyperdeviation <strong>in</strong> peripheral gaze (e.g., a left hyperdeviation on gaze to<br />

the left and up).<br />

What Mechanical Processes Cause Vertical<br />

Eye Misalignment?<br />

Restrictive ophthalmopathy may result <strong>in</strong> vertical b<strong>in</strong>ocular diplopia. Restrictive<br />

ophthalmopathy is def<strong>in</strong>ed as limitation of eye movement associated with a positive<br />

forced duction test. <strong>An</strong> <strong>in</strong>crease <strong>in</strong> <strong>in</strong>traocular pressure (>5 mm) <strong>in</strong> the direction aga<strong>in</strong>st<br />

the restriction is <strong>in</strong>direct evidence of restriction (differential <strong>in</strong>traocular pressure).<br />

Normal saccadic velocities favor a restrictive ophthalmopathy as a cause for diplopia<br />

rather than an ocular motor nerve palsy (Spector, 1993; von Noorden, 1996).


Diplopia 241<br />

Thyroid ophthalmopathy (Graves’ disease) is a common cause of horizontal or<br />

vertical diplopia. ‘‘Tightness’’ and restriction of the extraocular muscles preferentially<br />

affects the <strong>in</strong>ferior rectus, medial rectus, and superior rectus, <strong>in</strong> that order. Limitation of<br />

elevation <strong>in</strong> one or both eyes is by far the most common defect of ocular motility.<br />

Vertical misalignment with thyroid ophthalmopathy is usually associated with other<br />

characteristic signs, such as lid lag, lid retraction, and proptosis. Patients often have<br />

ductional limitation <strong>in</strong> the vertical plane and may also have cyclodeviation and a<br />

positive head tilt test. The forced duction test is often positive and the diagnosis is aided<br />

by demonstrat<strong>in</strong>g appropriate extraocular muscle enlargement with orbital echography,<br />

computed tomography (CT), or MRI.<br />

Thyroid ophthalmopathy may present as an apparent superior oblique muscle paresis<br />

on the three-step test and thus be confused with a fourth nerve palsy (Moster, 1992;<br />

Slav<strong>in</strong>, 1988). This cl<strong>in</strong>ical picture is caused by the restrictive process affect<strong>in</strong>g the<br />

opposite <strong>in</strong>ferior rectus muscle (hypotropic eye) with the hypotropia greatest <strong>in</strong> the field<br />

of superior rectus. Clues to the diagnosis of thyroid ophthalmopathy, rather than<br />

superior oblique weakness, <strong>in</strong> a patient with hyperdeviation, <strong>in</strong>clude the follow<strong>in</strong>g:<br />

1. Increased vertical deviation <strong>in</strong> upgaze.<br />

2. Increased <strong>in</strong>traocular tension (>5 mm) <strong>in</strong> upgaze.<br />

3. When a ‘‘subacute’’ or ‘‘chronic’’ superior oblique palsy is diagnosed (i.e., when the<br />

hyperdeviation is greater on upgaze), consider that a restrictive process may be<br />

operative; if ductions are normal, differential <strong>in</strong>traocular pressure should be done.<br />

4. If a patient with acute diplopia is found to have a hypertropia greater on upgaze<br />

rather than downgaze, a diagnosis of superior oblique palsy should be withheld.<br />

With Brown’s superior oblique tendon sheath syndrome, there is an <strong>in</strong>ability to<br />

elevate the adducted eye above the midhorizontal plane (von Noorden, 1996). This<br />

condition may be bilateral <strong>in</strong> about 10% of patients. A mechanical restriction to free<br />

movement of the superior oblique tendon at the pulley may prevent the upward and<br />

<strong>in</strong>ward movement of the globe, thus mimick<strong>in</strong>g paresis of the <strong>in</strong>ferior oblique muscle.<br />

Episodic vertical diplopia results from entrapment of the eye on gaze downward and<br />

<strong>in</strong>ward or <strong>in</strong> the field of action of the superior oblique. The eye may then release<br />

suddenly, occasionally associated with the sensation or actual hear<strong>in</strong>g of a click. Some<br />

m<strong>in</strong>imal restriction of elevation may persist even <strong>in</strong> full abduction and there may be<br />

slight down-shoot of the adducted eye mimick<strong>in</strong>g superior oblique overaction. Hypotropia<br />

may be evident <strong>in</strong> primary gaze, forced ductions are positive, there may be a<br />

compensatory head posture (ch<strong>in</strong> up due to hypotropia with a head turn toward the<br />

<strong>in</strong>volved side), and a V-pattern exotropia may be noted. This syndrome is often<br />

congenital but may be acquired due to superomedial orbital trauma, tenosynovitis or<br />

myositis, adhesions, metastasis to the superior oblique muscle, frontal s<strong>in</strong>us osteoma,<br />

pans<strong>in</strong>usitis, psoriasis, peribulbar anesthesia, blepharoplasty, implantation of an<br />

Ahmed valve glaucoma implant, maxillofacial or s<strong>in</strong>us surgery, and superior oblique<br />

tuck (Alonso-Valdivielso, 1993; Baker, 1991; Coats, 1999; Erie, 1990; Saunders, 1990;<br />

Thorne, 1999; von Noorden, 1996). In congenital cases, MRI may show enlargement of<br />

the tendon-trochlea complex with this complex be<strong>in</strong>g of irregular shape and of<br />

<strong>in</strong>termediate signal <strong>in</strong>tensity (Sener, 1996).<br />

The superior oblique click syndrome is a form of <strong>in</strong>termittent acquired Brown’s<br />

syndrome with a cl<strong>in</strong>ical picture that alternates between a Brown’s-type syndrome and<br />

a superior oblique muscle palsy (White, 1999). The cl<strong>in</strong>ical features depend on the


242 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

direction <strong>in</strong> which the muscle is impeded. The click, often audible to the patient and=or<br />

the exam<strong>in</strong>er, may signal the release of the restriction. The click is palpable <strong>in</strong> the<br />

superonasal orbit. Lesions are located with<strong>in</strong> the sheath of the anterior superior oblique<br />

tendon, and <strong>in</strong>clude schwannoma and giant cell tumor of the tendon.<br />

The differential of Brown’s syndrome <strong>in</strong>cludes primarily a paralysis of the <strong>in</strong>ferior<br />

oblique muscle. Forced ductions separate these syndromes. Other restrictions of<br />

elevation (such as thyroid ophthalmopathy, fibrosis of the <strong>in</strong>ferior rectus muscle,<br />

double elevator palsy, and orbital floor fractures) usually cause restriction of elevation<br />

from any gaze position and are not limited to restriction of elevation <strong>in</strong> adduction (von<br />

Noorden, 1996). However, orbital floor fracture and thyroid ophthalmopathy may<br />

simulate Brown’s syndrome (Hudson, 1992; Hughes, 1992; von Noorden, 1996).<br />

Orbital blow-out fractures frequently <strong>in</strong>carcerate the <strong>in</strong>ferior rectus muscle and its<br />

surround<strong>in</strong>g tissue. Characteristics f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>clude the follow<strong>in</strong>g (Baker, 1991; Egbert,<br />

2000):<br />

1. Ecchymosis of the <strong>in</strong>volved eye.<br />

2. Diplopia often present <strong>in</strong> all positions of gaze immediately posttrauma. This diplopia<br />

may persist <strong>in</strong> upgaze or downgaze.<br />

3. Paresthesia of the <strong>in</strong>fraorbital area due to damage to the <strong>in</strong>fraorbital nerve.<br />

4. Enophthalmos, either early or late.<br />

5. Entrapment of the <strong>in</strong>ferior rectus, <strong>in</strong>ferior oblique, and=or surround<strong>in</strong>g tissue. This<br />

results <strong>in</strong> restriction of upward gaze with positive forced duction test<strong>in</strong>g. Inferior<br />

rectus paresis, result<strong>in</strong>g <strong>in</strong> hypertropia <strong>in</strong> primary position <strong>in</strong> the <strong>in</strong>volved eye, may<br />

also occur due to direct nerve or muscle trauma.<br />

6. Hypotropia <strong>in</strong> primary position that <strong>in</strong>creases <strong>in</strong> upgaze.<br />

7. Frequent <strong>in</strong>traocular damage.<br />

Other causes of restrictive ophthalmopathy <strong>in</strong>clude direct trauma to the extraocular<br />

muscles (e.g., <strong>in</strong>tramuscular hematoma), congenital <strong>in</strong>ferior rectus fibrosis (often with<br />

ipsilateral ptosis), strabismus fixus (generalized fibrosis of extraocular muscles), postoperative<br />

sequelae (<strong>in</strong>clud<strong>in</strong>g ret<strong>in</strong>al detachment surgery, orbital surgery, strabismus<br />

surgery, s<strong>in</strong>us surgery, and cataract surgery), orbital <strong>in</strong>flammation (myositis) and<br />

pseudotumor, metastatic <strong>in</strong>filtration of extraocular muscles, and other orbital tumors<br />

(Carter, 1998; Engle, 1997; Hupp, 1990; Spector, 1993). Orbital lesions are usually<br />

associated with pa<strong>in</strong>, proptosis, chemosis, or other f<strong>in</strong>d<strong>in</strong>gs that betray their location.<br />

Also, with long-stand<strong>in</strong>g muscle paralysis, the antagonist muscle may become contractured<br />

and fibrotic. Thus, patients with long-stand<strong>in</strong>g superior oblique muscle paresis<br />

who habitually fixate with the paretic eye may develop the fallen eye syndrome<br />

(Spector, 1993). This syndrome manifests as a unilateral superior oblique muscle paresis<br />

present<strong>in</strong>g with hypodeviation of the un<strong>in</strong>volved eye that worsens <strong>in</strong> abduction caused<br />

by contracture of the contralateral <strong>in</strong>ferior rectus muscle. Conversely, long-stand<strong>in</strong>g<br />

<strong>in</strong>ferior oblique muscle palsy may result <strong>in</strong> the ris<strong>in</strong>g eye syndrome due to contracture<br />

and fibrosis of the contralateral superior rectus muscle (the contralateral eye rises<br />

dur<strong>in</strong>g attempted abduction) (Spector, 1993). Transient recurrent vertical diplopia, likely<br />

due to <strong>in</strong>termittent transient fusion impairment, has been described with maxillary<br />

s<strong>in</strong>usitis associated with lower<strong>in</strong>g of the orbital floor (silent s<strong>in</strong>us syndrome) (Borruat,<br />

1999; Kubis, 2000; Wan, 2000). The spectrum of silent s<strong>in</strong>us syndrome <strong>in</strong>cludes<br />

enophthalmos, hypoglobus, transient vertical diplopia, lid retraction, lagophthalmos,<br />

and blurred vision (Kubis, 2000; Wan, 2000).


Diplopia 243<br />

The congenital <strong>in</strong>ferior rectus fibrosis syndrome is a rare familial or sporadic<br />

syndrome manifested by downward fixation of one or both eyes associated with<br />

marked ptosis, restricted eye elevation (of equal magnitude from adduction, primary<br />

position, and abduction), positive forced ductions, and a backward (ch<strong>in</strong>-up) head tilt<br />

(Engle, 1997; von Noorden, 1996). CT imag<strong>in</strong>g may show atrophy of the <strong>in</strong>volved<br />

<strong>in</strong>ferior rectus muscle (Hupp, 1990). In some cases pathologic studies have shown<br />

absence of the superior division of the oculomotor nerve and its correspond<strong>in</strong>g alpha<br />

motor neurons, and abnormalities of the levator palpebrae superioris and rectus<br />

superior (the muscles <strong>in</strong>nervated by the superior division of the oculomotor nerve).<br />

Thus, congenital fibrosis of the extraocular muscles likely results from an abnormality <strong>in</strong><br />

the development of the extraocular muscle lower motor neuron system (Engle, 1997).<br />

Vertical diplopia after cataract surgery requires some comment. Three categories of<br />

strabismus or diplopia have been noted after cataract surgery (Hunter, 1995):<br />

1. Preexist<strong>in</strong>g condition (e.g., thyroid eye disease) <strong>in</strong> which misalignment was masked<br />

by a dense cataract.<br />

2. Conditions secondary to the prolonged occlusion by the cataract (e.g., sensory<br />

deprivation). Disruption of b<strong>in</strong>ocularity may be caused by long-term occlusion of<br />

vision by the cataract. Also, fusional amplitude can be reduced by the occlud<strong>in</strong>g<br />

cataract. Here the improved vision after surgery renders the preexist<strong>in</strong>g ocular<br />

conditions symptomatic.<br />

3. Surgical trauma to extraocular muscles or orbital soft tissue (<strong>in</strong>jury to <strong>in</strong>ferior rectus<br />

muscle caus<strong>in</strong>g paresis or contracture is most common).<br />

Capó and Guyton studied 19 patients with vertical strabismus after cataract surgery<br />

and noted that the vertical deviation was greater <strong>in</strong> the field of action of the presumed<br />

tight muscle <strong>in</strong> 16 of the 19 patients (Capó, 1996a). <strong>An</strong> ipsilateral hypertropia with<br />

superior rectus muscle overaction subsequently developed <strong>in</strong> two patients with an<br />

<strong>in</strong>itial hypotropia. The authors noted that myotoxicity from direct <strong>in</strong>jection of local<br />

anesthetics <strong>in</strong>to an extraocular muscle probably causes transient paresis followed by<br />

segmental contracture of the <strong>in</strong>volved muscle. Mild contractures result <strong>in</strong> strabismus<br />

with a motility pattern of an overactive muscle, whereas larger amounts of contracture<br />

lead to restrictive strabismus. In another prospective study of 20 consecutive patients<br />

with acquired vertical diplopia after cataract surgery, Capó et al noted that 50% of<br />

<strong>in</strong>volved muscles were overactive, 39% were restricted, and 11% were paretic (Capó,<br />

1996b). In overactive strabismus, versions showed overaction of the affected muscle<br />

with no significant underaction of its antagonist, the deviation <strong>in</strong>creased <strong>in</strong> the field of<br />

action of the affected muscle, and forced ductions were negative or mildly positive. In<br />

restrictive cases, the affected muscle was tight by forced duction test<strong>in</strong>g and the<br />

deviation was either comitant or worse <strong>in</strong> the field of action of the antagonist muscle.<br />

In paretic cases, the diagnosis was reached by limited ductions <strong>in</strong> the field of action of<br />

the affected muscle, accompanied by negative forced-duction test<strong>in</strong>g. The <strong>in</strong>ferior rectus<br />

was <strong>in</strong>volved <strong>in</strong> 17 patients (61%) and superior rectus muscle <strong>in</strong> 11 (39%). The odds of<br />

damag<strong>in</strong>g the <strong>in</strong>ferior rectus, as opposed to superior rectus, with peribulbar anesthesia<br />

was 4.8 times higher than with retrobulbar blocks. The authors drew the follow<strong>in</strong>g<br />

conclusions concern<strong>in</strong>g motility disturbances caus<strong>in</strong>g acquired strabismus after cataract<br />

surgery:<br />

1. Myotoxic effects of local anesthesia could result <strong>in</strong> temporary or permanent muscle<br />

weakness.


244 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

2. Superior rectus overaction may occur from superior rectus contracture secondary to<br />

temporary paresis of the <strong>in</strong>ferior rectus muscle caused by local anesthetic.<br />

3. Inferior rectus muscle contracture may result from direct penetration by needle, with<br />

elevated tissue pressure due to hematoma or a large amount of anesthetic with<strong>in</strong> the<br />

muscle, followed by secondary vascular compromise and ensu<strong>in</strong>g muscle fibrosis.<br />

4. In the series, restrictive and overactive motility disorders predom<strong>in</strong>ate, suggest<strong>in</strong>g<br />

that most cases with persistent vertical strabismus after cataract surgery result from<br />

muscle contracture rather than from permanent muscle paresis.<br />

The authors concluded that <strong>in</strong> this patient population, permanent vertical strabismus<br />

after cataract surgery results more often from overact<strong>in</strong>g or restricted muscles than from<br />

primary muscle paresis. Both the superior and <strong>in</strong>ferior recti can be <strong>in</strong>jured with<br />

retrobulbar anesthesia, but peribulbar <strong>in</strong>jections affect the <strong>in</strong>ferior rectus muscle more<br />

frequently. In the discussion of this paper, Guyton noted that vertical strabismus after<br />

cataract surgery is mostly caused by the local anesthetic block (Capó, 1996b). He stated<br />

that local anesthetic ‘‘kills’’ muscle, and that the muscle regenerates <strong>in</strong> young people<br />

with no sequelae, but <strong>in</strong> the elderly, regeneration is m<strong>in</strong>imal, a scar forms, and<br />

contracture occurs, caus<strong>in</strong>g strabismus. Occasionally, a permanent extraocular muscle<br />

paresis occurs, possibly because of nerve damage, but this mechanism is still not clear.<br />

Also, Corboy and Jiang reported 31 cases of postoperative hypotropia follow<strong>in</strong>g 2143<br />

cataract operations and noted that myotoxicity or perimuscular <strong>in</strong>flammation from<br />

anesthesia likely produced contracture hypotropia and restricted elevation of the globe<br />

(Corboy, 1997).<br />

Koide et al reported 18 eyes of 17 patients with diplopia after retrobulbar anesthesia<br />

for cataract surgery (Koide, 2000). Several cases showed superior or <strong>in</strong>ferior deviations,<br />

but most patients had nonuniform disturbances of eye movements. In another study,<br />

orthoptic evaluations were carried out <strong>in</strong> 118 cataract surgery (all retrobulbar anesthesia<br />

<strong>in</strong>jections) patients with<strong>in</strong> 1 month before and 1 day, 1 week, and 1 month after surgery<br />

(Golnik, 2000). Preoperatively, 16 patients had ocular misalignment; 10 were phoric, 4<br />

were <strong>in</strong>termittently tropic, and 2 were tropic. Follow-up evaluation was obta<strong>in</strong>ed for<br />

101 patients (86%) at 1 day, 91 (77%) at 1 week, and 88 (75%) at 1 month. A change <strong>in</strong><br />

ocular alignment occurred <strong>in</strong> 22 of 101 patients (22%) at 1 day, 9 of 91 (10%) at 1 week,<br />

and 6 of 88 (7%) at 1 month. Only 1 patient who had a change <strong>in</strong> alignment at 1 month<br />

was symptomatic. The authors concluded that change <strong>in</strong> ocular alignment after<br />

uneventful cataract surgery occurred <strong>in</strong> 7% of patients, but symptomatic diplopia<br />

was uncommon (1 <strong>in</strong> 118) <strong>in</strong> this small series. Johnson noted persistent vertical diplopia<br />

after cataract surgery <strong>in</strong> 0.23% of patients <strong>in</strong> whom retrobulbar anesthesia was<br />

performed (Johnson, 2001). No cases were found after topical anesthesia.<br />

Vertical strabismus after cataract surgery may also result from <strong>in</strong>ferior oblique muscle<br />

<strong>in</strong>jury from local anesthesia. Hunter et al described four patients without preexist<strong>in</strong>g<br />

strabismus who developed diplopia after cataract surgery (Hunter, 1995). Three had<br />

delayed onset hypertropia with fundus extorsion <strong>in</strong> the eye that underwent surgery,<br />

consistent with <strong>in</strong>ferior oblique muscle overaction secondary to presumed contracture.<br />

The fourth patient had an <strong>in</strong>termediate-onset hypotropia with fundus <strong>in</strong>torsion <strong>in</strong> the<br />

eye that underwent surgery, consistent with <strong>in</strong>ferior oblique paresis. The <strong>in</strong>ferior<br />

oblique muscle contracture observed <strong>in</strong> three patients may have been caused by local<br />

anesthetic myotoxicity, whereas the early paresis observed <strong>in</strong> one patient may have been<br />

due to mechanical trauma or anesthetic toxicity directly to the nerve <strong>in</strong>nervat<strong>in</strong>g the


muscle. Inferior oblique muscle or nerve <strong>in</strong>jury should be considered as another<br />

possible cause of postoperative vertical strabismus, especially when significant<br />

fundus torsion accompanies a vertical deviation. As noted above, a Brown’s syndrome<br />

may also occur after cataract surgery.<br />

What Is the Foveal Displacement Syndrome?<br />

Diplopia 245<br />

B<strong>in</strong>ocular diplopia may occasionally occur with ret<strong>in</strong>al disease. Burgess et al described<br />

11 patients with subret<strong>in</strong>al neovascular membranes <strong>in</strong> one eye who developed b<strong>in</strong>ocular<br />

diplopia before and after effective photocoagulation therapy (the foveal displacement<br />

syndrome) (Burgess, 1980). The diplopia was thought to be due to a rivalry between<br />

central and peripheral fusional mechanisms. The subret<strong>in</strong>al neovascular produced shift<br />

of the photoreceptor array toward the proliferat<strong>in</strong>g neovascular complex; if the lesion<br />

was <strong>in</strong>ferior to the fovea, the foveal receptors were shifted toward the membrane and<br />

with both eyes open the superior ret<strong>in</strong>a relative to the fovea was stimulated <strong>in</strong> the<br />

affected eye. The diplopic image produced by the stimulated superior ret<strong>in</strong>al receptors<br />

is projected <strong>in</strong>feriorly <strong>in</strong> space. If the unaffected eye is covered, the affected eye will<br />

have to elevate the fovea, produc<strong>in</strong>g a downward motion of the cornea mimick<strong>in</strong>g a<br />

true hypertropia. For example, an <strong>in</strong>ferior foveal lesion will mimic a hypertropia <strong>in</strong> the<br />

affected eye. All of the patients demonstrated the follow<strong>in</strong>g:<br />

1. The affected eye deviated (measured tropia) away from the position of the ret<strong>in</strong>al<br />

lesion (e.g., a lesion <strong>in</strong>ferior to the fovea produces a superior scotoma).<br />

2. The affected eye deviated upward (toward the scotoma).<br />

3. The distal diplopic image was downward (toward the ret<strong>in</strong>al image).<br />

The diplopia <strong>in</strong> this condition responds only transiently to prisms. Surgical removal<br />

of the subret<strong>in</strong>al neovascular membrane may correct the diplopia, at least transiently<br />

(Brazis, 1998b). Foveal displacement syndrome may also occur <strong>in</strong> patients with<br />

preret<strong>in</strong>al membranes (Benegas, 1999; Silverberg, 1999). Benegas et al described seven<br />

patients with b<strong>in</strong>ocular diplopia concurrent with macular disease, <strong>in</strong>clud<strong>in</strong>g epiret<strong>in</strong>al<br />

membranes (six patients) and vitreomacular traction (one patient) (Benegas, 1999).<br />

All seven patients had aniseikonia and all had concomitant small-angle strabismus. The<br />

response to treatment with prisms was variable. The authors concluded that aniseikonia,<br />

caused by separation or compression of photoreceptors, is likely a contribut<strong>in</strong>g<br />

factor to the existence of diplopia and the <strong>in</strong>ability to fuse <strong>in</strong> patients with macular<br />

disease. Silverberg et al presented seven patients with b<strong>in</strong>ocular diplopia due to<br />

macular disease, <strong>in</strong>clud<strong>in</strong>g subret<strong>in</strong>al neovascularization, epiret<strong>in</strong>al membrane, and<br />

central serous ret<strong>in</strong>opathy (Silverberg, 1999). All except one had a small-angle, comitant<br />

hyperdeviation with no muscle paresis. Neither prism correction nor manipulation<br />

of the refractive errors corrected the diplopia. However, a partially occlusive foil<br />

(Bangerter) of density rang<strong>in</strong>g from 0.4 to 1.0 placed <strong>in</strong> front of the affected eye<br />

provided an effective treatment, allow<strong>in</strong>g peripheral fusion to be ma<strong>in</strong>ta<strong>in</strong>ed.<br />

The hemifield slip phenomenon, a rare cause of <strong>in</strong>termittent b<strong>in</strong>ocular vertical<br />

diplopia noted <strong>in</strong> some patients with lesions of the optic chiasm, is discussed above.<br />

F<strong>in</strong>ally, vertical or horizontal diplopia may also occur on a nonorganic basis (fictitious<br />

diplopia).


246 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

References<br />

Abdulla N, Eustace P. (1999). A case of ocular neuromyotonia with tonic pupil. J <strong>Neuro</strong>-ophthalmol 19:125–127.<br />

Akman A, Dayanir V, Sefik Sanaç A, Kansu T. (1995). Acquired esotropia as present<strong>in</strong>g sign of cranio-cervical<br />

junction anomalies. <strong>Neuro</strong>-<strong>ophthalmology</strong> 15:311–314.<br />

Al-D<strong>in</strong> AN, <strong>An</strong>derson M, Eeg-Olofsson O, et al. (1994). <strong>Neuro</strong>-ophthalmic manifestations of the syndrome of<br />

ophthalmoplegia, ataxia, and areflexia. A review. Acta <strong>Neuro</strong>l Scand 89:157–163.<br />

Alonso-Valdivielso JL, Alvarez Lario B, Alegre Lopez J, et al. (1993). Acquired Brown’s syndrome <strong>in</strong> a patient with<br />

systemic lupus erythematosus. <strong>An</strong>n Rheum Dis 52:63–64.<br />

Arai M, Fuji S. (1990). Divergence paralysis associated with the <strong>in</strong>gestion of diazepam. J <strong>Neuro</strong>l 237:45–46.<br />

Baker RS, Epste<strong>in</strong> AD. (1991). Ocular motor abnormalities from head trauma. Surv Ophthalmol 35:245–267.<br />

Balch K, Phillips PH, Newman NJ. (1997). Pa<strong>in</strong>less orbital apex syndrome from mucormycosis. J <strong>Neuro</strong>-ophthalmol<br />

17:178–182.<br />

Barroso LH, Hoyt WF. (1993). Episodic exotropia form lateral rectus neuromyotonia—appearance and remission<br />

after radiation therapy for a thalamic glioma. J Pediatr Ophthalmol Strabismus 30:56–57.<br />

Bartley GB. (1994). The epidemiologic characteristics and cl<strong>in</strong>ical course of ophthalmopathy associated with<br />

autoimmune thyroid disease <strong>in</strong> Olmsted County, M<strong>in</strong>nesota. Trans Am Ophthalmol Soc 92:477–588.<br />

Bartley GB, Fatourechi V, Kadrmas EF, et al. (1995a). The <strong>in</strong>cidence of Graves’ ophthalmopathy <strong>in</strong> Olmsted<br />

County, M<strong>in</strong>nesota. Am J Ophthalmol 120:511–517.<br />

Bartley GB, Fatourechi V, Kadrmas EF, et al. (1996a). <strong>Cl<strong>in</strong>ical</strong> features of Graves’ ophthalmopathy <strong>in</strong> an <strong>in</strong>cidence<br />

cohort. Am J Ophthalmol 121:284–290.<br />

Bartley GB, Fatourechi V, Kadrmas EF, et al. (1996b). The chronology of Graves’ ophthalmopathy <strong>in</strong> an <strong>in</strong>cidence<br />

cohort. Am J Ophthalmol 121:426–434.<br />

Bartley GB, Gorman CA. (1995b). Diagnostic criteria for Graves’ ophthalmopathy. Am J Ophthalmol 119:792–795.<br />

Behrens-Baumann W, Freissler G. (1990). Computed tomographic appearance of extraocular muscle calcification<br />

<strong>in</strong> a patient with seropositive trich<strong>in</strong>osis. Am J Ophthalmol 110:709–710.<br />

Bell JA, Fielder AR, V<strong>in</strong>ey S. (1990). Congenital double elevator palsy <strong>in</strong> identical tw<strong>in</strong>s. J Cl<strong>in</strong> <strong>Neuro</strong>-Ophthalmol<br />

10:32–34.<br />

Benegas NM, Egbert J, Engel WK, Kushner BJ. (1999). Diplopia secondary to aniseikonia associated with macular<br />

disease. Arch Ophthalmol 117:896–899.<br />

Bernard<strong>in</strong>o CR, Davidson RS, Maus M, Spaeth GL. (2001). <strong>An</strong>gle-closure glaucoma <strong>in</strong> association with orbital<br />

pseudotumor. Ophthalmology 108:1603–1606.<br />

Bernste<strong>in</strong> R, Bernard<strong>in</strong>i GL. (2001). Abnormal vergence with upper bra<strong>in</strong>stem <strong>in</strong>farcts: pseudoabducens palsy.<br />

<strong>Neuro</strong>logy 56:424–425.<br />

Biousse V, Newman NJ, Petermann SH, Lambert SR. (2000). Isolated comitant esotropia and Chiari I malformation.<br />

Am J Ophthalmol 130:216–220.<br />

Borchert MS, Lessell S, Hoyt WF. (1996). Hemifield slide diplopia from altitud<strong>in</strong>al visual field defect. J <strong>Neuro</strong>ophthalmol<br />

16:107–109.<br />

Borruat F-X, Jacques B, Dürig J. (1999). Transient vertical diplopia and silent s<strong>in</strong>us disorder. J <strong>Neuro</strong>-ophthalmol<br />

19:173–175.<br />

Boschi A, Spiritus M, Cioffi M, et al. (1997). Ocular neuromyotonia <strong>in</strong> a case of Paget’s disease of bone. <strong>Neuro</strong><strong>ophthalmology</strong><br />

18:67–71.<br />

Brazis PW, Lee AG. (1998a). B<strong>in</strong>ocular vertical diplopia. Mayo Cl<strong>in</strong> Proc 73:55–66.<br />

Brazis PW, Lee AG. (1999). Acquired b<strong>in</strong>ocular horizontal diplopia. Mayo Cl<strong>in</strong> Proc 74:907–916.<br />

Brazis PW, Lee AG, Boll<strong>in</strong>g JP. (1998b). B<strong>in</strong>ocular vertical diplopia due to subret<strong>in</strong>al neovascular membrane.<br />

Strabismus 6:127–131.<br />

Brown SM, Iacuone JJ. (1999). Intact sensory fusion <strong>in</strong> a child with divergence paresis caused by a pont<strong>in</strong>e glioma.<br />

Am J Ophthalmol 128:528–530.<br />

Burde RM, Sav<strong>in</strong>o PJ, Trobe JD. (1991). <strong>Cl<strong>in</strong>ical</strong> Decisions <strong>in</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 2nd ed. St Louis, Mosby<br />

Yearbook, p. 227.<br />

Burgess D, Roper-Hall G, Burde RM. (1980). B<strong>in</strong>ocular diplopia associated with subret<strong>in</strong>al neovascular<br />

membranes. Arch Ophthalmol 98:311–317.<br />

Capó H, Guyton DL. (1996a). Ipsilateral hypertropia after cataract surgery. Ophthalmology 103:721–730.<br />

Capó H, Roth E, Johnson T, et al. (1996b). Vertical strabismus after cataract surgery. Ophthalmology 103:<br />

918–921.<br />

Carter K, Lee AG, Tang RA, et al. (1998). <strong>Neuro</strong>-ophthalmologic complications of s<strong>in</strong>us surgery. <strong>Neuro</strong><strong>ophthalmology</strong><br />

19:75–82.


Diplopia 247<br />

Çeviker N, Baykaner K, Akata F, et al. (1997). Primary amyloidosis of an extraocular muscle. <strong>Neuro</strong>-<strong>ophthalmology</strong><br />

18:147–148.<br />

Chung M, Stout JT, Borchert MS. (2000). <strong>Cl<strong>in</strong>ical</strong> diversity of hereditary Duane’s retraction syndrome. Ophthalmology<br />

107:500–503.<br />

Chung SM, Lee AG, Holds JB, et al. (1997). Ocular neuromyotonia <strong>in</strong> Graves’ dysthyroid orbitopathy. Arch<br />

Ophthalmol 115:365–370.<br />

Coats DK, Paysse EA, Orgenga-Nania S. (1999). Acquired pseudo-Brown’s syndrome immediately follow<strong>in</strong>g<br />

Ahmed valve glaucoma implant. Ophthalmic Surg Lasers 30:396–397.<br />

Corboy JM, Jiang X. (1997). Postanesthetic hypotropia: a unique syndrome <strong>in</strong> the left eye. J Cataract Refract Surg<br />

23:1394–1398.<br />

Cornblath WT, Elner V, Rolfe M. (1993). Extraocular muscle <strong>in</strong>volvement <strong>in</strong> sarcoidosis. Ophthalmology 100:501–<br />

505.<br />

de Heide LJ, Talsma MA. (1999). Giant-cell arteritis present<strong>in</strong>g as an orbital pseudotumor. Neth J Med 55:<br />

196–198.<br />

De Jesús O, Inserni JA, Gonzalez A, Colón L. (1996). Idiopathic orbital <strong>in</strong>flammation with <strong>in</strong>tracranial extension.<br />

Case report. J <strong>Neuro</strong>surg 85:510–513.<br />

DeResp<strong>in</strong>is PA, Caputo AR, Wagner RS, Guo S. (1993). Duane’s retraction syndrome. Surv Ophthalmol 38:257–288.<br />

Donahue SP, Lev<strong>in</strong> PJM, Hamed LM. (1999). Tonic ocular tilt reaction simulat<strong>in</strong>g a superior oblique palsy.<br />

Diagnostic confusion with the 3-step test. Arch Ophthalmol 117:347–352.<br />

Dooley DP, Hollsten DA, Grimes SR, Moss J. (1992). Indolent orbital apex syndrome caused by occult<br />

mucormycosis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:245–249.<br />

Downie JA, Francis IC, Arnold JJ, et al. (1993). Sudden bl<strong>in</strong>dness and total ophthalmoplegia <strong>in</strong> mucormycosis. A<br />

cl<strong>in</strong>icopathologic correlation. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:27–34.<br />

Durno CA, Ehrlich R, Taylor R, et al. (1997). Keep<strong>in</strong>g an eye on Crohn’s disease: orbital myositis as the present<strong>in</strong>g<br />

symptom. Can J Gastroenterol 11:497–500.<br />

Egbert JE, May K, Kersten RC, Kulw<strong>in</strong> DR. (2000). Pediatric orbital floor fracture. Direct extraocular muscle<br />

<strong>in</strong>volvement. Ophthalmology 107:1875–1879.<br />

Eitzen JP, Elsas FJ. (1991). Strabismus follow<strong>in</strong>g endoscopic <strong>in</strong>tranasal s<strong>in</strong>us surgery. J Pediatr Ophthalmol<br />

Strabismus 28:168–170.<br />

Engle EC, Goumnerov BC, McKeown CA, et al. (1997). Oculomotor nerve and muscle abnormalities <strong>in</strong> congenital<br />

fibrosis of the extraocular muscles. <strong>An</strong>n <strong>Neuro</strong>l 41:314–325.<br />

Erie JC. (1990). Acquired Brown’s syndrome after peribulbar anesthesia. Am J Ophthalmol 109:349–350.<br />

Esmaeli B, Ahmadi A, Tang R, et al. (2001). Interferon therapy for orbital <strong>in</strong>filtration secondary to Erdheim-<br />

Chester disease. Am J Ophthalmol 132:945–947.<br />

Ezra E, Plant GT. (1996a). Paroxysmal superior rectus and levator palpebrae spasm: a unique presentation of<br />

multiple sclerosis. Br J Ophthalmol 80:187–188.<br />

Ezra E, Spalton D, Sanders MD, Graham EM, Plant GT. (1996b). Ocular neuromyotonia. Br J Ophthalmol 80:350–<br />

355.<br />

Friedman AP, Harter DH, Merritt HH. (1962). Ophthalmoplegic migra<strong>in</strong>e. Arch <strong>Neuro</strong>l 7:320–327.<br />

Fril<strong>in</strong>g R, Yassur Y, Merk<strong>in</strong> L, et al. (1993). Divergence paralysis versus bilateral sixth nerve palsy <strong>in</strong> an <strong>in</strong>complete<br />

Miller-Fisher syndrome. <strong>Neuro</strong>-Ophthalmology 13:215–217.<br />

Frohman EM, Zee DS. (1995). Ocular neuromyotonia: cl<strong>in</strong>ical features, physiological mechanisms, and response to<br />

therapy. <strong>An</strong>n <strong>Neuro</strong>l 37:620–626.<br />

Fu ER. (1995). Ocular neuromyotonia—an unusual ocular motility complication after radiation therapy for<br />

nasopharyngeal carc<strong>in</strong>oma. <strong>An</strong>n Acad Med S<strong>in</strong>gapore 24:895–897.<br />

Fujikado T, Ohmi G, Ikeda T, et al. (1997). Exotropia secondary to vitreous hemorrhage. Graefes Arch Cl<strong>in</strong> Exp<br />

Ophthalmol 235:143–148.<br />

Fukuo Y, Abe T, Hayasaka S. (1998). Acute comitant esotropia <strong>in</strong> a boy with head trauma and convulsions<br />

receiv<strong>in</strong>g carbamazep<strong>in</strong>e. Ophthalmologica 212:61–62.<br />

Goldberg RA, Rootman J. (1990a). <strong>Cl<strong>in</strong>ical</strong> characteristics of metastatic orbital tumors. Ophthalmology 97:620–624.<br />

Goldberg RA, Rootman J, Cl<strong>in</strong>e RA. (1990b). Tumors metastatic to the orbit: a chang<strong>in</strong>g picture. Surv Ophthalmol.<br />

35:1–24.<br />

Goldste<strong>in</strong> JH, Schneekloth BB. (1996). Spasm of the near reflex: a spectrum of anomalies. Surv Ophthalmol 40:269–<br />

278.<br />

Golnik KC, West CE, Kaye E, et al. (2000). Incidence of ocular misalignment and diplopia after uneventful cataract<br />

surgery. J Cataract Refract Surg 26:1205–1209.<br />

Hamed LM, Silbiger J. (1992). Periodic alternat<strong>in</strong>g esotropia. J Pediatr Ophthalmol Strabismus 29:240–242.


248 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Harr<strong>in</strong>gton DO, Flocks M. (1953). Ophthalmoplegic migra<strong>in</strong>e. Pathogenesis: report of pathologic f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> a case<br />

of recurrent oculomotor paralysis. Arch Ophthalmol 49:643–655.<br />

Harris GJ, Murphy ML, Schmidt EW, et al. (1994). Orbital myositis as a paraneoplastic syndrome. Arch Ophthalmol<br />

112:380–386.<br />

Harrison AR, Wirtschafter JD. (1997). Ocular neuromyotonia <strong>in</strong> a patient with cavernous s<strong>in</strong>us thrombosis<br />

secondary to mucormycosis. Am J Ophthalmol 124:122–123.<br />

Haupert CL, Newman NJ. (1997). Ocular neuromyotonia 18 years after radiation therapy. Arch Ophthalmol<br />

115:1331–1332.<br />

Helmchen C, Dieterich M, Straube A, et al. (1992). Abducens neuromyotonia with partial oculomotor paralysis.<br />

Nervenartz 63:625–629.<br />

Hertle RW, Bienfang DC. (1990). Oculographic analysis of acute esotropia secondary to a thalamic hemorrhage. J<br />

Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:21–26.<br />

Hommel M, Bogousslavsky DC. (1990). The spectrum of vertical gaze palsy follow<strong>in</strong>g unilateral bra<strong>in</strong>stem stroke.<br />

<strong>Neuro</strong>logy 41:1229–1234.<br />

Horton JC, Fishman RA. (1994). <strong>Neuro</strong>visual f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> the syndrome of spontaneous <strong>in</strong>tracranial hypotension<br />

from dural cerebrosp<strong>in</strong>al fluid leak. Ophthalmology 101:244–251.<br />

Hoyt CS, Good WV. (1995). Acute onset concomitant esotropia: when is it a sign of serious neurological disease?<br />

Br J Ophthalmol 79:498–501.<br />

Hudson HL, Feldon SE. (1992). Late overcorrection of hypotropia <strong>in</strong> Graves’ ophthalmopathy. Ophthalmology<br />

99:356–360.<br />

Hughes DS, Beck L, Hill R, Plenty J. (1992). Dysthyroid eye disease present<strong>in</strong>g as Brown’s syndrome. Acta<br />

Ophthalmol 70:262–265.<br />

Hunter DG, Lam GC, Guyton DL. (1995). Inferior oblique muscle <strong>in</strong>jury from local anesthesia for cataract surgery.<br />

Ophthalmology 102:501–509.<br />

Hupp SL, Williams JP, Curran JE. (1990). Computerized tomography <strong>in</strong> the diagnosis of congenital fibrosis<br />

syndrome. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:135–139.<br />

Hutnik CML, Nicolle DA, Munoz DG. (1997). Orbital aspergillosis. A fatal masquerader. J <strong>Neuro</strong>-ophthalmol<br />

17:257–261.<br />

Jacobson DM. (2000). Divergence <strong>in</strong>sufficiency revisited. Natural history of idiopathic cases and neurologic<br />

associations. Arch Ophthalmol 118:1237–1241.<br />

Johnson DA. (2001). Persistent vertical b<strong>in</strong>ocular diplopia after cataract surgery. Am J Ophthalmol 132:831–835.<br />

Johnson TE, Casiano RR, Kronish JW, et al. (1999). S<strong>in</strong>o-orbital aspergillosis <strong>in</strong> acquired immunodeficiency<br />

syndrome. Arch Ophthalmol 117:57–64.<br />

Jones MR, Waggoner R, Hoyt WF. (1999). Cerebral polyopia with extrastriate quadrantanopia: report of a case<br />

with magnetic resonance documentation of V2=V3 cortical <strong>in</strong>farction. J <strong>Neuro</strong>-ophthalmol 19:1–6.<br />

Kattah JC, Zimmerman LE, Kolsky MP, et al. (1990). Bilateral orbital <strong>in</strong>volvement <strong>in</strong> fatal giant cell polymyositis.<br />

Ophthalmology 97:520–525.<br />

Katz B, Rimmer S. (1989). Ophthalmoplegic migra<strong>in</strong>e with superior ramus oculomotor paresis. J Cl<strong>in</strong> <strong>Neuro</strong>ophthalmol<br />

9:181–183.<br />

Kim M, Provias, J, Bernste<strong>in</strong> M. (1995). Rosai-Dorfman disease mimick<strong>in</strong>g multiple men<strong>in</strong>giomas: case report.<br />

<strong>Neuro</strong>surgery 36:1185–1187.<br />

Koide R, Hnda Y, Ozawa T. (2000). Diplopia after cataract surgery. J Cataract Refract Surg 26:1198–1204.<br />

Kubis KC, Danesh-Meyer H, Bilyk JR, et al. (2000). Unilateral lid retraction dur<strong>in</strong>g pregnancy. Surv Ophthalmol<br />

45:69–76.<br />

Kushner BJ. (2001). Recently acquired diplopia <strong>in</strong> adults with long-stand<strong>in</strong>g strabismus. Arch Ophthalmol<br />

119:1795–1801.<br />

Lacey B, Chang W, Rootman J. (1999). Nonthyroid causes of extraocular muscle disease. Surv Ophthalmol 44:187–<br />

213.<br />

Lee AG, Brazis PW. (1997). Therapeutic neuro-<strong>ophthalmology</strong>. In: Appel SH, ed. Current <strong>Neuro</strong>logy. Vol 17.<br />

Amsterdam, IOS Press, pp. 265–292.<br />

Leib ML, Odel JG, Cooney MJ. (1994). Orbital polymyositis and giant cell myocarditis. Ophthalmology 101:950–954.<br />

Leigh RJ, Zee DS. (1999). The <strong>Neuro</strong>logy of Eye Movements. 3rd ed. New York, Oxford University Press.<br />

Lepore FE. (1999). Divergence paresis: a nonlocaliz<strong>in</strong>g cause of diplopia. J <strong>Neuro</strong>-ophthalmol 19:242–245.<br />

Lev<strong>in</strong> LA, Avery R, Shore JW, et al. (1996). The spectrum of orbital aspergillosis: a cl<strong>in</strong>icopathological review. Surv<br />

Ophthalmol 41:142–154.<br />

Lewis AR, Kl<strong>in</strong>e LB, Sharpe JA. (1996). Acquired esotropia due to Arnold-Chiari I malformation. J <strong>Neuro</strong>ophthalmol<br />

16:49–54.


Diplopia 249<br />

L<strong>in</strong>dner K, Hitzenberger P, Drlicek M, Grisold W. (1992). Dissociated unilateral convergence paralysis <strong>in</strong> a patient<br />

with thalamotectal hemorrhage. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 55:731–733.<br />

Lopez JR, Adornato BT, Hoyt WF. (1993). ‘‘Entomopia’’: a remarkable case of cerebral polyopia. <strong>Neuro</strong>logy<br />

43:2145–2146.<br />

Lopresto Weeks C, Hamed LM. (1999). Treatment of acute comitant esotropia <strong>in</strong> Chiari I malformation.<br />

Ophthalmology 106:2368–2371.<br />

Lueder GT. (2002). <strong>An</strong>omalous orbital structures result<strong>in</strong>g <strong>in</strong> unusual strabismus. Surv Opthalmol 47:27–35.<br />

Mannor GE, Rose GE, Moseley IF, Wright JE. (1997). Outcome of orbital myositis. <strong>Cl<strong>in</strong>ical</strong> features associated with<br />

recurrence. Ophthalmology 104:409–414.<br />

Mask<strong>in</strong> SL, Fetchick RJ, Leone CR, et al. (1989). Bipolaris hawaiiensis-caused phaeohypomycotic orbitopathy. A<br />

devastat<strong>in</strong>g fungal s<strong>in</strong>usitis <strong>in</strong> an apparently immunocompetent host. Ophthalmology 96:175–179.<br />

Massry GG, Hornblass A, Harrison W. (1996). Itraconazole <strong>in</strong> the treatment of orbital aspergillosis. Ophthalmology<br />

103:1467–1470.<br />

Maurer I, Zierz S. (1999). Recurrent orbital myositis. Report of a familial <strong>in</strong>cidence. Arch <strong>Neuro</strong>l 56:1407–1409.<br />

Merle H, Gerard M, Raynaud M. (1998). Isolated medial orbital blow-out fracture with medial rectus entrapment.<br />

Acta Ophthalmol Scand 76:378–379.<br />

Miller NR. (1991). Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 4th Edition. Baltimore, Williams & Wilk<strong>in</strong>s, pp.<br />

2533–2538.<br />

Mohney BG. (2001). Common forms of childhood esotropia. Ophthalmology 108:805–809.<br />

Mokri B, Peipgras DG, Miller GM. (1997). Syndrome of orthostatic headaches and diffuse pachymen<strong>in</strong>geal<br />

gadol<strong>in</strong>ium enhancement. Mayo Cl<strong>in</strong> Proc 72:400–413.<br />

Mombaerts I, Goldschmed<strong>in</strong>g R, Schl<strong>in</strong>gemann RO, Koornneef L. (1996). What is orbital pseudotumor? Surv<br />

Ophthalmol 41:66–78.<br />

Mombaerts I, Koornneef L. (1997). Current status of treatment of orbital myositis. Ophthalmology 104:402–408.<br />

Morrow MJ, Kao GW, Arnold AC. (1996). Bilateral ocular neuromyotonia: oculographic correlations. <strong>Neuro</strong>logy<br />

46:264–266.<br />

Moster ML, Bosley TM, Slav<strong>in</strong> ML, Rub<strong>in</strong> SE. (1992). Thyroid ophthalmopathy present<strong>in</strong>g as superior oblique<br />

paresis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:94–97.<br />

Murdoch IE, Sullivan TJ, Moseley I, et al. (1996). Primary localized amyloidosis of the orbit. Br J Ophthalmol<br />

80:1083–1086.<br />

Newman NJ, Lessell S. (1989). Pupillary dilation with monocular occlusion as a sign of nonorganic oculomotor<br />

dysfunction. Am J Ophthalmol 108:461–462.<br />

Newman SA. (1993). Gaze-<strong>in</strong>duced strabismus (cl<strong>in</strong>ical conference). Surv Ophthalmol 38:303–309.<br />

Odaka M, Yuki N, Hirata K. (2001). <strong>An</strong>ti-GQib IgG antibody syndrome: cl<strong>in</strong>ical and immunological range. J<br />

<strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 70:50–55.<br />

Ohtsuka K, Maekawa H, Takeda M, et al. (1988). Accommodation and convergence <strong>in</strong>sufficiency with left middle<br />

cerebral artery occlusion. Am J Ophthalmol 106:60–64.<br />

Ohyagi Y, Yamada T, Okayama A, et al. (2000). Vergence disorders <strong>in</strong> patients with sp<strong>in</strong>ocerebellar ataxia<br />

3=Machado-Joseph disease: a synoptophore study. J <strong>Neuro</strong>l Sci 173:120–123.<br />

Orssaud C, Poisson M, Gardeur D. (1992). Orbital myositis, recurrence of Whipple’s disease (French). J Fr<br />

Ophtalmol 15:205–208.<br />

Patel AS, Kelman SE, Duncan GW, Rismondo V. (1994). Pa<strong>in</strong>less diplopia caused by extraocular muscle sarcoid.<br />

Arch Ophthalmol 112:879–880.<br />

Postert T, Büttner T, McMonagle U, Przuntek H. (1997). Spasm of the near reflex: case report and review of the<br />

literature. <strong>Neuro</strong>-<strong>ophthalmology</strong> 17:149–152.<br />

Pullic<strong>in</strong>o P, L<strong>in</strong>coff N, Truax BT. (2000). Abnormal vergence with upper bra<strong>in</strong>stem <strong>in</strong>farcts: pseudoabducens palsy.<br />

<strong>Neuro</strong>logy 55:352–358.<br />

Racette BA, Gokden MS, Tychsen LS, Perlmuttter JS. (1999). Convergence <strong>in</strong>sufficiency <strong>in</strong> idiopathic Park<strong>in</strong>son’s<br />

disease responsive to levodopa. Strabismus 7:169–174.<br />

Ramboer K, Demaerel P, Baert AL, et al. (1997). L<strong>in</strong>ear scleroderma with orbital <strong>in</strong>volvement: follow up and<br />

magnetic resonance imag<strong>in</strong>g. Br J Ophthalmol 81:90–91.<br />

Riordan-Eva P, Vickers SF, McCrarry B, et al. (1993). Cyclic strabismus without b<strong>in</strong>ocular function. J Pediatr<br />

Ophthalmol Strabismus 30:106–108.<br />

Safran AB, Magistris M. (1998). Term<strong>in</strong>at<strong>in</strong>g attacks of ocular neuromyotonia. J <strong>Neuro</strong>-ophthalmol 18:47–48.<br />

Saunders RA, Stratas BA, Gordon RA, Holgate RC. (1990). Acute-onset Brown’s syndrome associated with<br />

pans<strong>in</strong>usitis. Arch Ophthalmol 108:58–60.<br />

Schanzer B, Bordaberry M, Jeffrey AR, et al. (1998). The child with divergence paresis. Surv Ophthalmol 42:571–576.


250 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Segal EI, Tang R, Lee AG, et al. (2000). Orbital apex lesion as the present<strong>in</strong>g manifestation of sarcoidosis. J <strong>Neuro</strong>-<br />

Ophthalmol 20:156–158.<br />

Sener EC, Özkan SB, Aribal ME, et al. (1996). Evaluation of congenital Brown’s syndrome with magnetic<br />

resonance imag<strong>in</strong>g. Eye 10:492–496.<br />

Serop S, Vianna RN, Claeys M, De Laey JJ. (1994). Orbital myositis secondary to systemic lupus erythematosus.<br />

Acta Ophthalmol (Copenh) 72:520–523.<br />

Shields JA, Karcioglu ZA, Shields CL, et al. (1991). Orbital and eyelid <strong>in</strong>volvement with Erdheim-Chester disease.<br />

A report of two cases. Arch Ophthalmol 109:850–854.<br />

Sidikaro Y, von Noorden GK. (1982). Observations <strong>in</strong> sensory heterotropia. J Pediatr Ophthalmol Strabismus 19:12–<br />

19.<br />

Silverberg M, Schular E, Veronneau-Troutman S, et al. (1999). Nonsurgical management of b<strong>in</strong>ocular diplopia<br />

<strong>in</strong>duced by macular pathology. Arch Ophthalmol 117:900–903.<br />

Simon JW, Waldman JB, Couture KC. (1996). Cerebellar astrocytoma manifest<strong>in</strong>g as isolated, comitant esotropia <strong>in</strong><br />

childhood. Am J Ophthalmol 121:584–586.<br />

Slav<strong>in</strong> ML. (1989). Hyperdeviation associated with isolated unilateral abducens palsy. Ophthalmology 96:512–<br />

516.<br />

Slav<strong>in</strong> ML. (1991). Primary aspergillosis of the orbital apex. Arch <strong>Neuro</strong>l 109:1502.<br />

Slav<strong>in</strong> ML, Potash SD, Rub<strong>in</strong> SE. (1988). Asymptomatic physiologic hyperdeviation <strong>in</strong> peripheral gaze.<br />

Ophthalmology 95:778–781.<br />

Spector RH. (1993). Vertical diplopia. Surv Ophthalmol 38:31–62.<br />

Spierer A, Huna R, Rechtman C, Lapidot D. (1995). Convergence <strong>in</strong>sufficiency secondary to subdural hematoma.<br />

Am. J. Ophthalmol. 120:258–260.<br />

Squires RH Jr, Zwiener RJ, Kennedy RH. (1991). Orbital myositis and Crohn’s disease. J Pediatr Gastroenterol Nutr<br />

15:448–451.<br />

Stevens AW, Grossman ME, Barr ML. (1996). Orbital myositis, vitiligo, and giant cell myocarditis. J Am Acad<br />

Dermatol 35:310–312.<br />

Stidham DB, Sondhi N, Plager D, Helveston E. (1998). Presumed isolated <strong>in</strong>flammation of the superior oblique<br />

muscle <strong>in</strong> idiopathic orbital myositis. Ophthalmology 105:2216–2219.<br />

Sullivan TJ, Aylward GW, Wright JE. (1992). Act<strong>in</strong>omycosis of the orbit. Br J Ophthalmol 76:505–506.<br />

Suttorp-Schulten MS, Koornneef L. (1990). L<strong>in</strong>ear scleroderma associated with ptosis and motility disorders. Br J<br />

Ophthalmol 74:694–695.<br />

Takahashi T, Fujita N, Takeda K, et al. (2000). A case of sarcoid myopathy with external ocular <strong>in</strong>volvement—<br />

diagnosis and follow-up study with 99mTc pyrophosphate sc<strong>in</strong>tigraphy. R<strong>in</strong>sho Sh<strong>in</strong>keigaku 40:145–148.<br />

Takahashi T, Uchida S, Arita M, et al. (2001). Orbital <strong>in</strong>flammatory pseudotumor and ischemic vasculitis <strong>in</strong> Churg-<br />

Strauss syndrome. Report of two cases and review of the literature. Ophthalmology 108:1129–1133.<br />

Tapiero B, Pedespan JM, Rougier MB, et al. (1995). Cyclic strabismus. Presentation of two new cases and critical<br />

review of the literature. J Fr Ophthalmol 18:411–420.<br />

Tekeli O, Tomac S, Gursel E, Hasiripi H. (1999). Divergence paralysis and <strong>in</strong>tracranial hypertension due to<br />

neurobrucellosis. A case report. B<strong>in</strong>ocular Vis Strabismus Q 14:117–118.<br />

Thomke F, Hopf HC. (1992). Acquired monocular elevation paresis. <strong>An</strong> asymmetric up-gaze palsy. Bra<strong>in</strong> 115:1901–<br />

1910.<br />

Thompson SH, Miller NR. (1998). Disorders of pupillary function, accommodation, and lacrimation. In: Miller<br />

NR, Newman NJ, eds. Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-Ophthalmology. 5th ed. Baltimore, Williams & Wilk<strong>in</strong>s,<br />

pp. 1016–1018.<br />

Thorne JE, Volpe NJ, Liu GT. (1999). Magnetic resonance imag<strong>in</strong>g of acquired Brown syndrome <strong>in</strong> a patient with<br />

psoriasis. Am J Ophthalmol 127:233–235.<br />

Tilikete C, Vial C, Niederlaender M, et al. (2000). Idiopathic ocular neuromyotonia: a neurovascular compression<br />

syndrome? J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 69:642–644.<br />

Toller KK, Gigantelli JW, Spald<strong>in</strong>g J. (1998). Bilateral orbital metastases from breast carc<strong>in</strong>oma. A case of false<br />

pseudotumor. Ophthalmology 105:1897–1901.<br />

Valmaggia C, Neuweiler J, Fretz C, Gottlob I. (1997). A case of Erdheim-Chester disease with orbital <strong>in</strong>volvement.<br />

Arch Ophthalmol 115:1467–1468.<br />

Vargas ME, Warren FA, Kupersmith MJ. (1993). Exotropia as a sign of myasthenia gravis <strong>in</strong> dysthyroid<br />

ophthalmopathy. Br J Ophthalmol 77:822–823.<br />

Vers<strong>in</strong>o M, Hurko O, Zee DS. (1996). Disorders of b<strong>in</strong>ocular control of eye movements <strong>in</strong> patients with cerebellar<br />

dysfunction. Bra<strong>in</strong> 119:1933–1950.<br />

von Noorden GK. (1996). B<strong>in</strong>ocular Vision and Ocular Motility. 5th ed. St Louis, Mosby.


Diplopia 251<br />

von Noorden GK, Hansell R. (1991). <strong>Cl<strong>in</strong>ical</strong> characteristics and treatment of isolated <strong>in</strong>ferior rectus paralysis.<br />

Ophthalmol 98:253–257.<br />

von Noorden GK, Murray E, Wong SY. (1986). Superior oblique paralysis. A review of 270 cases. Arch Ophthalmol<br />

104:1771–1776.<br />

Wan MK, Francis IC, Carter PR, et al. (2000). The spectrum of presentation of silent s<strong>in</strong>us syndrome. J <strong>Neuro</strong><strong>ophthalmology</strong><br />

20:207–212.<br />

White VA, Cl<strong>in</strong>e RA. (1999). Pathologic causes of the superior oblique click syndrome. Ophthalmology 106:1292–<br />

1295.<br />

Wiest G, Mallek R, Baumgartner C. (2000). Selective loss of vergence control secondary to bilateral paramedian<br />

thalamic <strong>in</strong>farction. <strong>Neuro</strong>logy 54:1997–1999.<br />

Wigg<strong>in</strong>s RE Jr, Baumgartner S. (1999). Diagnosis and management of divergence weakness <strong>in</strong> adults. Ophthalmology<br />

106:1353–1356.<br />

Woo TL, Francis IC, Wilcsek GA, et al. (2001). Australasian orbital and adnexal Wegener’s granulomatosis.<br />

Ophthalmology 108:1535–1543.<br />

Woods RL, Bradley A, Atchison DA. (1996). Monocular diplopia caused by ocular aberrations and hyperopic<br />

defocus. Vis Res 36:3597–3606.<br />

Yee RD, Purv<strong>in</strong> VA. (1998). Ocular neuromyotonia: three case reports with eye movement record<strong>in</strong>gs. J <strong>Neuro</strong>ophthalmol<br />

18:1–8.<br />

Yuki N, Odaka M, Hirata K. (2001). Acute ophthalmoparesis (without ataxia) associated with anti-GQ1b IgG<br />

antibody. <strong>Cl<strong>in</strong>ical</strong> features. Ophthalmology 108:196–200.<br />

Ziffer AJ, Rosenbaum AL, Demer JL, Yee RD. (1992). Congenital double elevator palsy: vertical saccadic velocity<br />

utiliz<strong>in</strong>g the scleral search coil technique. J Pediatr Ophthalmol Strabismus 29:142–149.


This page <strong>in</strong>tentionally left blank


11 r<br />

Third Nerve Palsies<br />

What Are the <strong>Cl<strong>in</strong>ical</strong> Features of a Third<br />

Cranial Nerve Palsy?<br />

The oculomotor nerve (third cranial nerve) supplies four extraocular muscles (medial,<br />

superior and <strong>in</strong>ferior recti, and <strong>in</strong>ferior oblique) as well as the levator of the lid, and<br />

conta<strong>in</strong>s parasympathetic fibers that supply the sph<strong>in</strong>cter of the pupil and the ciliary<br />

body. A complete peripheral third nerve palsy (TNP) thus causes ptosis, a fixed and<br />

dilated pupil, and a down (hypotropic) and out (exotropic) rest<strong>in</strong>g eye position.<br />

Partial TNPs may cause (<strong>in</strong> comb<strong>in</strong>ation or isolation) variable ptosis; variable paresis<br />

of eye adduction, elevation, and depression; and variable pupillary <strong>in</strong>volvement.<br />

In this section, we discuss the localization of TNPs associated with other neurologic<br />

signs (nonisolated TNPs) and TNPs without other associated neurologic or neuroophthalmologic<br />

deficits (isolated TNPs) (Lee, 1999).<br />

Is the TNP Isolated or Nonisolated? Can the<br />

TNP Be Localized?<br />

We classify TNPs as either nonisolated or isolated. The isolated TNPs were def<strong>in</strong>ed as<br />

TNPs without associated neurologic f<strong>in</strong>d<strong>in</strong>gs (e.g., headache, other cranial neuropathies).<br />

Patients with evidence for myasthenia gravis (e.g., variability, fatigue,<br />

Cogan’s lid twitch sign, enhancement of ptosis) are not <strong>in</strong>cluded <strong>in</strong> the isolated TNP<br />

group. We def<strong>in</strong>e six types of TNP <strong>in</strong> Table 11–1. The localization of TNP is outl<strong>in</strong>ed <strong>in</strong><br />

Table 11–2. Etiologies of TNPs by localization are outl<strong>in</strong>ed <strong>in</strong> Table 11–3.<br />

253


254 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 11–1. Def<strong>in</strong>itions of the Six Types of Third Nerve Palsy (TNP)<br />

Type 1: nonisolated<br />

TNP is considered nonisolated if it has the follow<strong>in</strong>g features:<br />

Orbital disease (e.g., chemosis, proptosis, lid swell<strong>in</strong>g, <strong>in</strong>jection, and positive forced ductions)<br />

Evidence to suggest myasthenia gravis (e.g., fatigability of the motility defect, Cogan’s lid twitch<br />

sign, orbicularis oculi weakness)<br />

Multiple cranial nerve palsies (<strong>in</strong>clud<strong>in</strong>g bilateral TNP) or radiculopathy<br />

Bra<strong>in</strong>stem signs (e.g., hemiplegia, cerebellar signs, other cranial nerve deficits)<br />

Systemic, <strong>in</strong>fectious, or <strong>in</strong>flammatory risk factors for TNP (e.g., history of previous malignancy,<br />

giant cell arteritis, collagen vascular disease)<br />

Severe headache<br />

Type 2: traumatic<br />

Isolated unilateral TNP, which has a clearly established temporal relationship to significant<br />

previous head trauma and does not progress, is considered traumatic <strong>in</strong> orig<strong>in</strong>; patients with<br />

m<strong>in</strong>or head trauma are not <strong>in</strong>cluded<br />

Type 3: congenital<br />

Patient born with an isolated TNP<br />

Type 4: acquired, nontraumatic isolated<br />

Type 4A: TNP with a normal pupillary sph<strong>in</strong>cter with completely palsied extraocular muscles<br />

Type 4B: TNP with normal pupillary sph<strong>in</strong>cter and <strong>in</strong>complete palsied extraocular muscles<br />

Type 4C: TNP with subnormal pupillary sph<strong>in</strong>cter dysfunction and partial or complete extraocular<br />

muscle palsies<br />

Type 5: progressive or unresolved<br />

Patients with TNP that worsens after the acute stage (more than 2 weeks) or who develop new<br />

neurologic f<strong>in</strong>d<strong>in</strong>gs are considered to have progressive TNP; patients without resolution of TNP<br />

after 12 to 16 weeks are considered unresolved<br />

Type 6: signs of aberrant regeneration<br />

Is the TNP Due to a Nuclear Lesion?<br />

Lesions of the third nerve nucleus are rare and often associated with other signs of<br />

mesencephalic <strong>in</strong>volvement, especially vertical gaze impairment (Bengel, 1994;<br />

Bogousslavsky, 1994; Chee, 1990; Gaymard, 1990; Nakao, 1998; Saeki, 2000b). Nuclear<br />

lesions may be due to <strong>in</strong>farction, hemorrhage, tumor, <strong>in</strong>fection, or trauma and, thus,<br />

should be <strong>in</strong>vestigated by magnetic resonance imag<strong>in</strong>g (MRI). Paresis of an isolated<br />

muscle <strong>in</strong>nervated by the oculomotor nerve almost always results from a lesion <strong>in</strong> the<br />

orbit or from disease of the muscle or neuromuscular junction. For example, isolated<br />

<strong>in</strong>ferior rectus paresis may develop with trauma, myasthenia gravis, or vascular disease<br />

and may also occur on a congenital or idiopathic basis (von Noorden, 1991). Lesions of<br />

the <strong>in</strong>ferior rectus subnucleus, however, may also give rise to isolated weakness of the<br />

<strong>in</strong>ferior rectus muscle (Chou, 1998; Lee, 2000b; Tezer, 2000). Isolated <strong>in</strong>ferior rectus<br />

paresis may also occur on a supranuclear basis with a lesion selectively <strong>in</strong>terrupt<strong>in</strong>g<br />

fibers descend<strong>in</strong>g from the right medial longitud<strong>in</strong>al fasciculus (MLF) to the <strong>in</strong>ferior<br />

rectus subnucleus (Tezer, 2000). The levator palpebrae superioris muscles, the superior<br />

recti, and the constrictors of the pupils are affected bilaterally with nuclear lesions.<br />

Because medial rectus neurons probably lie at three different locations with<strong>in</strong> the<br />

oculomotor nucleus, it is unlikely that a medial rectus paralysis (unilateral or bilateral)<br />

would be the sole manifestation of a nuclear lesion (Umapathi, 2000). Most characteri-


Table 11–2. The Localization of TNP (Structure Involved: <strong>Cl<strong>in</strong>ical</strong> Manifestation)<br />

Lesions affect<strong>in</strong>g the third nerve nucleus<br />

Oculomotor nucleus: ipsilateral complete cranial nerve (CN) III palsy; contralateral ptosis<br />

and superior rectus paresis<br />

Oculomotor subnucleus: isolated muscle palsy (e.g., <strong>in</strong>ferior rectus)<br />

Isolated levator subnucleus: isolated bilateral ptosis<br />

Lesions affect<strong>in</strong>g the third nerve fasciculus<br />

Isolated fascicle: partial or complete isolated CN III palsy with or without pupil <strong>in</strong>volvement<br />

Paramedian mesencephalon: plus-m<strong>in</strong>us syndrome (ipsilateral ptosis and contralateral<br />

eyelid retraction)<br />

Fascicle, red nucleus=cerebellar peduncle: ipsilateral CN III palsy with contralateral ataxia<br />

and tremor (Claude)<br />

Fascicle and cerebral peduncle: ipsilateral CN III palsy with contralateral hemiparesis (Weber)<br />

Fascicle and red nucleus=substantia nigra: ipsilateral CN III palsy with contralateral<br />

choreiform movements (Benedikt)<br />

Lesions affect<strong>in</strong>g the third nerve <strong>in</strong> the subarachnoid space<br />

Oculomotor nerve: complete CN III palsy with or without other cranial nerve<br />

<strong>in</strong>volvement; superior or <strong>in</strong>ferior division palsy<br />

Lesions affect<strong>in</strong>g the third nerve <strong>in</strong> the cavernous s<strong>in</strong>us<br />

Cavernous s<strong>in</strong>us lesion: pa<strong>in</strong>ful or pa<strong>in</strong>less CN III palsy; with or without palsies of CN IV, VI,<br />

and V1; CN III palsy with small pupil (Horner syndrome); primary aberrant CN III<br />

regeneration<br />

Lesions affect<strong>in</strong>g the third nerve <strong>in</strong> the superior orbital fissure<br />

Superior orbital fissure lesion: CN III palsy with or without palsies of CN IV, VI, and V1;<br />

often with proptosis<br />

Lesion affect<strong>in</strong>g the third nerve <strong>in</strong> the orbit<br />

Oculomotor nerve: CN III palsy; superior or <strong>in</strong>ferior CN III branch palsy<br />

CN III and optic nerve or other orbital structures: visual loss; proptosis; swell<strong>in</strong>g of lids;<br />

chemosis<br />

Source: Modified from Brazis, 2001, with permission from Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s.<br />

Third Nerve Palsies 255<br />

stic of oculomotor nuclear <strong>in</strong>volvement is unilateral TNP, weakness of the ipsilateral<br />

and contralateral superior rectus, and bilateral <strong>in</strong>complete ptosis (Pratt, 1995). On rare<br />

occasions the ipsilateral superior rectus is spared while the contralateral superior rectus<br />

is paretic. Bilateral TNPs with spar<strong>in</strong>g of the lid levators may also be caused by nuclear<br />

lesions (the central caudal levator subnucleus is spared) (Bryan, 1992). Isolated bilateral<br />

ptosis with spar<strong>in</strong>g of the extraocular muscles and pupils may occur with lesions<br />

<strong>in</strong>volv<strong>in</strong>g the levator subnucleus and spar<strong>in</strong>g more rostral oculomotor subnuclei<br />

(Mart<strong>in</strong>, 1996). After surgery for a fourth ventricle ependymoma, bilateral nuclear<br />

oculomotor palsies affect<strong>in</strong>g only the levator and superior recti subnuclei have been<br />

described, result<strong>in</strong>g <strong>in</strong> third nerve paresis affect<strong>in</strong>g only the levators and superior recti<br />

bilaterally (Sanli, 1995). Bilateral total ophthalmoplegia, bilateral complete ptosis, and<br />

large, unreactive pupils have been described with midbra<strong>in</strong> hematoma (Worth<strong>in</strong>gton,<br />

1996). This constellation of f<strong>in</strong>d<strong>in</strong>gs was thought due to bilateral third nerve nuclear or<br />

fascicular damage or both, bilateral <strong>in</strong>volvement of the <strong>in</strong>terstitial nucleus of Cajal and<br />

the rostral nucleus of the MLF, and <strong>in</strong>volvement of bilateral horizontal saccadic and<br />

smooth pursuit pathways.


256 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 11–3. Etiologies of Third Nerve Palsy (TNP) by Topographical Localization<br />

Nuclear TNP<br />

Infarction or hemorrhage (Bengel, 1994; Bogousslavsky, 1994; Bryan, 1992; Chee, 1990; Gaymard,<br />

1990; Saeki, 2000a; Tezer, 2000; Worth<strong>in</strong>gton, 1996)<br />

Tumor (Chou, 1998; Nakao, 1998; Sanli, 1995)<br />

Infection<br />

Trauma<br />

Multiple sclerosis (Lee, 2000b)<br />

Fascicular TNP<br />

Infarction or hemorrhage (Breen, 1991; Castro, 1990; Gaymard, 1990, 2000; Getenet, 1994; Guy,<br />

1989a; Hopf, 1990; Kim, 1993; Ksiazek, 1994; Liu, 1991; Messe, 2001; Oishi, 1997; Onozu, 1998;<br />

Saeki, 1996, 2000a,b; Thömke, 1995; Umapathi, 2000)<br />

Tumor (<strong>An</strong>dreo, 1994; Barbas, 1995; Eggenberger, 1993; Ishikawa, 1997; Landolfi, 1998; Vetrugno,<br />

1997)<br />

Multiple sclerosis (Newman, 1990; Onozu, 1998; Thömke, 1997)<br />

Stereotactic surgery (Borras, 1997)<br />

Subarachnoid space<br />

<strong>An</strong>eurysms of the <strong>in</strong>ternal carotid–posterior communicat<strong>in</strong>g, superior cerebellar, basilar,<br />

or posterior cerebral arteries (Birchall, 1999; Branley, 1992; DiMario, 1992; Friedman, 2001;<br />

Giomb<strong>in</strong>i, 1991; Good, 1990; Greenspan, 1990; Griffiths, 1994; Horikoshi, 1999; Keane, 1996;<br />

McFadzean, 1998; Mudgil, 1999; Park-Matsumoto, 1997; Ranganadham, 1992; Renowden, 1993;<br />

Richards, 1992; Striph, 1993; Teasdale 1990; Tomsak, 1991; Tummala, 2001; Walter, 1994;<br />

We<strong>in</strong>berg, 1996; Wol<strong>in</strong>, 1992; Zimmer, 1991)<br />

Ectatic vessels (Hashimoto, 1998b; Nakagawa, 1991; Z<strong>in</strong>gale, 1993)<br />

Tumors, especially men<strong>in</strong>giomas, chordomas, metastases, or primary tumors of the third nerve<br />

(Cullom, 1993; Egan, 2001; Hardenack, 1994; Ide, 1997; Jacobson, 2001; Kadota, 1993; Kajiya,<br />

1995; Kawasaki, 1999; Kawase, 1996; Kaye-Wilson, 1994; Kodsi, 1992; Mehta, 1990; Norman,<br />

2001; Ogilvy, 1993; Reifenberger, 1996; Robertson, 1998; Sanchez Dalmau, 1998; Schultheiss,<br />

1993; Takano, 1990; W<strong>in</strong>terkorn, 2001)<br />

Infectious or <strong>in</strong>flammatory processes of the men<strong>in</strong>ges (e.g., sarcoidosis and Wegener’s) and<br />

carc<strong>in</strong>omatous or lymphomatous men<strong>in</strong>gitis (Balm, 1996; Galetta, 1992; Guar<strong>in</strong>o, 1995; Ing,<br />

1992; Ishibashi, 1998; Jacobson, 2001; Keane, 1993; Mark, 1992; McFadzean, 1998; Newman,<br />

1995; Renowden, 1993; Straube, 1993; Ueyama, 1997)<br />

Ophthalmoplegic migra<strong>in</strong>e (O’Hara, 2001)<br />

Subarachnoid hemorrhage with leukemia (Papke, 1993)<br />

Pseudotumor cerebri<br />

Spontaneous <strong>in</strong>tracranial hypotension (Ferrante, 1998)<br />

Trauma, especially dur<strong>in</strong>g neurosurgical procedures (Balcar, 1996; Hedges, 1993; Horikoshi, 1999;<br />

Kudo, 1990; Lepore, 1995)<br />

Nerve <strong>in</strong>farction from diabetes, atherosclerosis, giant cell arteritis, or systemic lupus erythematosus<br />

(nerve <strong>in</strong>farction may also occur <strong>in</strong> the cavernous s<strong>in</strong>us or anywhere along the course of<br />

nerve) (Berlit, 1991; Bondenson, 1997; Capo, 1992; Cullom, 1995; Davies, 1994;<br />

Jacobson, 1994, 1995, 1998a, 2001; Naghmi, 1990; Renowden, 1993; Richards, 1992)<br />

Uncal herniation<br />

Hydrocephalus<br />

Cavernous s<strong>in</strong>us=superior orbital fissure<br />

<strong>An</strong>eurysm of the <strong>in</strong>ternal carotid or posterior communicat<strong>in</strong>g artery (Hahn, 2000; Ikeda, 2001;<br />

Jacobson, 2001; Keane, 1996; Lanz<strong>in</strong>o, 1993; Silva, 1999; Z<strong>in</strong>gale, 1997)<br />

Dural carotid cavernous s<strong>in</strong>us fistula (Acierno, 1995; Brazis, 1994; Keane, 1996; Lee, 1996; Miyachi,<br />

1993; Perez Sempere, 1991; Uehara, 1998; Yen, 1998)<br />

ðcont<strong>in</strong>uedÞ


Table 11–3. (cont<strong>in</strong>ued)<br />

Third Nerve Palsies 257<br />

Ballon test occlusion of the cervical <strong>in</strong>ternal carotid artery (Lopes, 1998)<br />

Cavernous s<strong>in</strong>us thrombosis or <strong>in</strong>fection (e.g., tuberculoma); superior ophthalmic ve<strong>in</strong> thrombosis<br />

(Bikhazi, 1998; Grayeli, 1998; Holland, 1998; Polito, 1996)<br />

Tumors, <strong>in</strong>clud<strong>in</strong>g pituitary adenoma, men<strong>in</strong>gioma, esthesioneuroblastoma, arachnoid cyst,<br />

neur<strong>in</strong>oma, nasopharyngeal carc<strong>in</strong>oma, myeloma, lymphoma, Hodgk<strong>in</strong>’s disease, and metastases<br />

(Barr, 1999; Cullom, 1993; Ing, 1997; Kasner, 1996; Keane, 1996; Kurokawa, 1992; Lee,<br />

2000c; Liu, 1993; Manabe, 2000; Moster, 1996; North, 1993; Shen, 1993; Tao, 1992; Wake, 1993)<br />

Pituitary <strong>in</strong>farction or hemorrhage (pituitary apoplexy) (Lee, 2000c; Rob<strong>in</strong>son, 1990; Rossitch, 1992;<br />

Seyer, 1992)<br />

Gammopathy<br />

Intraneural hemorrhage (Miyao, 1993)<br />

Mucocele of the sphenoid s<strong>in</strong>us (Ashw<strong>in</strong>, 2001)<br />

Sphenoid s<strong>in</strong>usitis (Chotmongkol, 1999)<br />

Tolosa-Hunt syndrome, Wegener’s granulomatosis, or other granulomatous diseases (Herman,<br />

1999; Jacobson, 2001; Keane, 1996)<br />

Orbit<br />

Infections, <strong>in</strong>flammations, and granulomatous processes (e.g., orbital pseudotumor) (Kondoh,<br />

1998; Ohtsuka, 1997; Stefanis, 1993)<br />

Sphenoid s<strong>in</strong>us mucocele (Sethi, 1997)<br />

Tumors (Goldberg, 1990a,b)<br />

Dural arteriovenous malformation (Gray, 1999)<br />

Trauma<br />

Unknown localization<br />

Congenital (Good, 1991; Hamed, 1991; Ing, 1992; Mudgil, 1999; Parmeggiani 1992; Patel, 1993;<br />

Pratt, 1995; Schumacher-Feero, 1999; Tsaloumas, 1997; White, 1992)<br />

Migra<strong>in</strong>e (Mark, 1998; O’Halloran, 1999; Prats, 1999)<br />

Viral <strong>in</strong>fections (<strong>in</strong>clud<strong>in</strong>g herpes zoster ophthalmicus or Ramsay Hunt syndrome) and<br />

immunizations (Capoferri, 1997; Chang-God<strong>in</strong>ich, 1997; Mansour, 1997; Saeki, 2000c; Sood, 1999;<br />

Zurev<strong>in</strong>sky, 1993)<br />

Lyme disease (Savas, 1997)<br />

Diffuse neuropathic processes (e.g., Fisher’s syndrome and chronic <strong>in</strong>flammatory polyradiculoneuropathy<br />

(CIDP) (Arroyo, 1995; Nagaoka, 1996)<br />

Cervical carotid artery dissection, stenosis, or occlusion (Balcar, 1997; Holl<strong>in</strong>ger, 1999; Koennecke,<br />

1998; Mokri, 1996; Schiev<strong>in</strong>k, 1993)<br />

Subdural hematomas (Okuchi, 1999; Phookan, 1994)<br />

Glioblastoma multiforme (Al-Yamany, 1999)<br />

Un<strong>in</strong>tentional subdural catheter (Haughton, 1999)<br />

Submucosal diathermy to the <strong>in</strong>ferior turb<strong>in</strong>ates to improve the nasal airway (Green, 2000)<br />

Toxic effects of drugs (Pacifici, 1993; Soysal, 1993)<br />

Coca<strong>in</strong>e (Migita, 1998)<br />

Sildenafil citrate (Viagra) (Donahue, 1998)<br />

Internal carotid cisplat<strong>in</strong> <strong>in</strong>fusion (<strong>in</strong>ferolateral trunk carotid artery neurovascular toxicity)<br />

(Alderson, 1996; Wu, 1997)<br />

Dental anesthesia<br />

Radiation therapy (Ebner, 1995)<br />

Partial TNP associated with elevated anti-galactocerebroside and anti-GM 1 antibodies (Go, 2000)


258 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Is the TNP Due to a Fascicular Lesion?<br />

Lesions of the third nerve fascicle often accompany nuclear lesions because <strong>in</strong>farction is<br />

a common cause of a nuclear TNP, and the paramedian branches near the top of the<br />

basilar artery often feed both structures. For example, <strong>in</strong>farction of the dorsal paramedian<br />

midbra<strong>in</strong> may cause bilateral ptosis associated with unilateral paresis of all<br />

other muscles <strong>in</strong>nervated by the oculomotor nerve (pupil spared) with spar<strong>in</strong>g of the<br />

contralateral superior rectus muscle (Liu, 1991). These unique f<strong>in</strong>d<strong>in</strong>gs suggest a lesion<br />

of the proximal third nerve fascicles and the central caudal subnucleus. Third nerve<br />

fascicular lesions are often caused by <strong>in</strong>farction, hemorrhage, or demyel<strong>in</strong>ation. Pure<br />

fascicular lesions cause a unilateral peripheral type of oculomotor palsy. Involvement of<br />

bra<strong>in</strong>stem structures other than the fascicle of the third nerve identifies the mesencephalic<br />

location of the lesion (Liu, 1992). Concomitant damage of the red nucleus<br />

and superior cerebellar peduncle causes contralateral ataxia and outflow tract cerebellar<br />

tremor (Claude’s syndrome), whereas a more anterior lesion, affect<strong>in</strong>g the peduncle,<br />

gives rise to oculomotor palsy with contralateral hemiparesis (Weber’s syndrome). The<br />

TNP with Weber’s syndrome may affect or spare the pupillary fibers (Saeki, 1996).<br />

Larger lesions that affect the oculomotor fascicle and the red nucleus=substantia nigra<br />

region may produce TNP with contralateral choreiform movements or tremor<br />

(Benedikt’s syndrome) (Borras, 1997), sometimes associated with contralateral hemiparesis<br />

if the cerebral peduncle is also <strong>in</strong>volved. A pupil-spar<strong>in</strong>g TNP associated with<br />

b<strong>in</strong>ocular ocular torsion to the contralateral side—thereby <strong>in</strong>dicat<strong>in</strong>g a left-sided<br />

midbra<strong>in</strong> lesion that <strong>in</strong>cluded the fascicle of the third nerve and the supranuclear<br />

<strong>in</strong>tegration centers for torsional eye movements, the <strong>in</strong>terstitial nucleus of Cajal, and the<br />

rostral <strong>in</strong>terstitial nucleus of the MLF—has been described with a paramedian rostral<br />

midbra<strong>in</strong> <strong>in</strong>farction <strong>in</strong> a diabetic with giant cell arteritis (Dichgans, 1995). Ipsilateral<br />

TNP and contralateral downbeat nystagmus may be caused by unilateral paramedian<br />

thalamopeduncular <strong>in</strong>farction (Oishi, 1997).<br />

Rarely, a unilateral or bilateral fascicular third nerve lesion may occur <strong>in</strong> isolation<br />

without other ocular motor or neurologic signs or symptoms (see below) (<strong>An</strong>dreo, 1994;<br />

Barbas, 1995; Getenet, 1994; Kim, 1993; Newman, 1990; Thömke, 1995). Fascicular<br />

lesions, even when bilateral, may occasionally spare the pupil(s). Bilateral preganglionic<br />

<strong>in</strong>ternal ophthalmoplegia has been described with bilateral partial oculomotor fascicular<br />

lesions (Hashimoto, 1998a). Because of the <strong>in</strong>traaxial topographic arrangement of<br />

fibers, fascicular lesions may cause TNP limited to specific oculomotor-<strong>in</strong>nervated<br />

muscles (Ksiazek, 1994). Fascicular lesions have resulted <strong>in</strong> the follow<strong>in</strong>g:<br />

1. Isolated <strong>in</strong>ferior oblique paresis (Castro, 1990)<br />

2. Unilateral fixed, dilated pupil unassociated with other neurologic dysfunction<br />

(Shuaib, 1989)<br />

3. Paresis of the superior rectus and <strong>in</strong>ferior oblique without other evidence of<br />

oculomotor nerve <strong>in</strong>volvement (Gauntt, 1995)<br />

4. Paresis of the superior and medial rectus (Saeki, 2000a)<br />

5. Paresis of the levator muscle, superior rectus, and medial rectus (Onozu, 1998)<br />

6. Paresis of the <strong>in</strong>ferior oblique, superior rectus, medial rectus, and levator muscle with<br />

spar<strong>in</strong>g of the <strong>in</strong>ferior rectus muscle and pupil (Naudea, 1983; Schwartz, 1995;<br />

Shuaib, 1987)<br />

7. Paresis of the <strong>in</strong>ferior oblique, superior rectus, medial rectus, levator, and <strong>in</strong>ferior<br />

rectus with pupillary spar<strong>in</strong>g (Breen, 1991; Naudea, 1983)


8. Paresis of the left <strong>in</strong>ferior rectus, left pupil, right superior rectus, convergence, and<br />

left medial rectus (Umapathi, 2000).<br />

Based on these cl<strong>in</strong>ical studies, it has been proposed that <strong>in</strong>dividual third nerve<br />

fascicles <strong>in</strong> the ventral mesencephalon are arranged topographically from lateral to<br />

medial as follows: <strong>in</strong>ferior oblique, superior rectus, medial rectus and levator palpebrae,<br />

<strong>in</strong>ferior rectus, and pupillary fibers (Castro, 1990). A rostral-caudal topographic<br />

arrangement has also been suggested with pupillary fibers most superior, followed<br />

by fibers to the <strong>in</strong>ferior rectus, <strong>in</strong>ferior oblique, medial rectus, superior rectus, and<br />

levator, <strong>in</strong> that order (Saeki, 2000a; Schwartz, 1995). This model also accounts for the<br />

description of superior and <strong>in</strong>ferior division oculomotor palsies. The superior division<br />

paresis <strong>in</strong>volves the superior rectus and levator muscles without <strong>in</strong>volvement of other<br />

groups (Guy, 1989a; Hriso, 1990; Ksiazek, 1989). The <strong>in</strong>ferior division oculomotor<br />

palsies cause paresis of <strong>in</strong>ferior rectus, <strong>in</strong>ferior oblique, medial rectus, and pupillary<br />

fibers with spar<strong>in</strong>g of the superior rectus and levator (Abdollah, 1990; Eggenberger,<br />

1993; Ksiazek, 1989). Both divisional palsies may be associated with <strong>in</strong>traaxial midbra<strong>in</strong><br />

lesions. Thus, although superior and <strong>in</strong>ferior divisional TNP have classically been<br />

localized to anterior cavernous s<strong>in</strong>us or posterior orbital lesions, a divisional TNP may<br />

occur from damage at any location along the course of the oculomotor nerve, from the<br />

fascicle to the orbit (Ksiazek, 1989).<br />

Fascicular TNP may occasionally be associated with ipsilateral ptosis and contralateral<br />

eyelid retraction (plus-m<strong>in</strong>us lid syndrome) (Gaymard, 1992; Vetrugno, 1997).<br />

This syndrome occurs with a small lesion located <strong>in</strong> the paramedian mesencephalon.<br />

There is <strong>in</strong>volvement of the ipsilateral levator palpebrae fascicles as they emerge from<br />

the central caudal nucleus (the central caudal nucleus is spared), and the <strong>in</strong>hibitory<br />

pathways project<strong>in</strong>g on the levator palpebrae motor neurons immediately before<br />

their entrance <strong>in</strong> the central caudal nucleus. The plus-m<strong>in</strong>us syndrome has been<br />

described with bilateral glioma extend<strong>in</strong>g to the paramedian midbra<strong>in</strong> and thalamicmesencephalic<br />

<strong>in</strong>farction; it also may occur with peripheral processes such as peripheral<br />

TNP, myasthenia gravis, orbital myositis, congenital ptosis, or orbital trauma.<br />

Is the TNP Due to a Subarachnoid Lesion?<br />

Third Nerve Palsies 259<br />

<strong>An</strong> isolated pupil spared peripheral TNP is most often related to an ischemic neuropathy<br />

or a lesion affect<strong>in</strong>g its subarachnoid portion. Subarachnoid lesions may distort or<br />

<strong>in</strong>jure the bra<strong>in</strong>stem, and diffuse processes will show signs of men<strong>in</strong>geal irritation.<br />

Etiologies of TNP due to a subarachnoid lesion are outl<strong>in</strong>ed <strong>in</strong> Table 11–3. Third nerve<br />

schwannoma may cause a pa<strong>in</strong>ful relaps<strong>in</strong>g-remitt<strong>in</strong>g TNP mimick<strong>in</strong>g the cl<strong>in</strong>ical<br />

syndrome of ophthalmoplegic migra<strong>in</strong>e (Kawasaki, 1999). Monocular elevator paresis<br />

from isolated superior rectus and=or <strong>in</strong>ferior oblique dysfunction may occur <strong>in</strong><br />

neurofibromatosis type 2–related schwannoma (Egan, 2001). The third nerve is also<br />

susceptible to trauma <strong>in</strong> the subarachnoid space, especially dur<strong>in</strong>g neurosurgical<br />

procedures (Hedges, 1993; Horikoshi, 1999; Kudo, 1990). Closed head trauma may<br />

cause TNP due to shear<strong>in</strong>g <strong>in</strong>jury result<strong>in</strong>g <strong>in</strong> distal fascicular damage or partial root<br />

avulsion (Balcar, 1996). Walter et al described two patients with TNP precipitated by<br />

m<strong>in</strong>or head trauma with negative bra<strong>in</strong> computed tomography (CT) scans who were<br />

subsequently discovered to have ipsilateral posterior communicat<strong>in</strong>g artery aneurysms


260 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

(Walter, 1994). Park-Matsumoto and Tazawa described a similar case (Park-Matsumoto,<br />

1997).<br />

Compression of the third nerve by an aneurysm characteristically causes dilatation<br />

and unresponsiveness of the pupil. Compressive subarachnoid lesions may occasionally<br />

spare the pupil, however. Two explanations have been proposed: (1) compression may<br />

be evenly distributed and the relatively pressure-resistant, smaller-caliber pupillomotor<br />

fibers escape <strong>in</strong>jury; or (2) the lesion compresses only the <strong>in</strong>ferior portion of the nerve<br />

and spares the dorsally situated pupillomotor fibers. The TNP due to an aneurysm may<br />

be <strong>in</strong>complete with at least one element of nerve dysfunction (i.e., ptosis, mydriasis, or<br />

extraocular muscle weakness) be<strong>in</strong>g absent. Ptosis has been described <strong>in</strong> isolation as the<br />

sole manifestation of third nerve compression by a posterior communicat<strong>in</strong>g artery<br />

aneurysm (Good, 1990). Rarely, aneurysmal TNP may even be transient and clear<br />

spontaneously (Greenspan, 1990).<br />

A normal pupil <strong>in</strong> the sett<strong>in</strong>g of a complete somatic oculomotor paresis, however,<br />

essentially excludes a diagnosis of aneurysm (see below). A s<strong>in</strong>gle patient has been<br />

described <strong>in</strong> whom a pa<strong>in</strong>less, pupil-spar<strong>in</strong>g but otherwise complete oculomotor paresis<br />

was the only sign of an aneurysm aris<strong>in</strong>g from the basilar artery (Lustbader, 1988).<br />

Conversely, an isolated pupillary paralysis without ptosis or ophthalmoparesis is rarely<br />

caused by an aneurysm or other subarachnoid lesion (Kaye-Wilson, 1994; Wilhelm,<br />

1995). Koennecke and Seyfert reported a patient with a common carotid artery<br />

dissection from <strong>in</strong>traoperative trauma whose mydriasis preceded a complete TNP by<br />

12 hours (Koennecke, 1998).<br />

Is the TNP Due to a Cavernous S<strong>in</strong>us Lesion?<br />

Lesions of the third nerve <strong>in</strong> the cavernous s<strong>in</strong>us often also <strong>in</strong>volve the other ocular<br />

motor nerves, the ophthalmic branch of the trigem<strong>in</strong>al nerve, and sympathetic fibers.<br />

Sensory fibers from the ophthalmic division of the fifth cranial nerve jo<strong>in</strong> the oculomotor<br />

nerve with<strong>in</strong> the lateral wall of the cavernous s<strong>in</strong>us. The frontal-orbital pa<strong>in</strong><br />

experienced by patients with enlarg<strong>in</strong>g aneurysms could thus be caused by direct<br />

irritation of the third nerve (Lanz<strong>in</strong>o, 1993). Compressive cavernous s<strong>in</strong>us lesions may<br />

also spare the pupil because they often preferentially <strong>in</strong>volve only the superior division<br />

of the oculomotor nerve that carries no pupillomotor fibers (Silva, 1999) or the superior<br />

aspect of the nerve anterior to the po<strong>in</strong>t where the pupillomotor fibers descend <strong>in</strong> their<br />

course near the <strong>in</strong>ferior oblique muscle. The pupillary ‘‘spar<strong>in</strong>g’’ with anterior cavernous<br />

s<strong>in</strong>us lesions may be more apparent than real, result<strong>in</strong>g from simultaneous <strong>in</strong>jury<br />

of nerve fibers to both the pupillary sph<strong>in</strong>cter and dilator, caus<strong>in</strong>g a mid-position fixed<br />

pupil or from aberrant regeneration (see below). Ikeda et al described a patient with a<br />

pa<strong>in</strong>ful, ‘‘severe’’ TNP with normal pupils due to a cavernous s<strong>in</strong>us aneurysm (Ikeda,<br />

2001). Lesions <strong>in</strong> the neighborhood of the posterior cl<strong>in</strong>oid process may for some time<br />

affect only the third nerve as it pierces the dura (e.g., breast and prostatic carc<strong>in</strong>oma)<br />

(Cullom, 1993). Medial lesions <strong>in</strong> the cavernous s<strong>in</strong>us, such as a carotid artery<br />

aneurysm, may affect only the ocular motor nerves but spare the more laterally located<br />

ophthalmic branch of the trigem<strong>in</strong>al nerve, result<strong>in</strong>g <strong>in</strong> pa<strong>in</strong>less ophthalmoplegia.<br />

Lesions that beg<strong>in</strong> laterally present with retro-orbital pa<strong>in</strong> first, and only later<br />

does ophthalmoparesis supervene. Lesions located <strong>in</strong> the cavernous s<strong>in</strong>us caus<strong>in</strong>g<br />

TNP are outl<strong>in</strong>ed <strong>in</strong> Table 11–3. The cl<strong>in</strong>ical f<strong>in</strong>d<strong>in</strong>gs and etiologies for processes


located <strong>in</strong> the superior orbital fissure are similar to those of the cavernous s<strong>in</strong>us<br />

syndrome.<br />

Is the TNP Due to an Orbital Lesion?<br />

Lesions with<strong>in</strong> the orbit that produce third nerve dysfunction usually produce other<br />

ocular motor dysfunction as well as optic neuropathy and proptosis (Goldberg,<br />

1990a,b). Lesions may extend from the cavernous s<strong>in</strong>us to the orbital apex and vice<br />

versa so that a clear dist<strong>in</strong>ction between the two syndromes may be impossible. Isolated<br />

<strong>in</strong>volvement of the muscles <strong>in</strong>nervated by either the superior or the <strong>in</strong>ferior oculomotor<br />

branch has classically been localized to an orbital process: often trauma, tumor, or<br />

<strong>in</strong>fection, or a sphenocavernous lesion (Stefanis, 1993). However, as we noted, the<br />

functional division of the third nerve is present probably even at the fascicular level, and<br />

a divisional pattern may occur from damage anywhere along the course of the nerve.<br />

Superior division or <strong>in</strong>ferior division third nerve paresis may occur with subarachnoid<br />

lesions (Guy, 1985), and isolated superior division paresis has been described with a<br />

superior cerebellar–posterior cerebral artery junction aneurysm that compressed and<br />

flattened the <strong>in</strong>terpeduncular third nerve from below (Guy, 1989b). Superior branch<br />

palsy has also been described with basilar artery aneurysm, <strong>in</strong>tracavernous carotid<br />

aneurysm, migra<strong>in</strong>e, diabetes, lymphoma, sphenoidal abscess, sphenoid s<strong>in</strong>usitis,<br />

frontal s<strong>in</strong>us mucocele, viral illness, men<strong>in</strong>gitis, and after craniotomy (Chotmongkol,<br />

1992, 1999; Ehrenpries, 1995; Guy, 1989b; Manabe, 2000; O’Halloran, 1999; Saeki, 2000c;<br />

Silva, 1999; Stefanis, 1993). Even ophthalmoplegic migra<strong>in</strong>e may cause recurrent<br />

paroxysmal superior division oculomotor palsy. Isolated superior division-like paresis<br />

may be mimicked by myasthenia gravis (Dehaene, 1995). Isolated <strong>in</strong>ferior division<br />

<strong>in</strong>volvement has occurred with trauma, mesencephalic <strong>in</strong>farction and tumor (Abdollah,<br />

1990; Eggenberger, 1993; Ksiazek, 1989), basilar artery aneurysm (Kardon, 1991),<br />

parasellar tumors (e.g., men<strong>in</strong>gioma, schwannoma) (Carlow, 1990), viral illness, orbital<br />

dural arteriovenous malformation (Gray, 1999), as part of a more generalized vasculitic<br />

or demyel<strong>in</strong>at<strong>in</strong>g neuropathy (Cunn<strong>in</strong>gham, 1994), and <strong>in</strong> association with elevated<br />

antigalactocerebroside and anti-GM1 antibodies (Go, 2000). Inferior division <strong>in</strong>volvement<br />

with tumors may be pupil-spar<strong>in</strong>g, perhaps because of <strong>in</strong>sidious tumor growth<br />

spar<strong>in</strong>g pressure-resistant pupillomotor fibers.<br />

Partial or complete TNP may rarely follow dental anesthesia, presumably due to<br />

<strong>in</strong>advertent <strong>in</strong>jection of an anesthetic agent <strong>in</strong>to the <strong>in</strong>ferior dental artery or superior<br />

alveolar artery with subsequent retrograde flow <strong>in</strong>to the maxillary, middle men<strong>in</strong>geal,<br />

and f<strong>in</strong>ally the lacrimal branch of the ophthalmic artery.<br />

What Is the Evaluation of Nonisolated TNP?<br />

Third Nerve Palsies 261<br />

Nonisolated TNP should undergo neuroimag<strong>in</strong>g, with attention to areas suggested<br />

topographically by the associated neurologic signs and symptoms. Appropriate <strong>in</strong>vestigations<br />

and neuroimag<strong>in</strong>g studies are directed at the precise area of <strong>in</strong>terest, and this<br />

area is determ<strong>in</strong>ed by the associated localiz<strong>in</strong>g features with the TNP (Brazis, 1991; Lee,<br />

1999). In general, MRI with and without gadol<strong>in</strong>ium enhancement is the neuroimag<strong>in</strong>g<br />

modality of choice for all these processes (Renowden, 1993). Contrast-enhanced CT


262 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

scann<strong>in</strong>g with narrow (2-mm) collimation is reserved for those patients who cannot<br />

tolerate MRI or <strong>in</strong> whom MRI is contra<strong>in</strong>dicated (e.g., pacemaker, claustrophobia,<br />

metallic clips <strong>in</strong> head, etc.) (Renowden, 1993; Teasdale, 1990). CT scann<strong>in</strong>g is also the<br />

appropriate first-choice neuroimag<strong>in</strong>g study <strong>in</strong> patients be<strong>in</strong>g evaluated for acute head<br />

trauma or acute vascular events (<strong>in</strong>farction or hemorrhage). If there are cl<strong>in</strong>ical signs of<br />

a men<strong>in</strong>geal process, lumbar puncture should be performed. The evaluation of a patient<br />

with TNP is summarized <strong>in</strong> Figure 11–1.<br />

Is the TNP Due to Trauma?<br />

Traumatic isolated TNP (type 2) should undergo CT scann<strong>in</strong>g to search for associated<br />

central nervous system damage (e.g., subdural or <strong>in</strong>tracerebral hematoma) as <strong>in</strong>dicated<br />

by associated neurologic signs and symptoms (Balcar, 1996; Hedges, 1993; Kudo,<br />

1990; Lepore, 1995; Phookan, 1994). TNP after mild head trauma have been observed<br />

<strong>in</strong> association with otherwise asymptomatic lesions (e.g., cerebral aneurysm) (Park-<br />

Matsumoto, 1997; Walter, 1994). Although uncommon, neuroimag<strong>in</strong>g may be<br />

warranted <strong>in</strong> patients with TNP after m<strong>in</strong>imal or trivial trauma to exclude mass lesions<br />

or cerebral aneurysms (class III–IV, level C).<br />

Is the TNP Congential?<br />

Congenital isolated TNP (type 3) is rare, usually unilateral, and may occur <strong>in</strong> isolation or<br />

<strong>in</strong> association with other neurologic and systemic abnormalities, <strong>in</strong>clud<strong>in</strong>g congenital<br />

facial nerve palsies or other cranial neuropathies, facial capillary hemangioma, cerebellar<br />

hypoplasia, gaze palsy, ipsilateral nevus sebaceous of Jadassohn, mental retardation, and<br />

digital anomalies (Good, 1991; Hamed, 1991; Ing, 1992; Parmeggiani, 1992; Patel, 1993;<br />

Pratt, 1995; Shumacher-Feero, 1999; White, 1992). All patients have some degree of ptosis<br />

and ophthalmoplegia, and nearly all have pupillary <strong>in</strong>volvement. In most cases, the<br />

pupil is miotic rather than dilated, probably because of aberrant third nerve regeneration,<br />

and usually trace reactive or nonreactive to light. Rarely the pupil may be spared.<br />

Amblyopia is common (Schumacher-Feero, 1999). Most cases are spontaneous, but<br />

familial cases have been described. We recommend MRI <strong>in</strong> all patients with congenital<br />

TNPs, ma<strong>in</strong>ly to search for associated structural abnormalities of the bra<strong>in</strong> (class III–IV,<br />

level C).<br />

Is the Isolated TNP Acquired and<br />

Nontraumatic?<br />

Acquired, nontraumatic isolated TNP (type 4) may occur with lesions localized<br />

anywhere along the course of the third nerve from the fascicle to the orbit (Renowden<br />

1993). For cl<strong>in</strong>ical purposes, isolated TNP may be divided <strong>in</strong>to three types (types<br />

4A–4C) (Jacobson, 1999; Lee, 1999; Trobe 1985) (Table 11–1).


Figure 11–1. Evaluation of third nerve palsy (TNP).<br />

Third Nerve Palsies 263


264 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Does the Patient Have an Acquired Isolated<br />

TNP with a Normal Pupillary Sph<strong>in</strong>cter with<br />

Completely Palsied Extraocular Muscles<br />

(Type 4A TNP)?<br />

TNP with a normal pupillary sph<strong>in</strong>cter and completely palsied extraocular muscles is<br />

almost never due to an <strong>in</strong>tracranial aneurysm. However, a s<strong>in</strong>gle patient has been<br />

described <strong>in</strong> whom a pa<strong>in</strong>less, pupil-spar<strong>in</strong>g, but otherwise complete TNP was the only<br />

sign of an aneurysm aris<strong>in</strong>g from the basilar artery (Lustbader 1988). A similar pa<strong>in</strong>ful<br />

TNP palsy has been described with an aneurysm <strong>in</strong> the cavernous s<strong>in</strong>us (Ikeda, 2001),<br />

and pupillary spar<strong>in</strong>g may rarely occur with pituitary adenoma. This type of TNP is<br />

most commonly caused by ischemia, especially associated with diabetes mellitus. In a<br />

retrospective review of 34 consecutive cases of isolated atraumatic TNP, diabetes<br />

mellitus was the most common etiology account<strong>in</strong>g for 46% of the cases (Renowden<br />

1993). Ischemic TNP may also occur with giant cell arteritis (Berlit, 1991; Bondenson,<br />

1997; Davies, 1994; Renowden, 1993; Richards, 1992) and systemic lupus erythematosus.<br />

Pupil-spar<strong>in</strong>g TNP has also been reported with sildenafil citrate (Viagra) (Donahue,<br />

1998) and coca<strong>in</strong>e use (Migita, 1998). Significant risk factors for ischemic oculomotor<br />

nerve palsies <strong>in</strong>clude diabetes, left ventricular hypertrophy, and elevated hematocrit<br />

(Jacobson, 1994). Obesity, hypertension, and smok<strong>in</strong>g are also probable risk factors.<br />

Ischemic damage to the trigem<strong>in</strong>al fibers <strong>in</strong> the oculomotor nerve may be the source of<br />

pa<strong>in</strong> <strong>in</strong> ischemic-diabetic TNPs (Bortolami, 1993).<br />

Ischemic lesions of the oculomotor nerve often spare the pupil because the lesion is<br />

conf<strong>in</strong>ed to the core of the nerve and does not affect peripherally situated pupillomotor<br />

fibers. However, the pupil may be <strong>in</strong>volved <strong>in</strong> diabetic oculomotor palsies (Naghmi,<br />

1990), and diabetes may even cause a superior branch palsy of the oculomotor nerve.<br />

Pupil spar<strong>in</strong>g has been documented <strong>in</strong> 62 to 86% of TNPs due to ischemia (Jacobson,<br />

1998a). In a prospective study of 26 consecutive patients with diabetes-associated TNP,<br />

<strong>in</strong>ternal ophthalmoplegia occurred <strong>in</strong> 10 patients (38%) (Jacobson, 1998a). The size of<br />

anisocoria was 1 mm or less <strong>in</strong> most patients. Only two patients had anisocoria greater<br />

than 2.0 mm, and it was never greater than 2.5 mm. No patient had a fully dilated<br />

unreactive pupil. The author concluded that pupil <strong>in</strong>volvement <strong>in</strong> patients with<br />

diabetes-associated TNP occurs more often than has previously been recognized (14<br />

to 32% <strong>in</strong> other studies), although the degree of anisocoria <strong>in</strong> any one patient is usually<br />

1 mm or less. When comment<strong>in</strong>g on this study, Trobe stated, ‘‘We can presume that all<br />

patients who have oculomotor nerve palsies with anisocoria of greater than 2.0 mm are<br />

outliers for the diagnosis of ischemia’’ (Trobe, 1998).<br />

Postmortem exam<strong>in</strong>ations <strong>in</strong> three diabetic patients have demonstrated pathologic<br />

changes <strong>in</strong> the subarachnoid or cavernous s<strong>in</strong>us portion of the nerves. Ischemic TNP<br />

with pupillary spar<strong>in</strong>g, however, has also been reported due to fascicular damage with<br />

mesencephalic <strong>in</strong>farcts documented on MRI (Breen, 1991; Dichgans, 1995; Hopf, 1990;<br />

Murakami, 1994; Thömke, 1995). Keane and Ahmadi, however, noted that most diabetic<br />

TNP are peripheral (Keane, 1998). In their MRI study of 49 diabetic patients with<br />

isolated, unilateral TNPs, only one was found to have a bra<strong>in</strong>stem <strong>in</strong>farct. Of eight<br />

diabetics with midbra<strong>in</strong> <strong>in</strong>farcts and TNPs, seven had other central nervous system<br />

f<strong>in</strong>d<strong>in</strong>gs and five had bilateral TNPs.<br />

In a prospective study of 16 patients with ischemic TNPs, 11 (69%) had progression of<br />

ophthalmoplegia with a median time between reported onset and peak severity of


ophthalmoplegia of 10 days (Jacobson, 1995). Almost all patients with an ischemic TNP<br />

will improve with<strong>in</strong> 4 to 12 weeks of onset of symptoms (Capo, 1992).<br />

Sanders et al retrospectively studied 55 patients with vasculopathic TNP (Sanders,<br />

2001). Of these, 42 (76%) had normal pupillary function. Of these 42 patients, 23 (55%)<br />

demonstrated an <strong>in</strong>complete extraocular muscle palsy, def<strong>in</strong>ed as partially reduced<br />

ductions affect<strong>in</strong>g all third nerve <strong>in</strong>nervated extraocular muscles and levator (diffuse<br />

pattern) or partially reduced ductions that <strong>in</strong>volved only some third nerve <strong>in</strong>nervated<br />

muscles and levator (focal pattern). Twenty (87%) of these 23 patients showed a diffuse<br />

pattern or paresis and only three (13%) showed a focal pattern of paresis, one that<br />

affected only the superior rectus and levator muscles (superior division weakness).<br />

Based on their series, the authors noted that most patients with extraocular muscle and<br />

levator <strong>in</strong>volvement <strong>in</strong> pupil-spar<strong>in</strong>g, <strong>in</strong>complete TNPs of vasculopathic orig<strong>in</strong> have a<br />

diffuse pattern of paresis, whereas <strong>in</strong> the literature pupil-spar<strong>in</strong>g TNPs of aneurysmal<br />

orig<strong>in</strong> usually have a focal pattern of paresis.<br />

Adults who develop type 4A TNP do not need angiography (Jacobson, 1999; Miller,<br />

1999). <strong>An</strong> MRI scan need not be performed <strong>in</strong>itially, as the yield for detect<strong>in</strong>g a<br />

compressive lesion is very low, especially if the TNP resolves over time (class III–IV,<br />

level C). <strong>Neuro</strong>imag<strong>in</strong>g should be performed <strong>in</strong> patients with no vasculopathic risk<br />

factors or <strong>in</strong> patients who do not improve by 12 weeks of follow-up (class III–IV, level<br />

B). Patients with type 4A TNP should be observed for the first 24 to 48 hours dur<strong>in</strong>g the<br />

first week because some patients with aneurysms may develop delayed pupil <strong>in</strong>volvement.<br />

Patients who develop pupil <strong>in</strong>volvement should be reevaluated (see below).<br />

Vasculopathic risk factors, especially diabetes mellitus, hypertension, and <strong>in</strong>creased<br />

cholesterol, should be sought and controlled. Patients over the age of 55 years,<br />

especially those with other symptoms suggestive of giant cell arteritis (e.g., headache,<br />

jaw or tongue claudication, polymyalgia rheumatica symptoms), should have a<br />

sedimentation rate determ<strong>in</strong>ation (Bondenson, 1997; Davies 1994). Temporal artery<br />

biopsy should be performed if the sedimentation rate is elevated or other systemic<br />

symptoms are present (class III–IV, level C). Myasthenia gravis may rarely mimic this<br />

type of TNP, so an evaluation (e.g., Tensilon or Prostigm<strong>in</strong> test, antiacetylchol<strong>in</strong>e<br />

antibodies, etc.) should be considered, primarily <strong>in</strong> patients with fluctuat<strong>in</strong>g or<br />

fatigu<strong>in</strong>g ptosis or ophthalmoplegia (class III–IV, level C). If the complete, pupilspared<br />

TNP improves follow<strong>in</strong>g a period of observation, no neuroimag<strong>in</strong>g is required<br />

(class III–IV, level C). Some authors recommend non<strong>in</strong>vasive vascular studies (MRI with<br />

MR or CT angiography) <strong>in</strong> all patients with TNP, regardless of whether or not they have<br />

diabetes or any other systemic vasculopathy, with the one exception be<strong>in</strong>g patients with<br />

an otherwise complete TNP (i.e., complete ptosis, no adduction, no depression, no<br />

elevation) but normally reactive, isocoric pupils (Miller, 1999).<br />

Does the Patient Have an Acquired Isolated<br />

TNP with a Normal Pupillary Sph<strong>in</strong>cter and<br />

Incomplete Palsied Extraocular Muscles<br />

(Type 4B TNP)?<br />

Third Nerve Palsies 265<br />

Patients with an <strong>in</strong>complete motor TNP with pupillary spar<strong>in</strong>g require an MRI scan to<br />

rule out a mass lesion. If the MRI is normal, cerebral angiography should be considered<br />

to <strong>in</strong>vestigate the presence of an aneurysm, dural-cavernous s<strong>in</strong>us fistula, or high-grade


266 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

carotid stenosis. Three-dimensional time-of-flight MR angiography (MRA) or CT<br />

angiography may well reveal an aneurysm or other vascular malformation and may<br />

eventually take the place of arteriography (Jacobson, 1999; Kaufman, 1994; McFadzean,<br />

1998; Tomsak, 1991; We<strong>in</strong>berg, 1996); however, at this time, cerebral angiography is the<br />

‘‘gold standard’’ for the diagnosis of cerebral aneurysms (Davis, 1996; Trobe, 1998).<br />

Although MRA may be able to detect up to 95% of cerebral aneurysms that will bleed, it<br />

cannot exclude aneurysm as the etiology of a pupil-<strong>in</strong>volved TNP. Jacobson and Trobe<br />

addressed whether or not MRA was adequate for evaluat<strong>in</strong>g for aneurysms <strong>in</strong> patients<br />

with TNP (Jacobson, 1999). They noted that <strong>in</strong> 46 well-documented aneurysms of the<br />

posterior communicat<strong>in</strong>g artery caus<strong>in</strong>g TNP, the aneurysm diameters ranged from 3 to<br />

17 mm (median 8 mm); 42 of these (91.3%) measured 5 mm or more, and four (8.7%)<br />

measured less than 5 mm (Teasdale, 1990). They then <strong>in</strong>vestigated how sensitive MRA is<br />

<strong>in</strong> detect<strong>in</strong>g aneurysms and found that MRA detected 64 (97%) of 66 aneurysms 5 mm<br />

or greater <strong>in</strong> diameter but only 15 (53.6%) of 28 aneurysms less than 5 mm <strong>in</strong> diameter.<br />

The relationship between aneurysm size and risk of rupture was then assessed. Among<br />

the 115 aneurysms 5 mm or greater, 15 (13.0%) ruptured. None of the 40 aneurysms with<br />

a diameter of less than 5 mm ruptured. Comb<strong>in</strong><strong>in</strong>g these data, the authors estimated<br />

that properly performed MRA will overlook only 1.5% of aneurysms that cause TNP<br />

and that will go on to rupture dur<strong>in</strong>g the subsequent 8 years if untreated. The authors<br />

believe that MRA may assume an important role <strong>in</strong> the evaluation of patients with<br />

isolated TNP. When MRA is properly performed and <strong>in</strong>terpreted, the risk of overlook<strong>in</strong>g<br />

an aneurysm likely to rupture is nearly equal to the aggregate risk of stroke,<br />

myocardial <strong>in</strong>farction, or death associated with catheter angiography. Because of the<br />

potentially drastic consequences of overlook<strong>in</strong>g an aneurysm, however, the authors<br />

believe that MRA should be considered the def<strong>in</strong>itive screen<strong>in</strong>g test only <strong>in</strong> patients<br />

with a relatively low likelihood of harbor<strong>in</strong>g an aneurysm or relatively high likelihood<br />

of suffer<strong>in</strong>g a complication dur<strong>in</strong>g catheter angiography (e.g., age greater than 70,<br />

symptomatic atherosclerotic cardiovascular disease, significant cardiovascular or renal<br />

disease, Ehlers-Danlos syndrome). In patients with type 4B TNP (pupil-spar<strong>in</strong>g <strong>in</strong>complete<br />

TNP) (plus patient age greater than or equal to 40 years and vasculopathic factors<br />

present), these authors recommend MRI followed by MRA if MRI does not disclose a<br />

nonaneurysmal cause. Catheter angiography is recommended if (1) worsen<strong>in</strong>g of<br />

extraocular muscle or iris sph<strong>in</strong>cter impairment cont<strong>in</strong>ues beyond 14 days; (2) iris<br />

sph<strong>in</strong>cter impairment progresses to anisocoria >1 mm (Jacobson, 1998a); (3) no recovery<br />

of function occurs with<strong>in</strong> 12 weeks; or (4) signs of aberrant regeneration develop<br />

(Jacobson, 1999) (class IV, level U).<br />

Pupil <strong>in</strong>volvement is not diagnostic of aneurysmal compression, and up to 38% of<br />

presumed ischemic TNPs <strong>in</strong>volve the pupil (Jacobson, 1998a). Thus, a certa<strong>in</strong> number of<br />

negative cerebral angiograms would be expected <strong>in</strong> the evaluation of pupil <strong>in</strong>volved<br />

TNP. The 1 to 2% risk of catheter angiography, however, must be considered <strong>in</strong> the<br />

decision for angiography. MRI and MRA are especially warranted for superior division<br />

TNP. Myasthenia gravis may rarely mimic a superior division TNP, so a Tensilon test<br />

should be performed <strong>in</strong> these cases. If a patient with a partial TNP has signs of<br />

men<strong>in</strong>geal irritation, other cranial nerve palsies, or signs of more diffuse men<strong>in</strong>geal<br />

<strong>in</strong>volvement (e.g., radiculopathies), then a sp<strong>in</strong>al tap to <strong>in</strong>vestigate <strong>in</strong>fectious, <strong>in</strong>flammatory,<br />

or neoplastic men<strong>in</strong>gitis should be performed (class IV, level C). In cases of<br />

presumed or suspected subarachnoid hemorrhage, CT may be the preferred <strong>in</strong>itial<br />

imag<strong>in</strong>g study followed by cerebral angiography.


Does the Patient Have an Isolated Acquired<br />

TNP with Subnormal Pupillary Sph<strong>in</strong>cter<br />

Dysfunction and Partial or Complete<br />

Extraocular Muscle Palsies (Type 4C TNP)?<br />

Third Nerve Palsies 267<br />

Patients with a ‘‘relative pupil-spar<strong>in</strong>g’’ TNP should have MRI to rule out the possibility<br />

of a compressive lesion. Such patients should also have a CT scan if a subarachnoid<br />

hemorrhage is suspected and a subsequent cerebral angiogram if MRI is negative<br />

because of the possibility of a cerebral aneurysm. Cullom et al published a small<br />

prospective study of 10 patients with ‘‘relative pupillary-spar<strong>in</strong>g’’ TNP and none of the<br />

patients demonstrated aneurysms (Cullom, 1995). These authors suggested that the<br />

prevalence of aneurysm <strong>in</strong> patients with palsies of this type may be low enough to<br />

preclude rout<strong>in</strong>e angiography <strong>in</strong> this group. This report and subsequent recommendation,<br />

however, was based on an <strong>in</strong>adequate patient sample (class IV, level U). Jacobson<br />

reported 24 patients with relative pupil-spar<strong>in</strong>g TNP and found that 10 had nerve<br />

<strong>in</strong>farction, eight had parasellar tumors, two had <strong>in</strong>tracavernous carotid aneurysms, one<br />

had leptomen<strong>in</strong>geal carc<strong>in</strong>omatosis, one had Tolosa-Hunt syndrome, one had oculomotor<br />

neurilemmoma, and one had primary ocular neuromyotonia (Jacobson, 2001).<br />

Also, others have reported <strong>in</strong>ternal carotid, posterior communicat<strong>in</strong>g, and basilar artery<br />

aneurysms <strong>in</strong> isolated TNP with relative pupillary spar<strong>in</strong>g. Thus, cerebral angiography<br />

may still be warranted if MRI is negative (class IV, level C). Because 10 to 38% of<br />

patients with ischemic TNPs have pupillary dysfunction (Capo, 1992; Jacobson, 1998a),<br />

us<strong>in</strong>g these guidel<strong>in</strong>es there will be a certa<strong>in</strong> percentage of normal angiograms.<br />

In the Jacobson and Trobe study discussed above, <strong>in</strong> patients with the iris sph<strong>in</strong>cter<br />

partially impaired but with the extraocular muscle function totally impaired (relative<br />

pupil-spar<strong>in</strong>g complete TNP) plus patient age greater than or equal to 40 and vascular<br />

risk factors present, the authors recommended MRI followed by MRA if MRI does not<br />

show a nonaneurysmal cause (Jacobson, 1999). Catheter angiography may still be<br />

required <strong>in</strong> these patients (class IV, level U).<br />

In evaluat<strong>in</strong>g these patients, one must be cautious to avoid mistak<strong>in</strong>g ‘‘pseudo’’–<br />

pupil spar<strong>in</strong>g, due to aberrant regeneration (below) or coexistent Horner’s syndrome,<br />

from true relative pupil spar<strong>in</strong>g. In both of these conditions, a compressive lesion is<br />

likely localized <strong>in</strong> the cavernous s<strong>in</strong>us. Thus, pupil-spar<strong>in</strong>g or pseudo–pupil-spar<strong>in</strong>g<br />

TNPs may occur not only with extraaxial ischemic lesions but also <strong>in</strong> <strong>in</strong>traaxial<br />

(midbra<strong>in</strong>) lesions, <strong>in</strong> a small proportion of subarachnoid compressive lesions, and <strong>in</strong><br />

a high proportion of cavernous s<strong>in</strong>us compressive lesions (Naudea, 1983).<br />

Complete external and <strong>in</strong>ternal TNPs occurr<strong>in</strong>g <strong>in</strong> isolation are often due to<br />

compressive lesions or men<strong>in</strong>geal <strong>in</strong>filtration; thus, an MRI scan is <strong>in</strong>itially warranted.<br />

If this study is negative, a cerebral angiogram is necessary to <strong>in</strong>vestigate aneurysm or<br />

dural-cavernous s<strong>in</strong>us fistula. If men<strong>in</strong>geal signs are present, sp<strong>in</strong>al fluid evaluation is<br />

warranted. A CT scan should be performed for suspected subarachnoid hemorrhage. In<br />

patients with totally impaired iris sph<strong>in</strong>cter function and impairment of extraocular<br />

muscle function (‘‘pupil-blown TNP’’), Jacobson and Trobe recommend MRI followed<br />

by catheter angiography if MRI does not disclose a nonaneurysmal cause (Jacobson,<br />

1999). A fully dilated and nonreactive pupil occurs <strong>in</strong> up to 71% of patients with<br />

aneurysmal compression and TNP. <strong>An</strong>eurysms impair the pupil <strong>in</strong> 96% of TNP, and the<br />

rema<strong>in</strong><strong>in</strong>g 4% <strong>in</strong> which the pupil is spared have only partial TNP.


268 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

What <strong>Neuro</strong>imag<strong>in</strong>g Procedures Should Be<br />

Considered <strong>in</strong> a Patient with an Isolated TNP?<br />

Lee et al reviewed the literature on MRI=MRA, CT and CT angiogram (CTA), and<br />

catheter angiography <strong>in</strong> the management of the isolated TNP, and proposed the<br />

follow<strong>in</strong>g guidel<strong>in</strong>es (Lee, 2002):<br />

1. Isolated complete or partial <strong>in</strong>ternal dysfunction (pupil dilated) with completely<br />

normal external function of the third nerve and no ptosis: The risk for aneurysm <strong>in</strong><br />

this sett<strong>in</strong>g is m<strong>in</strong>imal and neuroimag<strong>in</strong>g for aneurysm is probably not required. The<br />

papers that were reviewed <strong>in</strong> this manuscript, however, did not explicitly <strong>in</strong>clude or<br />

exclude isolated dilated pupils <strong>in</strong> their complete or <strong>in</strong>complete TNPs. The cl<strong>in</strong>ician<br />

should look for other etiologies for isolated pupil dysfunction (e.g., tonic pupil,<br />

pharmacologic, sph<strong>in</strong>cter damage). This represents a practice guidel<strong>in</strong>e of moderate<br />

certa<strong>in</strong>ty based on class III–IV evidence (level B).<br />

2. Partial external dysfunction TNP without <strong>in</strong>ternal dysfunction: The risk for<br />

aneurysm <strong>in</strong> patients with partial TNP is moderate (up to 30% of cases). Unfortunately,<br />

the risk for an <strong>in</strong>dividual patient is not well def<strong>in</strong>ed because other etiologies<br />

may cause a partial external dysfunction TNP with a normal pupil. For example,<br />

patients who have clear myasthenia gravis do not require additional aneurysm<br />

evaluation. Other nonaneurysmal etiologies <strong>in</strong>clud<strong>in</strong>g neoplastic, demyel<strong>in</strong>at<strong>in</strong>g,<br />

<strong>in</strong>filtrative, and ischemic etiologies may also cause a partial TNP without pupil<br />

<strong>in</strong>volvement and may require neuroimag<strong>in</strong>g. If the TNP is due to aneurysm, the TNP<br />

usually progresses over time to a complete TNP <strong>in</strong>clud<strong>in</strong>g pupil <strong>in</strong>volvement.<br />

Although there may not be <strong>in</strong>ternal dysfunction (pupil <strong>in</strong>volvement) <strong>in</strong> a partial<br />

external dysfunction TNP, the term pupil spar<strong>in</strong>g is probably not appropriate <strong>in</strong> this<br />

sett<strong>in</strong>g. That is, pupil <strong>in</strong>volvement may occur over time <strong>in</strong> patients with partial TNP<br />

due to aneurysm with <strong>in</strong>itially no <strong>in</strong>ternal dysfunction. Absence of pupil <strong>in</strong>volvement<br />

early <strong>in</strong> the course of a partial TNP may be due to <strong>in</strong>complete compression of<br />

the pupil fibers by the aneurysm.<br />

MRI with MRA or CTA <strong>in</strong> the acute sett<strong>in</strong>g is a reasonable screen <strong>in</strong> these cases.<br />

The patient should be followed cl<strong>in</strong>ically for progression or pupil <strong>in</strong>volvement <strong>in</strong> the<br />

first week. If the cranial MRI with MRA or CTA is negative and if the risk of<br />

angiography (e.g., elderly, severe cardiovascular disease, abnormal serum creat<strong>in</strong><strong>in</strong>e)<br />

is high, then observation alone is reasonable and the cl<strong>in</strong>ician should look for<br />

alternative etiologies for a partial external dysfunction TNP (e.g., myasthenia<br />

gravis). The cl<strong>in</strong>ician should still consider catheter angiography <strong>in</strong> these cases if<br />

the risk of aneurysm is higher than the risk of angiography (technically <strong>in</strong>adequate<br />

MRA, progression to complete TNP, pupil <strong>in</strong>volvement). The practice option for<br />

cranial MRI with MRA or CTA alone <strong>in</strong> this sett<strong>in</strong>g is of low certa<strong>in</strong>ty (level C) and is<br />

based on class III–IV evidence.<br />

3. Complete external dysfunction with completely normal <strong>in</strong>ternal function TNP: This<br />

cl<strong>in</strong>ical situation <strong>in</strong>dicates a very low risk for aneurysm, and the vasculopathic<br />

patient may be observed for improvement. The pupil should be reexam<strong>in</strong>ed with<strong>in</strong><br />

the first week. Patients who develop pupil <strong>in</strong>volvement should be evaluated us<strong>in</strong>g<br />

the recommendations outl<strong>in</strong>ed <strong>in</strong> the pupil-<strong>in</strong>volv<strong>in</strong>g TNP sections of this chapter. If<br />

the patient has no vasculopathic risk factors, or if there is no improvement after 4 to<br />

12 weeks, or if signs of aberrant regeneration develop, then cranial MRI with MRA or


Third Nerve Palsies 269<br />

CTA should be performed. This practice guidel<strong>in</strong>e is of moderate certa<strong>in</strong>ty based on<br />

the available evidence (level B). Evaluation for myasthenia gravis should be<br />

considered <strong>in</strong> pa<strong>in</strong>less, nonproptotic, pupil-spared ophthalmoplegia depend<strong>in</strong>g on<br />

the cl<strong>in</strong>ical situation.<br />

4. Partial external dysfunction with partial <strong>in</strong>ternal dysfunction TNP: <strong>An</strong> <strong>in</strong>itial cranial<br />

MRI with MRA (or CTA) is reasonable. If these studies are of excellent quality and<br />

negative, then the cl<strong>in</strong>ician should follow the patient for progression or complete<br />

<strong>in</strong>ternal dysfunction. The risk for aneurysm <strong>in</strong> this sett<strong>in</strong>g, however (even with a<br />

negative MRI=MRA), is uncerta<strong>in</strong>. Cl<strong>in</strong>icians should still consider catheter angiography<br />

if the risk of aneurysm <strong>in</strong> an <strong>in</strong>dividual patient is higher than the risk of<br />

angiography. This practice option is of low to moderate certa<strong>in</strong>ty <strong>in</strong> patients with low<br />

cl<strong>in</strong>ical risk for aneurysm based on class III–IV evidence (level C), and there is some<br />

disagreement among experts (level U).<br />

5. Complete external dysfunction with partial <strong>in</strong>ternal dysfunction TNP: The risk of<br />

aneurysm for complete external dysfunction with partial <strong>in</strong>ternal dysfunction (partial<br />

pupil or ‘‘relative pupil spar<strong>in</strong>g’’) is also unknown but probably lower than that for<br />

partial external dysfunction with or without partial <strong>in</strong>ternal dysfunction. The risk for<br />

aneurysm <strong>in</strong> this sett<strong>in</strong>g (even with a negative MRI=MRA or CTA) is uncerta<strong>in</strong>. The<br />

cl<strong>in</strong>ician should consider catheter angiography if the risk of aneurysm is deemed<br />

higher than risk of angiography. This practice option is of low to moderate certa<strong>in</strong>ty<br />

<strong>in</strong> patients with low cl<strong>in</strong>ical risk for aneurysm based on class III–IV evidence (level<br />

C), and there is significant disagreement among experts (level U).<br />

6. Isolated complete <strong>in</strong>ternal dysfunction with partial or complete external dysfunction<br />

TNP: This cl<strong>in</strong>ical situation has the highest risk for aneurysm (86 to 100% of<br />

aneurysmal TNPs have pupil <strong>in</strong>volvement). MRI with MRA or CTA of the head<br />

should be performed, but even with negative neuroimag<strong>in</strong>g there should be a strong<br />

consideration for catheter angiography. This practice guidel<strong>in</strong>e is of moderate<br />

certa<strong>in</strong>ty based on class III evidence and consensus expert op<strong>in</strong>ion (level B). There<br />

are <strong>in</strong>sufficient data to make a recommendation on whether a catheter angiogram<br />

must be performed <strong>in</strong> these cases (level U).<br />

7. <strong>An</strong>y patient with TNP and signs of subarachnoid hemorrhage (SAH): The presence<br />

of SAH (on unenhanced CT scan or lumbar puncture [LP]) essentially makes the<br />

issue of complete or <strong>in</strong>complete TNP as well as application of the ‘‘rule of the pupil’’<br />

moot. Unfortunately, most of the papers <strong>in</strong> the literature on aneurysm and TNP have<br />

<strong>in</strong>cluded nonneurologically isolated cases <strong>in</strong>clud<strong>in</strong>g SAH. In general, an <strong>in</strong>itial CT<br />

scan (with consideration for an LP) should be performed <strong>in</strong> patients with TNP and<br />

signs of SAH. The cl<strong>in</strong>ical picture of SAH (e.g., severe headache, men<strong>in</strong>gismus,<br />

altered consciousness) can be mimicked by other <strong>in</strong>tracranial etiologies such as<br />

pituitary apoplexy, and most cl<strong>in</strong>icians would consider a CT scan as an <strong>in</strong>itial<br />

neuroimag<strong>in</strong>g study prior to consideration of angiography. Patients with SAH on<br />

CT scan should probably undergo catheter angiography. Patients who cannot<br />

undergo a catheter angiogram (e.g., morbidly obese and unable to be placed on<br />

the angiography table) may have to undergo cranial CT and CTA alone prior to<br />

<strong>in</strong>tervention. In other cases of SAH, special MRI parameters <strong>in</strong>clud<strong>in</strong>g fluid attenuation<br />

<strong>in</strong>version recovery (FLAIR) MRI and MRA may be useful. Catheter angiography<br />

should be strongly considered even if the evaluations for SAH (e.g., CT, LP) are<br />

negative. This practice guidel<strong>in</strong>e is of strong certa<strong>in</strong>ty based on class II–III evidence<br />

and consensus expert op<strong>in</strong>ion (level B).


270 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

8. Patients who cannot undergo MRI or MRA: CT and CTA could be considered<br />

<strong>in</strong> selected cases especially if MRA is not available or <strong>in</strong> cases where MRI is<br />

contra<strong>in</strong>dicated (e.g., obesity, claustrophobia, pacemaker). Although CTA has some<br />

advantages over MRA (especially if the location of the aneurysm is known), the<br />

superior quality of MRI compared to CT <strong>in</strong> evaluat<strong>in</strong>g the entire course of the third<br />

nerve makes the comb<strong>in</strong>ation of MRI=MRA superior to CT=CTA as the screen<strong>in</strong>g<br />

study for TNP. There is <strong>in</strong>sufficient evidence to determ<strong>in</strong>e if a comb<strong>in</strong>ation of MRI<br />

and CTA would be superior to MRI=MRA <strong>in</strong> patients with TNP. At the time of this<br />

writ<strong>in</strong>g, the use of CT=CTA would be considered a practice option <strong>in</strong> the evaluation<br />

of TNP, and the recommendation is of low certa<strong>in</strong>ty based on limited class III<br />

evidence (level C).<br />

Is the TNP Progressive or Unresolved<br />

(Type 5 TNP)?<br />

Patients with TNP that worsens after the acute stage (greater than 2 weeks) or who<br />

develop new neurologic f<strong>in</strong>d<strong>in</strong>gs are considered to have progressive TNP. Patients<br />

without resolution of TNP after 12 to 16 weeks are considered unresolved. These<br />

patients require MRI and MRA and consideration for standard angiography. If signs of<br />

men<strong>in</strong>geal irritation or multiple cranial nerve palsies are present, LP is <strong>in</strong>dicated.<br />

Is the TNP Associated with Signs of Aberrant<br />

Regeneration (Type 6)?<br />

Months to years after the occurrence of a TNP, cl<strong>in</strong>ical f<strong>in</strong>d<strong>in</strong>gs of aberrant regeneration<br />

of the third nerve may be noted. They <strong>in</strong>clude elevation of the lid on downward gaze<br />

(pseudo–von Graefe phenomenon) or on adduction but lid depression dur<strong>in</strong>g abduction.<br />

Other f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>clude limitation of elevation and depression of the eye with<br />

occasional eyeball retraction on attempted vertical gaze, adduction of the eye on<br />

attempted elevation or depression, and suppression of the vertical phase of the<br />

opticok<strong>in</strong>etic response. The pupil may be <strong>in</strong> a miotic or mid-dilated position; it may<br />

be fixed to light but may respond to near (near-light dissociation) or constrict on<br />

adduction or down-gaze. Lagophthalmos, presumably caused by co-contraction of the<br />

levator and superior rectus muscles dur<strong>in</strong>g Bell’s phenomenon, has also been described<br />

(Custer, 2000).<br />

Aberrant regeneration may be seen after TNP due to congenital causes, trauma,<br />

aneurysm, migra<strong>in</strong>e, and syphilis, but is very rarely, if ever, caused by ischemic<br />

neuropathy (Barr, 2000; Custer, 2000). A s<strong>in</strong>gle case of aberrant regeneration has been<br />

described after an ischemic stroke affect<strong>in</strong>g the third nerve fascicle <strong>in</strong> the cerebral<br />

peduncle (Messe, 2001). Misdirection of regenerat<strong>in</strong>g nerve fibers is likely the cause, but<br />

it has been postulated that the syndrome may be due to ephaptic neuron transmission<br />

of impulses or from chromatolysis-<strong>in</strong>duced reorganization of third nerve nuclear<br />

synapses. Ephaptic transmission would expla<strong>in</strong> the transient third nerve misdirection<br />

described with ophthalmoplegic migra<strong>in</strong>e, temporal arteritis, pituitary apoplexy, and<br />

non-Hodgk<strong>in</strong>’s lymphoma (Lee, 1992). Long-stand<strong>in</strong>g lesions, such as men<strong>in</strong>giomas of<br />

the cavernous s<strong>in</strong>us, trigem<strong>in</strong>al neuromas, large aneurysms, and pituitary tumors, may


present as primary aberrant regeneration of the third nerve without a history of<br />

previous TNP (Landau, 1997). Primary aberrant regeneration may rarely occur with<br />

extracavernous lesions, such as neurilemmoma, men<strong>in</strong>gioma, asymmetric mammillary<br />

body, or <strong>in</strong>tradural aneurysm (Varma, 1994). Bilateral primary aberrant regeneration<br />

may also occur with abetalipoprote<strong>in</strong>emia (Bassen-Kornzweig syndrome) (Cohen,<br />

1985). On rare occasions, the pseudo–von Graefe phenomenon may develop contralateral<br />

to a regenerat<strong>in</strong>g paretic third nerve (Guy, 1989b).<br />

All patients with nontraumatic TNP with aberrant regeneration (type 5) require MRI<br />

and MRA (and possibly angiography) to <strong>in</strong>vestigate the possibility of a compressive<br />

lesion. This is especially true if signs of aberrance develop <strong>in</strong> a patient with presumed<br />

‘‘ischemic’’ TNP or <strong>in</strong> patients with primary aberrant regeneration.<br />

Retrospective Review of TNP<br />

Third Nerve Palsies 271<br />

A previous retrospective study reviewed all patients with the diagnosis of TNP at a<br />

s<strong>in</strong>gle tertiary care referral center (Baylor College of Medic<strong>in</strong>e) from May 1992 to May<br />

1996 (Lee, 1999). N<strong>in</strong>ety-one patient records were reviewed. A complete (i.e., <strong>in</strong>volvement<br />

of all the somatic branches of the third cranial nerve) TNP was present <strong>in</strong> 79 cases<br />

(87%) and a partial TNP was present <strong>in</strong> 12 cases (13%). The pupil was completely<br />

un<strong>in</strong>volved (i.e., pupil-spared) <strong>in</strong> 49 cases (54%), <strong>in</strong>volved to some degree <strong>in</strong> 40 cases<br />

(44%), and <strong>in</strong>adequately documented <strong>in</strong> two cases (2%). The etiology of the TNP was<br />

presumed to be vasculopathic or ischemic <strong>in</strong> 16 cases (18%), <strong>in</strong>tracranial tumor <strong>in</strong> 15<br />

cases (16%), trauma <strong>in</strong> 14 cases (15%), congenital <strong>in</strong> n<strong>in</strong>e cases (10%), aneurysm <strong>in</strong> eight<br />

cases (9%), postsurgical or iatrogenic <strong>in</strong> eight cases (9%), cerebrovascular accident <strong>in</strong><br />

seven cases (8%), and miscellaneous or idiopathic <strong>in</strong> 14 cases (15%).<br />

Of the 91 cases, the TNP was not isolated <strong>in</strong> 38 (42%) and isolated <strong>in</strong> 53 cases (58%).<br />

Of the 38 nonisolated TNP (type 1), 35 (92%) underwent neuroimag<strong>in</strong>g. Two of the<br />

patients who were not imaged were referred for strabismus surgery for congenital TNP.<br />

They were presumably imaged elsewhere, although this was not documented <strong>in</strong> the<br />

record. The other patient went directly to angiogram and was diagnosed with an<br />

angiogram. Two of these 38 patients had CT scans that would not have been performed<br />

if the imag<strong>in</strong>g guide had been strictly followed, as neither patient had signs of<br />

subarachnoid hemorrhage or trauma, and both subsequently underwent appropriate<br />

MRI. No additional <strong>in</strong>formation was afforded by the CT scans.<br />

Of the 53 cases of isolated TNP, 23 were over the age of 55 years; eight of these 23<br />

(35%) underwent erythrocyte sedimentation rate test<strong>in</strong>g, which was normal. None of<br />

the patients <strong>in</strong> our series were diagnosed with giant cell arteritis. Thirty-two cases had<br />

isolated, pupil-spar<strong>in</strong>g ophthalmoplegia, and six of these patients underwent test<strong>in</strong>g<br />

with edrophonium chloride (Tensilon), none of which were positive. One of the patients<br />

<strong>in</strong> our series was diagnosed with myasthenia gravis by acetylchol<strong>in</strong>e receptor antibody<br />

test<strong>in</strong>g. Thirty-two patients had isolated, pupil-spared TNP. Twenty-five of these cases<br />

were complete TNP (type 4A), and seven were partial (type 4B). Of the 32 patients, 15<br />

cases had no known vasculopathic risk factors, and 17 cases (53%) had known<br />

vasculopathic risk factors. Of the 15 cases without a known vasculopathic risk factor,<br />

n<strong>in</strong>e underwent neuroimag<strong>in</strong>g. Five of these 15 cases were congenital TNP (type 3) and<br />

did not undergo neuroimag<strong>in</strong>g. One patient was sent for strabismus surgery for an<br />

idiopathic TNP, and there was no documentation <strong>in</strong> the record of previous imag<strong>in</strong>g


272 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

studies. One patient <strong>in</strong> this group underwent a CT scan that would not have been<br />

performed accord<strong>in</strong>g to the imag<strong>in</strong>g guide for the reasons mentioned above. This CT<br />

scan did not reveal an etiology for the TNP; however, a subsequent MRI scan showed a<br />

cavernous s<strong>in</strong>us tumor. Of the isolated pupil-spared TNPs that were presumed to be<br />

vasculopathic <strong>in</strong> nature, all demonstrated improvement or resolution of the TNP over<br />

time and none of these patients developed any new neurologic disease. Of these 17<br />

cases, 12 MRI scans and six CT scans were performed on these patients. Of the MRI<br />

scans, 10 would not have been performed accord<strong>in</strong>g to the imag<strong>in</strong>g guide. Six of these<br />

were vasculopathic, one patient had myasthenia gravis diagnosed by antiacetylchol<strong>in</strong>e<br />

receptor antibodies, and one patient had trauma and had undergone CT scan, LP, and<br />

cerebral angiogram. Two MRI scans actually revealed small midbra<strong>in</strong> strokes; however,<br />

this did not affect treatment and both patients showed spontaneous recovery. Of the CT<br />

scans, four would not have been performed, three were performed <strong>in</strong> vasculopathic<br />

patients, and one CT scan disclosed a tumor that would have undergone an <strong>in</strong>itial MRI<br />

scan accord<strong>in</strong>g to the imag<strong>in</strong>g guide.<br />

Twenty-one patients had isolated pupil-<strong>in</strong>volved TNP (type 4C). Of these 21 cases, all<br />

underwent neuroimag<strong>in</strong>g and 13 of 21 had an identifiable <strong>in</strong>tracranial etiology for the<br />

pupil-<strong>in</strong>volved TNP. Eight patients required further studies, of which six underwent<br />

standard cerebral angiography and two underwent MR angiography. Three of these<br />

eight patients were found to harbor an <strong>in</strong>tracranial aneurysm (posterior communicat<strong>in</strong>g<br />

artery). In this group, three MRI scans would not have been performed because each<br />

patient had signs of SAH and each underwent CT scan followed by angiogram. One CT<br />

scan would not have been performed because the patient had no signs of SAH and<br />

would have undergone an <strong>in</strong>itial MRI scan rather than a CT scan.<br />

In our series, patients with a nonisolated TNP thus had a significant chance of<br />

harbor<strong>in</strong>g an <strong>in</strong>tracranial lesion. Sixty percent of 38 patients had <strong>in</strong>tracranial pathology<br />

<strong>in</strong>clud<strong>in</strong>g tumor (48%), aneurysm (22%), stroke (16%), carotid cavernous fistula (4%),<br />

tuberculoma <strong>in</strong> the cavernous s<strong>in</strong>us (4%), and Tolosa-Hunt syndrome (4%).<br />

References<br />

Abdollah A, Francis GS. (1990). Intraaxial divisional oculomotor nerve paresis suggests <strong>in</strong>traaxial fascicular<br />

organization. <strong>An</strong>n <strong>Neuro</strong>l 28:589–590.<br />

Acierno MD, Trobe JD, Cornblath WT, Gebarski SS. (1995). Pa<strong>in</strong>ful oculomotor palsy caused by posterior-dra<strong>in</strong><strong>in</strong>g<br />

dural carotid cavernous fistulas. Arch Ophthalmol 113:1045–1049.<br />

Alderson LM, Noonan PT, Sup Choi I, Henson JW. (1996). Regional subacute cranial neuropathies follow<strong>in</strong>g<br />

<strong>in</strong>ternal carotid cisplat<strong>in</strong> <strong>in</strong>fusion. <strong>Neuro</strong>logy 47:1088–1090.<br />

Al-Yamany M, al-Shayji A, Bernste<strong>in</strong> M. (1999). Isolated oculomotor nerve palsy: an unusual presentation of<br />

glioblastoma multiforme. Case report and review of the literature. J <strong>Neuro</strong>oncol 41:77–80.<br />

<strong>An</strong>dreo LK, Gardner TA, Enzenauer RW. (1994). Third nerve palsy <strong>in</strong> an AIDS patient. Presented at the North<br />

American <strong>Neuro</strong>-Ophthalmology Society meet<strong>in</strong>g, Durango, Colorado, February 27–March 3.<br />

Arroyo JG, Horton JC. (1995). Acute, pa<strong>in</strong>ful, pupil-<strong>in</strong>volv<strong>in</strong>g third nerve palsy <strong>in</strong> chronic <strong>in</strong>flammatory<br />

demyel<strong>in</strong>at<strong>in</strong>g polyneuropathy. <strong>Neuro</strong>logy 45:846–847.<br />

Ashw<strong>in</strong> PT, Mahmood S, Pollock WS. (2001). Sphenoid s<strong>in</strong>us mucocele mimick<strong>in</strong>g aneurysmal oculomotor nerve<br />

palsy. Eye 15:108–110.<br />

Balcar LJ, Galetta SL, Bagley LJ, Pakulo SJ. (1996). Localization of traumatic oculomotor nerve palsy to the<br />

midbra<strong>in</strong> exit site by magnetic resonance imag<strong>in</strong>g. Am J Ophthalmol 122:437–439.<br />

Balcar LJ, Galetta SL, Yousem DM, et al. (1997). Pupil-<strong>in</strong>volv<strong>in</strong>g third-nerve palsy and carotid stenosis: rapid<br />

recovery follow<strong>in</strong>g endarterectomy. <strong>An</strong>n <strong>Neuro</strong>l 41:273–276.<br />

Balm M, Hammack J. (1996). Leptomen<strong>in</strong>geal carc<strong>in</strong>omatosis. Present<strong>in</strong>g features and prognostic factors. Arch<br />

<strong>Neuro</strong>l 53:626–632.


Third Nerve Palsies 273<br />

Barbas NR, Hedges TR, Schwenn M. (1995). Isolated oculomotor nerve palsy due to neoplasm <strong>in</strong> <strong>in</strong>fancy.<br />

<strong>Neuro</strong>-ophthalmol 15:157–160.<br />

Barr D, Kupersmith MJ, P<strong>in</strong>to R, Turb<strong>in</strong> R. (1999). Arachnoid cyst of the cavernous s<strong>in</strong>us result<strong>in</strong>g <strong>in</strong> third nerve<br />

palsy. J <strong>Neuro</strong>-ophthalmol 19:249–251.<br />

Barr D, Kupersmith M, Turb<strong>in</strong> R, et al. (2000). Synk<strong>in</strong>esis follow<strong>in</strong>g diabetic third nerve palsy. Arch Ophthalmol<br />

118:132–134.<br />

Bengel D, Huffmann G. (1994). Oculomotor nuclear complex syndrome as a s<strong>in</strong>gle sign of midbra<strong>in</strong> hemorrhage.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 5:279–282.<br />

Berlit P. (1991). Isolated and comb<strong>in</strong>ed pareses of cranial nerves III, IV, and VI. A retrospective study of 412<br />

patients. J <strong>Neuro</strong>l Sci 103:10–15.<br />

Bikhazi NB, Sloan SH. (1998). Superior orbital fissure syndrome caused by <strong>in</strong>dolent Aspergillus sphenoid<br />

s<strong>in</strong>usitis. Otolaryngol Head Neck Surg 118:102–104.<br />

Birchall D, Khangure MS, McAuliffe W. (1999). Resolution of third nerve paresis after endovascular management<br />

of aneurysms of the posterior communicat<strong>in</strong>g artery. AJNR 20:411–413.<br />

Bogousslavsky J, Maeder P, Regli F, Meuli R. (1994). Pure midbra<strong>in</strong> <strong>in</strong>farction: cl<strong>in</strong>ical, MRI, and etiologic patterns.<br />

<strong>Neuro</strong>logy 44:2032–2040.<br />

Bondenson J, Asman P. (1997). Giant cell arteritis present<strong>in</strong>g with oculomotor nerve palsy. Scand J Rheumatol<br />

26:327–328.<br />

Borras JM, Salazaar FG, Grandas F. (1997). Oculomotor palsy and contralateral tremor (Benedikt’s syndrome)<br />

follow<strong>in</strong>g a stereotactic procedure. J <strong>Neuro</strong>l 244:272–274.<br />

Bortolami R, D’Alessandro R, Manni E. (1993). The orig<strong>in</strong> of pa<strong>in</strong> <strong>in</strong> ‘‘ischemic-diabetic’’ third-nerve palsy. Arch<br />

<strong>Neuro</strong>l 50:795.<br />

Branley MG, Wright KW, Borchert MS. (1992). Third nerve palsy due to cerebral artery aneurysm <strong>in</strong> a child. Aust<br />

NZ J Ophthalmol 20:137–140.<br />

Brazis PW. (1991). Subject review: localization of lesions of the oculomotor nerve: recent concepts. Mayo Cl<strong>in</strong> Proc<br />

66:1029–1035.<br />

Brazis PW, Capobianco DJ, Chang F-L F, et al. (1994). Low flow dural arteriovenous shunt: another cause of<br />

‘‘s<strong>in</strong>ister’’ Tolosa-Hunt syndrome. Headache 34:523–525.<br />

Brazis PW, Masdeu JC, Biller J. (2001). Localization <strong>in</strong> <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>logy. 4th ed. Philadelphia, Lipp<strong>in</strong>cott Williams &<br />

Wilk<strong>in</strong>s.<br />

Breen LA, Hopf HC, Farris RK, Gutman L. (1991). Pupil-spar<strong>in</strong>g oculomotor nerve palsy due to a midbra<strong>in</strong><br />

<strong>in</strong>farction. Arch <strong>Neuro</strong>l 48:105–106.<br />

Bryan JS, Hamed LM. (1992). Levator-spar<strong>in</strong>g nuclear oculomotor palsy. <strong>Cl<strong>in</strong>ical</strong> and magnetic resonance imag<strong>in</strong>g<br />

f<strong>in</strong>d<strong>in</strong>gs. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:26–30.<br />

Capo H, Warren F, Kupersmith MJ. (1992). Evolution of oculomotor nerve palsies. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol<br />

12:21–25.<br />

Capoferri C, Martor<strong>in</strong>a M, Menga M. (1997). Herpes Zoster ophthalmoplegia <strong>in</strong> two hemodialysis patients. <strong>Neuro</strong><strong>ophthalmology</strong><br />

17:49–51.<br />

Carlow TJ, Johnson JK. (1990). Parasellar tumors: isolated pupil-spar<strong>in</strong>g third nerve palsy. <strong>Neuro</strong>logy 40(suppl<br />

1):309.<br />

Castro O, Johnson LN, Mamourian AC. (1990). Isolated <strong>in</strong>ferior oblique paresis from bra<strong>in</strong>stem <strong>in</strong>farction.<br />

Perspective on oculomotor fascicular organization <strong>in</strong> the ventral midbra<strong>in</strong> tegmentum. Arch <strong>Neuro</strong>l 47:235–<br />

237.<br />

Chang-God<strong>in</strong>ich A, Lee AG, Brazis PW, et al. (1997). Complete ophthalmoplegia after zoster ophthalmicus.<br />

J <strong>Neuro</strong>-<strong>ophthalmology</strong> 17:262–265.<br />

Chee MW, Tan CB, Tjia HT. (1990). Nuclear third nerve palsy and somnolence due to stroke—a case report. <strong>An</strong>n<br />

Acad Med S<strong>in</strong>gapore 19:382–384.<br />

Chotmongkol V, Cha<strong>in</strong>unsamit S. (1999). Superior branch palsy of the oculomotor nerve caused by acute<br />

sphenoid s<strong>in</strong>usitis. J Med Assoc Thai 82:410–413.<br />

Chotmongkol V, Techasuknirun A. (1992). Superior division paresis of the oculomotor nerve casued by<br />

cryptococcal men<strong>in</strong>gitis. J Med Assoc Thai 75:548–550.<br />

Chou TM, Demer JL. (1998). Isolated <strong>in</strong>ferior rectus palsy caused by a metastasis to the oculomotor nucleus.<br />

Am J Ophthalmol 126:737–740.<br />

Cohen DA, Bosley TM, Sav<strong>in</strong>o PJ, et al. (1985). Primary aberrant regeneration of the oculomotor<br />

nerve—occurrence <strong>in</strong> a patient with abetalipoprote<strong>in</strong>emia. Arch <strong>Neuro</strong>l 42:821–823.<br />

Cox TA, Goldberg RA, Rootman J. (1991). Tonic pupil and Czarnecki’s sign follow<strong>in</strong>g third nerve palsy. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 11:55–56.


274 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Cullom ME, Sav<strong>in</strong>o PJ. (1993). Adenocarc<strong>in</strong>oma of the prostate present<strong>in</strong>g as a third nerve palsy. <strong>Neuro</strong>logy<br />

43:2146–2147.<br />

Cullom ME, Sav<strong>in</strong>o PJ, Sergott RC, Bosley TM. (1995). Relative pupillary spar<strong>in</strong>g third nerve palsies. To<br />

angiogram or not? J <strong>Neuro</strong>-ophthalmol 15:136–141.<br />

Cunn<strong>in</strong>gham ET, Good WV. (1994). Inferior branch oculomotor nerve palsy: a case report. J <strong>Neuro</strong>-ophthalmol<br />

14:21–23.<br />

Custer PL. (2000). Lagophthalmos: an unusual manifestation of oculomotor nerve aberrant regeneration.<br />

Ophthalmic Plastic Reconstruct Surg 16:50–51.<br />

Davies GE, Shakir RA. (1994). Giant cell arteritis present<strong>in</strong>g as oculomotor nerve palsy with pupillary dilatation.<br />

Postgrad Med J 70:298–299.<br />

Davis PC, Newman NJ. (1996). Perspective—advances <strong>in</strong> neuroimag<strong>in</strong>g of the visual pathways. Am J Ophthalmol<br />

121:690–705.<br />

Dehaene I, Van Zandijcke M. (1995). Isolated paralysis of the superior division of the ocular motor nerve<br />

mimicked by myasthenia gravis. <strong>Neuro</strong>-<strong>ophthalmology</strong> 5:257–258.<br />

Dichgans M, Dieterich M. (1995). Third nerve palsy with contralateral ocular torsion and b<strong>in</strong>ocular tilt of visual<br />

vertical, <strong>in</strong>dicat<strong>in</strong>g a midbra<strong>in</strong> lesion. <strong>Neuro</strong>-<strong>ophthalmology</strong> 15:315–320.<br />

DiMario FJ Jr, Rorke LB. (1992). Transient oculomotor nerve paresis <strong>in</strong> congenital distal basilar artery aneurysm.<br />

Pediatr <strong>Neuro</strong>l 8:303–306.<br />

Donahue SP, Taylor RJ. (1998). Pupil-spar<strong>in</strong>g third nerve palsy associated with sildenafil citrate (Viagra). Am<br />

J Ophthalmol 126:476–477.<br />

Ebner R, Slamovits TL, Friedlamd S, et al. (1995). Visual loss follow<strong>in</strong>g treatment of sphenoid s<strong>in</strong>us cancer. Surv<br />

Ophthalmol 40:62–68.<br />

Egan RA, Thompson CR, MacColl<strong>in</strong> M, Lessell S. (2001). Monocular elevator paresis <strong>in</strong> neurofibromatosis type 2.<br />

<strong>Neuro</strong>logy 56:1222–1224.<br />

Eggenberger ER, Miller NR, Hoffman PN, et al. (1993). Mesencephalic ependymal cyst caus<strong>in</strong>g an <strong>in</strong>ferior division<br />

paresis of the oculomotor nerve: case report. <strong>Neuro</strong>logy 43:2419–2420.<br />

Ehrenpries SJ, Biedl<strong>in</strong>gmaier JF. (1995). Isolated third-nerve palsy associated with frontal s<strong>in</strong>us mucocele. J <strong>Neuro</strong><strong>ophthalmology</strong><br />

15:105.<br />

Ferrante E, Sav<strong>in</strong>o A, Brioschi A, et al. (1998). Transient oculomotor cranial nerve palsy <strong>in</strong> spontaneous<br />

<strong>in</strong>tracranial hypotension. J <strong>Neuro</strong>surg Sci 42:177–179.<br />

Friedman JA, Piepgras DG, Pichelmann MA, et al. (2001). Small cerebral aneurysms present<strong>in</strong>g with symptoms<br />

other than rupture. <strong>Neuro</strong>logy 57:1212–1216.<br />

Galetta SL, Sergott RC, Wells GB, et al. (1992). Spontaneous remission of a third-nerve palsy <strong>in</strong> men<strong>in</strong>geal<br />

lymphoma. <strong>An</strong>n <strong>Neuro</strong>l 32:100–102.<br />

Gauntt CD, Kashii S, Nagata I. (1995). Monocular elevation paresis caused by an oculomotor fascicular lesion.<br />

J <strong>Neuro</strong>-ophthalmol 15:11–14.<br />

Gaymard B, Huynh C, Laffont I. (2000). Unilateral eyelid retraction. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 68:390–392.<br />

Gaymard B, Lafitte C, Gelot A, de Toffol B. (1992). Plus-m<strong>in</strong>us lid syndrome. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

55:846–848.<br />

Gaymard B, Larmande P, de Toffol B, Autret A. (1990). Reversible nuclear oculomotor nerve paralysis. Caused by<br />

a primary mesencephalic hemorrhage. Eur <strong>Neuro</strong>l 30:128–131.<br />

Getenet JC, Vighetto A, Nighoghossian N, Trouillas P. (1994). Isolated bilateral third nerve palsy caused by a<br />

mesencephalic hematoma. <strong>Neuro</strong>logy 44:981–982.<br />

Giomb<strong>in</strong>i S, Ferraresi S, Pluch<strong>in</strong>o F. (1991). Reversal of oculomotor disorders after <strong>in</strong>tracranial aneurysm surgery.<br />

Acta <strong>Neuro</strong>chir 112:19–24.<br />

Go T. (2000). Partial oculomotor nerve palsy associated with elevated anti-galactocerebroside and anti-GM1<br />

antibodies. J Pediatr 137:425–426.<br />

Goldberg RA, Rootman J. (1990a). <strong>Cl<strong>in</strong>ical</strong> characteristics of metastatic orbital tumors. Ophthalmology 47:620–624.<br />

Goldberg RA, Rootman J, Kl<strong>in</strong>e RA. (1990b). Tumors metastatic to the orbit: a chang<strong>in</strong>g picture. Surv Ophthalmol<br />

35:1–24.<br />

Good EF. (1990). Ptosis as the sole manifestation of compression of the oculomotor nerve by an aneurysm of the<br />

posterior communicat<strong>in</strong>g artery. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:59–61.<br />

Good WV, Barkovich AJ, Nickel BL, et al. (1991). Bilateral congenital oculomotor nerve palsy <strong>in</strong> a child with bra<strong>in</strong><br />

anomalies. Am J Ophthalmol 111:555–558.<br />

Gray LG, Galetta SL, Hershey B, et al. (1999). Inferior division third nerve paresis from an orbital dural<br />

arteriovenous malformation. J <strong>Neuro</strong>-Ophthalmol 19:46–48.<br />

Grayeli AB, Redondo A, Salama J, Rey A. (1998). Tuberculoma of the cavernous s<strong>in</strong>us: case report. <strong>Neuro</strong>surgery<br />

42:179–182.


Third Nerve Palsies 275<br />

Green KM, Board T, O’Keefe LJ. (2000). Oculomotor nerve palsy follow<strong>in</strong>g submucosal diathermy to the <strong>in</strong>ferior<br />

turb<strong>in</strong>ates. J Laryngol Otol 114:285–286.<br />

Greenspan BN, Reeves AG. (1990). Transient partial oculomotor nerve paresis with posterior communicat<strong>in</strong>g<br />

aneurysm—a case report. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:56–58.<br />

Griffiths PD, Gholkar A, Sengupta RP. (1994). Oculomotor nerve palsy due to thrombosis of a posterior<br />

communicat<strong>in</strong>g artery aneurysm follow<strong>in</strong>g diagnostic angiography. <strong>Neuro</strong>radiology 36:614–615.<br />

Guar<strong>in</strong>o M, Stracciari A, Cirignotta F, et al. (1995). Neoplastic men<strong>in</strong>gitis present<strong>in</strong>g with ophthalmoplegia, ataxia,<br />

and areflexia (Miller-Fisher syndrome). Arch <strong>Neuro</strong>l 52:443–444.<br />

Guy JR, Day AL. (1989a). Intracranial aneurysms with superior division paresis of the oculomotor nerve.<br />

Ophthalmology 96:1071–1076.<br />

Guy J, Engel HM, Lessner AM. (1989b). Acquired contralateral oculomotor synk<strong>in</strong>esis. Arch <strong>Neuro</strong>l 46:1021–1023.<br />

Guy J, Sav<strong>in</strong>o PJ, Schatz NJ, et al. (1985). Superior division paresis of the oculomotor nerve. Ophthalmology<br />

92:777–784.<br />

Hahn CD, Nicolle DA, Lownie SP, Drake CG. (2000). Giant cavernous carotid artery aneurysms: cl<strong>in</strong>ical<br />

presentation <strong>in</strong> fifty-seven cases. J <strong>Neuro</strong>-Ophthalmol 20:253–258.<br />

Hamed LM. (1991). Associated neurologic and ophthalmologic f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> congenital oculomotor nerve palsy.<br />

Ophthalmology 98:708–714.<br />

Hardenack M, Volker A, Schroder JM, et al. (1994). Primary eos<strong>in</strong>ophilic granuloma of the oculomotor nerve.<br />

J <strong>Neuro</strong>surg 81:784–787.<br />

Hart AJ, Allibone J, Casey AT, Thomas DG. (1998). Malignant men<strong>in</strong>gioma of the oculomotor nerve without dural<br />

attachment. Case report and review of the literature. J <strong>Neuro</strong>surg 88:1104–1106.<br />

Hashimoto M, Ohtsuka K. (1998a). Bilateral <strong>in</strong>ternal ophthalmoplegia as a feature of oculomotor fascicular<br />

syndrome disclosed by magnetic resonance imag<strong>in</strong>g. Am J Ophthalmol 125:121–123.<br />

Hashimoto M, Ohtsuka K, Akiba H, Harada K. (1998b). Vascular compression of the oculomotor nerve disclosed<br />

by th<strong>in</strong>-sliced magnetic resonance imag<strong>in</strong>g. Am J Ophthalmol 125:881–882.<br />

Haughton AJ, Chalkiadis GA. (1999). Un<strong>in</strong>tentional paediatric subdural catheter with oculomotor and abducens<br />

nerve palsies. Paediatr <strong>An</strong>aesth 9:543–548.<br />

Hedges TR, Hirsh LF. (1993). Bilateral third nerve palsy from ‘‘m<strong>in</strong>or’’ head trauma. <strong>Neuro</strong>-<strong>ophthalmology</strong> 13:219.<br />

Herman M, Bobek-Billewicz B, Bullo B, Herman A. (1999). Wegener’s granulomatosis with unusual cavernous<br />

s<strong>in</strong>us and sella turcica extension. Eur Radiol 9:1859–1861.<br />

Holland NR, Deibert E. (1998). CNS Act<strong>in</strong>omycosis present<strong>in</strong>g with bilateral cavernous s<strong>in</strong>us syndrome. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 64:4.<br />

Holl<strong>in</strong>ger P, Sturzenegger M. (1999). Pa<strong>in</strong>ful oculomotor nerve palsy—a present<strong>in</strong>g sign of <strong>in</strong>ternal carotid artery<br />

stenosis. Cerebrovasc Dis 9:178–181.<br />

Hopf HC, Gutmann L. (1990). Diabetic third nerve palsy: evidence for a mesencephalic lesion. <strong>Neuro</strong>logy<br />

40:1041–1045.<br />

Horikoshi T, Nukui H, Yagishita T, et al. (1999). Oculomotor nerve palsy after surgery for upper basilar artery<br />

aneurysms. <strong>Neuro</strong>surgery 44:705–710.<br />

Hriso E, Miller A, Masdeu JC. (1990). Monocular elevation weakness and ptosis. <strong>Neuro</strong>logy 47(suppl 1):309.<br />

Ide C, De Coene B, Gilliard C, et al. (1997). Hemorrhagic arachnoid cyst with third nerve paresis: CT and MR<br />

f<strong>in</strong>d<strong>in</strong>gs. AJNR 18:1407–1410.<br />

Ikeda K, Tamura M, Iwasaki Y, K<strong>in</strong>oshita M. (2001). Relative pupil-spar<strong>in</strong>g third nerve palsy: etiology and cl<strong>in</strong>ical<br />

variables predictive of a mass. <strong>Neuro</strong>logy 57:1741–1742.<br />

Ing EB, Purv<strong>in</strong> V. (1997). Progressive visual loss and motility deficit. Surv Ophthalmol 41:488–492.<br />

Ing E, Sullivan TJ, Clarke MP, Buncic JR. (1992). Oculomotor nerve palsies <strong>in</strong> children. J Pediatr Ophthalmol<br />

Strabismus 29:331–336.<br />

Ishibashi A, Sueyoshi K, You M, Yokokura Y. (1998). MR f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> isolated oculomotor nerve palsy associated<br />

with <strong>in</strong>fectious mononucleosis caused by Epste<strong>in</strong>-Barr virus <strong>in</strong>fection. J Comput Assist Tomogr 22:995–997.<br />

Ishikawa H, Satoh H, Fujiwara M, et al. (1997). Oculomotor nerve palsy caused by lung cancer metastasis. Int Med<br />

36:301–303.<br />

Jacobson DM. (1998a). Pupil <strong>in</strong>volvement <strong>in</strong> patients with diabetes-associated oculomotor nerve palsy. Arch<br />

Ophthalmol 116:723–727.<br />

Jacobson DM. (1998b). Proptosis with acute oculomotor and abducens nerve palsies. J <strong>Neuro</strong>-Ophthalmol<br />

18:289–291.<br />

Jacobson DM. (2001). Relative pupil-spar<strong>in</strong>g third nerve palsy: etiology and cl<strong>in</strong>ical variables predictive of a mass.<br />

<strong>Neuro</strong>logy 56:797–798.<br />

Jacobson DM, Broste SK. (1995). Early progression of ophthalmoplegia <strong>in</strong> patients with ischemic oculomotor<br />

nerve palsies. Arch Ophthalmol 113:1535–1537.


276 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Jacobson DM, McCanna TD, Layde PM. (1994). Risk factors for ischemic ocular motor nerve palsies. Arch<br />

Ophthalmol 112:961–966.<br />

Jacobson DM, Trobe JD. (1999). The emerg<strong>in</strong>g role of magnetic resonance angiography <strong>in</strong> the management of<br />

patients with third cranial nerve palsy. Am J Ophthalmol 128:94–96.<br />

Kadota T, Miyawaki Y, Nakagawa H, et al. (1993). MR imag<strong>in</strong>g of oculomotor nerve neurilemmoma. Magn Reson<br />

Imag<strong>in</strong>g 11:1071–1075.<br />

Kajiya Y, Nakajo M, Kajiya Y, Miyaji N. (1995). Oculomotor nerve <strong>in</strong>vasion by lymphoma demonstrated by MRI. J<br />

Comput Assist Tomogr 19:502–504.<br />

Kardon RH, Traynelis VC, Biller J. (1991). Inferior division paresis of the oculomotor nerve caused by basilar<br />

artery aneurysm. Cerebrovasc Dis 1:171.<br />

Kasner SE, Galetta SL, Vaughn DJ. (1996). Cavernous s<strong>in</strong>us syndrome <strong>in</strong> Hodgk<strong>in</strong>’s disease. J <strong>Neuro</strong>-Ophthalmol<br />

16:204–207.<br />

Kaufman DI. (1994). Recent advances <strong>in</strong> neuro-imag<strong>in</strong>g and the impact on neuro-<strong>ophthalmology</strong>. Curr Op<strong>in</strong><br />

Ophthalmol 5:52–62.<br />

Kawasaki A. (1999). Oculomotor nerve schwannoma associated with ophthalmoplegic migra<strong>in</strong>e. Am J Ophthalmol<br />

128:658–660.<br />

Kawase T, Sone A, Igarashi Y, et al. (1996). Developmental patterns and characteristic symptoms of petroclival<br />

men<strong>in</strong>giomas. <strong>Neuro</strong>l Med Chir 36:1–6.<br />

Kaye-Wilson LG, Gibson R, Bell JE, Steers AJW. (1994). Oculomotor nerve neur<strong>in</strong>oma, early detection by magnetic<br />

resonance imag<strong>in</strong>g. <strong>Neuro</strong>-ophthalmol 14:37–41.<br />

Keane JR. (1993). Intermittent third nerve palsy with cryptococcal men<strong>in</strong>gitis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:124–126.<br />

Keane JR. (1996). Cavernous s<strong>in</strong>us syndrome. <strong>An</strong>alysis of 151 cases. Arch <strong>Neuro</strong>l 53:967–971.<br />

Keane JR, Ahmadi J. (1998). Most diabetic third nerve palsies are peripheral. <strong>Neuro</strong>logy 51:1510.<br />

Kim JS, Kang JK, Lee SA, Lee MC. (1993). Isolated or predom<strong>in</strong>ant ocular motor nerve palsy as a manifestation of<br />

bra<strong>in</strong> stem stroke. Stroke 24:581–586.<br />

Kodsi SR, Younge BR. (1992). Acquired oculomotor, trochlear, and abducent cranial nerve palsies <strong>in</strong> pediatric<br />

patients. Am J Ophthalmol 114:568–574.<br />

Koennecke H, Seyfert S. (1998). Mydriatic pupil as the present<strong>in</strong>g sign of common carotid artery dissection. Stroke<br />

29:2635–2655.<br />

Kondoh K, Ohtsuka K, Hashimoto M, Nakamura Y. (1998). Inferior branch palsy of the oculomotor nerve caused<br />

by EB virus <strong>in</strong>fection. <strong>Neuro</strong>-<strong>ophthalmology</strong> 20:36.<br />

Ksiazek SM, Repka MX, Maguire A, et al. (1989). Divisional oculomotor nerve paresis caused by <strong>in</strong>tr<strong>in</strong>sic<br />

bra<strong>in</strong>stem disease. <strong>An</strong>n <strong>Neuro</strong>l 26:714–718.<br />

Ksiazek SM, Slamovits TL, Rosen CE, et al. (1994). Fascicular arrangement <strong>in</strong> partial oculomotor paresis. Am<br />

J Ophthalmol 118:97–103.<br />

Kudo T. (1990). <strong>An</strong> operative complication <strong>in</strong> a patient with a true posterior communicat<strong>in</strong>g artery aneurysm: case<br />

report and review of the literature. <strong>Neuro</strong>surgery 27:650–653.<br />

Kurokawa Y, Uede T, Honda O, Honmou O. (1992). Successful removal of <strong>in</strong>tracavernous neur<strong>in</strong>oma orig<strong>in</strong>at<strong>in</strong>g<br />

from the oculomotor nerve—case report. <strong>Neuro</strong>l Med Chir 32:225–228.<br />

Landau K, Lepore FE. (1997). Discover<strong>in</strong>g a dys-cover<strong>in</strong>g lid. Surv Ophthalmol 42:87–91.<br />

Landolfi JC, Thaler HT, De <strong>An</strong>gelis LM. (1998). Adult bra<strong>in</strong>stem gliomas. <strong>Neuro</strong>logy 51:1136–1139.<br />

Lanz<strong>in</strong>o G, <strong>An</strong>dreoli A, Tognetti F, et al. (1993). Orbital pa<strong>in</strong> and unruptured carotid-posterior communicat<strong>in</strong>g<br />

artery aneurysms: the role of sensory fibers of the third cranial nerve. Acta <strong>Neuro</strong>chir 120:7–11.<br />

Lee AG. (1996). Third nerve palsy due to a carotid cavernous fistula without external eye signs. <strong>Neuro</strong><strong>ophthalmology</strong><br />

16:183–187.<br />

Lee AG, Hayman LA, Brazis PW. (2002). The evaluation of isolated third nerve palsy revisited: an update on the<br />

evolv<strong>in</strong>g role of magnetic resonance, computed tomography, and catheter angiography. Surv Ophthalmol<br />

47:137–157.<br />

Lee AG, Onan H, Brazis PW, Prager TC. (1999). <strong>An</strong> imag<strong>in</strong>g guide to the evaluation of third cranial nerve palsies.<br />

Strabismus 7:153–168.<br />

Lee AG, Tang RA. (2000a). Third nerve palsy as the present<strong>in</strong>g manifestation of esthesioneuroblastoma. J <strong>Neuro</strong>-<br />

Ophthalmol 20:20–21.<br />

Lee AG, Tang RA, Wong GG, et al. (2000b). Isolated <strong>in</strong>ferior rectus muscle palsy result<strong>in</strong>g from a nuclear third<br />

nerve lesion as the <strong>in</strong>itial manifestation of multiple sclerosis. J <strong>Neuro</strong>-Ophthalmol 20:246–247.<br />

Lee CC, Cho AS, Carter WA. (2000c). Emergency department presentation of pituitary apoplexy. Am J Emerg Med<br />

18:328–331.<br />

Lee SH, Yeow YK, Tan CB, Tjia H. (1992). Transient oculomotor nerve synk<strong>in</strong>esis <strong>in</strong> non-Hodgk<strong>in</strong>’s lymphoma.<br />

J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:203–206.


Third Nerve Palsies 277<br />

Lepore FE. (1995). Disorders of ocular motility follow<strong>in</strong>g head trauma. Arch <strong>Neuro</strong>l 52:924–926.<br />

Liu GT, Carrazana EJ, Charness ME. (1991). Unilateral oculomotor palsy and bilateral ptosis from paramedian<br />

midbra<strong>in</strong> <strong>in</strong>farction. Arch <strong>Neuro</strong>l 48:983–986.<br />

Liu GT, Crenner CW, Logigian EL, et al. (1992). Midbra<strong>in</strong> syndromes of Benedikt, Claude, and Nothnagel: sett<strong>in</strong>g<br />

the record straight. <strong>Neuro</strong>logy 42:1820–1822.<br />

Liu GT, Kay MD, Byrne GE, et al. (1993). Ophthalmoparesis due to Burkitt’s lymphoma follow<strong>in</strong>g cardiac<br />

transplantation. <strong>Neuro</strong>logy 43:2147–2149.<br />

Lopes DK, Mericle RA, Wakhloo AK, et al. (1998). Cavernous s<strong>in</strong>us syndrome dur<strong>in</strong>g balloon test occlusion of the<br />

cervical <strong>in</strong>ternal carotid artery. Report of two cases. J <strong>Neuro</strong>surg 89:667–670.<br />

Lustbader JM, Miller NR. (1988). Pa<strong>in</strong>less, pupil-spar<strong>in</strong>g but otherwise complete oculomotor paresis caused by<br />

basilar artery aneurysm. Arch Ophthalmol 106:583–584.<br />

Manabe Y, Kurokawa K, Kashihara K, Abe K. (2000). Isolated oculomotor nerve palsy <strong>in</strong> lymphoma. <strong>Neuro</strong>l Res<br />

22:347–348.<br />

Mansour AM, Bailey BJ. (1997). Ocular f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> Ramsay Hunt syndrome. J <strong>Neuro</strong>-Ophthalmol 17:199–201.<br />

Mark AS, Blake P, Atlas SW, et al. (1992). Gd-DTPA enhancement of the cisternal portion of the oculomotor nerve<br />

on MR imag<strong>in</strong>g. AJNR 13:1463–1470.<br />

Mark AS, Casselman J, Brown D, et al. (1998). Ophthalmoplegic migra<strong>in</strong>e: reversible enhancement and thicken<strong>in</strong>g<br />

of the cisternal segment of the oculomotor nerve on contrast-enhanced MR images. AJNR 19:1887–1891.<br />

Mart<strong>in</strong> TJ, Corbett JJ, Babikian PV, et al. (1996). Bilateral ptosis due to mesencephalic lesions with relative<br />

preservation of ocular motility. J <strong>Neuro</strong>-Ophthalmol 16:258–263.<br />

McFadzean RM, Teasdale EM. (1998). Computerized tomography angiography <strong>in</strong> isolated third nerve palsies.<br />

J <strong>Neuro</strong>surg 88:679–684, 1998.<br />

Mehta VS, S<strong>in</strong>gh RV, Misra NK, Choudry C. (1990). Schwannoma of the oculomotor nerve. Br J <strong>Neuro</strong>surg 4:69–72.<br />

Messe SR, Sh<strong>in</strong> RK, Liu GT, et al. (2001). Oculomotor synk<strong>in</strong>esis follow<strong>in</strong>g a midbra<strong>in</strong> stroke. <strong>Neuro</strong>logy<br />

57:1106–1107.<br />

Migita DS, Devereaux MW, Tomsak RL (1998). Coca<strong>in</strong>e and pupillary-spar<strong>in</strong>g oculomotor nerve paresis.<br />

<strong>Neuro</strong>logy 49:1466–1467.<br />

Miller NR. (1999). Unequal pupils can be seen <strong>in</strong> diabetic 3rd nerve palsy. Evidence-Based Eye Care 1:40–41.<br />

Miyachi S, Negoro M, Handa T, Sugita K. (1993). Dural carotid cavernous s<strong>in</strong>us fistula present<strong>in</strong>g as isolated<br />

oculomotor nerve palsy. Surg <strong>Neuro</strong>l 39:105–109.<br />

Miyao S, Takano A, Teramoto J, et al. (1993). Oculomotor nerve palsy due to <strong>in</strong>traneural hemorrhage <strong>in</strong> idiopathic<br />

thrombocytopenic purpura: a case report. Eur <strong>Neuro</strong>l 33:20–22.<br />

Mokri B, Silbert PL, Schiev<strong>in</strong>k WI, Piepgras DG. (1996). Cranial nerve palsy <strong>in</strong> spontaneous dissection of the<br />

extracranial <strong>in</strong>ternal carotid artery. <strong>Neuro</strong>logy 46:356–359.<br />

Moster ML, Scimeca GH, Romayananda N, et al. (1996). Mandibular ameloblastoma metastatic to the cavernous<br />

s<strong>in</strong>us. <strong>Neuro</strong>-<strong>ophthalmology</strong> 16:47–50.<br />

Mudgil AV, Repka MX. (1999). Ophthalmologic outcome after third cranial nerve palsy or paresis <strong>in</strong> childhood. J<br />

Am Assoc Pediatr Ophthalmol Strabismus 3:2–8.1<br />

Murakami M, Kitano I, Hitoshi Y, Ushio Y. (1994). Isolated oculomotor nerve palsy follow<strong>in</strong>g midbra<strong>in</strong> <strong>in</strong>farction.<br />

Cl<strong>in</strong> <strong>Neuro</strong>l <strong>Neuro</strong>surg 96:188–190.<br />

Nagaoka U, Kato T, Kurita K, et al. (1996). Cranial nerve enhancement on three-dimensional MRI <strong>in</strong> Miller Fisher<br />

syndrome. <strong>Neuro</strong>logy 47:1601–1502.<br />

Naghmi R, Subuhi R. (1990). Diabetic oculomotor mononeuropathy: <strong>in</strong>volvement of pupillomotor fibres with<br />

slow resolution. Horm Metab Res 22:38–40.<br />

Nakagawa H, Nakajima S, Nakajima Y, et al. (1991). Bilateral oculomotor nerve palsies due to posterior cerebral<br />

arterial compression relieved by microvascular decompression—case report. <strong>Neuro</strong>l Med Chir 31:45–48.<br />

Nakao H, Ohtsuka K, Hashimoto M. (1998). Nuclear oculomotor nerve palsy caused by metastatic tumor. <strong>Neuro</strong><strong>ophthalmology</strong><br />

20:36.<br />

Naudea SE, Trobe JD. (1983). Pupil spar<strong>in</strong>g <strong>in</strong> oculomotor palsy: a brief review. <strong>An</strong>n <strong>Neuro</strong>l 13:143–148.<br />

Newman NJ, Lessell S. (1990). Isolated pupil-spar<strong>in</strong>g third-nerve palsy as the present<strong>in</strong>g sign of multiple sclerosis.<br />

Arch <strong>Neuro</strong>l 47:817–818.<br />

Newman NJ, Slamovits TL, Friedland S, Wilson WB. (1995). <strong>Neuro</strong>-ophthalmic manifestations of men<strong>in</strong>gocerebral<br />

<strong>in</strong>flammation from the limited form of Wegener’s granulomatosis. Am J Ophthalmol 120:613–621.<br />

Norman AA, Farris BK, Siatkowski RM. (2001). <strong>Neuro</strong>ma as a cause of oculomotor palsy <strong>in</strong> <strong>in</strong>fancy and early<br />

childhood. J Am Assoc Pediatr Ophthalmol Strabismus 5:9–12.<br />

North KN, <strong>An</strong>tony JH, Johnston IH. (1993). Dermoid of cavernous s<strong>in</strong>us result<strong>in</strong>g <strong>in</strong> isolated oculomotor nerve<br />

palsy. Pediatr <strong>Neuro</strong>l 9:221–223.


278 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Ogilvy CS, Pakzaban P, Lee JM. (1993). Oculomotor nerve cavernous angioma <strong>in</strong> a patient with Roberts<br />

syndrome. Surg <strong>Neuro</strong>l 40:39–42.<br />

O’Halloran HS, Lee WB, Baker RS, Pearson PA. (1999). Ophthalmoplegic migra<strong>in</strong>e with unusual features.<br />

Headache 39:670–673.<br />

O’Hara MA, <strong>An</strong>derson RT, Brown D. (2001). Magnetic resonance imag<strong>in</strong>g <strong>in</strong> ophthalmoplegic migra<strong>in</strong>e of<br />

children. J Am Assoc Pediatr Ophthalmol Strabismus 5:307–310.<br />

Ohtsuka K, Hashimoto M, Nakamura Y. (1997). Enhanced magnetic resonance imag<strong>in</strong>g <strong>in</strong> a patient with acute<br />

paralysis of the <strong>in</strong>ferior division of the oculomotor nerve. Am J Ophthalmol 124:406–409.<br />

Oishi M, Mochizuki Y. (1997). Ipsilateral oculomotor nerve palsy and contralateral downbeat nystagmus: a<br />

syndrome caused by unilateral paramedian thalamopeduncular <strong>in</strong>farction. J <strong>Neuro</strong>l 244:132–133.<br />

Okuchi K, Fujioka M, Maeda Y, et al. (1999). Bilateral chronic subdural hematomas result<strong>in</strong>g <strong>in</strong> unilateral<br />

oculomotor nerve paresis and bra<strong>in</strong> stem symptoms after operation—case report. <strong>Neuro</strong>l Med Chir<br />

39:367–371.<br />

Onozu H, Yamamoto S, Takou K, Hasyasaka S. (1998). Blepharoptosis <strong>in</strong> association with ipsilateral adduction<br />

and elevation palsy. A form of fascicular oculomotor palsy. <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:145–150.<br />

Pacifici L, Passarelli F, Papa G, et al. (1993). Acute third cranial nerve ophthalmoplegia: possible pathogenesis<br />

from alpha-II-<strong>in</strong>terferon treatment. Ital J <strong>Neuro</strong>l Sci 14:579–580.<br />

Papke K, Masur H, Mart<strong>in</strong>ez-Rubio A, et al. (1993). Complete bilateral oculomotor palsy: the only cl<strong>in</strong>ical sign of<br />

subarachnoid hemorrhage <strong>in</strong> leukemia. Acta <strong>Neuro</strong>l Scand 88:153–156.<br />

Park-Matsumoto YC, Tazawa T. (1997). Internal carotid-posterior communicat<strong>in</strong>g artery aneurysm manifest<strong>in</strong>g as<br />

an unusual ocular motor paresis after m<strong>in</strong>or head trauma—case report. <strong>Neuro</strong>l Med Chir 37:181–183.<br />

Parmeggiani A, Posar A, Leonardi M, et al. (1992). <strong>Neuro</strong>logic impairment <strong>in</strong> congenital bilateral ptosis with<br />

ophthalmoplegia. Bra<strong>in</strong> Dev 14:107–109.<br />

Patel CK, Taylor DS, Russell-Eggitt IM, et al. (1993). Congenital third nerve palsy associated with mid-trimester<br />

amniocentesis. Br J Ophthalmol 77:530–533.<br />

Perez Sempere A, Mart<strong>in</strong>ez Menendez B, Cabeza Alvarez C, Calandre Hoenigsfeld L. (1991). Isolated oculomotor<br />

nerve palsy due to dural cavernous s<strong>in</strong>us fistula. Eur <strong>Neuro</strong>l 31:186–187.<br />

Phookan G, Cameron M. (1994). Bilateral chronic subdural haematoma: an unusual presentation with isolated<br />

oculomotor nerve palsy. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 57:1146.<br />

Polito E, Leccisotti A. (1996). Pa<strong>in</strong>ful ophthalmoplegia caused by superior ophthalmic ve<strong>in</strong> thrombosis. <strong>Neuro</strong><strong>ophthalmology</strong><br />

16:189–192.<br />

Prats JM, Mateos B, Garaizer C. (1999). Resolution of MRI abnormalities of the oculomotor nerve <strong>in</strong> childhood<br />

ophthalmoplegic migra<strong>in</strong>e. Cephalgia 19:655–659.<br />

Pratt DV, Orengo-Nania S, Horowitz BL, Oram O. (1995). Magnetic resonance f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> a patient with nuclear<br />

oculomotor palsy. Arch Ophthalmol 113:141.<br />

Ranganadham P, D<strong>in</strong>akar I, Mohandas S, S<strong>in</strong>gh AK. (1992). A rare presentation of posterior communicat<strong>in</strong>g artery<br />

aneurysm. Cl<strong>in</strong> <strong>Neuro</strong>l <strong>Neuro</strong>surg 94:225–227.<br />

Reifenberger G, Bostrümj, Bettag M, et al. (1996). Primary glioblastoma multiforme of the oculomotor nerve. Case<br />

report. J <strong>Neuro</strong>surg 84:1062–1066.<br />

Renowden SA, Harris KM, Hourihan MD. (1993). Isolated atraumatic third nerve palsy: cl<strong>in</strong>ical features and<br />

imag<strong>in</strong>g techniques. Br J Radiol 66:1111–1117.<br />

Richards BW, Jones FR Jr, Younge BR. (1992). Causes and prognosis <strong>in</strong> 4,278 cases of paralysis of the oculomotor,<br />

trochlear, and abducens cranial nerves. Am J Ophthalmol 113:489–496.<br />

Robertson PL, Pavkovic I, Donovan C, Blaivas M. (1998). Immature teratoma of the leptomen<strong>in</strong>ges <strong>in</strong> an 8-yearold<br />

child: unusual presentation with recurrent transient oculomotor nerve palsies and rapid progression to<br />

diffuse bra<strong>in</strong> <strong>in</strong>farction. J Child <strong>Neuro</strong>l 13:143–145.<br />

Rob<strong>in</strong>son R, Toland J, Eustace P. (1990). Pituitary apoplexy. A cause for pa<strong>in</strong>ful third nerve palsy. <strong>Neuro</strong><strong>ophthalmology</strong><br />

10:257–260.<br />

Rossitch E Jr, Carrazana EJ, Black PM. (1992). Isolated oculomotor nerve palsy follow<strong>in</strong>g apoplexy of a pituitary<br />

adenoma. J <strong>Neuro</strong>surg Sci 36:103–105.<br />

Saeki N, Murai H, M<strong>in</strong>e S, Yamaura A. (2000a). Fascicular arrangement with<strong>in</strong> the oculomotor nerve. MRI<br />

analysis of a midbra<strong>in</strong> <strong>in</strong>farct. J Cl<strong>in</strong> <strong>Neuro</strong>sci 7:268–270.<br />

Saeki N, Murai N, Sunami K. (1996). Midbra<strong>in</strong> tegmental lesions affect<strong>in</strong>g or spar<strong>in</strong>g the pupillary fibres. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 61:401–402.<br />

Saeki N, Yamaura A, Sunami K. (2000b). Bilateral ptosis with pupil spar<strong>in</strong>g because of a discrete midbra<strong>in</strong> lesion:<br />

magnetic resonance imag<strong>in</strong>g evidence of topographic arrangement with<strong>in</strong> the oculomotor nerve. J <strong>Neuro</strong>-<br />

Ophthalmol 20:130–134.


Third Nerve Palsies 279<br />

Saeki N, Yotsukura J, Adachi E, Yamaura A. (2000c). Isolated superior division oculomotor palsy <strong>in</strong> a child with<br />

spontaneous recovery. J Cl<strong>in</strong> <strong>Neuro</strong>sci 7:62–64.<br />

Sanchez Dalmau BF, Abdul-Rahim AS, Zimmerman RA. (1998). Young boy with progressive double vision. Surv<br />

Ophthalmol 43:47–52.<br />

Sanders S, Kawasaki A, Purv<strong>in</strong> VA. (2001). Pattern of extraocular muscle weakness <strong>in</strong> vasculopathic pupilspar<strong>in</strong>g,<br />

<strong>in</strong>complete third nerve palsy. J <strong>Neuro</strong>-ophthalmol 21:256–259.<br />

Sanli M, Alt<strong>in</strong>urs N, Bavbek M. (1995). Partial bilateral oculomotor nucleus lesion follow<strong>in</strong>g surgery of a fourth<br />

ventricle ependymoma. <strong>Neuro</strong>-<strong>ophthalmology</strong> 15:103–105.<br />

Savas R, Sommer A, Gueckel F, Georgi M. (1997). Isolated oculomotor nerve paralysis <strong>in</strong> Lyme disease: MRI.<br />

<strong>Neuro</strong>radiology 39:139–141.<br />

Schiev<strong>in</strong>k WI, Mokri B, Garrity JA, et al. (1993). Ocular motor nerve palsies <strong>in</strong> spontaneous dissections of the<br />

cervical <strong>in</strong>ternal carotid artery. <strong>Neuro</strong>logy 43:1938–1941.<br />

Schultheiss R, Kristof R, Schramm J. (1993). Complete removal of an oculomotor nerve neur<strong>in</strong>oma without<br />

permanent functional deficit. Ger J Ophthalmol 2:228–233.<br />

Schumacher-Feero LA, Yoo KW, Mendiola Solari F, Biglan A. (1999). Third cranial nerve palsy <strong>in</strong> children. Am<br />

JOphthalmol 128:216–221.<br />

Schwartz TH, Lycette CA, Kargman DE. (1995). Cl<strong>in</strong>icoradiographic evidence for oculomotor fascicular anatomy.<br />

J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 59:338.<br />

Sethi DS, Lau DP, Chan C. (1997). Sphenoid s<strong>in</strong>us mucocele present<strong>in</strong>g with isolated oculomotor nerve palsy.<br />

J Laryngol Otol 111:471–473.<br />

Seyer H, Kompf D, Fahlbusch R. (1992). Optomotor palsies <strong>in</strong> pituitary apoplexy. <strong>Neuro</strong>-<strong>ophthalmology</strong> 12:217–224.<br />

Shen WC, Yang DY, Ho YJ, Lee SK. (1993). Neurilemmoma of the oculomotor nerve present<strong>in</strong>g as an orbital mass:<br />

MR f<strong>in</strong>d<strong>in</strong>gs. AJNR 14:1253–1254.<br />

Shuaib A, Murphy W. (1987). Mesencephalic hemorrhage and third nerve palsy. J Comput Assist Tomogr<br />

11:385–388.<br />

Shuaib A, Israelian G, Lee MA. (1989). Mesencephalic hemorrhage and unilateral pupillary deficit. J Cl<strong>in</strong> <strong>Neuro</strong>ophthal<br />

9:47–49.<br />

Silva MN, Saeki N, Hirai S, Yamaura A. (1999). Unusual cranial nerve palsy caused by cavernous s<strong>in</strong>us<br />

aneurysms. <strong>Cl<strong>in</strong>ical</strong> and anatomical considerations reviewed. Surg <strong>Neuro</strong>l 52:148–149.<br />

Sood A, Midha V, Sood N, Gupta D. (1999). Hepatitis B and pupil-spar<strong>in</strong>g oculomotor nerve paresis. Cl<strong>in</strong> Infect<br />

Dis 29:1330–1331.<br />

Soysal T, Ferhanoglu B, Bilir M, Akman N. (1993). Oculomotor nerve palsy associated with v<strong>in</strong>crist<strong>in</strong>e treatment.<br />

Acta Haematol 90:209–210.<br />

Stefanis L, Przedborski S. (1993). Isolated palsy of the superior branch of the oculomotor nerve due to chronic<br />

erosive sphenoid s<strong>in</strong>usitis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:229–231.<br />

Straube A, Bandmann O, Buttner U, Schmidt H. (1993). A contrast enhanced lesion of the III nerve on MR of a<br />

patient with ophthalmoplegic migra<strong>in</strong>e as evidence for a Tolosa-Hunt syndrome. Headache 33:446–448.<br />

Striph GG. (1993). Consecutive oculomotor nerve palsy from a de novo cerebral aneurysm. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol<br />

13:181–187.<br />

Takano S, Endo M, Miyasaka Y, et al. (1990). Neur<strong>in</strong>oma of the oculomotor nerve—case report. <strong>Neuro</strong>l Med Chir<br />

30:132–136.<br />

Tao ZD. (1992). Oculomotor neuropathy syndrome. A diagnostic challenge <strong>in</strong> nasopharyngeal carc<strong>in</strong>oma. Ch<strong>in</strong><br />

Med J 105:567–571.<br />

Teasdale E, Stratham P, Straiton J, MacPherson P. (1990). Non-<strong>in</strong>vasive radiological <strong>in</strong>vestigation for oculomotor<br />

palsy. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 53:549–553.<br />

Tezer I, Dogulu CF, Kansu T. (2000). Isolated <strong>in</strong>ferior rectus palsy as a result of paramedian thalamopeduncular<br />

<strong>in</strong>farction. J <strong>Neuro</strong>-Ophthalmol 20:154–155.<br />

Thömke F, Lensch E, R<strong>in</strong>gel K, Hopf HC. (1997). Isolated cranial nerve palsies <strong>in</strong> multiple sclerosis. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 63:682–685.<br />

Thömke F, Tettenborn B, Hopf HC. (1995). Third nerve palsy as the sole manifestation of midbra<strong>in</strong> ischemia.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 15:327–335.<br />

Tomsak RL, Masaryk TJ, Bates JH. (1991). Magnetic resonance angiography (MRA) of isolated aneurysmal third<br />

nerve palsy. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 11:16–18.<br />

Trobe JD. (1985). Isolated pupil-spar<strong>in</strong>g third nerve palsy. Ophthalmology 92:58–61.<br />

Trobe JD. (1998). Manag<strong>in</strong>g oculomotor nerve palsy. Arch Ophthalmol 116:798.<br />

Tsaloumas MD, Willshaw HE. (1997). Congenital oculomotor palsy: associated neurological and ophthalmological<br />

f<strong>in</strong>d<strong>in</strong>gs. Eye 11:500–503.


280 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Tummala RP, Harrison A, Madison MT, and Nussbaum ES. (2001). Pseudomyasthenia result<strong>in</strong>g from a posterior<br />

carotid artery wall aneurysm: a novel presentation: case report. <strong>Neuro</strong>surgery 49:1466–1469.<br />

Uehara T, Tabuchi M, Kawaguchi T, Mori E. (1998). Spontaneous dural carotid cavernous s<strong>in</strong>us fistula present<strong>in</strong>g<br />

isolated ophthalmoplegia: evaluation with MR angiography. <strong>Neuro</strong>logy 50:814–816.<br />

Ueyama H, Kummamoto T, Fukuda S, et al. (1997). Isolated third nerve palsy due to sarcoidosis. Sarcoid Vasc<br />

Diffuse Lung Dis 14:169–170.<br />

Umapathi T, Koon SW, Eng BM, et al. (2000). Insight <strong>in</strong>to the three-dimensional structure of the oculomotor<br />

nuclear complex and fascicles. J <strong>Neuro</strong>-Ophthalmol 20:138–144.<br />

Varma R, Miller NR. (1994). Primary oculomotor nerve synk<strong>in</strong>esis caused by an extracavernous <strong>in</strong>tradural<br />

aneurysm. Am J Ophthalmol 118:83–87.<br />

Vetrugno R, Mascalchi M, Marulli D, et al. (1997). Plus m<strong>in</strong>us lid syndrome due to cerebral glioma. A case report.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 18:149–151.<br />

von Noorden GK, Hansell R. (1991). <strong>Cl<strong>in</strong>ical</strong> characteristics and treatment of isolated <strong>in</strong>ferior rectus paralysis.<br />

Ophthalmology 98:253–257.<br />

Wake A, Kak<strong>in</strong>uma A, Mori N, et al. (1993). <strong>An</strong>giotropic lymphoma of paranasal s<strong>in</strong>uses with <strong>in</strong>itial symptoms of<br />

oculomotor nerve palsy. Intern Med 32:237–242.<br />

Walter KA, Newman NJ, Lessell S. (1994). Oculomotor palsy from m<strong>in</strong>or head trauma: <strong>in</strong>itial sign of <strong>in</strong>tracranial<br />

aneurysm. <strong>Neuro</strong>logy 44:148–150.<br />

We<strong>in</strong>berg DA, Kaufman DI, Siebert JD, Pernicone JR. (1996). Negative MRI versus real disease. Surv Ophthalmol<br />

40:312–319.<br />

White WL, Mumma JV, Tomasovic JJ. (1992). Congenital oculomotor nerve palsy, cerebellar hypoplasia, and facial<br />

capillary hemangioma. Am J Ophthalmol 113:497–500.<br />

Wilhelm H, Klier R, Tùth B, Wilhelm B. (1995). Oculomotor nerve paresis start<strong>in</strong>g as isolated <strong>in</strong>ternal<br />

ophthalmoplegia. <strong>Neuro</strong>-<strong>ophthalmology</strong> 15:211–215.<br />

W<strong>in</strong>terkorn JMS, Bruno M. (2001). Relative pupil-spar<strong>in</strong>g oculomotor nerve palsy as the present<strong>in</strong>g sign of<br />

posterior fossa men<strong>in</strong>gioma. J <strong>Neuro</strong>-ophthalmol 21:207–209.<br />

Wol<strong>in</strong> MJ, Saunders RA. (1992). <strong>An</strong>eurysmal oculomotor nerve palsy <strong>in</strong> an 11-year-old boy. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol<br />

12:178–180.<br />

Worth<strong>in</strong>gton JM, Halmagyi GM. (1996). Bilateral total ophthalmoplegia due to midbra<strong>in</strong> hematoma. <strong>Neuro</strong>logy<br />

46:1176.<br />

Wu HM, Lee AG, Lehane DE, et al. (1997). Ocular and orbital complications of <strong>in</strong>traarterial cisplat<strong>in</strong>. A case<br />

report. J <strong>Neuro</strong>-Ophthalmol 17:195–198.<br />

Yen M-Y, Mu-Huo M, Wang A-G, Liu J-H. (1998). Isolated oculomotor palsy caused by dural carotid cavernous<br />

s<strong>in</strong>us fistula. <strong>Neuro</strong>-<strong>ophthalmology</strong> 20:38.<br />

Zimmer DV. (1991). Oculomotor nerve palsy from posterior communicat<strong>in</strong>g artery aneurysm. J La State Med Soc<br />

143:22–25.<br />

Z<strong>in</strong>gale A, Albanese V, Giuffrida A, et al. (1997). Pa<strong>in</strong>ful ophthalmoplegia syndrome (spheno-cavernous<br />

syndrome) caused by a ruptured posterior communicat<strong>in</strong>g artery aneurysm. A brief report. J <strong>Neuro</strong>surg<br />

Sci 41:299–301.<br />

Z<strong>in</strong>gale A, Chiarmonte I, Mancuso P, et al. (1993). Craniofacial pa<strong>in</strong> and <strong>in</strong>complete oculomotor palsy associated<br />

with ipsilateral primitive trigem<strong>in</strong>al artery. J <strong>Neuro</strong>surg Sci 37:251–255.<br />

Zurev<strong>in</strong>sky J. (1993). Ocular palsies <strong>in</strong> ophthalmic zoster. Am Orthop J 43:130–134.


12 r<br />

Fourth Nerve Palsies<br />

What Is the Topographic <strong>An</strong>atomy of the<br />

Fourth Nerve?<br />

The fourth nerve nucleus is located <strong>in</strong> the midbra<strong>in</strong> beneath the <strong>in</strong>ferior colliculus. The<br />

fourth nerve is the only cranial nerve that exits dorsally from the bra<strong>in</strong>stem, it has the<br />

longest <strong>in</strong>tracranial course, and it crosses <strong>in</strong> the anterior medullary velum. It passes<br />

between the superior cerebellar artery and the posterior cerebellar artery, runs <strong>in</strong> the<br />

subarachnoid space, travels with<strong>in</strong> the lateral wall of the cavernous s<strong>in</strong>us, and enters<br />

the orbit via the superior orbital fissure to <strong>in</strong>nervate the superior oblique muscle.<br />

What Are the <strong>Cl<strong>in</strong>ical</strong> Features of Fourth<br />

Nerve Palsies?<br />

Fourth cranial nerve palsies may cause the follow<strong>in</strong>g (von Noorden, 1986):<br />

1. Incomitant hypertropia is demonstrated with the three-step maneuver. The hypertropia<br />

<strong>in</strong>creases on head tilt toward the paralyzed side (positive Bielschowsky’s test).<br />

Usually the unaffected eye is fixat<strong>in</strong>g and the hypertropia occurs <strong>in</strong> the <strong>in</strong>volved<br />

eye. Hypotropia may occur <strong>in</strong> the normal eye if the affected eye is fixat<strong>in</strong>g. The<br />

hypertropia is usually most prom<strong>in</strong>ent <strong>in</strong> the field of gaze of the <strong>in</strong>volved superior<br />

oblique muscle, especially <strong>in</strong> cases of acute or recent onset. The hypertropia may also<br />

be most prom<strong>in</strong>ent <strong>in</strong> the field of gaze of the ipsilateral overact<strong>in</strong>g <strong>in</strong>ferior oblique<br />

muscle <strong>in</strong> subacute or chronic cases. In palsies of longer duration, the hypertropia<br />

may be relatively equal <strong>in</strong> the various gaze positions (spread of comitance).<br />

2. Duction test<strong>in</strong>g may variably reveal underaction of the ipsilateral superior oblique<br />

muscle, overaction of the ipsilateral <strong>in</strong>ferior oblique muscle, or overaction of the<br />

contralateral superior oblique muscle.<br />

281


282 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

3. Pseudo-overaction of the superior oblique <strong>in</strong> the un<strong>in</strong>volved eye may occur with<br />

spread of comitance. Secondary contracture of the superior rectus muscle <strong>in</strong> the<br />

<strong>in</strong>volved eye may cause hypertropia <strong>in</strong>volv<strong>in</strong>g the entire lower field of gaze. In a<br />

patient with a superior oblique muscle paralysis who habitually fixates with the<br />

paretic eye and <strong>in</strong> whom overaction of the ipsilateral <strong>in</strong>ferior oblique muscle has<br />

developed, less than the normal amount of <strong>in</strong>nervation will be required when the<br />

patient looks up and to the contralateral side. Because the <strong>in</strong>nervation flow<strong>in</strong>g to<br />

the opposite superior rectus is ‘‘determ<strong>in</strong>ed’’ by the overact<strong>in</strong>g ipsilateral <strong>in</strong>ferior<br />

oblique (Her<strong>in</strong>g’s law), the opposite superior rectus muscle will seem paretic<br />

(<strong>in</strong>hibitional palsy of the contralateral antagonist). In these cases, the head tilt test<br />

will correctly determ<strong>in</strong>e which of the two eyes is paretic.<br />

4. Excyclotropia due to loss of <strong>in</strong>cyclotorsion function of the superior oblique muscle.<br />

This torsion may be evident on fundus exam and can be measured us<strong>in</strong>g double<br />

Maddox rod test<strong>in</strong>g. The excyclotropia is usually symptomatic <strong>in</strong> acquired cases but<br />

is often asymptomatic <strong>in</strong> congenital cases.<br />

5. <strong>An</strong> anomalous head tilt elim<strong>in</strong>ates the hypertropia or less commonly the cyclotropia.<br />

This head tilt is present <strong>in</strong> approximately 70% of patients and is usually away from<br />

the <strong>in</strong>volved side but may be paradoxical (toward the <strong>in</strong>volved side) <strong>in</strong> about 3%.<br />

It is important to differentiate patients with decompensation of a congenital fourth<br />

nerve palsy (FNP) from those with an acquired FNP. In patients with congenital FNPs:<br />

1. Old photos may show a long-stand<strong>in</strong>g head tilt.<br />

2. Patients usually are noted to have cyclotropia on exam<strong>in</strong>ation but often do<br />

not compla<strong>in</strong> of cyclotropia (subjective image tilt<strong>in</strong>g) as do some patients with<br />

acquired FNPs.<br />

3. Large vertical fusional amplitudes (> 8 prism diopters) <strong>in</strong> primary gaze are characteristic<br />

of congenital cases.<br />

4. Facial asymmetry (hypoplasia on side of head turn) suggests a congenital lesion.<br />

Bilateral FNPs are suggested by the follow<strong>in</strong>g:<br />

1. A right hypertropia <strong>in</strong> left gaze and left hypertropia <strong>in</strong> right gaze (a revers<strong>in</strong>g<br />

hypertropia).<br />

2. A positive Bielschowsky test on tilt to either shoulder (‘‘double Bielschowsky test’’).<br />

3. Large excyclotropia (> 10 degrees).<br />

4. V-pattern esotropia (15 prism diopters or more difference <strong>in</strong> esotropia between<br />

upward and downward gaze). The V pattern is caused by a decrease of the<br />

abduct<strong>in</strong>g effect of the superior oblique(s) <strong>in</strong> depression and secondary overaction<br />

of the abduct<strong>in</strong>g effect of the <strong>in</strong>ferior oblique muscle(s).<br />

5. Underaction of both superior oblique muscles and=or overaction of both <strong>in</strong>ferior<br />

oblique muscles on duction test<strong>in</strong>g.<br />

6. In general, bilateral FNPs tend to have a smaller hypertropia <strong>in</strong> primary position<br />

than do unilateral FNPs.<br />

The criteria for the diagnosis of FNPs are listed <strong>in</strong> Table 12–1. FNP may be categorized<br />

as either isolated or nonisolated. For diagnostic classification based on topographic<br />

localization, nonisolated FNP may be grouped <strong>in</strong>to the follow<strong>in</strong>g four syndromes:<br />

1. Midbra<strong>in</strong> (nucleus=fascicle syndrome) FNP<br />

2. Subarachnoid space FNP<br />

3. Cavernous s<strong>in</strong>us FNP


Table 12–1. Criteria for the Diagnosis of Fourth Nerve Palsy<br />

4. Orbital FNP<br />

Nonisolated FNP (type 1; see below), with f<strong>in</strong>d<strong>in</strong>gs that localize to the bra<strong>in</strong>stem,<br />

subarachnoid space, cavernous s<strong>in</strong>us, or orbit, should undergo a directed neuroimag<strong>in</strong>g<br />

study (Berlit, 1991; Brazis, 1993; Burde, 1992; Celli, 1992; Elliot, 1991; Kim, 1992;<br />

Richards, 1992; Vanooteghem, 1992).<br />

Table 12–2 outl<strong>in</strong>es the cl<strong>in</strong>ical features of FNP by location of the responsible lesion.<br />

Table 12–3 lists the etiologies for an FNP based on cl<strong>in</strong>ical topographic localization.<br />

Is the FNP Due to a Midbra<strong>in</strong> Lesion?<br />

A midbra<strong>in</strong> (i.e., nuclear=fascicular) FNP is def<strong>in</strong>ed by the ‘‘company it keeps’’; other<br />

bra<strong>in</strong>stem signs usually present, <strong>in</strong>clud<strong>in</strong>g hemisensory loss, hemiparesis, a central<br />

Horner’s syndrome, or other bra<strong>in</strong>stem cranial neuropathies (e.g., third nerve palsy).<br />

The differential diagnosis <strong>in</strong>cludes midbra<strong>in</strong> ischemia, hemorrhage, demyel<strong>in</strong>ation, and<br />

neoplasm. <strong>Neuro</strong>imag<strong>in</strong>g (preferably magnetic resonance imag<strong>in</strong>g [MRI]) should be<br />

directed to the midbra<strong>in</strong> (class II–III, level B).<br />

Is the FNP the Result of a Subarachnoid<br />

Space Lesion?<br />

Lesions of the subarachnoid space are rarely associated with an isolated FNP. Patients<br />

with subarachnoid space lesions usually have associated signs and symptoms <strong>in</strong>clud<strong>in</strong>g<br />

headache, stiff neck, and other cranial neuropathies. <strong>Neuro</strong>imag<strong>in</strong>g (MRI) should be<br />

directed to the bra<strong>in</strong>stem and subarachnoid space. Computed tomography (CT)<br />

imag<strong>in</strong>g should be considered <strong>in</strong> cases of acute trauma, to evaluate bone lesions, or<br />

<strong>in</strong> the evaluation of acute vascular processes (e.g., subarachnoid hemorrhage). Lumbar<br />

puncture follow<strong>in</strong>g negative neuroimag<strong>in</strong>g should be considered <strong>in</strong> these cases<br />

(class II–III, level B).<br />

Is the FNP Due to a Cavernous S<strong>in</strong>us Lesion?<br />

Fourth Nerve Palsies 283<br />

B<strong>in</strong>ocular vertical and=or torsional diplopia or misalignment<br />

Ipsilateral hyperdeviation <strong>in</strong> primary position, worsened by contralateral gaze and ipsilateral<br />

head tilt (the three-step test)<br />

Variable ipsilateral excyclotorsion<br />

<strong>An</strong>omalous compensatory head or face position<br />

Weakness of the <strong>in</strong>volved superior oblique muscle on ductions<br />

Cavernous s<strong>in</strong>us lesions are usually associated with other cranial nerve signs (e.g., third,<br />

fifth, or sixth nerve paresis) or a Horner’s syndrome. <strong>Neuro</strong>imag<strong>in</strong>g (preferably MRI)<br />

should be directed to the cavernous s<strong>in</strong>us (class II–III, level B).


284 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 12–2. The Localization of Trochlear Nerve Lesions<br />

Structure Involved <strong>Cl<strong>in</strong>ical</strong> Manifestation<br />

A: Lesions affect<strong>in</strong>g the trochlear nucleus and=or fascicles (superior oblique palsy contralateral to lesions)<br />

Nucleus=fascicles alone Isolated trochlear palsy (rare)<br />

Pretectal region Vertical gaze palsy (dorsal midbra<strong>in</strong><br />

syndrome)<br />

Superior cerebellar peduncle Dysmetria on side of lesion<br />

Descend<strong>in</strong>g sympathetic fibers Horner’s syndrome on side of lesion<br />

Medial longitud<strong>in</strong>al fasciculus (MLF) Ipsilateral paresis of adduction with<br />

nystagmus of contralateral<br />

abduct<strong>in</strong>g eye<br />

Brachium of superior colliculus Contralateral relative afferent pupillary<br />

defect (RAPD) without visual<br />

impairment<br />

<strong>An</strong>terior medullary velum Bilateral trochlear nerve palsies<br />

B: Lesions affect<strong>in</strong>g the trochlear nerve with<strong>in</strong> the subarachnoid space (superior oblique palsy usually<br />

ipsilateral to lesion unless mesencephalon compressed)<br />

Trochlear nerve alone Isolated trochlear palsy<br />

Superior cerebellar peduncle Ipsilateral dysmetria<br />

Cerebral peduncle Contralateral hemiparesis<br />

C: Lesions affect<strong>in</strong>g the trochlear nerve with<strong>in</strong> the cavernous s<strong>in</strong>us and=or superior orbital fissure<br />

Trochlear nerve alone Isolated trochlear palsy (rare)<br />

Cranial nerves III, VI, sympathetic Ophthalmoplegia, pupil small, large, or<br />

spared, ptosis<br />

Cranial nerve V (ophthalmic division) Facial=retro-orbital pa<strong>in</strong>; sensory loss<br />

(forehead)<br />

Increased venous pressure<br />

D: Lesions affect<strong>in</strong>g the trochlear nerve with<strong>in</strong> the orbit<br />

Proptosis; chemosis<br />

Trochlear nerve, trochlea, superior oblique<br />

muscle or tendon<br />

Superior oblique palsy<br />

Mechanical restriction of superior oblique<br />

Brown’s superior oblique tendon sheath<br />

tendon<br />

syndrome<br />

Other ocular motor nerves=extraocular<br />

Ophthalmoplegia, ptosis, restricted ocular<br />

muscles<br />

movements<br />

Optic nerve Visual loss; optic disc swell<strong>in</strong>g=atrophy<br />

Mass effect Proptosis (occasionally enophthalmos),<br />

chemosis, eyelid swell<strong>in</strong>g, etc.<br />

Source: Modified from Brazis, 2001, with permission from Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s.<br />

Is the FNP Caused by an Orbital Lesion?<br />

Orbital lesions usually produce signs such as proptosis, chemosis, and orbital or<br />

conjunctival edema. <strong>Neuro</strong>imag<strong>in</strong>g (preferably MRI) should be directed to the orbit<br />

(class II–III, level B).<br />

We def<strong>in</strong>e six types of FNP, as shown <strong>in</strong> Table 12–4.


Fourth Nerve Palsies 285<br />

Table 12–3. Etiologies for a Fourth Nerve Palsy Based on <strong>Cl<strong>in</strong>ical</strong> Topographic<br />

Localization<br />

Midbra<strong>in</strong> (nuclear=fascicular) (Elliot, 1991; Thömke, 2000)<br />

Aplasia of the nucleus<br />

Arteriovenous malformation (Gonyea, 1990; Kim, 1992)<br />

Demyel<strong>in</strong>ation (Jacobson, 1999)<br />

Hemorrhage (Galetta, 1998; Kim, 1993; Mon, 1996; Müri, 1995; Tachibana, 1990;<br />

Thömke, 1999)<br />

Ischemia=<strong>in</strong>farction (Kim, 1993; Thömke, 1999; Ulrich, 1998)<br />

Tumor (e.g., glioma) (Barr, 1997; Landolfi, 1998; Mielke, 2001)<br />

Trauma (<strong>in</strong>clud<strong>in</strong>g surgical)<br />

Sarcoidosis (Leiba, 1996)<br />

Arachnoid cyst of quadrigem<strong>in</strong>al cistern (Ohtsuka, 1998)<br />

Subarachnoid space<br />

<strong>An</strong>eurysm (e.g., superior cerebellar artery) (Agost<strong>in</strong>is, 1992; Coll<strong>in</strong>s, 1992)<br />

Hydrocephalus<br />

Infections (mastoiditis, men<strong>in</strong>gitis) (Carter, 1997; Ferreira, 1997; Sadun, 1999)<br />

Wegener’s granulomatosis (Newman, 1995)<br />

Sarcoidosis (Frohman, 2001)<br />

Superficial siderosis of central nervous system (CNS) (Hashimoto, 1996; Sh<strong>in</strong>mei, 1997)<br />

Post–lumbar puncture or sp<strong>in</strong>al anesthesia<br />

Pseudotumor cerebri (Lee, 1995; Patton, 2000; Speer, 1999)<br />

Trauma, <strong>in</strong>clud<strong>in</strong>g surgical (Baker, 1991; Hara, 2001; Hoya, 2000; Jacobson 1995; Lepore,<br />

1995; Sabates, 1991)<br />

Neoplasm<br />

Carc<strong>in</strong>omatous men<strong>in</strong>gitis<br />

Cerebellar hemangioblastoma<br />

Ependymoma<br />

Men<strong>in</strong>gioma<br />

Metastasis<br />

<strong>Neuro</strong>lemmoma=schwannoma (Fe<strong>in</strong>berg, 1999; Gentry, 1991; Santoreneos, 1997)<br />

P<strong>in</strong>eal tumors<br />

Trochlear nerve sheath tumors<br />

Fisher’s syndrome (Tanaka, 1998)<br />

Churg-Strauss syndrome (Vitali, 1996)<br />

Cavernous s<strong>in</strong>us<br />

Neoplasm (e.g., men<strong>in</strong>gioma, pituitary adenoma) (Eisenberg, 1999; Keane, 1996;<br />

Petermann, 1999)<br />

Infectious: herpes zoster (Chang-God<strong>in</strong>ich, 1997), mucormycosis (Keane, 1996)<br />

Inflammation: Tolosa-Hunt syndrome, Wegener’s granulomatosis (Herman, 1999)<br />

Internal carotid artery aneurysm (Arruga, 1991; FitzSimon, 1995; Hahn, 2000;<br />

Keane, 1996; Shimo-oku, 1998)<br />

Dural carotid-cavernous s<strong>in</strong>us fistula (Tsai, 2000)<br />

Superior ophthalmic ve<strong>in</strong> thrombosis (Polito, 1996)<br />

Foramen ovale electrode placement (Herrendorf, 1997)<br />

Balloon test occlusion of cervical <strong>in</strong>ternal carotid artery (Lopes, 1998)<br />

(cont<strong>in</strong>ued)


286 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 12–3. (cont<strong>in</strong>ued)<br />

Orbit<br />

Neoplasm<br />

Infection<br />

Infiltration<br />

Waldenström’s macroglobul<strong>in</strong>emia<br />

Inflammation (orbital pseudotumor)<br />

Progressive systemic sclerosis<br />

Trauma (orbital floor fracture)<br />

Other<br />

Migra<strong>in</strong>e (Wong, 1996)<br />

Congenital (Botelho, 1996; Holmes, 1999)<br />

Congenital unmasked by botul<strong>in</strong>um tox<strong>in</strong> therapy for cervical torticollis)<br />

(Varrato, 2000)<br />

Cephalic tetanus (Orwitz, 1997)<br />

Table 12–4. Def<strong>in</strong>itions of the Six Types of Fourth Nerve Palsy (FNP)<br />

Type 1: nonisolated<br />

FNPs are considered nonisolated <strong>in</strong> the presence of the follow<strong>in</strong>g features:<br />

Other neurologic or neuro-ophthalmologic signs<br />

Evidence to suggest myasthenia gravis such as ptosis, or fatigability of the motility deficit<br />

Evidence for systemic <strong>in</strong>flammatory disorders such as giant cell arteritis<br />

Type 2: traumatic<br />

Isolated, unilateral, or bilateral FNPs that have a clearly established temporal relationship to<br />

previous head trauma and do not progress are considered traumatic <strong>in</strong> orig<strong>in</strong>; patients<br />

have no other neurologic deficits other than those associated with the <strong>in</strong>itial<br />

traumatic event<br />

Type 3: congenital<br />

Congenital FNPs may show the follow<strong>in</strong>g:<br />

Large vertical fusional amplitudes (greater than 8 prism diopters)<br />

Facial asymmetry or sternocleidomastoid muscle hypertrophy<br />

Long-stand<strong>in</strong>g anomalous head position that may be present <strong>in</strong> old photographs<br />

Type 4: vasculopathic<br />

Vasculopathic FNPs occur <strong>in</strong> patients older than 50 years of age with or without known<br />

hypertension or diabetes, or <strong>in</strong> younger patients with known vasculopathic risk factors<br />

Type 5: nonvasculopathic<br />

Patients without vasculopathic risk factors and not classified as any of the above types are<br />

classified nonvasculopathic FNP<br />

Type 6: progressive or unresolved<br />

FNPs that worsen after the acute stage (greater than 1 week) as def<strong>in</strong>ed by a significant<br />

<strong>in</strong>crease <strong>in</strong> the measured ocular vertical deviation are considered to be progressive, and<br />

patients without improvement <strong>in</strong> the measured ocular vertical deviation after 6 to 8 weeks<br />

are considered unresolved


Is the FNP Due to Trauma?<br />

At least 23 retrospective studies of traumatic (type 2) FNP have recommended that<br />

isolated, traumatic, unilateral, or bilateral FNP do not require additional neuroimag<strong>in</strong>g<br />

or further evaluation (Baker, 1991; Berlit, 1991; Burde, 1992; Hoya, 2000; Richards, 1992;<br />

Sabates, 1991). FNP after mild head trauma and out of proportion to the deficit have<br />

been observed <strong>in</strong> association with an underly<strong>in</strong>g asymptomatic basal <strong>in</strong>tracranial tumor<br />

<strong>in</strong> at least three reports (Jacobson, 1988; Miller, 1989; Neetens, 1981). Neetens reported<br />

three such cases, but two cases had other neuro-ophthalmologic signs as well (Neetens,<br />

1981). Although uncommon, neuroimag<strong>in</strong>g may be warranted <strong>in</strong> patients with FNP<br />

after m<strong>in</strong>imal or trivial head trauma to exclude a mass lesion (class III, level C).<br />

Is the FNP Congenital?<br />

Clearly congenital unilateral or bilateral FNP (type 3) are not associated with <strong>in</strong>tracranial<br />

lesions <strong>in</strong> isolation and therefore do not require further diagnostic evaluation<br />

such as neuroimag<strong>in</strong>g studies (Burde, 1992; Robb, 1990; von Noorden, 1986, 1994)<br />

(class III–IV, level C).<br />

Is the FNP Vasculopathic?<br />

Vasculopathic FNP (type 4) do not require any <strong>in</strong>itial neuroimag<strong>in</strong>g studies, and<br />

observation for improvement over the next 6 to 8 weeks is recommended (Burde,<br />

1992). Patients with vasculopathic FNP (type 4), often resolve spontaneously with<strong>in</strong> 4 to<br />

6 months. Rush reported a recovery rate for FNP of 53.5% <strong>in</strong> 172 nonselected cases, and<br />

a higher recovery rate of 71% <strong>in</strong> 166 patients with diabetes mellitus, hypertension, or<br />

atherosclerosis (Rush, 1981). <strong>An</strong>other report by Ksiazek et al described improvement <strong>in</strong><br />

90% of 39 patients with microvascular and idiopathic FNP with<strong>in</strong> 6 months (Ksiazek,<br />

1988). Vasculopathic FNP usually improves with<strong>in</strong> a few months (Burde, 1992; Rush,<br />

1981; von Noorden, 1986), and patients with progressive or unresolved FNP, or with<br />

new neurologic signs or symptoms, should have neuroimag<strong>in</strong>g (class II–III, level B)<br />

(Agost<strong>in</strong>is, 1992; Arruga, 1991; Burde, 1992; Gentry, 1991; Miller, 1989; Rush, 1981).<br />

Patients with spontaneously resolv<strong>in</strong>g palsies do not require any further neuroimag<strong>in</strong>g<br />

(class II–III, level B). It is recommended that elderly patients who present with headache,<br />

scalp tenderness, jaw claudication, or visual loss undergo an appropriate evaluation<br />

for giant cell arteritis, <strong>in</strong>clud<strong>in</strong>g an erythrocyte sedimentation rate and a temporal<br />

artery biopsy (Burde, 1992; Miller, 1989; Reich, 1990) (class III–IV, level B). There is<br />

<strong>in</strong>sufficient evidence to recommend evaluation for giant cell arteritis <strong>in</strong> every patient<br />

with motility suggest<strong>in</strong>g an isolated FNP (class IV, level U).<br />

What Is the Evaluation of Nonvasculopathic<br />

FNP?<br />

Fourth Nerve Palsies 287<br />

Nonvasculopathic FNP (type 5) may be observed for improvement over the next 6 to 8<br />

weeks (class III, level B). Patients with resolution of symptoms and signs do not require


288 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

further evaluation (class III, level B). Patients with progression or lack of resolution<br />

should undergo neuroimag<strong>in</strong>g (preferably MRI). Myasthenia gravis may mimic<br />

FNP, and patients with variable or fatigable motility f<strong>in</strong>d<strong>in</strong>gs and=or ptosis should be<br />

evaluated for myasthenia gravis (see Chapter 15) (Burde, 1992; Miller, 1989) (class III–IV,<br />

level B).<br />

Test<strong>in</strong>g for vasculopathic risk factors <strong>in</strong> type 4 or type 5 FNP should be considered,<br />

even <strong>in</strong> the absence of a history of previous diabetes or hypertension. Green et al<br />

reported an isolated third nerve palsy as the <strong>in</strong>itial cl<strong>in</strong>ical manifestation of diabetes <strong>in</strong><br />

almost half of 25 patients (Green, 1964). Shrader and Schlez<strong>in</strong>ger reported that almost<br />

50% of diabetic sixth nerve palsies were the present<strong>in</strong>g cl<strong>in</strong>ical manifestation of the<br />

disease (Shrader, 1960). The results of these studies concern<strong>in</strong>g vasculopathic third and<br />

sixth nerve palsies may well be applicable to vasculopathic FNP (class III, level C).<br />

Table 12–5 summarizes the etiologies of FNP <strong>in</strong> 11 large retrospective series (Ellis,<br />

1976; Harley, 1980; Keane, 1993; Ksiazek, 1988; Mittleman, 1976; Richards, 1992; Rucker,<br />

1956, 1958, 1966; von Noorden, 1986; Wright, 1977). Traumatic FNP occurred <strong>in</strong><br />

35%, idiopathic FNP <strong>in</strong> 34%, vasculopathic FNP <strong>in</strong> 16%, neoplasm was reported <strong>in</strong><br />

3%, aneurysm <strong>in</strong> 0.5%, and a wide variety of miscellaneous conditions <strong>in</strong>clud<strong>in</strong>g<br />

myasthenia gravis, <strong>in</strong>fections, thyroid disease, and <strong>in</strong>flammation <strong>in</strong> 11% of patients.<br />

Younger patients, or those without vasculopathic risk factors (type 5), may require<br />

<strong>in</strong>itial neuroimag<strong>in</strong>g, but the data suggest that observation for spontaneous improvement<br />

may be sufficient (class III, level C). Isolated, idiopathic FNPs very rarely have<br />

been found to have an underly<strong>in</strong>g etiology after prolonged follow-up, and most resolve<br />

spontaneously with<strong>in</strong> several weeks to months (Coppeto, 1978; Ksiazek, 1988; Nemet,<br />

1980). Two retrospective case series with follow-up greater than 6 months described the<br />

prognosis of isolated, idiopathic FNP. Coppeto et al reported that 12 of 15 cases had<br />

resolved by 4 months after a mean follow-up of 5.5 years (Coppeto, 1978). Nemet et al<br />

described 13 cases, with a follow-up rang<strong>in</strong>g from 4 to 7 years, and all had resolved by<br />

10 weeks (Nemet, 1980). None of the patients <strong>in</strong> either series developed new neurologic<br />

Table 12–5. Etiologies for Acquired Isolated Fourth Nerve Palsy<br />

Author Cases Trauma Tumor Vascular <strong>An</strong>eurysm Unknown Other<br />

Rucker, 1956 40 12 1 8 1 15 3<br />

Rucker, 1958 67 24 3 24 0 9 7<br />

Rucker, 1966 84 23 7 13 0 28 13<br />

Mittleman, 1976 64 22 – – – 42 –<br />

Ellis, 1976 104 32 0 – 1 63 8<br />

Wright, 1977 23 9 0 8 0 3 3<br />

Harley, 1980 18 5 0 0 0 12 1<br />

Richards, 1992 578 169 28 103 5 186 87<br />

von Noorden, 1986 141 73 – – 0 62 6*<br />

Ksiazek, 1988 88 24 2 39 – 23 –<br />

Keane, 1993 81 64 0 8 – – 9<br />

TOTAL 1288 457 41 203 7 443 137<br />

100% 35% 3% 16% 0.5% 34% 11%<br />

*‘‘Other’’ <strong>in</strong> this study <strong>in</strong>cluded tumor, vascular, and myasthenia gravis.


Table 12–6. ‘‘Isolated’’ Fourth Nerve Palsy Due to Intracranial Lesion<br />

Fourth Nerve Palsies 289<br />

Author Cases Pathology Other <strong>Neuro</strong>logic Signs<br />

Suzuki, 1962 4 P<strong>in</strong>ealomas Yes<br />

Rucker, 1956 2 Frontal lobe glioma Unknown<br />

<strong>An</strong>eurysm of circle of Willis Unknown<br />

Rucker, 1958 3 Primary bra<strong>in</strong> tumor (1) Unknown<br />

Metastatic (2) Unknown<br />

Wise, 1965 1 Persistent trigem<strong>in</strong>al artery Headache<br />

Rucker, 1966 7 Midbra<strong>in</strong> gliomas (2) Unknown<br />

Men<strong>in</strong>gioma (1) Unknown<br />

Primary bra<strong>in</strong> tumors (3) Unknown<br />

Khawam, 1967 1 ‘‘Bra<strong>in</strong> tumor’’ Unknown<br />

Burger, 1970 8 Cerebellopont<strong>in</strong>e angle (CPA)<br />

tumors (4)<br />

Yes<br />

Cerebellar tumor (1) Yes<br />

Nasopharyngeal cancer (1) Yes<br />

Metastatic lung cancer (1) Yes<br />

<strong>An</strong>eurysm (1) Yes<br />

Robert, 1973 2 Pituitary tumors Yes<br />

Ellis, 1976 1 ‘‘Intracranial aneurysm’’ Unknown<br />

K<strong>in</strong>g, 1976 1 Schwannoma No<br />

Scully, 1976 1 Medulloblastoma Yes<br />

Younge, 1977 4 Gliomas (2) Unknown<br />

Metastatic breast cancer (1) Unknown<br />

Metastatic ovarian cancer (1) Unknown<br />

Wray, 1977 2 Pituitary tumors Yes<br />

Coppeto, 1978 3 Ependymoma (1) Yes<br />

Medulloblastoma (1) Yes<br />

Acoustic neuroma (1) Yes<br />

Boggan, 1979 1 Schwannoma Yes<br />

Rush, 1981 10 Men<strong>in</strong>giomas (2) Unknown<br />

Primary bra<strong>in</strong> tumor (1) Unknown<br />

Metastatic tumors (4) Unknown<br />

Intracavernous aneurysm (1) Yes<br />

Basilar aneurysm (1) Unknown<br />

<strong>An</strong>eurysm=subarachnoid<br />

hemorrhage (1)<br />

Yes<br />

Ho, 1981 1 Schwannoma No<br />

Neetens, 1981 3 Skull base tumors Yes<br />

Krohel, 1982 1 Juvenile pilocytic astrocytoma Yes<br />

Leunda, 1982 1 Schwannoma Yes<br />

McK<strong>in</strong>na, 1983 3 <strong>An</strong>eurysms Unknown<br />

Re<strong>in</strong>ecke, 1986 1 Reported <strong>in</strong> Krohel, 1982 Yes<br />

Jacobson, 1988 1 Vascular malformation Yes<br />

Slav<strong>in</strong>, 1987 1 Cavernous men<strong>in</strong>gioma *<br />

Yamamoto, 1987 1 Schwannoma Headache<br />

(cont<strong>in</strong>ued)


290 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 12–6. (cont<strong>in</strong>ued)<br />

Ksiazek, 1988 2 ‘‘Compressive etiologies’’ Unknown<br />

Maurice-Williams, 1989 1 Intracavernous aneurysm Headache<br />

Gonyea, 1990 1 Bra<strong>in</strong>stem arteriovenous<br />

malformation (AVM)<br />

Headache<br />

Arruga, 1991 1 Intracavernous aneurysm No<br />

Agost<strong>in</strong>is, 1992 1 Superior cerebellar aneurysm Headache<br />

Coll<strong>in</strong>s, 1992 1 Superior cerebellar aneurysm Headache<br />

Richards, 1992 14 Men<strong>in</strong>gioma (7) Unknown<br />

Metastatic (1) Unknown<br />

Glioma (4) Unknown<br />

Acoustic neuroma (1) Unknown<br />

Other primary (1) Unknown<br />

Kim, 1993 1 Bra<strong>in</strong>stem stroke Yes<br />

Mon, 1996 1 Midbra<strong>in</strong> hemorrhage No<br />

Galetta, 1998 1 Midbra<strong>in</strong> hemorrhage No<br />

Petermann, 1999 1 Pituitary tumor Headache<br />

Fe<strong>in</strong>hers, 1999 6 Trochlear schwannoma No<br />

Thömke, 1999 3 Bra<strong>in</strong>stem lacunes (2) No<br />

Hemorrhage (1) No<br />

Mielke, 2001 1 Metastatic bronchial cancer No<br />

*Patient developed progression of deviation after 2 years.<br />

disease over an extensive follow-up period. Although type 5 patients who improve may<br />

not require neuroimag<strong>in</strong>g, the cl<strong>in</strong>ical certa<strong>in</strong>ty of such a recommendation is not<br />

sufficiently strong <strong>in</strong> our op<strong>in</strong>ion to obviate the need for neuroimag<strong>in</strong>g <strong>in</strong> these<br />

nonvasculopathic patients (class III, level U). However, neuroimag<strong>in</strong>g should be<br />

considered for patients who do not improvement <strong>in</strong> 2 months (class III, level C).<br />

Some reports have described aneurysm as an extremely rare cause for isolated FNP<br />

(Agost<strong>in</strong>is, 1992; Arruga, 1991; Coll<strong>in</strong>s, 1992; Richards, 1992; Rucker, 1956; Rush, 1981),<br />

and cerebral angiography is not recommended unless an aneurysm is suggested by<br />

other neuroimag<strong>in</strong>g studies (class III, level B). Agost<strong>in</strong>is et al and Coll<strong>in</strong>s et al reported<br />

isolated FNP due to superior cerebellar aneurysms, but both patients described headaches<br />

(Agost<strong>in</strong>is, 1992; Coll<strong>in</strong>s, 1992). In these cases, neuroimag<strong>in</strong>g studies confirmed<br />

the presence of the aneurysm before angiography. There are <strong>in</strong>sufficient data to make a<br />

comment on the usefulness of MR angiography <strong>in</strong> FNP (class III–IV, level U).<br />

Although MR scans are generally felt to be a more sensitive and specific than CT <strong>in</strong><br />

the evaluation of cranial neuropathies, no conclusive evidence demonstrates an<br />

<strong>in</strong>creased yield from perform<strong>in</strong>g an MR scan rather than a CT scan for the specific<br />

evaluation of FNP. Richards et al reported an etiologic diagnosis <strong>in</strong> 69 of 144 (48%) FNP<br />

us<strong>in</strong>g MRI and <strong>in</strong> 289 of 684 (42%) cases us<strong>in</strong>g CT. These authors felt that ‘‘multiplanar<br />

CT may be a sufficient non<strong>in</strong>vasive study, especially when cl<strong>in</strong>ical suspicion is high ...<br />

[or] <strong>in</strong> patients with other neurologic f<strong>in</strong>d<strong>in</strong>gs’’ (Richards, 1992). Nevertheless, we<br />

believe that MRI is the study of choice for patients with FNP (class II–III, level B).<br />

A number of cases have been reported <strong>in</strong> the literature document<strong>in</strong>g <strong>in</strong>tracranial<br />

lesions <strong>in</strong> patients with FNP. Table 12–6 summarizes 86 cases of ‘‘isolated’’ FNP due to


Figure 12–1. Evaluation of fourth nerve palsy (FNP).<br />

Fourth Nerve Palsies 291<br />

an <strong>in</strong>tracranial lesion. Of these 86 patients, only five (5.8%) did not have other<br />

neurologic signs or symptoms and thus would be considered truly isolated by our<br />

criteria. One developed other neurologic signs after a short follow-up period, and <strong>in</strong> the<br />

rema<strong>in</strong><strong>in</strong>g four patients persistence or progression of symptoms would have eventually<br />

resulted <strong>in</strong> a neuroimag<strong>in</strong>g study. Of the rema<strong>in</strong><strong>in</strong>g 81 patients, six had headache or


292 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

pa<strong>in</strong> (7%), 31 had other neurologic signs (38%), and the cl<strong>in</strong>ical <strong>in</strong>formation was<br />

<strong>in</strong>sufficient to determ<strong>in</strong>e if the FNP was truly isolated <strong>in</strong> 44 patients (54%). Keane<br />

reported <strong>in</strong>tracranial tumor as an etiology <strong>in</strong> 12 of 95 unilateral cases, but all 12 (100%)<br />

had other neuro-ophthalmic signs, and none of 81 isolated FNP later reported by Keane<br />

had an <strong>in</strong>tracranial tumor (Keane, 1993). This would suggest that the yield for<br />

evaluation of an isolated FNP is low (class III, level C).<br />

All patients with progressive FNP (type 6) should undergo neuroimag<strong>in</strong>g (preferably<br />

MRI). Lumbar puncture should be considered if neuroimag<strong>in</strong>g is normal or if there are<br />

signs or symptoms of men<strong>in</strong>geal irritation (class III, level C).<br />

<strong>An</strong> approach to FNP is outl<strong>in</strong>ed <strong>in</strong> Figure 12–1.<br />

References<br />

Agost<strong>in</strong>is C, Caverni L, Mosch<strong>in</strong>i L, et al. (1992). Paralysis of fourth cranial nerve due to superior cerebellar artery.<br />

<strong>Neuro</strong>logy 42:457–458.<br />

Arruga J, De Rivas P, Esp<strong>in</strong>et HL, et al. (1991). Chronic isolated trochlear nerve palsy produced by <strong>in</strong>tracavernous<br />

<strong>in</strong>ternal carotid artery aneurysm: report of a case. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 11:104–108.<br />

Baker RS, Epste<strong>in</strong> AD. (1991). Ocular motor abnormalities from head trauma. Surv Ophthalmol 35:245–267.<br />

Barr DB, McFadzean RM, Hadley D, et al. (1997). Acquired bilateral superior oblique palsy: a localiz<strong>in</strong>g sign <strong>in</strong> the<br />

dorsal midbra<strong>in</strong> syndrome. Eur J Ophthalmol 7:271–276.<br />

Berlit P. (1991). Isolated and comb<strong>in</strong>ed pareses of cranial nerves III, IV, and VI: a retrospective study of 412<br />

patients. J <strong>Neuro</strong>l Sci 103:10–15.<br />

Boggan JE, Rosenblum ML, Wilson CB. (1979). Neurilemmoma of the fourth cranial nerve. J <strong>Neuro</strong>surg 50:519–521.<br />

Botelho PJ, Giangiacomo JG. (1996). Autosomal-dom<strong>in</strong>ant <strong>in</strong>heritance of congenital superior oblique palsy.<br />

Ophthalmology 103:1508–1511.<br />

Brazis PW. (1993). Palsies of the trochlear nerve: diagnosis and localization-recent concepts. Mayo Cl<strong>in</strong> Proc 68:501.<br />

Brazis PW, Masdeu JC, Biller J. (2001). Localization <strong>in</strong> <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>logy. 4th ed. Philadelphia, Lipp<strong>in</strong>cott Williams &<br />

Wilk<strong>in</strong>s.<br />

Burde RM, Sav<strong>in</strong>o PJ, Trobe JD. (1992). <strong>Cl<strong>in</strong>ical</strong> Decisions <strong>in</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 2nd ed. St. Louis, Mosby Year<br />

Book, pp. 289–311.<br />

Burger LJ, Kalv<strong>in</strong> NH, Smith JL. (1970). Acquired lesions of the fourth cranial nerve. Bra<strong>in</strong> 93:567–574.<br />

Carter N, Miller NR. (1997). Fourth nerve palsy caused by Ehrlichia chaffeensis. J <strong>Neuro</strong>-Ophthalmol 17:47–50.<br />

Celli P, Ferrante L, Acqui M, et al. (1992). Neur<strong>in</strong>oma of the third, fourth, and sixth cranial nerves: a survey and<br />

report of a new fourth nerve case. Surg <strong>Neuro</strong>l 38:216–224.<br />

Chang-God<strong>in</strong>ich A, Lee AG, Brazis PW, et al. (1997). Complete ophthalmoplegia after zoster ophthalmicus. J<br />

<strong>Neuro</strong>-Ophthalmol 17:262–265.<br />

Coll<strong>in</strong>s TE, Mehalic TF, White TK, et al. (1992). Trochlear nerve palsy as the sole <strong>in</strong>itial sign of an aneurysm of the<br />

superior cerebellar artery. <strong>Neuro</strong>surgery 30:258–261.<br />

Coppeto JM, Lessell S. (1978). Cryptogenic unilateral paralysis of the superior oblique muscle. Arch Ophthalmol<br />

96:275–277.<br />

Eisenberg MB, Al-Mefty O, DeMonte F, Burson GT. (1999). Benign nonmen<strong>in</strong>geal tumors of the cavernous s<strong>in</strong>us.<br />

<strong>Neuro</strong>surgery 44:949–955.<br />

Elliot D, Cunn<strong>in</strong>gham Jr ET, Miller NR. (1991). Fourth nerve paresis and ipsilateral relative afferent pupillary<br />

defect without visual sensory disturbance: a sign of contralateral dorsal midbra<strong>in</strong> disease. J Cl<strong>in</strong> <strong>Neuro</strong>ophthalmol<br />

11:169–172.<br />

Ellis FD, Helveston EM. (1976). Superior oblique palsy: diagnosis and classification. Int Ophthalmol Cl<strong>in</strong><br />

16:127–135.<br />

Fe<strong>in</strong>berg AS, Newman NJ. (1999). Schwannoma <strong>in</strong> patients with isolated trochlear nerve palsy. Am J Ophthalmol<br />

127:183–188.<br />

Ferreira R, Phan G, Bateman JB. (1997). Favorable visual outcome <strong>in</strong> cryptococcal men<strong>in</strong>gitis. Am J Ophthalmol<br />

124:558–560.<br />

FitzSimon JS, Toland J, Philips J, et al. (1995). Giant aneurysms <strong>in</strong> the cavernous s<strong>in</strong>us. <strong>Neuro</strong>-<strong>ophthalmology</strong><br />

15:59–65.<br />

Frohman LP, Grigorian R, Bielory L. (2001). <strong>Neuro</strong>-ophthalmic manifestations of sarcoidosis: cl<strong>in</strong>ical spectrum,<br />

evaluation, and management. J <strong>Neuro</strong>-Ophthalmol 21:132–137.


Fourth Nerve Palsies 293<br />

Galetta SL, Balcar LJ. (1998). Isolated fourth nerve palsy from midbra<strong>in</strong> hemorrhage. Case report. J <strong>Neuro</strong>-<br />

Ophthalmol 18:204–205.<br />

Gentry LR, Mehta RC, Appen RE, et al. (1991). MR imag<strong>in</strong>g of primary trochlear nerve neoplasms. AJNR 12:707–<br />

713.<br />

Gonyea EF. (1990). Superior oblique palsy due to a midbra<strong>in</strong> vascular malformation. <strong>Neuro</strong>logy 40:554–555.<br />

Green WR, Hackett ER, Schlez<strong>in</strong>ger NS. (1964). <strong>Neuro</strong>-ophthalmic evaluation of oculomotor nerve paralysis.<br />

Arch Ophthalmol 72:154–167.<br />

Hahn CD, Nicolle DA, Lownie SP, Drake CG. (2000). Giant cavernous carotid artery aneurysms: cl<strong>in</strong>ical<br />

presentation <strong>in</strong> fifty-seven cases. J <strong>Neuro</strong>-Ophthalmol 20:253–258.<br />

Hara N, Kan S, Simizu K. (2001). Localization of post-traumatic trochlear nerve palsy associated with hemorrhage<br />

at the subarachnoid space by magnetic resonance imag<strong>in</strong>g. Am J Ophthalmol 132:443–445.<br />

Harley RD. (1980). Paralytic strabismus <strong>in</strong> children: etiologic <strong>in</strong>cidence and management of the third, fourth, and<br />

sixth nerve palsies. Ophthalmology 87:24–43.<br />

Hashimoto M, Hoyt WF. (1996). Superficial siderosis and episodic fourth nerve paresis. Report of a case with<br />

cl<strong>in</strong>ical and magnetic resonance imag<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs. J <strong>Neuro</strong>-Ophthalmol 16:277–280.<br />

Herman M, Bobek-Billewicz B, Bullo B, et al. (1999). Wegener’s granulomatosis with unusual cavernous s<strong>in</strong>us and<br />

sella turcica extension. Eur Radiol 9:1859–1861.<br />

Herrendorf G, Ste<strong>in</strong>hoff BJ, Vadokas V, et al. (1997). Transitory fourth cranial nerve palsy due to foramen ovale<br />

electrode placement. Acta <strong>Neuro</strong>chur 139:789–790.<br />

Ho KL. (1981). Schwannoma of the trochlear nerve. J <strong>Neuro</strong>surg 55:132–135.<br />

Holmes JM, Mutyala S, Maus TL, et al. (1999). Pediatric third, fourth, and sixth nerve palsies: a population-based<br />

study. Am J Ophthalmol 127:388–392.<br />

Hoya K, Kir<strong>in</strong>o T. (2000). Traumatic trochlear nerve palsy follow<strong>in</strong>g m<strong>in</strong>or occipital impact—four case reports.<br />

<strong>Neuro</strong>l Med Chir 40:358–360.<br />

Jacobson DM, Moster ML, Eggenberger ER, et al. (1999). Isolated trochlear nerve palsy <strong>in</strong> patients with multiple<br />

sclerosis. <strong>Neuro</strong>logy 53:877–879.<br />

Jacobson DM, Warner JJ, Choucair AK, et al. (1988). Trochlear nerve palsy follow<strong>in</strong>g m<strong>in</strong>or head trauma: a sign of<br />

structural disorder. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 8:263–268.<br />

Jacobson DM, Warner JJ, Ruggles KH. (1995). Transient trochlear nerve palsy follow<strong>in</strong>g anterior temporal<br />

lobectomy for epilepsy. <strong>Neuro</strong>logy 45:1465.<br />

Khawam E, Scott AB, Jampolsky A. (1967). Acquired superior oblique palsy. Arch Ophthalmol 77:761–768.<br />

Keane JR. (1993). Fourth nerve palsy: historical review and study of 215 patients. <strong>Neuro</strong>logy 43:2439–2443.<br />

Keane JR. (1996). Cavernous s<strong>in</strong>us syndrome. <strong>An</strong>alysis of 151 cases. Arch <strong>Neuro</strong>l 53:967–971.<br />

Kim JS, Kang JK. (1992). Contralateral trochlear nerve palsy and facial sensory change due to a probable<br />

bra<strong>in</strong>stem vascular malformation. <strong>Neuro</strong>-<strong>ophthalmology</strong> 12:59–62.<br />

Kim JS, Kang JK, Lee SA, et al. (1993). Isolated or predom<strong>in</strong>ant ocular motor nerve palsy as a manifestation of<br />

bra<strong>in</strong> stem stroke. Stroke 24:581–586.<br />

K<strong>in</strong>g JS. (1976). Trochlear nerve sheath tumor. J <strong>Neuro</strong>surg 44:245–247.<br />

Krohel GB, Mansour AM, Petersen WL, et al. (1982). Isolated trochlear nerve palsy secondary to a juvenile<br />

pilocytic astrocytoma. J Cl<strong>in</strong> <strong>Neuro</strong>-Ophthalmol 2:119–123.<br />

Ksiazek S, Behar R, Sav<strong>in</strong>o PJ, et al. (1988). Isolated acquired fourth nerve palsies. <strong>Neuro</strong>logy 38(suppl 1):246.<br />

Landolfi JC, Thaler HT, De <strong>An</strong>gelis LM. (1998). Adult bra<strong>in</strong>stem gliomas. <strong>Neuro</strong>logy 51:1136–1139.<br />

Lee AG. (1995). Fourth nerve palsy <strong>in</strong> pseudotumor cerebri. Strabismus 3:57–59.<br />

Leiba H, Siatkowski RM, Culbertson WW, Glaser JS. (1996). <strong>Neuro</strong>sarcoidosis present<strong>in</strong>g as an <strong>in</strong>tracranial mass<br />

<strong>in</strong> childhood. J <strong>Neuro</strong>-ophthalmol 16:269–273.<br />

Lepore FE. (1995). Disorders of ocular motility follow<strong>in</strong>g head trauma. Arch <strong>Neuro</strong>l 52:924–926.<br />

Leunda G, Vaquero J, Cabezudo J, et al. (1982). Schwannoma of the oculomotor nerves: report of four cases. J<br />

<strong>Neuro</strong>surg 57:563–565.<br />

Lopes DK, Mericle RA, Wakhloo AK, et al. (1998). Cavernous s<strong>in</strong>us syndrome dur<strong>in</strong>g balloon test occlusion of the<br />

cervical <strong>in</strong>ternal carotid artery. Report of two cases. J <strong>Neuro</strong>surg 89:667–670.<br />

Mansour AM, Bailey BJ. (1997). Ocular f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> Ramsay Hunt syndrome. J <strong>Neuro</strong>-Ophthalmology<br />

17:199–201.<br />

McK<strong>in</strong>na AJ. (1983). Eye signs <strong>in</strong> 611 cases of posterior fossa aneurysms: their diagnostic and prognostic value.<br />

Can J Ophthalmol 18:3–6.<br />

Mielke C, Alexander MSM, <strong>An</strong>and N. (2001). Isolated bilateral trochlear nerve palsy as the first cl<strong>in</strong>ical sign of a<br />

metastatic bronchial carc<strong>in</strong>oma. Am J Ophthalmol 132:593–594.<br />

Miller NR. (1989). Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 4th ed. Baltimore, Williams & Wilk<strong>in</strong>s, p. 686.


294 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Mittleman D, Folk E. (1976). The evaluation and treatment of superior oblique muscle palsy. Trans Am Acad<br />

Ophthalmol Otolaryngol 81:893–898.<br />

Mon Y. (1996). Midbra<strong>in</strong> hemorrhage present<strong>in</strong>g with trochlear nerve palsy—-a case report. R<strong>in</strong>sho Sh<strong>in</strong>keigaki<br />

36:71–73.<br />

Müri RM, Baumgartner RW. (1995). Horner’s syndrome and contralateral trochlear nerve palsy. <strong>Neuro</strong><strong>ophthalmology</strong><br />

15:161.<br />

Neetens A, Van Aerde F. (1981). Extra-ocular muscle palsy from m<strong>in</strong>or head trauma. Initial sign of <strong>in</strong>tracranial<br />

tumor. Bull Soc Belge Ophthalmol 193:161–167.<br />

Nemet P, Godel V, Baruch E, et al. (1980). Benign palsy of the superior oblique. J Pediatr Ophthalmol Strabismus<br />

17:320–322.<br />

Newman NJ, Slamovits, Friedland S, et al. (1995). <strong>Neuro</strong>-ophthalmic manifestations of men<strong>in</strong>gocerebral<br />

<strong>in</strong>flammation from the limited form of Wegener’s granulomatosis. Am J Ophthalmol 120:613–621.<br />

Orwitz JI, Galetta SL, Teener JW. (1997). Bilateral trochlear nerve palsy and downbeat nystagmus <strong>in</strong> a patient with<br />

cephalic tetanus. <strong>Neuro</strong>logy 9:894–895.<br />

Ohtsuka K, Hashimoto M, Nakamura Y. (1998). Bilateral trochlear nerve palsy with arachnoid cyst of the<br />

quadrigem<strong>in</strong>al cistern. Am J Ophthalmol 125:268–270.<br />

Patton N, Beatty S, Lloyd IC. (2000). Bilateral sixth and fourth cranial nerve palsies <strong>in</strong> idiopathic <strong>in</strong>tracranial<br />

hypertension. J R Soc Med 93:80–81.<br />

Petermann SH, Newman NJ. (1999). Pituitary macroadenoma manifest<strong>in</strong>g as an isolated fourth nerve palsy. Am J<br />

Ophthalmol 127:235–236.<br />

Polito E, Leccisotti A. (1996). Pa<strong>in</strong>ful ophthalmoplegia caused by superior ophthalmic ve<strong>in</strong> thrombosis. <strong>Neuro</strong><strong>ophthalmology</strong><br />

16:189–192.<br />

Reich KA, Giansiracusa DR, Strongwater SL. (1990). <strong>Neuro</strong>logic manifestations of giant cell arteritis. Am J Med<br />

89:67–72.<br />

Richards BW, Jones FR Jr, Younge BR. (1992). Causes and prognosis <strong>in</strong> 4,278 cases of paralysis of the oculomotor,<br />

trochlear, and abducens cranial nerves. Am J Ophthalmol 113:489–496.<br />

Robb RM. (1990). Idiopathic superior oblique palsies <strong>in</strong> children. J Pediatr Ophthalmol Strabismus 27:66–69.<br />

Robert CM, Geigenbaum JA, Stern WE. (1973). Ocular palsy occurr<strong>in</strong>g with pituitary tumors. J <strong>Neuro</strong>surg<br />

38:17–19.<br />

Rucker CW. (1958). Paralysis of the third, fourth and sixth cranial nerves. Am J Ophthalmol 46:787–794.<br />

Rucker CW. (1966). The causes of paralysis of the third, fourth, and sixth cranial nerves. Am J Ophthalmol<br />

61:1293–1298.<br />

Rucker C, Dyer J, Smith D, et al. (1956). The causes of acquired paralysis of the ocular muscles. Am J Ophthalmol<br />

41:951–955.<br />

Rush JA, Younge BR. (1981). Paralysis of cranial nerves III, IV, and VI. Arch Ophthalmol 99:76–79.<br />

Sabates NR, Gonce MA, Farris BK. (1991). <strong>Neuro</strong>-ophthalmological f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> closed head trauma. J Cl<strong>in</strong> <strong>Neuro</strong>ophthalmol<br />

11:273–277.<br />

Sadun F, De Negri AM, Santopadre P, Pezzi PP. (1999). Bilateral trochlear nerve palsy associated with cryptococcal<br />

men<strong>in</strong>gitis <strong>in</strong> human immunodeficiency virus <strong>in</strong>fection. J <strong>Neuro</strong>-Ophthalmol 19:118–119.<br />

Santoreneos S, Hanieh A, Jorgensen RE. (1997). Trochlear nerve schwannomas occurr<strong>in</strong>g <strong>in</strong> patients without<br />

neurofibromatosis: case report and review of the literature. <strong>Neuro</strong>surgery 41:282–287.<br />

Scully RE, Galdab<strong>in</strong>i JJ, McNeely BU. (1976). Case records of the Massachusetts General Hospital: weekly<br />

cl<strong>in</strong>icopathological exercises. Case 36-1976. N Engl J Med 295:553–561.<br />

Shimo-oku M, Izaki A, Shim-myo A. (1998). Fourth nerve palsy as an <strong>in</strong>itial sign of <strong>in</strong>ternal carotid-posterior<br />

communicat<strong>in</strong>g artery aneurysm. <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:185–190.<br />

Sh<strong>in</strong>mei Y, Harada T, Ohashi T, et al. (1997). Trochlear nerve palsy associated with superficial siderosis of the<br />

central nervous system. Japanese J Ophthalmol 41:19–22.<br />

Shrader EC, Schlez<strong>in</strong>ger NS. (1960). <strong>Neuro</strong>-ophthalmologic evaluation of abducens nerve paralysis. Arch<br />

Ophthalmol 63:84–91.<br />

Slav<strong>in</strong> ML. (1987). Isolated trochlear nerve palsy secondary to cavernous s<strong>in</strong>us men<strong>in</strong>gioma. Am J Ophthalmol<br />

104:433–434.<br />

Speer C, Pearlman J, Phillips PH, et al. (1999). Fourth nerve palsy <strong>in</strong> pediatric pseudotumor cerebri. Am J<br />

Ophthalmol 127:236–237.<br />

Suzuki J, Wada T, Kowada M. (1962). <strong>Cl<strong>in</strong>ical</strong> observations on tumors of the p<strong>in</strong>eal region. J <strong>Neuro</strong>surg<br />

19:441–445.<br />

Tachibana H, Mimura O, Shiomi M, et al. (1990). Bilateral trochlear nerve palsies from a bra<strong>in</strong>stem hematoma. J<br />

Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:35–37.


Fourth Nerve Palsies 295<br />

Tanaka H, Yuki N, Hirata K. (1998). Trochlear nerve enhancement on three-dimensional magnetic resonance<br />

imag<strong>in</strong>g <strong>in</strong> Fisher syndrome. Am J Ophthalmol 126:322–324.<br />

Thömke F, Hopf HC. (2000). Isolated superior oblique palsies with electrophysiologically documented bra<strong>in</strong>stem<br />

lesions. Muscle Nerve 23:267–270.<br />

Thömke F, R<strong>in</strong>gel K. (1999). Isolated superior oblique palsies with bra<strong>in</strong>stem lesions. <strong>Neuro</strong>logy 53:1126–1127.<br />

Tsai RK, Chen HY, Wang HZ. (2000). Pa<strong>in</strong>ful fourth cranial nerve palsy caused by posteriorly-dra<strong>in</strong><strong>in</strong>g dural<br />

carotid-cavernous s<strong>in</strong>us fistula. J Formosan Med Assoc 99:730–732.<br />

Ulrich A, Kaiser HJ. (1998). Bilateral trochlear nerve palsy <strong>in</strong> systemic lupus erythematosus (SLE). <strong>Neuro</strong><strong>ophthalmology</strong><br />

20:28.<br />

Vanooteghem P, Dehaene I, Van Zandycke M, et al. (1992). Comb<strong>in</strong>ed trochlear nerve palsy and <strong>in</strong>ternuclear<br />

ophthalmoplegia. Arch <strong>Neuro</strong>l 49:108–109.<br />

Varrato J, Galetta S. (2000). Fourth nerve palsy unmasked by botul<strong>in</strong>um tox<strong>in</strong> therapy for cervical torticollis.<br />

<strong>Neuro</strong>logy 55:896.<br />

Vitali C, Genovesi-Ebert F, Romani A, et al. (1996). Ophthalmological and neuro-ophthalmological <strong>in</strong>volvement <strong>in</strong><br />

Churg-Strauss syndrome: a case report. Graefes Arch Cl<strong>in</strong> Exp Ophthalmol 234:404–408.<br />

von Noorden GK, Helveston EM. (1994). Strabismus: A Decision Mak<strong>in</strong>g Approach. St. Louis, Mosby, pp. 162–169.<br />

von Noorden GK, Murray E, Wong SY. (1986). Superior oblique paralysis. A review of 270 cases. Arch Ophthalmol<br />

104:1771–1776.<br />

Wise BL, Palub<strong>in</strong>skas AJ. (1965). Persistent trigem<strong>in</strong>al artery (carotid-basilar anastomosis). J <strong>Neuro</strong>surg 21:199–206.<br />

Wong AMF, Sharpe JA. (1996). Fourth nerve palsy <strong>in</strong> migra<strong>in</strong>e. <strong>Neuro</strong>-Ophthalmology 16:51–54.<br />

Wray SH. (1977). <strong>Neuro</strong>-ophthalmologic manifestations of pituitary and parasellar lesions. Cl<strong>in</strong> <strong>Neuro</strong>surg<br />

24:86–117.<br />

Wright HG, Hansotia P. (1977). Isolated fourth cranial nerve palsies: etiology and prognosis. Wis Med J 76:26–28.<br />

Yamamoto M, Jimbo M, Ide M, et al. (1987). Trochlear neur<strong>in</strong>oma. Surg <strong>Neuro</strong>l 28:287–290.<br />

Younge BR, Sutula F. (1977). <strong>An</strong>alysis of trochlear nerve palsies. Mayo Cl<strong>in</strong> Proc 52:11–18.


13 r<br />

Sixth Nerve Palsies<br />

What is the <strong>An</strong>atomy of the Sixth Nerve?<br />

The paired abducens nuclei are located <strong>in</strong> the dorsal lower portion of the pons,<br />

separated from the floor of the fourth ventricle by the genu of the facial nerve (facial<br />

colliculus). The nucleus conta<strong>in</strong>s motor neurons for the lateral rectus muscle and<br />

<strong>in</strong>terneurons travel<strong>in</strong>g via the medial longitud<strong>in</strong>al fasciculus (MLF) to the contralateral<br />

medial rectus subnucleus of the third nerve. The sixth nerve nucleus thus conta<strong>in</strong>s all<br />

the neurons responsible for horizontal conjugate gaze. The nerve fascicle leaves the<br />

nucleus and travels with<strong>in</strong> the substance of the pont<strong>in</strong>e tegmentum, adjacent to<br />

the medial lemniscus and the corticosp<strong>in</strong>al tract. The sixth nerve leaves the bra<strong>in</strong>stem<br />

<strong>in</strong> the horizontal sulcus between the pons and medulla (lateral to the corticosp<strong>in</strong>al<br />

bundles). It enters the subarachnoid space, ascends along the base of the pons <strong>in</strong> the<br />

prepont<strong>in</strong>e cistern, courses nearly vertically along the clivus, and travels over the<br />

petrous apex of the temporal bone where it is tethered at the petrocl<strong>in</strong>oid (Grüber’s)<br />

ligament <strong>in</strong> Dorello’s canal beneath. It enters the substance of the cavernous s<strong>in</strong>us lateral<br />

to the <strong>in</strong>ternal carotid artery and medial to the ophthalmic division of the trigem<strong>in</strong>al<br />

nerve (V1) to enter the orbit via the superior orbital fissure. In their course from the<br />

pericarotid plexus to the ophthalmic branch of the trigem<strong>in</strong>al nerve, the pupil’s<br />

sympathetic fibers jo<strong>in</strong> the abducens nerve for a few millimeters.<br />

Based on this topographic anatomy, sixth nerve palsies (SNPs) may be categorized as<br />

isolated or nonisolated. The criteria for the diagnosis of an isolated SNP are listed <strong>in</strong><br />

Table 13–1. We def<strong>in</strong>e six types of SNP <strong>in</strong> Table 13–2. These types help to differentiate<br />

etiology and guide the management of SNP. The localization of nonisolated SNPs is<br />

outl<strong>in</strong>ed <strong>in</strong> Table 13–3.<br />

Is the Nonisolated SNP Due to a Pont<strong>in</strong>e<br />

(Lower Pons) Lesion?<br />

Sixth nerve nuclear lesions cause a horizontal gaze palsy, rather than an isolated<br />

abduction deficit. <strong>An</strong> ipsilateral facial palsy may occur because of the close proximity<br />

296


Table 13–1. Criteria for the Diagnosis of Unilateral Isolated Sixth Nerve Palsy (SNP)<br />

Ipsilateral abduction deficit<br />

Incomitant esodeviation that is typically worsened with gaze <strong>in</strong>to the field of the weak lateral<br />

rectus muscle (may become comitant over time)<br />

Exclusion of Duane’s retraction syndrome, spasm of the near reflex, and other causes of abduction<br />

deficits that can mimic an SNP, and exclusion of patients with signs of the follow<strong>in</strong>g:<br />

Orbital disease (e.g., chemosis, proptosis, lid swell<strong>in</strong>g, <strong>in</strong>jection, and positive forced ductions)<br />

Myasthenia gravis (e.g., ptosis, Cogan’s lid twitch sign, orbicularis oculi weakness, muscle<br />

fatigue or variability)<br />

Multiple cranial nerve palsies (<strong>in</strong>clud<strong>in</strong>g bilateral SNP) or radiculopathy<br />

Bra<strong>in</strong>stem signs (e.g., Horner’s syndrome, hemiplegia, cerebellar signs)<br />

Systemic, <strong>in</strong>fectious, or <strong>in</strong>flammatory risk factors for an SNP (e.g., history of previous malignancy,<br />

giant cell arteritis, collagen vascular disease)<br />

Exclusion of patients with severe headache<br />

of the facial and abducens nerve <strong>in</strong> the pons. Nuclear lesions are usually associated with<br />

other bra<strong>in</strong>stem signs (e.g., hemiparesis, hemisensory loss, a central Horner’s<br />

syndrome). Likewise, lesions of the sixth nerve fascicle <strong>in</strong>volve adjacent structures<br />

(e.g., cranial nerves V, VII, and VIII; cerebellar ataxia; a central Horner’s syndrome; or<br />

contralateral hemiplegia). Patients with a presumed nuclear or fascicular SNP should<br />

undergo neuroimag<strong>in</strong>g (usually magnetic resonance imag<strong>in</strong>g [MRI]) directed to the<br />

pons. The etiologies of nuclear or fascicular lesions <strong>in</strong> the pons are listed <strong>in</strong> Table 13–4.<br />

Table 13–2. Def<strong>in</strong>itions of the Six Types of Sixth Nerve Palsy<br />

Sixth Nerve Palsies 297<br />

Type 1: nonisolated<br />

SNP are considered nonisolated <strong>in</strong> the presence of the exclusionary conditions outl<strong>in</strong>ed <strong>in</strong> Table<br />

13–1<br />

Type 2: traumatic<br />

Isolated unilateral SNPs that have a clearly established temporal relationship to significant<br />

previous head trauma and do not progress are considered traumatic <strong>in</strong> orig<strong>in</strong>; patients with SNP<br />

follow<strong>in</strong>g m<strong>in</strong>or head trauma are excluded.<br />

Type 3: congenital<br />

Patients born with SNP<br />

Type 4: vasculopathic<br />

Vasculopathic SNPs occur <strong>in</strong> patients older than age 55 or those with known vasculopathic risk<br />

factors (e.g., hypertension or diabetes)<br />

Type 5: nonvasculopathic<br />

Patients without vasculopathic risk factors def<strong>in</strong>ed above are considered to have nonvasculopathic<br />

SNP<br />

Type 6: progressive (nonisolated) or unresolved<br />

SNPs that worsen after the acute stage (more than 2 weeks) as def<strong>in</strong>ed by a significant <strong>in</strong>crease <strong>in</strong><br />

the measured ocular deviation or who develop new neurologic f<strong>in</strong>d<strong>in</strong>gs are considered<br />

progressive or nonisolated; patients without resolution <strong>in</strong> the measured horizontal deviation<br />

after 12 to 16 weeks are considered unresolved


298 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 13–3. The Localization of Abducens Nerve Lesions<br />

Structure Involved <strong>Cl<strong>in</strong>ical</strong> Presentation<br />

Nuclear lesions<br />

Abducens nucleus Horizontal gaze palsy<br />

Möbius syndrome (gaze palsy with facial diplegia)<br />

Duane’s retraction syndrome (gaze palsy with globe<br />

retraction and narrow<strong>in</strong>g of palpebral fissure with<br />

adduction)<br />

Dorsolateral pons Ipsilateral gaze palsy, facial paresis, dysmetria;<br />

occasionally with contralateral hemiparesis (Foville<br />

syndrome)<br />

Lesions of the abducens fascicle<br />

Abducens fascicle Isolated CN VI palsy<br />

<strong>An</strong>terior paramedial pons Ipsilateral CN VI palsy, ipsilateral CN VII palsy,<br />

contralateral hemiparesis (Millard-Gubler)<br />

Prepont<strong>in</strong>e cistern May have contralateral hemiparesis<br />

Lesion of abducens nerve (subarachnoid, petrous)<br />

Petrous apex (Dorello’s canal) CN VI palsy, deafness, facial (especially retro-orbital) pa<strong>in</strong><br />

(Gradenigo)<br />

Cavernous s<strong>in</strong>us Isolated CN VI palsy; CN VI palsy plus Horner’s<br />

syndrome; also may affect CN III, IV, VI<br />

Superior orbital fissure syndrome CN VI palsy with variable affection of CN III, IV, VI;<br />

proptosis<br />

Orbit CN VI palsy; visual loss; variable proptosis, chemosis, lid<br />

swell<strong>in</strong>g<br />

Source: Modified from Brazis, 2001, with permission from Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s.<br />

Is the SNP Due to a Subarachnoid Space<br />

Lesion?<br />

Lesions of the subarachnoid space may result <strong>in</strong> unilateral or bilateral SNP. This SNP is<br />

a nonlocaliz<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>g because any cause of <strong>in</strong>creased <strong>in</strong>tracranial pressure may result<br />

<strong>in</strong> an SNP (see Table 13–3). Patients with a subarachnoid space lesion should undergo<br />

neuroimag<strong>in</strong>g directed to this location followed by a lumbar puncture (LP) as needed<br />

(class III–IV, level B).<br />

Is the SNP the Result of a Lesion of the<br />

Petrous Apex?<br />

Lesions of the petrous apex caus<strong>in</strong>g SNP are associated with other neurologic f<strong>in</strong>d<strong>in</strong>gs,<br />

<strong>in</strong>clud<strong>in</strong>g <strong>in</strong>volvement of other cranial nerves (e.g., fifth, seventh, and eighth) or facial<br />

pa<strong>in</strong>. <strong>Neuro</strong>imag<strong>in</strong>g should be directed toward the petrous apex (MRI or computed<br />

tomography [CT] for bone <strong>in</strong>volvement) (class III–IV, level B).


Table 13–4. Etiology of a Sixth Nerve Palsy by Topographical Localization<br />

Nuclear (horizontal gaze)<br />

Congenital (Carr, 1997)<br />

Möbius syndrome (Carr, 1997; Pedraza, 2000)<br />

Demyel<strong>in</strong>at<strong>in</strong>g<br />

Infarction or ischemia<br />

Neoplasm (pont<strong>in</strong>e and cerebellar)<br />

Glioma<br />

Metastasis<br />

Histiocytosis X<br />

Trauma<br />

Wernicke-Korsakoff syndrome<br />

Fascicular<br />

Demyel<strong>in</strong>ation (Thömke, 1997, 1998)<br />

Infarction (K<strong>in</strong>g, 1995; Lopez, 1996; Thömke, 1998)<br />

Neoplasm (Balcar, 1999; Landolfi, 1998; Thömke, 1998)<br />

Trauma<br />

Hematoma (Thömke, 1998)<br />

Migra<strong>in</strong>e (Lee, 2002)<br />

Subarachnoid<br />

<strong>An</strong>eurysm or vascular abnormality (K<strong>in</strong>g, 1995)<br />

Persistent primitive trigem<strong>in</strong>al artery<br />

Posterior <strong>in</strong>ferior cerebellar aneurysm<br />

Vertebral artery, <strong>in</strong>clud<strong>in</strong>g elongated vessel (Narai, 2000; Ohtsuka, 1996)<br />

Carc<strong>in</strong>omatous or leukemic men<strong>in</strong>gitis (Wolfe, 1994)<br />

Chiari malformation or basilar impression (Chavis, 1998; Hirose, 1998; K<strong>in</strong>g, 1995)<br />

Follow<strong>in</strong>g procedures<br />

Cervical traction<br />

Lumbar puncture (Thömke, 2000)<br />

Myelography (Bell, 1990)<br />

Postvacc<strong>in</strong>ation<br />

Radiculography (D<strong>in</strong>akaran, 1995; Lloyd, 1995)<br />

Shunt<strong>in</strong>g for hydrocephalus<br />

Sp<strong>in</strong>al or epidural anesthesia (De Veuster, 1994)<br />

Intrathecal glucocorticoid <strong>in</strong>jection (Dumont, 1998)<br />

Inflammatory<br />

Retropharyngeal space <strong>in</strong>flammation (Fanous, 1992)<br />

Necrotiz<strong>in</strong>g vasculitis<br />

Sarcoidosis (Frohman, 2001; Sachs, 1990)<br />

Systemic lupus erythematosus<br />

Wegener’s granulomatosis<br />

Fisher’s syndrome (Nagaoka, 1996)<br />

Infectious<br />

Lyme disease (Lesser, 1990; Mastrianni, 1994)<br />

Syphilis (Slav<strong>in</strong>, 1992; Stepper, 1998)<br />

Tuberculosis<br />

Sixth Nerve Palsies 299<br />

(cont<strong>in</strong>ued)


300 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 13–4. (cont<strong>in</strong>ued)<br />

Cryptococcal men<strong>in</strong>gitis<br />

Cysticercosis (Keane, 2000)<br />

HIV-CMV encephalitis<br />

Neoplasm (Hashimoto, 1998)<br />

Abducens nerve tumor (Ichimi, 1997; Okada, 1997; Tung, 1991)<br />

Cerebellopont<strong>in</strong>e angle tumor<br />

Clivus tumor (e.g., chordoma, chondrosarcoma, plasmacytoma) (Balcar, 1999; Forsyth, 1993;<br />

Harada, 1997; Mekari-Sabbagh, 2001; Movsas, 2000; Volpe, 1993b)<br />

Leukemia (Averbuch-Heller, 1994)<br />

Metastatic (O’Boyle, 1992)<br />

Skull base tumor (Keane, 2000; Volpe, 1993a)<br />

Nasopharyngeal carc<strong>in</strong>oma (Keane, 2000)<br />

Trigem<strong>in</strong>al nerve tumor<br />

Capillary hemangioma of Meckel’s cave (Brazis, 2000)<br />

Nonlocaliz<strong>in</strong>g sign of <strong>in</strong>creased <strong>in</strong>tracranial pressure (Aroichane, 1995)<br />

Pseudotumor cerebri (Krishna, 1998; Patton, 2000)<br />

Men<strong>in</strong>gitis or men<strong>in</strong>geal irritation of any type<br />

Intracranial tumor<br />

Venous s<strong>in</strong>us thrombosis (Biousse, 1999)<br />

Spontaneous cerebrosp<strong>in</strong>al fluid leak with <strong>in</strong>tracranial hypotension (Apte, 1999; Case Records of<br />

the Massachusetts General Hospital, 1998; Ferrante, 1998; Horton, 1994; Mokri, 1997; O’Carroll,<br />

1999; Schiev<strong>in</strong>k, 1996)<br />

Trauma (exclud<strong>in</strong>g surgical) (Hollis, 1997; Holmes, 1998; Lepore, 1995)<br />

Epidural hematoma of clivus (Mizushima, 1998)<br />

Petrous apex<br />

Neoplasm (e.g., nasopharyngeal carc<strong>in</strong>oma)<br />

Infection<br />

Complicated otitis media (Homer, 1996)<br />

Mastoiditis (Gradenigo’s syndrome) (Davé, 1997)<br />

Thrombosis of <strong>in</strong>ferior petrosal or transverse=sigmoid s<strong>in</strong>us (Kuehnen, 1998)<br />

Trauma (<strong>An</strong>toniades, 1993; Mutyala, 1996)<br />

Basilar skull fracture<br />

Inflammatory<br />

Cavernous s<strong>in</strong>us (Keane, 1996)<br />

Cavernous s<strong>in</strong>us thrombosis (Kriss, 1996)<br />

Cavernous s<strong>in</strong>us fistula (Eggenberger, 2000; K<strong>in</strong>g, 1995; Lee, 1998; Uehara, 1998)<br />

Superior ophthalmic ve<strong>in</strong> thrombosis (Polito, 1996)<br />

Neoplasm (Eisenberg, 1999)<br />

Nasopharyngeal carc<strong>in</strong>oma (Keane, 1996)<br />

Pituitary adenoma<br />

Plasmacytoma (Bachmeyer, 1997)<br />

Lymphoma (Keane, 1996; Liu, 1993; Roman-Goldste<strong>in</strong>, 1998)<br />

Hodgk<strong>in</strong>’s disease (Kasner, 1996)<br />

Hemangioma (Brazis, 2000; Lee, 1995)<br />

Hemangioendothelioma (Phookan, 1998)<br />

Men<strong>in</strong>gioma (Kawase, 1996)<br />

(cont<strong>in</strong>ued)


Table 13–4. (cont<strong>in</strong>ued)<br />

Sixth Nerve Palsies 301<br />

Rhabdomyosarcoma (Arita, 2001)<br />

Sixth nerve tumors<br />

Sphenoid s<strong>in</strong>us tumors<br />

Skull base tumors<br />

Squamous cell cancer of pterygopalat<strong>in</strong>e fossa<br />

Subarachnoid diverticulum<br />

Sphenoid s<strong>in</strong>us mucocele (Muneer, 1997)<br />

Ischemia<br />

Inflammatory or <strong>in</strong>fectious<br />

Herpes zoster (Chang-God<strong>in</strong>ich, 1997; Mansour, 1997; Smith, 1993)<br />

Act<strong>in</strong>omycoses (Holland, 1998)<br />

Tolosa-Hunt syndrome<br />

Internal carotid artery diseases<br />

<strong>An</strong>eurysm (FitzSimon, 1995; Hahn, 2000; Keane, 1996; Silva, 1999)<br />

Dissection (Kerty, 1999; Lemesle, 1998)<br />

Dolichoectasia (Blumenthal, 1997; Neugebauer, 2001)<br />

Balloon test occlusion (Lopes, 1998)<br />

Cisplat<strong>in</strong> <strong>in</strong>fusion (Alderson, 1996; Wu, 1997)<br />

Post–radiofrequency rhizotomy for trigem<strong>in</strong>al neuralgia (Harrigan, 1998)<br />

Orbital lesions<br />

Neoplastic (orbital schwannoma)<br />

Inflammation (orbital <strong>in</strong>flammatory pseudotumor)<br />

Infectious<br />

Traumatic (Lazow, 1995)<br />

Localization uncerta<strong>in</strong><br />

Infectious mononucleosis<br />

Mycoplasma pneumoniae <strong>in</strong>fection (Wang, 1998)<br />

Lyme disease (Mikkilä, 2000)<br />

Campylobacter jejuni enteritis (Roberts, 1995)<br />

Creutzfeldt-Jakob disease (Ifergane, 1998)<br />

Progressive multifocal leukoencephalopathy (PML) <strong>in</strong> AIDS (Ormerod, 1996)<br />

Lymphoma (Shaw, 1997)<br />

Bone marrow transplantation treatment with cyclospor<strong>in</strong>e and ganciclovir (Openshaw, 1997)<br />

3,4-Methyl-enedioxymetamphetam<strong>in</strong>e (MDMA, or ‘‘ecstasy’’) abuse (Schroeder, 2000)<br />

Guilla<strong>in</strong>-Barré syndrome (Ropper, 1993)<br />

Fisher’s syndrome (Al-D<strong>in</strong>, 1994; Chiba, 1992, 1993; Igarashi, 1992; Suzuki, 1998)<br />

Associated with anti-GQ1b IgG antibody (Sato, 2001)<br />

Chronic <strong>in</strong>flammatory demyel<strong>in</strong>at<strong>in</strong>g polyradiculoneuropathy (CIDP) (Ropper, 1991; Wokke,<br />

1996)<br />

Un<strong>in</strong>tentional subdural catheter (Haughton, 1999)<br />

Pregnancy (Fung, 1999)


302 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Is the SNP Due to a Cavernous S<strong>in</strong>us Lesion?<br />

With lesions of the cavernous s<strong>in</strong>us, SNPs usually occur <strong>in</strong> association with other cranial<br />

neuropathies (e.g., third, fourth, or fifth nerves) or a Horner’s syndrome. <strong>Neuro</strong>imag<strong>in</strong>g<br />

(usually MRI) should be directed to the cavernous s<strong>in</strong>us (class III–IV, level B). Table 13–3<br />

lists the etiologies of a cavernous s<strong>in</strong>us lesion caus<strong>in</strong>g an SNP.<br />

Is the SNP Due to an Orbital Lesion?<br />

Lesions of the orbit caus<strong>in</strong>g SNP are usually associated with other orbital signs such as<br />

proptosis or chemosis. <strong>Neuro</strong>imag<strong>in</strong>g (preferably MRI) should be directed to the orbit<br />

(class III–IV, level B).<br />

What are the Recommendations for the<br />

Evaluation of SNP?<br />

1. Nonisolated SNP (type 1) should undergo neuroimag<strong>in</strong>g and further evaluation<br />

(class III–IV, level B). Special attention should be directed to areas suggested<br />

topographically by the associated neurologic signs or symptoms (see above)<br />

(Gailbraith, 1994; Nemzek, 1995; O’Boyle, 1992; Steel, 1994; Volpe, 1993).<br />

2. Traumatic SNP (type 2) should undergo the appropriate acute neuroimag<strong>in</strong>g (CT<br />

scann<strong>in</strong>g) as <strong>in</strong>dicated by the trauma associated neurologic signs and symptoms<br />

(class IV, level C). In acute traumatic SNP, failure to recover by 6 months after onset<br />

was associated <strong>in</strong>dependently with the <strong>in</strong>ability to abduct past midl<strong>in</strong>e at presentation<br />

and bilaterality (Holmes, 2001).<br />

3. Congenital SNPs (type 3) are rare, and there are <strong>in</strong>sufficient data from our review of<br />

the literature to make a strong recommendation for the management of congenital<br />

isolated SNPs (class IV, level U). Nevertheless, if the SNP can be clearly demonstrated<br />

to be congenital <strong>in</strong> orig<strong>in</strong>, additional neuroimag<strong>in</strong>g is not generally required (class IV,<br />

level U). Transient SNPs may occur follow<strong>in</strong>g birth trauma <strong>in</strong> newborns. Gailbraith<br />

reported the <strong>in</strong>cidence of SNP <strong>in</strong> a group of 6886 neonates as be<strong>in</strong>g 0.4% (Gailbraith,<br />

1994). All of these SNPs (type 3) resolved with<strong>in</strong> 6 weeks, and we recommend that<br />

imag<strong>in</strong>g may be deferred <strong>in</strong> these patients. The <strong>in</strong>cidence of SNP <strong>in</strong>creased with<br />

‘‘complexity of <strong>in</strong>strumentation,’’ with 0% prevalence for cesarean section, 0.1%<br />

prevalence for spontaneous vag<strong>in</strong>al delivery, 2.4% prevalence for forceps delivery,<br />

and 3.2% for vacuum extraction. Leung reported three cases of right SNP after<br />

vag<strong>in</strong>al delivery that all resolved after 4 to 12 weeks (Leung, 1987). Observation for<br />

improvement is a reasonable approach <strong>in</strong> these cases (class IV, level C).<br />

4. Isolated vasculopathic SNPs (type 4) may be observed (without neuroimag<strong>in</strong>g) for<br />

improvement for 4 to 12 weeks (class III, level C). Rush and Younge reported a<br />

recovery rate of 49.6% <strong>in</strong> 419 nonselected SNP cases, and a higher rate of 71% <strong>in</strong> 419<br />

patients with diabetes mellitus, hypertension, or atherosclerosis (Rush, 1981). Some<br />

authors have recommended observ<strong>in</strong>g vasculopathic isolated SNP beyond a 3-month<br />

<strong>in</strong>terval of recovery if the esotropia and the abduction deficit were decreas<strong>in</strong>g (Burde,<br />

1992). Elderly patients who present with an isolated SNP and headache, scalp


Sixth Nerve Palsies 303<br />

tenderness, jaw claudication, or visual loss should undergo an appropriate evaluation<br />

for giant cell arteritis (class IV, level C). We recommend check<strong>in</strong>g the erythrocyte<br />

sedimentation rate and, when cl<strong>in</strong>ically <strong>in</strong>dicated, do<strong>in</strong>g a temporal artery biopsy<br />

(Reich, 1990). Patients with progression or lack of improvement (type 6) should<br />

undergo neuroimag<strong>in</strong>g (class IV, level C).3.62<br />

It should be noted that early progression of paresis over the course of 1 week <strong>in</strong><br />

vasculopathic SNP is not uncommon (Jacobson, 1996). In one study, only two of 35<br />

patients with ischemic SNP had <strong>in</strong>itial complete abduction deficits (Jacobson, 1996).<br />

Of 33 patients with <strong>in</strong>itial <strong>in</strong>complete deficits, 18 (55%) showed progression over a 1week<br />

period. We do not consider progression over the first week after onset to be a<br />

sign of nonvasculopathic SNP (class IV, level C).<br />

5. We recommend that nonvasculopathic SNP (type 5) should undergo neuroimag<strong>in</strong>g<br />

(Fanous, 1992; Gailbraith, 1994; Hashimoto, 1998; Kuehnen, 1998; O’Boyle, 1992;<br />

Rush, 1981; Sachs, 1990; Slav<strong>in</strong>, 1992; Steel, 1994; Straussberg, 1993; Tung, 1991;<br />

Uehara, 1998) (class III–IV, level C). Younger patients, or those without vasculopathic<br />

risk factors (type 5), could also undergo a more extensive evaluation <strong>in</strong>clud<strong>in</strong>g a<br />

fast<strong>in</strong>g blood glucose, complete blood cell count, and a blood pressure check for<br />

underly<strong>in</strong>g vasculopathy (class IV, level C). Other test<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g neuroimag<strong>in</strong>g<br />

(MRI) and if necessary LP, is recommended (class IV, level C). Type 5 SNPs have a<br />

significant (27%) chance of harbor<strong>in</strong>g an underly<strong>in</strong>g malignant neoplasm (Sav<strong>in</strong>o,<br />

1986). Evaluation for myasthenia gravis should also be considered <strong>in</strong> these patients<br />

(class IV, level C).<br />

6. Test<strong>in</strong>g for vasculopathic risk factors <strong>in</strong> type 4 or type 5 SNP should be performed,<br />

even <strong>in</strong> the absence of a previous history of diabetes or hypertension (Burde, 1992;<br />

Sav<strong>in</strong>o, 1982; Watanabe, 1990). Ocular motor cranial neuropathies may be the<br />

present<strong>in</strong>g sign or only sign of underly<strong>in</strong>g vasculopathy <strong>in</strong> these patients (class IV,<br />

level C).<br />

7. Patients with progressive or unresolved SNP (type 6) and patients with new<br />

neurologic signs or symptoms should undergo neuroimag<strong>in</strong>g (Burde, 1992; Moster,<br />

1984; Sav<strong>in</strong>o, 1982, 1986). Patients with progressive or unresolved SNP should<br />

probably undergo neuroimag<strong>in</strong>g (class IV, level C). Galetta and Smith described 13<br />

patients with chronic SNP, that is, an SNP last<strong>in</strong>g 6 months or longer. Of these, four<br />

were idiopathic, four due to tumor, two were traumatic, one was postsp<strong>in</strong>al<br />

anesthesia, one was temporal arteritis, and one was <strong>in</strong>tracavernous aneurysm<br />

(Galetta, 1989). Sav<strong>in</strong>o et al reviewed 38 patients with chronic SNP (Sav<strong>in</strong>o, 1982).<br />

Fourteen (37%) were discovered to have an <strong>in</strong>tracranial lesion. These authors<br />

specifically recommended neuroradiologic <strong>in</strong>vestigation at onset <strong>in</strong> any patient<br />

with a history of carc<strong>in</strong>oma.<br />

Moster et al commented on the lack of truly isolated SNP reported <strong>in</strong> the literature<br />

(Moster, 1984). Most reports do not dist<strong>in</strong>guish unilateral from bilateral SNP, or isolated<br />

SNP from those associated with other neurologic or cranial nerve defects (Sav<strong>in</strong>o, 1986).<br />

Our review of the literature on SNP revealed 31 case reports and case series describ<strong>in</strong>g<br />

237 patients with presumed isolated SNP. Of these 237 patients, 31 were traumatic, none<br />

were congenital, 60 were vasculopathic, 47 were idiopathic, and the rema<strong>in</strong>der had<br />

a number of miscellaneous etiologies (seven post-LP, 19 multiple sclerosis, two<br />

postimmunizations, five ‘‘<strong>in</strong>fectious,’’ five aneurysms, one sarcoid, six ‘‘presumed<br />

<strong>in</strong>flammation,’’ one orbital amyloidosis, and one diverticulum of the cavernous


304 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 13–1. Evaluation of sixth nerve palsy (SNP).


s<strong>in</strong>us). Fifty-two cases were the result of tumors (<strong>in</strong>clud<strong>in</strong>g chordomas, chondrosarcomas,<br />

men<strong>in</strong>giomas, cyl<strong>in</strong>droma, lymphomatous men<strong>in</strong>gitis, schwannomas, nasopharyngeal<br />

carc<strong>in</strong>oma, metastases, trigem<strong>in</strong>al neurilemmoma, pont<strong>in</strong>e glioma, pituitary<br />

adenomas, and miscellaneous tumors). The rema<strong>in</strong><strong>in</strong>g SNPs <strong>in</strong> the literature review<br />

were associated with other neurologic signs or symptoms, such as headache, t<strong>in</strong>nitus,<br />

disc edema, or nystagmus, or there were <strong>in</strong>sufficient cl<strong>in</strong>ical data <strong>in</strong> the report to<br />

determ<strong>in</strong>e if the SNP was truly isolated accord<strong>in</strong>g to our criteria <strong>in</strong> Table 13–1<br />

(<strong>An</strong>toniades, 1993; Averbuch-Heller, 1994; Barry-K<strong>in</strong>sella, 1994; Bell, 1990; Burde,<br />

1992; Depper, 1993; D<strong>in</strong>akaran, 1995; Fanous, 1992; Fujuoka, 1995; Gailbraith, 1994;<br />

Hamilton, 1993; Lee, 1992, 1994; Lesser, 1990; Leung, 1987; Lewis, 1995; Moster,<br />

1984; Nemzek, 1995; O’Boyle, 1992; Rush, 1981; Sachs, 1990; Sav<strong>in</strong>o, 1982, 1986;<br />

Simcock, 1994; Slav<strong>in</strong> 1992; Steel, 1994; Straussberg, 1993; Tung, 1991; Volpe, 1993a;<br />

Watanabe, 1990; Yang, 1991).<br />

SNPs that occur after LP, post–myelographic LP, and sp<strong>in</strong>al anesthesia have been<br />

reported <strong>in</strong> the literature (Simcock, 1994). Thorsen reported 229 cases of SNP after sp<strong>in</strong>al<br />

anesthesia and LP (Thorsen, 1947). Most of these SNPs occurred at the 10th day<br />

follow<strong>in</strong>g LP, were unilateral, associated with headache, and occurred <strong>in</strong> young patients<br />

(Simcock, 1994; Thorsen, 1947). These patients may be followed for resolution without<br />

imag<strong>in</strong>g (class IV, level C).<br />

<strong>An</strong>eurysm is a rare cause of acquired SNP. Rucker reported 924 cases of SNP, and<br />

only 31 (3.4%) were due to aneurysm (Rucker, 1966). Rush and Younge described 419<br />

cases of SNP, and only 15 (3.6%) were due to aneurysm (Rush, 1981). Other authors did<br />

not f<strong>in</strong>d any cases of aneurysm present<strong>in</strong>g with an isolated SNP <strong>in</strong> their series on<br />

cerebral aneurysms with ocular <strong>in</strong>volvement (Steel, 1994), and others have reported<br />

similar f<strong>in</strong>d<strong>in</strong>gs. We do not typically recommend evaluation for aneurysm <strong>in</strong> isolated<br />

SNP (class IV, level C), but aneurysm can cause SNP <strong>in</strong> patients with signs of<br />

subarachnoid hemorrhage, papilledema, or other cranial neuropathies.<br />

A suggested approach to the evaluation of SNP is presented <strong>in</strong> Figure 13–1.<br />

References<br />

Sixth Nerve Palsies 305<br />

Alderson LM, Noonan PT, Sup Choi I, Henson JW. (1996). Regional subacute cranial neuropathies follow<strong>in</strong>g<br />

<strong>in</strong>ternal carotid cisplat<strong>in</strong> <strong>in</strong>fusion. <strong>Neuro</strong>logy 47:1088–1090.<br />

Al-D<strong>in</strong> AN, <strong>An</strong>derson M, Eeg-Olofsson O, et al. (1994). <strong>Neuro</strong>-ophthalmic manifestations of the syndrome of<br />

ophthalmoplegia, ataxia, and areflexia. A review. Acta <strong>Neuro</strong>l Scand 89:157–163.<br />

<strong>An</strong>toniades K, Karakasis D, Taskos N. (1993). Abducens nerve palsy follow<strong>in</strong>g transverse fracture of the middle<br />

cranial fossa. J Craniomaxillofac Surg 21:172–175.<br />

Apte RS, Bartek W, Mello A, Haq A. (1999). Spontaneous <strong>in</strong>tracranial hypotension. Am J Ophthalmol 127:482–485.<br />

Arita K, Sugiyama K, Tom<strong>in</strong>aga A, Yamasaki F. (2001). Intrasellar rhabdomyosarcoma: case report. <strong>Neuro</strong>surgery<br />

48:677–680.<br />

Aroichane M, Repka MX. (1995). Outcome of sixth nerve palsy or paresis <strong>in</strong> young children. J Pediatr Ophthalmol<br />

32:152–156.<br />

Averbuch-Heller L, Gillis S, Ben-Hur T. (1994). Transient sixth-nerve palsy as the first presentation of acute<br />

leukemia. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 57:506.<br />

Bachmeyer C, Levy V, Carteret M, et al. (1997). Sphenoid s<strong>in</strong>us localization of multiple myeloma reveal<strong>in</strong>g<br />

evolution from benign gammopathy. Head Neck 19:347–350.<br />

Balcar LJ, Galetta SL, Cornblath WT, Liu GT. (1999). <strong>Neuro</strong>-ophthalmologic manifestations of Maffucci’s<br />

syndrome and Ollier’s disease. J <strong>Neuro</strong>-ophthalmol 19:62–66.<br />

Barry-K<strong>in</strong>sella C, Milner M, McCarthy N, et al. (1994). Sixth nerve palsy: an unusual manifestation of<br />

preeclampsia. Obstet Gynecol 83:849–850.


306 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Bell JA, Dowd TC, McIlwa<strong>in</strong>e GG, et al. (1990). Postmyelographic abducent nerve palsy <strong>in</strong> association with the<br />

contrast agent iopamidol. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:115–117.<br />

Biousse V, Ameri A, Bousser M-G. (1999). Isolated <strong>in</strong>tracranial hypertension as the only sign of cerebral venous<br />

thrombosis. <strong>Neuro</strong>logy 53:1537–1542.<br />

Blumenthal EZ, Gomori JM, Dotan S. (1997). Recurrent abducens nerve palsy caused by dolichoectasia of the<br />

cavernous <strong>in</strong>ternal carotid artery. J Ophthalmol 124:255–257.<br />

Brazis PW, Masdeu JC, Biller J. (2001). Localization <strong>in</strong> <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>logy. 4th ed. Philadelphia, Lipp<strong>in</strong>cott Williams<br />

& Wilk<strong>in</strong>s.<br />

Brazis PW, Wharen RE, Czervionke LF, et al. (2000). Hemangioma of the mandibular branch of the<br />

trigem<strong>in</strong>al nerve <strong>in</strong> the Meckel cave present<strong>in</strong>g with facial pa<strong>in</strong> and sixth nerve palsy. J <strong>Neuro</strong>-ophthalmol<br />

20:14–16.<br />

Burde RM, Sav<strong>in</strong>o PJ, Trobe JD. (1992). <strong>Cl<strong>in</strong>ical</strong> Decisions <strong>in</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 2nd ed. St. Louis, Mosby Year<br />

Book, pp. 289–311.<br />

Carr MM, Ross DA, Zuker RM. (1997). Cranial nerve defects <strong>in</strong> congenital facial palsy [review]. J Otolaryngol<br />

26:80–87.<br />

Case Records of the Massachusetts General Hospital. (1998). Case 2-1998. N Engl J Med 338:180–188.<br />

Chang-God<strong>in</strong>ich A, Lee AG, Brazis PW, et al. (1997). Complete ophthalmoplegia after zoster ophthalmicus.<br />

J <strong>Neuro</strong>-ophthalmol 17:262–265.<br />

Chavis PS, Mullaney PB, Bohlega S. (1998). Fluctuat<strong>in</strong>g oculomotor signs <strong>in</strong> Arnold-Chiari malformation.<br />

Diagnostic pitfalls. <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:215–221.<br />

Chiba A, Kusunoki S, Obata H, et al. (1993). Serum anti-GB1b IgG antibody is associated with ophthalmoplegia <strong>in</strong><br />

Miller Fisher syndrome and Guilla<strong>in</strong>-Barré syndrome: cl<strong>in</strong>ical and immunohistochemical studies. <strong>Neuro</strong>logy<br />

43:1911–1917.<br />

Chiba A, Kusunoki S, Shimizu T, et al. (1992). Serum IgG antibody to ganglioside GQ1b is a possible marker of<br />

Miller Fisher syndrome. <strong>An</strong>n <strong>Neuro</strong>l 31:677–679.<br />

Davé AV, Diaz-Marchan PJ, Lee AG. (1997). <strong>Cl<strong>in</strong>ical</strong> and magnetic resonance imag<strong>in</strong>g features of Gradenigo<br />

syndrome. Am J Ophthalmol 124:568–570.<br />

Depper MH, Truwit CL, Dreisbach JN, et al. (1993). Isolated abducens nerve palsy: MR imag<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs. AJR<br />

160:837–841.<br />

De Veuster I, Smet H, Vercauteren M, Tassignon MJ. (1994). The time course of a sixth nerve paresis follow<strong>in</strong>g<br />

epidural anesthesia. Bull Soc Belge Ophtalmol 252:45–47.<br />

D<strong>in</strong>akaran S, Desai SP, Corney CE. (1995). Case report: sixth nerve palsy follow<strong>in</strong>g radiculography. Br J Radiol 68:424.<br />

Dumont D, Hariz H, Meynieu P, et al. (1998). Abducens palsy after an <strong>in</strong>trathecal glucocorticoid <strong>in</strong>jection.<br />

Evidence for a role of <strong>in</strong>tracranial hypotension. Rev Rhum (English edition) 65:352–354.<br />

Eggenberger E, Lee AG, Forget TR Jr, Rosenwasser R. (2000). A brutal headache and double vision. Surv<br />

Ophthalmol 45:147–153.<br />

Eisenberg MB, Al-Mefty O, DeMonte F, Burson GT. (1999). Benign nonmen<strong>in</strong>geal tumors of the cavernous s<strong>in</strong>us.<br />

<strong>Neuro</strong>surgery 44:949–955.<br />

Fanous MM, Margo CE, Hamed LM. (1992). Chronic idiopathic <strong>in</strong>flammation of the retropharyngeal space<br />

present<strong>in</strong>g with sequential abducens palsies. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:154–157.<br />

Ferrante E, Sav<strong>in</strong>o A, Brioschi A, et al. (1998). Transient oculomotor cranial nerve palsy <strong>in</strong> spontaneous<br />

<strong>in</strong>tracranial hypotension. J <strong>Neuro</strong>surg Sci 42:177–179.<br />

FitzSimon JS, Toland J, Philips, J, et al. (1995). Giant aneurysms <strong>in</strong> the cavernous s<strong>in</strong>us. <strong>Neuro</strong>-<strong>ophthalmology</strong> 15:59–65.<br />

Forsyth PA, Casc<strong>in</strong>o TL, Shaw EG, et al. (1993). Intracranial chordomas: a cl<strong>in</strong>icopathological and prognostic<br />

study of 51 cases. J <strong>Neuro</strong>surg 78:741–747.<br />

Frohman LP, Grigorian R, Bielory L. (2001). <strong>Neuro</strong>-ophthalmic manifestations of sarcoidosis: cl<strong>in</strong>ical spectrum,<br />

evaluation, and management. J <strong>Neuro</strong>-ophthalmol 21:132–137.<br />

Fujuoka T, Segawa F, Ogawa K, et al. (1995). Ischemic and hemorrhagic bra<strong>in</strong> stem lesions mimick<strong>in</strong>g diabetic<br />

ophthalmoplegia. Cl<strong>in</strong> <strong>Neuro</strong>l <strong>Neuro</strong>surg 97:167–171.<br />

Fung TY, Chung TK. (1999). Abducens nerve palsy complicat<strong>in</strong>g pregnancy: a case report. Eur J Obstet Gynecol<br />

Reprod Biol 83:223–224.<br />

Gailbraith RS. (1994). Incidence of neonatal sixth nerve palsy <strong>in</strong> relation to mode of delivery. Am J Obstet 170:1158.<br />

Galetta SL, Smith JL. (1989). Chronic isolated sixth nerve palsies. Arch <strong>Neuro</strong>l 46:79–82.<br />

Hahn CD, Nicolle DA, Lownie SP, Drake CG. (2000). Giant cavernous carotid artery aneurysms: cl<strong>in</strong>ical<br />

presentation <strong>in</strong> fifty-seven cases. J <strong>Neuro</strong>-ophthalmol 20:253–258.<br />

Hamilton SR, Smith CH, Lessell S. (1993). Idiopathic hypertrophic cranial pachymen<strong>in</strong>gitis. J Cl<strong>in</strong> <strong>Neuro</strong>ophthalmol<br />

13:127–134.


Sixth Nerve Palsies 307<br />

Harada T, Ohashi T, Ohki K, et al. (1997). Clival chordoma present<strong>in</strong>g as acute esotropia due to bilateral abducens<br />

palsy. Ophthalmologica 211:109–111.<br />

Harrigan MR, Chandler WF. (1998). Abducens nerve palsy after radiofrequency rhizolysis for trigem<strong>in</strong>al<br />

neuralgia: case report. <strong>Neuro</strong>surgery 43:623–625.<br />

Hashimoto M, Ohtsuka K. (1998). Compressive lesions of the abducens nerve <strong>in</strong> the subarachnoid space disclosed<br />

by th<strong>in</strong>-slice magnetic resonance imag<strong>in</strong>g. Ophthalmologica 212:188–189.<br />

Haughton AJ, Chalkiadis GA. (1999). Un<strong>in</strong>tentional paediatric subdural catheter with oculomotor and abducens<br />

nerve palsies. Paediatr <strong>An</strong>aesth 9:543–548.<br />

Hirose Y, Sagoh M, Mayanagi K, Murakami H. (1998). Abducens nerve palsy caused by basilar impression<br />

associated with atlanto-occipital assimilation. <strong>Neuro</strong>l Med Chir 38:363–366.<br />

Holland NR, Deibert E. (1998). CNS Act<strong>in</strong>omycosis present<strong>in</strong>g with bilateral cavernous s<strong>in</strong>us syndrome. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 64:4.<br />

Hollis GJ. (1997). Sixth cranial nerve palsy follow<strong>in</strong>g closed head <strong>in</strong>jury <strong>in</strong> a child. J Accident Emerg Med<br />

14:172–175.<br />

Holmes JM, Beck RW, Kip KE, et al. (2001). Predictors of nonrecovery <strong>in</strong> acute traumatic sixth nerve palsy and<br />

paresis. Ophthalmology 108:1457–1460.<br />

Holmes JM, Droste PJ, Beck RW. (1998). The natural history of acute traumatic sixth nerve palsy or paresis. JAm<br />

Assoc Pediatr Ophthalmol Strabismus 2:265–268.<br />

Homer JJ, Johnson IJ, Jones NS. (1996). Middle ear <strong>in</strong>fection and sixth nerve palsy. J Laryngol Otol 110:872–874.<br />

Horton JC, Fishman RA. (1994). <strong>Neuro</strong>visual f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> the syndrome of spontaneous <strong>in</strong>tracranial hypotension<br />

from dural cerebrosp<strong>in</strong>al fluid leak. Ophthalmology 101:244–251.<br />

Ichimi K, Yoshida J, Inao S, Wakabayashi T. (1997). Abducens nerve neur<strong>in</strong>oma—case report. <strong>Neuro</strong>l Med Chur<br />

37:197–200.<br />

Ifergane G, Merk<strong>in</strong> S, Valdman I, et al. (1998). Ocular manifestations of Jakob-Creutzfeldt disease (CJD). <strong>Neuro</strong><strong>ophthalmology</strong><br />

20:21.<br />

Igarashi Y, Takeda M, Maekawa H, et al. (1992). Fisher’s syndrome without total ophthalmoplegia. Ophthalmology<br />

205:163–167.<br />

Jacobson DM. (1996). Progressive ophthalmoplegia with acute ischemic abducens nerve palsies. Am J Ophthalmol<br />

122:278–279.<br />

Kasner SE, Galetta SL, Vaughn DJ. (1996). Cavernous s<strong>in</strong>us syndrome <strong>in</strong> Hodgk<strong>in</strong>’s disease. J <strong>Neuro</strong>-Ophthalmol<br />

16:204–207.<br />

Kawase T, Sone A, Igarashi Y, et al. (1996). Developmental patterns and characteristic symptoms of petroclival<br />

men<strong>in</strong>giomas. <strong>Neuro</strong>l Med Chir 36:1–6.<br />

Keane JR. (1996). Cavernous s<strong>in</strong>us syndrome. <strong>An</strong>alysis of 151 cases. Arch <strong>Neuro</strong>l 53:967–971.<br />

Keane JR. (2000). Comb<strong>in</strong>ed VIth and XIIth cranial nerve palsies: a clival syndrome. <strong>Neuro</strong>logy 54:1540–1541.<br />

Kerty E. (1999). The <strong>ophthalmology</strong> of <strong>in</strong>ternal carotid artery dissection. Acta Ophthalmol Scand 77:418–421.<br />

K<strong>in</strong>g AJ, Stacey E, Stephenson G, Trimble RB. (1995). Spontaneous recovery rates for unilateral sixth nerve palsies.<br />

Eye 9:476–478.<br />

Krishna R, Kosmorsky GS, Wright KW. (1998). Pseudotumor cerebri s<strong>in</strong>e papilledema with unilateral sixth nerve<br />

palsy. J <strong>Neuro</strong>-ophthalmol 18:53–55.<br />

Kriss TC, Martich Kriss V, Warf BC. (1996). Cavernous s<strong>in</strong>us thrombophlebitis: case report. <strong>Neuro</strong>surgery 39:385–<br />

389.<br />

Kuehnen J, Schwartz A, Neff W, Hennerici M. (1998). Cranial nerve syndrome <strong>in</strong> thrombosis of the transverse=sigmoid<br />

s<strong>in</strong>uses. Bra<strong>in</strong> 121:381–388.<br />

Landolfi JC, Thaler HT, De <strong>An</strong>gelis LM. (1998). Adult bra<strong>in</strong>stem gliomas. <strong>Neuro</strong>logy 51:1136–1139.<br />

Lazow SK, Izzo SR, Fe<strong>in</strong>berg ME, Berger JR. (1995). Bilateral abducens nerve palsy secondary to maxillofacial<br />

trauma: report of case with proposed mechanism of <strong>in</strong>jury. J Oral Maxillofac Surg 53:1197–1199.<br />

Lee AG, Miller NR, Brazis PW, Benson ML. (1995). Cavernous s<strong>in</strong>us hemangioma. <strong>Cl<strong>in</strong>ical</strong> and neuroimag<strong>in</strong>g<br />

features. J <strong>Neuro</strong>-ophthalmol 15:225–229.<br />

Lee J. (1992). Modern management of sixth nerve palsy. Aust NZ J Ophthalmol 20:41–46.<br />

Lee J, Harris S, Cohen J, et al. (1994). Results of a prospective randomized trial of botul<strong>in</strong>um tox<strong>in</strong> therapy <strong>in</strong> acute<br />

unilateral sixth nerve palsy. J Pediatr Ophthalmol Strabismus 31:283–286.<br />

Lee KY, Kim SM, Kim DI. (1998). Isolated bilateral abducens nerve palsy due to carotid cavernous dural<br />

arteriovenous fistula. Yonsei Med J 39:283–286.<br />

Lee TG, Choi W-S, Chung K-C. (2002). Ophthalmoplegic migra<strong>in</strong>e with reversible enhancement of <strong>in</strong>traparenchymal<br />

abducens nerve on MRI. Headache 42:140–141.<br />

Lemesle M, Beuriat P, Becker F, et al. (1998). Head pa<strong>in</strong> associated with sixth-nerve palsy: spontaneous dissection<br />

of the <strong>in</strong>ternal carotid artery. Cephalgia 18:112–114.


308 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Lepore FE. (1995). Disorders of ocular motility follow<strong>in</strong>g head trauma. Arch <strong>Neuro</strong>l 52:924–926.<br />

Lesser RL, Kornmehl EW, Pachner AR, et al. (1990). <strong>Neuro</strong>-ophthalmologic manifestations of Lyme disease.<br />

Ophthalmology 97:699–706.<br />

Leung AKC. (1987). Transient sixth cranial nerve palsy <strong>in</strong> newborn <strong>in</strong>fants. Br J Cl<strong>in</strong> Pract 41:717–718.<br />

Lewis AI, Tomsick TA, Tew JM. (1995). Management of 100 consecutive direct carotid-cavernous fistulas: results of<br />

treatment with detachable balloons. <strong>Neuro</strong>surgery 36:239–245.<br />

Liu GT, Kay MD, Byrne GE, et al. (1993). Ophthalmoparesis due to Burkitt’s lymphoma follow<strong>in</strong>g cardiac<br />

transplantation. <strong>Neuro</strong>logy 43:2147–2149.<br />

Lloyd MN. (1995). Sixth nerve palsy follow<strong>in</strong>g radiculography [letter; comment]. Br J Radiol 68:1039–1040.<br />

Lopes DK, Mericle RA, Wakhloo AK, et al. (1998). Cavernous s<strong>in</strong>us syndrome dur<strong>in</strong>g balloon test occlusion of the<br />

cervical <strong>in</strong>ternal carotid artery. Report of two cases. J <strong>Neuro</strong>surg 89:667–670.<br />

Lopez JM, Reigosa RP, Losada GA, et al. (1996). Bilateral <strong>in</strong>farction of the rostral pont<strong>in</strong>e tegmentum as a cause of<br />

isolated bilateral supranuclear sixth nerve palsy related to hypertension. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

60:235–236.<br />

Mansour AM, Bailey BJ. (1997). Ocular f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> Ramsay Hunt syndrome. J <strong>Neuro</strong>-ophthalmol 17:199–201.<br />

Mastrianni JA, Galetta SL, Raps EC, Liu GT, Volpe NJ. (1994). Isolated fascicular abducens nerve palsy and Lyme<br />

disease. J <strong>Neuro</strong>-ophthalmol 14:2–5.<br />

Mekari-Sabbagh ON, DaCunha RP. (2001). Crossed eyes <strong>in</strong> a six-year-old girl. Surv Ophthalmol 45:331–334.<br />

Mikkilä HO, Seppälä IJT, Viljanen MK, et al. (2000). The expand<strong>in</strong>g cl<strong>in</strong>ical spectrum of ocular Lyme borreliosis.<br />

Ophthalmology 107:581–587.<br />

Mizushima H, Kobayashi N, Sawabe Y, et al. (1998). Epidural hematoma of the clivus. Case report. J <strong>Neuro</strong>surg<br />

88:590–593.<br />

Mokri B, Piepgras DG, Miller GM. (1997). Syndrome of orthostatic headaches and diffuse pachymen<strong>in</strong>geal<br />

gadol<strong>in</strong>ium enhancement. Mayo Cl<strong>in</strong> Proc 72:400–413.<br />

Moster ML, Sav<strong>in</strong>o PJ, Sergott RC, et al. (1984). Isolated sixth-nerve palsies <strong>in</strong> younger adults. Arch Ophthalmol<br />

102:1328–1330.<br />

Movsas TZ, Balcar LJ, Eggenberger ER, et al. (2000). Sixth nerve palsy as a present<strong>in</strong>g sign of <strong>in</strong>tracranial<br />

plasmacytoma and multiple myeloma. J <strong>Neuro</strong>-ophthalmol 20:242–245.<br />

Muneer A, Jones NS. (1997). Unilateral abducens nerve palsy: a present<strong>in</strong>g sign of sphenoid s<strong>in</strong>us mucoceles.<br />

J Laryngol Otol 111:644–646.<br />

Mutyala S, Holmes JM, Hodge DO, Younge BR. (1996). Spontaneous recovery rate <strong>in</strong> traumatic sixth-nerve palsy.<br />

Am J Ophthalmol 122:898–899.<br />

Nagaoka U, Kato T, Kurita K, et al. (1996). Cranial nerve enhancement on three-dimensional MRI <strong>in</strong> Miller Fisher<br />

syndrome. <strong>Neuro</strong>logy 47:1601–1502.<br />

Narai H, Manabe Y, Deguchi K, et al. (2000). Isolated abducens nerve palsy caused by vascular compression.<br />

<strong>Neuro</strong>logy 55:453–454.<br />

Nemzek W, Postma G, Poirier V, et al. (1995). MR features of pachymen<strong>in</strong>gitis present<strong>in</strong>g with sixth-nerve-palsy<br />

secondary to sphenoid s<strong>in</strong>usitis. AJNR 16:960–963.<br />

Neugebauer A, Kirsch A, Fricke J, Russmann W. (2001). New onset of crossed eyes <strong>in</strong> an adult. Surv Ophthalmol<br />

45:335–344.<br />

Newman NJ, Slamovits, Friedland S, et al. (1995). <strong>Neuro</strong>-ophthalmic manifestations of men<strong>in</strong>gocerebral<br />

<strong>in</strong>flammation from the limited form of Wegener’s granulomatosis. Am J Ophthalmol<br />

120:613–621.<br />

O’Boyle JE, Gardner TA, Oliva A, et al. (1992). Sixth nerve palsy as the <strong>in</strong>itial present<strong>in</strong>g sign of metastatic prostate<br />

cancer. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:149–153.<br />

O’Carroll CP, Brandt-Zawadski M. (1999). The syndrome of spontaneous <strong>in</strong>tracranial hypotension. Cephalgia<br />

19:80–87.<br />

Ohtsuka K, Sone A, Igarashi Y, et al. (1996). Vascular compressive abducens nerve palsy disclosed by magnetic<br />

resonance imag<strong>in</strong>g. Am J Ophthalmol 122:416–419.<br />

Okada Y, Shima T, Nishida M, Okita S. (1997). Large sixth nerve neuroma <strong>in</strong>volv<strong>in</strong>g the prepont<strong>in</strong>e region: case<br />

report. <strong>Neuro</strong>surgery 40:608–610.<br />

Ormerod LD, Rhodes RH, Gross SA, et al. (1996). Ophthalmologic manifestations of acquired immune deficiency<br />

syndrome-associated progressive multifocal leukoencephalopathy. Ophthalmology 103:899–906.<br />

Openshaw H, Slatk<strong>in</strong> NE, Smith E. (1997). Eye movement disorders <strong>in</strong> bone marrow transplant patients on<br />

cyclospor<strong>in</strong> and ganciclovir. Bone Marrow Transplant 19:503–505.<br />

Patton N, Beatty S, Lloyd IC. (2000). Bilateral sixth and fourth cranial nerve palsies <strong>in</strong> idiopathic <strong>in</strong>tracranial<br />

hypertension. J R Soc Med 93:80–81.


Sixth Nerve Palsies 309<br />

Pedraza S, Gamez J, Rovira A, et al. (2000). MRI f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> Möbius syndrome: correlation with cl<strong>in</strong>ical features.<br />

<strong>Neuro</strong>logy 55:1058–1060.<br />

Phookan G, Davis AT, Holmes B. (1998). Hemangioendothelioma of the cavernous s<strong>in</strong>us: case report. <strong>Neuro</strong>surgery<br />

42:1153–1156.<br />

Polito E, Leccisotti A. (1996). Pa<strong>in</strong>ful ophthalmoplegia caused by superior ophthalmic ve<strong>in</strong> thrombosis. <strong>Neuro</strong><strong>ophthalmology</strong><br />

16:189–192.<br />

Reich KA, Giansiracusa DR, Strongwater SL. (1990). <strong>Neuro</strong>logic manifestations of giant cell arteritis. Am J Med<br />

89:67–72.<br />

Roberts BN, Mills PV, Hawksworth NJ. (1995). Bilateral ptosis, tonic pupils and abducens palsies follow<strong>in</strong>g<br />

Campylobacter jejuni enteritis. Eye 9:657–658.<br />

Roman-Goldste<strong>in</strong> SM, Jones A, Delashaw JB, et al. (1998). Atypical central nervous system lymphoma at the<br />

cranial base: report of four cases. <strong>Neuro</strong>surgery 43:613–616.<br />

Ropper AH. (1993). Four new variants of Guilla<strong>in</strong>-Barré syndrome. <strong>An</strong>n <strong>Neuro</strong>l 34:306.<br />

Ropper AH, Wijdisks EFM, Truax BT. (1991). Guilla<strong>in</strong>-Barre Syndrome. Philadelphia, FA Davis.<br />

Rucker CW. (1966). The causes of paralysis of the third, fourth, and sixth cranial nerves. Am J Ophthalmol<br />

61:1293–1298.<br />

Rush JA, Younge BR. (1981). Paralysis of cranial nerves III, IV, and VI. Arch Ophthalmol 99:76–79.<br />

Sachs R, Kashii S, Burde RM. (1990). Sixth nerve palsy as the <strong>in</strong>itial manifestation of sarcoidosis. Am J Ophthalmol<br />

110:438–440.<br />

Sato K, Yoshikawa H. (2001). Bilateral abducens nerve paresis associated with anti-GQ1b IgG antibody. Am J<br />

Ophthalmol 131:816–818.<br />

Sav<strong>in</strong>o PJ. (1986). Diplopia and sixth nerve palsies. Sem<strong>in</strong> <strong>Neuro</strong>l 6:142–146.<br />

Sav<strong>in</strong>o PJ, Hilliker JK, Casell GH, et al. (1982). Chronic sixth nerve palsies: are they really harb<strong>in</strong>gers of serious<br />

<strong>in</strong>tracranial disease? Arch Ophthalmol 100:1442–1444.<br />

Schiev<strong>in</strong>k WI, Meyer FB, Atk<strong>in</strong>son JLD, Mokri B. (1996). Spontaneous sp<strong>in</strong>al cerebrosp<strong>in</strong>al fluid leaks and<br />

<strong>in</strong>tracranial hypotension. J <strong>Neuro</strong>surg 84:598–605.<br />

Schroeder B, Brieden S. (2000). Bilateral sixth nerve palsy associated with MDMA (‘‘ecstasy’’) abuse. Am J<br />

Ophthalmol 129:408–409.<br />

Shaw JA, Strachnan FM, Sawers HA, Bevan JS. (1997). Non-Hodgk<strong>in</strong> lymphoma with panhypopituitarism,<br />

hyperprolact<strong>in</strong>aemia, and sixth nerve palsy. J R Soc Med 90:274–275.<br />

Silva MN, Saeki N, Hirai S, Yamaura A. (1999). Unusual cranial nerve palsy caused by cavernous s<strong>in</strong>us<br />

aneurysms. <strong>Cl<strong>in</strong>ical</strong> and anatomical considerations reviewed. Surg <strong>Neuro</strong>l 52:148–149.<br />

Simcock PR, Kelleher S, Dunne JA. (1994). <strong>Neuro</strong>-ophthalmic f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> botulism type B. Eye 8:646–648.<br />

Slav<strong>in</strong> M, Haimovic I, Mahendra P. (1992). Sixth nerve palsy and pontocerebellar mass due to luetic men<strong>in</strong>goencephalitis.<br />

Arch Ophthalmol 110:322.<br />

Smith EF, Santamar<strong>in</strong>a L, Wol<strong>in</strong>tz AH. (1993). Herpes zoster ophthalmicus as a cause of Horner syndrome. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 13:250–253.<br />

Steel TR, Bentivoglio PB, Garrick R. (1994). Vascular neurofibromatosis affect<strong>in</strong>g the <strong>in</strong>ternal carotid artery: a case<br />

report. Br J <strong>Neuro</strong>surg 8:233–237.<br />

Stepper F, Schroth G, Sturzenegger M. (1998). <strong>Neuro</strong>syphilis mimick<strong>in</strong>g Miller-Fisher syndrome: a case report and<br />

MRI f<strong>in</strong>d<strong>in</strong>gs. <strong>Neuro</strong>logy 51:269–271.<br />

Straussberg R, Cohen AH, Amir J, et al. (1993). Benign abducens palsy associated with EBV <strong>in</strong>fection. J Pediatr<br />

Ophthalmol Strabismus 30:60.<br />

Suzuki T, Chiba A, Kusunoki S, et al. (1998). <strong>An</strong>ti-GQ1b ganglioside antibody and ophthalmoplegia of<br />

undeterm<strong>in</strong>ed cause. Br J Ophthalmol 82:916–918.<br />

Thömke F. (1998). Isolated abducens palsies due to pont<strong>in</strong>e lesions. <strong>Neuro</strong>-<strong>ophthalmology</strong> 20:91–100.<br />

Thömke F, Lensch E, R<strong>in</strong>gel K, Hopf HC. (1997). Isolated cranial nerve palsies <strong>in</strong> multiple sclerosis. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 63:682–685.<br />

Thömke F, Mika-Grüttner A, Visbeck A, Brühl K. (2000). The risk of abducens palsy after diagnostic lumbar<br />

puncture. <strong>Neuro</strong>logy 54:768–769.<br />

Thorsen G. (1947). <strong>Neuro</strong>logical complications after sp<strong>in</strong>al anesthesia. Acta Chir Scand 5(suppl 121):1–272.<br />

Tung H, Chen T, Weiss MH. (1991). Sixth nerve schwannomas. J <strong>Neuro</strong>surg 75:638–641.<br />

Uehara T, Tabuchi M, Kawaguchi T, Mori E. (1998). Spontaneous dural carotid cavernous s<strong>in</strong>us fistula present<strong>in</strong>g<br />

isolated ophthalmoplegia: evaluation with MR angiography. <strong>Neuro</strong>logy 50:814–816.<br />

Volpe NJ, Lessell S. (1993a). Remitt<strong>in</strong>g sixth nerve palsy <strong>in</strong> skull base tumors. Arch Ophthalmol 111:1391–1395.<br />

Volpe NJ, Liebsch NJ, Munzenrider JE, Lessell S. (1993b). <strong>Neuro</strong>-ophthalmologic f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> chordoma and<br />

chondrosarcoma of the skull base. Am J Ophthalmol 115:97–104.


310 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Wang CH, Chou ML, Huang CH. (1998). Benign isolated abducens nerve palsy <strong>in</strong> Mycoplasma pneumoniae<br />

<strong>in</strong>fection. Pediatr <strong>Neuro</strong>l 18:71–72.<br />

Watanabe K, Hagura R, Akanuma Y, et al. (1990). Characteristics of cranial nerve palsies <strong>in</strong> diabetic patients.<br />

Diabetes Res Cl<strong>in</strong> Pract 10:19–27.<br />

Wokke JH, van den Berg LH, van Schaik JP. (1996). Sixth nerve palsy from a CNS lesion <strong>in</strong> chronic <strong>in</strong>flammatory<br />

demyel<strong>in</strong>at<strong>in</strong>g polyneuropathy. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 60:695–696.<br />

Wolfe GI, Galetta SL, Mollman, JE. (1994). Spontaneous remission of papilledema and sixth nerve palsy <strong>in</strong> acute<br />

lymphoblastic leukemia. J <strong>Neuro</strong>-Ophthalmol 14:91–94.<br />

Wu HM, Lee AG, Lehane DE, et al. (1997). Ocular and orbital complications of <strong>in</strong>traarterial cisplat<strong>in</strong>. A case<br />

report. J <strong>Neuro</strong>-Ophthalmol 17:195–198.<br />

Yang MC, Bateman JB, Yee RD, et al. (1991). Electrooculography an discrim<strong>in</strong>ant analysis <strong>in</strong> Duane’s syndrome<br />

and sixth-cranial-nerve palsy. Graefes Arch Cl<strong>in</strong> Exp Ophthalmol 229:52–56.


14 r<br />

Supranuclear Disorders of Gaze<br />

What Is the <strong>An</strong>atomy of Horizontal Conjugate<br />

Gaze?<br />

Supranuclear structures coord<strong>in</strong>ate the action of muscle groups and control two types of<br />

eye movements: conjugate movements (both eyes move <strong>in</strong> the same direction) and<br />

vergence movements (both eyes move <strong>in</strong> opposite directions). The vergence movements<br />

can either turn <strong>in</strong> (converge) or turn out (diverge) (Cassidy, 2000). All of the supranuclear<br />

components act through a ‘‘f<strong>in</strong>al common pathway’’ for horizontal conjugate<br />

gaze. This f<strong>in</strong>al common pathway starts <strong>in</strong> the abducens nucleus (composed of two<br />

types of <strong>in</strong>term<strong>in</strong>gled neurons: motor neurons and <strong>in</strong>ternuclear neurons). The axons of<br />

the <strong>in</strong>ternuclear neurons cross to the contralateral side <strong>in</strong> the lower pons, ascend <strong>in</strong> the<br />

medial longitud<strong>in</strong>al fasciculus (MLF), and synapse <strong>in</strong> the portion of the oculomotor<br />

nucleus that <strong>in</strong>nervates the medial rectus muscle. The f<strong>in</strong>al common pathway is<br />

modulated by several <strong>in</strong>puts: the vestibular, optok<strong>in</strong>etic, smooth pursuit, and saccadic<br />

systems. As an example, an excitatory horizontal vestibulo-ocular impulse orig<strong>in</strong>at<strong>in</strong>g<br />

<strong>in</strong> the horizontal canal is relayed from the ipsilateral medial vestibular nucleus to the<br />

contralateral abducens nucleus, result<strong>in</strong>g <strong>in</strong> conjugate horizontal deviation of the eyes<br />

to the contralateral side (Johnston, 1992; Pierrot-Deseilligny, 1995; Tusa, 1998).<br />

Where Are Lesions Caus<strong>in</strong>g Horizontal Gaze<br />

Palsies Located?<br />

A lesion located anywhere along the supranuclear, nuclear, and <strong>in</strong>franuclear pathways<br />

that control horizontal eye movements may cause a horizontal gaze palsy. Depend<strong>in</strong>g<br />

on the location of the lesion, horizontal pursuit or saccades, or both, may be impaired.<br />

Lesions caus<strong>in</strong>g defects <strong>in</strong> horizontal smooth pursuit are summarized <strong>in</strong> Table 14–1.<br />

Lesions caus<strong>in</strong>g defects <strong>in</strong> horizontal saccadic eye movements are summarized<br />

Table 14–2.<br />

311


312 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 14–1. Localization of Lesions Impair<strong>in</strong>g Horizontal Pursuit Eye Movements<br />

Frontal lobe: impaired ipsilateral horizontal smooth pursuit<br />

Posterior parietal cortex or temporo-occipito-parietal region decrease the amplitude and velocity of<br />

smooth pursuit toward lesion (Barton, 1996; Lekwuwa, 1996; Morrow, 1995)<br />

Occipitotemporal areas posteriorly, through the <strong>in</strong>ternal sagittal stratum, the posterior and anterior<br />

limbs of the <strong>in</strong>ternal capsule with adjacent striatum, to the dorsomedial frontal cortex anteriorly;<br />

ipsilesional pursuit deficits (Lekwuwa, 1996)<br />

Posterior thalamic hemorrhage: deficit <strong>in</strong> smooth pursuit toward lesion (Brigell, 1984)<br />

Unilateral midbra<strong>in</strong> or pont<strong>in</strong>e lesion: ipsilateral pursuit defects (Furman, 1991; Gaymard, 1993;<br />

Johkura, 1998; Johnston, 1992; Kato, 1990; Thier, 1991; Waespe, 1992)<br />

Unilateral cerebellar damage: transient impairment of pursuit <strong>in</strong> direction of <strong>in</strong>volved side<br />

Bilateral cerebellar damage: permanent impairment of smooth pursuit eye movements<br />

Posterior vermal lesion: may impair pursuit (Pierrot-Deseilligny, 1990)<br />

Middle cerebellar peduncle lesions or floccular lesions; ipsilateral pursuit defect (Kato, 1990; Waespe,<br />

1992)<br />

What Studies Are Indicated <strong>in</strong> a Patient with a<br />

Horizontal Gaze Palsy?<br />

In general, unilateral restriction of voluntary horizontal conjugate gaze to one side is<br />

usually due to contralateral frontal or ipsilateral pont<strong>in</strong>e damage. At the bedside,<br />

pont<strong>in</strong>e lesions can usually be differentiated from supranuclear lesions by associated<br />

neurologic f<strong>in</strong>d<strong>in</strong>gs and by the oculocephalic (doll’s-eyes) maneuver or caloric stimulation.<br />

These latter procedures will overcome gaze deviations <strong>in</strong>duced by supranuclear<br />

lesions but will not overcome gaze deviations caused by pont<strong>in</strong>e lesions. Structural<br />

lesions, such as <strong>in</strong>farction, hemorrhage, vascular malformations, tumors, demyel<strong>in</strong>ation,<br />

trauma, or <strong>in</strong>fections, are the usual causes of horizontal gaze palsies. As all processes<br />

caus<strong>in</strong>g horizontal gaze palsies directly or <strong>in</strong>directly damage <strong>in</strong>traparenchymal bra<strong>in</strong><br />

pathways, neuroimag<strong>in</strong>g studies are necessary <strong>in</strong> all patients. In the acute sett<strong>in</strong>g, <strong>in</strong><br />

patients with altered levels of consciousness, or <strong>in</strong> patients <strong>in</strong> whom magnetic resonance<br />

imag<strong>in</strong>g (MRI) is contra<strong>in</strong>dicated (e.g., patients with pacemakers), computed tomography<br />

(CT) is appropriate. Otherwise, MRI is the procedure of choice <strong>in</strong> evaluat<strong>in</strong>g<br />

patients with horizontal gaze palsies (class III, level B). In patients with evidence of<br />

cl<strong>in</strong>ical seizure activity, <strong>in</strong> patients with <strong>in</strong>termittent conjugate gaze deviation, or <strong>in</strong><br />

obtunded or comatose patients with horizontal gaze palsies and evidence for possible<br />

contralateral cortical lesions, an electroencephalogram is <strong>in</strong>dicted to evaluate the<br />

possibility a seizure disorder (e.g., status epilepticus) (class III, level C). The evaluation<br />

of patients with horizontal gaze palsies is outl<strong>in</strong>ed <strong>in</strong> Figure 14–1.<br />

What Is the <strong>An</strong>atomy of the Abducens<br />

Nucleus and Medial Longitud<strong>in</strong>al Fasciculus<br />

(MLF)?<br />

The abducens nucleus has two types of <strong>in</strong>term<strong>in</strong>gled neurons: motor neurons and<br />

<strong>in</strong>ternuclear neurons. The axons of the <strong>in</strong>ternuclear neurons cross to the contralateral<br />

side <strong>in</strong> the lower pons and ascend <strong>in</strong> the MLF to synapse <strong>in</strong> the portion of the<br />

oculomotor nucleus that <strong>in</strong>nervates the medial rectus muscle (Leigh, 1999). In pont<strong>in</strong>e


Supranuclear Disorders of Gaze 313<br />

Table 14–2. Localization of Lesions Caus<strong>in</strong>g Impaired Horizontal Conjugate Saccadic Eye<br />

Movements<br />

Frontal lobe lesions<br />

Transient neglect contralaterally<br />

Defect <strong>in</strong> generat<strong>in</strong>g voluntary saccades<br />

Transient horizontal gaze deviation ipsilaterally acutely<br />

Gaze palsy overcome with the oculocephalic maneuver or caloric stimulation<br />

Late disorders of saccades (contralateral more than ipsilateral) due to frontal eye field (FEF) lesions<br />

(Tijssen, 1993, 1994)<br />

Prolonged eye deviation after stroke implies large stroke or preexist<strong>in</strong>g damage to the contralateral<br />

frontal region (Ste<strong>in</strong>er, 1984)<br />

Impaired ability to make a remembered sequence of saccades to visible targets (supplementary eye<br />

field lesions)<br />

Impaired performance of antisaccade tasks (dorsolateral prefrontal lesions)<br />

Epileptogenic lesions <strong>in</strong> the frontal eye fields<br />

Transient deviation of the eyes and head to the contralateral side (Godoy, 1990)<br />

Ipsiversive head and eye movements dur<strong>in</strong>g a seizure may also occur<br />

Initial forced turn<strong>in</strong>g (versive) head and eye movements usually correspond to a contralateral<br />

epileptiform focus, but these <strong>in</strong>itial contraversive movements may be followed by late<br />

ipsiversive or contraversive nonforced movements dur<strong>in</strong>g the secondary generalization<br />

(Kernan, 1993)<br />

Unilateral parietal lesions<br />

Ipsilateral horizontal gaze preference with acute lesions contralateral <strong>in</strong>attention with right-sided<br />

lesions<br />

Unilateral or bilateral <strong>in</strong>creased saccade latencies<br />

Hypometria for contralateral saccades<br />

Saccadic slow<strong>in</strong>g<br />

Bilateral parietal lesions<br />

Acquired ocular motor apraxia (Dehaene, 1991; Harris, 1996; Prasad, 1994; Shawkat, 1996)<br />

Lesions <strong>in</strong> the corona radiata adjacent to the genu of the <strong>in</strong>ternal capsule<br />

Contralateral selective saccadic palsy (Fukutake, 1993)<br />

Lesion (e.g., hemorrhage) deep <strong>in</strong> a cerebral hemisphere, particularly the thalamus<br />

Eye deviation to the side of the hemiparesis (‘‘wrong-way eyes’’) (Tijssen, 1994)<br />

Paresis of contralateral saccades<br />

Supranuclear contralateral gaze palsies associated with ipsilateral oculomotor palsies<br />

Pont<strong>in</strong>e lesions affect<strong>in</strong>g the abducens nucleus and=or the paramedian pont<strong>in</strong>e reticular formation<br />

(PPRF)<br />

Ipsilateral conjugate gaze palsy (Kataoka, 1997)<br />

Ipsilateral horizontal gaze palsy with ipsilateral esotropia (Coats, 1998)<br />

Acutely, eyes deviated contralaterally<br />

Doll’s-eye maneuver or cold caloric stimulation usually does not overcome gaze palsy<br />

Saccades toward side of lesion are present <strong>in</strong> contralateral hemifield but are slow with abducens<br />

nuclear lesions; ipsilaterally directed saccades from opposite field are small and slow or absent<br />

with PPRF lesions (Leigh, 1999)<br />

Horizontal gaze-evoked nystagmus on look<strong>in</strong>g contralaterally<br />

Bilateral horizontal gaze palsies with bilateral lesions (Shimura, 1997)<br />

Selective saccadic palsy (bilateral lesions of pons)<br />

(cont<strong>in</strong>ued)


314 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 14–2. (cont<strong>in</strong>ued)<br />

Voluntary saccades <strong>in</strong> both horizontal and vertical planes slow<br />

Smooth pursuit, the vestibulo-ocular reflex, the ability to hold steady eccentric gaze, and vergence<br />

eye movements preserved<br />

Paraneoplastic loss of horizontal voluntary eye movements or slow horizontal saccades (Baloh, 1993)<br />

Associated with persistent muscle spasms of the face, jaw, and pharynx<br />

Associated prostate carc<strong>in</strong>oma<br />

Congenital and familial bilateral horizontal gaze palsy (Aribal, 1998; Harris, 1996; Shawkat, 1996;<br />

Stavrou, 1999)<br />

May occur <strong>in</strong> isolation<br />

May be associated with kyphoscoliosis and facial contraction with myokymia<br />

MRI may reveal absence of abducens nuclei bilaterally (Aribal, 1998)<br />

Pseudo–horizontal gaze palsy with pont<strong>in</strong>e lesions<br />

Damag<strong>in</strong>g the medial longitud<strong>in</strong>al fasciculus on one side and the contralateral abducens nerve<br />

fascicle<br />

Bilateral <strong>in</strong>ternuclear ophthalmoplegia with the process subsequently extend<strong>in</strong>g laterally to the<br />

regions of the abducens fascicles bilaterally, result<strong>in</strong>g <strong>in</strong> complete horizontal gaze paralysis due<br />

to multiple sclerosis (Milea, 2001)<br />

lesions affect<strong>in</strong>g the abducens nucleus and=or the paramedian pont<strong>in</strong>e reticular formation<br />

(PPRF), a conjugate horizontal gaze palsy to the ipsilateral side occurs. Lesions<br />

of the MLF result <strong>in</strong> <strong>in</strong>ternuclear ophthalmoplegia (INO), whereas lesions of the MLF<br />

plus the ipsilateral abducens nucleus and=or PPRF result <strong>in</strong> the one-and-a-half<br />

syndrome. The cl<strong>in</strong>ical characteristics of these latter two syndromes and their evaluation<br />

are reviewed below.<br />

What Are the <strong>Cl<strong>in</strong>ical</strong> Features of INO?<br />

<strong>Cl<strong>in</strong>ical</strong>ly, an INO is characterized by adduction weakness on the side of the MLF lesion<br />

and monocular horizontal nystagmus of the opposite abduct<strong>in</strong>g eye. Convergence is<br />

usually preserved unless the responsible lesion is high <strong>in</strong> the midbra<strong>in</strong>. Often patients<br />

with INO have no visual symptoms, but some compla<strong>in</strong> of diplopia (due to skew<br />

deviation or limitation of adduction) or oscillopsia. INO is most evident dur<strong>in</strong>g<br />

horizontal saccadic eye movements, and the ‘‘adduction lag’’ is best detected dur<strong>in</strong>g<br />

optok<strong>in</strong>etic test<strong>in</strong>g us<strong>in</strong>g a tape or drum. For example, with a right INO when the drum<br />

is rotated to the right the amplitude and velocity of the adduct<strong>in</strong>g quick phase of the<br />

right eye is smaller and slower than that of the abduct<strong>in</strong>g saccades <strong>in</strong> the left eye. The<br />

pathogenesis of the nystagmus <strong>in</strong> the abduct<strong>in</strong>g eye is unclear but is likely a normal<br />

adaptive process that helps overcome the adduct<strong>in</strong>g weakness of the fellow eye<br />

(Getenet, 1993; Thömke, 1996). Other cl<strong>in</strong>ical f<strong>in</strong>d<strong>in</strong>gs noted with unilateral and<br />

bilateral INO are outl<strong>in</strong>ed <strong>in</strong> Table 14–3.<br />

Vitam<strong>in</strong> E deficiency syndrome (abetalipoprote<strong>in</strong>emia) may cause an eye movement<br />

disorder that superficially resembles the wall-eyed bilateral <strong>in</strong>ternuclear ophthalmoplegia<br />

(WEBINO) syndrome (Yee, 1976). In both of these syndromes, patients demonstrate<br />

exotropia with associated adduction limitation and dissociated horizontal nystagmus


Figure 14–1. Evaluation of horizontal gaze palsy.<br />

Supranuclear Disorders of Gaze 315<br />

on lateral gaze. In vitam<strong>in</strong> E deficiency, however, saccades are slower <strong>in</strong> the abduct<strong>in</strong>g<br />

eye than <strong>in</strong> the adduct<strong>in</strong>g eye, and the dissociated nystagmus is of greater amplitude <strong>in</strong><br />

the adduct<strong>in</strong>g eye. This motility impairment is especially noted with abetalipoprote<strong>in</strong>emia,<br />

with other f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>clud<strong>in</strong>g ataxia, weakness, posterior column dysfunction,<br />

and pigmentary ret<strong>in</strong>opathy.<br />

What used to be called Lutz posterior INO is now known as INO of abduction<br />

(Oliveri, 1997; Thömke, 1992b). In this rare syndrome, abduction is restricted on volition<br />

but can be fully effected by reflex maneuvers, such as cold caloric stimulation. Unilateral<br />

or bilateral INO of abduction, occasionally associated with adduction nystagmus of the<br />

contralateral eye, has been described with ipsilateral rostral pont<strong>in</strong>e or mesencephalic<br />

lesions (Thömke, 1992b).


316 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 14–3. <strong>Cl<strong>in</strong>ical</strong> F<strong>in</strong>d<strong>in</strong>gs Noted with Internuclear Ophthalmoplegia (INO)<br />

Unilateral INO<br />

Ipsilateral adduction weakness, especially slow or fractionated adduct<strong>in</strong>g saccades (‘‘adduction<br />

lag’’), and monocular nystagmus <strong>in</strong> contralateral abduct<strong>in</strong>g eye<br />

May have esophoria acutely, suggest<strong>in</strong>g <strong>in</strong>creased vergence tone<br />

Convergence usually spared<br />

Skew deviation with the higher eye on the side of the lesion<br />

Vertical gaze-evoked nystagmus and impaired vestibular and pursuit vertical eye movements (i.e.,<br />

dissociated vertical nystagmus) (Leigh, 1999)<br />

Ipsilateral downbeat nystagmus and contralateral <strong>in</strong>cyclorotatory (torsional) nystagmus (Marshall,<br />

1991)<br />

Transient (disappear<strong>in</strong>g with<strong>in</strong> 3 days) torsional nystagmus, which is clockwise (exam<strong>in</strong>er’s view)<br />

<strong>in</strong> cases of left INO and counterclockwise <strong>in</strong> right INO (Fant<strong>in</strong>, 1995)<br />

Normal vertical saccades<br />

Rare exotropia (wall-eyed monocular <strong>in</strong>ternuclear ophthalmoplegia [WEMINO] syndrome)<br />

(Johnston, 1994)<br />

Rare exotropia <strong>in</strong> contralateral eye due to overexcitation of contralateral PPRF when fixat<strong>in</strong>g with<br />

paretic eye (Komiyama, 1998)<br />

Bilateral INO<br />

Bilateral adduction paresis or lag with the eyes generally aligned <strong>in</strong> primary gaze<br />

Exotropia, with both eyes deviated laterally (wall-eyed-bilateral <strong>in</strong>ternuclear ophthalmoplegia<br />

[WEBINO] syndrome) (Fay, 1999; Flitcroft, 1996)<br />

Vertical gaze-evoked nystagmus (on look<strong>in</strong>g up or down) and impaired vestibular and pursuit<br />

vertical eye movements (Leigh, 1999)<br />

Impaired vertical gaze hold<strong>in</strong>g<br />

What Is the Cause of the INO?<br />

INO is due to pathologic processes affect<strong>in</strong>g the medial pont<strong>in</strong>e or midbra<strong>in</strong> parenchyma.<br />

Often there are associated bra<strong>in</strong>stem symptoms and signs, although occasionally<br />

unilateral or bilateral INO may occur <strong>in</strong> isolation. The nature of the responsible<br />

pathologic process is suggested by the temporal mode of onset of the INO, the general<br />

cl<strong>in</strong>ical circumstances, and associated signs on neurologic and neuro-ophthalmologic<br />

exam<strong>in</strong>ation. Etiologies for INO are listed <strong>in</strong> Table 14–4.<br />

Although bilateral INO is more common with multiple sclerosis than with vascular<br />

<strong>in</strong>sults, bilateral INO may occur with stroke as well as many other pathologic processes,<br />

and thus the presence of a unilateral or bilateral INO cannot be used as a differential<br />

feature for etiologic diagnosis (class III–IV, level C). For example, <strong>in</strong> a series of 100<br />

patients with multiple sclerosis, 34 had INO, which was bilateral <strong>in</strong> 14 and unilateral <strong>in</strong><br />

20 (Muri, 1985). In another study of 51 patients with INO, 28 had multiple sclerosis and<br />

23 had <strong>in</strong>farction; INO was bilateral <strong>in</strong> 33 patients and unilateral <strong>in</strong> 28 (Hopf, 1991).<br />

Most patients with nutritional, metabolic, degenerative, and drug-<strong>in</strong>duced <strong>in</strong>toxication<br />

have bilateral INOs. Bilateral MLF <strong>in</strong>volvement with the pathologic process subsequently<br />

extend<strong>in</strong>g laterally to the region of the two abducens fascicles has been<br />

described as expla<strong>in</strong><strong>in</strong>g complete bilateral horizontal gaze paralysis <strong>in</strong> two patients<br />

with multiple sclerosis (Milea, 2001). The pattern of extraocular muscle weakness with<br />

myasthenia gravis (<strong>in</strong>clud<strong>in</strong>g penicillam<strong>in</strong>e-<strong>in</strong>duced myasthenia) can mimic INO


Table 14–4. Etiologies of Internuclear Ophthalmoplegia<br />

Supranuclear Disorders of Gaze 317<br />

Multiple sclerosis (Flitcroft, 1996; Frohman, 2001a; Gass, 1997; Hopf, 1991; Milea, 2001)<br />

Bra<strong>in</strong>stem <strong>in</strong>farction (Alexander, 1991; Getenet, 1993; Hopf, 1991; Kataoka, 1997; Marshall, 1991;<br />

Nagasaka, 1999; Okuda, 1993)<br />

Giant cell arteritis (Ahmad, 1999; Askari, 1993; Hughes, 1994; Johnston, 1990; Trend, 1990)<br />

Systemic lupus erythematosus<br />

<strong>Neuro</strong>-Behçet’s disease (Masai, 1995)<br />

Sickle cell trait (Leavitt, 1994)<br />

Polyarteritis nodosa (Kirkali, 1991)<br />

Eales’ disease (Ataby, 1992)<br />

Pyoderma gangrenosum (Lana, 1990)<br />

Sneddon’s syndrome (Rehany, 1998)<br />

Complication of angiography<br />

Complication of cardiac catheterization (Mihaescu, 2000)<br />

D-penicillam<strong>in</strong>e–<strong>in</strong>duced cerebral vasculitis (Pless, 1997)<br />

Bra<strong>in</strong>stem hemorrhage, <strong>in</strong>clud<strong>in</strong>g hemorrhage due to ‘‘crack’’ coca<strong>in</strong>e use (Diaz-Calderon, 1991)<br />

Bra<strong>in</strong>stem and fourth ventricular tumors (Arnold, 1990)<br />

Infections<br />

Cryptococcal men<strong>in</strong>gitis (Fay, 1999; Sung, 1991)<br />

Tuberculosis (granuloma or <strong>in</strong>fectious vasculitis)<br />

Viral and bacterial men<strong>in</strong>goencephalitis (Luis Guerrero-Peral, 2001)<br />

Syphilis<br />

Poliomyelitis (Wasserstrom, 1992)<br />

AIDS (Cacciatori, 1997)<br />

Jakob-Creutzfeldt disease (Billette de Villemeur, 1996)<br />

Head trauma (Chan, 2001; Haller, 1990; Hsu, 2001; Mueller, 1993; Strauss, 1995)<br />

Cervical <strong>in</strong>jury by hyperextension or manipulation<br />

Cancer-related<br />

Carc<strong>in</strong>omatous men<strong>in</strong>gitis<br />

Remote effect of cancer<br />

Bra<strong>in</strong>stem demyel<strong>in</strong>ation due to chemotherapy=radiation therapy<br />

Nutritional and metabolic disorders<br />

Wernicke’s encephalopathy (De la Paz, 1992)<br />

Pernicious anemia<br />

Hepatic encephalopathy<br />

Maple syrup ur<strong>in</strong>e disease<br />

Abetalipoprote<strong>in</strong>emia<br />

Fabry’s disease<br />

Hexosam<strong>in</strong>idase A deficiency (Barnes, 1991)<br />

Degenerative diseases<br />

Progressive supranuclear palsy (Friedman, 1992)<br />

Familial sp<strong>in</strong>ocerebellar degeneration (Senanayake, 1992)<br />

Arnold-Chiari malformation and associated hydrocephalus or syr<strong>in</strong>gobulbia (Arnold, 1990b; Chavis,<br />

1998; Lewis, 1996)<br />

(cont<strong>in</strong>ued)


318 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 14–4. (cont<strong>in</strong>ued)<br />

Drug <strong>in</strong>toxications<br />

Narcotics<br />

Phenothiaz<strong>in</strong>es<br />

Tricyclic antidepressants<br />

Propranolol<br />

Barbiturates<br />

Lithium<br />

<strong>An</strong>tiobesity treatments (Lledo Carreres, 1992)<br />

Toluene (Hunnewell, 1998)<br />

Miscellaneous causes<br />

Hydrocephalus<br />

Pseudotumor cerebri (Friedman, 1998)<br />

Mesencephalic midl<strong>in</strong>e clefts (Lagreze, 1996)<br />

Subdural hematoma<br />

Subdural hygroma with an arachnoid cyst <strong>in</strong> the middle cranial fossa (M<strong>in</strong>amori, 1992)<br />

After external ventricular dra<strong>in</strong>age of a benign aqueductal cyst (Sh<strong>in</strong>, 2000)<br />

Supratentorial arteriovenous malformations<br />

Partial seizures<br />

Pseudo-INO<br />

Myasthenia gravis (may be associated with downshoot of adduct<strong>in</strong>g eye) (Ito, 1997)<br />

Fisher syndrome (Al-D<strong>in</strong>, 1994; Mori, 2001; Ortuno, 1990)<br />

Guilla<strong>in</strong>-Barré syndrome<br />

Myotonic muscular dystrophy (Azuara-Bianco, 1997; Verhagen, 1998)<br />

Surgical paresis of the medial rectus muscle<br />

(pseudo-INO) (Ito, 1997). Myasthenic pseudo-INO is not uncommon and may be<br />

associated with downshoot <strong>in</strong> the adduct<strong>in</strong>g eye (Ito, 1997). Other etiologies of<br />

pseudo-INO are listed <strong>in</strong> Table 14–4.<br />

What Studies Should Be Ordered <strong>in</strong> a Patient<br />

with INO?<br />

In general, the <strong>in</strong>vestigation of a patient with INO depends on the cl<strong>in</strong>ical circumstances.<br />

For example, <strong>in</strong> a patient with known multiple sclerosis, the appearance of INO<br />

as part of an exacerbation of the disease may not require neuroimag<strong>in</strong>g (class IV,<br />

level C), whereas INO <strong>in</strong> isolation or with associated unexpla<strong>in</strong>ed bra<strong>in</strong>stem signs and<br />

symptoms usually requires neuroimag<strong>in</strong>g (class III–IV, level C). If there is variability of<br />

the adduction deficit, associated fluctuat<strong>in</strong>g ptosis, or other variable ocular motor signs<br />

suggestive of myasthenia gravis, a myasthenic pseudo-INO should be considered (class<br />

III–IV, level C). If the evaluation <strong>in</strong>clud<strong>in</strong>g a Tensilon test is normal or if the cl<strong>in</strong>ical<br />

situation does not suggest myasthenia and there are no signs of an associated<br />

degenerative process (e.g., progressive supranuclear palsy) on cl<strong>in</strong>ical exam<strong>in</strong>ation,<br />

neuroimag<strong>in</strong>g is usually warranted (class III–IV, level C).


MRI is superior to CT scan <strong>in</strong> evaluat<strong>in</strong>g patients with INO (Alexander, 1991; Atlas,<br />

1987; Frohman, 2001a; Haller, 1990; Hopf, 1991; Strauss, 1995). For example, <strong>in</strong> a study<br />

of 11 patients with INO (n<strong>in</strong>e with multiple sclerosis and two with <strong>in</strong>farct), CT <strong>in</strong> all<br />

n<strong>in</strong>e tested failed to show a responsible lesion, whereas appropriate MRI abnormalities<br />

were documented <strong>in</strong> 10 of 11 patients (Atlas, 1987). In another study, CT did not detect<br />

abnormalities of the MLF <strong>in</strong> two patients with INO who had abnormal bra<strong>in</strong>stem<br />

hypersignals on MRI (Awerbach, 1990). In a study of chronic INO <strong>in</strong> 58 multiple<br />

sclerosis patients, proton density imag<strong>in</strong>g (PDI) revealed a hyper<strong>in</strong>tensity <strong>in</strong> the MLF <strong>in</strong><br />

all patients, whereas T2-weighted imag<strong>in</strong>g and fluid-attenuated <strong>in</strong>version recovery<br />

(FLAIR) imag<strong>in</strong>g showed these lesions <strong>in</strong> 88% and 48% of patients, respectively<br />

(Frohman, 2001a). Thus, PDI imag<strong>in</strong>g may show the MLF lesion <strong>in</strong> patients with<br />

multiple sclerosis and INO. CT imag<strong>in</strong>g <strong>in</strong> a patient with INO is reserved only for acute<br />

situations (e.g., bra<strong>in</strong>stem hemorrhage) or for patients <strong>in</strong> whom MRI is contra<strong>in</strong>dicated<br />

(e.g., pacemakers, etc.). MRI may give useful diagnostic data by also giv<strong>in</strong>g <strong>in</strong>formation<br />

about supratentorial processes likely to be <strong>in</strong>volved <strong>in</strong> the etiology of the INO, such as<br />

multiple sclerosis, multiple cerebral <strong>in</strong>farcts, etc. If an <strong>in</strong>farct is detected as the cause of<br />

INO <strong>in</strong> a patient older than 50 years of age, giant cell arteritis should be considered as<br />

an etiology, especially if other stroke risk factors are not evident (class III, level C). Thus,<br />

a sedimentation rate is warranted, and if it is elevated or the patient has other systemic<br />

symptoms of giant cell arteritis (e.g., jaw claudications, headache, polymyalgia rheumatic<br />

symptoms, etc.), a temporal artery biopsy should be obta<strong>in</strong>ed. There is <strong>in</strong>sufficient<br />

evidence to recommend an evaluation for giant cell arteritis <strong>in</strong> every INO <strong>in</strong> the elderly<br />

(class III–IV, level U).<br />

If MRI <strong>in</strong> nontraumatic cases is normal, then rarer etiologies for the INO should be<br />

considered (class III–IV, level C). If the INO is bilateral, drug <strong>in</strong>toxication should<br />

be suspected. Because pernicious anemia has rarely been reported to cause INO, a<br />

B12 level should be considered (class IV, level C). Syphilis may rarely cause INO, so<br />

serology for syphilis should be considered (class III–IV, level U). If MRI reveals<br />

men<strong>in</strong>geal enhancement or if men<strong>in</strong>geal signs or symptoms are present, sp<strong>in</strong>al fluid<br />

exam<strong>in</strong>ation is warranted to search for <strong>in</strong>fectious or carc<strong>in</strong>omatous men<strong>in</strong>gitis (class III–<br />

IV, level C). The suggested evaluation of a patient with INO is outl<strong>in</strong>ed <strong>in</strong> Figure 14–2.<br />

What Is the One-and-a-Half Syndrome?<br />

Supranuclear Disorders of Gaze 319<br />

In the one-and-a-half syndrome, there is a conjugate gaze palsy to one side (‘‘one’’) and<br />

impaired adduction on look<strong>in</strong>g to the other side (‘‘and-a-half’’) (Bronste<strong>in</strong>, 1990;<br />

Çelebisoy, 1996; Wall, 1983). As a result, the only horizontal movement rema<strong>in</strong><strong>in</strong>g is<br />

abduction of one eye, which may exhibit nystagmus <strong>in</strong> abduction. The responsible<br />

lesion <strong>in</strong>volves the PPRF or abducens nucleus and the adjacent MLF on the side of the<br />

complete gaze palsy. Patients with the one-and-a-half syndrome often have exotropia of<br />

the eye opposite the side of the lesion (paralytic pont<strong>in</strong>e exotropia). Rarely, a primary<br />

position esotropia occurs, most likely due to <strong>in</strong>volvement of the abducens nerve fascicle<br />

superimposed upon lesions of the PPRF and MLF (Wall, 1983).<br />

The one-and-a-half syndrome may be associated with ocular bobb<strong>in</strong>g and, more<br />

often, facial nerve palsy (the ‘‘eight-and-a-half syndrome’’) (Eggenberger, 1998). Patients<br />

with the one-and-a-half syndrome and facial nerve palsies may develop oculopalatal<br />

myoclonus months to years after the onset of the ocular motility problem (Wol<strong>in</strong>, 1996).


320 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 14–2. Evaluation of <strong>in</strong>ternuclear ophthalmoplegia (INO) and the one-and-a-half syndrome.<br />

The one-and-a-half syndrome may also be associated with supranuclear facial weakness<br />

on the same side as the gaze palsy and an INO. The lesion is <strong>in</strong> the paramedian aspect of<br />

the dorsal pont<strong>in</strong>e tegmentum, provid<strong>in</strong>g evidence for the existence of corticofugal<br />

fibers that extend to the facial nucleus <strong>in</strong> the dorsal paramedian pont<strong>in</strong>e tegmentum<br />

(<strong>An</strong>derson, 1999).<br />

<strong>An</strong>other type of one-and-a-half syndrome may result from two separate lesions<br />

<strong>in</strong>volv<strong>in</strong>g both MLFs and the fascicles of the abducens nerve on the side of the unilateral<br />

horizontal ‘‘gaze’’ palsy. In this case, however, if the ‘‘gaze’’ palsy is <strong>in</strong>complete, the eyes<br />

would move disconjugately <strong>in</strong> the direction of the gaze palsy (Pierrot-Deseilligny, 1981).<br />

A true gaze palsy due to unilateral PPRF damage causes concomitant paresis of both<br />

eyes. <strong>An</strong>other form of one-and-a-half syndrome consists of a horizontal conjugate gaze<br />

palsy to one side (e.g., to the left). This is associated with abduction paralysis of the eye<br />

on the side opposite to the gaze palsy (e.g., the right eye) and adduction nystagmus <strong>in</strong><br />

the eye on the side of the gaze palsy (e.g., <strong>in</strong> left eye) (Çelebisoy, 1996). This form of the<br />

one-and-a-half syndrome may be seen with rostral bra<strong>in</strong>stem <strong>in</strong>farction. A fourth type<br />

of (pseudo) one-and-a-half syndrome has been described <strong>in</strong> a patient with mucormycosis<br />

of the cavernous s<strong>in</strong>us (Carter, 1994). The patient had an ipsilateral sixth nerve<br />

palsy due to cavernous s<strong>in</strong>us <strong>in</strong>volvement and a contralateral horizontal gaze palsy due<br />

to simultaneous carotid artery occlusion with <strong>in</strong>farction of the frontal lobe. Contrary to<br />

the pont<strong>in</strong>e one-and-a-half syndrome, <strong>in</strong> which abduction <strong>in</strong> one eye is the preserved<br />

horizontal movement, this patient had only preserved adduction <strong>in</strong> one eye (contralateral<br />

to the sixth nerve palsy). Myasthenia gravis or the Miller Fisher syndrome may


produce f<strong>in</strong>d<strong>in</strong>gs that mimic a one-and-a-half syndrome (‘‘pseudo-one-and-a-half<br />

syndrome’’).<br />

What Etiologies Should Be Considered as a<br />

Cause of the One-and-a-Half Syndrome and<br />

What Evaluation Is Indicated?<br />

Etiologies of the one-and-a-half syndrome are listed <strong>in</strong> Table 14–5. Bra<strong>in</strong>stem <strong>in</strong>farction<br />

is the most common cause of the one-and-a-half syndrome <strong>in</strong> the elderly, whereas<br />

multiple sclerosis is the most common cause of the one-and-a-half syndrome <strong>in</strong> young<br />

adults. In fact, the one-and-a-half syndrome may be the present<strong>in</strong>g sign of multiple<br />

sclerosis (Martyn, 1988).<br />

Most patients with a one-and-a-half syndrome have other signs and symptoms of<br />

bra<strong>in</strong>stem <strong>in</strong>volvement. A patient with f<strong>in</strong>d<strong>in</strong>gs suggestive of a one-and-a-half<br />

syndrome with variable ocular motor paresis or ptosis should be evaluated for<br />

myasthenia gravis (class III, level C). All others should have MRI with attention to<br />

posterior fossa structures, to <strong>in</strong>vestigate structural etiologies (Hirose, 1993; Martyn,<br />

1988; Ohta, 1994). The evaluation of patients with the one-and-a-half syndrome is<br />

outl<strong>in</strong>ed <strong>in</strong> Figure 14–2 (class III–IV, level B).<br />

What Is the <strong>An</strong>atomy of Vertical Gaze?<br />

The ocular motor neurons concerned with vertical gaze and torsional eye movements lie<br />

<strong>in</strong> the oculomotor and trochlear nuclei. These nuclei receive afferents from the<br />

vestibular, smooth pursuit, optok<strong>in</strong>etic, and saccadic systems (Leigh, 1999; Tusa, 1998).<br />

Where Are the Lesions Responsible for<br />

Vertical Gaze Palsies Localized?<br />

The localization of lesions caus<strong>in</strong>g vertical gaze palsies is outl<strong>in</strong>ed <strong>in</strong> Table 14–6. The<br />

constellation of neuro-ophthalmologic f<strong>in</strong>d<strong>in</strong>gs seen with pretectal lesions has been<br />

Table 14–5. Etiologies of the One-and-a-Half Syndrome<br />

Supranuclear Disorders of Gaze 321<br />

Bra<strong>in</strong>stem <strong>in</strong>farction (<strong>An</strong>derson, 1999; Çelebisoy, 1996; Kataoka, 1997; Ohta, 1994; Wall, 1983; Wol<strong>in</strong>,<br />

1996; Yigit, 1996)<br />

Bra<strong>in</strong>stem hemorrhage<br />

Multiple sclerosis<br />

Tumors (primary or metastatic) of the bra<strong>in</strong>stem, fourth ventricle, or cerebellum (Newton, 1991)<br />

Postoperatively after the removal of tumors of the posterior fossa (Newton, 1991)<br />

Basilar artery aneurysms or bra<strong>in</strong>stem arteriovenous malformations (Wall, 1983)<br />

Trauma<br />

Mucormycosis of the cavernous s<strong>in</strong>us<br />

Pseudo–one-and-a-half syndrome (myasthenia gravis, Miller Fisher syndrome) (Band<strong>in</strong>i, 2001)


322 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 14–6. The Localization of Lesions Caus<strong>in</strong>g Vertical Gaze Palsies<br />

Unilateral right hemispheral lesions (Averbuch-Heller, 1996)<br />

Upgaze palsy, associated with bilateral ptosis<br />

May reflect the special contribution that the nondom<strong>in</strong>ant hemisphere makes to attention<br />

Thalamic lesions may be associated with vertical gaze palsies<br />

Likely due to concomitant midbra<strong>in</strong> <strong>in</strong>volvement<br />

Occasionally due to medial thalamic lesions without midbra<strong>in</strong> <strong>in</strong>volvement (Clark, 1995; Deleu,<br />

1997; Onder, 2000)<br />

Unilateral lesions of the rostral <strong>in</strong>terstitial nucleus of the medial longitud<strong>in</strong>al fasciculus (riMLF)<br />

(Bogousslavsky, 1990; Leigh, 1999)<br />

Slow<strong>in</strong>g of downward saccades or downgaze palsy<br />

Defect of torsional saccades (e.g., lesion of right riMLF impairs extorsion of right eye and <strong>in</strong>torsion<br />

of left eye) (Riordan-Eva, 1996)<br />

Torsional nystagmus beat<strong>in</strong>g contralesionally<br />

Pseudo–abducens palsy <strong>in</strong> opposite eye (Pullic<strong>in</strong>o, 2000)<br />

Bilateral lesions of the riMLF (Green, 1993; Hommel, 1990; Leigh, 1999)<br />

Downgaze saccadic palsy<br />

Paralysis of upward and downward saccades<br />

Lesions of the <strong>in</strong>terstitial nucleus of Cajal (INC) (Leigh, 1999)<br />

Impaired vertical gaze hold<strong>in</strong>g<br />

Impaired vertical saccades, especially upward<br />

Vertical gaze palsy, especially downward gaze, with bilateral lesions (Ohashi, 1998b)<br />

Ocular tilt reaction with unilateral lesions<br />

Upbeat nystagmus and neck retroflexion with bilateral lesions<br />

Posterior commissure lesions (Green, 1993; Hommel, 1990; Keane, 1990; Leigh, 1999)<br />

Dorsal midbra<strong>in</strong> syndrome (see Table 14–7)<br />

Paresis of upward gaze<br />

Paresis of downward gaze<br />

Paresis of upward and downward gaze<br />

Unilateral mesencephalic lesions (probably damage afferent and efferent connections to posterior<br />

commissure) (Albera, 1993; Hommel, 1990)<br />

Bilateral upgaze palsy (Hommel, 1990)<br />

Palsy of upward and downward saccades (Hommel, 1990)<br />

Palsy of upward and downward gaze<br />

variously designated as Par<strong>in</strong>aud’s syndrome, the sylvian aqueduct syndrome, the<br />

pretectal syndrome, the dorsal midbra<strong>in</strong> syndrome, and the Koerber-Salus-Elschnig<br />

syndrome. Ophthalmic f<strong>in</strong>d<strong>in</strong>gs of this syndrome are outl<strong>in</strong>ed <strong>in</strong> Table 14–7.<br />

What Etiologies Cause Vertical Gaze<br />

Impairment?<br />

Impaired upward gaze often occurs as a ‘‘physiologic’’ f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> the elderly. Etiologies<br />

caus<strong>in</strong>g impaired vertical gaze are outl<strong>in</strong>ed <strong>in</strong> Table 14–8.


Table 14–7. Ophthalmic F<strong>in</strong>d<strong>in</strong>gs with the Dorsal Midbra<strong>in</strong> Syndrome<br />

What Studies Are Indicated for the Evaluation<br />

of a Patient with Impaired Vertical Gaze?<br />

Supranuclear Disorders of Gaze 323<br />

Vertical gaze abnormalities, especially upgaze limitation, with or without associated limitation of<br />

downgaze<br />

Downward vestibulo-ocular movements may be spared<br />

Bell’s phenomenon may be spared<br />

Downward gaze preference or a tonic downward deviation of the eyes (‘‘sett<strong>in</strong>g sun sign’’)<br />

Primary position downbeat nystagmus.<br />

Impaired convergence and divergence; the patient thus may be exotropic or esotropic with A or V<br />

patterns<br />

Excessive convergence tone may result <strong>in</strong> slow or restricted abduction (‘‘midbra<strong>in</strong> pseudo–sixth<br />

palsy’’) dur<strong>in</strong>g horizontal refixations<br />

Convergence-retraction nystagmus, with quick adduct<strong>in</strong>g-retraction jerks predom<strong>in</strong>antly on upgaze<br />

Pretectal pseudobobb<strong>in</strong>g (nonrhythmic, rapid comb<strong>in</strong>ed downward and adduct<strong>in</strong>g movements,<br />

often preceded by a bl<strong>in</strong>k, with movement followed by slow return to midl<strong>in</strong>e)<br />

Skew deviation often with the higher eye on the side of the lesion<br />

Alternat<strong>in</strong>g adduction hypertropia or alternat<strong>in</strong>g adduction hypotropia<br />

Fixation <strong>in</strong>stability with square wave jerks<br />

Eyelid abnormalities<br />

Bilateral upper eyelid retraction, bar<strong>in</strong>g the sclera above the cornea (Collier’s ‘‘tucked lid’’ sign)<br />

Bilateral ptosis (lesion of ventral caudal nucleus of third nerve)<br />

Pupillary abnormalities (large with light-near dissociation)<br />

Occasionally, peripheral eye movement abnormalities, such as myasthenia gravis,<br />

Lambert-Eaton myasthenic syndrome, thyroid eye disease, or the Miller Fisher variant<br />

of Guilla<strong>in</strong>-Barré syndrome may simulate upgaze palsy or even convergence nystagmus<br />

(Keane, 1990). Retractory nystagmus, for example, may be mimicked by bilateral<br />

dysthyroid orbitopathy with bilateral <strong>in</strong>volvement of both medial recti and <strong>in</strong>ferior<br />

recti; saccadic upgaze attempts may cause convergence and retraction due to limitation<br />

of eye movements (Burde, 1985). Most of these peripheral processes are associated with<br />

other peripheral neurologic f<strong>in</strong>d<strong>in</strong>gs suggest<strong>in</strong>g the appropriate localization. If vertical<br />

gaze paresis fluctuates and there are no other signs of neurologic or systemic disease, a<br />

Tensilon test should be considered (class III–IV, level C).<br />

The evaluation of patients with vertical gaze impairments due to supranuclear<br />

etiologies depends on the cl<strong>in</strong>ical situation, especially if signs or symptoms of neurologic<br />

or systemic disease are present. For example, the presence of isolated impaired<br />

upward gaze <strong>in</strong> an elderly <strong>in</strong>dividual is a common ‘‘physiologic’’ f<strong>in</strong>d<strong>in</strong>g and requires<br />

no further evaluation. Vertical gaze disorders <strong>in</strong> the sett<strong>in</strong>g of other cl<strong>in</strong>ical manifestations<br />

of metabolic diseases of childhood or adolescence require appropriate biochemical<br />

<strong>in</strong>vestigation of the metabolic derangement. Also, if a vertical gaze impairment occurs<br />

as part of degenerative process (e.g., progressive supranuclear palsy), further neuroimag<strong>in</strong>g<br />

may not be required (class III, level C).<br />

If there is no evidence of a generalized metabolic or degenerative process on cl<strong>in</strong>ical<br />

exam<strong>in</strong>ation to expla<strong>in</strong> the f<strong>in</strong>d<strong>in</strong>gs, then further evaluation is typically warranted.


324 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 14–8. Etiologies of Vertical Gaze Impairment<br />

Primary and secondary tumors of the p<strong>in</strong>eal, thalamus, midbra<strong>in</strong>, aqueduct of Sylvius, or third<br />

ventricle (Chang, 1995; Keane, 1990)<br />

Midbra<strong>in</strong> or thalamic <strong>in</strong>farction or hemorrhage (<strong>An</strong>derson, 1998; Bogousslavsky, 1990; Clark, 1995;<br />

Deleu, 1997; Green, 1993; Hommel, 1990; Keane, 1990; Lee, 1996; Onder, 2000; Pullic<strong>in</strong>o, 2000;<br />

Tatemichi, 1992; Yijssen, 1996)<br />

Hydrocephalus, especially when dilatation of the third ventricle and aqueduct or enlargement of the<br />

suprap<strong>in</strong>eal recess cause pressure on and deformity of the posterior commissure (Bleasel, 1992;<br />

C<strong>in</strong>alli, 1999; Katz, 1994; Keane, 1990; Suzuki, 2000)<br />

Infectious or <strong>in</strong>flammatory etiologies<br />

Encephalitis (Green, 1993; Keane, 1990)<br />

Syphilis<br />

Sarcoidosis (Frohman, 2001b)<br />

Toxoplasmosis (Keane, 1990)<br />

Dissem<strong>in</strong>ated histoplasmosis (Perry, 1999)<br />

Tuberculosis (Keane, 1990)<br />

Whipple’s disease (Averbuch-Heller, 1999)<br />

Jakob-Creutzfeldt disease (Grant, 1993; Ifergane, 1998)<br />

Multiple sclerosis (Qu<strong>in</strong>t, 1993)<br />

Degenerative diseases<br />

Progressive supranuclear palsy (Bhidayasiri, 2001; Coll<strong>in</strong>s, 1995)<br />

Corticobasal ganglionic (corticobasal) degeneration (Riley, 1990)<br />

Hunt<strong>in</strong>gton’s disease<br />

Diffuse Lewy body disease (Brett, 2002; Fearnley, 1991; Lewis, 1990)<br />

Olivopontocerebellar degeneration (Wessel, 1998)<br />

Sp<strong>in</strong>ocerebellar atrophy type 1 (Klostermann, 1997)<br />

Postencephalitic park<strong>in</strong>sonism (Wenn<strong>in</strong>g, 1997)<br />

Motor neuron disease (Averbuch-Heller, 1998; Okuda, 1992)<br />

Idiopathic striopallidodentate calcifications syndrome (Saver, 1994)<br />

Lytico-Bodig (amyotrophic lateral sclerosis=park<strong>in</strong>sonism–dementia complex of Guam)<br />

Park<strong>in</strong>sonism, dementia, and vertical gaze palsy <strong>in</strong> Guamian with atypical neuroglial degeneration<br />

(Oyanagi, 2000)<br />

Progressive autosomal dom<strong>in</strong>ant park<strong>in</strong>sonism with pallido-ponto-nigral degeneration (Wszolek,<br />

1992)<br />

Joubert syndrome (Garbutt, 2000)<br />

Arteriovenous malformations and posterior fossa aneurysms (Keane, 1990)<br />

Metabolic diseases<br />

Bassen-Kornzweig syndrome (Keane, 1990)<br />

Niemann-Pick C disease and variants, <strong>in</strong>clud<strong>in</strong>g sea-blue histiocytosis syndrome, juvenile dystonic<br />

lipidoses, and the DAF (downgaze paralysis, ataxia=athetosis, and foam cells) syndrome<br />

(Garbutt, 2000; Lossos, 1997)<br />

Tay-Sachs disease<br />

Gaucher’s disease (Garbutt, 2000)<br />

Maple syrup ur<strong>in</strong>e disease<br />

(cont<strong>in</strong>ued)


Table 14–8. (cont<strong>in</strong>ued)<br />

Supranuclear Disorders of Gaze 325<br />

Hyperglyc<strong>in</strong>uria (Night<strong>in</strong>gale, 1991)<br />

Hexosam<strong>in</strong>idase A deficiency<br />

Wilson’s disease (Lee, 1999)<br />

Kernicterus (Keane, 1990)<br />

Wernicke’s syndrome (Keane, 1990)<br />

Vitam<strong>in</strong> B 12 deficiency<br />

Leigh disease (Garbutt, 2000)<br />

Trauma, <strong>in</strong>clud<strong>in</strong>g neurosurgical procedures from catheter compression (Keane, 1990; Shults, 1993)<br />

Drugs<br />

Barbiturates<br />

<strong>Neuro</strong>leptics<br />

Carbamazep<strong>in</strong>e<br />

Drugs most often affect vertical gaze by caus<strong>in</strong>g oculogyric crisis, an episodic, spasmodic,<br />

conjugate ocular deviation that usually occurs <strong>in</strong> an upward and lateral direction<br />

Miscellaneous causes<br />

Subdural hematoma<br />

Superficial central nervous system (CNS) siderosis with hydrocephalus (Janss, 1993)<br />

Pseudotumor cerebri (Friedman, 1998)<br />

Tentorial herniation (Keane, 1990)<br />

Paraneoplastic encephalomyelitis (e.g., sem<strong>in</strong>oma with positive anti-Ta antibody and encephalomyelitis<br />

with anti-Hu antibodies) (Bennett, 1999; Cr<strong>in</strong>o, 1996; Schiff, 1996; W<strong>in</strong>gerchuck, 1999)<br />

Congenital defects (Keane, 1990; Magli, 1991)<br />

Cerebral palsy (Garbutt, 2000)<br />

Wolfram’s syndrome (hereditary diabetes mellitus with bra<strong>in</strong>stem and optic atrophy, diabetes<br />

<strong>in</strong>sipidus, and deafness) (Scold<strong>in</strong>g, 1996)<br />

Benign transient form <strong>in</strong> childhood (benign paroxysmal tonic upgaze of neonates and children); may<br />

be associated with developmental delay, <strong>in</strong>tellectual disability, or language delay (Campistol,<br />

1993; Gieron, 1993; Hayman, 1998)<br />

Migra<strong>in</strong>e<br />

Subdural fluid collection over the cerebellar hemisphere (Rismondo, 1992)<br />

Mesencephalic clefts (Lagreze, 1996)<br />

Miller Fisher syndrome (Al-D<strong>in</strong>, 1994; Mori, 2001)<br />

Vertical gaze impairment, either <strong>in</strong> isolation or with other neurologic f<strong>in</strong>d<strong>in</strong>gs localized<br />

to the meso-diencephalon, generally requires cranial MRI with contrast (class IV,<br />

level C). If a pretectal syndrome develops <strong>in</strong> a patient with shunted hydrocephalus<br />

and neuroimag<strong>in</strong>g reveals no ventricular dilatation, shunt dysfunction should still be<br />

suspected, and neurosurgical consultation should be obta<strong>in</strong>ed to consider shunt<br />

revision or third ventriculostomy (C<strong>in</strong>alli, 1999) (class III–IV, level C). If MRI is<br />

normal and there are signs suggestive of <strong>in</strong>fection, especially signs of men<strong>in</strong>geal<br />

irritation, or if MRI reveals diffuse men<strong>in</strong>geal enhancement by contrast agent, then a<br />

lumbar puncture should be considered (class IV, level C). F<strong>in</strong>ally, if MRI is normal and<br />

no other etiologies are evident, a B12 level should be obta<strong>in</strong>ed and thiam<strong>in</strong>e supplementation<br />

considered (class III–IV, level C). Whipple’s disease (e.g., biopsy of <strong>in</strong>test<strong>in</strong>e


326 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

for histology and polymerase cha<strong>in</strong> reaction [PCR] or cerebrosp<strong>in</strong>al fluid PCR for T.<br />

whippelii) (Lynch, 1997; Von Herbay, 1997), syphilis, or a paraneoplastic process<br />

(e.g., sem<strong>in</strong>oma with anti-Ta or anti-Ma2 antibodies) (Bennett, 1999; Voltz, 1999)<br />

should be considered (class III–IV, level C). A proposed evaluation of the patient with<br />

vertical gaze impairment is outl<strong>in</strong>ed <strong>in</strong> Figure 14–3.<br />

Figure 14–3. Evaluation of vertical gaze palsy.


What Are the Characteristics of Supranuclear<br />

Monocular Elevation Paresis, the Vertical Oneand-a-Half<br />

Syndrome, and Skew Deviation?<br />

Supranuclear Disorders of Gaze 327<br />

Monocular elevation paresis (‘‘double elevator palsy’’) may occur on a peripheral basis<br />

(e.g., due to primary <strong>in</strong>ferior rectus restriction, primary superior rectus palsy, myasthenia<br />

gravis, or a fascicular third nerve lesion) or with pretectal supranuclear lesions.<br />

Supranuclear monocular elevation paresis may be congenital (Bell, 1990; Ziffer, 1992) or<br />

acquired. Acquired lesions contralateral or ipsilateral to the paretic eye <strong>in</strong>terrupt<br />

efferents from the rostral <strong>in</strong>terstitial nucleus of the MLF to the superior rectus and<br />

<strong>in</strong>ferior oblique subnuclei (often Bell’s phenomenon is <strong>in</strong>tact) (Hommel, 1990; Thömke,<br />

1992a). Double elevator palsy may be an asymmetric upgaze palsy that cl<strong>in</strong>ically<br />

presents as monocular elevation paresis <strong>in</strong> the more severely affected eye (Thömke,<br />

1992a).<br />

A vertical one-and-a-half syndrome, with vertical upgaze palsy and monocular<br />

paresis of downgaze on the side of the lesion or contralateral to the lesion, has been<br />

described with thalamomesencephalic <strong>in</strong>farction, best expla<strong>in</strong>ed by selective damage to<br />

supranuclear pathways or partial nuclear <strong>in</strong>volvement (Hommel, 1990; Tatemichi,<br />

1992). <strong>An</strong>other vertical one-and-a-half syndrome due to bilateral mesodiencephalic<br />

<strong>in</strong>farcts has been described. There is impairment of all downward rapid eye movements<br />

(<strong>in</strong>clud<strong>in</strong>g the vestibulo-ocular reflex) and downward smooth pursuit (nondissociated<br />

downgaze paralysis) associated with monocular paralysis of elevation (Deleu, 1991).<br />

Monocular elevation paresis of the right eye with contralateral paresis of downward<br />

gaze (‘‘crossed vertical gaze paresis’’) has been described with an <strong>in</strong>farct <strong>in</strong>volv<strong>in</strong>g the<br />

left mesodiencephalic junction and medial thalamus (Wiest, 1996). F<strong>in</strong>ally, a coexist<strong>in</strong>g<br />

vertical and horizontal one-and-a-half syndrome has been described with an <strong>in</strong>farct<br />

<strong>in</strong>volv<strong>in</strong>g the right medial thalamus, left dorsal upper midbra<strong>in</strong>, and left cerebellum<br />

(Terao, 2000). The right eye could abduct and had monocular horizontal nystagmus, but<br />

the left eye could gaze down only.<br />

A patient with locked-<strong>in</strong> syndrome due to pont<strong>in</strong>e <strong>in</strong>farction had dysconjugate<br />

vertical and torsional ocular movements (Park, 2001). When the patient was asked to<br />

look to the right, the right eye moved upward with <strong>in</strong>torsion and the left eye moved<br />

downward with extorsion. When the patient was asked to look to the left, the reversal<br />

cycle, with the left eye mov<strong>in</strong>g upward with <strong>in</strong>torsion and the right eye mov<strong>in</strong>g<br />

downward with extorsion, was observed. Horizontal gaze was limited to m<strong>in</strong>imal<br />

movement. It was thought that this <strong>in</strong>termittent dysconjugate abnormality was<br />

mediated by the <strong>in</strong>terstitial nucleus of Cajal.<br />

The term skew deviation is reserved for vertical misalignment result<strong>in</strong>g from supranuclear<br />

derangements. This skew deviation may be constant or transient. For example,<br />

epileptic skew deviation has been described (Galimberti, 1998). It occurs whenever<br />

peripheral or central lesions cause an imbalance of graviceptive bra<strong>in</strong>stem pathways<br />

and can accompany lesions at different areas of the bra<strong>in</strong>stem (mesencephalon to<br />

medulla) or cerebellum (Brandt, 1993, 1994, 1996; Halmagyi, 1990; Hamed, 1996;<br />

Suzuki, 2001). In a study of patients with unilateral bra<strong>in</strong>stem <strong>in</strong>farcts present<strong>in</strong>g<br />

with skew deviation and ocular torsion, all skew deviations were ipsiversive (ipsilateral<br />

eye was undermost) with caudal pontomedullary lesions, and contraversive (contralateral<br />

eye was lowermost) with rostral pontomesencephalic lesions (Brandt, 1993).


328 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Otolith <strong>in</strong>puts to the <strong>in</strong>terstitial nucleus of Cajal (INC) from the contralateral vestibular<br />

(especially lateral vestibular) nuclei and motor outputs from the INC to cervical and<br />

ocular motoneurons are likely <strong>in</strong>volved. In some patients, skew deviation may be<br />

associated with ocular torsion and head tilt (the ocular tilt reaction [OTR]) (Brandt, 1993,<br />

1994, 1996, 1998; Halmagyi, 1990). In the OTR, the head tilt, conjugate eye torsion, and<br />

hypotropia are all to the same side, suggest<strong>in</strong>g that this reaction is a motor compensation<br />

of a lesion-<strong>in</strong>duced apparent eye-head tilt; the contralateral head tilt represents a<br />

compensatory response to the perceived tilt of the subjective visual vertical.<br />

A left OTR could be due to a lesion of the left labyr<strong>in</strong>th, left vestibular nerve, left<br />

vestibular nucleus (e.g., Wallenberg syndrome), or right mesodiencephalon, suggest<strong>in</strong>g<br />

the existence of a crossed graviceptive pathway (possibly the MLF) between the<br />

vestibular nucleus and the contralateral INC (Brazis, 1992; Halmagyi, 1990; Keane,<br />

1992). OTRs have been reported <strong>in</strong> multiple conditions <strong>in</strong>clud<strong>in</strong>g vestibular nerve <strong>in</strong>jury<br />

(e.g., unilateral vestibular neurectomy and labyr<strong>in</strong>thectomy), herpes zoster of the<br />

vestibular nerve, auditory trauma, Wallenberg syndrome, lateral medullary compression,<br />

pontomedullary ischemia, and mesodiencephalic lesions (<strong>An</strong>derson, 1998;<br />

Arbusow, 1998; Averbuch-Heller, 1997; Brandt, 1993, 1994, 1996, 1998; Brazis, 1992;<br />

Dieterich, 1993; Halmagyi, 1990; Keane, 1992; Ohashi, 1998a; Riordan-Eva, 1997; Safran,<br />

1994; Vibert, 1996). The absence of bra<strong>in</strong>stem signs <strong>in</strong> peripheral OTR helps to exclude a<br />

central cause for the vertical diplopia. OTR has been described secondary to<br />

paraneoplastic encephalitis <strong>in</strong> a patient with sem<strong>in</strong>oma and anti-Ta antibodies<br />

(Bennett, 1999).<br />

A contraversive OTR may rarely be due to unilateral cerebellar lesions (the OTR may<br />

be under <strong>in</strong>hibitory control by the posterior cerebellum, possibly the nodulus)<br />

(Mossman, 1997). Occasionally, <strong>in</strong>creased <strong>in</strong>tracranial pressure (e.g., from benign<br />

<strong>in</strong>tracranial hypertension or pseudotumor cerebri), Fisher’s syndrome (Esaki, 1992),<br />

or hepatic coma may cause skew deviation. F<strong>in</strong>ally, a patient with a dorsal midbra<strong>in</strong><br />

syndrome with an ipsilateral skew deviation has been described due to a right<br />

paramedian thalamic <strong>in</strong>farct that perhaps impaired the tonic <strong>in</strong>put of the thalamus<br />

on the INC (<strong>An</strong>derson, 1998).<br />

A tonic OTR may simulate superior oblique palsy (Donahue, 1999). Five patients with<br />

OTR had a three-step test suggest<strong>in</strong>g superior oblique palsy (bilateral <strong>in</strong> one patient).<br />

No patient, however, had the expected excyclotorsion of the hypertropic eye. Two<br />

patients had conjugate ocular torsion (<strong>in</strong>torsion of the hypertropic eye and extorsion of<br />

the hypotropic eye) and two patients had only <strong>in</strong>torsion of the hypotropic eye. All had<br />

neurologic deficits consistent with more widespread bra<strong>in</strong>stem disease. The authors<br />

concluded that vertical ocular deviations that three-step to a superior oblique palsy are<br />

not always caused by fourth nerve weakness. When a patient with an apparent fourth<br />

nerve palsy has ocular torsion <strong>in</strong>consistent with a superior oblique (SO) palsy, OTR<br />

should be suspected, especially if posterior fossa or vestibular dysfunction coexist.<br />

Because results of the Bielschowsky head tilt test may be positive <strong>in</strong> patients with<br />

the OTR, the feature dist<strong>in</strong>guish<strong>in</strong>g OTR from SO palsy is the direction of torsion. The<br />

authors advocate a fourth step—evaluation of ocular torsion—<strong>in</strong> addition to the<br />

standard three steps.<br />

References<br />

Ahmad I, Zaman M. (1999). Bilateral <strong>in</strong>ternuclear ophthalmoplegia: an <strong>in</strong>itial present<strong>in</strong>g sign of giant cell arteritis.<br />

J Am Geriatr Soc 47:734–736.


Supranuclear Disorders of Gaze 329<br />

Albera R, Magnano M, Lacilla M, et al. (1993). Vascular dorsal midbra<strong>in</strong> syndrome. <strong>Neuro</strong>-<strong>ophthalmology</strong><br />

13:207–213.<br />

Al-D<strong>in</strong> AN, <strong>An</strong>derson M, Eeg-Olofsson O, et al. (1994). <strong>Neuro</strong>-ophthalmic manifestations of the syndrome of<br />

ophthalmoplegia, ataxia, and areflexia. A review. Acta <strong>Neuro</strong>l Scand 89:157–163.<br />

Alexander JA, Castillo M, Hoffman JC Jr. (1991). Magnetic resonance f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> a patient with <strong>in</strong>ternuclear<br />

ophthalmoplegia. <strong>Neuro</strong>radiological-cl<strong>in</strong>ical correlation. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 11:58–61.<br />

<strong>An</strong>derson CA, Sanberg E, Filley CM, et al. (1999). One and one-half syndrome with supranuclear facial weakness.<br />

Arch <strong>Neuro</strong>l 56:1509–1511.<br />

<strong>An</strong>derson DF, Morris RJ. (1998). Par<strong>in</strong>aud’s syndrome and ipsilateral tonic ocular skew deviation from unilateral<br />

right paramedian thalamic <strong>in</strong>farct. <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:13–15.<br />

Arbusow V, Dieterich M, Strupp M, et al. (1998). Herpes zoster neuritis <strong>in</strong>volv<strong>in</strong>g superior and <strong>in</strong>ferior parts of the<br />

vestibular nerve caus<strong>in</strong>g ocular tilt reaction. <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:17–22.<br />

Aribal ME, Karaman ZC, Özkan SB, Söylev MF. (1998) Bilateral congenital horizontal gaze palsy: MR f<strong>in</strong>d<strong>in</strong>gs.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 19:69–74.<br />

Arnold AC. (1990a). Internuclear ophthalmoplegia from <strong>in</strong>tracranial tumor. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:278–286.<br />

Arnold AC, Baloh RW, Yee RD, Hepler RS. (1990b). Internuclear ophthalmoplegia <strong>in</strong> the Chiari type 2<br />

malformation. <strong>Neuro</strong>logy 40:1850–1854.<br />

Askari A, Jolobe OM, Sheperd DI. (1993). Internuclear ophthalmoplegia and Horner’s syndrome due to presumed<br />

giant cell arteritis. J R Soc Med 86:362.<br />

Ataby C, Erdem E, Kansu T, Eldem B. (1992). Eales’ disease with <strong>in</strong>ternuclear ophthalmoplegia. <strong>An</strong>n Ophthalmol<br />

24:267–269.<br />

Atlas SW, Grossman RI, Sav<strong>in</strong>o PJ, et al. (1987). Internuclear ophthalmoplegia: MR-anatomic correlation. AJNR<br />

8:243–247.<br />

Averbuch-Heller L, Helmchen C, Horn AKE, et al. (1998). Slow vertical saccades <strong>in</strong> motor neuron disease:<br />

correlation of structure and function. <strong>An</strong>n <strong>Neuro</strong>l 44:641–648.<br />

Averbuch-Heller L, Paulson GW, Daroff RB, Leigh RJ. (1999). Whipple’s disease mimick<strong>in</strong>g progressive supranuclear<br />

palsy: the diagnostic value of eye movement record<strong>in</strong>g. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 66:532–535.<br />

Averbuch-Heller L, Rottach KG, Zivotofsky AZ, et al. (1997). Torsional eye movements <strong>in</strong> patients with skew<br />

deviation and spasmodic torticollis: responses to static and dynamic head roll. <strong>Neuro</strong>logy 48:506–514.<br />

Averbuch-Heller L, Stahl JS, Remler BF, Leigh RJ. (1996). Bilateral ptosis and upgaze palsy with right hemispheric<br />

lesions. <strong>An</strong>n <strong>Neuro</strong>l 49:465–468.<br />

Awerbach G, Brown M, Lev<strong>in</strong> JR. (1990). Magnetic resonance imag<strong>in</strong>g of <strong>in</strong>ternuclear ophthalmoplegia. Int J<br />

<strong>Neuro</strong>sci 52:39–43.<br />

Azuara-Bianco A, Katz LJ, Arkfeld DF, Walsh TJ. (1997). Myotonic dystrophy mimick<strong>in</strong>g bilateral <strong>in</strong>ternuclear<br />

ophthalmoplegia. <strong>Neuro</strong>-<strong>ophthalmology</strong> 17:11–14.<br />

Baloh RW, DeRossett SE, Cloughesy TF, et al. (1993). Novel bra<strong>in</strong>stem syndrome associated with prostate<br />

carc<strong>in</strong>oma. <strong>Neuro</strong>logy 43:2591–2596.<br />

Band<strong>in</strong>i F, Faga D, Simonetti S. (2001). Ocular myasthenia mimick<strong>in</strong>g a one-and-a-half syndrome. J <strong>Neuro</strong>ophthalmol<br />

21:210–211.<br />

Barnes D, Misra VP, Young EP, et al. (1991). <strong>An</strong> adult onset hexosam<strong>in</strong>idase syndrome with sensory neuropathy<br />

and <strong>in</strong>ternuclear ophthalmoplegia. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 54:1112–1113.<br />

Barton JJS, Sharpe JA, Raymond JE. (1996). Directional defects <strong>in</strong> pursuit and motion perception <strong>in</strong> humans with<br />

unilateral cerebral lesions. Bra<strong>in</strong> 119:1535–1550.<br />

Bell JA, Fielder AR, V<strong>in</strong>ey S. (1990). Congenital double elevator palsy <strong>in</strong> identical tw<strong>in</strong>s. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol<br />

10:32–34.<br />

Bennett JL, Galetta SL, Frohman LP, et al. (1999). <strong>Neuro</strong>-ophthalmologic manifestations of a paraneoplastic<br />

syndrome and testicular carc<strong>in</strong>oma. <strong>Neuro</strong>logy 52:864–867.<br />

Bhidayasiri R, Riley DE, Somers JT, et al. (2001). Pathophysiology of slow vertical saccades <strong>in</strong> progressive<br />

supranuclear palsy. <strong>Neuro</strong>logy 57:2070–2077.<br />

Billette de Villemeur T, Deslys J-P, Pradel A, et al. (1996). Creutzfeldt-Jacob disease from contam<strong>in</strong>ated growth<br />

hormone extracts <strong>in</strong> France. <strong>Neuro</strong>logy 47:690–695.<br />

Bleasel AF, Ell JJ, Johnston I. (1992). Pretectal syndrome and shunt dysfunction. <strong>Neuro</strong>-<strong>ophthalmology</strong> 12:193–196.<br />

Bogousslavsky J, Miklossy J, Regli F, Janzer R. (1990). Vertical gaze palsy and selective unilateral <strong>in</strong>farction of the<br />

rostral <strong>in</strong>terstitial nucleus of the medial longitud<strong>in</strong>al fasciculus (riMLF). J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

53:67–71.<br />

Brandt T, Dieterich M. (1993). Skew deviation with ocular torsion: a vestibular bra<strong>in</strong>stem sign of topographic<br />

diagnostic value. <strong>An</strong>n <strong>Neuro</strong>l 33:528–534.<br />

Brandt T, Dieterich M. (1994). Vestibular syndromes <strong>in</strong> the roll plane: topographic diagnosis from bra<strong>in</strong>stem to<br />

cortex. <strong>An</strong>n <strong>Neuro</strong>l 36:337–347.


330 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Brandt T, Dieterich M. (1996). Central vestibular syndromes <strong>in</strong> the roll, pitch, and yaw planes. <strong>Neuro</strong>-<strong>ophthalmology</strong><br />

15:291–303.<br />

Brandt T, Dieterich M. (1998). Two types of ocular tilt reaction: the ‘‘ascend<strong>in</strong>g’’ pontomedullary VOR-OTR and<br />

the ‘‘descend<strong>in</strong>g’’ mesencephalic <strong>in</strong>tegrator-OTR. <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:83–92.<br />

Brazis PW. (1992). Ocular motor abnormalities <strong>in</strong> Wallenberg’s lateral medullary syndrome. Mayo Cl<strong>in</strong> Proc<br />

67:365–368.<br />

Brett FM, Henson C, Stauton H. (2002). Familial diffuse Lewy body disease, eye movement abnormalities, and<br />

distribution of pathology. Arch <strong>Neuro</strong>l 59:44–467.<br />

Brigell M, Babikian V, Goodw<strong>in</strong> JA. (1984). Hypometric saccades and low-ga<strong>in</strong> pursuit result<strong>in</strong>g from a thalamic<br />

hemorrhage. <strong>An</strong>n <strong>Neuro</strong>l 15:374–378.<br />

Bronste<strong>in</strong> AM, Rudge P, Gresty MA, et al. (1990). Abnormalities of horizontal gaze. <strong>Cl<strong>in</strong>ical</strong>, oculographic and<br />

magnetic resonance imag<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs. II. Gaze palsy and <strong>in</strong>ternuclear ophthalmoplegia. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 53:200–207.<br />

Burde RM, Sav<strong>in</strong>o PJ, Trobe JD. (1985). <strong>Cl<strong>in</strong>ical</strong> Decisions <strong>in</strong> <strong>Neuro</strong>-Ophthalmology. 2nd ed. St. Louis, Mosby, pp.<br />

204–205.<br />

Cacciatori M, Dhillon B. (1997). Bilateral <strong>in</strong>ternuclear ophthalmoplegia <strong>in</strong> AIDS. <strong>Neuro</strong>-<strong>ophthalmology</strong> 17:219–222.<br />

Campistol J, Prats JM, Garaizar C. (1993). Benign paroxysmal tonic upgaze of childhood with ataxia. A neuroophthalmological<br />

syndrome of familial orig<strong>in</strong>? Dev Med Child <strong>Neuro</strong>l 35:436–439.<br />

Carter JE, Rauch RA. (1994). One-and-a-half syndrome, type II. Arch <strong>Neuro</strong>l 51:87–89.<br />

Cassidy L, Taylor D, Harris C. (2000). Abnormal supranuclear eye movements <strong>in</strong> the child: a practical guide to<br />

exam<strong>in</strong>ation and <strong>in</strong>terpretation. Surv Ophthalmol 44:479–506.<br />

Çelebisoy N, Akyürekli Ö. (1996). One-and-a-half syndrome, type II: a case with rostral bra<strong>in</strong> stem <strong>in</strong>farction.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 16:373–377.<br />

Chan JW. (2001). Isolated unilateral post-traumatic <strong>in</strong>ternuclear ophthalmoplegia. J <strong>Neuro</strong>-ophthalmol 21:212–213.<br />

Chang SM, Lillis-Hearne PK, Larson DA, et al. (1995). P<strong>in</strong>eal blastoma <strong>in</strong> adults. <strong>Neuro</strong>surgery 37:383–391.<br />

Chavis PS, Mullaney PB, Bohlega S. (1998). Fluctuat<strong>in</strong>g oculomotor signs <strong>in</strong> Arnold-Chiari malformation.<br />

Diagnostic pitfalls. <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:215–221.<br />

C<strong>in</strong>alli G, Sa<strong>in</strong>te-Rose C, Simon I, et al. (1999). Sylvian aqueduct syndrome and global rostral midbra<strong>in</strong><br />

dysfunction associated with shunt malfunction. J <strong>Neuro</strong>surg 90:227–236.<br />

Clark JM, Albers GW. (1995). Vertical gaze palsies from medial thalamic <strong>in</strong>farctions without midbra<strong>in</strong> <strong>in</strong>volvement.<br />

Stroke 26:1467–1470.<br />

Coats DK, Avilla CW, Lee AG, Paysse EA. (1998). Etiology and surgical management of horizontal pont<strong>in</strong>e gaze<br />

palsy with ipsilateral esotropia. J Am Assoc Pediatr Ophthalmol Strabismus 2:293–297.<br />

Coll<strong>in</strong>s SJ, Ahlskog JE, Parisi JE, Maraganore DM. (1995). Progressive supranuclear palsy: neuropathologically<br />

based diagnostic cl<strong>in</strong>ical criteria. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 58:167–173.<br />

Cr<strong>in</strong>o PB, Galetta SL, Sater RA, et al. (1996). Cl<strong>in</strong>icopathologic study of paraneoplastic bra<strong>in</strong>stem encephalitis and<br />

ophthalmoparesis. J <strong>Neuro</strong>-ophthalmol 16:44–48.<br />

Dehaene I, Lammens M. (1991). Acquired ocular motor apraxia. A cl<strong>in</strong>icopathologic study. <strong>Neuro</strong>-<strong>ophthalmology</strong><br />

11:117–122.<br />

De la Paz MA, Chung SM, McCrary JA III. (1992). Bilateral <strong>in</strong>ternuclear ophthalmoplegia <strong>in</strong> a patient with<br />

Wernicke’s encephalopathy. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:116–120.<br />

Deleu D. (1997). Selective vertical saccadic palsy from unilateral medial thalamic <strong>in</strong>farction: cl<strong>in</strong>ical, neurophysiologic<br />

and MRI correlates. Acta <strong>Neuro</strong>l Scand 96:332–336.<br />

Deleu D, Eb<strong>in</strong>ger G. (1991). Vertical one-and-a-half syndrome. <strong>Cl<strong>in</strong>ical</strong>, oculographic and radiologic f<strong>in</strong>d<strong>in</strong>gs.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 11:99–101.<br />

Diaz-Calderon E, Del Brutto OH, Aguire R, Alarcon TA. (1991). Bilateral <strong>in</strong>ternuclear ophthalmoplegia after<br />

smok<strong>in</strong>g ‘‘crack’’ coca<strong>in</strong>e. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 11:297–299.<br />

Dieterich M, Brandt T. (1993). Ocular torsion and tilt of subjective visual are sensitive bra<strong>in</strong>stem signs. <strong>An</strong>n <strong>Neuro</strong>l<br />

33:292–299.<br />

Donahue SP, Lev<strong>in</strong> PJM, Hamed LM. (1999). Tonic ocular tilt reaction simulat<strong>in</strong>g a superior oblique palsy.<br />

Diagnostic confusion with the 3-step test. Arch Ophthalmol 117:347–352.<br />

Eggenberger EJ. (1998). Eight-and-a-half syndrome: one-and-a-half syndrome plus cranial nerve VII palsy. <strong>Neuro</strong><strong>ophthalmology</strong><br />

18:114–116.<br />

Esaki H, Sh<strong>in</strong>ji O. (1992). Skew deviation <strong>in</strong> Fisher’s syndrome. <strong>Neuro</strong>-ophthalmol Jpn 9:66.<br />

Fant<strong>in</strong> A. (1995). Torsional nystagmus <strong>in</strong> unilateral <strong>in</strong>ternuclear ophthalmoplegia. Presented at the annual<br />

meet<strong>in</strong>g of the North American <strong>Neuro</strong>-Ophthalmology Society, Tuscon, Arizona.<br />

Fay PM, Strom<strong>in</strong>ger MB. (1999). Wall-eyed bilateral <strong>in</strong>ternuclear ophthalmoplegia <strong>in</strong> central nervous system<br />

cryptococcosis. J <strong>Neuro</strong>-ophthalmol 19:131–135.


Supranuclear Disorders of Gaze 331<br />

Fearnley JM, Revesz T, Brooks DJ, et al. (1991). Diffuse Lewy body disease present<strong>in</strong>g with a supranuclear gaze<br />

palsy. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 54:159–161.<br />

Flitcroft DI, Saidléar CA, Stack JP, Eustace P. (1996). A proposed neuroanatomical and neurophysiological basis<br />

for WEBINO. <strong>Neuro</strong>-<strong>ophthalmology</strong> 16:280.<br />

Friedman DI, Forman S, Levi L, et al. (1998). Unusual ocular motility disturbances with <strong>in</strong>creased <strong>in</strong>tracranial<br />

pressure. <strong>Neuro</strong>logy 50:1893–1896.<br />

Friedman DI, Jankovic J, McCrary JA. (1992). <strong>Neuro</strong>-ophthalmic f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> progressive supranuclear palsy. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 12:104–109.<br />

Frohman EM, Zhang H, Lramer PD, et al. (2001a). MRI characteristics of the MLF <strong>in</strong> MS patients with chronic<br />

<strong>in</strong>ternuclear ophthalmoplegia. <strong>Neuro</strong>logy 57:762–768.<br />

Frohman LP, Grigorian R, Bielory L. (2001b). <strong>Neuro</strong>-ophthalmic manifestations of sarcoidosis: cl<strong>in</strong>ical spectrum,<br />

evaluation, and management. J <strong>Neuro</strong>-ophthalmol 21:132–137.<br />

Fukutake T, Hirayama K, Sakakibara R. (1993). Contralateral selective saccadic palsy after a small haematoma <strong>in</strong><br />

the corona radiata adjacent to the genu of the <strong>in</strong>ternal capsule. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 56:221.<br />

Furman JMR, Hurtt MR, Hirsch WL. (1991). Asymmetrical ocular pursuit with posterior fossa tumors. <strong>An</strong>n <strong>Neuro</strong>l<br />

30:208–211.<br />

Galimberti CA, Vers<strong>in</strong>o M, Sartori I, et al. (1998). Epileptic skew deviation. <strong>Neuro</strong>logy 50:1469–1472.<br />

Garbutt S, Harris CM. (2000). Abnormal vertical optok<strong>in</strong>etic nystagmus <strong>in</strong> <strong>in</strong>fants and children. Br J Ophthalmol<br />

84:451–455.<br />

Gass A, Hennerici MG. (1997). Bilateral <strong>in</strong>ternuclear ophthalmoplegia <strong>in</strong> multiple sclerosis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 63:564.<br />

Gaymard B, Pierrot-Deseilligny C, Rivaud S, Velut S. (1993). Smooth pursuit eye movement deficits after pont<strong>in</strong>e<br />

nuclei lesions <strong>in</strong> man. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 56:799–807.<br />

Getenet JC, Ventre J, Vighetto A, Tadary B. (1993). Saccades <strong>in</strong> <strong>in</strong>ternuclear ophthalmoplegia: are abduction<br />

disorders related to <strong>in</strong>terocular disconjugacy? J <strong>Neuro</strong>l Sci 114:160–164.<br />

Gieron MA, Korthals JK. (1993). Benign paroxysmal tonic upward gaze. Pediatr <strong>Neuro</strong>l 9:154–155.<br />

Godoy J, Lüders H, D<strong>in</strong>ner DS, et al. (1990). Versive eye movements elicited by cortical stimulation of the human<br />

bra<strong>in</strong>. <strong>Neuro</strong>logy 40:296–299.<br />

Grant MP, Cohen M, Peterson RB, et al. (1993). Abnormal eye movements <strong>in</strong> Creutzfeldt-Jacob disease. <strong>An</strong>n <strong>Neuro</strong>l<br />

34:192–197.<br />

Green JP, Newman NJ, W<strong>in</strong>terkorn JS. (1993). Paralysis of down gaze <strong>in</strong> two patients with cl<strong>in</strong>ical-radiologic<br />

correlation. Arch Ophthalmol 111:219–222.<br />

Haller KA, Miller-Meeks M, Kardon R. (1990). Early magnetic resonance imag<strong>in</strong>g <strong>in</strong> acute traumatic <strong>in</strong>ternuclear<br />

ophthalmoplegia. Ophthalmology 97:1162–1165.<br />

Halmagyi GM, Brandt T, Dieterich M, et al. (1990). Tonic contraversive ocular tilt reaction due to unilateral mesodiencephalic<br />

lesion. <strong>Neuro</strong>logy 40:1503–1509.<br />

Hamed L, Maria BL, Briscoe ST, et al. (1996). Intact b<strong>in</strong>ocular function and absent ocular torsion <strong>in</strong> children with<br />

alternat<strong>in</strong>g skew on lateral gaze. J Pediatr Ophthalmol Strabismus 33:164–166.<br />

Harris CM, Shawkat F, Russell-Eggitt I, et al. (1996). Intermittent horizontal saccade failure (‘‘ocular motor<br />

apraxia’’) <strong>in</strong> children. Br J Ophthalmol 80:151–158.<br />

Hayman M, Harvey AS, Hopk<strong>in</strong>s IJ, et al. (1998). Paroxysmal tonic upgaze: a reappraisal of outcome. <strong>An</strong>n <strong>Neuro</strong>l<br />

43:514–520.<br />

Hirose G, Furui K, Yoshioka A, Sakai K. (1993). Unilateral conjugate gaze palsy due to a lesion of the abducens<br />

nucleus. <strong>Cl<strong>in</strong>ical</strong> and neuroradiological correlation. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:54–58.<br />

Hommel M, Bogousslavsky DC. (1990). The spectrum of vertical gaze palsy follow<strong>in</strong>g unilateral bra<strong>in</strong>stem stroke.<br />

<strong>Neuro</strong>logy 41:1229–1234.<br />

Hopf HC, Thomke F, Gutmann L. (1991). Midbra<strong>in</strong> vs. pont<strong>in</strong>e medial longitud<strong>in</strong>al fasciculus lesions: the<br />

utilization of masseter and bl<strong>in</strong>k reflexes. Muscle Nerve 14:326–330.<br />

Hsu H-C, Chen HiJ, Lu K, Liang C-L. (2001). Reversible bilateral <strong>in</strong>ternuclear ophthalmoplegia follow<strong>in</strong>g head<br />

<strong>in</strong>jury. Acta Ophthalmol Scand 79:57–59.<br />

Hughes TA, Wiles CM, Hourihan M. (1994). Cervical radiculopathy and bilateral <strong>in</strong>ternuclear ophthalmoplegia<br />

caused by temporal arteritis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 57:764–765.<br />

Hunnewell J, Miller NR. (1998). Bilateral <strong>in</strong>ternuclear ophthalmoplegia related to chronic toluene abuse. J <strong>Neuro</strong>ophthalmol<br />

18:277–280.<br />

Ifergane G, Merk<strong>in</strong> S, Valdman I, et al. (1998). Ocular manifestations of Jakob-Creutzfeldt disease (CJD). <strong>Neuro</strong><strong>ophthalmology</strong><br />

20:21.<br />

Ito K, Mizutani J, Murofushi T, Mizuno M. (1997). Bilateral pseudo-<strong>in</strong>ternuclear ophthalmoplegia <strong>in</strong> myasthenia<br />

gravis. J ORL Related Specialties 59:122–126.


332 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Janss AJ, Galetta SL, Freese A, et al. (1993). Superficial siderosis of the central nervous system: magnetic resonance<br />

imag<strong>in</strong>g and pathological correlation. Case report. J <strong>Neuro</strong>surg 79:756–760.<br />

Johkura K, Matsumoto S, Komiyama A, et al. (1998). Unilateral saccadic pursuit <strong>in</strong> patients with sensory stroke.<br />

Sign of a pont<strong>in</strong>e tegmentum lesion. Stroke 29:2377–2380.<br />

Johnston JL, Sharpe JA. (1994). The WEMINO syndrome—wall-eyed monocular <strong>in</strong>ternuclear ophthalmoplegia: an<br />

oculographic and neuropathologic characterization. <strong>Neuro</strong>logy 44(suppl 2):A311.<br />

Johnston JL, Sharpe JA, Morrow MJ. (1992). Paresis of contralateral smooth pursuit and normal vestibular smooth<br />

eye movements after unilateral bra<strong>in</strong>stem lesions. <strong>An</strong>n <strong>Neuro</strong>l 31:495–502.<br />

Johnston JL, Thomson GT, Sharpe JA, Inman RD. (1990). Internuclear ophthalmoplegia <strong>in</strong> giant cell arteritis.<br />

J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 55:84–85.<br />

Kataoka S, Hori A, Shirakawa T, et al. (1997). Paramedian pont<strong>in</strong>e <strong>in</strong>farction: neurological=topographical<br />

correlation. Stroke 28:809–815.<br />

Kato I, Watanabe J, Nakamura T, et al. (1990). Mapp<strong>in</strong>g of bra<strong>in</strong>stem lesions by the comb<strong>in</strong>ed use of tests of<br />

visually-<strong>in</strong>duced eye movements. Bra<strong>in</strong> 113:921–935.<br />

Katz DM, Trobe JD, Muraszko KM, Dauser RC. (1994). Shunt failure without ventriculomegaly proclaimed by<br />

ophthalmic f<strong>in</strong>d<strong>in</strong>gs. J <strong>Neuro</strong>surg 81:721–725.<br />

Keane JR. (1990). The pretectal syndrome: 206 patients. <strong>Neuro</strong>logy 40:684–690.<br />

Keane JR. (1992). Ocular tilt reaction follow<strong>in</strong>g lateral pontomedullary <strong>in</strong>farction. <strong>Neuro</strong>logy 42:259–260.<br />

Kernan JC, Dev<strong>in</strong>sky O, Luciano DJ, et al. (1993). Lateraliz<strong>in</strong>g significance of head and eye deviation <strong>in</strong> secondary<br />

generalized tonic-clonic seizures. <strong>Neuro</strong>logy 43:1308–1310.<br />

Kirkali P, Topaloglu R, Kansu T, Bakkaloglu A. (1991). Third nerve palsy and <strong>in</strong>ternuclear ophthalmoplegia <strong>in</strong><br />

periarteritis nodosa. J Pediatr Ophthalmol Strabismus 28:45–46.<br />

Klostermann W, Zuhlke C, Heide W, et al. (1997). Slow saccades and other eye movement disorders <strong>in</strong><br />

sp<strong>in</strong>ocerebellar atrophy type 1. J <strong>Neuro</strong>l 244:105–111.<br />

Komiyama A, Takamatsu K, Johkura K, et al. (1998). Internuclear ophthalmoplegia and contralateral exotropia.<br />

Nonparalytic pont<strong>in</strong>e exotropia and WEBINO syndrome. <strong>Neuro</strong>-<strong>ophthalmology</strong> 19:33–44.<br />

Lagreze W-D, Warner JEA, Zamani AA, et al. (1996). Mesencephalic clefts associated with eye movement<br />

disorders. Arch Ophthalmol 114:429–432.<br />

Lana MA, Moreira PR, Nerves LB. (1990). Wall-eyed bilateral <strong>in</strong>ternuclear ophthalmoplegia (Web<strong>in</strong>o syndrome)<br />

and myelopathy <strong>in</strong> pyoderma gangrenosum. Arq <strong>Neuro</strong>psiquiatr 48:497–501.<br />

Leavitt JA, Butrus SI. (1994). Internuclear ophthalmoplegia <strong>in</strong> sickle cell trait. J <strong>Neuro</strong>-ophthalmol 14:49–51.<br />

Lee AG, Brown DG, Diaz PJ. (1996). Dorsal midbra<strong>in</strong> syndrome due to mesencephalic hemorrhage. Case report<br />

with serial imag<strong>in</strong>g. J <strong>Neuro</strong>-ophthalmol 16:281–285.<br />

Lee MS, Kim YD, Lyoo CH. (1999). Oculogyric crisis as an <strong>in</strong>itial manifestation of Wilson’s disease. <strong>Neuro</strong>logy<br />

52:1714–1715.<br />

Leigh RJ, Zee DS. (1999). The <strong>Neuro</strong>logy of Eye Movements. 3rd ed. New York, Oxford University Press.<br />

Lekwuwa GU, Barnes GR. (1996). Cerebral control of eye movements. I. The relationship between cerebral lesion<br />

sites and smooth pursuit deficits. Bra<strong>in</strong> 119:473–490.<br />

Lewis AJ, Gawel MJ. (1990). Diffuse Lewy body disease with dementia and oculomotor dysfunction. Mov Disord<br />

5:143–147.<br />

Lewis AR, Kl<strong>in</strong>e LB, Sharpe JA. (1996). Acquired esotropia due to Arnold-Chiari I malformation. J <strong>Neuro</strong>ophthalmol<br />

16:49–54.<br />

Lledo Carreres M, Lajo Garrido JL, Gonzalez Rico M, et al. (1992). Toxic <strong>in</strong>ternuclear ophthalmoplegia related to<br />

antiobesity treatment. <strong>An</strong>n Pharmacother 26:1457–1458.<br />

Lossos A, Schles<strong>in</strong>ger I, Okon E, et al. (1997). Adult-onset Niemann-Pick type C disease. <strong>Cl<strong>in</strong>ical</strong>, biochemical, and<br />

genetic study. Arch <strong>Neuro</strong>l 54:1536–1541.<br />

Luis Guerrero-Peral A, Mohamed Buskri A, <strong>An</strong>gel Ponce Villares M, Bueno V. (2001). Internuclear ophthalmoplegia<br />

as a presentation of men<strong>in</strong>geal <strong>in</strong>fection by the varicella virus. Med Cl<strong>in</strong> 116:36.<br />

Lynch T, Ode J, Fredericks DN, Louis ED, et al. (1997). Polymerase cha<strong>in</strong> reaction-based detection of Tropheryma<br />

whippelii <strong>in</strong> central nervous system Whipple’s disease. <strong>An</strong>n <strong>Neuro</strong>l 42:120–124.<br />

Magli A, DeMarco R, DiMaio S, et al. (1991). A case of Par<strong>in</strong>aud’s syndrome <strong>in</strong> a boy with delayed puberty.<br />

Ophthalmologica 202:132–137.<br />

Malessa S, Gaymard GD, Rivaud S, et al. (1994). Role of pont<strong>in</strong>e nuclei damage <strong>in</strong> smooth pursuit impairment of<br />

progressive supranuclear palsy: a cl<strong>in</strong>ical-pathologic study. <strong>Neuro</strong>logy 44:716–721.<br />

Marshall RS, Sacco RL, Krueger R, et al. (1991). Dissociated vertical nystagmus and <strong>in</strong>ternuclear ophthalmoplegia<br />

from a midbra<strong>in</strong> <strong>in</strong>farction. Arch <strong>Neuro</strong>l 48:1304–1305.<br />

Martyn CN, Keane D. (1988). The one-and-a-half syndrome. <strong>Cl<strong>in</strong>ical</strong> correlation with a pont<strong>in</strong>e lesion demonstrated<br />

by nuclear magnetic resonance imag<strong>in</strong>g <strong>in</strong> a case of multiple sclerosis. Br J Ophthalmol 72:515–517.


Supranuclear Disorders of Gaze 333<br />

Masai H, Kashii S, Kimura H, Fukuyama H. (1995). <strong>Neuro</strong>-Behçet disease present<strong>in</strong>g with <strong>in</strong>ternuclear<br />

ophthalmoplegia. Am J Ophthalmol 122:897–898.<br />

Merrill PT, Paige GD, Abrams RA, et al. (1991). Ocular motor abnormalities <strong>in</strong> human immunodeficiency virus<br />

<strong>in</strong>fection. <strong>An</strong>n <strong>Neuro</strong>l 30:130–138.<br />

Mihaescu M, Brillman J, Rothfus W. (2000). Midbra<strong>in</strong> ptosis caused by periaqueductal <strong>in</strong>farct follow<strong>in</strong>g cardiac<br />

catheterization: early detection with diffusion-weighted imag<strong>in</strong>g. J <strong>Neuro</strong>imag<strong>in</strong>g 10:187–189.<br />

Milea D, Napolitano M, Dechy H, et al. (2001). Complete bilateral horizontal gaze paralysis disclos<strong>in</strong>g multiple<br />

sclerosis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 70:252–255.<br />

M<strong>in</strong>amori Y, Yamamoto M, Tanaka A, et al. (1992). Medial longitud<strong>in</strong>al fasciculus syndrome associated with a<br />

subdural hygroma and an arachnoid cyst <strong>in</strong> the middle cranial fossa. Intern Med 31:1286–1290.<br />

Mori M, Kuwabara S, Fukutake T, et al. (2001). <strong>Cl<strong>in</strong>ical</strong> features and prognosis of Miller Fisher syndrome.<br />

<strong>Neuro</strong>logy 56:1104–1106.<br />

Morrow MJ, Sharpe JA. (1993). Ret<strong>in</strong>otopic and directional deficits of smooth pursuit <strong>in</strong>itiation after posterior<br />

cerebral hemispheric lesions. <strong>Neuro</strong>logy 43:595–603.<br />

Morrow MJ, Sharpe JA. (1995). Deficits <strong>in</strong> smooth-pursuit eye movements after unilateral frontal lobe lesions. <strong>An</strong>n<br />

<strong>Neuro</strong>l 37:443–451.<br />

Mossman S, Halmagyi GM. (1997). Partial ocular tilt reaction due to unilateral cerebellar lesion. <strong>Neuro</strong>logy<br />

49:491–493.<br />

Mueller C, Koch S, 0Toifl K. (1993). Transient bilateral <strong>in</strong>ternuclear ophthalmoplegia after m<strong>in</strong>or head-trauma. Dev<br />

Med Child <strong>Neuro</strong>l 35:163–166.<br />

Muri RM, Meienberg O. (1985). The cl<strong>in</strong>ical spectrum of <strong>in</strong>ternuclear ophthalmoplegia <strong>in</strong> multiple sclerosis. Arch<br />

<strong>Neuro</strong>l 42:851–855.<br />

Nagasaka S, Fukushima T, Utsumomiya H, et al. (1999). Internuclear ophthalmoplegia caused by a lesion <strong>in</strong> the<br />

isthmus of the midbra<strong>in</strong>. <strong>Neuro</strong>-<strong>ophthalmology</strong> 21:113–116.<br />

Newton HB, M<strong>in</strong>er ME. (1991). ‘‘One-and-a-half’’ syndrome after a resection of a midl<strong>in</strong>e cerebellar astrocytoma:<br />

case report and discussion of the literature. <strong>Neuro</strong>surgery 29:768–772.<br />

Night<strong>in</strong>gale S, Barton ME. (1991). Intermittent vertical supranuclear ophthalmoplegia and ataxia. Mov Disord<br />

6:76–78.<br />

Ohashi T, Fukushima K, Ch<strong>in</strong> S, et al. (1998a). Ocular tilt reaction with vertical eye movement palsy caused by<br />

localized unilateral midbra<strong>in</strong> lesion. J <strong>Neuro</strong>-ophthalmol 18:40–42.<br />

Ohashi T, Nakano T, Harada T, et al. (1998b). Downward gaze palsy caused by bilateral lesions of the rostral<br />

mesencephalon. Ophthalmologica 212:212–214.<br />

Ohta K, Gotoh F, Fukuuchi Y, et al. (1994). Midpont<strong>in</strong>e tegmentum <strong>in</strong>farction with ‘‘one-and-a-half syndrome’’<br />

demonstrated by magnetic resonance imag<strong>in</strong>g. Keio J Med 43:164–165.<br />

Okuda B, Tachibana H, Sugita M, Maeda Y. (1993). Bilateral <strong>in</strong>ternuclear ophthalmoplegia, ataxia, and tremor<br />

from a midbra<strong>in</strong> <strong>in</strong>farction. Stroke 24:481–482.<br />

Okuda B, Yamamoto T, Yamasaki M, et al. (1992). Motor neuron disease with slow eye movements and vertical<br />

gaze palsy. Acta <strong>Neuro</strong>l Scand 85:71–76.<br />

Oliveri RL, Bono F, Quattrone A. (1997). Pont<strong>in</strong>e lesion of the abducens fasciculus produc<strong>in</strong>g so-called posterior<br />

<strong>in</strong>ternuclear ophthalmoplegia. Eur <strong>Neuro</strong>l 37:67–69.<br />

Onder F, Can I, Cosar CB, Kural G. (2000). Correlation of cl<strong>in</strong>ical and neuroradiological f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> down-gaze<br />

palsy. Graefes Arch Cl<strong>in</strong> Exp Ophthalmol 238:369–371.<br />

Ortuno AD, Maeztu C, Munoz JA, et al. (1990). Miller Fisher syndrome associated with Q fever. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 53:615–616.<br />

Oyanagi K, Chen KM, Craig KM, et al. (2000). Park<strong>in</strong>sonism, dementia and vertical gaze palsy <strong>in</strong> a Guamian with<br />

atypical neuroglial degeneration. Acta <strong>Neuro</strong>pathol 99:73–80.<br />

Park S-H, Na DL, Kim M. (2001). Disconjugate vertical ocular movement <strong>in</strong> a patient with locked-<strong>in</strong> syndrome.<br />

Br J Ophthalmol 85:496.<br />

Perry JD, Girk<strong>in</strong> CA, Miller NR, Mann RB. (1999). Dissem<strong>in</strong>ated histoplasmosis caus<strong>in</strong>g reversible gaze palsy and<br />

optic neuropathy. J <strong>Neuro</strong>-ophthalmol 19:140–143.<br />

Pierrot-Deseilligny C, Amarenco P, Roullet E, Marteau R. (1990). Vermal <strong>in</strong>farct with pursuit eye movement<br />

disorders. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 53:519–521.<br />

Pierrot-Deseilligny C, Cha<strong>in</strong> F, Serdaru M, et al. (1981). The one and a half syndrome. Electro-oculographic<br />

analysis of five cases with deductions about the physiological mechanisms of lateral gaze. Bra<strong>in</strong> 104:665–699.<br />

Pierrot-Deseilligny C, Rivaud S, Gaymard B, et al. (1995). Cortical control of saccades. <strong>An</strong>n <strong>Neuro</strong>l 37:557–567.<br />

Pless M, Sandson T. (1997). Chronic <strong>in</strong>ternuclear ophthalmoplegia. A manifestation of D-penicillam<strong>in</strong>e cerebral<br />

vasculitis. J <strong>Neuro</strong>-ophthalmol 17:44–46.


334 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Prasad P, Nair S. (1994). Congenital ocular motor apraxia: sporadic and familial. Support for natural resolution.<br />

J <strong>Neuro</strong>-ophthalmol 14:102–104.<br />

Pullic<strong>in</strong>o P, L<strong>in</strong>coff N, Truax BT. (2000). Abnormal vergence with upper bra<strong>in</strong>stem <strong>in</strong>farcts. Pseudoabducens palsy.<br />

<strong>Neuro</strong>logy 55:32–358.<br />

Qu<strong>in</strong>t DJ, Cornblath WT, Trobe JD. (1993). Multiple sclerosis present<strong>in</strong>g as Par<strong>in</strong>aud syndrome. AJNR<br />

14:1200–1202.<br />

Rehany U, Kassif Y, Rumelt S. (1998). Sneddon’s syndrome: neuro-ophthalmologic manifestations <strong>in</strong> a possible<br />

autosomal recessive pattern. <strong>Neuro</strong>logy 51:1185–1187.<br />

Riley DE, Lang AE, Lewis A, et al. (1990). Cortical-basal ganglionic degeneration. <strong>Neuro</strong>logy 40:1203–1212.<br />

R<strong>in</strong>ne JO, Lee MS, Thompson PD, Marsden CD. (1994). Corticobasal degeneration. A cl<strong>in</strong>ical study of 36 cases.<br />

Bra<strong>in</strong> 117:1183–1196.<br />

Riordan-Eva P, Faldon M, Büttner-Ennever JA, et al. (1996). Abnormalities of torsional fast phase eye movements<br />

<strong>in</strong> unilateral rostral midbra<strong>in</strong> disease. <strong>Neuro</strong>logy 47:201–207.<br />

Riordan-Eva P, Jarcourt JP, Faldon M, et al. (1997). Skew deviation follow<strong>in</strong>g vestibular nerve surgery. <strong>An</strong>n <strong>Neuro</strong>l<br />

41:94–99.<br />

Rismondo V, Borchert M. (1992). Position-dependent Par<strong>in</strong>aud’s syndrome. Am J Ophthalmol 114:107–<br />

108.<br />

Rosenberg ML, Jabbari B. (1991). Miosis and <strong>in</strong>ternuclear ophthalmoplegia as a manifestation of partial seizures.<br />

<strong>Neuro</strong>logy 41:737–739.<br />

Safran AB, Vibert D, Issoua D, Hausler A. (1994). Skew deviation after vestibular neuronitis. Am J Ophthalmol<br />

118:238–245.<br />

Saver JL, Liu GT, Charness ME. (1994). Idiopathic striopalidodentate calcification with prom<strong>in</strong>ent supranuclear<br />

abnormality of eye movement. J <strong>Neuro</strong>-ophthalmol 14:29–33.<br />

Schiff ND, Moore DF. (1996). Predom<strong>in</strong>ant downgaze ophthalmoparesis <strong>in</strong> anti-Hu encephalomyelitis. J <strong>Neuro</strong>ophthalmol<br />

16:302–303.<br />

Scold<strong>in</strong>g NJ, Kellar-Wood HF, Shaw C, et al. (1996). Wolfram syndrome: hereditary diabetes mellitus with<br />

bra<strong>in</strong>stem and optic atrophy. <strong>An</strong>n <strong>Neuro</strong>l 39:352–360.<br />

Senanayake N. (1992). A syndrome of early onset sp<strong>in</strong>ocerebellar ataxia with optic atrophy, <strong>in</strong>ternuclear<br />

ophthalmoplegia, dementia, and startle myoclonus <strong>in</strong> a Sri Lanken family. J <strong>Neuro</strong>l 239:293–294.<br />

Shawkat FS, Harris CM, Taylor DSI, Kriss A. (1996). The role of ERG=VEP and eye movement record<strong>in</strong>gs <strong>in</strong><br />

children with ocular motor apraxia. Eye 10:53–60.<br />

Sherman MD, All<strong>in</strong>son RW, Obbens EA, Darragh JM, Simons KB. Internuclear ophthalmoplegia <strong>in</strong> acquired<br />

immunodeficiency syndrome. <strong>An</strong>n Ophthalmol 21:294–295.<br />

Shimura M, Kiyosawa M, Tom<strong>in</strong>aga T, Tamai M. (1997). Bilateral horizontal gaze palsy with pont<strong>in</strong>e cavernous<br />

hemangioma: a case report. Ophthalmologica 211:320–322.<br />

Sh<strong>in</strong> M, Nishihara T, Iai S, Eguchi T. (2000). Benign aqueductal cyst caus<strong>in</strong>g bilateral <strong>in</strong>ternuclear ophthalmoplegia<br />

after external ventricular dra<strong>in</strong>age. Case report. J <strong>Neuro</strong>surg 92:490–492.<br />

Shults WT, Hamby S, Corbett JJ, et al. (1993). <strong>Neuro</strong>-ophthalmic complications of <strong>in</strong>tracranial catheters.<br />

<strong>Neuro</strong>surgery 33:135–138.<br />

Stavrou P, Willshaw HE. (1999). Familial congenital horizontal gaze palsy. J Pediatr Ophthalmol Strabismus<br />

36:47–49.<br />

Ste<strong>in</strong>er I, Melamed E. (1984). Conjugate eye deviation after acute hemispheric stroke: delayed recovery after<br />

previous contralateral frontal lobe damage. <strong>An</strong>n <strong>Neuro</strong>l 16:509–511.<br />

Strauss C, Ganslandt O, Huk WJ, Jonas JB. (1995). Isolated unilateral <strong>in</strong>ternuclear ophthalmoplegia follow<strong>in</strong>g<br />

head <strong>in</strong>jury. F<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> magnetic resonance imag<strong>in</strong>g. <strong>Neuro</strong>-<strong>ophthalmology</strong> 15:15–19.<br />

Sung JY, Cheng PN, Lai KN. (1991). Internuclear ophthalmoplegia <strong>in</strong> cryptococcal men<strong>in</strong>gitis. J Trop Med Hyg<br />

94:116–117.<br />

Suzuki H, Matsubara T, Kanamaru K, Kojima T. (2000). Chronic hydrocephalus present<strong>in</strong>g with bilateral ptosis<br />

after m<strong>in</strong>or head <strong>in</strong>jury: case report. <strong>Neuro</strong>surgery 47:977–980.<br />

Suzuki T, Nishio M, Chikuda M, Takayanagi K. (2001). Skew deviation as a complication of cardiac catheterization.<br />

Am J Ophthalmol 132:282–283.<br />

Tatemichi TK, Ste<strong>in</strong>ke W, Duncan C, et al. (1992). Paramedian thalamopeduncular <strong>in</strong>farction: cl<strong>in</strong>ical syndromes<br />

and magnetic resonance imag<strong>in</strong>g. <strong>An</strong>n <strong>Neuro</strong>l 32:162–171.<br />

Terao S, Osano Y, Fukuoka T, et al. (2000). Coexist<strong>in</strong>g vertical and horizontal one and a half syndrome. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 69:401–402.<br />

Thier P, Bachor A, Faiss J, et al. (1991). Selective impairment of smooth-pursuit eye movements due to an ischemic<br />

lesion of the basal pons. <strong>An</strong>n <strong>Neuro</strong>l 29:443–448.


Supranuclear Disorders of Gaze 335<br />

Thömke F. (1996). Some observations on abduction nystagmus <strong>in</strong> <strong>in</strong>ternuclear ophthalmoplegia. <strong>Neuro</strong>-<strong>ophthalmology</strong><br />

16:27–38.<br />

Thömke F, Hopf HC. (1992a). Acquired monocular elevation paresis. <strong>An</strong> asymmetric up-gaze palsy. Bra<strong>in</strong><br />

115:1901–1910.<br />

Thömke F, Hopf HC, Kramer G. (1992b). Internuclear ophthalmoplegia of abduction: cl<strong>in</strong>ical and electrophysiological<br />

data on the existence of an abduction paresis of prenuclear orig<strong>in</strong>. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

55:105–111.<br />

Tijssen CC. (1994). Contralateral conjugate eye deviation <strong>in</strong> acute supratentorial lesion. Stroke 25:1516–1519.<br />

Tijssen CC, van Gisbergen JAM. (1993). Conjugate eye deviation after hemispheric stroke. A contralateral saccadic<br />

palsy? <strong>Neuro</strong>-<strong>ophthalmology</strong> 13:107–118.<br />

Trend P, Graham E. (1990). Internuclear ophthalmoplegia <strong>in</strong> giant-cell arteritis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

53:532–533.<br />

Tusa RJ, Ungerleider LG. (1998). Fiber pathways of cortical areas mediat<strong>in</strong>g smooth pursuit eye movements <strong>in</strong><br />

monkeys. <strong>An</strong>n <strong>Neuro</strong>l 23:174–183.<br />

Verhagen WIM, Huygen PLM. (1998). Myotonic dystrophy mimick<strong>in</strong>g INO. <strong>Neuro</strong>-<strong>ophthalmology</strong> 20:101–102.<br />

Vibert D, Häusler R, Safran AB, et al. (1996). Diplopia from skew deviation <strong>in</strong> unilateral peripheral vestibular<br />

lesions. Acta Otolaryngol 116:170–176.<br />

Voltz R, Gultek<strong>in</strong> SH, Rosenfeld MR, et al. (1999). A serologic marker of paraneoplastic limbic and bra<strong>in</strong>-stem<br />

encephalitis <strong>in</strong> patients with testicular cancer. N Engl J Med 340:1788–1795.<br />

Von Herbay A, Ditton H-J, Schuhmacher F, Maiwald M. (1997). Whipple’s disease: stag<strong>in</strong>g and monitor<strong>in</strong>g by<br />

cytology and polymerase cha<strong>in</strong> reaction analysis of cerebrosp<strong>in</strong>al fluid. Gastroenterology 113:434–441.<br />

Waespe W. (1992). Deficits of smooth-pursuit eye movements <strong>in</strong> two patients with a lesion <strong>in</strong> the para-floccular or<br />

dorsolateral pont<strong>in</strong>e region. <strong>Neuro</strong>-<strong>ophthalmology</strong> 12:91–96.<br />

Wall M, Wray SH. (1983). The one-and-a-half syndrome—a unilateral disorder of the pont<strong>in</strong>e tegmentum: a study<br />

of 20 cases and review of the literature. <strong>Neuro</strong>logy 33:971–980.<br />

Wasserstrom R, Mamourian AC, McGary CT, Miller G. (1992). Bulbar poliomyelitis: MR f<strong>in</strong>d<strong>in</strong>gs with pathologic<br />

correlation. AJNR 13:371–373.<br />

Waterston JA, Barnes GR, Grealy MA. (1992). A quantitative study of eye and head movements dur<strong>in</strong>g smooth<br />

pursuit <strong>in</strong> patients with cerebellar disease. Bra<strong>in</strong> 115:1343–1358.<br />

Wenn<strong>in</strong>g GK, Jell<strong>in</strong>ger K, Litvan I. (1997). Supranuclear gaze palsy and eyelid apraxia <strong>in</strong> postencephalitic<br />

park<strong>in</strong>sonism. J Neural Transm 104:845–865.<br />

Wessel K, Moschner C, Wand<strong>in</strong>ger K-P, et al. (1998). Oculomotor test<strong>in</strong>g <strong>in</strong> the differential diagnosis of<br />

degenerative ataxic disorders. Arch <strong>Neuro</strong>l 55:949–956.<br />

Wiest G, Baumgartner C, Schnider P, et al. (1996). Monocular elevation paresis and contralateral downgaze paresis<br />

from unilateral mesodiencephalic <strong>in</strong>farction. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 60:579–581.<br />

W<strong>in</strong>gerchuk DM, Noseworthy JH, Kimmel DW. (1999). Paraneoplastic encephalitis and sem<strong>in</strong>oma: importance of<br />

testicular ultrasonography. <strong>Neuro</strong>logy 51:1504–1507.<br />

Wol<strong>in</strong> MJ, Trent RG, Lav<strong>in</strong> PJM, Cornblath WT. (1996). Oculopalatal myoclonus after the one-and-a-half<br />

syndrome with facial nerve palsy. Ophthalmology 103:177–180.<br />

Wszolek ZK, Pfeiffer RF, Bhatt MH, et al. (1992). Rapidly progressive autosomal dom<strong>in</strong>ant park<strong>in</strong>sonism and<br />

dementia with pallido-ponto-nigral degeneration. <strong>An</strong>n <strong>Neuro</strong>l 32:31–320.<br />

Yee RD, Cogan DG, Zee DS. (1976). Ophthalmoplegia and dissociated nystagmus <strong>in</strong> abetalipoprote<strong>in</strong>emia. Arch<br />

Ophthalmol 94:571–575.<br />

Yee RD, Farlow MA, Suzuki DA, et al. (1992). Abnormal eye movements <strong>in</strong> Gerstmann-Straussler-Sche<strong>in</strong>ker<br />

disease. Arch Ophthalmol 110:68–74.<br />

Yigit A, B<strong>in</strong>göl A, Mutluer N, Taçilar N. (1996). The one-and-a-half syndrome <strong>in</strong> systemic lupus erythematosus.<br />

J <strong>Neuro</strong>-ophthalmol 16:274–276.<br />

Yijssen CC, De Letter MACJ, Op de Coul AAW. (1996). Convergence-retraction nystagmus. <strong>Neuro</strong>-<strong>ophthalmology</strong><br />

16:215–218<br />

Ziffer AJ, Rosenbaum AL, Demer JL, Yee RD. (1992). Congenital double elevator palsy: vertical saccadic velocity<br />

utiliz<strong>in</strong>g the scleral search coil technique. J Pediatr Ophthalmol Strabismus 29:142–149.


This page <strong>in</strong>tentionally left blank


15 r<br />

Ocular Myasthenia Gravis<br />

What Are the <strong>Cl<strong>in</strong>ical</strong> F<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> Myasthenia<br />

Gravis?<br />

Myasthenia gravis (MG) is a chronic disorder of neuromuscular transmission characterized<br />

cl<strong>in</strong>ically by vary<strong>in</strong>g degrees of weakness and fatigue of voluntary muscles. MG<br />

is caused by an acquired autoimmunity to the motor end plate and is associated with<br />

antibodies that block or cause <strong>in</strong>creased degradation of acetylchol<strong>in</strong>e receptors<br />

(AChRs). There is abnormal weakness <strong>in</strong> some or all voluntary muscles. The most<br />

commonly affected muscles are the levator palpebrae superioris, the extraocular<br />

muscles, the orbicularis oculi, triceps, quadriceps, and the tongue. Other<br />

voluntary muscles <strong>in</strong>nervated by cranial nerves (facial, masticatory, pharyngeal, and<br />

laryngeal muscles) and cervical, pectoral girdle, and hip flexor muscles are also<br />

frequently affected. The weakness <strong>in</strong>creases with repeated or susta<strong>in</strong>ed exertion and<br />

over the course of the day, but is improved by rest; it also may be worsened by elevation<br />

of body temperature and is often improved by cold (Engel, 1994; We<strong>in</strong>berg, 1994).<br />

What Are the <strong>Cl<strong>in</strong>ical</strong> Features of Ocular<br />

Myasthenia Gravis and Generalized<br />

Myasthenia Gravis?<br />

The levator palpebrae superioris and extraocular muscles are <strong>in</strong>volved <strong>in</strong>itially <strong>in</strong><br />

approximately 50 to 70% of cases, and these muscles are eventually affected <strong>in</strong> about<br />

90% of patients. Ocular myasthenia (OM) is a form of MG conf<strong>in</strong>ed to the extraocular,<br />

levator palpebrae superioris, and=or orbicularis oculi muscles. Approximately 50% of<br />

patients <strong>in</strong>itially present with OM, but only 12 to 50% of these rema<strong>in</strong> ocular (Bever,<br />

1983; Oosterhuis, 1982). Of the 50 to 80% of patients with purely ocular symptoms and<br />

signs at onset that go on to develop generalized MG, most, but not all, develop<br />

generalized symptoms with<strong>in</strong> 2 to 3 years of onset of the disorder. Bever et al performed<br />

337


338 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

a retrospective study and found that 226 (84%) of 269 myasthenics displayed ocular<br />

f<strong>in</strong>d<strong>in</strong>gs at onset of disease and 142 (53%) demonstrated only ocular <strong>in</strong>volvement<br />

(Bever, 1983). Follow-up (average 14 years, range 1 to 39 years) of 108 patients with MG<br />

who had only ocular symptoms and signs at onset showed that 43 (40%) rema<strong>in</strong>ed<br />

ocular and 53 (49%) became generalized. Of the 53 patients who became generalized, 44<br />

(83%) did so with<strong>in</strong> 2 years of onset of the disease. Age of onset <strong>in</strong> their patients was of<br />

prognostic significance. Patients older than 50 years of age at onset had a greater risk of<br />

generalized MG and severe complications, whereas patients who were younger at onset<br />

had a more benign outcome. In another study of 1487 myasthenic patients, 53%<br />

presented with ocular MG and 202 (4%) cont<strong>in</strong>ued to demonstrate purely ocular<br />

<strong>in</strong>volvement for up to 45 years of follow-up (mean, 17 years) (Oosterhuis, 1982). Of<br />

those patients with strictly ocular signs and symptoms dur<strong>in</strong>g the first month after<br />

onset (40% of the 1487 patients), 66% subsequently developed cl<strong>in</strong>ically generalized<br />

disease; of these, 78% became generalized with<strong>in</strong> 1 year after onset of symptoms and<br />

94% with<strong>in</strong> 3 years.<br />

Ptosis <strong>in</strong> MG may occur as an isolated sign or <strong>in</strong> association with extraocular muscle<br />

<strong>in</strong>volvement. Evoli et al studied 48 patients with OM and noted that 10% had ptosis<br />

only, 90% had ptosis and extraocular muscle <strong>in</strong>volvement, and 25% had weakness of the<br />

orbicularis oculi (Evoli, 1988). The ptosis may be unilateral or bilateral and, when<br />

bilateral, is usually asymmetric. The ptosis may be absent when the patient awakens<br />

and appear later <strong>in</strong> the day, becom<strong>in</strong>g more pronounced as the day progresses.<br />

Prolonged upward gaze may <strong>in</strong>crease the ptosis. Enhanced or seesaw ptosis may be<br />

demonstrated (i.e., a worsen<strong>in</strong>g of ptosis on one side when the opposite eyelid is<br />

elevated and held <strong>in</strong> a fixed position). Enhancement of ptosis is not specific for MG and<br />

may rarely be seen with the Lambert-Eaton myasthenic syndrome, senile ptosis, ocular<br />

myopathy, Fisher’s syndrome, and even third nerve palsy (Averbuch-Heller, 1995;<br />

Brazis, 1997; Ishikawa, 1990). Dur<strong>in</strong>g refixation (a vertical saccade) from down to the<br />

primary position, the upper eyelid may either slowly beg<strong>in</strong> to droop or twitch several<br />

times before settl<strong>in</strong>g <strong>in</strong> a stable position (Cogan’s lid-twitch sign). This sign is<br />

characteristic, but not diagnostic, of MG (Phillips, 1997; Ragge, 1992). For example,<br />

Kao et al described two patients with fatigable ptosis due to <strong>in</strong>tracranial mass lesions<br />

(hematoma and metastasis) likely caus<strong>in</strong>g compression of the central caudal nucleus of<br />

the dorsal midbra<strong>in</strong> (Kao, 1999). MG may also be associated with three types of eyelid<br />

retraction (Miller, 1985): (1) contralateral eyelid retraction due to bilateral excessive<br />

<strong>in</strong>nervation (Her<strong>in</strong>g’s law) to raise the ptotic lid; (2) brief eyelid retraction last<strong>in</strong>g only<br />

seconds follow<strong>in</strong>g a saccade from downgaze to primary position (Cogan’s lid twitch<br />

sign); and (3) transient eyelid retraction last<strong>in</strong>g seconds or m<strong>in</strong>utes after star<strong>in</strong>g straight<br />

ahead or look<strong>in</strong>g upward for several seconds.<br />

Involvement of extraocular muscles with MG usually occurs <strong>in</strong> association with<br />

ptosis, though not always. MG should be considered <strong>in</strong> any case of ocular motor<br />

weakness without pupil <strong>in</strong>volvement because MG may mimic any pattern of neurogenic<br />

paresis. <strong>An</strong>y extraocular muscle may be selectively impaired, especially the<br />

medial rectus, and weakness characteristically <strong>in</strong>creases with susta<strong>in</strong>ed effort (Miller,<br />

1985; Odel, 1992; We<strong>in</strong>berg, 1994). Myasthenia can mimic pupil-spar<strong>in</strong>g third nerve<br />

palsies, superior division third nerve palsies, and fourth or sixth nerve palsies (Dehaene,<br />

1995; Miller, 1985; We<strong>in</strong>berg, 1994). Myasthenia may produce a false <strong>in</strong>ternuclear<br />

ophthalmoplegia (Ito, 1997), the one-and-a-half syndrome (Band<strong>in</strong>i, 2001), horizontal<br />

or vertical gaze palsy (Miller, 1985), divergence paresis (Lepore, 1999), double elevator<br />

palsy, and complete external ophthalmoplegia. MG may also be associated with


abnormalities of saccadic eye movements (Miller, 1985) <strong>in</strong>clud<strong>in</strong>g (1) hypermetric<br />

saccades; (2) hypometric saccades that beg<strong>in</strong> with normal velocity but ultimately show a<br />

decrease <strong>in</strong> velocity (<strong>in</strong>tersaccadic fatigue) and undershoot the target; (3) small, jerky,<br />

quiver<strong>in</strong>g eye movements; and (4) gaze-evoked nystagmus. Patients with MG often<br />

have weakness of the orbicularis oculi muscles. In some cases, a ‘‘peek sign’’ may occur.<br />

In an attempt to susta<strong>in</strong> forceful eye closure, the orbicularis oculi may fatigue, result<strong>in</strong>g<br />

<strong>in</strong> the patient ‘‘peek<strong>in</strong>g’’ through the partially opened palpebral fissure. Lower eyelid<br />

ectropion may occur <strong>in</strong> myasthenic patients, and become especially noticeable as the<br />

day progresses (Miller, 1985). F<strong>in</strong>ally, although abnormalities of pupillary function and<br />

accommodation have been described <strong>in</strong> MG, this dysfunction is not cl<strong>in</strong>ically significant<br />

(Miller, 1985; We<strong>in</strong>berg, 1994).<br />

In a study of 25 children with MG, more than half had had ocular symptoms<br />

(Mullaney, 2000). Generalization occurred <strong>in</strong> 5 of the 14 patients; ocular progression<br />

to systemic <strong>in</strong>volvement developed on average <strong>in</strong> 7.8 months (range 1 to 23 months).<br />

Long-term permanent damage to the extraocular muscles as a result of juvenile MG is<br />

rare.<br />

What Studies Are Suggested to Diagnosis<br />

Ocular Myasthenia Gravis?<br />

The diagnosis of OM is based on the cl<strong>in</strong>ical history and exam (fatigue, rest or sleep<br />

test), pharmacologic test<strong>in</strong>g (e.g., Tensilon), serologic test<strong>in</strong>g (e.g., antibody test<strong>in</strong>g), and<br />

electrophysiology (e.g., electromyography [EMG]). EMG <strong>in</strong>vestigations <strong>in</strong>clude study of<br />

the decremental response, conventional needle EMG, and s<strong>in</strong>gle-fiber record<strong>in</strong>gs. In<br />

some <strong>in</strong>stances, <strong>in</strong> vitro microelectrode studies of neuromuscular transmission and<br />

ultrastructural studies of the neuromuscular junction may be required to establish the<br />

diagnosis (Engel, 1994). In general, microelectrode and ultrastructural studies are<br />

reserved for patients with generalized MG and are not discussed here.<br />

The diagnosis of OM should be considered <strong>in</strong> any patient with ptosis and=or ocular<br />

motor weakness without pupillary <strong>in</strong>volvement. Weakness and fatigue conf<strong>in</strong>ed to the<br />

extraocular muscles or lids comb<strong>in</strong>ed with orbicularis oculi paresis is especially<br />

suggestive of OM. Significant cl<strong>in</strong>ical <strong>in</strong>volvement of the pupil, eye pa<strong>in</strong> or headaches,<br />

proptosis, visual loss, or <strong>in</strong>volvement of trigem<strong>in</strong>al sensation are not seen <strong>in</strong> MG.<br />

What Studies Are Used <strong>in</strong> the Pharmacologic<br />

Test<strong>in</strong>g for Ocular MG?<br />

Ocular Myasthenia Gravis 339<br />

A positive Tensilon (edrophonium hydrochloride) or Prostigm<strong>in</strong> (neostigm<strong>in</strong>e methylsulfate)<br />

test is usually, but not always, <strong>in</strong>dicative of ocular myasthenia. The improvement<br />

of extraocular muscle function should be quantified with prisms, a Hess screen, or<br />

the Lancaster red-green test (Coll, 1992). Ptosis tends to respond better to antichol<strong>in</strong>esterases<br />

than does ophthalmoparesis (Miller, 1985). Evoli studied 43 OM patients with<br />

both ptosis and diplopia and found that Tensilon relieved only the ptosis <strong>in</strong> 15 (35%)<br />

patients (Evoli, 1988). False-positive responses to antichol<strong>in</strong>esterases have been<br />

described with bra<strong>in</strong>stem and parasellar tumors, aneurysms, metastasis to the orbital


340 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

apex, multiples sclerosis, Lambert-Eaton myasthenic syndrome, poliomyelitis, Guilla<strong>in</strong>-<br />

Barré syndrome, motor neuron disease, botulism, orbital myositis, congenital ptosis,<br />

snake bites, diabetic sixth nerve palsy, and dermatomyositis (Miller, 1985; Ragge, 1992;<br />

Shams, 2002; Straube, 1990; We<strong>in</strong>berg, 1994). In most of these reports, the correct<br />

diagnosis was evident by associated neurologic signs and symptoms. Moorthy et al,<br />

however, described eight cases orig<strong>in</strong>ally diagnosed as hav<strong>in</strong>g MG <strong>in</strong> whom an<br />

<strong>in</strong>tracranial lesion <strong>in</strong>stead of, or <strong>in</strong> addition to, MG was later identified (Moorthy,<br />

1989). Four of these patients probably had both MG and an <strong>in</strong>tracranial lesion, but the<br />

other four had only <strong>in</strong>tracranial lesions with cl<strong>in</strong>ical ‘‘pseudo-myasthenic’’ features,<br />

<strong>in</strong>clud<strong>in</strong>g fatigable weakness, Cogan’s lid twitch sign, and positive Tensilon or<br />

Prostigm<strong>in</strong> tests. Three had pupil-spar<strong>in</strong>g third nerve palsies and one had a third<br />

nerve palsy associated with a sixth nerve palsy. These authors suggested that patients<br />

with cl<strong>in</strong>ical features consistent with MG restricted to the ocular or cranial muscles<br />

should be carefully evaluated for <strong>in</strong>tracranial lesions us<strong>in</strong>g computed tomography (CT)<br />

or magnetic resonance imag<strong>in</strong>g (MRI). We do not rout<strong>in</strong>ely perform neuroimag<strong>in</strong>g on<br />

all patients with OM (class IV, level C). Miller suggests that it is advisable to rule out an<br />

<strong>in</strong>tracranial lesion by CT or MR imag<strong>in</strong>g <strong>in</strong> all patients with isolated, unilateral, pupilspar<strong>in</strong>g<br />

ophthalmoparesis even when the diagnosis of MG seems assured by a positive<br />

Tensilon or Prostigm<strong>in</strong> test or other studies (Miller, 1985) (class IV, level C).<br />

A negative Tensilon or Prostigm<strong>in</strong> test does not rule out MG (Evoli, 1988; Miller, 1985;<br />

We<strong>in</strong>berg, 1994). For example, Spector and Daroff noted negative responses to Tensilon<br />

<strong>in</strong> 2 of 11 (18%) OM and <strong>in</strong> 6 of 21 (29%) of patients with both OM and generalized MG<br />

(Spector, 1976). Paradoxical responses to Tensilon may also occur <strong>in</strong> OM patients,<br />

<strong>in</strong>clud<strong>in</strong>g paresis of previously nonparetic muscles and <strong>in</strong>creased eye misalignment due<br />

to further weaken<strong>in</strong>g of paretic muscles.<br />

What Nonpharmacologic Test<strong>in</strong>g Is Helpful <strong>in</strong><br />

the Diagnosis of Myasthenia Gravis?<br />

The ‘‘sleep test’’ may also be <strong>in</strong>corporated to demonstrate objective improvement <strong>in</strong> MG<br />

symptoms after rest (Odel, 1991). The patient is kept <strong>in</strong> a quiet, darkened room and<br />

<strong>in</strong>structed to close the eyes and rest for 30 m<strong>in</strong>utes. The ptosis and ocular motility are<br />

quantified before and after the rest period. This study may be positive <strong>in</strong> some Tensilonnegative<br />

MG but may also be negative <strong>in</strong> Tensilon-positive patients (We<strong>in</strong>berg, 1994).<br />

<strong>An</strong>other non<strong>in</strong>vasive test is the ice-pack test, which may be useful <strong>in</strong> the diagnosis of<br />

OM <strong>in</strong> the patient with ptosis (Golnik, 1999; Kubis, 2000; Sethi, 1987). Ice <strong>in</strong> a surgical<br />

glove is placed over one lightly closed eye for 2 m<strong>in</strong>utes or to the limit of patient<br />

tolerance. In cases of bilateral ptosis, the opposite (uncooled) eye serves as control. The<br />

palpebral fissures are measured before and after the ice is applied. Sethi et al noted<br />

improvement of ptosis <strong>in</strong> 8 of 10 MG patients (Sethi, 1987), and Golnik et al found the<br />

test to be positive <strong>in</strong> 16 of 20 (80%) of patients with MG and none of 20 patients with<br />

ptosis not due to MG (Golnik, 1999). In four patients with MG and complete ptosis,<br />

however, the ice pack test was negative, and thus the sensitivity of the test <strong>in</strong> patients<br />

with complete ptosis decreases considerably. It is thought that the decreased<br />

temperature may <strong>in</strong>hibit acetylchol<strong>in</strong>esterase function (Golnik, 1999). Improvement of<br />

eyelid elevation after the ice test is <strong>in</strong> part caused by rest, but the ice significantly<br />

improved ptosis more than rest alone <strong>in</strong> one study (Kubis, 2000). In another study,


however, myasthenic ptosis was markedly improved <strong>in</strong> four patients regardless of local<br />

cool<strong>in</strong>g or warm<strong>in</strong>g, with the common denom<strong>in</strong>ator of these tests be<strong>in</strong>g rest rather than<br />

temperature per se (Movaghar, 2000).<br />

Electrophysiologic test<strong>in</strong>g might establish the diagnosis of MG. EMG f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>clude<br />

fluctuations <strong>in</strong> the amplitude and duration of motor unit potentials recorded dur<strong>in</strong>g<br />

voluntary activity; decremental responses of evoked compound muscle action potentials<br />

to repetitive supramaximal motor nerve stimulation; and s<strong>in</strong>gle-fiber electromyography<br />

(SFEMG) abnormalities (e.g., impulse block<strong>in</strong>g and <strong>in</strong>creased ‘‘jitter’’) (Engel,<br />

1994; Hermann, 1996; Miller, 1985; Odel, 1991). Repetitive stimulation studies must<br />

<strong>in</strong>clude proximal and facial nerves to <strong>in</strong>crease diagnostic yield. The diagnostic yield of<br />

these studies <strong>in</strong> patients with OM is unknown, but Sanders and Howard observed<br />

decremental responses <strong>in</strong> hand or shoulder muscles <strong>in</strong> only 10% of patients with OM<br />

(Sanders, 1986).<br />

If repetitive nerve stimulation studies are negative <strong>in</strong> a patient with suspected MG,<br />

SFEMG studies might be useful. SFEMG is positive <strong>in</strong> 75% of myasthenic patients <strong>in</strong><br />

remission, 80 to 88% of those with ocular signs and symptoms only, 91 to 100% of<br />

patients with generalized symptoms, and 88 to 94% of patients with myasthenia overall<br />

(Emeryk, 1990; Sanders, 1986; We<strong>in</strong>berg, 1994). For example, <strong>in</strong> one study SFEMG <strong>in</strong><br />

limb muscles was abnormal <strong>in</strong> 17 of 20 patients with OM (Emeryk, 1990). SFEMG is<br />

quite sensitive for detect<strong>in</strong>g abnormalities of the neuromuscular junction but is not<br />

specific for MG. In another study of OM, SFEMG showed the highest sensitivity (100%),<br />

whereas acetylchol<strong>in</strong>e receptor antibodies studies showed the highest specificity (100%)<br />

for diagnosis (Padua, 2000). SFEMG of the frontalis muscle may be a sensitive technique<br />

for the diagnosis of OM (Valls-Canals, 2000).<br />

What Is the Diagnostic Utility of<br />

<strong>An</strong>tiacetylchol<strong>in</strong>e Receptor <strong>An</strong>tibodies <strong>in</strong> the<br />

Diagnosis of Myasthenia Gravis?<br />

AChR antibody titers are quite useful <strong>in</strong> the diagnosis of MG. In one large and<br />

representative study, the percentage of positive tests <strong>in</strong> different cl<strong>in</strong>ical forms of MG<br />

were as follows: remission, 24%; ocular, 50%; mild generalized, 80%; moderately severe<br />

or acutely severe, 100%; chronic severe, 89% (T<strong>in</strong>dall, 1981). Overall, AChR antibodies<br />

are positive <strong>in</strong> 80 to 95% of patients with generalized MG and 34 to 56% of those with<br />

OM (Evoli, 1988; Oosterhuis, 1988; We<strong>in</strong>berg, 1994). Test<strong>in</strong>g for AChR b<strong>in</strong>d<strong>in</strong>g, block<strong>in</strong>g,<br />

and modulat<strong>in</strong>g antibodies <strong>in</strong>creases the assay yield <strong>in</strong> patients with generalized<br />

MG and OM. In OM, the antibody titer tends to be low, and the serum antibody titer<br />

correlates poorly with the severity of MG when a group of patients is studied (Engel,<br />

1994).<br />

Summary of Test<strong>in</strong>g for Ocular Myasthenia<br />

Gravis<br />

Ocular Myasthenia Gravis 341<br />

No test is specific for OM, and its diagnosis should not be based exclusively on any<br />

s<strong>in</strong>gle test. Kelly et al advised that all patients with suspected MG should have serum


342 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

assays of AChR antibodies, repetitive stimulation studies, and SFEMG, <strong>in</strong> addition to a<br />

Tensilon or Prostigm<strong>in</strong> test (Kelly, 1982). These procedures confirm the diagnosis <strong>in</strong> at<br />

least 95% of patients. Muscle biopsy with receptor assay, <strong>in</strong> addition to these studies,<br />

should diagnose close to 100% of patients, <strong>in</strong>clud<strong>in</strong>g those with OM (Miller, 1985). Oh<br />

et al studied 20 patients diagnosed with OM and found SFEMG positive <strong>in</strong> 80%, AChR<br />

antibodies present <strong>in</strong> 70%, and repetitive nerve stimulation studies positive <strong>in</strong> 35 to 45%<br />

(Oh, 1992). These authors advised <strong>in</strong>itial AChR antibody assay and repetitive nerve<br />

stimulation studies, and follow-up SFEMG if the first two studies are normal. Evoli et al<br />

studied 48 patients with OM and found Tensilon tests positive <strong>in</strong> 47, repetitive<br />

nerve stimulation of the limb muscles positive <strong>in</strong> 50% (24 of 48), and elevated AChR<br />

antibody titers <strong>in</strong> 45% (20 of 44) (Evoli, 1988). In another study of 19 Tensilon-positive<br />

OM patients, Tsujihata et al found that 6 of 16 (38%) were seronegative for AChR<br />

antibodies. Eight of 13 (62%) had normal SFEMG of arm muscles, and 15 of 17 (88%)<br />

had normal repetitive nerve stimulation study of the facial nerve to the orbicularis oculi<br />

muscles (Tsujihata, 1989).<br />

Should CT Imag<strong>in</strong>g of the Chest for<br />

Thymoma Be Performed <strong>in</strong> MG?<br />

Because there is an <strong>in</strong>creased risk of thymoma <strong>in</strong> patients with MG, all patients with the<br />

diagnosis of MG should undergo CT or MRI of the mediast<strong>in</strong>um. Thymoma occurs <strong>in</strong> 5<br />

to 20% of myasthenic patients overall, and about one third to one half of those with<br />

thymoma have MG. The risk of thymoma <strong>in</strong> patients with OM is probably lower: 4% <strong>in</strong><br />

patients with OM compared to 12% <strong>in</strong> those with generalized MG <strong>in</strong> one series<br />

(Papetestas, 1971). Thymoma is more common <strong>in</strong> older patients and <strong>in</strong> patients with<br />

high AChR antibody titers (Oger, 1993). In a large series of patients with MG, striated<br />

muscle antibodies were present <strong>in</strong> 84% of patients with thymoma (Limburg, 1983). In<br />

those without thymoma, striational antibodies were found <strong>in</strong> 5% or 47%, respectively, of<br />

patients <strong>in</strong> whom the onset of MG was before or after the age of 40. Thyroid disease<br />

may be associated with MG and sensitive thyroid-stimulat<strong>in</strong>g hormone (TSH) levels<br />

might detect subcl<strong>in</strong>ical or asymptomatic associated thyroid disease (class IV, level C).<br />

<strong>An</strong> approach to the diagnosis and evaluation of patients with possible OM is outl<strong>in</strong>ed<br />

<strong>in</strong> Figure 15–1.<br />

What Is the Suggested Management of OM?<br />

Patients with pure OM must be warned of the possibility of generalization of the disease<br />

process and should specifically be <strong>in</strong>structed to <strong>in</strong>form their physician immediately if<br />

symptoms such as dysphagia, respiratory <strong>in</strong>volvement, or extremity weakness develop.<br />

Good diet (e.g., potassium), adequate rest, and avoidance of precipitants (e.g., medications<br />

that worsen MG) are reasonable.<br />

For patients with OM, if the diplopia or ptosis is mild, then observation or patch<strong>in</strong>g<br />

one eye may be sufficient. Ptosis may be elim<strong>in</strong>ated <strong>in</strong> some patients by hav<strong>in</strong>g a crutch<br />

attachment placed on a spectacle frame for one or both eyes, although this often causes<br />

irritation of the eyes from exposure (Miller, 1985). Ptosis surgery may be performed <strong>in</strong><br />

some patients, particularly those who are refractory to medical therapy or <strong>in</strong> whom


Figure 15–1. Evaluation of ocular myasthenia (OM) gravis.<br />

Ocular Myasthenia Gravis 343<br />

ptosis is a predom<strong>in</strong>ant f<strong>in</strong>d<strong>in</strong>g (Miller, 1985). In some patients, prisms can alleviate<br />

diplopia, particularly when there is a relatively comitant deviation.<br />

For more severe ocular motor weakness, antichol<strong>in</strong>esterase agents, such as pyridostigm<strong>in</strong>e<br />

bromide (Mest<strong>in</strong>on), are warranted, although these agents often do not<br />

succeed <strong>in</strong> correct<strong>in</strong>g the diplopia. Diplopia is often more refractory to treatment than


344 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

ptosis. If moderate or large doses of antichol<strong>in</strong>esterase drugs fail or cannot be tolerated<br />

and symptoms are troublesome, then corticosteroids, often at relatively low alternateday<br />

doses, are usually effective <strong>in</strong> correct<strong>in</strong>g the diplopia (Agius, 2000; Evoli, 1988;<br />

Kupersmith, 1996). Some authors, however, suggest that corticosteroids be used for OM<br />

only if patients demand their use, or if there is severe bilateral ptosis or severe<br />

ophthalmoplegia that precludes useful vision (Kam<strong>in</strong>ski, 2000). Some authors have<br />

suggested azathiopr<strong>in</strong>e for MG that is <strong>in</strong>adequately controlled on low-dose steroids or<br />

for those patients with <strong>in</strong>tolerable steroid side effects (We<strong>in</strong>berg, 1994). Cyclophosphamide,<br />

cyclospor<strong>in</strong>e, <strong>in</strong>travenous immunoglobul<strong>in</strong>, and plasmapheresis have also<br />

been used but are not usually recommended for OM because their benefit-risk ratios<br />

have not been adequately studied (class IV, level U).<br />

What About Thymectomy for OM?<br />

The presence of a thymoma <strong>in</strong> any patient with MG is an <strong>in</strong>dication for thymectomy<br />

(Engel, 1994) (class III, level B). Patients with OM should be evaluated with mediast<strong>in</strong>al<br />

CT or MRI. Although thymectomy can be effective <strong>in</strong> OM without thymoma and may<br />

prevent generalization of the disease, most cl<strong>in</strong>icians are reluctant to recommend this<br />

procedure for purely ocular symptoms (Lanska, 1990). Transsternal thymectomy was<br />

studied <strong>in</strong> 22 cases of purely OM. Remission was def<strong>in</strong>ed as complete freedom from<br />

symptoms without medications for more than 3 months. The remission rates <strong>in</strong>creased<br />

with time from 11.8% at 3 years to 23.1% at 5 years and 33.3% at 10 years (Nakamura,<br />

1996). Those patients undergo<strong>in</strong>g thymectomy with<strong>in</strong> 12 months of symptom onset<br />

showed a significantly earlier and better chance of remission compared to patients<br />

undergo<strong>in</strong>g thymectomy longer than 12 months after symptom onset. The authors<br />

concluded that thymectomy for OM <strong>in</strong> the earlier stages of the disease is the preferred<br />

treatment, just as for generalized MG. <strong>An</strong>other study reviewed 61 patients with OM<br />

who underwent thymectomy and who were followed for a mean of 9 years (Roberts,<br />

2001). Thymoma was present <strong>in</strong> 12 patients. Overall, 71% were cured (51%) or improved<br />

(20%) by thymectomy, with 16 patients (26%) unchanged, one worsen<strong>in</strong>g, and one<br />

dy<strong>in</strong>g <strong>in</strong> the postoperative period. Improvement or cure was noted <strong>in</strong> 67% of the<br />

thymoma group. The authors concluded that thymectomy is safe and effective for OM.<br />

We do not generally recommend thymectomy (without thymoma) for OM (class IV,<br />

level C). From 20 to 50% of patients with OM go <strong>in</strong>to remission without thymectomy,<br />

and no controlled studies have compared this to a surgical group. The argument for<br />

thymectomy will rema<strong>in</strong> unconv<strong>in</strong>c<strong>in</strong>g unless a prospective trial compar<strong>in</strong>g<br />

thymectomy to medical management is performed.<br />

What Is the Prognosis of OM? Does the Use of<br />

Corticosteroids Alter the Prognosis?<br />

About 10 to 20% of patients with OM undergo spontaneous remission that may be<br />

temporary or permanent. Although corticosteroid treatment produces a higher <strong>in</strong>cidence<br />

of remission and improvement, there is no evidence that antichol<strong>in</strong>esterase agents<br />

affect the course of the disease (Kupersmith, 1996). Kupersmith et al reported a<br />

retrospective review of 32 patients with OM who were treated with corticosteroids<br />

and followed for a m<strong>in</strong>imum of 2 years (Kupersmith, 1996). Diplopia was <strong>in</strong>itially


present <strong>in</strong> the primary position <strong>in</strong> 29 patients and <strong>in</strong> downgaze position <strong>in</strong> 26. Ptosis<br />

was present <strong>in</strong> 24 patients (unilateral <strong>in</strong> 13 and bilateral <strong>in</strong> 11). Tensilon test was positive<br />

<strong>in</strong> 31 patients (one patient did not have a Tensilon test but had marked fatigability of the<br />

lids and ocular muscles that recovered with rest). SFEMG or repetitive stimulation<br />

studies were abnormal <strong>in</strong> six of 19 patients, and AChR antibodies were elevated <strong>in</strong> 10 of<br />

28 patients. CT scan of the chest revealed no thymomas <strong>in</strong> any of the 32 patients.<br />

Patients were treated with one or more courses of daily prednisone (the highest <strong>in</strong>itial<br />

dose, 40 to 80 mg) gradually withdrawn over 4 to 6 weeks. Subsequently, <strong>in</strong> six patients,<br />

2.5 to 20 mg of prednisone was given on alternate days for more than 6 months. No<br />

patients had major steroid complications. Two years after diagnosis, diplopia was found<br />

<strong>in</strong> primary position <strong>in</strong> 11 patients and <strong>in</strong> downward gaze <strong>in</strong> 11 patients (9 had diplopia<br />

<strong>in</strong> primary gaze), and 66% of patients had normal ocular function. Ptosis was found <strong>in</strong><br />

seven patients. Generalized MG had developed <strong>in</strong> three patients (9.4%) at 2 years;<br />

elevated AChR antibody levels and abnormal electrophysiologic studies were not<br />

predictive of worsen<strong>in</strong>g. Of the 16 patients who had follow-up for 3 years and the 13<br />

for 4 or longer, ocular motility was normal <strong>in</strong> 56% at 3 years and 62% at 4 years, with 2<br />

additional patients develop<strong>in</strong>g generalized MG at 4 years. The authors concluded that<br />

moderate-dose daily prednisone for 4 to 6 weeks, followed by low-dose, alternate-day<br />

therapy as needed, can control the diplopia of OM, and that the frequency of<br />

deterioration to generalized MG at 2 years may be reduced.<br />

Sommer et al retrospectively analyzed 78 patients with OM with a mean disease<br />

duration of 8.3 years (Sommer, 1997). In 54 patients (69%), symptoms and signs<br />

rema<strong>in</strong>ed conf<strong>in</strong>ed to the extraocular muscles dur<strong>in</strong>g the observation period, whereas<br />

the rema<strong>in</strong><strong>in</strong>g 24 patients (31%) developed symptoms of generalized myasthenia (50%<br />

of them with<strong>in</strong> 2 years and 75% with<strong>in</strong> 4 years after onset). There was a slightly reduced<br />

risk of generalization for patients with mild symptoms, normal repetitive stimulation<br />

studies, and low or absent AChR antibodies. Patients receiv<strong>in</strong>g immunosuppressive<br />

treatment (corticosteroids and=or azathiopr<strong>in</strong>e) rarely developed generalized MG (6 of<br />

50 [12%]). Those without such treatment, usually due to uncerta<strong>in</strong> diagnosis and late<br />

referral, converted <strong>in</strong>to generalized MG significantly more often (18 of 28 [64%]). The<br />

authors concluded that short-term corticosteroids and long-term azathiopr<strong>in</strong>e seemed<br />

adequate for achiev<strong>in</strong>g remission <strong>in</strong> most patients. The proportion of patients develop<strong>in</strong>g<br />

generalized MG was smaller <strong>in</strong> this population compared to previously<br />

published groups and early immunosuppressive treatment was thought to be at least<br />

partially responsible for this f<strong>in</strong>d<strong>in</strong>g. Thymectomy (performed <strong>in</strong> 12 patients with an<br />

abnormal chest CT) also correlated with a good outcome, but had no apparent<br />

advantage over medical treatment alone (Sommer, 1997). Until a prospective cl<strong>in</strong>ical<br />

trial of corticosteroids or other immunosuppressive is performed <strong>in</strong> patients with OM,<br />

the value of these agents <strong>in</strong> the prevention of the development of generalized MG<br />

rema<strong>in</strong>s undef<strong>in</strong>ed (class III–IV, level C). F<strong>in</strong>ally, stable disabl<strong>in</strong>g diplopia may<br />

occasionally respond favorably to strabismus surgery or <strong>in</strong>jection of the extraocular<br />

muscle with botul<strong>in</strong>um (Bentley, 2001).<br />

References<br />

Ocular Myasthenia Gravis 345<br />

Agius MA. (2000). Treatment of ocular myasthenia with corticosteroids—yes. Arch <strong>Neuro</strong>l 57:750–751.<br />

Averbuch-Heller L, Poonyathalang A, von Maydell RD, Remler BF. (1995). Her<strong>in</strong>g’s law for eyelids: still valid.<br />

<strong>Neuro</strong>logy 45:1781–1783.


346 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Band<strong>in</strong>i F, Faga D, Simonetti S. (2001). Ocular myasthenia mimick<strong>in</strong>g a one-and-a-half syndrome. J <strong>Neuro</strong>ophthalmol<br />

21:210–211.<br />

Bentley CR, Dawson E, Lee JP. (2001). Active management <strong>in</strong> patients with ocular manifestations of myasthenia<br />

gravis. Eye 15:18–22.<br />

Bever CT Jr, Aqu<strong>in</strong>o AV, Penn AS, et al. (1983). Prognosis of ocular myasthenia gravis. <strong>An</strong>n <strong>Neuro</strong>l 14:516–519.<br />

Brazis PW. (1997). Enhanced ptosis <strong>in</strong> Lambert-Eaton myasthenic syndrome. J <strong>Neuro</strong>-ophthalmol 17:202–203.<br />

Coll GE, Demer JL. (1992). The Edrophonium-Hess screen test <strong>in</strong> the diagnosis of ocular myasthenia gravis. Am<br />

J Ophthalmol 114:489–493.<br />

Dehaene I, van Zandijcke M. (1995). Isolated paralysis of the superior division of the ocular motor nerve<br />

mimicked by myasthenia gravis. <strong>Neuro</strong>-<strong>ophthalmology</strong> 15:257–258.<br />

Emeryk B, Row<strong>in</strong>ska-Marc<strong>in</strong>ska K, Nowak-Michalska T. (1990). Pseudoselectivity of the neuromuscular block <strong>in</strong><br />

ocular myasthenia: a SFEMG study. Electromyograph Cl<strong>in</strong> <strong>Neuro</strong>physiol 30:53–59.<br />

Engel AG. (1994). Disturbances of neuromuscular transmission. Acquired autoimmune myasthenia gravis.<br />

In: Engel AG, Franz<strong>in</strong>i-Armstrong C, eds. Myology. Basic and <strong>Cl<strong>in</strong>ical</strong>. 2nd ed. New York, McGraw-Hill,<br />

pp. 1769–1797.<br />

Evoli A, Tonali P, Bartoccioni AP, Lo Monaco M. (1988). Ocular myasthenia: diagnostic and therapeutic problems.<br />

Acta <strong>Neuro</strong>l Scand 77:31–35.<br />

Golnik KC, Pena R, Lee AG, Eggenberger ER. (1999). <strong>An</strong> ice test for the diagnosis of myasthenia gravis.<br />

Ophthalmology 106:1282–1286.<br />

Hermann RC Jr. (1996). Repetitive stimulation studies. In: Daube JR, ed. <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>physiology. Philadelphia, FA<br />

Davis, pp. 237–247.<br />

Ishikawa H, Wakakura M, Ishikawa S. (1990). Enhanced ptosis <strong>in</strong> Fisher’s syndrome after Epste<strong>in</strong>-Barr virus<br />

<strong>in</strong>fection. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:197–200.<br />

Ito K, Mizutani J, Murofushi T, Mizuno M. (1997). Bilateral pseudo-<strong>in</strong>ternuclear ophthalmoplegia <strong>in</strong> myasthenia<br />

gravis. J ORL Related Specialties 59:122–126.<br />

Kam<strong>in</strong>ski HJ, Daroff RB. (2000). Treatment of ocular myasthenia. Steroids only when compelled. Arch <strong>Neuro</strong>l<br />

57:752–753.<br />

Kao Y-F, Lan M-Y, Chou M-S, Chen W-H. (1999). Intracranial fatigable ptosis. J <strong>Neuro</strong>-ophthalmol 19:257–259.<br />

Kelly JJ Jr, Daube JR, Lennon VA, et al. (1982). The laboratory diagnosis of mild myasthenia gravis. <strong>An</strong>n <strong>Neuro</strong>l<br />

12:238–242.<br />

Kubis KC, Danesh-Meyer HV, Sav<strong>in</strong>o PJ, Sergott RC. (2000). The ice test versus rest test <strong>in</strong> myasthenia gravis.<br />

Ophthalmology 107:1995–1998.<br />

Kupersmith MJ, Moster M, Bhuiyan S, et al. (1996). Beneficial effects of corticosteroids on ocular myasthenia<br />

gravis. Arch <strong>Neuro</strong>l 53:802–804.<br />

Lanska DJ. (1990). Indications for thymectomy <strong>in</strong> myasthenia gravis. <strong>Neuro</strong>logy 40:1828–1829.<br />

Lepore FE. (1999). Divergence paresis: a nonlocaliz<strong>in</strong>g cause of diplopia. J <strong>Neuro</strong>-ophthalmol 19:242–245.<br />

Limburg PC, The TH, Hummel-Tappel E, Oosterhuis HJ. (1983). <strong>An</strong>ti-acetylchol<strong>in</strong>e receptor antibodies <strong>in</strong><br />

myasthenia gravis. Part 1: relation to cl<strong>in</strong>ical parameters <strong>in</strong> 250 patients. J <strong>Neuro</strong>l Sci 58:357–370.<br />

Litchy WJ. (1996). Quantitative electromyography and s<strong>in</strong>gle-fiber electromyography. In: Daube JR, ed. <strong>Cl<strong>in</strong>ical</strong><br />

<strong>Neuro</strong>physiology. Philadelphia, FA Davis, pp. 282–300.<br />

Miller NR. (1985). Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 4th ed. Baltimore, Williams & Wilk<strong>in</strong>s, pp. 841–891.<br />

Moorthy G, Behrens MM, Drachman DB, et al. (1989). Ocular pseudomyasthenia or ocular myasthenia ‘‘plus’’: a<br />

warn<strong>in</strong>g to cl<strong>in</strong>icians. <strong>Neuro</strong>logy 39:1150–1154.<br />

Movaghar M, Slav<strong>in</strong> ML. (2000). Effect of local heat versus ice on blepharoptosis result<strong>in</strong>g from ocular<br />

myasthenia. Ophthalmology 107:2209–2214.<br />

Mullaney P, Vajsar J, Smith R, Buncic JR. (2000). The natural history and ophthalmic <strong>in</strong>volvement <strong>in</strong> childhood<br />

myasthenia gravis at the Hospital for Sick Children. Ophthalmology 107:504–510.<br />

Nakamura H, Taniguchi Y, Suzuki Y, et al. (1996). Delayed remission after thymectomy for myasthenia gravis of<br />

the purely ocular type. J Thorac Cardiovasc Surg 112:371–375.<br />

Odel J. (1992). Ocular myasthenia. Presented at the North American <strong>Neuro</strong>-Ophthalmology Society meet<strong>in</strong>g,<br />

Rancho Bernardo, California, February.<br />

Odel J, W<strong>in</strong>terkorn J, Behrens M. (1991). The sleep test for myasthenia gravis—a safe alternative to Tensilon. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 11:288–292.<br />

Oger JJF. (1993). Thymus histology and acetylchol<strong>in</strong>e receptor antibodies <strong>in</strong> generalized myasthenia gravis. <strong>An</strong>n<br />

NY Acad Sci 681:110–112.<br />

Oh SJ, Kim DE, Kuruoglu A, et al. (1992). Diagnostic sensitivity of the laboratory tests <strong>in</strong> myasthenia gravis.<br />

Muscle Nerve 15:720–724.


Ocular Myasthenia Gravis 347<br />

Oosterhuis HJGH. (1982). The ocular signs and symptoms of myasthenia gravis. Doc Ophthalmol 52:363–378.<br />

Oosterhuis HJGH. (1988). Long-term effects of treatment <strong>in</strong> 374 patients with myasthenia gravis. Monogr Allergy<br />

25:75–85.<br />

Padua L, Stalberg E, LoMonaco M, et al. (2000). SFEMG <strong>in</strong> ocular myasthenia gravis diagnosis. Cl<strong>in</strong> <strong>Neuro</strong>physiol<br />

111:1203–1207.<br />

Papetestas AE, Genk<strong>in</strong>s G, Horowitz SH, Kornfield P. (1971). Studies <strong>in</strong> myasthenia gravis: effects of thymectomy.<br />

Results <strong>in</strong> 1985 patients with nonthymomatous and thymomatous myasthenia gravis, 1941–1969. Am J Med<br />

50:465–476.<br />

Phillips PH, Newman NJ. (1997). Here today ... gone tomorrow. Surv Ophthalmol 41:354–356.<br />

Ragge NK, Hoyt WF. (1992). Midbra<strong>in</strong> myasthenia: fatiguable ptosis, ‘‘lid twitch’’ sign, and ophthalmoparesis<br />

from a dorsal midbra<strong>in</strong> glioma. <strong>Neuro</strong>logy 42:917–919.<br />

Roberts PF, Venuto F, Rend<strong>in</strong>a E, et al. (2001). Thymectomy <strong>in</strong> the treatment of ocular myasthenia gravis. J Thorac<br />

Cardiovasc Surg 122:562–568.<br />

Sanders DB, Howard JF. (1986). S<strong>in</strong>gle fiber EMG <strong>in</strong> myasthenia gravis. Muscle Nerve 9:809–819.<br />

Sethi KD, Rivner MH, Thomas TR. (1987). Ice pack test for myasthenia gravis. <strong>Neuro</strong>logy 37:1383–1385.<br />

Shams PN, Waldman A, Plant GT. (2002). B cell lymphoma of the bra<strong>in</strong> stem masquerad<strong>in</strong>g as myasthenia. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 72:271–273.<br />

Sommer N, Sigg B, Melms A, et al. (1997). Ocular myasthenia gravis: response to long term immunosuppressive<br />

treatment. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 62:156–162.<br />

Spector RH, Daroff RB. (1976). Edrophonium <strong>in</strong>frared optok<strong>in</strong>etic nystagmography <strong>in</strong> the diagnosis of myasthenia<br />

gravis. <strong>An</strong>n NY Acad Sci 274:642–651.<br />

Straube A, Witt T. (1990). Oculo-bulbar myasthenic symptoms as the sole sign of tumour <strong>in</strong>volv<strong>in</strong>g or<br />

compress<strong>in</strong>g the bra<strong>in</strong>stem. J <strong>Neuro</strong>l 237:369–371.<br />

T<strong>in</strong>dall RSA. (1981). Humoral immunity <strong>in</strong> myasthenia gravis: biochemical characterization of acquired antireceptor<br />

antibodies and cl<strong>in</strong>ical correlation. <strong>An</strong>n <strong>Neuro</strong>l 10:437–447.<br />

Tsujihata M, Yoshimura T, Satoh A, et al. (1989). Diagnostic significance of IgG, C3, and C9 at the limb muscle<br />

motor end-plate <strong>in</strong> m<strong>in</strong>imal myasthenia gravis. <strong>Neuro</strong>logy 39:1359–1363.<br />

Valls-Canals J, Montero J, Pradas J. (2000). Stimulated s<strong>in</strong>gle fiber EMG of the frontalis muscle <strong>in</strong> the diagnosis of<br />

ocular myasthenia gravis. Muscle Nerve 23:779–783.<br />

We<strong>in</strong>berg DA, Lesser RL, Vollmer TL. (1994). Ocular myasthenia: a protean disorder. Surv Ophthalmol 39:169–210.


This page <strong>in</strong>tentionally left blank


16 r<br />

Thyroid Eye Disease: Graves’<br />

Ophthalmopathy<br />

What Are the Typical <strong>Cl<strong>in</strong>ical</strong> Features of<br />

Graves’ Ophthalmopathy?<br />

Graves’ ophthalmopathy (GO) is characterized cl<strong>in</strong>ically by the signs listed <strong>in</strong><br />

Table 16–1. Patients without the typical features of GO should undergo further<br />

evaluation for other etiologies of their signs: proptosis (e.g., orbital tumor or pseudotumor),<br />

strabismus (e.g., myasthenia gravis), and lid retraction (see Chapter 19).<br />

Although we do not typically image GO without compressive optic neuropathy, we<br />

do recommend neuroimag<strong>in</strong>g and orbital imag<strong>in</strong>g for patients with atypical features for<br />

GO (class IV, level C).<br />

What Are the Imag<strong>in</strong>g F<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> Graves’<br />

Ophthalmopathy?<br />

Orbital imag<strong>in</strong>g, such as computed tomography (CT) and magnetic resonance imag<strong>in</strong>g<br />

(MRI) scans, often demonstrate proptosis, extraocular muscle (EOM) enlargement<br />

spar<strong>in</strong>g the tendons (Just, 1991; Ozgen, 1999), <strong>in</strong>creased orbital fat volume (Chang,<br />

1990; Char, 1991; Firbank, 2000), and sometimes engorgement of the superior ophthalmic<br />

ve<strong>in</strong>. MRI may be superior to CT scan <strong>in</strong> differentiat<strong>in</strong>g EOM edema (with elevated<br />

T2 relaxation times) from fibrosis (Just, 1991; Muller-Forell, 1999; Nagy, 2000). Serial<br />

short tau <strong>in</strong>version recovery (STIR) sequence MRI correlates with the cl<strong>in</strong>ical activity<br />

score (Mayer, 2001). Ultrasonography of the orbit can also demonstrate EOM enlargement<br />

consistent with GO. MRI, however, is usually more costly than CT imag<strong>in</strong>g.<br />

Apical compression of the optic nerve <strong>in</strong> compression optic neuropathy (CON) may<br />

be seen on CT or MRI. Coronal as well as axial images are useful <strong>in</strong> the radiographic<br />

diagnosis of CON <strong>in</strong> GO (So, 2000). We recommend orbital imag<strong>in</strong>g <strong>in</strong> patients with<br />

349


350 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 16–1. Typical Features of Graves’ Ophthalmopathy (GO)<br />

Eyelid signs<br />

Lid retraction (the most common cl<strong>in</strong>ical feature of GO) (Bartley, 1994, 1995, 1996)<br />

Stare<br />

Lid lag <strong>in</strong> downgaze<br />

Exophthalmos<br />

Enlargement of extraocular muscles<br />

Increased orbital fat volume (Hudson, 1991)<br />

Increased <strong>in</strong>traocular pressure (Danesh-Meyer, 2001; Kalmann, 1998)<br />

Diplopia=ophthalmoplegia secondary to extraocular muscle <strong>in</strong>flammation or fibrosis<br />

Visual loss<br />

Exposure keratopathy<br />

Compressive optic neuropathy (CON) from extraocular muscle <strong>in</strong>volvement <strong>in</strong> the orbital apex<br />

(Liu, 1992; Mourits, 1990a,b; Nagy, 2000; Trobe, 1978)<br />

Stretch<strong>in</strong>g of the optic nerve due to proptosis (Liu, 1992)<br />

Flash<strong>in</strong>g lights (Danks, 1998)<br />

Signs and symptoms of orbital congestion<br />

Due to proptosis with or without venous outflow obstruction<br />

Conjunctival <strong>in</strong>jection and chemosis<br />

Eyelid and periorbital edema<br />

Tear<strong>in</strong>g, photophobia, and orbital discomfort (Bahn, 1990; Nunery, 1991; Srivastava, 2000)<br />

cl<strong>in</strong>ical evidence of an optic neuropathy and <strong>in</strong> cases where the diagnosis is uncerta<strong>in</strong> or<br />

atypical features are present (class IV, level C).<br />

Newer technologies such as 1H-magnetic resonance spectroscopy of the retrobulbar<br />

tissues have been used to estimate the concentration of chondroit<strong>in</strong> sulfate proteoglycan<br />

<strong>in</strong> retrobulbar tissue. Because the concentration of glycosam<strong>in</strong>oglycans is <strong>in</strong>creased <strong>in</strong><br />

patients with GO, this cl<strong>in</strong>ical tool may thus assist <strong>in</strong> the evaluation of patients with<br />

thyroid orbitopathy (Ohtsuka, 1999a). Octreotide sc<strong>in</strong>tigraphy may also be a useful test<br />

for determ<strong>in</strong><strong>in</strong>g activity of disease by demonstrat<strong>in</strong>g orbital uptake <strong>in</strong> GO (Gerd<strong>in</strong>g,<br />

1999; Krassas, 1999a,b).<br />

What Is the Relationship between Graves’<br />

Disease and Systemic Thyroid Status?<br />

Although GO is often associated with systemic hyperthyroidism, GO may occur <strong>in</strong><br />

primary hypothyroidism, Hashimoto’s thyroiditis, and sometimes <strong>in</strong> euthyroid <strong>in</strong>dividuals<br />

(Gleeson, 1999; Salvi, 1990; Weetman, 2000).<br />

What Is the Treatment for Graves’<br />

Ophthalmopathy?<br />

Treatment of the underly<strong>in</strong>g systemic thyroid abnormalities is the logical first step <strong>in</strong> the<br />

management of thyroid disease. The evidence is controversial regard<strong>in</strong>g the effect of the


Thyroid Eye Disease: Graves’ Ophthalmopathy 351<br />

degree of thyroid abnormality or the speed, type (medical or surgical), or completeness<br />

of systemic therapy (Feldon, 1990) on the <strong>in</strong>cidence or severity of GO (class III–IV,<br />

level C). Nevertheless, we recommend that systemic thyroid control be achieved and<br />

this may improve the signs and symptoms of GO (Prummel, 1990; Tallstedt, 1992) (class<br />

III–IV, level B). Prummel et al studied 90 patients with GO and hyperthyroidism <strong>in</strong><br />

whom the severity of GO and thyroid function were assessed. Patients were assigned to<br />

four groups with <strong>in</strong>creas<strong>in</strong>gly severe GO. More dysthyroid patients were <strong>in</strong> the groups<br />

with severe GO than <strong>in</strong> the other groups (Prummel, 1990). Other uncontrolled studies,<br />

however, failed to show regression of GO after careful treatment of hyperthyroidism<br />

(class III–IV, level C).<br />

The relation between therapy for hyperthyroidism and the course of GO was studied<br />

by Bartalena et al (Bartalena, 1998a). Patients with Graves’ hyperthyroidism and slight<br />

or no GO (443 patients) were randomly assigned to receive radioactive iod<strong>in</strong>e (RAI),<br />

RAI followed by a 3-month course of prednisone, or methimazole for 18 months. The<br />

patients were evaluated at <strong>in</strong>tervals of 1 to 2 months for 12 months. Among the 150<br />

patients treated with RAI, GO developed or worsened <strong>in</strong> 23 (15%) at 2 to 6 months after<br />

treatment. The change was transient <strong>in</strong> 15 patients, but it persisted <strong>in</strong> 8 (5%), who<br />

subsequently required treatment for GO. None of the 55 other patients <strong>in</strong> this group<br />

who had GO at basel<strong>in</strong>e had improvement. Among the 145 patients treated with RAI<br />

and prednisone, 50 (67%) of the 75 with GO at basel<strong>in</strong>e had improvement and no<br />

patient had progression. The effects of RAI on thyroid function were similar <strong>in</strong> these<br />

two groups. Among the 148 patients treated with methimazole, three (2%) who had GO<br />

at basel<strong>in</strong>e improved, four (3%) had worsen<strong>in</strong>g of eye disease, and the rema<strong>in</strong><strong>in</strong>g 141<br />

had no change. The authors concluded that RAI therapy for Graves’ hyperthyroidism is<br />

followed by the appearance or worsen<strong>in</strong>g of GO more than is therapy with methimazole.<br />

Worsen<strong>in</strong>g of GO after RAI therapy is often transient and might be prevented by<br />

the adm<strong>in</strong>istration of low-dose prednisone (Dietle<strong>in</strong>, 1999; Marcocci, 1999a). The<br />

authors concluded there was worsen<strong>in</strong>g of GO <strong>in</strong> 15% of the patients treated with<br />

RAI, but <strong>in</strong> none of those treated with RAI and prednisone. Only 3% of those treated<br />

with methimazole experienced any worsen<strong>in</strong>g of GO (Keltner, 1998).<br />

Bartalena et al studied 26 patients treated with RAI alone and 26 treated with RAI<br />

and systemic prednisone for 4 months (Bartalena, 1989). The <strong>in</strong>itial dose of prednisone<br />

was 0.4 to 0.5 mg=kg of body weight for 1 month, with a gradual taper over 3 months.<br />

Before RAI, 15 patients had no evidence for GO and none of these developed GO after<br />

RAI. Of the patients treated with RAI alone with <strong>in</strong>itial GO, 56% worsened and 44%<br />

were unchanged <strong>in</strong> soft tissue abnormalities and EOM function. Conversely, there was<br />

an improvement <strong>in</strong> GO <strong>in</strong> 52% and no change <strong>in</strong> 48% of RAI patients treated with<br />

steroids. These authors and others (Bartalena, 1989; Rasmussen, 2000) have recommended<br />

systemic corticosteroid treatment to prevent exacerbation of GO <strong>in</strong> patients<br />

undergo<strong>in</strong>g RAI who have some degree of ocular <strong>in</strong>volvement before treatment, but<br />

there is some disagreement with this recommendation (Beck, 1990). We recommend a<br />

short course of oral prednisone dur<strong>in</strong>g RAI therapy for GO (class III–IV, level C).<br />

Some authors believe that patients may experience worsen<strong>in</strong>g of GO after any<br />

systemic thyroid treatments (e.g., thyroid surgery, RAI, and neck radiotherapy for<br />

nonthyroidal neoplasms). The presumed mechanism for worsen<strong>in</strong>g GO is leakage of<br />

thyroid antigens and an <strong>in</strong>crease <strong>in</strong> circulat<strong>in</strong>g thyroid autoantibodies. In contrast to<br />

RAI, Marcocci et al did not f<strong>in</strong>d any effect on GO of near-total thyroidectomy <strong>in</strong> patients<br />

with nonsevere or absent GO (Marcocci, 1999b).


352 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Several studies have shown that smok<strong>in</strong>g is associated with worsen<strong>in</strong>g GO, and we<br />

recommend discont<strong>in</strong>u<strong>in</strong>g tobacco to all of our patients with GO (class III, level B)<br />

(Balazs, 1990; Bartalena, 1998b; Mann, 1999; Nunery, 1993; Pfeilschifter, 1996; Prummel,<br />

1993; Sh<strong>in</strong>e, 1990; Solberg, 1998; Tallstedt, 1993; Tellez, 1992). Insul<strong>in</strong>-dependent<br />

diabetes mellitus is also a risk factor for GO, and optic neuropathy occurs much<br />

more frequently (33.3%) <strong>in</strong> patients with GO and diabetes (and seems to have a worse<br />

prognosis) than <strong>in</strong> a total group of patients with GO (3.9%) (Kalmann, 1999).<br />

The natural history of the GO is variable, and although most GO appears with<strong>in</strong> a few<br />

months of the diagnosis of hyperthyroidism, it may develop many months to years before<br />

or after the onset of the systemic diagnosis of thyroid abnormality. Some patients never<br />

show cl<strong>in</strong>ical or laboratory evidence for systemic thyroid abnormalities (euthyroid GO). In<br />

many patients GO is a self-limited disease that may not require any therapy and the<br />

disease often stabilizes with<strong>in</strong> 1 to 3 years. Therefore, treatment is usually directed at shortterm<br />

control of the <strong>in</strong>flammatory component of the disease (usually with<strong>in</strong> the first 6 to 36<br />

months); acute <strong>in</strong>tervention for vision-threaten<strong>in</strong>g proptosis or CON; and long-term<br />

reconstructive management of lid retraction, strabismus, and proptosis.<br />

Medical and other conservative therapy should generally precede consideration of<br />

surgical <strong>in</strong>tervention. Shorr and Seif described a logical stepwise approach to<br />

the surgical rehabilitation of GO (Shorr, 1986). These authors proposed the follow<strong>in</strong>g<br />

four stages for GO: (1) orbital decompression, (2) strabismus surgery, (3) lid marg<strong>in</strong><br />

reposition<strong>in</strong>g surgery, and (4) blepharoplasty.<br />

The rationale for this sequential approach to GO is that orbital decompression often<br />

results <strong>in</strong> worsen<strong>in</strong>g, new, or changed EOM dysfunction as well as changes <strong>in</strong> lid<br />

position. Therefore, orbital decompression should precede strabismus and lid surgery<br />

<strong>in</strong> patients who require all three surgeries (class III–IV, level C). Patients with CON<br />

should undergo treatment to preserve or improve vision (class III–IV, level B). Trobe<br />

summarized the natural course of untreated CON <strong>in</strong> three series of 32 eyes. In this<br />

report, 21% of these eyes were left with a visual acuity of 20=100 or less, <strong>in</strong>clud<strong>in</strong>g a f<strong>in</strong>al<br />

vision of count<strong>in</strong>g f<strong>in</strong>gers to no light perception <strong>in</strong> five eyes (Trobe, 1978).<br />

What Therapies Are Suggested for Local<br />

Ocular and Orbital Inflammatory Signs?<br />

Patients with lid or ocular irritation, mild <strong>in</strong>flammation, or exposure keratopathy may<br />

benefit from conservative treatments, such as topical artificial tears and=or lubricat<strong>in</strong>g<br />

o<strong>in</strong>tments, t<strong>in</strong>ted or wrap-around glasses, elevation of the head of the bed, or tap<strong>in</strong>g the<br />

eyelids shut dur<strong>in</strong>g sleep (Liu, 1992). Although some authors have advocated the use of<br />

topical, peribulbar, or retrobulbar steroids, we do not usually employ these routes of<br />

steroid therapy for periorbital swell<strong>in</strong>g (class IV, level C). The evidence to support the<br />

use of steroids <strong>in</strong> this manner is anecdotal at best, and these treatments may be<br />

associated with complications, such as secondary <strong>in</strong>creased <strong>in</strong>traocular pressure (class<br />

III–IV, level U).<br />

Should Immunosuppressive Therapy Be<br />

Considered <strong>in</strong> GO?<br />

Although systemic corticosteroids have been employed for GO, there is limited<br />

evidence outl<strong>in</strong><strong>in</strong>g the specific <strong>in</strong>dications for their use or the results of treatment,


Thyroid Eye Disease: Graves’ Ophthalmopathy 353<br />

except <strong>in</strong> patients with CON (Liu, 1992). In addition, although medical therapy usually<br />

consists of prednisone, other immunosuppressive agents (e.g., azathiopr<strong>in</strong>e [Imuran],<br />

methotrexate, cyclophosphamide [Cytoxan], or cyclospor<strong>in</strong>e) have also been<br />

recommended. Experience with these agents is limited (class IV, level U). Perros et al<br />

reported negative results with azathiopr<strong>in</strong>e for moderate GO <strong>in</strong> a matched study of 20<br />

patients (Perros, 1990). Other studies have reported little effect with azathiopr<strong>in</strong>e,<br />

methotrexate (Smith, 2001), or cimexone (Kahaly, 1990). <strong>An</strong>ecdotal success has been<br />

reported with plasmapheresis and bromocript<strong>in</strong>e, but the relative efficacy of these<br />

therapies compared with traditional treatment for GO rema<strong>in</strong>s to be def<strong>in</strong>ed.<br />

Prummel et al reported a s<strong>in</strong>gle-bl<strong>in</strong>d randomized cl<strong>in</strong>ical trial compar<strong>in</strong>g the efficacy<br />

of prednisone (60 mg=day with a taper<strong>in</strong>g dose) versus cyclospor<strong>in</strong>e (7.5 mg=kg of body<br />

weight=day) (Prummel, 1989). Dur<strong>in</strong>g the 12-week treatment period, 11 prednisonetreated<br />

and 4 cyclospor<strong>in</strong>e-treated patients responded to therapy (61% vs. 22%;<br />

p ¼ 0.018) as def<strong>in</strong>ed by decrease <strong>in</strong> EOM enlargement and proptosis, improved<br />

vision, and subjective eye scores. There were no differences at basel<strong>in</strong>e between the<br />

patients who responded later and those who did not, but the prednisone was less well<br />

tolerated than the cyclospor<strong>in</strong>e, and comb<strong>in</strong>ation therapy was better tolerated than<br />

prednisone alone. These authors concluded that s<strong>in</strong>gle-drug therapy with prednisone<br />

was more effective than cyclospor<strong>in</strong>e <strong>in</strong> patients with severe GO, but that the<br />

comb<strong>in</strong>ation may be effective <strong>in</strong> patients who did not respond to either drug alone<br />

(Prummel, 1989).<br />

Corticosteroids have been shown to reduce EOM enlargement <strong>in</strong> CON (Liu, 1992).<br />

Many authors recommend relatively high doses of prednisone (1 to 1.5 mg=kg=day) for<br />

the treatment of CON (Liu, 1992). Kazim et al reviewed 84 cases of acute GO treated<br />

with either high-dose systemic steroids or radiotherapy (RT) and reported that RT (1 of<br />

29 required decompression) was more effective than corticosteroids (6 of 16 patients<br />

required decompression) and that RT had fewer complications than steroids (Kazim,<br />

1991). Guy et al reported the use of high-dose pulse <strong>in</strong>travenous corticosteroids (Guy,<br />

1989). Macchia et al compared oral (prednisone 60 to 80 mg=d) and high-dose <strong>in</strong>travenous<br />

(two weekly <strong>in</strong>jections of 1 g for 6 weeks) corticosteroid therapy for GO <strong>in</strong> 25<br />

patients. High-dose IV steroids were better tolerated but all patients showed significant<br />

improvement <strong>in</strong> proptosis, <strong>in</strong>flammation, and diplopia (Macchia, 2001). Many authors<br />

believe that improvement <strong>in</strong> CON follow<strong>in</strong>g prednisone therapy is usually evident<br />

with<strong>in</strong> the first few weeks of treatment and that there is no justification for ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g<br />

patients with CON on prolonged corticosteroid regimens (Trokel, 1993).<br />

Claridge et al <strong>in</strong>vestigated comb<strong>in</strong>ed immunosuppression with primary bilateral<br />

orbital radiotherapy (20 Gy <strong>in</strong> 10 fractions). These authors studied RT with azathiopr<strong>in</strong>e<br />

(up to 3 mg=kg=d) and low-dose prednisolone (maximum dose 40 mg=kg=d)<br />

(Claridge, 1997). Forty consecutive patients with active GO were recruited. Before<br />

treatment, 15 had CON, 35 had significant motility restriction, and 38 had marked soft<br />

tissue signs. On average, GO became <strong>in</strong>active after 1.2 years of immunosuppression,<br />

and treatment was well tolerated. Compared with previously reported treatments, the<br />

authors thought that this therapy regimen was more effective than either treatment<br />

alone and led to fewer side effects than high-dose steroids. In particular, there was<br />

more than a fourfold reduction <strong>in</strong> the requirement for orbital decompression and<br />

strabismus surgery.<br />

Baschieri et al performed a prospective nonrandomized study of <strong>in</strong>travenous<br />

immunoglobul<strong>in</strong> (IVIG) versus corticosteroids for GO (Baschieri, 1997). Twenty-seven


354 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

patients treated with IVIG were followed for an average of 21 months (12 to 48 months).<br />

Soft tissue <strong>in</strong>volvement improved or disappeared <strong>in</strong> 32 of 35 patients (91%) treated with<br />

IVIG and 25 of 27 (93%) of patients treated with steroids. Diplopia improved or<br />

disappeared <strong>in</strong> 22 of 29 (76%) patients treated with IVIG and 16 of 20 (80%) of patients<br />

treated with steroids. A significant reduction of EOM thickness on CT imag<strong>in</strong>g<br />

was observed after treatment <strong>in</strong> both groups. Proptosis improved or disappeared <strong>in</strong><br />

20 of 31 (65%) of patients treated with IVIG and <strong>in</strong> 15 of 24 (63%) of patients treated<br />

with steroids. The authors suggest that IVIG is safe and effective <strong>in</strong> reduc<strong>in</strong>g the<br />

eye changes <strong>in</strong> patients with GO. Prophet et al used immunoadsorption therapy (20<br />

sessions of Plasmaselect=Therasorp <strong>An</strong>ti-IgG) <strong>in</strong> two patients with refractory GO<br />

(Prophet, 2001).<br />

Balazs et al performed a pilot study of pentoxifyll<strong>in</strong>e on moderately severe GO <strong>in</strong> 10<br />

patients (Balazs, 1997). At 12 weeks, 80% of patients had improvement of soft tissue<br />

<strong>in</strong>volvement, but not of proptosis or EOM <strong>in</strong>volvement. This agent may have a future<br />

role <strong>in</strong> the treatment of GO.<br />

Krassas and Heufelder reviewed the immunosuppressive treatment available for GO,<br />

and concluded that cyclospor<strong>in</strong> A, azathiopr<strong>in</strong>e, cyclophosphamide, and cimexone had<br />

modest results but with unfavorable risk-benefit ratios (Krassas, 2001). Somatostat<strong>in</strong><br />

analogs, octreotide, and lanreotide are emerg<strong>in</strong>g therapies but rema<strong>in</strong> costly and as yet<br />

unproven alternatives (Krassas, 2001). Uysal et al reported a positive response to<br />

octreotide <strong>in</strong> seven of n<strong>in</strong>e patients with GO (1999).<br />

We recommend immunosuppression therapy only for GO <strong>in</strong> the active phase. Usually<br />

a short course (2- to 4-week trial) of oral corticosteroids (prednisone 1 mg=kg per day)<br />

would be a reasonable first-l<strong>in</strong>e therapy (class IV, level C). We generally do not<br />

recommend long-term corticosteroid therapy <strong>in</strong> GO because of the systemic side effects.<br />

Concomitant corticosteroid treatment, however, may be useful as an adjunct to radiotherapy<br />

(see below). The evidence for us<strong>in</strong>g other immunosuppressive agents <strong>in</strong> GO is<br />

not sufficient to support a def<strong>in</strong>itive recommendation on the <strong>in</strong>dications, drug, dosage,<br />

or duration of therapy (class IV, level U).<br />

What Is the Role of Radiotherapy <strong>in</strong> GO?<br />

Low-dose orbital RT has been reported with good results for the treatment of acute<br />

<strong>in</strong>flammation (soft tissue signs) and=or CON due to GO. The typical cumulative RT<br />

dose of 2000 cGy is well tolerated and generally considered to be safe (class III, level B).<br />

RT may also be useful <strong>in</strong> reduc<strong>in</strong>g the dosage or elim<strong>in</strong>at<strong>in</strong>g the need for corticosteroid<br />

or other immunosuppressive treatments (Kazim, 1991; Petersen, 1990; Rush, 2000).<br />

Table 16–2 summarizes selected cases of orbital RT <strong>in</strong> the treatment of GO.<br />

Marcocci et al compared the efficacy and tolerance of <strong>in</strong>travenous or oral glucocorticoids<br />

and orbital RT <strong>in</strong> a prospective, s<strong>in</strong>gle-bl<strong>in</strong>d, randomized study of 82 patients with<br />

severe GO (Marcocci, 2001). There was a significant reduction <strong>in</strong> proptosis, diplopia,<br />

and CON <strong>in</strong> both groups. IV steroids were tolerated better than oral steroids. The<br />

cl<strong>in</strong>ical activity score was significantly lower <strong>in</strong> the IV group than the oral group. These<br />

authors concluded that high-dose (15 mg=kg for four cycles, then 7.5 mg=kg for four<br />

cycles, each cycle consisted of two <strong>in</strong>fusions on alternate days at 2-week <strong>in</strong>tervals) IV<br />

steroids and oral steroids (prednisone 100 mg=d, withdrawal after 5 months) associated<br />

with orbital RT were effective <strong>in</strong> severe GO. IV steroids, however, were more effective,


Thyroid Eye Disease: Graves’ Ophthalmopathy 355<br />

Table 16–2. Treatment of GO with Orbital RT: Summary of Selected Studies<br />

Author No. of Patients Response Rate (%) Comments<br />

Donaldson, 1973 80 67% >1 year follow-up<br />

Rav<strong>in</strong>, 1975 9 with optic All 9 improved vision Little effect on soft<br />

neuropathy<br />

tissue abnormalities<br />

Brennan, 1983 14 13=14 (93%) reduced Myopathy showed<br />

soft tissue <strong>in</strong>flammation the least improvement<br />

Hurbli, 1985 62 34=46 (74%) improved Patients with<br />

motility and<br />

duration < 6 months<br />

10=14 (71%)<br />

CON improved<br />

responded better<br />

Wiers<strong>in</strong>ga, 1988 39 25 (64%) improved<br />

Sandler, 1989 35 71% improved<br />

Lloyd, 1992 36 33=36 (92%) improved<br />

Kazim, 1991 29 28=29 (97%) improved 1 required decompression<br />

Mourits, 2000 30 60% improved Placebo controlled<br />

Placebo (31%) improved Improved diplopia<br />

Rush, 2000 10 CON 8=10 (80%) improved Improved vision<br />

Tsuj<strong>in</strong>o, 2000 121 Limited proptosis<br />

Excellent (14%),<br />

response<br />

good (54%), fair (25%)<br />

Van Ruyven, 2000 111 No change <strong>in</strong> proptosis Improved motility;<br />

improved soft<br />

tissue signs<br />

Gorman, 2001 42 No beneficial response Randomized trial<br />

had fewer side effects, and were better tolerated than oral steroids (Marcocci, 2001).<br />

Tsuj<strong>in</strong>o et al reported 121 patients with GO treated with orbital RT (20 Gy <strong>in</strong> 10<br />

fractions). The cl<strong>in</strong>ical response was excellent <strong>in</strong> 14%, good <strong>in</strong> 54%, fair <strong>in</strong> 25%, no<br />

response <strong>in</strong> 6%, and worse <strong>in</strong> 1% (Tsuj<strong>in</strong>o, 2000). Kahaly et al reported improvement<br />

us<strong>in</strong>g three RT dos<strong>in</strong>g protocols: group A (1 Gy weekly for 20 weeks), group B (10<br />

fractions of 1 Gy), and group C (2 Gy daily over 2 weeks). Improvement was noted <strong>in</strong> 12<br />

patients <strong>in</strong> group A (67%), 13 <strong>in</strong> group B (59%), and 12 <strong>in</strong> group C (55%). They<br />

concluded that the response rates were similar <strong>in</strong> low and high RT dose treatment but<br />

that the 1 Gy per week protocol was most effective and better tolerated (Kahaly, 2000).<br />

Most authors do not believe that RT is <strong>in</strong>dicated for patients with mild GO or for<br />

long-stand<strong>in</strong>g, fibrotic, non<strong>in</strong>flammatory GO (class IV, level C). Previous head or orbit<br />

RT is probably a contra<strong>in</strong>dication to further RT for GO. No significant morbidity has<br />

been reported <strong>in</strong> patients with appropriate RT dos<strong>in</strong>g for GO, although there is a<br />

theoretical risk of RT-<strong>in</strong>duced cataracts or neoplasms, radiation optic neuropathy, or<br />

radiation ret<strong>in</strong>opathy (class III–IV, level C). Several cases of radiation ret<strong>in</strong>opathy have<br />

been described <strong>in</strong> patients with <strong>in</strong>appropriate RT dos<strong>in</strong>g (K<strong>in</strong>youn, 1984). We recommend<br />

that only centers with considerable experience with RT perform this treatment for<br />

GO (Char, 1991).<br />

Gorman et al performed a prospective, randomized, double-bl<strong>in</strong>d, placebo-controlled<br />

study of orbital radiotherapy for GO (Gorman, 2001). The patients had symptomatic GO<br />

without optic neuropathy. Forty-two of 53 eligible consecutive patients were treated


356 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

(20 Gy of external beam therapy to one orbit with sham therapy to other side, followed <strong>in</strong><br />

6 months with reversal of the therapies). Every 3 months for 1 year, the authors measured<br />

the volume of the EOM and of fat, proptosis, range of EOM motion, area of diplopia fields,<br />

and lid fissure width. No cl<strong>in</strong>ical statistically significant difference between the treated<br />

and untreated orbit was observed <strong>in</strong> any of the outcome measures at 6 months. At 12<br />

months, muscle volume and proptosis improved slightly more <strong>in</strong> the orbit that was treated<br />

first. The authors concluded that <strong>in</strong> this group of patients they were unable to demonstrate<br />

any beneficial therapeutic effects (Gorman, 2001). The usefulness of this study has been<br />

criticized, however, because of its broad patient <strong>in</strong>clusion criteria that lacked rigor <strong>in</strong><br />

controll<strong>in</strong>g the issues of tim<strong>in</strong>g of therapy, the cl<strong>in</strong>ical variability <strong>in</strong> presentation of<br />

the patients, and multiple treatment methods used for <strong>in</strong>dividual patients (Feldon,<br />

2001). We recommend that low-dose orbital RT still be considered a valid treatment<br />

option for the treatment of active <strong>in</strong>flammatory GO (class III–IV, level C). Unfortunately,<br />

the assessment of which patients have active GO rema<strong>in</strong>s difficult and controversial<br />

despite multiple proposed grad<strong>in</strong>g schemes (Cockerham, 2002; Dick<strong>in</strong>son, 2001).<br />

What Is the Treatment for Lid Retraction <strong>in</strong><br />

GO?<br />

Lid retraction may be due to Müller’s muscle (sympathetic) or levator overaction, levator<br />

contraction (degeneration of the muscle or aponeurosis), levator adhesions, or pseudoretraction<br />

(Lemke, 1991). Occasionally eyelid retraction spontaneously resolves (von<br />

Brauchitsch, 1999). Upper eyelid retraction may be treated surgically by a number of<br />

approaches (Maarten, 1999; Oliver, 1998b), <strong>in</strong>clud<strong>in</strong>g levator marg<strong>in</strong>al myotomies,<br />

Müller’s muscle excision, levator stripp<strong>in</strong>g, and levator spacers placed <strong>in</strong>to the upper<br />

eyelid to create length. Detailed descriptions of these procedures are beyond the scope of<br />

this text. Patients with lesser degrees of proptosis may benefit from eyelid procedures<br />

more than orbital procedures. Char recommended that patients with exophthalmometry<br />

read<strong>in</strong>gs of under 23 or 24 with good motility are probably better treated with eyelid<br />

procedures (Char, 1991, 1992). The use of topical a-adrenergic agents, such as guanethid<strong>in</strong>e,<br />

has been advocated by some authors, but significant corneal toxicity usually limits<br />

the use of these agents. Botul<strong>in</strong>um tox<strong>in</strong> <strong>in</strong>jections <strong>in</strong>to the lids may also transiently<br />

relieve lid retraction (Ceisler, 1995; Oliver, 1998a; Ozkan, 1997; Traisk, 2001). We generally<br />

recommend lid surgery be considered for patients with <strong>in</strong>active and stable disease who<br />

do not have evidence for optic neuropathy and who are not go<strong>in</strong>g to undergo orbital<br />

decompression or strabismus surgery <strong>in</strong> the near future (class IV, level C).<br />

What Treatments Should Be Considered for<br />

Strabismus Due to GO?<br />

Strabismus <strong>in</strong> GO may be treated with patch<strong>in</strong>g, prism therapy, or strabismus surgery<br />

(Prendiville, 2000). Patients with difficulty <strong>in</strong> downgaze and the read<strong>in</strong>g position may<br />

benefit from simply occlud<strong>in</strong>g the lower segment of their bifocal, rais<strong>in</strong>g the bifocal<br />

height, or us<strong>in</strong>g two pairs of spectacles (one pair of s<strong>in</strong>gle-vision glasses for read<strong>in</strong>g and<br />

one pair for distance). The surgical techniques to correct strabismus will vary depend<strong>in</strong>g


on the severity and distribution of extraocular <strong>in</strong>volvement. A detailed description of<br />

these procedures is beyond the scope of this text (Mourits, 1990a,b). Limited anecdotal<br />

success has been reported with botul<strong>in</strong>um tox<strong>in</strong> <strong>in</strong>jections <strong>in</strong>to EOMs, but we do not<br />

generally recommend botul<strong>in</strong>um tox<strong>in</strong> treatment for GO (class IV, level C). Surgical<br />

treatment for strabismus should be deferred until after the acute <strong>in</strong>flammatory phase of<br />

GO has been treated adequately (class III–IV, level C). Although successful long-term<br />

alignment may be achieved with strabismus surgery dur<strong>in</strong>g the active phase of GO <strong>in</strong><br />

selected patients with marked disability (Coats, 1999), we generally advocate stable<br />

measurements, good thyroid control, and <strong>in</strong>active disease before proceed<strong>in</strong>g with<br />

strabismus surgery (class IV, level C).<br />

What Treatments Are Suggested for Proptosis<br />

and=or Compressive Optic <strong>Neuro</strong>pathy Due to<br />

GO?<br />

Thyroid Eye Disease: Graves’ Ophthalmopathy 357<br />

The natural history of CON is poorly documented but presumably variable (class IV).<br />

Carter et al reviewed the comb<strong>in</strong>ed reports of 16 untreated patients (26 eyes). There was<br />

spontaneous visual improvement to 20=50 acuity or better <strong>in</strong> 19 eyes (73%), but 6 eyes<br />

(23%) did not improve (range, count<strong>in</strong>g f<strong>in</strong>gers to no light perception) (Carter, 1991).<br />

CON may be treated with systemic corticosteroids, orbital RT, or orbital surgical<br />

decompression (Kazim, 1991; Kubis, 2000; Trobe, 1978). Kazim et al retrospectively<br />

reviewed 84 cases of acute GO and reported that only 1 of 29 patients with CON treated<br />

with RT required surgical decompression versus 6 of 16 treated with corticosteroids<br />

(Kazim, 1991). Nevertheless, oral or IV corticosteroids may be the first-l<strong>in</strong>e treatment for<br />

CON (Guy, 1989). Guy et al reported the use of pulse IV methylprednisolone (1 g daily<br />

for 3 days) <strong>in</strong> five patients with CON. Oral corticosteroids and orbital RT allowed the<br />

treatment response to be ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> all five patients for several months (Guy, 1989).<br />

Patients with CON who fail or cannot tolerate steroid treatment and=or RT should be<br />

considered for orbital decompression.<br />

A wide variety of surgical approaches for orbital decompression have been advocated,<br />

<strong>in</strong>clud<strong>in</strong>g one, two, three, and even four wall decompressions (<strong>An</strong>tozyck, 1992;<br />

Carter, 1991; Coday, 1998; Fatourechi, 1993; Garrity, 1993; Goldberg, 1997; Gormley,<br />

1997; Graham, 1997; Hurwitz, 1992; Kalmann, 1997; Kennedy, 1990; Kulw<strong>in</strong>, 1990;<br />

Leatherbarrow, 1991; Lund, 1997; May, 2000; McNab, 1997; Mourits, 1990b; Ohtsuka,<br />

1999b; Olivari, 1991; Paridaens, 1998, 2000; Ruttum, 2000; Sillers, 1997; Thaller, 1990;<br />

West, 1997; Wilson, 1991). Wulc et al also advocated lateral wall advancement as an<br />

adjunct to orbital decompression to enhance the decompressive effect and provide a<br />

potential space for lateral expansion (Wulc, 1990). Golken et al described microsurgical<br />

liposuction <strong>in</strong> GO via a lateral canthotomy (Golken, 2000). Kazim et al performed<br />

orbital fat decompression <strong>in</strong>stead of orbital bone decompression on five patients (eight<br />

eyes) with dysthyroid optic neuropathy who had an enlarged orbital fat compartment<br />

(Kazim, 2000). These patients did not have EOM enlargement as the solitary cause of the<br />

optic neuropathy. The optic neuropathy was reversed <strong>in</strong> all of the patients, and there<br />

was no postoperative diplopia, enophthalmos, globe ptosis, or sensory loss. Table 16–3<br />

summarizes several studies concern<strong>in</strong>g surgical orbital decompression <strong>in</strong> the treatment<br />

of proptosis and=or CON <strong>in</strong> GO. Although there is no class I evidence, there is


358 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 16–3. Orbital Decompression (Results <strong>in</strong> Selected Series)<br />

Author=Year<br />

Number of Eyes<br />

or Patients Surgical Approach Comment<br />

Algvere, 1973 22 eyes Pterional 91% improved<br />

Trobe, 1978 9 eyes (6 patients) 4 temporal<br />

decompression,<br />

3 temporal and<br />

orbital floor,<br />

2 transfrontal<br />

66% improved,<br />

3=4 steroid failures,<br />

3=5 primary surgery<br />

L<strong>in</strong>berg, 1981 11 eyes Transorbital 82% improved<br />

Leone, 1981 14 eyes Inferior orbital 100% improved<br />

McCord, 1981 11 patients <strong>An</strong>tral ethmoidal 55% improved with<br />

surgery alone,<br />

45% improved after<br />

radiotherapy (RT)<br />

Hurwitz, 1985 27 eyes Inferomedial approach 81% improved<br />

Lamberg, 1985 27 bilateral and<br />

3 unilateral<br />

Transantral approach 93% improved<br />

Shorr, 1986 28 patients Transantral approach 100% improved<br />

Hall<strong>in</strong>, 1988 25 patients (48 eyes) Transantral approach 77% improved<br />

visual acuity<br />

Hart<strong>in</strong>g, 1989 28 patients Variable techniques 50% improved<br />

Leone, 1989 2 patients Medial and lateral wall 100% improved<br />

Warren, 1989 305 patients Transantral 95% improved<br />

Kennedy, 1990 4 patients Endoscopic transnasal 75% improved<br />

Mourits, 1990a,b 25 patients 13 <strong>in</strong>feromedial,<br />

5 <strong>in</strong>feromedial<br />

þ lateral, 7 coronal<br />

76% improved<br />

Carter, 1991 30 (52 orbits) Transantral-ethmoidal 92% improved<br />

Leatherbarrow, 1991 4 patients 3 wall coronal 50% improved<br />

Olivari, 1991 10 patients Intraorbital fat removal 60% improved<br />

Hurwitz, 1992 25 patients (46 orbits) Ethmoidectomy<br />

(medial wall)<br />

86% improved<br />

<strong>An</strong>tozyck, 1992 5 orbits Transorbital 3 wall 80% improved<br />

Garrity, 1993 217 patients Transantral 89% improved<br />

visual acuity;<br />

91% improved<br />

visual field<br />

Neugenbauer, 1996 21 Endoscopic-endonasal 95% improved vision<br />

West, 1997 22 4 wall coronal<br />

Goldberg, 1997 20 3 wall coronal<br />

Kalmann, 1997 125 3 wall coronal<br />

May, 1999 17 patients (27 orbits) Microsurgical endonasal Proptosis reduction<br />

4.1 mm<br />

Ohtsuka, 1999b 4 patients Transmedial-canthal<br />

ethmoidal (one-wall)<br />

All improved<br />

Ulualp, 1999 28 orbits Transnasal endoscopic Vision improved<br />

9=15 (60%)<br />

Eloy, 2000 16 patients, 27 orbits Endoscopic endonasal Proptosis reduction<br />

3.17 mm<br />

(cont<strong>in</strong>ued)


Table 16–3. (cont<strong>in</strong>ued)<br />

May, 2000 19 patients, 29 orbits Endonasal<br />

Proptosis reduction<br />

microsurgery<br />

4.2 mm<br />

Paridaens, 2000 19 patients (35 orbits), 1, 2, or 3 wall by 6 CON improved<br />

6 with CON<br />

lateral canthotomy<br />

and lower<br />

fornix <strong>in</strong>cision<br />

Tallstedt 2000 63 patients Transantral Proptosis reduction<br />

3.2 mm, 20=21 (95%)<br />

vision improved<br />

Michel, 2001 78 patients (145 eyes) Transnasal orbital 4 cases required<br />

repeat surgery<br />

L<strong>in</strong>net 2001 50 eyes Transcranial 2 wall 87% improved vision<br />

consensus class III evidence that orbital decompression is an effective treatment for<br />

CON <strong>in</strong> GO (class III–IV, level B).<br />

What Is the Treatment for Proptosis without<br />

Optic <strong>Neuro</strong>pathy <strong>in</strong> GO?<br />

Thyroid Eye Disease: Graves’ Ophthalmopathy 359<br />

McCord <strong>in</strong> 1985 reported that more than 60% of orbital decompressions were performed<br />

for mild to severe exophthalmos to correct corneal exposure or disfigurement, based on a<br />

survey of members of the American Society of Ophthalmic Plastic and Reconstructive<br />

Surgeons and the Orbital Society. The majority of decompressions were via an antralethmoidal<br />

decompression and translid or fornix approach (McCord, 1985). Kennerdell et<br />

al suggested that patients with proptosis of less than 25 to 26 mm, especially if<br />

accompanied by lid retraction but without CON, could be treated with lid lengthen<strong>in</strong>g<br />

procedures alone to disguise the proptosis (Kennerdell, 1987). Lyons and Rootman<br />

reported orbital decompression on 65 orbits (34 patients) for disfigur<strong>in</strong>g exophthalmos<br />

and achieved a mean retroplacement of 4 mm (range 21.0 to 10 mm). Diplopia, however,<br />

arose de novo <strong>in</strong> five (18%) previously asymptomatic patients <strong>in</strong> this series (Lyons, 1994).<br />

Fatourechi et al described 34 patients with GO who underwent transantral orbital<br />

decompression primarily for cosmetic reasons (Fatourechi, 1994). There was a mean<br />

reduction <strong>in</strong> proptosis of 5.2 mm. Persistent diplopia developed <strong>in</strong> 73% of 15 patients<br />

who were asymptomatic preoperatively. Other reports have confirmed that although<br />

orbital decompression for primarily cosmetic reasons is successful, ocular motility<br />

deficits and diplopia may occur postdecompression <strong>in</strong> a significant number of patients<br />

(Carter, 1991; Fatourechi, 1994; McNab, 1997). For example, <strong>in</strong> a study of 81 patients with<br />

GO who underwent orbital decompression, 8 of 41 coronal patients (20%) and 4 of 29<br />

translid patients (14%) experienced aggravation of their motility impairment (Paridaens,<br />

1998). Goldberg et al reported that lateral wall decompression produced less new-onset,<br />

persistent postoperative strabismus than balanced medial and lateral wall decompression<br />

for GO (Goldberg, 2000). Seiff et al reported modified orbital decompression with<br />

preservation of the anterior periorbita reduced the risk of postoperative diplopia (Seiff,


360 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 16–1. Evaluation and treatment of thyroid eye disease.


2000). Bersani and Jian-Seyed-Ahmadi reported surgical placement of a lateral orbital<br />

rim implant as an effective method of orbital volume expansion <strong>in</strong> GO (1999).<br />

In addition to diplopia, orbital decompression may result <strong>in</strong> loss of vision, globe or<br />

eyelid damage, worsen<strong>in</strong>g lid retraction, cerebrosp<strong>in</strong>al fluid leakage, <strong>in</strong>fraorbital<br />

anesthesia, or s<strong>in</strong>us complications. Therefore, patients should be counseled appropriately<br />

preoperatively regard<strong>in</strong>g these possible complications.<br />

Trokel et al performed orbital fat removal on 81 patients (158 decompressions)<br />

(Trokel, 1993). These authors reported an average reduction of proptosis of 1.8 mm<br />

(range 0 to 6.0 mm). The greatest reduction <strong>in</strong> proptosis (3.3 mm) was produced <strong>in</strong><br />

patients with more than 25 mm of proptosis (Hertel measurements). Trokel et al reserve<br />

decompression with bone removal for patients with CON who are unresponsive to<br />

medical therapy or patients with persistent deform<strong>in</strong>g exophthalmos follow<strong>in</strong>g primary<br />

orbital fat removal. We recommend orbital decompression for proptosis <strong>in</strong> patients who<br />

have vision-threaten<strong>in</strong>g exposure keratopathy or other significant symptoms (e.g., pa<strong>in</strong>,<br />

pressure, severe exophthalmos) related to the proptosis (class III–IV, level C).<br />

<strong>An</strong> approach to the patient with thyroid eye disease is outl<strong>in</strong>ed <strong>in</strong> Figure 16–1.<br />

References<br />

Thyroid Eye Disease: Graves’ Ophthalmopathy 361<br />

Algvere P, Almqvist S, Backlund EO. (1973). Pterional orbital decompression <strong>in</strong> progressive ophthalmopathy of<br />

Graves’ disease II: a follow-up study. Acta Ophthalmol (Copenh) 51:475–482.<br />

<strong>An</strong>tozyck JH, Tucker N, Codere F. (1992). Orbital decompression for Graves’ disease: exposure through a<br />

modified blepharoplasty <strong>in</strong>cision. Ophthalmic Surg 23:516–521.<br />

Bahn RS, Garrity JA, Gorman CA. (1990). Diagnosis and management of Graves’ ophthalmopathy. J Cl<strong>in</strong><br />

Endocr<strong>in</strong>ol Metab 71:559–563.<br />

Bahn RS, Heufelder AE. (1993). Pathogenesis of Graves’ ophthalmopathy. N Engl J Med 329:1468–1475.<br />

Balazs C, Kiss E, Vamos A, et al. (1997). Beneficial effect of pentoxifyll<strong>in</strong>e on thyroid associated ophthalmopathy. J<br />

Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 82:1999–2002.<br />

Balazs C, Stenszky V, Farid NR. (1990). Association between Graves’ ophthalmopathy and smok<strong>in</strong>g. Lancet<br />

336:754.<br />

Bartalena L, Marcocci C, Bogazzi F, et al. (1989). Use of corticosteroids to prevent progression of Graves’<br />

ophthalmopathy after radioiod<strong>in</strong>e therapy for hyperthyroidism. N Engl J Med 321:1349–1352.<br />

Bartalena L, Marcocci C, Bogazzi F, et al. (1990). Use of corticosteroids to prevent progression of Graves’<br />

ophthalmopathy. Arch Intern Med 150:1098–1101.<br />

Bartalena L, Marcocci C, Bogazzi F, et al. (1998a). Relation between therapy for hyperthyroidism and the course of<br />

Graves’ ophthalmopathy. N Engl J Med 338:73–78.<br />

Bartalena L, Marcocci C, Tanda ML, et al. (1998b). Cigarette smok<strong>in</strong>g and treatment outcomes <strong>in</strong> Graves<br />

ophthalmopathy. <strong>An</strong>n Intern Med 129:632–635.<br />

Bartalena L, P<strong>in</strong>chera A, Marcocci C. (2000). Management of Graves’ ophthalmopathy. Reality and perspectives.<br />

Endocr Rev 21:168–199.<br />

Bartley GB. (1994). The epidemiologic characteristics and cl<strong>in</strong>ical course of ophthalmopathy associated with<br />

autoimmune thyroid disease <strong>in</strong> Olmstead County, M<strong>in</strong>nesota. Trans Am Ophthalmol Soc 92:477–588.<br />

Bartley GB. (1995). Evolution and classification systems for Graves’ ophthalmopathy. Ophthalmic Plast Reconstr<br />

Surg 11:229–237.<br />

Bartley GB. (1996). The differential diagnosis and classification of eyelid retraction. Ophthalmology 103:168–176.<br />

Bartley GB, Fatourechi V, Kadrmas EF, et al. (1995). The <strong>in</strong>cidence of Graves’ ophthalmopathy <strong>in</strong> Olmsted County,<br />

M<strong>in</strong>nesota. Am J Ophthalmol 120:511–517.<br />

Baschieri L, <strong>An</strong>tonelli A, Nardi S, et al. (1997). Intravenous immunoglobul<strong>in</strong> versus corticosteroid <strong>in</strong> treatment of<br />

Graves’ ophthalmopathy. Thyroid 7:579–585.<br />

Beck RW, DiLoreto DA. (1990). Treatment of Graves’ ophthalmopathy. N Engl J Med 322:1088–1089.<br />

Bersani T, Jian-Seyed-Ahmadi A. (1999). Orbital volume expansion of dysthyroid ophthalmopathy by surgical<br />

placement of lateral rim implants: a case study. Ophthalmic Plast Reconstr Surg 15:429–431.


362 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Brennan MW, Leone CR Jr, Janaki L. (1983). Radiation therapy for Graves’ disease. Am J Ophthalmol 96:195–199.<br />

Carter KD, Frueh BR, Hessburg TP, Musch DC. (1991). Long-term efficacy of orbital decompression for<br />

compressive optic neuropathy of Graves’ eye disease. Ophthalmology 98:1435–1442.<br />

Ceisler EJ, Bilyk JA, Rub<strong>in</strong> PA, et al. (1995). Results of Mullerectomy and levator aponeurosis transposition for the<br />

correction of upper eyelid retraction <strong>in</strong> Graves’ disease. Ophthalmology 102:483–492.<br />

Chang TC, Huang KM, Chang TJ, L<strong>in</strong> SL. (1990). Correlation of orbital computed tomography and antibodies <strong>in</strong><br />

patients with hyperthyroid Graves’ disease. Cl<strong>in</strong> Endocr<strong>in</strong>ol 32:551–558.<br />

Char DH. (1991). The ophthalmopathy of Graves’ disease. Med Cl<strong>in</strong> North Am 75:97–119.<br />

Char DH. (1992). Advances <strong>in</strong> thyroid orbitopathy. <strong>Neuro</strong>-<strong>ophthalmology</strong> 12:25–39.<br />

Claridge KG, Ghabrial R, Davis G, et al. (1997). Comb<strong>in</strong>ed radiotherapy and medical immunosuppression <strong>in</strong> the<br />

management of thyroid eye disease. Eye 11:717–722.<br />

Coats DK, Paysse EA, Plager DA, Wallace DK. (1999). Early strabismus surgery for thyroid ophthalmopathy.<br />

Ophthalmology 106:324–329.<br />

Cockerham K, Kennerdell JS, Mourits MP, McNab AA. (2002). Does radiotherapy have a role <strong>in</strong> the management<br />

of thyroid orbitopathy? Br J Ophthalmol 86:102–107.<br />

Coday MP, Dallow RL.(1998). Manag<strong>in</strong>g Graves’ orbitopathy. Int Ophthalmol Cl<strong>in</strong> 38:103–115.<br />

Danesh-Meyer HV, Sav<strong>in</strong>o PJ, Deramo V, et al. (2001). Intraocular pressure changes after treatment for Graves’<br />

orbitopathy. Ophthalmology 108:145–150.<br />

Danks JJ, Harrad RA. (1998). Flash<strong>in</strong>g lights <strong>in</strong> thyroid eye disease: a new symptom described and possibly<br />

expla<strong>in</strong>ed. Br J Ophthalmol 82:1309–1311.<br />

Dick<strong>in</strong>son AJ, Perros P. (2001). Controversies <strong>in</strong> the cl<strong>in</strong>ical evaluation of thyroid-associated orbitopathy: use of a<br />

detailed protocol with comparative photographs for objective assessment. Cl<strong>in</strong> Endocr<strong>in</strong>ol 55:283–303.<br />

Dietle<strong>in</strong> M, Dederichs B, Weigand A, Schicha H. (1999). Radioiod<strong>in</strong>e therapy and thyroid-associated<br />

orbitopathy: risk factors and preventive effects of glucocorticoids. Exp Cl<strong>in</strong> Endocr Diabetes 107 (suppl<br />

5):S190–194.<br />

Donaldson SS, Bagshaw MA, Kriss JP. (1973). Supervoltage orbital radiotherapy for Graves’ ophthalmopathy.<br />

J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 37:276–285.<br />

Eloy P, Trussart C, Jouzdani E, et al. (2000). Transnasal endoscopic orbital decompression and Graves’<br />

ophthalmopathy. Acta Otorh<strong>in</strong>olaryngol Belg 54:165–174.<br />

Fatourechi V, Garrity JA, Bartley GB, Bergstrahl EJ, DeSanto LW, Gorman CA. (1994). Graves’ ophthalmopathy:<br />

results of transantral orbital decompression performed primarily for cosmetic <strong>in</strong>dications. Ophthalmology<br />

101:1341–1346.<br />

Fatourechi V, Garrity JA, Bartley GB, Bergstrahl EJ, Gorman CA. (1993). Orbital decompression <strong>in</strong> Graves’<br />

ophthalmopathy associated with pretibial myxedema. J Endocr<strong>in</strong>ol Invest 16:433–437.<br />

Feldon SE. (1990). Graves’ ophthalmopathy: is it really thyroid disease? Arch Intern Med 150:948–950.<br />

Feldon S. (1993). Classification of Graves’ ophthalmopathy [letter]. Thyroid 3:171.<br />

Feldon SE. (2001). Radiation therapy for Graves’ ophthalmopathy: trick or treat? Ophthalmology 108:<br />

1521–1522.<br />

Firbank MJ, Coulthard A. (2000). Evaluation of a technique for estimation of extraocular muscle volume us<strong>in</strong>g 2D<br />

MRI. Br J Radiol 73:1282–1289.<br />

Frueh BR. (1992). Why the NOSPECS classification of Graves’ eye disease should be abandoned, with suggestions<br />

for the characterization of this disease. Thyroid 2:85–88.<br />

Garrity JA, Fatourechi V, Bergstralh EJ, et al. (1993). Results of transantral orbital decompression <strong>in</strong> 428 patients<br />

with severe Graves’ ophthalmopathy. Am J Ophthalmol 116:533–547.<br />

Gerd<strong>in</strong>g MN, van der Zant FM, van Royen EA, et al. (1999). Octreotide-sc<strong>in</strong>tigraphy is a disease-activity<br />

parameter <strong>in</strong> Graves’ ophthalmopathy. Cl<strong>in</strong> Endocr<strong>in</strong>ol 50:373–379.<br />

Gleeson H, Kelly W, Toft A, et al. (1999). Severe thyroid eye disease associated with primary hypothyroidism and<br />

thyroid-associated dermopathy. Thyroid 9:1115–1118.<br />

Goldberg RA, Perry JD, Hortaleza V, Tong JT. (2000). Strabismus after balanced medial plus lateral wall versus<br />

lateral wall only decompression for dysthyroid orbitopathy. Ophthalmic Plast Reconstr Surg 16:271–277.<br />

Goldberg RA, We<strong>in</strong>berg DA, Shorr N, Wirta D. (1997). Maximal, three-wall, orbital decompression through a<br />

coronal approach. Ophthalmic Surg Lasers 28:832–843.<br />

Golken R, W<strong>in</strong>ter R, Sistani F, et al. (2000). M<strong>in</strong>imal <strong>in</strong>vasive decompression of the orbit <strong>in</strong> Graves’ orbitopathy.<br />

Strabismus 8:251–259.<br />

Gorman CA. (1991). Clever is not enough: NOSPECS is form <strong>in</strong> search of function. Thyroid 1:353–355.<br />

Gorman CA, Garrity JA, Fatourechi V, et al. (2001). A prospective, randomized, double-bl<strong>in</strong>d, placebo-controlled<br />

study of orbital radiotherapy for Graves’ ophthalmopathy. Ophthalmology 108:1523–1534.


Thyroid Eye Disease: Graves’ Ophthalmopathy 363<br />

Gormley PD, Bowyer J, Jones NS, Downes RN. (1997). The sphenoidal s<strong>in</strong>us <strong>in</strong> optic nerve decompression. Eye<br />

11:723–726.<br />

Graham SM, Carter KD. (1997). Comb<strong>in</strong>ed endoscopic and subciliary orbital decompression for thyroid-related<br />

compressive optic neuropathy. Rh<strong>in</strong>ology 35:103–107.<br />

Guy JR, Fagien S, Donovan JP, Rub<strong>in</strong> ML. (1989). Methylprednisolone pulse therapy <strong>in</strong> severe dysthyroid optic<br />

neuropathy. Ophthalmology 96:1048–1053.<br />

Hart<strong>in</strong>g R, Koornneef L, Peeters HJF, Gillissen JPA. (1989). Decompression surgery <strong>in</strong> Graves’ orbitopathy: a<br />

review of 14 years’ experience at the Orbita Centrum, Amsterdam. Dev Ophthalmol 20:185–198.<br />

Hudson HL, Lev<strong>in</strong> L, Feldon SE. (1991). Graves’ exophthalmos unrelated to extraocular muscle enlargement.<br />

Ophthalmology 98:1495–1499.<br />

Hurbli T, Char DH, Harris J, Weaver K, Greenspan F, Shel<strong>in</strong>e G. (1985). Radiation therapy for thyroid eye diseases.<br />

Am J Ophthalmol 99:633–637.<br />

Hurwitz JJ, Freeman JL, Eplett CJ, et al. (1992). Ethmoidectomy decompression for the treatment of Graves’ optic<br />

neuropathy. Can J Ophthalmol 27:283–287.<br />

Just M, Kahaly G, Higer HP, et al. (1991). Graves’ ophthalmopathy: role of MR imag<strong>in</strong>g <strong>in</strong> radiation therapy.<br />

Radiology 179:187–190.<br />

Kahaly G, Lieb W, Müller-Forell W, et al. (1990). Ciamexone <strong>in</strong> endocr<strong>in</strong>e orbitopathy. Acta Endocr<strong>in</strong>ol<br />

122:13–21.<br />

Kahaly G, Rosler HP, Pitz S, Hommel G (2000). Low- versus high-dose radiotherapy for Graves’ ophthalmopathy:<br />

a randomized, s<strong>in</strong>gle bl<strong>in</strong>d trial. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 85:102–108.<br />

Kalmann R, Mourits MP. (1998). Prevalence and management of elevated <strong>in</strong>traocular pressure <strong>in</strong> patients with<br />

Graves’ orbitopathy. Br J Ophthalmol 82:754–757.<br />

Kalmann R, Mourits MP. (1999). Diabetes mellitus: a risk factor <strong>in</strong> patients with Graves’ orbitopathy. Br J<br />

Ophthalmol 83:463–465.<br />

Kalmann R, Mourits MP, van der Pol JP, Koormeef L. (1997). Coronal approach for rehabilitative orbital<br />

decompression <strong>in</strong> Graves’ ophthalmopathy. Br J Ophthalmol 81:41–45.<br />

Kazim M, Trokel SL, Acaroglu G, Elliott A. (2000). Reversal of dysthyroid optic neuropathy follow<strong>in</strong>g orbital fat<br />

decompression. Br J Ophthalmol 84:600–605.<br />

Kazim M, Trokel S, Moore S. (1991). Treatment of acute Graves’ orbitopathy. Ophthalmology 98:1443–1448.<br />

Keltner JL. (1998). Is Graves ophthalmopathy a preventable disease? Arch Ophthalmol 116:1106–1107.<br />

Kendler DL, Lippa J, Rootman J. (1993). The <strong>in</strong>itial cl<strong>in</strong>ical characteristics of Graves’ orbitopathy vary with age<br />

and sex. Arch Ophthalmol 111:197–201.<br />

Kennedy DW, Goldste<strong>in</strong> ML, Miller NR, Z<strong>in</strong>reich SJ. (1990). Endoscopic transnasal orbital decompression. Arch<br />

Otolaryngol Head Neck Surg 116:275–282.<br />

Kennerdell JS, Maroon JC, Buerger GF. (1987). Comprehensive surgical management of proptosis <strong>in</strong> dysthyroid<br />

orbitopathy. Orbit 6:153–179.<br />

K<strong>in</strong>youn JL, Kal<strong>in</strong>a RE, Brower SA, et al. (1984). Radiation ret<strong>in</strong>opathy after orbital irradiation for Graves’<br />

ophthalmopathy. Arch Ophthalmol 102:1473–1476.<br />

Krassas GE, Doumas A, Kaltsas T, et al. (1999a). Somatostat<strong>in</strong> receptor sc<strong>in</strong>tigraphy before and after treatment<br />

with somatostat<strong>in</strong> analogues <strong>in</strong> patients with thyroid eye disease. Thyroid 9:47–52.<br />

Krassas GE, Heufelder AE. (2001). Immunosuppressive therapy <strong>in</strong> patients with thyroid eye disease: an overview<br />

of current concepts. Eur J Endocr<strong>in</strong>ol 144:311–318.<br />

Krassas GE, Kahaly GJ. (1999b). The role of octreoscan <strong>in</strong> thyroid eye disease. Eur J Endocr<strong>in</strong>ol 140:373–375.<br />

Kubis KC, Danesh-Meyer H, Pribitk<strong>in</strong> EA, et al. (2000). Progressive visual loss and ophthalmoplegia. Survey<br />

Ophthalmol 44:433–441.<br />

Kulw<strong>in</strong> DR, Cotton RT, Kersten RC. (1990). Comb<strong>in</strong>ed approach to orbital decompression. Otolaryngol Cl<strong>in</strong> North<br />

Am 23:381–390.<br />

Lamberg BA, Grahne B, Tommila V, et al. (1985). Orbital decompression <strong>in</strong> endocr<strong>in</strong>e exophthalmos of Graves’<br />

disease. Acta Endocr<strong>in</strong>ol (Copenh) 109:335–340.<br />

Leatherbarrow B, Lendrum J, Mahaffey PJ, et al. (1991). Three wall orbital decompression for Graves’<br />

ophthalmopathy via a coronal approach. Eye 5:456–465.<br />

Lemke BN. (1991). Management of thyroid eyelid retraction. Focal Po<strong>in</strong>t 9:Module 6, 1–9.<br />

Leone CR Jr, Bajandas FJ. (1981). Inferior orbital decompression for dysthyroid optic neuropathy. Ophthalmology<br />

88:525–532.<br />

Leone CR Jr, Piest KL, Newman RJ. (1989). Medial and lateral wall decompression for thyroid ophthalmopathy.<br />

Am J Ophthalmol 108:160–166.<br />

L<strong>in</strong>berg JV, <strong>An</strong>derson RL. (1981). Transorbital decompression: <strong>in</strong>dications and results. Arch Ophthalmol 99:113–119.


364 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

L<strong>in</strong>net J, Hegedus L, Bjerre P. (2001). Results of a neurosurgical two-wall orbital decompression <strong>in</strong> the treatment of<br />

severe thyroid associated ophthalmopathy. Acta Ophthalmol Scand 79:49–52.<br />

Liu D, Feldon SE. (1992). Thyroid ophthalmopathy. Ophthalmol Cl<strong>in</strong> North Am 5:597–622.<br />

Lloyd WC, Leone CR. (1992). Supervoltage orbital radiotherapy <strong>in</strong> 36 cases of Graves’ disease. Am J Ophthalmol<br />

113:374–380.<br />

Lund VJ, Lark<strong>in</strong> G, Felis P, Asams G. (1997). Orbital decompression for thyroid eye disease: a comparison of<br />

external and endoscopic techniques. J Laryngol Otol 111:1051–1055.<br />

Lyons CJ, Rootman J. (1994). Orbital decompression for disfigur<strong>in</strong>g exophthalmos <strong>in</strong> thyroid ophthalmopathy.<br />

Ophthalmology 101:223–230.<br />

Maarten P, Sasim IV. (1999). A s<strong>in</strong>gle technique to correct various degrees of upper lid retraction <strong>in</strong> patients with<br />

Graves’ orbitopathy. Br J Ophthalmol 83:81–84.<br />

Macchia PE, Bagatt<strong>in</strong>i M, Lupoli G, et al. (2001). High-dose <strong>in</strong>travenous corticosteroid therapy for Graves’<br />

ophthalmopathy. J Endocr<strong>in</strong>ol Invest 24:152–158.<br />

Mann K. (1999). Risk of smok<strong>in</strong>g <strong>in</strong> thyroid-associated orbitopathy. Exp Cl<strong>in</strong> Endocr<strong>in</strong>ol Diabetes. 107 (suppl<br />

5):S164–167.<br />

Mann W, Kahaly G, Lieb W, Rothoff T, Spr<strong>in</strong>gborn S. (1993). Orbital decompression for endocr<strong>in</strong>e ophthalmopathy:<br />

the endonasal approach. Dev Ophthalmol 25:142–150.<br />

Marcocci C, Bartalena L, Bogazzi F, Bruno-Bossio G, Lepri A, P<strong>in</strong>crea A. (1991). Orbital radiotherapy comb<strong>in</strong>ed<br />

with high dose systemic glucocorticoids for Graves’ ophthalmopathy is more effective than radiotherapy<br />

alone: results of a prospective randomized study. J Endocr<strong>in</strong>ol Invest 14:853–860.<br />

Marcocci C, Bartalena L, Tanda ML, et al. (1999a). Graves’ ophthalmopathy and 131I therapy. Q J Nucl Med<br />

43:307–312.<br />

Marcocci C, Bartalena L, Tanda ML, et al. (2001). Comparison of the effectiveness and tolerability of <strong>in</strong>travenous<br />

or oral glucocorticoids associated with orbital radiotherapy <strong>in</strong> the management of severe Graves’ ophthalmopathy:<br />

results of a prospective, s<strong>in</strong>gle bl<strong>in</strong>d randomized study. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 86:3562–3567.<br />

Marcocci C, Bruno-Bossio G, Manetti L, et al. (1999b). The course of Graves’ ophthalmopathy is not <strong>in</strong>fluenced by<br />

near total thyroidectomy: a case control study. Cl<strong>in</strong> Endocr<strong>in</strong>ol 51:503–508.<br />

May A, Fries U, Reimold I, Weber A. (1999). Microsurgical endonasal decompression <strong>in</strong> thyroid orbitopathy. Acta<br />

Otolaryngol 119:826–831.<br />

May A, Fries U, von Ilberg C, Weber A. (2000). Indication and technique of transnasal microscopic orbital<br />

decompression for endocr<strong>in</strong>e ophthalmopathy. J Otorh<strong>in</strong>olaryngol Related Specialties 62:128–133.<br />

Mayer E, Herdman G, Burnett C, et al. (2001). Serial STIR magnetic resonance imag<strong>in</strong>g correlates with cl<strong>in</strong>ical<br />

score of activity <strong>in</strong> thyroid disease. Eye 15:313–318.<br />

McCord CD Jr. (1981). Orbital decompression for Graves’ disease: exposure through lateral canthal and <strong>in</strong>ferior<br />

fornix <strong>in</strong>cision. Ophthalmology 88:533–541.<br />

McCord CD Jr. (1985). Current trends <strong>in</strong> orbital decompression. Ophthalmology 92:21–33.<br />

McNab AA. (1997). Orbital decompression for thyroid orbitopathy. Aust N Z J Ophthalmol 25:55–61.<br />

Michel O, Oberlander N, Neugebauer P, et al. (2001). Follow-up of transnasal orbital decompression <strong>in</strong> severe<br />

Graves’ ophthalmopathy. Ophthalmology 108:400–404.<br />

Mourits M, Koorneef L, Van Mourik-Noordenbos AM, et al. (1990a). Extraocular muscle surgery for Graves’<br />

ophthalmopathy: does prior treatment <strong>in</strong>fluence surgical outcomes? Br J Ophthalmol 74:481–483.<br />

Mourits MP, Koorneef L, Wiers<strong>in</strong>ga WM, Prummell MF, Berghout A, van der Gaag R. (1990b). Orbital<br />

decompression for Graves’ ophthalmopathy by <strong>in</strong>feromedial plus lateral and coronal approach. Ophthalmology<br />

97:636–641.<br />

Mourits M, Suttorp-Schulten MSA, Tijssen RO, Apkarian P. (1990c). Contrast sensitivity and the diagnosis of<br />

dysthyroid optic neuropathy. Doc Ophthalmol 74:329–335.<br />

Mourits M, van Kempen-Harteveld ML, Garcia MB, et al. (2000). Radiotherapy for Graves’ orbitopathy:<br />

randomized placebo-controlled study. Lancet 355:1505–1509.<br />

Muller-Forell W, Pitz S, Mann W, Kahaly GJ. (1999). <strong>Neuro</strong>radiological diagnosis <strong>in</strong> thyroid-associated orbitopathy.<br />

Exp Cl<strong>in</strong> Endocr<strong>in</strong>ol Diabetes 107 (suppl 5):S177–183.<br />

Nagy EV, Toth J, Kaldi I, et al. (2000). Graves’ ophthalmopathy: eye muscle <strong>in</strong>volvement <strong>in</strong> patients with diplopia.<br />

Eur J Endocr<strong>in</strong>ol 142:591–597.<br />

Neugenbauer A, Nish<strong>in</strong>o K, Neugebauer P, Konen W, Michel O. (1996). Effects of bilateral orbital decompression<br />

by an endoscopic endonasal approach <strong>in</strong> dysthyroid orbitopathy. Br J Ophthalmol 80:58–62.<br />

Nunery WR. (1991). Ophthalmic Graves’ disease: a dual theory of pathogenesis. Ophthalmol Cl<strong>in</strong> North Am 4:73–<br />

87.<br />

Nunery WR, Mart<strong>in</strong> RT, He<strong>in</strong>z GW, Gav<strong>in</strong> TJ. (1993). The association of cigarette smok<strong>in</strong>g with cl<strong>in</strong>ical subtypes<br />

of ophthalmic Graves’ disease. Ophthalmic Plast Reconstr Surg 9:77–82.


Thyroid Eye Disease: Graves’ Ophthalmopathy 365<br />

Ohtsuka K, Hashimoto M. (1999a). 1H-Magnetic resonance spectroscopy of retrobulbar tissue <strong>in</strong> Graves’<br />

ophthalmopathy. Am J Ophthalmol 128:715–719.<br />

Ohtsuka K, Nakamura Y. (1999b). Results of transmedial-canthal ethmoidal decompression for severe dysthyroid<br />

optic neuropathy. Jpn J Ophthalmol 43:426–432.<br />

Olivari N. (1991). Transpalpebral decompression of endocr<strong>in</strong>e ophthalmopathy (Graves’ disease) by removal of<br />

<strong>in</strong>traorbital fat: experience with 147 operations over 5 years. Plast Reconstr Surg 87:627–643.<br />

Oliver JM. (1998a). Botul<strong>in</strong>um tox<strong>in</strong> A treatment of overactive corrugator supercilii <strong>in</strong> thyroid eye disease. Br J<br />

Ophthalmol 82:528–533.<br />

Oliver JM, Rose GE, Khaw PT, Coll<strong>in</strong> JRO. (1998b). Correction of lower eyelid retraction <strong>in</strong> thyroid eye disease: a<br />

randomized trial of retractor tenotomy with adjuvant antimetabolite versus scleral graft. Br J Ophthalmol<br />

82:174–180.<br />

Ozgen A, Alp MN, Ariyurek M, et al. (1999). Quantitative CT or the orbit <strong>in</strong> Graves’ disease. Br J Radiol 72:757–<br />

762.<br />

Ozkan SB, Can D, Soylev MF, et al. (1997). Chemodenervation <strong>in</strong> treatment of upper eyelid retraction.<br />

Ophthalmologica 211:387–390.<br />

Paridaens D, Hans K, Van Buitenen S, Mourits MP. (1998). The <strong>in</strong>cidence of diplopia follow<strong>in</strong>g coronal and<br />

translid orbital decompression <strong>in</strong> Graves orbitopathy. Eye 12:800–805.<br />

Paridaens DA, Verhoeff K, Bouwens D, van den Bosch WA. (2000). Transconjunctival orbital decompression <strong>in</strong><br />

Graves’ ophthalmopathy: lateral wall approach ab <strong>in</strong>terno. Br J Ophthalmol 84:775–781.<br />

Perros P, Weightman DR, Crombie AL, Kendall-Taylor P. (1990). Azathiopr<strong>in</strong>e <strong>in</strong> the treatment of thyroidassociated<br />

ophthalmopathy. Acta Endocr<strong>in</strong>ol 122:8–12.<br />

Petersen IA, Kriss JP, McDougall IR, Donaldson SS. (1990). Prognostic factors <strong>in</strong> the radiotherapy of Graves’<br />

ophthalmopathy. Int J Radiat Oncol Biol Phys 19:259–264.<br />

Pfeilschifter J, Ziegler R. (1996). Smok<strong>in</strong>g and endocr<strong>in</strong>e ophthalmopathy: impact of smok<strong>in</strong>g severity and current<br />

vs lifetime cigarette consumption. Cl<strong>in</strong> Endocr<strong>in</strong>ol 45:477–481.<br />

Prendiville P, Chopra M, Gauderman WJ, Feldon SE. (2000). The role of restricted motility <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

outcomes for vertical strabismus surgery <strong>in</strong> Graves’ ophthalmopathy. Ophthalmology 107:545–549.<br />

Prophet H, Matic GB, W<strong>in</strong>kler RE, et al. (2001). Two cases of refractory endocr<strong>in</strong>e ophthalmopathy successfully<br />

treated with extracorporeal immunoadsorption. Ther Aphersis 5:142–146.<br />

Prummel MF, Mourits MP, Berghout A, et al. (1989). Prednisone and cyclospor<strong>in</strong>e <strong>in</strong> the treatment of severe<br />

Graves’ ophthalmopathy. N Engl J Med 321:1353–1359.<br />

Prummel MF, Wiers<strong>in</strong>ga WM. (1993). Smok<strong>in</strong>g and risk of Graves’ disease. JAMA 269:479–482.<br />

Prummel MF, Wiers<strong>in</strong>ga WM, Mourits MP, et al. (1990). Effect of abnormal thyroid function on the severity of<br />

Graves’ ophthalmopathy. Arch Intern Med 150:1098–1101.<br />

Rasmussen AK, Nygaard B, Feldt-Rasmussen U. (2000). I131 and thyroid-associated ophthalmopathy. Eur J<br />

Endocr<strong>in</strong>ol 143:155–160.<br />

Rav<strong>in</strong> JG, Sisson JC, Knapp WT. (1975). Orbital radiation for the ocular changes of Graves’ disease. Am J<br />

Ophthalmol 79:285–288.<br />

Rush S, W<strong>in</strong>terkorn JM, Zak R. (2000). Objective evaluation of improvement <strong>in</strong> optic neuropathy follow<strong>in</strong>g<br />

radiation therapy for thyroid eye disease. Int J Radiat Oncol Biol Phys 47:191–194.<br />

Ruttum MS. (2000). Effect of prior orbital decompression on outcome of strabismus surgery <strong>in</strong> patients with<br />

thyroid ophthalmopathy. J Am Assoc Pediatr Ophthalmol Strabismus 4:102–105.<br />

Salvi M, Zhang ZG, Haegart D, et al. (1990). Patients with endocr<strong>in</strong>e ophthalmopathy not associated with overt<br />

thyroid disease have multiple thyroid immunological abnormalities. J Cl<strong>in</strong> Endocr<strong>in</strong>ol Metab 70:89–94.<br />

Sandler HM, Rubenste<strong>in</strong> JH, Fowble BL, Sergott RC, Sav<strong>in</strong>o PJ, Bosley TM. (1989). Results of radiotherapy for<br />

thyroid ophthalmopathy. Int J Radiat Oncol Biol Phys 17:823–827.<br />

Seiff SR, Tovilla JL, Carter SR, Choo PH. (2000). Modified orbital decompression for dysthyroid orbitopathy.<br />

Ophthalmic Plast Reconstr Surg 16:62–66.<br />

Sh<strong>in</strong>e B, Fells P, Edwards OM, Weetman AP. (1990). Association between Graves’ ophthalmopathy and smok<strong>in</strong>g.<br />

Lancet 335:1261–1263.<br />

Shorr N, Seiff SR. (1986). The four stages of surgical rehabilitation of the patient with dysthyroid ophthalmopathy.<br />

Ophthalmology 93:476–483.<br />

Shulka R, Kur<strong>in</strong>czuk JJ. (1990). Graves’ ophthalmopathy and smok<strong>in</strong>g. Lancet 336:184.<br />

Sillers MJ, Cuilty-Siller C, Kuhn FA, et al. (1997). Transconjunctival endoscopic orbital decompression. Otolaryngol<br />

Head Neck Surg 117:S137-S141.<br />

Smith JR, Rosenbaum JT. (2001). A role for methotrexate <strong>in</strong> the management of non-<strong>in</strong>fectious orbital <strong>in</strong>flammatory<br />

disease. Br J Ophthalmol 85:1220–1224.


366 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

So NM, Lam WW, Cheng G, et al. (2000). Assessment of optic nerve compression <strong>in</strong> Graves’ ophthalmopathy. The<br />

usefulness of a quick T1 weighted sequence. Acta Radiol 41:559–561.<br />

Solberg Y, Rosner M, Belk<strong>in</strong> M. (1998). The association between cigarette smok<strong>in</strong>g and ocular disease. Surv<br />

Ophthalmol 42:535–547.<br />

Srivastava SK, Newman NJ. (2000). Pseudo-pseudotumor. Surv Ophthalmol 45:135–138.<br />

Tallstedt L, Lundell G, Taube A. (1993). Graves’ ophthalmopathy and tobacco smok<strong>in</strong>g. Acta Endocr<strong>in</strong>ol 129:147–150.<br />

Tallstedt L, Lundell G, Tjrr<strong>in</strong>g O, et al. (1992). Occurrence of ophthalmopathy after treatment for Graves’<br />

hyperthyroidism. N Engl J Med 326:1733–1738.<br />

Tallstedt L, Paptziamos G, Lundbland L, <strong>An</strong>ggard A. (2000). Results of transantral orbital decompression <strong>in</strong><br />

patients with thyroid-associated ophthalmopathy. Acta Ophthalmol Scand 78:206–210.<br />

Tellez M, Cooper J, Edmonds C. (1992). Graves’ ophthalmopathy <strong>in</strong> relation to cigarette smok<strong>in</strong>g and ethnic<br />

orig<strong>in</strong>. Cl<strong>in</strong> Endocr<strong>in</strong>ol 36:291–294.<br />

Thaller SR, Kawamoto HK. (1990). Surgical correction of exophthalmos secondary to Graves’ disease. Plast<br />

Reconstrr Surg 86:411–417.<br />

Traisk F, Tallstedt L. (2001). Thyroid associated ophthalmopathy: botul<strong>in</strong>um tox<strong>in</strong> A <strong>in</strong> the treatment of upper<br />

eyelid retraction—a pilot study. Acta Ophthalmol Scand 79:585–588.<br />

Trobe JD, Glaser JS, Laflamme P. (1978). Dysthyroid optic neuropathy: cl<strong>in</strong>ical profile and rationale for management.<br />

Arch Ophthalmol 96:1199–1209.<br />

Trokel S, Kazim M, Moore S. (1993). Orbital fat removal: decompression for Graves’ orbitopathy. Ophthalmology<br />

100:674–682.<br />

Tsuj<strong>in</strong>o K, Hirota S, Hagiwara M, et al. (2000). <strong>Cl<strong>in</strong>ical</strong> outcomes of orbital irradiation comb<strong>in</strong>ed with or without<br />

systemic high-dose or pulsed corticosteroids for Graves’ ophthalmopathy. Int J Radiat Oncol Biol Phys 48:857–<br />

864.<br />

Ulualp SO, Massaro BM, Toohill RJ. (1999). Course of proptosis <strong>in</strong> patients with Graves’ disease after endoscopic<br />

orbital decompression. Laryngoscope 109:1217–1222.<br />

Uysal AR, Corapciouglu D, Tonyukuk VC, et al. (1999). Effect of octreotide treatment on Graves’ ophthalmopathy.<br />

Endocr J 46:573–577.<br />

Van der Wal KG, de Visscher JG, Boukes RJ, Smed<strong>in</strong>g B. (2001). Surgical treatment of Graves’ orbitopathy: a<br />

modified balanced approach. Int J Oral Maxillofacial Surg 30:254–258.<br />

Van Ruyven RL, Van Den Bosch WA, et al. (2000). The effect of retrobulbar irradiation on exophthalmos, ductions<br />

and soft tissue signs <strong>in</strong> Graves’ ophthalmopathy: a retrospective analysis of 90 cases. Eye 14:761–764.<br />

von Brauchitsch DK, Egbert J, Kersten RC, Kulw<strong>in</strong> DR. (1999). Spontaneous resolution of upper eyelid retraction<br />

<strong>in</strong> thyroid orbitopathy. J <strong>Neuro</strong>-ophthalmol 19:122–124.<br />

Warren JD, Spector JG, Burde R. (1989). Long-term follow-up and recent observations on 305 cases of orbital<br />

decompression for dysthyroid orbitopathy. Laryngoscope 99:35–40.<br />

Weetman AP. (2000). Graves’ disease. N Engl J Med 343:1236–1248.<br />

Weetman AP, Wiers<strong>in</strong>ga WM. (1998). Current management of thyroid-associated ophthalmopathy <strong>in</strong> Europe.<br />

Results of an <strong>in</strong>ternational survey. Cl<strong>in</strong> Endocr<strong>in</strong>ol 49:21–28.<br />

West M, Stranc M. (1997). Long term results of four-wall orbital decompression for Graves’ ophthalmopathy. Br J<br />

Plast Surg 50:507–516.<br />

Wiers<strong>in</strong>ga WM, Prummel MF. (2000). <strong>An</strong> evidence-based approach to the treatment of Graves’ ophthalmopathy.<br />

Endocr<strong>in</strong>ol Metab Cl<strong>in</strong> North Am 29:297–319.<br />

Wiers<strong>in</strong>ga WM, Smit T, Schuster-Uittenhoeve AL, van der Gaag R, Koornneef L. (1988). Therapeutic outcome of<br />

prednisone medication and of orbital irradiation <strong>in</strong> patients with Graves’ ophthalmopathy. Ophthalmologica<br />

197:75–84.<br />

Wilson WB, Manke WF. (1991). Orbital decompression <strong>in</strong> Graves’ disease: the predictability of reduction of<br />

proptosis. Arch Ophthalmol 109:343–345.<br />

Wulc AE, Popp JC, Bartlett SP. (1990). Lateral wall advancement <strong>in</strong> orbital decompression. Ophthalmology 97:1358–<br />

1369.


17 r<br />

Nystagmus and Other Ocular<br />

Oscillations<br />

Nystagmus is a rhythmic, repetitive, to-and-fro movement of the eyes that <strong>in</strong>cludes<br />

smooth s<strong>in</strong>usoidal oscillations (pendular nystagmus) and alternation of slow drift and<br />

corrective quick phase (jerk nystagmus) (Leigh, 1999). If the size of the oscillation differs<br />

<strong>in</strong> each eye, the abnormal movements are referred to as dissociative nystagmus. If the<br />

direction of the oscillations <strong>in</strong> each eye is the same, the nystagmus is conjugate, and if<br />

they differ, the nystagmus is dysconjugate. Nystagmus <strong>in</strong>duced by optok<strong>in</strong>etic or<br />

vestibular stimuli is physiologic but can be affected by pathologic processes. Nystagmus<br />

<strong>in</strong> extreme lateral or vertical gaze (end-po<strong>in</strong>t nystagmus) can also be found as a normal<br />

variant. End-po<strong>in</strong>t nystagmus tends to wane easily and belongs to the variety described<br />

below as ‘‘gaze-evoked’’ nystagmus. These physiologic forms of nystagmus may be<br />

pathologic if they persist beyond a few beats <strong>in</strong> end gaze.<br />

<strong>An</strong> approach to pathologic nystagmus is presented <strong>in</strong> this chapter. The slow phase<br />

reflects the underly<strong>in</strong>g abnormality caus<strong>in</strong>g the nystagmus. The slow component may<br />

have a uniform velocity or may reduce or ga<strong>in</strong> speed as the eyes move <strong>in</strong> the direction<br />

of the slow component. This slow-phase abnormality is usually due to disruption of the<br />

mechanisms that normally function to hold gaze steady. Thus, disorders of the<br />

vestibular system, the gaze-hold<strong>in</strong>g mechanisms (e.g., the neural <strong>in</strong>tegrator), and<br />

visual stabilization and pursuit systems may lead to nystagmus (Leigh, 1999).<br />

Vestibular tone imbalance results <strong>in</strong> an asymmetric <strong>in</strong>put to the horizontal gaze<br />

generator; vestibular nystagmus shows l<strong>in</strong>ear, constant velocity slow phases reflect<strong>in</strong>g a<br />

persistent drive of the eyes toward the damaged vestibular apparatus (labyr<strong>in</strong>th, nerve,<br />

nuclei). <strong>An</strong> impaired neural <strong>in</strong>tegrator (‘‘leaky’’ <strong>in</strong>tegrator) may cause gaze-evoked<br />

nystagmus with a negative exponential slow phase. The velocity of the slow component<br />

decreases as the eyes move from the periphery of the orbit, where the pull due to the<br />

viscosity of the orbital tissues is greatest, toward rest<strong>in</strong>g <strong>in</strong> primary position. The<br />

<strong>in</strong>ability of the gaze hold<strong>in</strong>g mechanisms to keep the eyes eccentric <strong>in</strong> the orbit is often<br />

present with central or peripheral lesions caus<strong>in</strong>g weakness of eye movements. For this<br />

367


368 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

reason, this type of nystagmus is sometimes referred to as ‘‘gaze-paretic’’ nystagmus.<br />

High ga<strong>in</strong> <strong>in</strong>stability of slow eye movement subsystems (e.g., the pursuit system) may<br />

also cause nystagmus, with the nystagmus slow phase hav<strong>in</strong>g an exponentially<br />

<strong>in</strong>creas<strong>in</strong>g time course (‘‘runaway’’ movements). Such nystagmus <strong>in</strong> the horizontal<br />

plane is seen <strong>in</strong> congenital nystagmus and <strong>in</strong> the vertical plane is seen with cerebellar<br />

disease. High ga<strong>in</strong> <strong>in</strong>stability may also result <strong>in</strong> congenital or acquired pendular<br />

nystagmus. The types of nystagmus and other ocular oscillations are outl<strong>in</strong>ed <strong>in</strong><br />

Figure 17–1.<br />

Are the Abnormal Eye Movements B<strong>in</strong>ocular<br />

and Symmetric, B<strong>in</strong>ocular and Asymmetric, or<br />

Monocular?<br />

The oscillations may be conf<strong>in</strong>ed to one eye (monocular), <strong>in</strong>volve ma<strong>in</strong>ly one eye<br />

(b<strong>in</strong>ocular asymmetric or dissociated), or <strong>in</strong>volve both eyes symmetrically (b<strong>in</strong>ocular<br />

symmetric) (Burde, 1991).<br />

What Causes Monocular Eye Oscillations and<br />

Asymmetric B<strong>in</strong>ocular Eye Oscillations?<br />

Monocular eye oscillations and asymmetric b<strong>in</strong>ocular eye oscillations may be due to<br />

spasmus nutans and its mimickers, monocular visual deprivation or loss, monocular<br />

pendular nystagmus, <strong>in</strong>ternuclear ophthalmoplegia and its mimickers, partial paresis of<br />

extraocular muscles, restrictive syndromes of extraocular muscles, or superior oblique<br />

myokymia.<br />

Spasmus nutans is a benign syndrome characterized by a triad of head nodd<strong>in</strong>g,<br />

nystagmus, and abnormal head posture (Gottlob, 1995b; Young, 1997). The onset is<br />

typically <strong>in</strong> the first year of life and remits spontaneously with<strong>in</strong> 1 month to several (up<br />

to 8) years. The syndrome is occasionally familial and has been reported <strong>in</strong> monozygotic<br />

tw<strong>in</strong>s. The s<strong>in</strong>usoidal nystagmus is often <strong>in</strong>termittent, asymmetric, or unilateral, and of<br />

high frequency and small amplitude with a ‘‘shimmer<strong>in</strong>g’’ quality. The nystagmus is<br />

usually horizontal but may have a vertical or torsional component. It may be<br />

accentuated by near effort and is usually greater <strong>in</strong> an abduct<strong>in</strong>g eye. Rarely, convergence<br />

nystagmus may occur (Massry, 1996). The irregular head nodd<strong>in</strong>g with spasmus<br />

nutans has horizontal, vertical, or mixed components. Patients often also demonstrate a<br />

head turn or tilt.<br />

In children with spasmus nutans, monocular nystagmus, or asymmetric pendular<br />

nystagmus, one must consider tumor of the anterior visual pathway (e.g., optic nerve,<br />

chiasm, third ventricle, or thalamus) (Arnoldi, 1995; Gottlob, 1990; Newman, 1990).<br />

These latter patients may also have visual loss, optic atrophy, or other signs of tumor.<br />

Other spasmus nutans mimickers <strong>in</strong>clude arachnoid cyst, Leigh’s subacute necrotiz<strong>in</strong>g<br />

encephalomyelopathy, congenital stationary night bl<strong>in</strong>dness (Gottlob, 1995a; Lambert,<br />

1993), ret<strong>in</strong>al dystrophy (Smith, 2000), and Bardet-Biedl syndrome (characterized by<br />

polydactyly, obesity, cognitive delay, and ret<strong>in</strong>al degeneration) (Gottlob, 1999).<br />

All children with monocular nystagmus or spasmus nutans should undergo a<br />

complete ophthalmologic exam<strong>in</strong>ation. We recommend neuroimag<strong>in</strong>g (preferably


Nystagmus and Other Ocular Oscillations 369<br />

Figure 17–1. Nystagmus and other ocular oscillations.


370 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

magnetic resonance imag<strong>in</strong>g [MRI]) <strong>in</strong> patients with monocular or predom<strong>in</strong>antly<br />

monocular oscillations, spasmus nutans, or a spasmus nutans–like cl<strong>in</strong>ical picture<br />

(class IV, level C). Although most cases of spasmus nutans are benign, atypical features<br />

should prompt further evaluation <strong>in</strong>clud<strong>in</strong>g older age of onset, associated visual loss, or<br />

persistence of symptoms (Gottlob, 1990; Newman, 1990). Some authors, however, have<br />

stated that the estimated prevalence of tumor <strong>in</strong> spasmus nutans is less than 1.4%, and<br />

have suggested that without other evidence of an <strong>in</strong>tracranial mass lesion, neuroimag<strong>in</strong>g<br />

of <strong>in</strong>fants <strong>in</strong>itially diagnosed with spasmus nutans may not be immediately<br />

warranted (Arnoldi, 1995). Electrophysiologic test<strong>in</strong>g should be considered for a<br />

myopic child suspected of hav<strong>in</strong>g spasmus nutans to exclude the diagnosis of<br />

congenital stationary night bl<strong>in</strong>dness (Lambert, 1993) or ret<strong>in</strong>al dystrophy (Smith,<br />

2000) (class IV, level C).<br />

Monocular nystagmus may occur <strong>in</strong> adults or children with acquired monocular<br />

visual loss, and consists of small, slow vertical pendular oscillations <strong>in</strong> primary position<br />

of gaze. It may develop years after uniocular visual loss (Heimann-Bielschowsky<br />

phenomenon) and may improve if vision is corrected. Monocular, small-amplitude,<br />

fast frequency, and predom<strong>in</strong>antly horizontal nystagmus <strong>in</strong> children may be caused by<br />

unilateral anterior visual pathway disease (Davey, 1998; Good, 1993).<br />

Acquired monocular pendular nystagmus may also occur with multiple sclerosis,<br />

neurosyphilis, and bra<strong>in</strong>stem <strong>in</strong>farct (thalamus and upper midbra<strong>in</strong>) and may be<br />

vertical, horizontal, or multivectorial. Stahl et al (2000) reported that servo-controlled<br />

optics could reduce oscillopsia <strong>in</strong> acquired pendular nystagmus.<br />

Vertical pendular nystagmus, with greater amplitude <strong>in</strong> the <strong>in</strong>volved eye, has been<br />

described <strong>in</strong> a patient with chronic monocular myositis of the medial and lateral rectus<br />

muscles (Goldberg, 1978). Monocular downbeat nystagmus may occur with acute<br />

<strong>in</strong>farction of the medial thalamus and upper midbra<strong>in</strong> and with pontocerebellar<br />

degeneration; this abnormality is likely due to dysfunction of the ipsilateral brachium<br />

conjunctivum. Contralateral unilateral downbeat nystagmus has been described with a<br />

paramedian thalamopeduncular <strong>in</strong>farction (Oishi, 1997). Monocular rotatory nystagmus<br />

may occur with bra<strong>in</strong>stem lesions. Congenital nystagmus may rarely be uniocular. One<br />

patient has been described who developed ictal monocular horizontal nystagmus<br />

dur<strong>in</strong>g a generalized seizure triggered by photic stimulation (Jacome, 1982). We<br />

recommend that neuroimag<strong>in</strong>g be performed <strong>in</strong> monocular nystagmus (class IV,<br />

level C).<br />

Dissociated nystagmus occurs <strong>in</strong> the abduct<strong>in</strong>g eye <strong>in</strong> <strong>in</strong>ternuclear ophthalmoplegia<br />

(INO) and <strong>in</strong> pseudo-INO syndromes. These entities and their evaluation are discussed<br />

<strong>in</strong> Chapter 14. In patients with partial paresis of one of the extraocular muscles, a<br />

monocular oscillation may occur <strong>in</strong> the <strong>in</strong>volved eye or its yoke dur<strong>in</strong>g an ocular<br />

movement <strong>in</strong>to the field of action of the <strong>in</strong>volved muscle (Burde, 1991). Monocular<br />

oscillations may also occur <strong>in</strong> restrictive syndromes (e.g., thyroid ophthalmopathy) <strong>in</strong><br />

the field of action <strong>in</strong> which the tether<strong>in</strong>g is occurr<strong>in</strong>g (Burde, 1991).<br />

Superior oblique myokymia (SOM) is a disorder of unknown etiology characterized<br />

symptomatically by oscillopsia, vertical or torsional diplopia, or both. Affected patients<br />

show bursts of rotary oscillations of the eye of small amplitude and high frequency,<br />

slow-frequency large-amplitude <strong>in</strong>torsional movements, or a comb<strong>in</strong>ation of these<br />

paroxysms. Most patients with SOM compla<strong>in</strong> of brief episodes of rapid vertical or<br />

torsional movements of the environment or shimmer<strong>in</strong>g sensations, usually last<strong>in</strong>g only<br />

a few seconds.


Nystagmus and Other Ocular Oscillations 371<br />

<strong>Neuro</strong>-ophthalmologic exam<strong>in</strong>ation of SOM patients often reveals brief episodes of<br />

rapid, f<strong>in</strong>e, torsional movements of one eye that are best seen us<strong>in</strong>g either the slit-lamp<br />

biomicroscope or the direct ophthalmoscope. The abnormal movements can be <strong>in</strong>duced<br />

<strong>in</strong> some patients by movement of the affected eye down and outward, by a head tilt<br />

toward the side of the affected eye, by convergence effort, or by movement of the eye<br />

downward and back to primary position.<br />

Patients with SOM are usually young adults who are otherwise healthy. Most patients<br />

report no precipitat<strong>in</strong>g event for the onset of their symptoms. Several cases have<br />

followed ipsilateral trochlear nerve palsies, lead<strong>in</strong>g some authors to suggest that SOM<br />

might be associated with the recovery stage of <strong>in</strong>jury to this nerve (Komai, 1992). SOM<br />

has occurred several months after removal of a cerebellar tumor. In addition, two cases<br />

of SOM have occurred <strong>in</strong> patients with posterior fossa tumors (one an astrocytoma of<br />

the rostral cerebellar vermis with midbra<strong>in</strong> tectal compression and the other a pilocytic<br />

astrocytoma expand<strong>in</strong>g with<strong>in</strong> the fourth ventricle and compress<strong>in</strong>g the midbra<strong>in</strong><br />

tectum) (Haene, 1993; Morrow, 1990). The rare association of SOM with bra<strong>in</strong>stem<br />

tectal disease has caused some authors to recommend neuroimag<strong>in</strong>g exam<strong>in</strong>ation of the<br />

course of the trochlear nerve <strong>in</strong> all patients with this diagnosis (Morrow, 1990); however,<br />

the association of SOM with a posterior fossa tumor is extremely uncommon (Brazis,<br />

1994) (class IV, level U). In one reported case, SOM may have been due to vascular<br />

compression of the trochlear nerve by a branch of the posterior cerebral artery noted on<br />

th<strong>in</strong>-slice MRI (Hashimoto, 2001). In another study of six patients with SOM, neurovascular<br />

contact at the root exit zone of the trochlear nerve was identified <strong>in</strong> all patients,<br />

suggest<strong>in</strong>g that SOM may be a neovascular compression syndrome (Yousry, 2002). SOM<br />

has been described <strong>in</strong> a patient with a dural arteriovenous fistula (Geis, 1996), and<br />

Neetens and Mart<strong>in</strong> described two cases of SOM, one associated with lead <strong>in</strong>toxication<br />

and the other with adrenoleukodystrophy (Neetens, 1983). Some of these associations<br />

may well have been co<strong>in</strong>cidental (class IV). We do not recommend neuroimag<strong>in</strong>g for<br />

typical isolated SOM but consider MRI scan <strong>in</strong> patients with atypical features (class IV,<br />

level C).<br />

Rosenberg and Glaser obta<strong>in</strong>ed from 1 to 19 years (average 8 years) of follow-up for<br />

n<strong>in</strong>e patients with SOM (Rosenberg, 1983). These authors noted that the natural history<br />

of the disorder is one of spontaneous remissions and exacerbations, with untreated<br />

patients frequently enjoy<strong>in</strong>g months or even years of remission before subsequent<br />

relapses. Indeed, seven of their n<strong>in</strong>e patients cont<strong>in</strong>ued to have some symptoms after<br />

prolonged follow-up.<br />

The treatment for a majority of patients with SOM is reassurance, because most are<br />

not significantly disabled by their visual symptoms. If the condition disrupts the<br />

patient’s work and lifestyle, medications such as carbamazep<strong>in</strong>e or propranolol<br />

(Tyler, 1990) may be considered. In Rosenberg and Glaser’s series, 7 of 11 patients<br />

were tried on carbamazep<strong>in</strong>e, and 6 noted a prompt decrease or cessation of ocular<br />

symptoms (Rosenberg, 1983). All experienced at least one subsequent relapse days to<br />

months after the <strong>in</strong>itial improvement, however, and only three chose to cont<strong>in</strong>ue the<br />

medication. We have tried gabapent<strong>in</strong> <strong>in</strong> one patient with SOM without subjective or<br />

objective improvement.<br />

Brazis et al <strong>in</strong>vestigated the cl<strong>in</strong>ical presentations and long-term course of 16 patients<br />

with SOM (Brazis, 1994). Follow-up <strong>in</strong>formation was obta<strong>in</strong>ed for 14 of the 16 patients<br />

with time from onset of symptoms to most recent contact 3 to 29 years (mean, 12 years).<br />

The SOM gradually improved or resolved, at least temporarily, without treatment <strong>in</strong> a


372 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

significant number of patients. Three of the patients had complete spontaneous<br />

resolution of symptoms for periods of 6 to 12 months without recurrence. Six of 7<br />

patients treated with carbamazep<strong>in</strong>e reported no significant response. One patient<br />

rema<strong>in</strong>ed on the medication for 3 years with only rare symptoms that worsen when<br />

attempts were made to taper the drug. Two of the patients treated with propranolol<br />

reported no significant benefit, and a third noted dramatic but transient improvement <strong>in</strong><br />

symptoms. Four of the patients were cured by superior oblique tenectomy comb<strong>in</strong>ed<br />

with <strong>in</strong>ferior oblique myectomy. All four surgical patients experienced disappearance of<br />

oscillopsia, although one patient developed postoperative vertical diplopia that gradually<br />

resolved. Brazis et al concluded that because SOM is a much more chronic disease<br />

than formerly realized and because of the poor long-term effects and potential side<br />

effects of the medications used for treatment, medical treatment of SOM, at least with<br />

currently available medications, may not be the optimum way to manage the disease.<br />

They believe that surgery is the treatment of choice when symptoms of SOM are<br />

<strong>in</strong>tolerable to the patient. Other authors have also reported successful treatment of SOM<br />

with surgery (de Sa, 1992; Hayakawa, 2000). For example, Kosmorsky et al performed a<br />

Harada-Ito procedure on a woman with SOM (Kosmorsky, 1995). This procedure<br />

<strong>in</strong>volves nasally transpos<strong>in</strong>g the anterior portion of the superior oblique tendon,<br />

which is responsible for the cyclorotation, to create an effective weaken<strong>in</strong>g of the<br />

anterior portion of the tendon <strong>in</strong>stead of temporal displacement utilized for superior<br />

oblique paresis. The SOM was abolished and vertical eye movements, <strong>in</strong>clud<strong>in</strong>g<br />

saccades, were unaffected. Samil et al reported one patient with SOM who responded<br />

to microvascular decompression of the fourth nerve at the root exit zone (Samil, 1998).<br />

The treatment of SOM is usually reassurance and the condition may be self-limit<strong>in</strong>g.<br />

When symptoms are <strong>in</strong>tolerable, medical or surgical therapy may be considered. A<br />

weaken<strong>in</strong>g procedure of the affected superior oblique muscle comb<strong>in</strong>ed with a weaken<strong>in</strong>g<br />

procedure of the ipsilateral <strong>in</strong>ferior oblique muscle or the Harada-Ito procedure is<br />

an effective treatment for SOM after failure of medical treatment or as an alternative to<br />

such treatment, and should be considered <strong>in</strong> patients with unacceptable visual symptoms.<br />

Microvascular decompression of the fourth cranial nerve at the root exit zone<br />

may be another approach, but so far there has been little experience with this procedure<br />

for SOM.<br />

The evaluation of monocular or asymmetric b<strong>in</strong>ocular oscillations is outl<strong>in</strong>ed <strong>in</strong><br />

Figure 17–2.<br />

What Are the Causes of Dysconjugate<br />

Bilateral Symmetric Eye Oscillations?<br />

If the ocular oscillations <strong>in</strong>volve both eyes to a relatively equal degree, the next step <strong>in</strong><br />

evaluation <strong>in</strong>volves determ<strong>in</strong><strong>in</strong>g whether the eye movements are disconjugate (the eyes<br />

mov<strong>in</strong>g <strong>in</strong> opposite directions) or conjugate (both eyes mov<strong>in</strong>g <strong>in</strong> the same direction)<br />

(Burde, 1991). When the oscillations are disconjugate, the exam<strong>in</strong>er should determ<strong>in</strong>e<br />

whether the oscillations are vertical or horizontal. Vertical disconjugate eye oscillations<br />

are usually due to seesaw nystagmus. Horizontal disconjugate eye oscillations <strong>in</strong>clude<br />

convergence-retraction nystagmus (nystagmus retractorius), divergence nystagmus,<br />

repetitive divergence, and oculomasticatory myorhythmia.


Figure 17–2. Evaluation of monocular or asymmetric oscillations.<br />

What Are the <strong>Cl<strong>in</strong>ical</strong> Features and Etiologies<br />

of Seesaw Nystagmus?<br />

Nystagmus and Other Ocular Oscillations 373<br />

Seesaw nystagmus is a cyclic movement of the eyes with a conjugate torsional<br />

component and a dysjunctive vertical component. While one eye rises and <strong>in</strong>torts, the<br />

other falls and extorts; the vertical and torsional movements are then reversed,<br />

complet<strong>in</strong>g the cycle. This nystagmus is usually pendular and may be due to a large<br />

suprasellar lesion compress<strong>in</strong>g or <strong>in</strong>vad<strong>in</strong>g the bra<strong>in</strong>stem bilaterally at the mesodien-


374 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

cephalic junction. Pendular seesaw nystagmus may also be congenital (May, 1997).<br />

Seesaw nystagmus may also have a underly<strong>in</strong>g jerk waveform, often due to a <strong>in</strong>tr<strong>in</strong>sic<br />

focal bra<strong>in</strong>stem lesion, either <strong>in</strong> the lateral medulla (usually on the side opposite the<br />

torsional quick phases) or <strong>in</strong> the mesodiencephalon on the same side as the quick phases<br />

(Halmagyi, 1991, 1994). Jerk seesaw nystagmus has a slow phase correspond<strong>in</strong>g to one<br />

half-cycle of seesaw nystagmus and is thus often called hemi-seesaw nystagmus.<br />

Seesaw nystagmus likely represents oscillations <strong>in</strong>volv<strong>in</strong>g central otolithic connections,<br />

especially the <strong>in</strong>terstitial nucleus of Cajal (Halmagyi, 1991). Seesaw nystagmus<br />

may also be <strong>in</strong> part due to an unstable visuovestibular <strong>in</strong>teraction control system.<br />

Lesions <strong>in</strong> the optic pathways may prevent ret<strong>in</strong>al error signals, essential for vestibuloocular<br />

reflex adaptation, from reach<strong>in</strong>g the cerebellar flocculus and <strong>in</strong>ferior olivary<br />

nucleus, thereby mak<strong>in</strong>g the system less stable. Etiologies responsible for seesaw<br />

nystagmus are outl<strong>in</strong>ed <strong>in</strong> Table 17–1.<br />

Chiari malformation type I may be associated with nystagmus of skew <strong>in</strong> which one<br />

eye beats upward while the other eye beats downward (Pieh, 2000). The evaluation of a<br />

patient with seesaw nystagmus <strong>in</strong>cludes a complete ophthalmologic and neurologic<br />

exam<strong>in</strong>ation. Patients with parasellar lesions often have bitemporal field defects and<br />

‘‘bow-tie’’ optic atrophy associated with pendular seesaw nystagmus. Jerk seesaw<br />

nystagmus usually is associated with other bra<strong>in</strong>stem signs. We recommend neuroimag<strong>in</strong>g<br />

(preferably MRI attend<strong>in</strong>g to parasellar and posterior fossa regions) for patients<br />

with seesaw nystagmus, with particular attention to the third ventricle=<br />

parasellar area (class IV, level C). The presence of this nystagmus with a skew deviation<br />

requires MRI studies for a Chiari malformation (class IV, level C). The treatment of<br />

seesaw nystagmus is directed at the responsible lesion. One patient with <strong>in</strong>termittent<br />

seesaw nystagmus responded to clonazepam, and the nystagmus did not recur after<br />

withdrawal of the medication (Coch<strong>in</strong>, 1995). Also, baclofen, with and without<br />

clonazepam, improved both nystagmus and associated oscillopsia <strong>in</strong> another patient,<br />

suggest<strong>in</strong>g a possible g-am<strong>in</strong>obutyric acid (GABA)-ergic mechanism <strong>in</strong>fluenc<strong>in</strong>g the<br />

<strong>in</strong>terstitial nucleus of Cajal.<br />

Table 17–1. Etiologies of Seesaw Nystagmus<br />

Parasellar masses (Barton, 1995)<br />

Bra<strong>in</strong>stem and thalamic stroke (Halmagyi, 1991, 1994)<br />

Multiple sclerosis (Samkoff, 1994)<br />

Trauma<br />

Chiari malformation<br />

Hydrocephalus<br />

Syr<strong>in</strong>gobulbia<br />

Paraneoplastic encephalitis (with testicular cancer and anti-Ta antibodies) (Bennett, 1999)<br />

Whole bra<strong>in</strong> irradiation and <strong>in</strong>trathecal methotrexate (Epste<strong>in</strong>, 2001)<br />

Septo-optic dysplasia, ret<strong>in</strong>itis pigmentosa, and cone degeneration (May, 1997)<br />

Congenital seesaw nystagmus* (Rambold, 1998)<br />

*Congenital seesaw nystagmus may lack the torsional component or even present with an opposite<br />

pattern, that is, extorsion with eye elevation and <strong>in</strong>torsion with eye depression. With congenital cases,<br />

the b<strong>in</strong>ocular torsional eye movements may be <strong>in</strong> phase with cl<strong>in</strong>ically visible head oscillations (i.e.,<br />

head movements are not compensatory for the torsional eye movements) (Rambold, 1998).


What Are the Causes of Horizontal<br />

Dysconjugate Eye Oscillations?<br />

Nystagmus and Other Ocular Oscillations 375<br />

Convergence may evoke various forms of nystagmus (i.e., convergence-evoked nystagmus;<br />

see below). Convergence-retraction nystagmus is a disorder of ocular motility <strong>in</strong><br />

which repetitive adduct<strong>in</strong>g saccades, which are often accompanied by retraction of the<br />

eyes <strong>in</strong>to the orbit, occur spontaneously or on attempted upgaze (Pullic<strong>in</strong>o, 2000).<br />

Rotat<strong>in</strong>g an optok<strong>in</strong>etic tape or drum downward may elicit the movements.<br />

Convergence-retraction nystagmus is primarily a saccadic disorder as the convergence<br />

movements are not normal vergence movements but asynchronous, adduct<strong>in</strong>g<br />

saccades. Other authors feel that convergence-retraction nystagmus is a disorder of<br />

vergence rather than of oppos<strong>in</strong>g adduct<strong>in</strong>g saccades (Rambold, 2001b). Mesencephalic<br />

lesions affect<strong>in</strong>g the pretectal region are most likely to cause this type of nystagmus,<br />

which is often associated with abnormalities of vertical gaze. The localization and<br />

evaluation of these vertical gaze abnormalities and convergence-retraction nystagmus<br />

are discussed <strong>in</strong> Chapter 14. Convergence nystagmus has been described without<br />

vertical gaze abnormalities <strong>in</strong> patients with dorsal midbra<strong>in</strong> stroke and <strong>in</strong> patients<br />

with Chiari malformation (Mossman, 1990; Schnyder, 1996). Whipple’s disease may also<br />

cause convergence nystagmus at approximately 1 Hz (pendular vergence oscillations)<br />

(Selhorst, 1987). Convergence nystagmus has been described <strong>in</strong> a patient with spasmus<br />

nutans (Massry, 1996).<br />

Divergence nystagmus (with divergent quick phases) may occur with h<strong>in</strong>dbra<strong>in</strong><br />

abnormalities (e.g., Chiari malformation) and is associated with downbeat nystagmus.<br />

These patients have slow phases directed upward and <strong>in</strong>ward. Repetitive divergence<br />

consists of a slow divergent movement followed by a rapid return to the primary<br />

position at regular <strong>in</strong>tervals (Noda, 1987). This rare disorder has been described with<br />

coma from hepatic encephalopathy. A similar disorder, probably related to seizures, was<br />

reported <strong>in</strong> a neonate <strong>in</strong> association with burst-suppression patterns of the electroencephalogram<br />

(Nelson, 1986).<br />

Oculomasticatory myorhythmia refers to acquired pendular vergence oscillations<br />

associated with concurrent contraction of the masticatory muscles (Adler, 1990; Louis,<br />

1996). If nonfacial skeletal muscles are <strong>in</strong>volved, it is called oculofacial-skeletal myorhythmia.<br />

There is a smooth, rhythmic eye convergence, which cycles at a frequency of<br />

approximately 1 Hz, followed by divergence back to the primary position. Rhythmic<br />

elevation and depression of the mandible is synchronous with the ocular oscillations<br />

that persist <strong>in</strong> sleep and are unaltered by stimuli. The masticatory <strong>in</strong>volvement may<br />

occasionally consist of a permanent bruxism lead<strong>in</strong>g to severe tooth abrasions (Tison,<br />

1992). Patients with oculomasticatory myorhythmia may also have paralysis of vertical<br />

gaze, progressive somnolence, and <strong>in</strong>tellectual deterioration. This dist<strong>in</strong>ct movement<br />

disorder has been recognized only <strong>in</strong> Whipple’s disease (class III–IV, level B).<br />

Therefore, if this condition is diagnosed, empiric antibiotic treatment should be<br />

considered and tissue diagnosis should be attempted. Whipple’s disease may be<br />

diagnosed by endoscopically guided biopsy of multiple jejunal sites (Adler, 1990;<br />

Louis, 1996). Electron microscopy and polymerase cha<strong>in</strong> reaction (PCR)-based test<strong>in</strong>g<br />

on <strong>in</strong>test<strong>in</strong>al or extra<strong>in</strong>test<strong>in</strong>al tissue may also confirm the diagnosis (Louis, 1996; Tison,<br />

1992). PCR can also be performed on cerebrosp<strong>in</strong>al fluid <strong>in</strong> central nervous system<br />

(CNS) Whipple’s disease (Lynch, 1997; Von Herbay, 1997).<br />

The evaluation of disconjugate bilateral symmetric eye oscillations is outl<strong>in</strong>ed <strong>in</strong><br />

Figure 17–3.


376 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 17–3. Evaluation of disconjugate bilateral symmetric oscillations.<br />

What Are the Causes of B<strong>in</strong>ocular Symmetric<br />

Conjugate Eye Oscillations?<br />

B<strong>in</strong>ocular symmetric conjugate eye oscillations may be divided <strong>in</strong>to pendular nystagmus,<br />

jerk nystagmus, and saccadic <strong>in</strong>trusions (Burde, 1991).


What Are the Causes of B<strong>in</strong>ocular Symmetric<br />

Pendular Conjugate Eye Oscillations?<br />

Nystagmus and Other Ocular Oscillations 377<br />

B<strong>in</strong>ocular symmetric pendular conjugate eye oscillations may be due to congenital<br />

nystagmus, pendular nystagmus, oculopalatal myoclonus, spasmus nutans (discussed<br />

above), and visual deprivation nystagmus.<br />

Congenital nystagmus may be noted at birth or <strong>in</strong> early <strong>in</strong>fancy, or may emerge or<br />

enhance <strong>in</strong> teenage or adult life (Dell’Osso, 1993; Gresty, 1991; Hertle, 1999). It may be<br />

familial, hereditary (X-l<strong>in</strong>ked, autosomal dom<strong>in</strong>ant, autosomal recessive) (Kerrison,<br />

1999; Oett<strong>in</strong>g, 2000) or idiopathic. Metabolic derangements and structural anomalies of<br />

the bra<strong>in</strong>, <strong>in</strong>clud<strong>in</strong>g abnormalities of the anterior and posterior visual pathways, may be<br />

responsible (Jacobson, 1998). More important, when it is found later <strong>in</strong> life it must be<br />

dist<strong>in</strong>guished from other forms of nystagmus that have a potentially treatable cause.<br />

Congenital nystagmus may be wholly pendular or have both pendular and jerk<br />

components. Congenital jerk nystagmus has a slow phase with a velocity that <strong>in</strong>creases<br />

exponentially as the eyes move <strong>in</strong> the direction of the slow phase. Occasionally<br />

congenital nystagmus may be purely vertical or torsional, and although these f<strong>in</strong>d<strong>in</strong>gs<br />

usually implicate an <strong>in</strong>tracranial lesion, these forms of nystagmus may occur <strong>in</strong> sensory<br />

congenital nystagmus (Shawkat, 2000). Although irregular, congenital nystagmus is<br />

generally conjugate and horizontal, even on upgaze or downgaze (uniplanar), visual<br />

fixation accentuates it and active eyelid closure or convergence attenuates it (Gresty,<br />

1991). The nystagmus decreases <strong>in</strong> an eye position (‘‘null region’’) that is specific for<br />

each patient. Despite the constant eye motion, these patients do not experience<br />

oscillopsia. When they are tested with a hand-held optok<strong>in</strong>etic tape or drum, the<br />

quick phase of the elicited nystagmus generally follows the direction of the tape<br />

(reversed optok<strong>in</strong>etic nystagmus).<br />

Symptomatic oscillopsia <strong>in</strong> patients with congenital nystagmus is unusual but may be<br />

precipitated after visual maturation by new or chang<strong>in</strong>g associated visual sensory<br />

conditions (e.g., decompensat<strong>in</strong>g strabismus or ret<strong>in</strong>al degeneration) (Hertle, 2001).<br />

Congenital nystagmus has been associated with many disease processes affect<strong>in</strong>g the<br />

visual afferent system <strong>in</strong>clud<strong>in</strong>g ocular and oculocutaneous alb<strong>in</strong>ism, achromatopsia,<br />

optic nerve hypoplasia, Leber’s amaurosis, coloboma, aniridia, cone dystrophies,<br />

corectopia, congenital stationary night bl<strong>in</strong>dness, Chédiak-Higashi syndrome, Joubert<br />

syndrome, and peroxisomal disorders. It has also been associated with hypothyroidism.<br />

The evaluation of children with congenital nystagmus thus should <strong>in</strong>clude a complete<br />

ophthalmologic exam<strong>in</strong>ation, especially attend<strong>in</strong>g to symptoms of photophobia and<br />

paradoxical pupillary constriction <strong>in</strong> darkness, and thyroid functions. <strong>An</strong> electroret<strong>in</strong>ogram<br />

(ERG) may be helpful even with a normal afferent exam (Cibis, 1993). For<br />

example, 56% of 105 consecutive patients with congenital nystagmus were found to<br />

have ret<strong>in</strong>al disease when tested with ERG (Cibis, 1993).<br />

Congenital nystagmus often decreases <strong>in</strong> an eye position (‘‘null region’’) that is<br />

specific for each patient, and convergence often attenuates the nystagmus. Prisms can be<br />

used to take advantage of the dampen<strong>in</strong>g effect of convergence and the null region–lens<br />

comb<strong>in</strong>ations can be adjusted so that an asymmetric arrangement of base-out prisms<br />

both converge the eyes and turn them toward the null angle. Leigh et al suggest<br />

7.00-diopter base-out prisms with 1.00-diopter spheres added to compensate for<br />

accommodation (Leigh, 1994). Contact lenses may improve vision <strong>in</strong> patients with


378 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

congenital nystagmus, possibly due to tactile feedback. <strong>An</strong>other approach for the<br />

treatment of severe nystagmus <strong>in</strong> general <strong>in</strong>volves employ<strong>in</strong>g an optical system to<br />

stabilize images on the ret<strong>in</strong>a (Leigh, 1994; Yaniglos, 1992). The comb<strong>in</strong>ation of high<br />

‘‘plus’’ (i.e., converg<strong>in</strong>g) spectacle lenses with high ‘‘m<strong>in</strong>us’’ (i.e., diverg<strong>in</strong>g) contact<br />

lenses is used with the converg<strong>in</strong>g system focus<strong>in</strong>g the image at the center of eye<br />

rotation (thus, stabiliz<strong>in</strong>g the image) and the diverg<strong>in</strong>g system mov<strong>in</strong>g the image back<br />

to focus on the ret<strong>in</strong>a. The contact lens moves with the eye so it does not negate the<br />

effect of image stabilization produced by the spectacle lens. This imag<strong>in</strong>g system is<br />

theoretically beneficial but difficult to ma<strong>in</strong>ta<strong>in</strong> <strong>in</strong> practice, especially as the system<br />

disables the vestibulo-ocular reflex and is thus only useful when the patient is<br />

stationary.<br />

Congenital nystagmus may also be treated with botul<strong>in</strong>um tox<strong>in</strong> <strong>in</strong>jections <strong>in</strong>to the<br />

extraocular muscles or surgery. Acuity was restored <strong>in</strong> four patients, to the extent that<br />

they were able to receive daytime drivers licenses, by multiple horizontal recti <strong>in</strong>jections<br />

of botul<strong>in</strong>um tox<strong>in</strong> (Carruthers, 1995). Surgical procedures effectively control congenital<br />

nystagmus by attempt<strong>in</strong>g to move the attachments of the extraocular muscles so that<br />

the null angle corresponds to the new primary position (the null region is shifted and<br />

broadened), to decrease nystagmus outside the null region, and to prolong foveation<br />

time by chang<strong>in</strong>g the waveform and dampen<strong>in</strong>g the nystagmus (Atilla, 1999; Bilska,<br />

1995; Helveston, 1991; von Noorden, 1991; Zubkov, 1993). Procedures used <strong>in</strong>clude the<br />

<strong>An</strong>derson-Kestenbaum procedure, which moves the eyes to the null region, divergence<br />

procedures, large recessions of the horizontal rectus muscles, and comb<strong>in</strong>ed procedures<br />

(Lee, 2000; Leigh, 1994). F<strong>in</strong>ally, biofeedback has been reported to help some patients<br />

with this disorder. Evans et al performed a randomized, double-masked, placebocontrolled<br />

trial of various treatments for congenital nystagmus and concluded that these<br />

putative therapies should be assumed to be placebos until proven otherwise by<br />

randomized trial (class III–IV, level C) (Evans, 1998).<br />

Latent nystagmus is common and generally congenital (Gresty, 1992; Wagner, 1990;<br />

Zubkov, 1990). It appears when one eye is covered. Both eyes then develop conjugate<br />

jerk nystagmus, with the view<strong>in</strong>g eye hav<strong>in</strong>g a slow phase directed toward the nose<br />

(i.e., the quick phase of both eyes beat toward the side of the fixat<strong>in</strong>g eye). Although<br />

present at birth, latent nystagmus is often not recognized until later <strong>in</strong> life, when an<br />

attempt is made to determ<strong>in</strong>e monocular visual acuity dur<strong>in</strong>g vision screen<strong>in</strong>g at<br />

school. Latent nystagmus is usually associated with strabismus, especially esotropia;<br />

amblyopia may occur and b<strong>in</strong>ocular vision with normal stereopsis is rare. In addition to<br />

horizontal strabismus, upward deviation of the covered eye (dissociated vertical<br />

deviation or alternat<strong>in</strong>g sursumduction) and a torsional, occasionally pendular, component<br />

to the nystagmus may occur. Latent nystagmus is a marker for congenital<br />

ocular motor disturbance and does not <strong>in</strong>dicate progressive structural bra<strong>in</strong> disease<br />

(Burde, 1991).<br />

Manifest latent nystagmus is an oscillation that occurs <strong>in</strong> patients with strabismus or<br />

acquired visual loss who have a jerk nystagmus <strong>in</strong> the direction of the fix<strong>in</strong>g eye<br />

(i.e., right-beat<strong>in</strong>g nystagmus when fix<strong>in</strong>g with the right eye and left-beat<strong>in</strong>g nystagmus<br />

when fix<strong>in</strong>g with the left eye) (Burde, 1991). Patients with <strong>in</strong>fantile uniocular bl<strong>in</strong>dness<br />

may have a bilateral horizontal nystagmus that represents a manifest nystagmus of the<br />

latent type (Kushner, 1995). These patients often have a family history of strabismus; the<br />

monocular bl<strong>in</strong>dness (opacity of the media or suppression) acts as an occluder, mak<strong>in</strong>g<br />

manifest what would have been latent nystagmus. Therapy for latent nystagmus


Nystagmus and Other Ocular Oscillations 379<br />

consists of measures to improve vision, such as patch<strong>in</strong>g for amblyopia <strong>in</strong> children or<br />

surgical correction of strabismus (Zubkov, 1993).<br />

Voluntary nystagmus (psychogenic flutter) occurs <strong>in</strong> normal subjects, sometimes as a<br />

familial trait, and consists of bursts of high-frequency horizontal oscillations composed<br />

of back-to-back saccades (Lee, 1993; Sato, 1999). The movements may be vertical or<br />

torsional as well. This movement will completely disappear if patients are forced to<br />

keep their eyes open, because it requires tremendous volitional effort and cannot be<br />

susta<strong>in</strong>ed for prolonged periods of time (Burde, 1991). Voluntary nystagmus is often<br />

accompanied by a ‘‘fixed look’’ required to produce the symptoms, eyelid flutter,<br />

and convergence. Voluntary nystagmus may be associated with spasm of the near<br />

reflex (Sato, 1999) and has been described as a component of nonepileptic seizures<br />

(Davis, 2000).<br />

Although pendular nystagmus is often congenital, acquired forms exist. Acquired<br />

pendular nystagmus may be wholly horizontal, wholly vertical, or have mixed<br />

components (circular, elliptical, or w<strong>in</strong>dmill pendular nystagmus). Pendular nystagmus<br />

may be symmetric, dissociated, or even monocular and often causes distress<strong>in</strong>g<br />

oscillopsia and decreased visual acuity (Averbuch-Heller, 1995b; Barton, 1993; Lopez,<br />

1996). Damage to the dentatorubro-olivary pathways (Guilla<strong>in</strong>-Mollaret triangle) is<br />

found <strong>in</strong> some cases of acquired pendular nystagmus, which is most often caused by<br />

multiple sclerosis, stroke, or tumor of the bra<strong>in</strong>stem or other posterior fossa structures<br />

(Averbuch-Heller, 1995b; Barton, 1993, 1999; Lopez, 1996; Revol, 1990; Schon, 1999;<br />

Starck, 1997; Talks, 1997). In multiple sclerosis, pendular nystagmus may be a sign of<br />

cerebellar nuclear <strong>in</strong>volvement or result from optic neuropathy, but the most consistent<br />

f<strong>in</strong>d<strong>in</strong>g on MRI is a lesion <strong>in</strong> the dorsal pont<strong>in</strong>e tegmentum, perhaps affect<strong>in</strong>g the<br />

central tegmental tract (Barton, 1993). In a study of 27 patients with acquired pendular<br />

nystagmus, MRI f<strong>in</strong>d<strong>in</strong>gs were characterized by multiple areas of abnormal signal with<br />

statistically significant ones occurr<strong>in</strong>g <strong>in</strong> areas conta<strong>in</strong><strong>in</strong>g the red nucleus, the central<br />

tegmental tract, the medial vestibular nucleus, and the <strong>in</strong>ferior olive (Lopez, 1996).<br />

The abundance of abnormal MRI signals, predom<strong>in</strong>antly <strong>in</strong> the pons but also <strong>in</strong> the<br />

midbra<strong>in</strong> and the medulla, suggests that large or multiple structural lesions may be<br />

required to elicit pendular nystagmus. Acquired convergence-<strong>in</strong>duced pendular<br />

nystagmus may occur with multiple sclerosis (Barton, 1999) and we recommend<br />

neuroimag<strong>in</strong>g (e.g., cranial MRI) for all unexpla<strong>in</strong>ed cases of acquired pendular<br />

nystagmus (class III–IV, level B).<br />

Other causes of acquired b<strong>in</strong>ocular pendular nystagmus <strong>in</strong>clude Pelizaeus-<br />

Merzbacher disease, mitochondrial cytopathy, Cockayne’s syndrome, neonatal adrenoleukodystrophy<br />

(a peroxisomal disorder), and toluene addiction (Kori, 1998; Maas,<br />

1991; Trobe, 1991). Spontaneous horizontal pendular nystagmus <strong>in</strong> a patient with a<br />

surgically acquired perilymph fistula was found related to the heart rate and may have<br />

been caused by pressure transfer of blood pulses to the labyr<strong>in</strong>th (Rambold, 2001a).<br />

Congenital, familial, or acquired bilateral paralysis of horizontal gaze may be associated<br />

with pendular nystagmus; the familial type may also be associated with progressive<br />

scoliosis and facial contractures with myokymia. Pendular nystagmus may also appear<br />

with bl<strong>in</strong>dness or monocular loss of vision; <strong>in</strong> the latter case, it may be monocular (see<br />

above). B<strong>in</strong>ocular visual loss may cause nystagmus that has both horizontal and vertical<br />

components that change direction over seconds or m<strong>in</strong>utes (i.e., a wander<strong>in</strong>g null po<strong>in</strong>t)<br />

(Good, 1990). Bl<strong>in</strong>d patients may have w<strong>in</strong>dmill nystagmus, <strong>in</strong> which there are repeated


380 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

oscillations <strong>in</strong> the vertical plane alternat<strong>in</strong>g with repeated oscillations <strong>in</strong> the horizontal<br />

plane.<br />

Horizontal pendular pseudonystagmus has been described <strong>in</strong> patients with horizontal<br />

essential head tremor and bilateral vestibular dysfunction (Bronste<strong>in</strong>, 1992;<br />

Verhagen, 1994). The deficient vestibulo-ocular reflex results <strong>in</strong> ocular oscillations <strong>in</strong><br />

space when the head oscillates, and funduscopy reveals a f<strong>in</strong>e pendular motion of the<br />

eyes that is reduced by firm support of the head. The oscillopsia improves with<br />

treatment of the tremor with propranolol. Yen et al described two renal transplant<br />

patients who developed pseudonystagmus and oscillopsia caused by immunosuppressant<br />

(tacrolimus)-<strong>in</strong>duced head tremor and gentamic<strong>in</strong>-<strong>in</strong>duced vestibulopathy<br />

(Yen, 1999). Although the patients were <strong>in</strong>itially thought to have nystagmus, closer<br />

observation revealed no true nystagmus but corrective saccades compensat<strong>in</strong>g for an<br />

absent vestibulo-ocular reflex dur<strong>in</strong>g the head tremor (pseudonystagmus). Typically<br />

patients with vestibulo-ocular impairment have only head movement–<strong>in</strong>duced oscillopsia,<br />

but these patients had constant oscillopsia because the visual track<strong>in</strong>g system<br />

(smooth pursuit) could not compensate for the loss of vestibular function at immunosuppressant-<strong>in</strong>duced<br />

head oscillation greater than 1 Hz. Vestibular rehabilitation helped<br />

one of these patients.<br />

Palatal myoclonus is a cont<strong>in</strong>uous rhythmic <strong>in</strong>voluntary movement of the soft palate<br />

that may be accompanied by synchronous movements of other adjacent structures, such<br />

as the face, pharynx, larynx, or diaphragm. The association of pendular nystagmus with<br />

palatal myoclonus is not <strong>in</strong>frequent, and the condition is then termed oculopalatal<br />

myoclonus or oculopalatal tremor (Eggenberger, 2001; Talks, 1997). Oculopalatal<br />

myoclonus may be of two types (Nakada, 1986):<br />

1. A lateral form, consist<strong>in</strong>g of jerky, nystagmoid movements with simultaneous<br />

oblique and rotatory components associated (and synchronous) with lateralized<br />

palatal myoclonus (<strong>in</strong> this form, the eye on the side of the myoclonus <strong>in</strong>torts as it<br />

rises and extorts as it falls, whereas the opposite eye extorts as it rises and <strong>in</strong>torts as it<br />

falls).<br />

2. A midl<strong>in</strong>e form <strong>in</strong> which vertical to-and-fro pendular eye movements occur<br />

synchronous with symmetric bilateral palatal myoclonus.<br />

Oculopalatal myoclonus <strong>in</strong>volves vestibulo-ocular reflex adaption mediated by the<br />

cerebellar flocculus, and floccular <strong>in</strong>tegrity is preserved <strong>in</strong> most patients (Nakada, 1986).<br />

The lateral form implies unilateral disease, whereas the midl<strong>in</strong>e form <strong>in</strong>dicates bilateral<br />

disease. Damage to the dentatorubro-olivary pathways (Guilla<strong>in</strong>-Mollaret triangle) is<br />

found <strong>in</strong> cases of oculopalatal myoclonus, which is most often caused by multiple<br />

sclerosis or vascular lesions of the bra<strong>in</strong>stem. MRI often shows enlargement of the<br />

<strong>in</strong>ferior olivary nuclei (Talks, 1997).<br />

There may be an association between the one-and-a-half syndrome (see Chapter 14)<br />

and oculopalatal myoclonus (Wol<strong>in</strong>, 1996). In five patients with one-and-a-half<br />

syndrome and facial nerve palsy, oculopalatal myoclonus developed <strong>in</strong> 4 months to 3<br />

years. Involvement of the facial nerve may predict subsequent development of<br />

oculopalatal myoclonus. Oculopalatal tremor may be associated with delayed (tardive)<br />

ataxia (Eggenberger, 2001).<br />

The evaluation of the patient with pendular nystagmus depends on the cl<strong>in</strong>ical<br />

circumstances and associated neurologic f<strong>in</strong>d<strong>in</strong>gs. In patients with multiple sclerosis,


Nystagmus and Other Ocular Oscillations 381<br />

the diagnosis is usually obvious by a history of remissions and exacerbations of<br />

neurologic signs and symptoms associated with abnormalities on neurologic exam<strong>in</strong>ation,<br />

suggest<strong>in</strong>g a dissem<strong>in</strong>ated process. Bra<strong>in</strong>stem stroke or tumor is diagnosed by<br />

mode of onset of symptoms, associated neurologic signs and symptoms, and MRI.<br />

Ophthalmologic exam will reveal bl<strong>in</strong>dness as a cause for the nystagmus <strong>in</strong> some<br />

patients. MRI is warranted <strong>in</strong> all patients with palatal myoclonus (class III–IV, level B).<br />

The neurotransmitters <strong>in</strong>volved <strong>in</strong> pendular nystagmus are unknown, but chol<strong>in</strong>ergic<br />

and GABA-ergic pathways may be <strong>in</strong>volved. <strong>An</strong>tichol<strong>in</strong>ergic agents have produced<br />

variable treatment results (Barton, 1994; Leigh, 1991). In a randomized, double-bl<strong>in</strong>d<br />

study, trihexyphenidyl improved only one of five patients with pendular elliptical<br />

nystagmus. In another double-bl<strong>in</strong>d study, <strong>in</strong>travenous scopolam<strong>in</strong>e reduced nystagmus<br />

and improved vision <strong>in</strong> five patients (Barton, 1994; Jabbari, 1987). Isoniazid<br />

relieved nystagmus and oscillopsia <strong>in</strong> two of three patients with pendular elliptical<br />

nystagmus due to multiple sclerosis, but others have not found this drug to be helpful<br />

(Leigh, 1994; Traccis, 1990). Memant<strong>in</strong>e (a glutamate antagonist) caused complete<br />

cessation of nystagmus <strong>in</strong> 11 of 14 patients with acquired pendular nystagmus due to<br />

multiple sclerosis (Starck, 1997). These 11 responders had fixation pendular nystagmus<br />

(i.e., nystagmus <strong>in</strong>creased with fixation). A dramatic suppression of pendular nystagmus<br />

<strong>in</strong> a patient with multiple sclerosis was described after smok<strong>in</strong>g cannabis, but not<br />

by tak<strong>in</strong>g orally adm<strong>in</strong>istered capsules conta<strong>in</strong><strong>in</strong>g cannabis oil (Schon, 1999).<br />

Although the mechanism of action of gabapent<strong>in</strong> is unknown, Stahl et al have<br />

measured the effects of this agent on vision and eye movements <strong>in</strong> acquired pendular<br />

nystagmus <strong>in</strong> two patients with multiple sclerosis and one with bra<strong>in</strong>stem stroke (Stahl,<br />

1996). <strong>An</strong> oral dose of 600 mg produced improvement of vision due to changes <strong>in</strong> ocular<br />

oscillations <strong>in</strong> all three patients. The drug was well tolerated and was cont<strong>in</strong>ued at 900<br />

to 1500 mg daily <strong>in</strong> divided doses with long-term benefit. All the patients reported<br />

useful visual improvement that enabled them to read, watch television, and recognize<br />

faces. In other studies, gabapent<strong>in</strong> improved acquired pendular nystagmus <strong>in</strong> 10 of 15<br />

patients (Averbuch-Heller, 1997) and 3 of 8 patients (Band<strong>in</strong>i, 2001).<br />

Several reports have suggested that <strong>in</strong>jection of botul<strong>in</strong>um tox<strong>in</strong> either <strong>in</strong>to selected<br />

extraocular muscles or <strong>in</strong>to the retrobulbar space might be effective <strong>in</strong> the treatment of<br />

acquired nystagmus (Carruthers, 1995; Leigh, 1992; Repka, 1994; Ruben, 1994a,b; Talks,<br />

1997; Tomsak, 1995). Leigh et al <strong>in</strong>jected the horizontal rectus muscles of the right eye of<br />

two patients with acquired pendular nystagmus (Leigh, 1992). The treatment effectively<br />

abolished the horizontal component of the nystagmus <strong>in</strong> the <strong>in</strong>jected eyes of both<br />

patients for 2 months. However, side effects <strong>in</strong>clud<strong>in</strong>g diplopia, ptosis, and worsen<strong>in</strong>g<br />

of the oscillopsia <strong>in</strong> the un<strong>in</strong>jected eye (attributed to plastic-adaptive changes <strong>in</strong><br />

response to paresis caused by the botul<strong>in</strong>um tox<strong>in</strong>) limited the effectiveness of the<br />

treatment. In another study, botul<strong>in</strong>um tox<strong>in</strong> <strong>in</strong>jection <strong>in</strong>to the retrobulbar space of three<br />

patients with acquired pendular nystagmus abolished or reduced all components of the<br />

nystagmus (Tomsak, 1995). Aga<strong>in</strong>, side effects of the treatment seem to be the limit<strong>in</strong>g<br />

factor. Others have reported variable improvement <strong>in</strong> visual function and oscillopsia<br />

with retrobulbar or horizontal recti botul<strong>in</strong>um <strong>in</strong>jection, with transient ptosis the most<br />

common side effect (Ruben, 1994a,b). Repka et al <strong>in</strong>jected 25 to 30 units of botul<strong>in</strong>um<br />

tox<strong>in</strong> <strong>in</strong>to the retrobulbar space of six adults with acquired nystagmus (Repka, 1994).<br />

Each patient had subjective and objective improvement of distance visual acuity<br />

follow<strong>in</strong>g <strong>in</strong>jection with reduction of the amplitude but not the frequency of<br />

the nystagmus. Visual improvement lasted no more than 8 weeks but persisted


382 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

for 6 months <strong>in</strong> two patients with oculopalatal myoclonus. The authors concluded that<br />

retrobulbar botul<strong>in</strong>um tox<strong>in</strong> <strong>in</strong>jection may improve visual function for patients with<br />

acquired nystagmus and that improvement seemed to be longer for patients<br />

with oculopalatal myoclonus. Further studies on the safety and efficacy of botul<strong>in</strong>um<br />

tox<strong>in</strong> <strong>in</strong>jection for acquired nystagmus are warranted (class IV, level U).<br />

Lesions of the Guilla<strong>in</strong>-Mollaret triangle are thought to <strong>in</strong>duce chol<strong>in</strong>ergic denervation<br />

supersensitivity of the <strong>in</strong>ferior olive, which results <strong>in</strong> the oculopalatal myoclonus.<br />

<strong>An</strong>tichol<strong>in</strong>ergic agents (trihexyphenidyl) have thus been tried effectively <strong>in</strong> four<br />

patients with palatal myoclonus without ocular <strong>in</strong>volvement (Jabbari, 1987) and <strong>in</strong><br />

one patient with vertical pendular nystagmus identical to that seen with oculopalatal<br />

myoclonus but without palatal <strong>in</strong>volvement (Herishanu, 1986). Valproate and carbamazep<strong>in</strong>e<br />

have each been reported to reduce the nystagmus of palatal myoclonus.<br />

F<strong>in</strong>ally, as noted above, the nystagmus <strong>in</strong> patients with oculopalatal myoclonus may be<br />

especially sensitive to retrobulbar botul<strong>in</strong>um tox<strong>in</strong> <strong>in</strong>jection (Repka, 1994).<br />

The evaluation and treatment of pendular nystagmus is outl<strong>in</strong>ed <strong>in</strong> Figure 17–4.<br />

What Are the Causes of B<strong>in</strong>ocular Symmetric<br />

Jerk Nystagmus?<br />

B<strong>in</strong>ocular symmetric conjugate jerk nystagmus may be divided <strong>in</strong>to that which is<br />

present spontaneously and that which is <strong>in</strong>duced (Burde, 1991). Spontaneous jerk<br />

nystagmus may be further divided <strong>in</strong>to forms present <strong>in</strong> primary position and forms<br />

present predom<strong>in</strong>antly on eccentric gaze.<br />

Spontaneous symmetric conjugate jerk nystagmus that occurs <strong>in</strong> primary position<br />

may be predom<strong>in</strong>antly horizontal, predom<strong>in</strong>antly torsional, or predom<strong>in</strong>antly vertical.<br />

Spontaneous symmetric conjugate jerk nystagmus <strong>in</strong> primary gaze that is predom<strong>in</strong>antly<br />

horizontal <strong>in</strong>cludes congenital nystagmus (above), latent nystagmus (above),<br />

vestibular nystagmus, periodic alternat<strong>in</strong>g nystagmus, drug-<strong>in</strong>duced nystagmus, and<br />

epileptic nystagmus. Spontaneous symmetric conjugate jerk nystagmus <strong>in</strong> primary gaze<br />

that is purely torsional is a form of central vestibular nystagmus. Spontaneous<br />

symmetric conjugate jerk nystagmus <strong>in</strong> primary gaze that is predom<strong>in</strong>antly vertical<br />

<strong>in</strong>cludes upbeat nystagmus and downbeat nystagmus.<br />

Horizontal nystagmus <strong>in</strong> the primary position is often the result of peripheral<br />

vestibular disease. Vestibular nystagmus has a l<strong>in</strong>ear (constant velocity) slow phase.<br />

The horizontal component is dim<strong>in</strong>ished when the patient lies with the <strong>in</strong>tact ear down<br />

and is exacerbated with the affected ear down. Peripheral vestibular lesions <strong>in</strong>duce a<br />

tendency for the eyes to drift <strong>in</strong> a direction parallel to the plane <strong>in</strong> which the diseased<br />

canal lies. Horizontal nystagmus with the slow component toward the lesion (the<br />

opposite vestibular nuclei drive the eyes toward the diseased side) results from<br />

unilateral horizontal canal or total labyr<strong>in</strong>th<strong>in</strong>e destruction. In the latter case there is<br />

a torsional slow component caus<strong>in</strong>g the upper part of the globe to rotate toward the<br />

lesioned side. Although constant for a particular position of gaze, the slow-phase<br />

velocity is greater when the eyes are turned <strong>in</strong> the direction of the quick component<br />

(Alexander’s law). Nystagmus due to peripheral vestibular disease is most prom<strong>in</strong>ent,<br />

or only becomes apparent, when fixation is prevented. Both peripheral and central<br />

vestibular nystagmus may vary with head position and movement, but peripheral


Figure 17–4. Evaluation of pendular nystagmus.<br />

Nystagmus and Other Ocular Oscillations 383<br />

nystagmus changes after a latency period follow<strong>in</strong>g the postural change and tends to<br />

fatigue.<br />

Peripheral vestibular disease is suspected when the nystagmus is associated with<br />

subjective vertigo. Central vestibular disease (e.g., bra<strong>in</strong>stem <strong>in</strong>farction) is suspected<br />

when associated neurologic signs and symptoms of bra<strong>in</strong>stem dysfunction are present.<br />

We recommend otolaryngologic consultation for peripheral vestibular disease and MRI<br />

for central vestibular disorders (class III–IV, level C).<br />

With periodic alternat<strong>in</strong>g nystagmus (PAN), the eyes exhibit primary position<br />

nystagmus, which, after 60 to 120 seconds, stops for a few seconds and then starts<br />

beat<strong>in</strong>g <strong>in</strong> the opposite direction (Shallo-Hoffmann, 1999). Horizontal jerk nystagmus <strong>in</strong><br />

the primary position not associated with vertigo is usually periodic alternat<strong>in</strong>g<br />

nystagmus (Burde, 1991). This disorder may be associated with periodic alternat<strong>in</strong>g<br />

oscillopsia, periodic alternat<strong>in</strong>g gaze, or periodic alternat<strong>in</strong>g skew deviation (Troost,<br />

1990). PAN may be congenital or acquired. It may be caused by craniocervical junction<br />

disease. The nodulus and uvula of the cerebellum ma<strong>in</strong>ta<strong>in</strong> <strong>in</strong>hibitory control over<br />

vestibular rotational responses by us<strong>in</strong>g GABA. Follow<strong>in</strong>g ablation of these structures,<br />

the postrotational response is excessively prolonged, so that normal vestibular repair


384 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

mechanisms act to reverse the direction of the nystagmus, which results <strong>in</strong> PAN (Leigh,<br />

1991). PAN is thus thought to be produced by dysfunction of the GABA-ergic velocitystorage<br />

mechanism and may be controlled <strong>in</strong> most, but not all, patients by the GABA-B<br />

agonist baclofen (Furman, 1990b; Troost, 1990). Patients with congenital PAN may also<br />

respond to baclofen or benefit from horizontal recti recessions (Gradste<strong>in</strong>, 1997).<br />

Etiologies for periodic alternat<strong>in</strong>g nystagmus are listed <strong>in</strong> Table 17–2.<br />

The evaluation of a patient with PAN <strong>in</strong>cludes a complete neurologic and ophthalmologic<br />

exam. In many patients, the etiology of the nystagmus is evident by history<br />

(e.g., congenital onset, associated alb<strong>in</strong>ism, family history of cerebellar degeneration,<br />

anticonvulsant use, history of remissions and exacerbations of neurologic signs and<br />

symptoms, acute onset of bra<strong>in</strong>stem signs and symptoms, severe visual impairment,<br />

etc.). Otherwise, the evaluation should <strong>in</strong>clude MRI with attention to the craniocervical<br />

junction (class III–IV, level B). If MRI is normal and the patient has a history of the<br />

subacute onset of progressive cerebellar signs and symptoms, Jakob-Creutzfeldt disease<br />

should be suspected (class IV, level C). Serology for syphilis and hepatic function studies<br />

could be considered (class IV, level C).<br />

Drug-<strong>in</strong>duced nystagmus may be predom<strong>in</strong>antly horizontal, predom<strong>in</strong>antly vertical,<br />

predom<strong>in</strong>antly rotatory, or (most commonly) mixed. It is most often seen with<br />

tranquiliz<strong>in</strong>g medications and anticonvulsants. Although drug-<strong>in</strong>duced nystagmus is<br />

more often evident with eccentric gaze (see below), it may also be evident <strong>in</strong> primary<br />

gaze (Burde, 1991; Remler, 1990).<br />

Nystagmus may occur as an epileptic phenomena. Epileptic nystagmus is usually<br />

horizontal, may be seen with epileptiform activity ipsilateral or contralateral to the<br />

direction of the slow component of the nystagmus, and often is associated with altered<br />

states of consciousness, although consciousness may be preserved dur<strong>in</strong>g the attacks<br />

(Furman, 1990a; Harris, 1997; Kaplan, 1993; Stolz, 1991; Tusa, 1990). There are two<br />

postulated mechanisms for the eye deviation <strong>in</strong> epileptic nystagmus (Furman, 1990a;<br />

Harris, 1997; Kaplan, 1993; Tusa, 1990). Ipsiversive eye deviation, with eye movement<br />

record<strong>in</strong>gs and EEG show<strong>in</strong>g seizure-<strong>in</strong>duced ipsilateral l<strong>in</strong>ear slow phases, is postu-<br />

Table 17–2. Etiologies of Periodic Alternat<strong>in</strong>g Nystagmus (PAN)<br />

Congenital (may be associated with alb<strong>in</strong>ism) (Abadi, 1994; Gradste<strong>in</strong>, 1997; Huygen, 1995; Ito, 2000;<br />

Shallo-Hoffmann, 1999)<br />

Arnold-Chiari malformation and other malformations of the craniocervical junction (Furman, 1990b)<br />

Cerebellar degenerations (Furman, 1990; Sakakibara, 1993)<br />

Ataxia-telangiectasia<br />

Cerebellar masses, <strong>in</strong>clud<strong>in</strong>g tumors, abscesses, and cysts<br />

Bra<strong>in</strong>stem <strong>in</strong>farction (Furman, 1990b)<br />

Cerebellar <strong>in</strong>fections, <strong>in</strong>clud<strong>in</strong>g syphilis and Jakob-Creutzfeldt disease (Grant, 1993; Leigh, 1991;<br />

Yokota, 1991)<br />

Hepatic encephalopathy (Averbuch-Heller, 1995a)<br />

Trauma (Leigh, 1991)<br />

Multiple sclerosis (Leigh, 1991; Matsumoto, 2001)<br />

<strong>An</strong>ticonvulsant medications<br />

Follow<strong>in</strong>g visual loss (e.g., due to cataract or vitreous hemorrhage)<br />

Epileptic PAN (after hypoxic encephalopathy) (Moster, 1998)


lated to result from stimulation of the smooth pursuit region <strong>in</strong> the temporo-occipital<br />

cortex. If eye velocity is high or the eye reaches a far eccentric portion <strong>in</strong> the orbit, a<br />

normal resett<strong>in</strong>g quick phase eye movement occurs after each slow phase, result<strong>in</strong>g <strong>in</strong><br />

nystagmus. Contraversive eye deviations, with eye movement record<strong>in</strong>gs and electroencephalogram<br />

(EEG) show<strong>in</strong>g seizure-<strong>in</strong>duced contralateral quick phases, is thought<br />

due to stimulation of the saccade-controll<strong>in</strong>g regions of the temporo-occipital or frontal<br />

cortex. If gaze-hold<strong>in</strong>g is defective (e.g., the neural <strong>in</strong>tegration is ‘‘leaky’’), then velocitydecreas<strong>in</strong>g<br />

slow phases br<strong>in</strong>g the eyes back to the midl<strong>in</strong>e after each quick phase,<br />

result<strong>in</strong>g <strong>in</strong> nystagmus. Epileptic PAN has been described (after hypoxic encephalopathy)<br />

(Moster, 1998).<br />

Epileptic nystagmus is rare and usually seen <strong>in</strong> patients with a history of epilepsy and<br />

<strong>in</strong> those with the nystagmus associated with altered levels of consciousness (Gire, 2001).<br />

Electroencephalography should be considered <strong>in</strong> patients with episodic nystagmus and<br />

oscillopsia, especially if other f<strong>in</strong>d<strong>in</strong>gs suggest a seizure disorder as a diagnostic<br />

possibility. Episodic vertigo with nystagmus may also be due to a form of migra<strong>in</strong>e<br />

(Dieterich, 1999).<br />

Spontaneous jerk nystagmus that is purely torsional is a rare form of central<br />

vestibular nystagmus. Often it is difficult to detect except by observation of<br />

the conjunctival vessels or by not<strong>in</strong>g the direction of ret<strong>in</strong>al movements on either side<br />

of the fovea. Purely torsional nystagmus may be present <strong>in</strong> primary gaze or elicited<br />

by head position<strong>in</strong>g or gaze deviation (Lopez, 1992). Purely torsional nystagmus may<br />

be seen with bra<strong>in</strong>stem and posterior fossa lesions, such as tumors, syr<strong>in</strong>gobulbia,<br />

syr<strong>in</strong>gomyelia with Arnold-Chiari malformation, lateral medullary syndrome, multiple<br />

sclerosis, trauma, vascular anomalies, postencephalitis, and sarcoidosis, and the stiffperson<br />

syndrome (Lopez, 1992; Stearns, 1993).<br />

Contralesionally beat<strong>in</strong>g torsional nystagmus may be due to a midbra<strong>in</strong> lesion<br />

<strong>in</strong>volv<strong>in</strong>g the rostral <strong>in</strong>terstitial nucleus of the medial longitud<strong>in</strong>al fasciculus (MLF),<br />

whereas lesions of the <strong>in</strong>terstitial nucleus of Cajal <strong>in</strong> the midbra<strong>in</strong> cause ipsilesional<br />

torsional nystagmus (Helmchen, 1996). Torsional nystagmus occurr<strong>in</strong>g only dur<strong>in</strong>g<br />

vertical pursuit has been described with cavernous angiomas of the middle cerebellar<br />

peduncle (FitzGibbon, 1996). We recommend MRI for unexpla<strong>in</strong>ed purely torsional<br />

nystagmus (class III–IV, level B). Nonrhythmic but cont<strong>in</strong>uous torsional eye movements<br />

have been reported as a paraneoplastic process (Rosenthal, 1987).<br />

What Are the Causes of Predom<strong>in</strong>antly<br />

Vertical Jerk Nystagmus?<br />

Nystagmus and Other Ocular Oscillations 385<br />

Spontaneous jerk nystagmus <strong>in</strong> primary gaze that is predom<strong>in</strong>antly vertical <strong>in</strong>cludes<br />

upbeat nystagmus and downbeat nystagmus (Buttner, 1995). Downbeat nystagmus is<br />

usually present <strong>in</strong> primary position, but is greatest when the patient looks down<br />

(Alexander’s law) and laterally. On upward gaze, the nystagmus is less pronounced or<br />

disappears completely. Downbeat nystagmus is often associated with horizontal<br />

gaze-evoked nystagmus. Convergence may <strong>in</strong>crease, suppress, or convert the<br />

nystagmus to upbeat nystagmus. The nystagmus may be dysjunctive, more vertical<br />

<strong>in</strong> one eye and torsional <strong>in</strong> the other eye. There may be an <strong>in</strong>ternuclear ophthalmoplegia<br />

(see Chapter 14). Downbeat nystagmus may occur with cervicomedullary junction


386 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

disease, midl<strong>in</strong>e medullary lesions, posterior midl<strong>in</strong>e cerebellar lesions, or diffuse<br />

cerebellar disease (Buttner, 1995; Walker, 1999). Most responsible lesions affect the<br />

vestibulocerebellum (flocculus, paraflocculus, nodulus, and uvula) and the underly<strong>in</strong>g<br />

medulla. Deficient drive by the posterior semicircular canals, whose central projections<br />

cross <strong>in</strong> the floor of the fourth ventricle, has been postulated as an explanation for<br />

downbeat nystagmus. Interruption of downward vestibulo-ocular reflex pathways,<br />

which synapse <strong>in</strong> the medial vestibular nucleus and cross <strong>in</strong> the medulla (beneath the<br />

nucleus prepositus hypoglossi) to reach the contralateral medial longitud<strong>in</strong>al fasciculus,<br />

would result <strong>in</strong> upward smooth eye drift and a downward corrective saccade.<br />

Cerebellar, especially floccular and uvulonodular, lesions may cause this nystagmus<br />

by dis<strong>in</strong>hibition of the cerebellar effect on the vestibular nuclei. The cerebellar flocculus<br />

conta<strong>in</strong>s Purk<strong>in</strong>je cells that send <strong>in</strong>hibitory projections to the anterior canal but not<br />

posterior canal central pathways; therefore, dis<strong>in</strong>hibition would lead to downbeat<br />

nystagmus. Damage to the nuclei propositus hypoglossi and the medial vestibular<br />

nuclei (the neural <strong>in</strong>tegrator) <strong>in</strong> the medulla has also been suggested as the cause of<br />

the nystagmus. A patient with acute multiple sclerosis with a lesion of the caudal<br />

medulla (which conta<strong>in</strong>s Roller’s nucleus and nucleus <strong>in</strong>tercalatus) developed downbeat<br />

nystagmus upon horizontal head oscillations (perverted head-shak<strong>in</strong>g nystagmus)<br />

(M<strong>in</strong>agar, 2001). Etiologies of downbeat nystagmus are listed <strong>in</strong> Table 17–3.<br />

The evaluation of downbeat nystagmus depends on the cl<strong>in</strong>ical circumstances and<br />

associated neurologic f<strong>in</strong>d<strong>in</strong>gs. We recommend MRI <strong>in</strong> patients with unexpla<strong>in</strong>ed<br />

downbeat nystagmus (Himi, 1995) (class IV, level C). MRI is normal or shows diffuse<br />

cerebellar atrophy <strong>in</strong> patients with familial cerebellar degenerations. In patients tak<strong>in</strong>g<br />

anticonvulsants or lithium, drug levels should be measured and adjusted as needed<br />

(class IV, level C). If MRI is normal, B12 and magnesium levels should be considered<br />

(class IV, level C). Thiam<strong>in</strong>e therapy for selected cases should be considered and the<br />

possibility of alcohol or toluene abuse <strong>in</strong>vestigated (class IV, level C). If there are signs<br />

suggestive of CNS <strong>in</strong>fection, a sp<strong>in</strong>al tap may be warranted. In a patient with downbeat<br />

nystagmus with the acute or subacute onset of cerebellar signs and symptoms, a<br />

paraneoplastic process must be considered, especially due to small cell lung cancer,<br />

testicular cancer, gynecologic cancers (especially ovarian and breast cancer), and<br />

Hodgk<strong>in</strong>’s disease. The workup of these patients might <strong>in</strong>clude serum anti-Yo (anti-<br />

Purk<strong>in</strong>je cell) antibodies, serum anti-Hu antibodies (ant<strong>in</strong>euronal nuclear antibodies<br />

type 1 or ANNA type 1), serum anti-Ta antibodies, chest x-ray and chest computed<br />

tomography (CT) imag<strong>in</strong>g, gynecologic exam<strong>in</strong>ation, CT or MRI of the abdomen and<br />

pelvis, mammography, and possibly hematologic consultation for bone marrow biopsy<br />

(class IV, level C).<br />

F<strong>in</strong>ally, <strong>in</strong> a significant number of <strong>in</strong>dividuals, no etiology for the downbeat<br />

nystagmus will be discovered. Young and Huang reported the use of clonazepam<br />

(1.0 mg twice daily) <strong>in</strong> five idiopathic cases of downbeat nystagmus (Young, 2001).<br />

Damage to the central projections of the anterior semicircular canals, which tend to<br />

deviate the eyes superiorly, has been suggested to expla<strong>in</strong> upbeat nystagmus. Upbeat<br />

nystagmus is usually worse <strong>in</strong> upgaze (Alexander’s law) and, unlike downbeat<br />

nystagmus, it usually does not <strong>in</strong>crease on lateral gaze. Convergence may <strong>in</strong>crease or<br />

decrease the nystagmus, or convert downbeat nystagmus to upbeat nystagmus (Hirose,<br />

1991). Damage to the ventral tegmental pathways, which may l<strong>in</strong>k the superior<br />

vestibular nuclei to the superior rectus and <strong>in</strong>ferior oblique subnuclei of the oculomotor<br />

nuclei, may cause the eyes to glide down, result<strong>in</strong>g <strong>in</strong> upbeat nystagmus. Medullary


Table 17–3. Etiologies of Downbeat Nystagmus<br />

Nystagmus and Other Ocular Oscillations 387<br />

Craniocervical anomalies, <strong>in</strong>clud<strong>in</strong>g cerebellar ectopia, Chiari malformation, platybasia,<br />

basilar <strong>in</strong>vag<strong>in</strong>ation, and Paget’s disease (Pieh, 2000; Russell, 1992)<br />

Familial cerebellar degenerations <strong>in</strong>clud<strong>in</strong>g sp<strong>in</strong>ocerebellar ataxia 6 (Harada, 1998)<br />

Multiple system atrophy (Bertholon, 2002)<br />

Posterior fossa tumors (Chan, 1991)<br />

Increased <strong>in</strong>tracranial pressure (e.g., due to supratentorial mass) and hydrocephalus (Chan, 1991)<br />

Bra<strong>in</strong>stem or cerebellar <strong>in</strong>farction, anoxia, or hemorrhage (Olson, 2001; Rousseaux, 1991)<br />

Dolichoectasia of the vertebrobasilar artery (Gans, 1990; Himi, 1995; Krespi, 1995; Lee, 2001)<br />

Intermittent vertebral artery compression by an osteophyte (Rosengart, 1993)<br />

Encephalitis, <strong>in</strong>clud<strong>in</strong>g herpes simplex encephalitis and human T-cell leukemia virus 1 (HTLV-1)<br />

<strong>in</strong>fection (Waragai, 1995; Yoshimoto, 1991)<br />

Heat stroke (Van Stavern, 2000)<br />

Cephalic tetanus (Orwitz, 1997)<br />

Multiple sclerosis and other leukodystrophies (M<strong>in</strong>agar, 2001)<br />

Syr<strong>in</strong>gomyelia=syr<strong>in</strong>gobulbia (Rowlands, 2000)<br />

Trauma<br />

Alcohol, <strong>in</strong>clud<strong>in</strong>g alcohol-<strong>in</strong>duced cerebellar degeneration<br />

Wernicke’s encephalopathy<br />

Thiam<strong>in</strong>e deficiency (Mulder, 1999)<br />

Alcoholics<br />

Nonalcoholics (vomit<strong>in</strong>g, drastic weight reduction diet, colonic surgery, chronic hemodialysis)<br />

(Merk<strong>in</strong>-Zaborsky, 2000)<br />

Paraneoplastic cerebellar degeneration (<strong>in</strong>clud<strong>in</strong>g testicular cancer with anti-Ta antibody) (Bennett,<br />

1999; Hammack, 1992; Peterson, 1992)<br />

Superificial siderosis of the central nervous system (CNS) (Pelak, 1999)<br />

Congenital<br />

Vitam<strong>in</strong> B12 deficiency<br />

Magnesium deficiency (Du Pasquier, 1998)<br />

Drugs, <strong>in</strong>clud<strong>in</strong>g lithium, toluene, <strong>in</strong>travenous or epidural narcotics, and anticonvulsants (e.g.,<br />

phenyto<strong>in</strong>, carbamazep<strong>in</strong>e, felbamate) (Henderson, 2000; Hwang, 1995; Monteiro, 1993)<br />

Transient f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> otherwise normal <strong>in</strong>fants<br />

Idiopathic (Olson, 2001)<br />

disease may cause upbeat nystagmus as may lesions of the anterior cerebellar vermis,<br />

perihypoglossal and <strong>in</strong>ferior olivary nuclei of the medulla, pont<strong>in</strong>e tegmentum,<br />

brachium conjunctivum, midbra<strong>in</strong>, and bra<strong>in</strong>stem diffusely (Buttner, 1995; Kanaya,<br />

1994; Munro, 1993). Medullary lesions <strong>in</strong>variably <strong>in</strong>volve the perihypoglossal nucleus<br />

and adjacent medial vestibular nucleus, nucleus <strong>in</strong>tercalatus, and ventral tegmentum,<br />

which conta<strong>in</strong> projections from vestibular nuclei that receive <strong>in</strong>puts from the anterior<br />

semicircular canals. Primary position upbeat nystagmus may occur with unilateral<br />

medial medullary <strong>in</strong>farction, likely due to impairment of the vertical position-tovelocity<br />

neural <strong>in</strong>tegrator <strong>in</strong> the nucleus <strong>in</strong>tercalatus of Stader<strong>in</strong>i, a structure <strong>in</strong> the<br />

paramedian caudal medulla located caudal to the vestibular nuclei and to the most<br />

rostral of the perihypoglossal nuclei (nucleus prepositus hypoglossi and nucleus of<br />

Roller) (Hirose, 1998; Janssen, 1998). Lesions of this structure may cause primary


388 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

position upbeat nystagmus <strong>in</strong>creased <strong>in</strong> downward gaze (Ohkoshi, 1998). Bow-tie<br />

nystagmus, <strong>in</strong> which quick phases are directed obliquely upward with horizontal<br />

components alternat<strong>in</strong>g to the right and left, is probably a variant of upbeat nystagmus.<br />

Etiologies of upbeat nystagmus are outl<strong>in</strong>ed <strong>in</strong> Table 17–4.<br />

The evaluation of upbeat nystagmus <strong>in</strong>cludes a complete neurologic and ophthalmologic<br />

exam<strong>in</strong>ation. MRI is warranted <strong>in</strong> most cases to <strong>in</strong>vestigate the presence of a<br />

structural lesion (class III–IV, level B). In children, MRI is <strong>in</strong>dicated to <strong>in</strong>vestigate not<br />

only posterior fossa lesions but also lesions of the anterior visual pathways. If imag<strong>in</strong>g is<br />

normal <strong>in</strong> children, then ERG should be considered (class IV, level C). Sp<strong>in</strong>al tap is<br />

<strong>in</strong>dicated <strong>in</strong> patients with signs or symptoms suggestive of men<strong>in</strong>geal irritation or<br />

central nervous system (CNS) <strong>in</strong>fection. In adults with negative neuroimag<strong>in</strong>g studies,<br />

organophosphate or anticonvulsant <strong>in</strong>toxication should be <strong>in</strong>vestigated. Testicular<br />

cancer is a consideration <strong>in</strong> men (anti-Ta antibodies) (Bennett, 1999) (class IV, level C).<br />

The treatment of vertical nystagmus is directed at the etiology (e.g., surgical<br />

correction of Arnold-Chiari malformation). <strong>Cl<strong>in</strong>ical</strong> evidence suggests <strong>in</strong>volvement of<br />

GABA-ergic pathways and chol<strong>in</strong>ergic transmission <strong>in</strong> vertical vestibulo-ocular reflexes<br />

(Leigh, 1994). GABA agonists and chol<strong>in</strong>ergic drugs have thus been tried to relieve the<br />

visual impairment with vertical nystagmus. Clonazepam, a GABA-A agonist, and<br />

baclofen, a GABA-B agonist, have been shown to reduce nystagmus velocity and<br />

oscillopsia <strong>in</strong> some patients with downbeat or upbeat nystagmus (Averbuch-Heller,<br />

1997; Dieterich, 1991). Gabapent<strong>in</strong> may occasionally <strong>in</strong>duce a response (Averbuch-<br />

Heller, 1997; Band<strong>in</strong>i, 2001) <strong>in</strong> acquired nystagmus <strong>in</strong> multiple sclerosis. Intravenous<br />

physostigm<strong>in</strong>e, an acetylchol<strong>in</strong>esterase <strong>in</strong>hibitor, worsened vertical nystagmus <strong>in</strong> five<br />

Table 17–4. Etiologies of Upbeat Nystagmus<br />

Primary cerebellar degenerations and atrophies (Fujikane, 1992; Mizuno, 1990)<br />

Arnold-Chiari malformation<br />

Posterior fossa tumors<br />

Bra<strong>in</strong>stem or cerebellum <strong>in</strong>farction or hemorrhage (Hirose, 1990, 1998; Munro, 1993; Rousseaux,<br />

1991)<br />

Multiple sclerosis (Hirose, 1990, 1991; Ohkoshi, 1998)<br />

Men<strong>in</strong>gitis and bra<strong>in</strong>stem encephalitis<br />

Thalamic arteriovenous malformation<br />

Wernicke’s encephalopathy<br />

Behçet’s syndrome<br />

Congenital, <strong>in</strong>clud<strong>in</strong>g cases associated with Leber’s congenital amaurosis and other congenital<br />

anterior visual pathway disorders (Good, 1990, 1993)<br />

Pelizaeus-Merzbacher disease (Trobe, 1991)<br />

Fisher’s syndrome (ataxia, areflexia, and ophthalmoplegia) (Yamazaki, 1994)<br />

Middle ear disease<br />

Organophosphate poison<strong>in</strong>g<br />

Tobacco-<strong>in</strong>duced<br />

<strong>An</strong>ticonvulsant <strong>in</strong>toxication<br />

Cyclospor<strong>in</strong> A (Albera, 1997)<br />

Paraneoplastic syndrome with testicular cancer and anti-Ta antibodies (Bennett, 1999)<br />

Transient f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> otherwise healthy neonates (Goldblum, 1994)


patients (Dieterich, 1991), whereas <strong>in</strong>travenous scopolam<strong>in</strong>e, an antichol<strong>in</strong>ergic drug,<br />

reduced nystagmus and oscillopsia <strong>in</strong> two patients with downbeat nystagmus (Barton,<br />

1994). <strong>An</strong>tichol<strong>in</strong>ergic drugs may thus be considered for patients with upbeat or<br />

downbeat nystagmus. F<strong>in</strong>ally, downbeat nystagmus usually is present <strong>in</strong> primary<br />

position but is greatest when the patient looks down (Alexander’s law) and subsides<br />

<strong>in</strong> upgaze. Patients may therefore benefit from symmetric base-down prisms that turn<br />

the eyes up.<br />

What Are the Causes of B<strong>in</strong>ocular Symmetric<br />

Jerk Nystagmus Present <strong>in</strong> Eccentric Gaze or<br />

Induced by Various Maneuvers?<br />

Nystagmus and Other Ocular Oscillations 389<br />

Spontaneous b<strong>in</strong>ocular conjugate symmetric jerk nystagmus that is <strong>in</strong>duced by eccentric<br />

gaze (gaze-evoked nystagmus) <strong>in</strong>cludes nystagmus due to bra<strong>in</strong>stem=cerebellar disease,<br />

Bruns’ nystagmus, drug-<strong>in</strong>duced nystagmus, physiologic nystagmus, rebound<br />

nystagmus, and convergence-<strong>in</strong>duced nystagmus. Downbeat nystagmus and upbeat<br />

nystagmus may occur only on downward or upward gaze, respectively (see above).<br />

With gaze-evoked nystagmus, the eyes fail to rema<strong>in</strong> <strong>in</strong> an eccentric position of gaze<br />

but drift to midposition. The velocity of the slow component decreases exponentially as<br />

the eyes approach midposition. A ‘‘leaky’’ neural <strong>in</strong>tegrator or cerebellar (especially<br />

vestibulocerebellar) lesion may result <strong>in</strong> this type of nystagmus, which is more<br />

pronounced when the patient looks toward the lesion. Cerebellopont<strong>in</strong>e angle tumors<br />

may cause Bruns’ nystagmus, a comb<strong>in</strong>ation of ipsilateral large-amplitude, lowfrequency<br />

nystagmus that is due to impaired gaze hold<strong>in</strong>g, and contralateral smallamplitude,<br />

high-frequency nystagmus that is due to vestibular impairment (Leigh,<br />

1991). Gaze-evoked nystagmus may be a side effect of medications, <strong>in</strong>clud<strong>in</strong>g anticonvulsants,<br />

sedatives, and alcohol. Gaze-evoked nystagmus has been described with<br />

adult-onset Alexander’s disease with <strong>in</strong>volvement of the middle cerebellar peduncles<br />

and dentate nuclei (Martidis, 1999) and is also a feature of familial episodic vertigo and<br />

ataxia type 2 that is responsive to acetazolamide (Baloh, 1991, 1997; Brandt, 1997).<br />

Physiologic or end-po<strong>in</strong>t nystagmus is a benign low-amplitude jerk nystagmus with the<br />

fast component directed toward the field of gaze. It usually ceases when the eyes are<br />

brought to a position somewhat less than the extremes of gaze.<br />

Rebound nystagmus is seen <strong>in</strong> some patients with bra<strong>in</strong>stem and=or cerebellar<br />

disease (e.g., olivocerebellar atrophy, bra<strong>in</strong>stem=cerebellar tumor or <strong>in</strong>farction,<br />

Mar<strong>in</strong>esco-Sjögren syndrome, Dandy-Walker cyst, Gerstmann-Straussler-Sche<strong>in</strong>ker<br />

disease, adult-onset Alexander’s disease, etc.) (L<strong>in</strong>, 1999; Martidis, 1999; Yee, 1992).<br />

The orig<strong>in</strong>al gaze-evoked nystagmus may wane and actually reverse direction so that<br />

the slow component is directed centrifugally (centripetal nystagmus). Rebound nystagmus<br />

probably reflects an attempt by bra<strong>in</strong>stem or cerebellar mechanisms to correct for<br />

the centripetal drift of gaze-evoked nystagmus (Leigh, 1999).<br />

Patients with gaze-evoked nystagmus who are tak<strong>in</strong>g anticonvulsant or sedative<br />

medications and those with physiologic nystagmus require no further evaluation.<br />

Otherwise, patients with gaze-evoked or rebound nystagmus, especially if associated<br />

symptoms or signs of bra<strong>in</strong>stem or cerebellar dysfunction or auditory impairment exist,


390 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

require MRI, with special attention to the cerebellum and cerebello-pont<strong>in</strong>e angle (L<strong>in</strong>,<br />

1999) (class IV, level C).<br />

Convergence may change nystagmus by convert<strong>in</strong>g downbeat to upbeat, upbeat to<br />

downbeat, or pendular to upbeat. Convergence-evoked nystagmus is usually vertical<br />

(upbeat is more common than downbeat) and seen most commonly with multiple<br />

sclerosis or bra<strong>in</strong>stem <strong>in</strong>farction (Oliva, 1990). MRI is thus warranted <strong>in</strong> patients with<br />

convergence-<strong>in</strong>duced nystagmus (class IV, level C). Convergence may also <strong>in</strong>crease or<br />

decrease the amplitude of nystagmus and may evoke horizontal (congenital or acquired<br />

pendular and jerk) or vertical (upbeat or downbeat) nystagmus. Convergence-<strong>in</strong>duced<br />

pendular nystagmus has been described as a congenital phenomenon (conjugate) and as<br />

an acquired phenomenon (disjunctive) with multiple sclerosis (Barton, 1999; Oliva,<br />

1990). Base-<strong>in</strong> prisms have been used to alleviate the symptoms of oscillopsia and<br />

improve read<strong>in</strong>g acuity <strong>in</strong> patients with acquired convergence-evoked pendular<br />

nystagmus due to multiple sclerosis (Barton, 1999). The effects of convergence on<br />

nystagmus are not to be confused with convergence nystagmus <strong>in</strong> which a slow<br />

abduction of the eyes is followed by quick adduction (see above).<br />

B<strong>in</strong>ocular symmetric conjugate jerk nystagmus that is <strong>in</strong>duced <strong>in</strong>cludes optok<strong>in</strong>etic<br />

nystagmus, rotational=caloric vestibular nystagmus, positional nystagmus, Valsalva<strong>in</strong>duced<br />

nystagmus, and hyperventilation-<strong>in</strong>duced nystagmus (Burde, 1991; Leigh,<br />

1991). The first two types of <strong>in</strong>duced nystagmus are physiologic and, although<br />

abnormalities of these responses may aid <strong>in</strong> cl<strong>in</strong>ical diagnosis, they are not further<br />

discussed here.<br />

Positional vertigo of the benign paroxysmal type, also known as benign paroxysmal<br />

position<strong>in</strong>g vertigo or positional nystagmus, is usually idiopathic and possibly related<br />

to degeneration of the macula of the otolith organ or to lesions of the posterior<br />

semicircular canal (Baloh, 1995; Brandt, 1990, 1991; Furman, 1999; Lawden, 1995;<br />

Weider, 1994). It has been proposed that otoconia detached from the otoconial layer<br />

(by degeneration or trauma) gravitate and settle on the cupula of the posterior canal<br />

caus<strong>in</strong>g it to become heavier than the surround<strong>in</strong>g endolymph and thus sensitive to<br />

changes <strong>in</strong> the direction of gravity (with positional change). After rapid head tilt toward<br />

the affected ear or follow<strong>in</strong>g head extension, when the posterior semicircular canal is<br />

moved <strong>in</strong> the specific plane of stimulation, an ampullofugal deflection of the cupula<br />

occurs, with a rotational vertigo and concomitant nystagmus. Some patients show a<br />

strong horizontal nystagmus <strong>in</strong>duced by lateral head position<strong>in</strong>g suggest<strong>in</strong>g lateral<br />

(rather than posterior) semicircular canal irritation (lateral canal or horizontal canal<br />

variant of benign paroxysmal positional vertigo) (Baloh, 1993; De la Meilleure, 1996).<br />

Other causes of positional vertigo <strong>in</strong>clude trauma, <strong>in</strong>fection, labyr<strong>in</strong>th<strong>in</strong>e fistula,<br />

ischemia, demyel<strong>in</strong>at<strong>in</strong>g disease, Arnold-Chiari malformation, and, rarely, posterior<br />

fossa tumors or vascular malformations (Lawden, 1995; Sakata, 1991).<br />

Besides paroxysmal positional nystagmus, patients often also exhibit static (persistent)<br />

positional nystagmus while ly<strong>in</strong>g <strong>in</strong> a lateral position. This static nystagmus is<br />

predom<strong>in</strong>antly horizontal with m<strong>in</strong>imal vertical component. Paroxysmal vertigo<br />

<strong>in</strong>duced by certa<strong>in</strong> head positions is the most common compla<strong>in</strong>t; the patient is<br />

asymptomatic between bouts. The Nylen-Barany (Dix-Hallpike) maneuver (briskly<br />

tilt<strong>in</strong>g the patient’s head backward and turn<strong>in</strong>g it 45 degrees to one side) allows<br />

differentiat<strong>in</strong>g a peripheral from a central orig<strong>in</strong> for positional vertigo.<br />

With peripheral lesions, severe rotational vertigo associated with nausea (occasionally<br />

vomit<strong>in</strong>g) and nystagmus appear several seconds (2 to 15 seconds) after the head


position is changed. In benign paroxysmal positional (position<strong>in</strong>g) vertigo, it is unusual<br />

for the vertigo to have a duration of more than 1 m<strong>in</strong>ute. Cochlear or neurologic<br />

symptoms are typically absent. The nystagmus is usually torsional, with the upper pole<br />

of the eye beat<strong>in</strong>g toward the ground. The vertigo and nystagmus then fatigue and<br />

abate with<strong>in</strong> 10 seconds after appearance, and when the patient is rapidly brought back<br />

to a sitt<strong>in</strong>g position, vertigo recurs and nystagmus develops <strong>in</strong> the opposite direction<br />

(rebound). With repetition of the maneuver, the symptoms and nystagmus become<br />

progressively less severe (habituation), and the reproducibility of the abnormalities is<br />

<strong>in</strong>constant. Mild transient nystagmus <strong>in</strong> one head position may occasionally be elicited<br />

<strong>in</strong> normal subjects. Patients with benign paroxysmal positional vertigo are often treated<br />

successfully with canalith reposition<strong>in</strong>g procedures (Weider, 1994).<br />

A central lesion should be suspected when (1) the maneuver is positive with the head<br />

turned to either side; (2) the nystagmus is direction chang<strong>in</strong>g rather than fixed,<br />

appear<strong>in</strong>g immediately after the shift <strong>in</strong> position and rema<strong>in</strong><strong>in</strong>g for as long as the<br />

head is down; (3) the nystagmus is unaccompanied by nausea or a sense of discomfort;<br />

if present, vertigo is mild and lasts no longer than 60 seconds; and (4) repetition does<br />

not cause blunt<strong>in</strong>g of the effects. Typically, there are other associated CNS f<strong>in</strong>d<strong>in</strong>gs.<br />

Patients with the central form of positional nystagmus require MRI to <strong>in</strong>vestigate<br />

structural posterior fossa lesions (class III–IV, level B). Occasionally, patients with<br />

benign paroxysmal positional vertigo will demonstrate f<strong>in</strong>d<strong>in</strong>gs dur<strong>in</strong>g the<br />

Nylen-Barany maneuver similar to those documented <strong>in</strong> patients with central lesions<br />

(Baloh, 1995).<br />

Nystagmus <strong>in</strong>duced by the Valsalva maneuver may occur with Chiari malformation<br />

or perilymph fistulas (Leigh, 1991). Hyperventilation may <strong>in</strong>duce nystagmus <strong>in</strong> patients<br />

with tumors of the eighth cranial nerve (e.g., acoustic neuroma or epidermoid tumors),<br />

after vestibular neuritis, or with central demyel<strong>in</strong>at<strong>in</strong>g lesions (Leigh, 1991; M<strong>in</strong>or,<br />

1999). Hyperventilation-<strong>in</strong>duced nystagmus has the slow phase away from the side of<br />

the lesion (an excitatory or recovery nystagmus) and is likely due to the effect of<br />

hyperventilation upon serum pH and calcium concentration, which improves nerve<br />

conduction <strong>in</strong> a marg<strong>in</strong>ally functional, demyel<strong>in</strong>ated nerve (Leigh, 1991; M<strong>in</strong>or, 1999).<br />

The evaluation of patients with jerk nystagmus is outl<strong>in</strong>ed <strong>in</strong> Figure 17–5.<br />

What Are the Characteristics of Saccadic<br />

Intrusions?<br />

Nystagmus and Other Ocular Oscillations 391<br />

Inappropriate saccades, or saccadic <strong>in</strong>trusions, <strong>in</strong>terfere with macular fixation of an<br />

object of <strong>in</strong>terest. The essential difference between nystagmus and saccadic <strong>in</strong>trusions<br />

lies <strong>in</strong> the <strong>in</strong>itial eye movement that takes the l<strong>in</strong>e of sight away from the object of<br />

regard (Leigh, 1999). For nystagmus, it is a slow drift or slow phase as opposed to an<br />

<strong>in</strong>appropriate saccadic movement that <strong>in</strong>trudes on steady fixation. There are several<br />

types of saccadic <strong>in</strong>trusions.<br />

Square-wave jerks take the eyes off the target and are followed after about 200 msec<br />

by a corrective saccade (Shallo-Hoffmann, 1990). They may appear normally <strong>in</strong> the<br />

young and the elderly, but when larger than 1 or 2 degrees they are pathologic, result<strong>in</strong>g<br />

from disorders <strong>in</strong>clud<strong>in</strong>g a variety of cerebral or cerebellar lesions, progressive supranuclear<br />

palsy, Hunt<strong>in</strong>gton’s chorea, Park<strong>in</strong>son’s disease, Wernicke-Korsakoff’s


392 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 17–5. Evaluation of jerk nystagmus.<br />

syndrome, Friedreich’s ataxia, AIDS-dementia complex, Gerstmann-Straussler-<br />

Sche<strong>in</strong>ker disease, adult-onset Alexander’s disease, carbohydrate-deficient glycoprote<strong>in</strong><br />

syndrome type 1a, and schizophrenia (Friedman, 1992; Martidis, 1999; Rascol, 1991;<br />

Stark, 2000; Yee, 1992). They may also occur with lithium or tobacco use. <strong>An</strong> <strong>in</strong>creased<br />

frequency of square wave jerks may be noted after unilateral pallidotomy for<br />

Park<strong>in</strong>son’s disease (Averbuch-Heller, 1999). Very frequent square-wave jerks (squarewave<br />

oscillations) may be mistaken for nystagmus and may occur with cerebellar<br />

disease, progressive supranuclear palsy, and cerebral hemispheral disease (Friedman,<br />

1992; Leigh, 1991).


Nystagmus and Other Ocular Oscillations 393<br />

Macro–square-wave jerks are similar to square-wave jerks but are of larger amplitude<br />

(20 to 40 degrees). They are occasionally present <strong>in</strong> the vertical plane and have been<br />

noted <strong>in</strong> multiple sclerosis, cerebellar hemorrhage, olivopontocerebellar atrophy, multiple<br />

systems atrophy, and Arnold-Chiari malformation (Leigh, 1991; Yamamoto, 1992).<br />

Macrosaccadic oscillations are different from square-wave jerks and consist of eye<br />

oscillations around the fixation angle with <strong>in</strong>tersaccadic <strong>in</strong>tervals approximately<br />

200 msec (Leigh, 1991). They are usually conjugate, horizontal, and symmetric <strong>in</strong> both<br />

directions of gaze, but may occur <strong>in</strong> torsional or vertical planes. Macrosaccadic<br />

oscillations occur <strong>in</strong> patients with cerebellar disease, especially affect<strong>in</strong>g the cerebellar<br />

midl<strong>in</strong>e and underly<strong>in</strong>g nuclei (e.g., cerebellar hemorrhage or sp<strong>in</strong>ocerebellar degenerations).<br />

Macrosaccadic oscillations after pont<strong>in</strong>e trauma may have been due to<br />

dysfunction of pont<strong>in</strong>e omnipause neurons, and thus dis<strong>in</strong>hibition of saccadic burst<br />

neurons (Averbuch-Heller, 1996). Macrosaccadic oscillations may be <strong>in</strong>duced by edrophonium<br />

(Tensilon) <strong>in</strong> patients with profound ophthalmoplegia from myasthenia gravis<br />

(Komiyama, 1999a).<br />

Square-wave jerks, square-wave oscillations, macro–square-wave jerks, and macrosaccadic<br />

oscillations usually occur <strong>in</strong> the context of otherwise evident neurologic<br />

diseases. If the nature of the causal degenerative process account<strong>in</strong>g for these <strong>in</strong>trusions<br />

is not evident on cl<strong>in</strong>ical history and neurologic exam, MRI may be needed (class IV,<br />

level C). Macrosaccadic oscillations and high-amplitude square-wave jerks may be<br />

treated with GABA-A agonists, benzodiazep<strong>in</strong>es, and barbiturates. Square-wave jerks<br />

and square-wave oscillations may improve with valproic acid (2000 mg=day), which<br />

may restore GABA-ergic tonic <strong>in</strong>hibitory action from the substantia nigra pars reticulata<br />

to the superior colliculus (Traccis, 1997).<br />

Occasionally, otherwise normal <strong>in</strong>dividuals show <strong>in</strong>termittent, 15- to 30-Hz<br />

frequency, low-amplitude (0.1 to 0.5 degrees) horizontal oscillations (not detected on<br />

visual <strong>in</strong>spection but seen with the ophthalmoscope) termed microsaccadic flutter (Ashe,<br />

1991). Patients with microsaccadic flutter often compla<strong>in</strong> of ‘‘shimmer<strong>in</strong>g,’’ ‘‘jiggl<strong>in</strong>g,’’<br />

‘‘wavy,’’ or ‘‘laser beams’’ with paroxysms of visual disturbances last<strong>in</strong>g seconds to<br />

hours. Dizz<strong>in</strong>ess or dysequilibrium often accompanies the visual symptoms. Most<br />

patients are otherwise normal, although one patient had multiple sclerosis. Clonazepam,<br />

propranolol, and verapamil may reduce visual symptoms <strong>in</strong> some patients (Ashe,<br />

1991).<br />

Ocular flutter is a burst of to-and-fro horizontal saccades without an <strong>in</strong>tersaccadic<br />

<strong>in</strong>terval. Opsoclonus (saccadomania) is similar to ocular flutter, except that <strong>in</strong> opsoclonus<br />

there are conjugate, <strong>in</strong>voluntary, large amplitude saccades <strong>in</strong> all directions. Like<br />

ocular flutter, opsoclonus <strong>in</strong>dicates bra<strong>in</strong>stem, especially mesencephalic or pont<strong>in</strong>e, or<br />

cerebellar disease (Hattori, 1993). Opsoclonus evident only dur<strong>in</strong>g eye closure has been<br />

described with hereditary cerebellar ataxia (Hattori, 1993). Etiologies for ocular flutter<br />

and opsoclonus are outl<strong>in</strong>ed <strong>in</strong> Table 17–5.<br />

In patients with viral encephalitis, men<strong>in</strong>gitis, and other <strong>in</strong>fections, the opsoclonus<br />

may occur after a prodromal illness, <strong>in</strong>clud<strong>in</strong>g gastro<strong>in</strong>test<strong>in</strong>al tract symptoms, upper<br />

respiratory symptoms, malaise, and fever (Sheth, 1995; Tabarki, 1998; Wiest, 1997). The<br />

opsoclonus <strong>in</strong> these patients is often associated with truncal ataxia and other cerebellar<br />

signs, long tract signs, tremulousness, and myoclonus of the trunk and limbs. Sp<strong>in</strong>al<br />

fluid studies often show <strong>in</strong>creased prote<strong>in</strong> and a mononuclear pleocytosis. The illness<br />

usually resolves <strong>in</strong> a few weeks or months, although the course may be protracted and<br />

recovery <strong>in</strong>complete, especially <strong>in</strong> children (K<strong>in</strong>sbourne’s myoclonic encephalopathy or


394 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 17–5. Etiologies of Ocular Flutter and Opsoclonus<br />

Viral encephalitis, men<strong>in</strong>gitis, and other <strong>in</strong>fections (Connolly, 1997; Sheth, 1995; Tabarki, 1998;<br />

Vers<strong>in</strong>o, 1999; Wiest, 1997)<br />

K<strong>in</strong>sbourne’s myoclonic encephalopathy or danc<strong>in</strong>g eyes and danc<strong>in</strong>g feet or <strong>in</strong>fantile<br />

polymyoclonia<br />

<strong>Neuro</strong>blastoma (Fisher, 1994; Mitchell, 1990)<br />

Paraneoplastic effect of other tumors, especially small-cell lung cancer and breast cancer<br />

(Aggarwal, 1997; Bataller, 2001; Cav<strong>in</strong>ess, 1995; Corcia, 1997; Honnorat, 1997; Hormigo, 1994;<br />

Koukoulis, 1998; Luque, 1991; Mitoma, 1996; Schwartz, 1990; Tzuzaka, 1993)<br />

Intracranial tumors or cysts (Corcia, 1997;Tzuzaka, 1993)<br />

Trauma<br />

Hydrocephalus<br />

Hereditary cerebellar degeneration (Hattori, 1993)<br />

Thalamic hemorrhage, pont<strong>in</strong>e hemorrhage, or vertebrobasilar vascular <strong>in</strong>sufficiency<br />

Multiple sclerosis (Schon, 2001)<br />

Hyperosmolar stupor and coma<br />

Side effects of drugs, <strong>in</strong>clud<strong>in</strong>g lithium, amitriptyl<strong>in</strong>e, coca<strong>in</strong>e, phenyto<strong>in</strong> and diazepam, phenelz<strong>in</strong>e<br />

and imipram<strong>in</strong>e (Fisher, 1990)<br />

Toxic exposures, <strong>in</strong>clud<strong>in</strong>g thallium, toluene, chlordecone, strychn<strong>in</strong>e, DDT, and organophosphates<br />

Associated with other miscellaneous diseases, <strong>in</strong>clud<strong>in</strong>g acute polyradiculoneuritis, viral hepatitis,<br />

cherry-red spot myoclonus syndrome, carbohydrate-deficient glycoprote<strong>in</strong> syndrome type 1a,<br />

sarcoidosis, and AIDS (Gizzi, 1990; Kam<strong>in</strong>ski, 1991; Stark, 2000)<br />

In neonates, as either a transient benign phenomenon or related to bra<strong>in</strong> <strong>in</strong>jury due to anoxia,<br />

<strong>in</strong>tracranial hemorrhage, or Leber’s congenital amaurosis<br />

Idiopathic (Bataller, 2001)<br />

danc<strong>in</strong>g eyes and danc<strong>in</strong>g feet or <strong>in</strong>fantile polymyoclonia). Opsoclonus occurs <strong>in</strong> 2% of<br />

children with neuroblastoma, and conversely 50% of children with opsoclonus=<br />

myoclonus have neuroblastoma (Fisher, 1994; Mitchell, 1990). Opsoclonus appears<br />

before the discovery of a neuroblastoma <strong>in</strong> over 50% of the cases, and neuroblastomas<br />

associated with opsoclonus have a tendency to be located with<strong>in</strong> the thorax. Opsoclonus<br />

may also develop as a paraneoplastic effect of other tumors, especially small-cell<br />

lung cancer and breast cancer (Aggarwal, 1997; Bataller, 2001; Cav<strong>in</strong>ess, 1995; Corcia,<br />

1997; Hormigo, 1994; Koukoulis, 1998; Luque, 1991; Mitoma, 1996; Schwartz, 1990;<br />

Tzuzaka, 1993; Vigliani, 2001). Approximately 20% of patients with opsoclonusmyoclonus<br />

<strong>in</strong> adults have an underly<strong>in</strong>g tumor. In patients with small-cell lung<br />

cancer, opsoclonus usually antedates the diagnosis of the neoplasm, whereas <strong>in</strong> patients<br />

with breast cancer, opsoclonus develops before the diagnosis of the tumor <strong>in</strong> only<br />

half the patients. Although opsoclonus <strong>in</strong> these patients may occur as an isolated sign, it<br />

is more often associated with myoclonus, ataxia, and encephalopathy. The cerebrosp<strong>in</strong>al<br />

fluid may show an elevated prote<strong>in</strong> and a mild pleocytosis. Patients with breast cancer<br />

and opsoclonus=myoclonus may demonstrate an anti-Ri antibody (ant<strong>in</strong>euronal nuclear<br />

antibody 2 [ANNA-2]) <strong>in</strong> their serum.<br />

Bataller et al analyzed a series of 24 adult patients with idiopathic (10 cases) and<br />

paraneoplastic (14 cases) opsoclonus-myoclonus syndrome (OMS) to ascerta<strong>in</strong> possible<br />

differences <strong>in</strong> cl<strong>in</strong>ical course and response to immunotherapies between both groups<br />

(Bataller, 2001). Associated tumors were small-cell lung cancer (SCLC) (n<strong>in</strong>e patients),


Nystagmus and Other Ocular Oscillations 395<br />

non-SCLC (one patient), breast carc<strong>in</strong>oma (two patients), gastric adenocarc<strong>in</strong>oma (one<br />

patient), and kidney carc<strong>in</strong>oma (one patient). Patients with paraneoplastic OMS were<br />

older (median age: 66 years versus 40 years of those with idiopathic OMS) and had a<br />

higher frequency of encephalopathy (64% versus 10%). Serum from 10=10 idiopathic<br />

and 12=14 paraneoplastic OMS patients showed no specific immunoreactivity on rat or<br />

human bra<strong>in</strong>stem or cerebellum, lacked specific ant<strong>in</strong>euronal antibodies (Hu, Yo, Ri, Tr,<br />

glutamic acid decarboxylase, amphiphys<strong>in</strong>, or CV2) and did not conta<strong>in</strong> antibodies to<br />

voltage-gated calcium channels. The two paraneoplastic exceptions were a patient with<br />

SCLC, whose serum conta<strong>in</strong>ed both anti-Hu and antiamphiphys<strong>in</strong> antibodies, and a<br />

patient with breast cancer who had serum anti-Ri antibodies. The cl<strong>in</strong>ical course of<br />

idiopathic OMS was monophasic except <strong>in</strong> two elderly women who had relapses of the<br />

opsoclonus and mild residual ataxia. Most idiopathic OMS patients made a good<br />

recovery, but residual gait ataxia tended to persist <strong>in</strong> older patients.<br />

Immunotherapy (ma<strong>in</strong>ly <strong>in</strong>travenous immunoglobul<strong>in</strong>s or corticosteroids) seemed to<br />

accelerate recovery. Paraneoplastic OMS had a more severe cl<strong>in</strong>ical course, despite<br />

treatment with <strong>in</strong>travenous immunoglobul<strong>in</strong>s or corticosteroids, and was the cause of<br />

death <strong>in</strong> five patients whose tumors were not treated. By contrast, the eight patients<br />

whose tumors were treated showed a complete or partial neurologic recovery. The<br />

authors concluded that idiopathic OMS occurs <strong>in</strong> younger patients, the cl<strong>in</strong>ical<br />

evolution is more benign, and the effect of immunotherapy appears more effective<br />

than <strong>in</strong> paraneoplastic OMS. In patients aged 50 years and older with OMS who<br />

develop encephalopathy, early diagnosis and treatment of a probable underly<strong>in</strong>g<br />

tumour, usually SCLC, is <strong>in</strong>dicated to <strong>in</strong>crease the chances of neurologic recovery. At<br />

present, there are no immunologic markers to identify the adult patients with<br />

paraneoplastic OMS.<br />

The evaluation of ocular flutter and opsoclonus depends on the age of the patient and<br />

the cl<strong>in</strong>ical circumstances. In children or adults with prodromal symptoms and signs of<br />

systemic or CNS <strong>in</strong>fection, neuroimag<strong>in</strong>g (preferably MRI) followed by sp<strong>in</strong>al tap are<br />

warranted (class IV, level C). In children without apparent <strong>in</strong>fection, a search for occult<br />

neuroblastoma is <strong>in</strong>dicated, with studies variably <strong>in</strong>clud<strong>in</strong>g chest x-ray, CT, or MRI of<br />

chest and abdomen, skeletal survey, <strong>in</strong>travenous pyelogram, bone marrow biopsy, and<br />

determ<strong>in</strong>ation of ur<strong>in</strong>ary catecholam<strong>in</strong>es (class III–IV, level C). In adults, without signs<br />

of <strong>in</strong>fection, an occult malignancy should be sought with workup <strong>in</strong>clud<strong>in</strong>g gynecologic<br />

exam<strong>in</strong>ation; chest x-ray; CT or MRI of the chest, abdomen, and pelvis; mammogram;<br />

possible bone marrow biopsy; and serum anti-Ri antibody (ANNA-2), anti-Hu antibody,<br />

and antiamphiphys<strong>in</strong> antibody studies (class III–IV, level C). MRI of the bra<strong>in</strong> is<br />

warranted for most patients (class III–IV, level B). A history of drug or toxic exposures<br />

should be sought <strong>in</strong> all patients. In some circumstances, other blood studies to be<br />

considered <strong>in</strong>clude serum osmolality, HIV titers, and angiotens<strong>in</strong>-convert<strong>in</strong>g enzyme<br />

(ACE) levels for sarcoidosis (class IV, level C).<br />

The treatment of ocular flutter and opsoclonus is <strong>in</strong>itially directed at the underly<strong>in</strong>g<br />

etiology (e.g., underly<strong>in</strong>g neoplasm) as some patients improve with tumor removal<br />

(Vigliani, 2001). Symptomatic reduction of the eye movements has been reported with<br />

adrenocorticotropic hormone (ACTH), corticosteroids, clonazepam, baclofen, propranolol,<br />

thiam<strong>in</strong>e, reserp<strong>in</strong>e, and valproic acid (Leigh, 1991). High-dose <strong>in</strong>travenous<br />

immunoglobul<strong>in</strong> has been successful <strong>in</strong> several cases (Fisher, 1994; Pless, 1996).<br />

The evaluation and treatment of opsoclonus are outl<strong>in</strong>ed <strong>in</strong> Figure 17–6.


396 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 17–6. Evaluation of opsoclonus.<br />

What Are the Characteristics of Spontaneous<br />

Eye Oscillations <strong>in</strong> Stuporous and Comatose<br />

Patients?<br />

In comatose patients, if the bra<strong>in</strong>stem is <strong>in</strong>tact, the eyelids are closed, and the eyes,<br />

slightly divergent, drift slowly from side to side (rov<strong>in</strong>g eye movements). The rov<strong>in</strong>g<br />

eye movements of light coma cannot be voluntarily executed and are therefore


<strong>in</strong>compatible with the diagnosis of feigned unresponsiveness. As coma deepens, rov<strong>in</strong>g<br />

eye movements disappear.<br />

Other spontaneous eye movements seen <strong>in</strong> comatose patients <strong>in</strong>clude the follow<strong>in</strong>g<br />

(see Table 17–6):<br />

1. Short-cycle periodic alternat<strong>in</strong>g gaze (P<strong>in</strong>g-Pong gaze), which consists of rov<strong>in</strong>g of<br />

the eyes from one extreme of horizontal gaze to the other and back with each<br />

oscillat<strong>in</strong>g cycle tak<strong>in</strong>g 2.5 to 8 seconds (Ishikawa, 1993). This f<strong>in</strong>d<strong>in</strong>g usually<br />

<strong>in</strong>dicates bilateral cerebral damage (e.g., bilateral cerebral <strong>in</strong>farcts) with an <strong>in</strong>tact<br />

bra<strong>in</strong>stem, but has also been described with posterior fossa hemorrhage, basal<br />

ganglia <strong>in</strong>farcts, bilateral cerebral peduncle lesions, hydrocephalus, hepatic encephalopathy,<br />

diffuse cerebral hypoxia, carbon monoxide <strong>in</strong>toxication, and overdose<br />

of the monoam<strong>in</strong>e oxidase <strong>in</strong>hibitor trancyprom<strong>in</strong>e (Crevits, 1992; Ishikawa, 1993;<br />

Johkura, 1998). The disorder may occasionally occur <strong>in</strong> coma with no structural<br />

hemispheric lesion. Saccadic (versus smooth waveform) p<strong>in</strong>g-pong gaze may<br />

<strong>in</strong>dicate less extensive bra<strong>in</strong> damage (Johkura, 1998).<br />

2. P<strong>in</strong>g-pong gaze must be differentiated from periodic alternat<strong>in</strong>g gaze deviation,<br />

which is an alternat<strong>in</strong>g horizontal conjugate gaze deviation last<strong>in</strong>g 1 to 2 m<strong>in</strong>utes <strong>in</strong><br />

each direction. Periodic alternat<strong>in</strong>g gaze deviation usually occurs <strong>in</strong> alert patients<br />

with structural lesions <strong>in</strong>volv<strong>in</strong>g the cerebellum and bra<strong>in</strong>stem, such as the Arnold-<br />

Chiari malformation or medulloblastoma, but has been described <strong>in</strong> obtunded or<br />

comatose patients with hepatic encephalopathy (Averbuch-Heller, 1995a). Jakob-<br />

Table 17–6. Spontaneous Eye Movements <strong>in</strong> Comatose Patients<br />

Movement Description Localization<br />

Periodic alternat<strong>in</strong>g gaze<br />

(p<strong>in</strong>g-pong gaze)<br />

Repetitive divergence Slow deviation out,<br />

Monocular nystagmoid Vertical, horizontal,<br />

Nystagmus and Other Ocular Oscillations 397<br />

Cyclic horizontal rov<strong>in</strong>g Bilateral cerebral damage,<br />

rarely posterior fossa lesion,<br />

hepatic, hypoxic,<br />

carbon monoxide,<br />

drug <strong>in</strong>toxication<br />

Metabolic encephalopathy<br />

rapid return to primary<br />

Middle or low pont<strong>in</strong>e lesion<br />

or rotatory movements<br />

Status epilepticus Small-amplitude vertical<br />

(occasionally horizontal)<br />

movements<br />

Diffuse encephalopathy (hypoxic)<br />

Ocular bobb<strong>in</strong>g Fast down, slow up Pont<strong>in</strong>e lesion, extraaxial<br />

posterior fossa mass, diffuse<br />

encephalopathy<br />

Inverse ocular bobb<strong>in</strong>g Slow down, fast up <strong>An</strong>oxia, post–status epilepticus<br />

(ocular dipp<strong>in</strong>g)<br />

(diffuse encephalopathy)<br />

Reverse ocular bobb<strong>in</strong>g Fast up, slow down Diffuse encephalopathy,<br />

rarely pont<strong>in</strong>e<br />

Slow-upward ocular Slow up, fast down Diffuse encephalopathy bobb<strong>in</strong>g<br />

Pretectal pseudobobb<strong>in</strong>g ‘‘V-pattern’’; down and <strong>in</strong> Pretectal (hydrocephalus)<br />

Vertical ocular myoclonus Pendular, vertical isolated Pont<strong>in</strong>e<br />

Source: Modified from Brazis, 2001, with permission from Lipp<strong>in</strong>cott Williams & Wilk<strong>in</strong>s.


398 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Creutzfeldt disease may be associated with geotropic ocular deviation with skew<br />

deviation and absence of saccades (Grant, 1993). When the head is turned to one<br />

side, the eyes very slowly deviate to that side, while the abduct<strong>in</strong>g eye moves<br />

upward and the adduct<strong>in</strong>g eye moves downward. These spontaneous ocular<br />

movements are slow with no saccadic component.<br />

3. Repetitive divergence is rarely seen <strong>in</strong> patients with coma from metabolic encephalopathy<br />

(e.g., hepatic encephalopathy) (Noda, 1987). With this disorder, the eyes are<br />

midposition or slightly divergent at rest. They then slowly deviate out, become fully<br />

deviated for a brief period, and then rapidly return to primary position before<br />

repeat<strong>in</strong>g the cycle. These motions are synchronous <strong>in</strong> the two eyes.<br />

4. Nystagmoid jerk<strong>in</strong>g of a s<strong>in</strong>gle eye, <strong>in</strong> a vertical, horizontal, or rotatory fashion,<br />

may occur with mid- to lower pont<strong>in</strong>e damage. Pont<strong>in</strong>e lesions occasionally give<br />

rise to disconjugate rotatory and vertical movements of the eyes, <strong>in</strong> which one eye<br />

may rise and <strong>in</strong>tort as the other falls and extorts. This type of movement should not<br />

be confused with seesaw nystagmus, which is very seldom seen <strong>in</strong> comatose<br />

patients.<br />

5. Electrographic status epilepticus without appendicular motor manifestations, due<br />

to anoxia, may result <strong>in</strong> brisk, small-amplitude, ma<strong>in</strong>ly vertical (occasionally<br />

horizontal) eye movements detectable by passive lid elevation (Simon, 1986).<br />

6. Ocular bobb<strong>in</strong>g refers to <strong>in</strong>termittent, often conjugate, brisk, bilateral downward<br />

movement of the eyes with slow return to midposition. Ocular bobb<strong>in</strong>g has been<br />

associated with <strong>in</strong>tr<strong>in</strong>sic pont<strong>in</strong>e lesions (e.g., hemorrhage, tumor, <strong>in</strong>farction, central<br />

pont<strong>in</strong>e myel<strong>in</strong>olysis, etc.), extraaxial posterior fossa masses (e.g., aneurysm rupture<br />

or cerebellar hemorrhage or <strong>in</strong>farction), diffuse encephalitis, Jakob-Creutzfeldt<br />

disease, and toxic-metabolic encephalopathies (e.g., acute organophosphate poison<strong>in</strong>g).<br />

‘‘Typical’’ ocular bobb<strong>in</strong>g, which is associated with preserved horizontal eye<br />

movements, is thought to be specific but not pathognomonic of acute pont<strong>in</strong>e <strong>in</strong>jury,<br />

whereas ‘‘atypical’’ ocular bobb<strong>in</strong>g, which is associated with absent horizontal eye<br />

movements, is thought to be less helpful <strong>in</strong> predict<strong>in</strong>g the site of abnormality.<br />

Monocular bobb<strong>in</strong>g (paretic bobb<strong>in</strong>g), which consists of a quick downward movement<br />

of one eye and <strong>in</strong>torsion or no movement <strong>in</strong> the other eye, may occur if there is<br />

a coexistent unilateral fascicular oculomotor nerve palsy (Dehaene, 1993). Disconjugate<br />

ocular bobb<strong>in</strong>g, with movements <strong>in</strong>volv<strong>in</strong>g sometimes one eye and sometimes<br />

the other, may also occur without oculomotor nerve palsy (Gaymard, 1993).<br />

7. Inverse ocular bobb<strong>in</strong>g (ocular dipp<strong>in</strong>g or fast-upward ocular bobb<strong>in</strong>g) consists of a<br />

slow-downward eye movement with fast return to midposition, which may occur <strong>in</strong><br />

anoxic coma or after prolonged status epilepticus. Ocular dipp<strong>in</strong>g has also been<br />

described associated with deafness <strong>in</strong> a patient with p<strong>in</strong>ealoblastoma (Toshniwal,<br />

1986). Inverse=reverse ocular bobb<strong>in</strong>g consists of <strong>in</strong>verse ocular bobb<strong>in</strong>g <strong>in</strong> which<br />

the eyes do not stop on rapidly return<strong>in</strong>g to primary position but shoot <strong>in</strong>to upgaze<br />

and slowly return to midposition.<br />

8. Reverse ocular bobb<strong>in</strong>g (fast-upward ocular bobb<strong>in</strong>g) consists of fast-upward eye<br />

movement with a slow return to midposition, which may occur <strong>in</strong> patients with<br />

metabolic encephalopathy, viral encephalitis, or pont<strong>in</strong>e hemorrhage. It has been<br />

described with coma due to comb<strong>in</strong>ed phenothiaz<strong>in</strong>e and benzodiazep<strong>in</strong>e poison<strong>in</strong>g<br />

(Lennox, 1993). Occasionally ocular bobb<strong>in</strong>g, ocular dipp<strong>in</strong>g, and reverse<br />

bobb<strong>in</strong>g may occur at different times <strong>in</strong> the same patient.


9. Slow-upward ocular bobb<strong>in</strong>g (converse ocular bobb<strong>in</strong>g or reverse ocular dipp<strong>in</strong>g) is<br />

characterized by slow-upward eye movements followed by a fast return to<br />

midposition. This eye movement disorder has been described with pont<strong>in</strong>e <strong>in</strong>farction<br />

and with metabolic or viral encephalopathy (i.e., diffuse cerebral dysfunction).<br />

10. Pretectal pseudobobb<strong>in</strong>g has been described with acute hydrocephalus (Keane,<br />

1985) and consists of arrhythmic, repetitive downward and <strong>in</strong>ward (‘‘V-pattern’’)<br />

eye movements at a rate rang<strong>in</strong>g from one per 3 seconds to two per second and an<br />

amplitude of one fifth to one half of the full voluntary range. These movements may<br />

be mistaken for ocular bobb<strong>in</strong>g, but their V pattern, their faster rate, and their<br />

pretectal rather than pont<strong>in</strong>e-associated signs dist<strong>in</strong>guish them from true pont<strong>in</strong>e<br />

bobb<strong>in</strong>g. Thus, patients with pretectal pseudobobb<strong>in</strong>g may have abnormal pupillary<br />

light reactions, <strong>in</strong>tact horizontal eye movements, open and often retracted<br />

eyelids, a bl<strong>in</strong>k frequently preced<strong>in</strong>g each eye movement, and a mute or stuporous<br />

rather than a comatose state. Pretectal pseudobobb<strong>in</strong>g probably represents a variety<br />

of convergence nystagmus, and its presence usually <strong>in</strong>dicates the need for prompt<br />

surgical attention (e.g., hydrocephalus decompression) (Keane, 1985). Pretectal<br />

pseudobobb<strong>in</strong>g has also been described with an expand<strong>in</strong>g posterior fossa cyst<br />

(Komiyama, 1999b). It is possible that some cases of ‘‘ocular bobb<strong>in</strong>g’’ associated<br />

with thalamic hemorrhage or tentorial herniation may actually be cases of pretectal<br />

pseudobobb<strong>in</strong>g.<br />

11. Vertical ocular myoclonus consists of pendular, vertical isolated movements of the<br />

eyes noted <strong>in</strong> patients either locked-<strong>in</strong> or comatose after severe pont<strong>in</strong>e strokes<br />

(Keane, 1986). Their frequency is 2 Hz, and other rhythmic body movements at a<br />

similar frequency occur after a 6-week to 9-month delay. These movements are<br />

generally associated with palatal myoclonus (palatal tremor), with which they share<br />

a common mechanism (Keane, 1986).<br />

References<br />

Nystagmus and Other Ocular Oscillations 399<br />

Abadi RV, Pascal E. (1994). Periodic alternat<strong>in</strong>g nystagmus <strong>in</strong> humans with alb<strong>in</strong>ism. Invest Ophthalmol Vis Sci<br />

35:4080–4086.<br />

Abrusow V, Strupp M, Brandt T. (1998). Amiodarone-<strong>in</strong>duced severe prolonged head-positional vertigo and<br />

vomit<strong>in</strong>g. <strong>Neuro</strong>logy 51:917.<br />

Adler CH, Galetta SL. (1990). Oculo-facial-skeletal myorhythmia <strong>in</strong> Whipple disease: treatment with ceftriaxone.<br />

<strong>An</strong>n Intern Med 112:467–469.<br />

Aggarwal A, Williams D. (1997). Opsoclonus as a paraneoplastic manifestation of pancreatic carc<strong>in</strong>oma. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 63:687–688.<br />

Albera R, Luda E, Canale G, et al. (1997). Cyclospor<strong>in</strong>e A as a possible cause of upbeat<strong>in</strong>g nystagmus. <strong>Neuro</strong><strong>ophthalmology</strong><br />

17:163–168.<br />

Arnoldi KA, Tychsen L. (1995). Prevalence of <strong>in</strong>tracranial lesions <strong>in</strong> children <strong>in</strong>itially diagnosed with disconjugate<br />

nystagmus (spasmus nutans). J Pediatr Ophthalmol Strabismus 32:296–301.<br />

Ashe J, Ha<strong>in</strong> TC, Zee DS, Schatz NJ. (1991). Microsaccadic flutter. Bra<strong>in</strong> 114:461–472.<br />

Atilla H, Erkam N, Isikçelik Y. (1999). Surgical treatment <strong>in</strong> nystagmus. Eye 13:11–15.<br />

Averbuch-Heller L, Kori AA, Rottach KG, et al. (1996). Dysfunction of pont<strong>in</strong>e omnipause neurons causes<br />

impaired fixation: macrosaccadic oscillations with a unilateral pont<strong>in</strong>e lesion. <strong>Neuro</strong>-<strong>ophthalmology</strong> 16:99–106.<br />

Averbuch-Heller L, Me<strong>in</strong>er Z. (1995a). Reversible periodic alternat<strong>in</strong>g gaze deviation <strong>in</strong> hepatic encephalopathy.<br />

<strong>Neuro</strong>logy 45:191–192.<br />

Averbuch-Heller L, Stahl JS, Hlav<strong>in</strong> ML, Leigh RJ. (1999). Square-wave jerks <strong>in</strong>duced by pallidotomy <strong>in</strong><br />

park<strong>in</strong>sonism patients. <strong>Neuro</strong>logy 52:185–188.


400 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Averbuch-Heller L, Tusa RJ, Fuhry L, et al. (1997). A double-bl<strong>in</strong>d controlled study of Gabapent<strong>in</strong> and Baclofen as<br />

treatment for acquired nystagmus. <strong>An</strong>n <strong>Neuro</strong>l 41:818–85.<br />

Averbuch-Heller L, Zivotofsky AZ, Das VE, et al. (1995b). Investigations of the pathogenesis of acquired pendular<br />

nystagmus. Bra<strong>in</strong> 118:369–378.<br />

Baloh RW, Jacobson K, Honrubia V. (1993). Horizontal semicircular canal variant of benign positional vertigo.<br />

<strong>Neuro</strong>logy 43:2542–2549.<br />

Baloh RW, W<strong>in</strong>der A. (1991). Acetazolamide-responsive vestibulo-cerebellar syndrome: cl<strong>in</strong>ical and oculographic<br />

features. <strong>Neuro</strong>logy 41:429–433.<br />

Baloh RW, Yue Q, Furman JM, Nelson SF. (1997). Familial episodic ataxia: cl<strong>in</strong>ical heterogeneity <strong>in</strong> four families<br />

l<strong>in</strong>ked to chromosome 19p. <strong>An</strong>n <strong>Neuro</strong>l 41:8–16.<br />

Baloh RW, Yue Q, Jacobson KM, Honrubia V. (1995). Persistent direction-chang<strong>in</strong>g positional nystagmus: another<br />

variant of benign positional nystagmus? <strong>Neuro</strong>logy 45:1297–1301.<br />

Band<strong>in</strong>i F, Castello E, Mazzella L, et al. (2001). Gabapent<strong>in</strong> but not vigabatr<strong>in</strong> is effective <strong>in</strong> the treatment of<br />

acquired nystagmus <strong>in</strong> multiple sclerosis: how valid is the GABAergic hypothesis? J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 71:107–110.<br />

Barton JJS. (1995). Bl<strong>in</strong>k- and saccade-<strong>in</strong>duced seesaw nystagmus. <strong>Neuro</strong>logy 45:831.<br />

Barton JJS, Cox TA. (1993). Acquired pendular nystagmus <strong>in</strong> multiple sclerosis: cl<strong>in</strong>ical observations and role of<br />

optic neuropathy. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 56:262–267.<br />

Barton JJS, Cox TA, Digre K. (1999). Acquired convergence-evoked pendular nystagmus <strong>in</strong> multiple sclerosis.<br />

J <strong>Neuro</strong>-ophthalmol 19:34–38.<br />

Barton JJS, Huaman AG, Sharpe JA. (1994). Muscar<strong>in</strong>ic antagonists <strong>in</strong> the treatment of acquired pendular<br />

nystagmus: a double-bl<strong>in</strong>d, randomized trial of three <strong>in</strong>travenous drugs. <strong>An</strong>n <strong>Neuro</strong>l 35:319–325.<br />

Bataller L, Graus F, Saiz A, et al. (2001). <strong>Cl<strong>in</strong>ical</strong> outcome <strong>in</strong> adult onset idiopathic or paraneoplastic opsoclonusmyoclonus.<br />

Bra<strong>in</strong> 124:437–443.<br />

Bennett JL, Galetta SL, Frohman LP, et al. (1999). <strong>Neuro</strong>-ophthalmologic manifestations of a paraneoplastic<br />

syndrome and testicular carc<strong>in</strong>oma. <strong>Neuro</strong>logy 52:864–867.<br />

Bertholon P, Bronste<strong>in</strong> AM, Davies RA, et al. (2002). Positional down beat<strong>in</strong>g nystagmus <strong>in</strong> 50 patients: cerebellar<br />

disorders and possible anterior semicircular canalithiasis. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 72:366–372.<br />

Bilska C, Pociej-Zero M, Krzystkowa KM. (1995). Surgical treatment of congenital nystagmus <strong>in</strong> 463 children<br />

(Polish). Kl<strong>in</strong> Oczna 97:140–141.<br />

Brandt T. (1990). Positional and position<strong>in</strong>g vertigo and nystagmus. J <strong>Neuro</strong>l Sci 95:3–28.<br />

Brandt T. (1991). Man <strong>in</strong> motion. Historical and cl<strong>in</strong>ical aspects of vestibular function. Bra<strong>in</strong> 114:2159–2174.<br />

Brandt T, Strupp M. (1997). Episodic ataxia type 1 and 2 (familial periodic ataxia=vertigo). Audiol <strong>Neuro</strong>-otol<br />

2:373–383.<br />

Brazis PW, Miller NR, Henderer JD, Lee AG. (1994). The natural history and results of treatment of superior<br />

oblique myokymia. Arch Ophthalmol 112:1063–1067.<br />

Brazis PW, Masdeu JC, Biller J. (2001). Localization <strong>in</strong> <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>logy. 4th ed. Philadelphia, Lipp<strong>in</strong>cott Williams<br />

& Wilk<strong>in</strong>s.<br />

Bronste<strong>in</strong> AM, Gresty MA, Mossman SS. (1992). Pendular pseudonystagmus aris<strong>in</strong>g as a comb<strong>in</strong>ation of head<br />

tremor and vestibular failure. <strong>Neuro</strong>logy 42:1527–1531.<br />

Burde RM, Sav<strong>in</strong>o PJ, Trobe JD. (1991). <strong>Cl<strong>in</strong>ical</strong> Decisions <strong>in</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 2nd ed. St Louis, Mosby<br />

Yearbook, pp. 289–320.<br />

Buttner U, Helmchen C, Buttner-Ennever JA. (1995). The localiz<strong>in</strong>g value of nystagmus <strong>in</strong> bra<strong>in</strong>stem disorders.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 15:283–290.<br />

Carruthers J. (1995). The treatment of congenital nystagmus with Botox. J Pediatr Ophthalmol Strabismus<br />

32:306–308.<br />

Cav<strong>in</strong>ess JN, Forsyth PA, Layton DD, McPhee TJ. (1995). The movement disorder of adult opsoclonus. Mov Dis<br />

10:22–27.<br />

Chan T, Logan P, Eustace P. (1991). Intermittent downbeat nystagmus secondary to vermian arachnoid cyst with<br />

associated obstructive hydrocephalus. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 11:293–296.<br />

Cibis GW, Fitzgerald KM. (1993). Electroret<strong>in</strong>ography <strong>in</strong> congenital idiopathic nystagmus. Pediatr <strong>Neuro</strong>l<br />

9:369–371.<br />

Coch<strong>in</strong> JP, Hannequ<strong>in</strong> D, Do Marcol<strong>in</strong>o C, et al. (1995). Intermittent seesaw nystagmus successfully treated with<br />

clonazepam (French). Rev <strong>Neuro</strong>l (Paris) 151:60–62.<br />

Connolly AM, Pestronk A, Mehta S, et al. (1997). Serum autoantibodies <strong>in</strong> childhood opsoclonus-myoclonus<br />

syndrome: an analysis of antigenic targets <strong>in</strong> neural tissue. J Pediatr 130:878–884.<br />

Corcia P, De Toffol B, Hommet C, et al. (1997). Paraneoplastic opsoclonus associated with cancer of the gall<br />

bladder. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 60:293.


Nystagmus and Other Ocular Oscillations 401<br />

Crevits L, Decruyenaere J. (1992). ‘‘P<strong>in</strong>g-pong’’ gaze. <strong>Neuro</strong>-<strong>ophthalmology</strong> 12:121–123.<br />

Davey K, Kowal L, Fril<strong>in</strong>g R, et al. (1998) The Heimann-Bielschowlsky phenomenon: dissociated vertical<br />

nystagmus. Aust NZ J Ophthalmol 26:237–240.<br />

Davis BJ. (2000). Voluntary nystagmus as a component of a nonepileptic seizure. <strong>Neuro</strong>logy 55:1937.<br />

De la Meilleure G, Dehaene I, Depondt M, et al. (1996). Benign paroxysmal positional vertigo of the horizontal<br />

canal. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 60:68–71.<br />

de Sa LC, Good WV, Hoyt CS. (1992). Surgical management of myokymia of the superior oblique muscle.<br />

Am J Ophthalmol 114:693–696.<br />

Dehaene I, Lammens M, Marchau M. (1993). Paretic ocular bobb<strong>in</strong>g. A cl<strong>in</strong>icopathological study of two cases.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 13:143–146.<br />

Dell’Osso LF, Weissman BM, Leigh RJ, et al. (1993). Hereditary congenital nystagmus and gaze-hold<strong>in</strong>g failure:<br />

the role of the neural <strong>in</strong>tegrator. <strong>Neuro</strong>logy 43:1741–1749.<br />

Dieterich M, Brandt T. (1999). Episodic vertigo related to migra<strong>in</strong>e (90 cases): vestibular migra<strong>in</strong>e? J <strong>Neuro</strong>l<br />

246:883–892.<br />

Dieterich M, Straube A, Brandt T, et al. (1991). The effects of baclofen and chol<strong>in</strong>ergic drugs on upbeat and<br />

downbeat nystagmus. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 54:627–632.<br />

Du Pasquier R, V<strong>in</strong>gerhoets F, Safran AB, Landis T. (1998). Periodic downbeat nystagmus. <strong>Neuro</strong>logy 51:1478–<br />

1480.<br />

Eggenberger E, Cornblath W, Stewart DH. (2001). Oculopalatal tremor with tardive ataxia. J <strong>Neuro</strong>-Ophthalmol<br />

21:83–86.<br />

Epste<strong>in</strong> JA, Moster ML, Spiritos M. (2001). Seesaw nystagmus follow<strong>in</strong>g whole bra<strong>in</strong> irradiation and <strong>in</strong>trathecal<br />

methotrexate. J <strong>Neuro</strong>-Ophthalmol 21:264–265.<br />

Evans BJ, Evans BV, Jordahl-Moroz J, Nabee M. (1998). Randomized double-masked placebo-controlled trial of a<br />

treatment for congenital nystagmus. Vis Res 38:2193–2202.<br />

Fisher CM. (1990). Ocular flutter. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:155–156.<br />

Fisher PG, Wechsler DS, S<strong>in</strong>ger HS. (1994). <strong>An</strong>ti-Hu antibody <strong>in</strong> a neuroblastoma-associated paraneoplastic<br />

syndrome. Pediatr <strong>Neuro</strong>l 10:309–312.<br />

FitzGibbon EJ, Calvert PC, Dieterich M, et al. (1996). Torsional nystagmus dur<strong>in</strong>g vertical pursuit. J <strong>Neuro</strong>ophthamol<br />

16:79–90.<br />

Friedman DI, Jankovic J, McCrary JA 3rd. (1992). <strong>Neuro</strong>-ophthalmic f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> progressive supranuclear palsy.<br />

J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:104–109.<br />

Fujikane M, Katayama S, Hirata K, Sunami S. (1992). Central diabetes <strong>in</strong>sipidus complicated with upbeat<br />

nystagmus and cerebellar ataxia (Japanese). R<strong>in</strong>sho Sh<strong>in</strong>keigaku 32:68–72.<br />

Furman JM, Cass SP. (1999). Benign paroxysmal positional vertigo. N Engl J Med 341:1590–1596.<br />

Furman JM, Crumr<strong>in</strong>e PK, Re<strong>in</strong>muth OM. (1990a). Epileptic nystagmus. <strong>An</strong>n <strong>Neuro</strong>l 27:686–688.<br />

Furman JMR, Wall C III, Pang D. (1990b). Vestibular function <strong>in</strong> periodic alternat<strong>in</strong>g nystagmus. Bra<strong>in</strong><br />

113:1425–1439.<br />

Gans MS, Melmed CA. (1990). Downbeat nystagmus associated with dolichoectasia of the vertebrobasilar artery.<br />

Arch <strong>Neuro</strong>l 47:843.<br />

Gaymard B. (1993). Disconjugate ocular bobb<strong>in</strong>g. <strong>Neuro</strong>logy 43:2151.<br />

Geis TC, Newman NJ, Dawson RC. (1996). Superior oblique myokymia associated with a dural arteriovenous<br />

fistula. J <strong>Neuro</strong>-ophthalmol 16:41–43.<br />

Gire C, Somma-Mauvais H, Nicaise C, et al. (2001). Epileptic nystagmus: electrocl<strong>in</strong>ical study of a case. Epileptic<br />

Dis 3:33–37.<br />

Gizzi M, Randolph S, Perakis A. (1990). Ocular flutter <strong>in</strong> vidarab<strong>in</strong>e toxicity. Am J Ophthalmol 109:105.<br />

Goldberg RT. (1978). Vertical pendular nystagmus <strong>in</strong> chronic myositis of medial and lateral rectus. <strong>An</strong>n Ophthalmol<br />

10:1697–1702.<br />

Goldblum TA, Effron LA. (1994). Upbeat nystagmus associated with tonic downward deviation <strong>in</strong> healthy<br />

neonates. J Pediatr Ophthalmol Strabismus 31:334–335.<br />

Good WV, Brodsky MC, Hoyt CS, Ahn JC. (1990). Upbeat<strong>in</strong>g nystagmus <strong>in</strong> <strong>in</strong>fants: a sign of anterior visual<br />

pathway disease. B<strong>in</strong>ocular Vis Q 5:13–18.<br />

Good WV, Koch TS, Jan JE. (1993). Monocular nystagmus caused by unilateral anterior visual-pathway lesions.<br />

Dev Med Child <strong>Neuro</strong>l 35:1106–1110.<br />

Gottlob I, Helbl<strong>in</strong>g A. (1999). Nystagmus mimick<strong>in</strong>g spasmus nutans as the present<strong>in</strong>g sign of Bardet-Biedl<br />

syndrome. Am J Ophthalmol 128:770–772.<br />

Gottlob I, Wizov SS, Re<strong>in</strong>cke RD. (1995a). Quantitative eye and head movement record<strong>in</strong>gs of ret<strong>in</strong>al disease<br />

mimick<strong>in</strong>g spasmus nutans. Am J Ophthalmol 119:374–376.


402 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Gottlob I, Wizov SS, Re<strong>in</strong>cke RD. (1995b). Spasmus nutans. A long-term follow-up. Invest Ophthalmol Vis Sci<br />

36:2768–2771.<br />

Gottlob I, Zubcov A, Catalan RA, et al. (1990). Signs dist<strong>in</strong>guish<strong>in</strong>g spasmus nutans (with and without central<br />

nervous system lesions) from <strong>in</strong>fantile nystagmus. Ophthalmology 97:1166–1175.<br />

Gradste<strong>in</strong> L, Re<strong>in</strong>ecke RD, Wizov SS, Goldste<strong>in</strong> HP. (1997). Congenital periodic alternat<strong>in</strong>g nystagmus. Diagnosis<br />

and management. Ophthalmology 104:918–929.<br />

Grant MP, Cohen M, Petersen RB, et al. (1993). Abnormal eye movements <strong>in</strong> Creutzfeldt-Jacob disease. <strong>An</strong>n <strong>Neuro</strong>l<br />

34:192–197.<br />

Gresty MA, Bronste<strong>in</strong> AM, Page NG, Rudge P. (1991). Congenital-type nystagmus emerg<strong>in</strong>g <strong>in</strong> later life. <strong>Neuro</strong>logy<br />

41:653–656.<br />

Gresty MA, Metcalfe T, Timms C, et al. (1992). <strong>Neuro</strong>logy of latent nystagmus. Bra<strong>in</strong> 115:1303–1321.<br />

Haene I, Casselman J. (1993). Left superior oblique myokymia and right superior oblique paralysis due to a<br />

posterior fossa tumor. <strong>Neuro</strong>-<strong>ophthalmology</strong> 13:13–16.<br />

Halmagyi GM, Aw ST, Dehaene I, et al. (1994). Jerk-waveform seesaw nystagmus due to unilateral mesodiencephalic<br />

lesion. Bra<strong>in</strong> 117:789–803.<br />

Halmagyi GM, Hoyt WF. (1991). Seesaw nystagmus due to unilateral mesodiencephalic lesion. J Cl<strong>in</strong> <strong>Neuro</strong>ophthalmol<br />

11:79–84.<br />

Hammack JE, Kotanides H, Rosenblum MK, Posner JB. (1992). Paraneoplastic cerebellar degeneration. II. <strong>Cl<strong>in</strong>ical</strong><br />

and immunologic f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> 21 patients with Hodgk<strong>in</strong>’s disease. <strong>Neuro</strong>logy 42:1938–1943.<br />

Harada H, Tamaoka A, Watanabe M, et al. (1998). Downbeat nystagmus <strong>in</strong> two sibl<strong>in</strong>gs with sp<strong>in</strong>ocerebellar<br />

ataxia type 6 (SCA 6). J <strong>Neuro</strong>l Sci 160:161–163.<br />

Harris CM, Boyd S, Ch<strong>in</strong>g K, et al. (1997). Epileptic nystagmus <strong>in</strong> <strong>in</strong>fancy. J <strong>Neuro</strong>l Sci 151:111–114.<br />

Hashimoto M, Ohtsuka K, Hoyt WF. (2001). Vascular compression as a cause of superior oblique myokymia<br />

disclosed by th<strong>in</strong>-sliced magnetic resonance imag<strong>in</strong>g. Am J Ophthalmol 131:676–677.<br />

Hattori T, Takaya Y, Tsuboi Y, Hirayama K. (1993). Opsoclonus show<strong>in</strong>g only dur<strong>in</strong>g eye closure <strong>in</strong> hereditary<br />

cerebellar ataxia. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 56:1037–1038.<br />

Hayakawa Y, Takagi M, Hasebe H, et al. (2000). A case of superior oblique myokymia observed by an imageanalysis<br />

system. J <strong>Neuro</strong>-Ophthalmol 20:163–165.<br />

Helmchen C, Glasauer S, Bartl K, et al. (1996). Contralesionally beat<strong>in</strong>g torsional nystagmus <strong>in</strong> a unilateral rostral<br />

midbra<strong>in</strong> lesion. <strong>Neuro</strong>logy 47:482–486.<br />

Helveston EM, Ellis FD, Plager DA. (1991). Large recession of the horizontal recti for treatment of nystagmus.<br />

Ophthalmology 98:1302–1305.<br />

Henderson RD, Wijdicks WF. (2000). Downbeat nystagmus associated with <strong>in</strong>travenous patient-controlled<br />

adm<strong>in</strong>istration of morph<strong>in</strong>e. <strong>An</strong>esth <strong>An</strong>alg 91:691–692.<br />

Herishanu Y, Louzoun Z. (1986). Trihexyphenidyl treatment of vertical pendular nystagmus. <strong>Neuro</strong>logy 36:82–84.<br />

Hertle RW, Dell’Osso LF. (1999). <strong>Cl<strong>in</strong>ical</strong> and ocular motor analysis of congenital nystagmus <strong>in</strong> <strong>in</strong>fancy. JAAPOS<br />

3:70–79.<br />

Hertle RW, FitzGibbon EJ, Avallone JM, et al. (2001). Onset of oscillopsia after visual maturation <strong>in</strong> patients with<br />

congenital nystagmus. Ophthalmology 108:2301–2308.<br />

Himi T, Katura A, Tokuda S, et al. (1995). Downbeat nystagmus with compression of the medulla oblongata by<br />

the dolicoectatic vertebral arteries. Am J Otol 16:377–381.<br />

Hirose G, Kawada J, Tsukada K, et al. (1991). Upbeat nystagmus: cl<strong>in</strong>icopathological and pathophysiological<br />

considerations. J <strong>Neuro</strong>l Sci 105:159–167.<br />

Hirose G, Kawada J, Yoshioka A. (1990). Primary position upbeat nystagmus: cl<strong>in</strong>icopathologic study <strong>in</strong> three<br />

patients. <strong>Neuro</strong>logy 40(suppl):312.<br />

Hirose G, Ogasawara T, Shirakawa T, et al. (1998). Primary position upbeat nystagmus due to unilateral medial<br />

medullary <strong>in</strong>farction. <strong>An</strong>n <strong>Neuro</strong>l 43:403–406.<br />

Honnorat J, Trillet M, <strong>An</strong>to<strong>in</strong>e JC, et al. (1997). Paraneoplastic opsomyoclonus, cerebellar ataxia and encephalopathy<br />

associated with anti-Purk<strong>in</strong>je cell antibodies. J <strong>Neuro</strong>l 244:333–339.<br />

Hormigo A, Rosenblum MK, River ME, Posner JB. (1994). Immunological and pathological study of anti-<br />

Ri-associated encephalopathy. <strong>An</strong>n <strong>Neuro</strong>l 36:896–902<br />

Huygen PLM, Verhagen WIM, Cruysberg JRM, Koch PAM. (1995). Familial congenital periodic alternat<strong>in</strong>g<br />

nystagmus with presumably X-l<strong>in</strong>ked dom<strong>in</strong>ant <strong>in</strong>heritance. <strong>Neuro</strong>-<strong>ophthalmology</strong> 15:149–155.<br />

Hwang TL, Still CN, Jones JE. (1995). Reversible downbeat nystagmus and ataxia <strong>in</strong> felbamate <strong>in</strong>toxication.<br />

<strong>Neuro</strong>logy 45:846.<br />

Ishikawa H, Ishikawa S, Mukuno K. (1993). Short-cycle periodic alternat<strong>in</strong>g (p<strong>in</strong>g-pong) gaze. <strong>Neuro</strong>logy<br />

43:1067–1070.


Nystagmus and Other Ocular Oscillations 403<br />

Ito K, Murofuchi T, Mizuno M. (2000). Periodic alternat<strong>in</strong>g nystagmus and congenital nystagmus: similarities <strong>in</strong><br />

possibly <strong>in</strong>herited cases. J Otorh<strong>in</strong>olarnygol Related Specialties 62:53–56.<br />

Jabbari B, Rosenberg M, Scherokman B, et al. (1987). Effectiveness of trihexyphenidyl aga<strong>in</strong>st pendular nystagmus<br />

and palatal myoclonus: evidence of chol<strong>in</strong>ergic dysfunction. Mov Disord 2:93–98.<br />

Jacobson L, Ygge J, Flodmark O. (1998). Nystagmus <strong>in</strong> periventricular leukomalacia. Br J Ophthalmol 82:1026–1032.<br />

Jacome DE, FitzGerald R. (1982). Monocular ictal nystagmus. Arch <strong>Neuro</strong>l 39:653–656.<br />

Janssen JC, Larner AJ, Morris H, et al. (1998). Upbeat nystagmus: cl<strong>in</strong>icoanatomical correlation. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 65:380–381.<br />

Johkura K, Komiyama A, Tobita M, Hasegawa O. (1998). Saccadic p<strong>in</strong>g-pong gaze. J <strong>Neuro</strong>-ophthalmol 18:43–46.<br />

Kam<strong>in</strong>ski HJ, Zee DS, Leigh RJ, et al. (1991). Ocular flutter and ataxia associated with AIDS-related complex.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 11:163–167.<br />

Kanaya T, Nonaka S, Kamito M, et al. (1994). Primary position upbeat nystagmus—localiz<strong>in</strong>g value.<br />

J Otorh<strong>in</strong>olaryngol Related Specialties 56:236–238.<br />

Kaplan PW, Tusa RJ. (1993). <strong>Neuro</strong>physiologic and cl<strong>in</strong>ical correlations of epileptic nystagmus. <strong>Neuro</strong>logy<br />

43:2508–2514.<br />

Keane JR. (1985). Pretectal pseudobobb<strong>in</strong>g: five patients with ‘‘V’’-pattern convergence nystagmus. Arch <strong>Neuro</strong>l<br />

42:592–594.<br />

Keane JR. (1986). Acute vertical ocular myoclonus. <strong>Neuro</strong>logy 36:86–89.<br />

Kerrison JB, Vagefi MR, Barmada MM, Maumenee IH. (1999). Congenital motor nystagmus l<strong>in</strong>ked to Xq26-q27.<br />

Am J Hum Genet 64:600–607.<br />

Komai K, Mimura O, Uyama J, et al. (1992). <strong>Neuro</strong>-ophthalmological evaluation of superior oblique myokymia.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 12:135–140.<br />

Komiyama A, Toda H, Johkura K. (1999a). Edrophonium-<strong>in</strong>duced macrosaccadic oscillations <strong>in</strong> myasthenia<br />

gravis. <strong>An</strong>n <strong>Neuro</strong>l 45:522–525.<br />

Komiyama A, Toda H, Johkura K, et al. (1999b). Pretectal pseudobobb<strong>in</strong>g associated with an expand<strong>in</strong>g posterior<br />

fossa cyst <strong>in</strong> tectocerebellar dysraphia: an electro-oculographic study. J <strong>Neuro</strong>l 146:221–223.<br />

Kori AA, Rob<strong>in</strong> NH, Jacobs JB, et al. (1998). Pendular nystagmus <strong>in</strong> patients with peroxisomal assembly disorder.<br />

Arch <strong>Neuro</strong>l 55:554–558.<br />

Kosmorsky GS, Ellis BD, Fogt N, Leigh RJ. (1995). The treatment of superior oblique myokymia utiliz<strong>in</strong>g the<br />

Harada-Ito procedure. J <strong>Neuro</strong>-ophthalmol 15:142–146.<br />

Koukoulis A, Cimas I, Gómara S. (1998). Paraneoplastic opsoclonus associated with papillary renal cell<br />

carc<strong>in</strong>oma. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 64:137–138.<br />

Krespi Y, Vertichel P, Masson C, Cambier J. (1995). Downbeat nystagmus and vertebrobasilar arterial dolichoectasia<br />

(French). Rev <strong>Neuro</strong>l 151:196–197.<br />

Kushner BJ. (1995). Infantile uniocular bl<strong>in</strong>dness with bilateral nystagmus. A syndrome. Arch Ophthalmol<br />

113:1298–1300.<br />

Lambert SR, Newman NJ. (1993). Ret<strong>in</strong>al disease masquerad<strong>in</strong>g as spasmus nutans. <strong>Neuro</strong>logy 43:1607–1609.<br />

Lawden MC, Bronste<strong>in</strong> AM, Kennard C. (1995). Repetitive paroxysmal nystagmus and vertigo. <strong>Neuro</strong>logy<br />

45:276–280.<br />

Lee AG. (2001). Downbeat nystagmus associated with caudal bra<strong>in</strong>stem compression by the vertebral artery.<br />

J <strong>Neuro</strong>-Ophthalmol 21:219–220.<br />

Lee IS, Lee JB, Kim HS, et al. (2000). Modified Kestenbaum surgery for correction of abnormal head posture <strong>in</strong><br />

<strong>in</strong>fantile nystagmus: outcome <strong>in</strong> 63 patients with graded augmentation. B<strong>in</strong>ocular Vis Strabismus Q 15:53–58.<br />

Lee J, Gresty M. (1993). A case of ‘‘voluntary nystagmus’’ and head tremor. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

56:1321–1322.<br />

Leigh RJ, Averbuch-Heller L, Tomsak RL, et al. (1994). Treatment of abnormal eye movements that impair vision:<br />

strategies based on current concepts of physiology and pharmacology. <strong>An</strong>n <strong>Neuro</strong>l 36:129–141.<br />

Leigh RJ, Burnst<strong>in</strong>e TH, Ruff RL, Kasmer RJ. (1991). The effect of antichol<strong>in</strong>ergic agents upon acquired pendular<br />

nystagmus. A double-bl<strong>in</strong>d study of trihexyphenidyl and tridihexethyl chloride. <strong>Neuro</strong>logy 41:1737–1741.<br />

Leigh RJ, Tomsak RL, Grant MP, et al. (1992). Effectiveness of botul<strong>in</strong>um tox<strong>in</strong> adm<strong>in</strong>istration to abolish acquired<br />

nystagmus. <strong>An</strong>n <strong>Neuro</strong>l 32:633–642.<br />

Leigh RJ, Zee DS. (1999). The <strong>Neuro</strong>logy of Eye Movements. 3rd ed. New York, Oxford University Press.<br />

Lennox G. (1993). Reverse ocular bobb<strong>in</strong>g due to comb<strong>in</strong>ed phenothiaz<strong>in</strong>e and benzodiazep<strong>in</strong>e poison<strong>in</strong>g. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 56:1137–1137.<br />

L<strong>in</strong> CY, Young YH. (1999). <strong>Cl<strong>in</strong>ical</strong> significance of rebound nystagmus. Laryngoscope 109:1803–1805.<br />

Lopez L, Bronste<strong>in</strong> AM, Gresty MA, et al. (1992). Torsional nystagmus. A neuro-otological and MRI study of<br />

thirty-five cases. Bra<strong>in</strong> 115:1107–1124.


404 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Lopez LI, Bronste<strong>in</strong> AM, Gresty MA, et al. (1996). <strong>Cl<strong>in</strong>ical</strong> and MRI correlates <strong>in</strong> 27 patients with acquired<br />

pendular nystagmus. Bra<strong>in</strong> 119:465–472.<br />

Louis ED, Lynch T, Kaufmann P, et al. (1996). Diagnostic guidel<strong>in</strong>es <strong>in</strong> central nervous system Whipple’s disease.<br />

<strong>An</strong>n <strong>Neuro</strong>l 40:561–568.<br />

Luque FA, Furneaux HM, Ferziger R, et al. (1991). <strong>An</strong>ti-Ri: an antibody associated with paraneoplastic opsoclonus<br />

and breast cancer. <strong>An</strong>n <strong>Neuro</strong>l 29:241–251.<br />

Lynch T, Ode J, Fredericks DN, Louis ED, et al. (1997). Polymerase cha<strong>in</strong> reaction-based detection of Tropheryma<br />

whippelii <strong>in</strong> central nervous system Whipple’s disease. <strong>An</strong>n <strong>Neuro</strong>l 42:120–124.<br />

Maas EF, Ashe J, Spiegel P, et al. (1991). Acquired pendular nystagmus <strong>in</strong> toluene addiction. <strong>Neuro</strong>logy 41:282–285.<br />

Martidis A, Yee RD, Azzarelli B, Biller J. (1999). <strong>Neuro</strong>-ophthalmic, radiographic, and pathologic manifestations of<br />

adult-onset Alexander disease. <strong>Neuro</strong>logy 117:256–267.<br />

Massry GG, Bloom JN, Cruz OA. (1996). Convergence nystagmus associated with spasmus nutans. J <strong>Neuro</strong>ophthalmol<br />

16:196–198.<br />

Matsumoto S, Ohyagi Y, Inoue I, et al. (2001). Periodic alternat<strong>in</strong>g nystagmus <strong>in</strong> a patient with MS. <strong>Neuro</strong>logy<br />

56:276–277.<br />

May EF, Truxal AR. (1997). Loss of vision alone may result <strong>in</strong> seesaw nystagmus. J <strong>Neuro</strong>-ophthalmol 17:84–85.<br />

Merk<strong>in</strong>-Zaborsky H, Ifergane G, Frischer S, et al. (2000). Thiam<strong>in</strong>e-responsive acute neurological disorders <strong>in</strong> nonalcoholic<br />

patients. Eur <strong>Neuro</strong>l 45:34–37.<br />

M<strong>in</strong>agar A, Sheremata WA, Tusa RJ. (2001). Perverted head-shak<strong>in</strong>g nystagmus: a possible mechanism. <strong>Neuro</strong>logy<br />

57:887–889.<br />

M<strong>in</strong>or LB, Haslwanter T, Straumann D, Zee DS. (1999). Hyperventilation-<strong>in</strong>duced nystagmus <strong>in</strong> patients with<br />

vestibular schwannoma. <strong>Neuro</strong>logy 53:2158–2168.<br />

Mitchell WG, Snodgrass SR. (1990). Opsoclonus-ataxia due to childhood neural crest tumors: a chronic neurologic<br />

syndrome. J Child <strong>Neuro</strong>l 5:153–158.<br />

Mitoma H, Orimo S, Sodeyama N, Tamaki M. (1996). Paraneoplastic opsoclonus-myoclonus syndrome and<br />

neurofibrosarcoma. Eur <strong>Neuro</strong>l 36:322.<br />

Mizuno M, Kudo Y, Yamane M. (1990). Upbeat nystagmus <strong>in</strong>fluenced by posture: report of two cases. Auris Nasus<br />

Larynx 16:215–221.<br />

Monteiro ML, Sampaio CM. (1993). Lithium-<strong>in</strong>duced downbeat nystagmus <strong>in</strong> a patient with Arnold-Chiari<br />

malformation. Am J Ophthalmol 116:648–649.<br />

Morrow MJ, Sharpe JA, Ranalli PJ. (1990). Superior oblique myokymia associated with a posterior fossa tumor:<br />

oculographic correlation with an idiopathic case. <strong>Neuro</strong>logy 40:367–370.<br />

Mossman SS, Bronste<strong>in</strong> AM, Gresty MA, et al. (1990). Convergence nystagmus associated with Arnold-Chiari<br />

malformation. Arch <strong>Neuro</strong>l 47:357–359.<br />

Moster ML, Schnayder E. (1998). Epileptic periodic alternat<strong>in</strong>g nystagmus. J <strong>Neuro</strong>-ophthalmol 18:292–293.<br />

Mulder AH, Raemaekers JM, Boerman RH, Mattijssen V. (1999). Downbeat nystagmus caused by thiam<strong>in</strong>e<br />

deficiency: an unusual presentation of CNS localization of large cell anaplastic CD 30-positive non-<br />

Hodgk<strong>in</strong>’s lymphoma. <strong>An</strong>n Hematol 78:105–107.<br />

Munro NAR, Gaymard B, Rivaud S, et al. (1993). Upbeat nystagmus <strong>in</strong> a patient with a small medullary <strong>in</strong>farct.<br />

J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 56:1126–1128.<br />

Nakada T, Kwee IL. (1986). Oculopalatal myoclonus. Bra<strong>in</strong> 109:431–441.<br />

Neetens A, Mart<strong>in</strong> JJ. (1983). Superior oblique myokymia <strong>in</strong> a case of adrenoleukodystrophy and <strong>in</strong> a case of lead<br />

<strong>in</strong>toxication. <strong>Neuro</strong>-<strong>ophthalmology</strong> 3:103–107.<br />

Nelson KR, Brenner RP, Carlow T. (1986). Divergent-convergence eye movements and transient eyelid open<strong>in</strong>g<br />

associated with an EEG burst-suppression pattern. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 6:43–46.<br />

Newman SA, Hedges TR, Wall M, Sedwick LA. (1990). Spasmus nutans: or is it? Surv Ophthalmol 34:453–456.<br />

Noda S, Ide K, Umezaki H, et al. (1987). Repetitive divergence. <strong>An</strong>n <strong>Neuro</strong>l 21:109–110.<br />

Oett<strong>in</strong>g WS, Armstrong CM, Holleschau AM, et al. (2000). Evidence for genetic heterogeneity <strong>in</strong> families with<br />

congenital motor nystagmus. Ophthalmic Genet 21:227–233.<br />

Ohkoshi N, Komatsu Y, Mizusawa H, Kanazawa I. (1998). Primary position upbeat nystagmus <strong>in</strong>creased on<br />

downgaze: cl<strong>in</strong>icopathologic study of a patient with multiple sclerosis. <strong>Neuro</strong>logy 50:551–553.<br />

Oishi M, Mochizuki Y. (1997). Ipsilateral oculomotor nerve palsy and contralateral downbeat nystagmus: a<br />

syndrome caused by unilateral paramedian thalamopeduncular <strong>in</strong>farction. J <strong>Neuro</strong>l 244:132–133.<br />

Oliva A, Rosenberg ML. (1990). Convergence-evoked nystagmus. <strong>Neuro</strong>logy 40:161–162.<br />

Olson JL, Jacobson DM. (2001). Comparison of cl<strong>in</strong>ical associations of patients with vasculopathic and idiopathic<br />

downbeat nystagmus. J <strong>Neuro</strong>-Ophthalmol 21:39–41.<br />

Orwitz JI, Galetta SL, Teener JW. (1997). Bilateral trochlear nerve palsy and downbeat nystagmus <strong>in</strong> a patient with<br />

cephalic tetanus. <strong>Neuro</strong>logy 9:894–895.


Nystagmus and Other Ocular Oscillations 405<br />

Pelak VS, Galetta SL, Grossman RI, et al. (1999). Evidence for preganglionic pupillary <strong>in</strong>volvement <strong>in</strong> superficial<br />

siderosis. <strong>Neuro</strong>logy 53:1130–1132.<br />

Peterson K, Rosenblum MK, Kotanides H, Posner JB. (1992). Paraneoplastic cerebellar degeneration. I. A cl<strong>in</strong>ical<br />

analysis of 55 anti-Yo antibody-positive patients. <strong>Neuro</strong>logy 42:1931–1938.<br />

Pieh C, Gottlob I. (2000). Arnold-Chiari malformation and nystagmus of skew. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

69:124–126.<br />

Pless M, Ronthal M. (1996). Treatment of opsoclonus-myoclonus with high-dose <strong>in</strong>travenous immunoglobul<strong>in</strong>.<br />

<strong>Neuro</strong>logy 46:583–584.<br />

Pullic<strong>in</strong>o P, L<strong>in</strong>coff N, Truax BT. (2000). Abnormal vergence with upper bra<strong>in</strong>stem <strong>in</strong>farcts. Pseudoabducens palsy.<br />

<strong>Neuro</strong>logy 55:32–358.<br />

Rambold H, Heide W, Sprenger A, et al. (2001a). Perilymph fistula associated with pulse-synchronous eye<br />

oscillations. <strong>Neuro</strong>logy 56:1769–1771.<br />

Rambold H, Helmchen C, Straube A, Büttner U. (1998). Seesaw nystagmus associated with <strong>in</strong>voluntary torsional<br />

head oscillations. <strong>Neuro</strong>logy 51:831–837.<br />

Rambold H, Kompf D, Helmchen C. (2001b). Convergence retraction nystagmus: a disorder of vergence? <strong>An</strong>n<br />

<strong>Neuro</strong>l 50:677–681.<br />

Rascol O, Sabat<strong>in</strong>i U, S<strong>in</strong>onetta-Moreau M, et al. (1991). Square-wave jerks <strong>in</strong> Park<strong>in</strong>sonian syndromes. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 54:599–602.<br />

Remler BF, Leigh RJ, Osoria I, et al. (1990). The characteristics and mechanisms of visual disturbance associated<br />

with anticonvulsant therapy. <strong>Neuro</strong>logy 40:791–796.<br />

Repka MX, Sav<strong>in</strong>o PJ, Re<strong>in</strong>cke RD. (1994). Treatment of acquired nystagmus with botul<strong>in</strong>um neurotox<strong>in</strong> A. Arch<br />

Ophthalmol 112:1320–1324.<br />

Revol A, Vighetto A, Confavreux C, et al. (1990). Oculo-palatal myoclonus and multiple sclerosis (French).<br />

Rev <strong>Neuro</strong>l 146:518–521.<br />

Rosenberg ML, Glaser JS. (1983). Superior oblique myokymia. <strong>An</strong>n <strong>Neuro</strong>l 13:667–669.<br />

Rosengart A, Hedges TR 3rd, Teal PA, et al. (1993). Intermittent downbeat nystagmus due to vertebral artery<br />

compression. <strong>Neuro</strong>logy 43:216–218.<br />

Rosenthal JG, Selhorst JB. (1987). Cont<strong>in</strong>uous non-rhythmic cycloversion. A possible paraneoplastic disorder.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 7:291–295.<br />

Rousseaux M, Dupard T, Leso<strong>in</strong> F, et al. (1991). Upbeat and downbeat nystagmus occurr<strong>in</strong>g successively <strong>in</strong> a<br />

patient with posterior medullary haemorrhage. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 54:367–369.<br />

Rowlands A, Sgouros S, Williams B. (2000). Ocular manifestations of h<strong>in</strong>dbra<strong>in</strong>-related syr<strong>in</strong>gomyelia and<br />

outcome follow<strong>in</strong>g craniovertebral decompression. Eye 14:884–888.<br />

Ruben S, Dunlop IS, Elston J. (1994a). Retrobulbar botul<strong>in</strong>um tox<strong>in</strong> for treatment of oscillopsia. Aust NZ J<br />

Ophthalmol 22:65–67.<br />

Ruben S, Lee JP, O’Neill D, et al. (1994b). The use of botul<strong>in</strong>um tox<strong>in</strong> for treatment of acquired nystagmus and<br />

oscillopsia. Ophthalmology 101:783–787.<br />

Russell GE, Wick B, Tang RA. (1992). Arnold-Chiari malformation. Optom Vis Sci 69:242–247.<br />

Sakakibara R, Hirayama K, Takaya Y, et al. (1993). Periodic alternat<strong>in</strong>g nystagmus <strong>in</strong> familial congenital cerebellar<br />

ataxia (Japanese). R<strong>in</strong>sho Sh<strong>in</strong>keigaku 33:1–7.<br />

Sakata E, Ohtsu K, Itoh Y. (1991). Positional nystagmus of benign paroxysmal type (BPPN) due to cerebellar<br />

vermis lesions. Pseudo-BPPN. Acta Otolaryngol Suppl 481:254–257.<br />

Samil M, Rosahl SK, Carvalho GA, Krizizk T. (1998). Microvascular decompression for superior oblique<br />

myokymia. Case report. J <strong>Neuro</strong>surg 89:1020–1024.<br />

Samkoff LM, Smith CR. (1994). Seesaw nystagmus <strong>in</strong> a patient with cl<strong>in</strong>ically def<strong>in</strong>ite MS. Eur <strong>Neuro</strong>l 34:228–229.<br />

Sato M, Kurachi T, Arai M, Abel LA. (1999). Voluntary nystagmus associated with accommodation spasm. Jpn J<br />

Ophthalmol 43:1–4.<br />

Schnyder H, Bassetti C. (1996). Bilateral convergence nystagmus <strong>in</strong> unilateral dorsal midbra<strong>in</strong> stroke due to<br />

occlusion of the superior cerebellar artery. <strong>Neuro</strong>-<strong>ophthalmology</strong> 16:59–63.<br />

Schon F, Hart PE, Hodgson TL, et al. (1999). Suppression of pendular nystagmus by smok<strong>in</strong>g cannabis <strong>in</strong> a patient<br />

with multiple sclerosis. <strong>Neuro</strong>logy 53:2209–2210.<br />

Schon F, Hodgson TL, Mort D, Kennard C. (2001). Ocular flutter with a localized lesion <strong>in</strong> the paramedian pont<strong>in</strong>e<br />

reticular formation. <strong>An</strong>n <strong>Neuro</strong>l 50:413–416.<br />

Schwartz M, Sharf B, Zidan J. (1990). Opsoclonus as a present<strong>in</strong>g symptom <strong>in</strong> thymic cancer. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 53:534.<br />

Selhorst JB. (1987). Pendular vergence oscillations. In: Ishikawa H, ed. Highlights <strong>in</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>.<br />

Proceed<strong>in</strong>gs of the Sixth Meet<strong>in</strong>g of the International <strong>Neuro</strong>-Ophthalmology Society. Amsterdam, Aeolus,<br />

pp. 153–162.


406 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Shallo-Hoffmann J, Faldon M, Tusa RJ. (1999). The <strong>in</strong>cidence and waveform characteristics of periodic alternat<strong>in</strong>g<br />

nystagmus <strong>in</strong> congenital nystagmus. Invest Ophthalmol Vis Sci 40:2546–2553.<br />

Shallo-Hoffmann J, Sendler B, Muhlendyck H. (1990). Normal square wave jerks <strong>in</strong> differ<strong>in</strong>g age groups. Invest<br />

Ophthalmol Vis Sci 31:1649–1652.<br />

Shawkat FS, Kriss A, Thompson D, et al. (2000). Vertical or asymmetric nystagmus need not imply neurological<br />

disease. Br J Ophthalmol 84:175–180.<br />

Sheth RD, Horwitz SJ, Aronoff S, et al. (1995). Opsoclonus myoclonus syndrome secondary to Epste<strong>in</strong>-Barr virus<br />

<strong>in</strong>fection. J Child <strong>Neuro</strong>l 10:297–299.<br />

Simon RP, Am<strong>in</strong>off MJ. (1986). Electrographic status epilepticus <strong>in</strong> fatal anoxic coma. <strong>An</strong>n <strong>Neuro</strong>l 20:351–355.<br />

Smith DE, Fitzgerald K, Strass-Isern M, Cibis GW. (2000). Electroret<strong>in</strong>ography is necessary for spasmus nutans<br />

diagnosis. Pediatr <strong>Neuro</strong>l 23:33–36.<br />

Stahl JS, Averbuch-Heller L, Leigh RJ. (2000). Acquired nystagmus. Arch Ophthalmol 118:544–549.<br />

Stahl JS, Rottach KG, Averbuch-Heller L, et al. (1996). A pilot study of gabapent<strong>in</strong> as treatment for acquired<br />

nystagmus. <strong>Neuro</strong>-<strong>ophthalmology</strong> 16:107–113.<br />

Starck M, Albrecht H, Pollmann W, et al. (1997). Drug therapy for acquired pendular nystagmus <strong>in</strong> multiple<br />

sclerosis. J <strong>Neuro</strong>l 244:9–16.<br />

Stark KL, Gibson JB, Hertle RW, Brodsky MC. (2000). Ocular motor signs <strong>in</strong> an <strong>in</strong>fant with carbohydrate-deficient<br />

glycoprote<strong>in</strong> syndrome type 1a. Am J Ophthalmol 130:533–535.<br />

Stearns MQ, S<strong>in</strong>off SE, Rosenberg ML. (1993). Purely torsional nystagmus <strong>in</strong> a patient with stiff-man syndrome: a<br />

case report. <strong>Neuro</strong>logy 43:220.<br />

Stolz SE, Chatrian GE, Spence AM. (1991). Epileptic nystagmus. Epilepsia 32:910–918.<br />

Tabarki B, Palmer P, Lebon P, Sebire G. (1998). Spontaneous recovery of opsoclonus-myoclonus syndrome caused<br />

by enterovirus <strong>in</strong>fection. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 64:406–407.<br />

Talks SJ, Elston JS. (1997). Oculopalatal myoclonus: eye movement studies, MRI f<strong>in</strong>d<strong>in</strong>gs, and the difficulty of<br />

treatment. Eye 11:19–24.<br />

Tison F, Louvet-Giendaj C, Henry P, et al. (1992). Permanent bruxism as a manifestation of the oculo-facial<br />

syndrome related to systemic Whipple’s disease. Mov Disord 7:82–85.<br />

Tomsak RL, Remler BF, Averbuch-Heller L, et al. (1995). Unsatisfactory treatment of acquired nystagmus with<br />

retrobulbar <strong>in</strong>jection of botul<strong>in</strong>um tox<strong>in</strong>. Am J Ophthalmol 119:489–496.<br />

Toshniwal P, Yadava R, Goldbarg H. (1986). Presentation of p<strong>in</strong>ealoblastoma with ocular dipp<strong>in</strong>g and deafness.<br />

J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 6:128–136.<br />

Traccis S, Marras MA, Puliga MV, et al. (1997). Square-wave jerks and square wave oscillations: treatment with<br />

valproic acid. <strong>Neuro</strong>-<strong>ophthalmology</strong> 18:51–58.<br />

Traccis S, Rosati G, Monaco MF, et al. (1990). Successful treatment of acquired pendular elliptical nystagmus <strong>in</strong><br />

multiple sclerosis with isoniazid and base-out prisms. <strong>Neuro</strong>logy 40:492–494.<br />

Trobe JD, Sharpe JA, Hirsh DK, Gebarski SS. (1991). Nystagmus <strong>in</strong> Pelizaeus-Merzbacher disease. A magnetic<br />

search-coil study. Arch <strong>Neuro</strong>l 48:87–91.<br />

Troost BT, Janton F, Weaver R. (1990). Periodic alternat<strong>in</strong>g oscillopsia: a symptom of periodic alternat<strong>in</strong>g<br />

nystagmus abolished by baclofen. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:273–277.<br />

Tsuzaka K, Aimoto Y, M<strong>in</strong>ami N, Moriwaka F, Tashiro K. (1993). A case of primary <strong>in</strong>tracranial malignant<br />

lymphoma present<strong>in</strong>g as opsoclonus-myoclonus syndrome. R<strong>in</strong>sho Sh<strong>in</strong>keigaku 33:194–198.<br />

Tusa RJ, Kaplan PW, Ha<strong>in</strong> TC, Naidu S. (1990). Ipsiversive eye deviation and epileptic nystagmus. <strong>Neuro</strong>logy<br />

40:662–665.<br />

Tyler TD, Ruiz RS. (1990). Propranolol <strong>in</strong> the treatment of superior oblique myokymia. Arch Ophthalmol<br />

108:175–176.<br />

Van Stavern GP, Biousse V, Newman NJ, Le<strong>in</strong>gang JC. (2000). Downbeat nystagmus from heat stroke. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 69:403–404.<br />

Verhagen WIM, Huygen PLM, Nicolasen MCM. (1994). Pendular pseudonystagmus. <strong>Neuro</strong>logy 44:1188.<br />

Vers<strong>in</strong>o M, Mascolo A, Piccolo G, et al. (1999). Opsoclonus <strong>in</strong> a patient with cerebellar dysfunction. J <strong>Neuro</strong>ophthalmol<br />

19:229–231.<br />

Vigliani MC, Palmucci L, Polo P, et al. (2001). Paraneoplastic opsoclonus-myoclonus associated with renal cell<br />

carc<strong>in</strong>oma and responsive to tumour ablation. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 70:814–815.<br />

Von Herbay A, Ditton H-J, Schuhmacher F, Maiwald M. (1997). Whipple’s disease: Stag<strong>in</strong>g and monitor<strong>in</strong>g by<br />

cytology and polymerase cha<strong>in</strong> reaction analysis of cerebrosp<strong>in</strong>al fluid. Gastroenterology 113:434–441.<br />

Von Noorden GK, Sprunger DT. (1991). Large rectus muscle recession for the treatment of congenital nystagmus.<br />

Arch Ophthalmol 109:221–224.<br />

Wagner RS, Caputo AR, Reynolds RD. (1990). Nystagmus <strong>in</strong> Down’s syndrome. Ophthalmology 97:1439–1444.


Nystagmus and Other Ocular Oscillations 407<br />

Walker MF, Zee DS. (1999). The effect of hyperventilation on downbeat nystagmus <strong>in</strong> cerebellar disorders.<br />

<strong>Neuro</strong>logy 53:1576–1579.<br />

Waragai M, Takaya Y, Hayashi M. (1995). HTLV-1 associated myelopathy (HAM) with cerebellar atrophy<br />

present<strong>in</strong>g as down-beat nystagmus (Japanese). R<strong>in</strong>sho Sh<strong>in</strong>keigaku 35:549–552.<br />

Weider DJ, Ryder CJ, Stram JR. (1994). Benign paroxysmal positional vertigo: analysis of 44 cases treated by the<br />

canalith reposition<strong>in</strong>g procedure of Epley. Am J Otol 15:321–326.<br />

Wiest G, Safoschnik G, Schnaberth G, Mueller C. (1997). Ocular flutter and truncal ataxia may be associated with<br />

enterovius <strong>in</strong>fection. J <strong>Neuro</strong>l 244:288–292.<br />

Wol<strong>in</strong> MJ, Trent RG, Lav<strong>in</strong> PJM, Cornblath WT. (1996). Oculopalatal myoclonus after the one-and-a-half<br />

syndrome with facial nerve palsy. Ophthalmology 103:177–180.<br />

Yamamoto K, Fukusako T, Nogaki H, Morimatsu M. (1992). Multiple system atrophy with macro square wave<br />

jerks and pendular nystagmus (Japanese). R<strong>in</strong>sho Sh<strong>in</strong>keigaku 32:1261–1265.<br />

Yamazaki K, Katayama S, Ishihara T, Hirata K. (1994). A case of Fisher’s syndrome with upbeat nystagmus<br />

(Japanese). R<strong>in</strong>sho Sh<strong>in</strong>keigaku 34:489–492.<br />

Yaniglos SS, Leigh RJ. (1992). Ref<strong>in</strong>ement of an optical device that stabilizes vision <strong>in</strong> patients with nystagmus.<br />

Optom Vis Sci 69:447–450.<br />

Yee RD, Farlow MR, Suzuki DA, et al. (1992). Abnormal eye movements <strong>in</strong> Gerstmann-Straussler-Sche<strong>in</strong>ker<br />

disease. Arch Ophthalmol 110:68–74,178.<br />

Yen MT, Herdman SJ, Tusa RJ. (1999). Oscillopsia and pseudonystagmus <strong>in</strong> kidney transplant patients. Am J<br />

Opthalmol 128:768–770.<br />

Yokota T, Tsuchiya K, Yamane M, et al. (1991). Geotrophic ocular deviation with skew and absence of saccades <strong>in</strong><br />

Creutzfeldt-Jacob disease. J <strong>Neuro</strong>l Sci 106:175–178.<br />

Yoshimoto Y, Koyama S. (1991). A case of acquired nystagmus alternans associated with acute cerebellitis. Acta<br />

Otolaryngol Suppl 481:371–373.<br />

Young YH, Huang TW. (2001). Role of clonazepam <strong>in</strong> the treatment of idiopathic downbeat nystagmus.<br />

Laryngoscope 111:1490–1493.<br />

Young TL, Weis JR, Summers G, Egbert JE. (1997). The association of strabismus, amblyopia, and refractive errors<br />

<strong>in</strong> spasmus nutans. Ophthalmology 104:112–117.<br />

Yousry I, Dieterich M, Naidich TP, et al. (2002). Superior oblique myokymia: magnetic resonance imag<strong>in</strong>g support<br />

for the neurovascular compression hypothesis. <strong>An</strong>n <strong>Neuro</strong>l 51:361–368.<br />

Zubkov AA, Re<strong>in</strong>encke RD, Gottlob I, et al. (1990). Treatment of manifest latent nystagmus. Am J Ophthalmol<br />

110:160–167.<br />

Zubkov AA, Staark N, Weber A, et al. (1993). Improvement of visual acuity after surgery for nystagmus.<br />

Ophthalmology 100:1488–1497.


This page <strong>in</strong>tentionally left blank


18 r<br />

Ptosis<br />

Ptosis is present when the upper eyelid is less than 2 mm from the center of the pupil.<br />

The causes of ptosis may be classified as mechanical, neurogenic, myogenic, and<br />

neuromuscular junctional (Kersten, 1995; Oosterhuis, 1996).<br />

What Dist<strong>in</strong>guishes Ptosis from Pseudoptosis?<br />

A number of conditions may cause downward displacement of the eyelid without true<br />

ptosis (pseudoptosis). These conditions are listed <strong>in</strong> Table 18–1.<br />

What Is Blepharospasm or Hemifacial Spasm?<br />

Blepharospasm or hemifacial spasm may produce a pseudoptosis due to the <strong>in</strong>termittent<br />

(voluntary or <strong>in</strong>voluntary) closure (spasm) of the upper and lower eyelid(s)<br />

result<strong>in</strong>g from contraction of the orbicularis oculi muscles. The lid position dur<strong>in</strong>g the<br />

Table 18–1. Causes of Pseudoptosis<br />

Aberrant regeneration of the facial nerve<br />

<strong>An</strong>ophthalmic socket<br />

Apraxia of lid open<strong>in</strong>g<br />

Downgaze paralysis and pseudoblepharoptosis<br />

Blepharospasm or hemifacial spasm<br />

Hypertropia or hyperglobus (Kratky, 1992; Lyon, 1993; Meyer, 1991)<br />

Lid retraction <strong>in</strong> the contralateral eye<br />

Microphthalmia or phthisis bulbi<br />

Psychogenic pseudoptosis (all show depression of eyebrow on affected side) (Hop, 1997)<br />

409


410 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

periods without contraction of the orbicularis muscles is normal. Voluntary lid closure<br />

may create pseudoptosis and occur as a conversion reaction.<br />

What Is Apraxia of Eyelid Open<strong>in</strong>g?<br />

Apraxia of eyelid open<strong>in</strong>g is a supranuclear <strong>in</strong>ability to open the eyelids voluntarily.<br />

Spontaneous and reflex eyelid open<strong>in</strong>g are normal, and patients may manually open the<br />

lids or employ a head thrust as a compensatory movement.<br />

Aramideh et al correlated the cl<strong>in</strong>ical f<strong>in</strong>d<strong>in</strong>gs of apraxia of eye open<strong>in</strong>g with<br />

synchronous levator palpebrae (LP) and orbicularis oculi (Ooc) electromyographic<br />

(EMG) record<strong>in</strong>gs (Aramideh, 1995). EMG was characterized by either <strong>in</strong>termittent<br />

LP <strong>in</strong>hibition (ILPI) or a cont<strong>in</strong>uation of Ooc activity (Tozlovanu, 2001) follow<strong>in</strong>g<br />

voluntary closure of the eyes (pretarsal motor persistence [PMP]). This study demonstrated<br />

the follow<strong>in</strong>g:<br />

1. In some patients there may be <strong>in</strong>termittent <strong>in</strong>voluntary eye closure as a result of ILPI.<br />

Persistence of ILPI follow<strong>in</strong>g eye closure would <strong>in</strong>terfere with eye open<strong>in</strong>g. When<br />

there is no ILPI, these patients have no difficulty open<strong>in</strong>g their eyes at will follow<strong>in</strong>g<br />

voluntary closure.<br />

2. In other patients, closure of the eyes due to ILPI may activate Ooc. These patients<br />

have PMP <strong>in</strong> addition to ILPI and are unable to open their eyes at will follow<strong>in</strong>g<br />

voluntary closure.<br />

3. Patients who have PMP alone may be unable to open their eyes at will follow<strong>in</strong>g<br />

voluntary closure. Once open, the eyes do not have the tendency to close by<br />

themselves.<br />

Unilateral or bilateral hemispheric disease and extrapyramidal disease may produce<br />

apraxia of lid open<strong>in</strong>g. The etiologies of apraxia of eye open<strong>in</strong>g are listed <strong>in</strong> Table 18–2.<br />

What Is Hypertropia or Hyperglobus?<br />

Hypertropia or hyperglobus may result <strong>in</strong> an abnormal position of the eye under a<br />

normal eyelid. Fixation with the hypertropic eye may elim<strong>in</strong>ate the pseudoptosis.<br />

Likewise, contralateral eyelid retraction (e.g., thyroid eye disease) may produce an<br />

apparent ptosis <strong>in</strong> the fellow (normal) eye (Kratky, 1992; Lyon, 1993; Meyer, 1991).<br />

Is the Ptosis Acquired or Congenital?<br />

Ptosis may occur on a congenital or acquired basis. Long-stand<strong>in</strong>g isolated and static<br />

congenital ptosis with no other signs of systemic neurogenic (e.g., third nerve palsy),<br />

myogenic (e.g., chronic progressive external ophthalmoplegia), or neuromuscular<br />

disease (e.g., myasthenia gravis) does not require additional evaluation. Other forms<br />

of congenital nonisolated ptosis necessitate the same evaluation as the patients with<br />

acquired nonisolated ptosis. Table 18–3 lists the various forms of congenital ptosis.<br />

Congenital ptosis may be associated with other ocular and nonocular defects.<br />

Although children with congenital ptosis <strong>in</strong> isolation do not usually require any<br />

further evaluation, they may need amblyopia treatment or surgical therapy to avoid


Table 18–2. Etiologies of Apraxia of Eyelid Open<strong>in</strong>g<br />

Extrapyramidal disease<br />

Park<strong>in</strong>son’s disease<br />

MPTP-<strong>in</strong>duced park<strong>in</strong>sonism<br />

Progressive autosomal-dom<strong>in</strong>ant park<strong>in</strong>sonism and dementia<br />

with pallido-ponto-nigral degeneration<br />

Hunt<strong>in</strong>gton’s disease<br />

Multiple systems atrophy (e.g., Shy-Drager syndrome)<br />

Progressive supranuclear palsy<br />

Wilson’s disease<br />

<strong>Neuro</strong>acanthocytosis<br />

Cortical-basal ganglionic degeneration<br />

Adult-onset Hallervordan-Spatz syndrome<br />

Unilateral (especially nondom<strong>in</strong>ant hemisphere) or bilateral hemispheric lesions<br />

Focal <strong>in</strong>ferior and lateral frontal lobe cortical degeneration<br />

Motor neuron disease<br />

Post–bilateral stereotactic subthalamotomy<br />

Post–implantation of bilateral subthalamic nucleus electrical stimulators<br />

for Park<strong>in</strong>son’s disease<br />

Unilateral putam<strong>in</strong>al hemorrhage<br />

Isolated f<strong>in</strong>d<strong>in</strong>g (may be levodopa responsive)<br />

Source: Abe, 1995; Adair, 1995; Aramideh, 1995; Averbuch-Heller, 1998; Boghen, 1997;<br />

Dewey, 1994; Jancovic, 1995; Klostermann, 1997; Krack, 1994; Limous<strong>in</strong>, 1999; Nazarian,<br />

1998; Riley, 1990; Verghese, 1999; Wszolek, 1992.<br />

MPTP, 1-methyl-4-phenyl-1,2,3,6 tetrahydropyrid<strong>in</strong>e.<br />

Table 18–3. Congenital Ptosis<br />

Ptosis 411<br />

Isolated<br />

Nonisolated<br />

Associated other ocular defects<br />

Congenital cataracts<br />

Epicanthus<br />

Punctal abnormalities<br />

Refractive error=anisometropia<br />

Strabismus and amblyopia<br />

Associated nonocular defects (e.g., skeletal, central nervous system [CNS])<br />

Blepharophimosis syndrome<br />

Synk<strong>in</strong>etic ptosis (e.g., Marcus-Gunn jaw-w<strong>in</strong>k<strong>in</strong>g ptosis)<br />

Myogenic (e.g., congenital fibrosis)<br />

<strong>Neuro</strong>genic (e.g., third nerve palsy)<br />

<strong>Neuro</strong>muscular junction (e.g., myasthenia gravis)<br />

Comb<strong>in</strong>ed valproate and hydanto<strong>in</strong> embryopathy with anomalous septum pellucidum<br />

(Gigantelli, 2000)<br />

X-l<strong>in</strong>ked congenital isolated ptosis (McMullan, 2000, 2001)


412 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

amblyopia (Cibis, 1995; Gusek-Schneider, 2000; Hornblass, 1995; McCulloch, 1993;<br />

Steel, 1996). Intermittent lid retraction of a ptotic eyelid may occur dur<strong>in</strong>g chew<strong>in</strong>g,<br />

jaw movement, or suck<strong>in</strong>g <strong>in</strong> a child due to aberrant <strong>in</strong>nervation of the oculomotor<br />

(levator) and trigem<strong>in</strong>al nerves (the Marcus-Gunn jaw w<strong>in</strong>k<strong>in</strong>g phenomenon). No<br />

evaluation is required <strong>in</strong> children with the jaw-w<strong>in</strong>k<strong>in</strong>g phenomenon (class IV, level<br />

C). Patients with acquired forms of ptosis should undergo further diagnostic evaluation<br />

(class III–IV, level B).<br />

Is the Ptosis Isolated or Nonisolated?<br />

A nonisolated acquired ptosis is def<strong>in</strong>ed as ptosis associated with other f<strong>in</strong>d<strong>in</strong>gs that<br />

may suggest a specific etiology as listed <strong>in</strong> Table 18–4.<br />

Is the Ptosis Due to Mechanical Causes?<br />

<strong>An</strong>y mechanical disturbance of the upper eyelid may result <strong>in</strong> ptosis. Mechanical causes<br />

of ptosis are listed <strong>in</strong> Table 18–5. Patients with an underly<strong>in</strong>g mechanical ptosis that<br />

might be due to an underly<strong>in</strong>g mass or <strong>in</strong>filtrative lesion should undergo imag<strong>in</strong>g of the<br />

orbit (e.g., magnetic resonance imag<strong>in</strong>g of the head and orbit with fat suppression and<br />

gadol<strong>in</strong>ium contrast) (class IV, level C).<br />

Is the Ptosis Due to Myogenic Causes?<br />

Chronic progressive external ophthalmoplegia (CPEO) <strong>in</strong>cludes a spectrum of disorders<br />

that may result <strong>in</strong> a syndrome of pa<strong>in</strong>less, pupil-spar<strong>in</strong>g, slowly progressive, and<br />

generally symmetric ophthalmoplegia. One subset of CPEO, the Kearns-Sayre<br />

syndrome, is characterized by the cl<strong>in</strong>ical triad of early-onset (usually before the age<br />

of 20 years) CPEO, pigmentary degeneration of the ret<strong>in</strong>a, and cardiac abnormalities<br />

(e.g., <strong>in</strong>traventricular conduction defects, bundle branch block, and complete heart<br />

block). Other features of Kearns-Sayre syndrome are elevation of cerebrosp<strong>in</strong>al fluid<br />

prote<strong>in</strong>, other neurologic dysfunction (e.g., cerebellar, auditory, and vestibular dysfunction),<br />

cognitive dysfunction, short stature, and developmental delay. Muscle biopsy<br />

may show ‘‘ragged red fibers’’ or other changes <strong>in</strong> mitochondria (Gross-Jendroska, 1992;<br />

Simonsz, 1992). Pathologic exam<strong>in</strong>ation of the bra<strong>in</strong> may demonstrate spongiform<br />

degeneration.<br />

Table 18–4. Etiologies of Nonisolated Ptosis<br />

Mechanical (e.g., lid mass, <strong>in</strong>fection, or <strong>in</strong>flammation)<br />

Myogenic (e.g., external ophthalmoplegia)<br />

<strong>Neuro</strong>genic (e.g., ocular motor deficit and=or diplopia, other neurologic f<strong>in</strong>d<strong>in</strong>gs,<br />

Horner’s syndrome)<br />

<strong>Neuro</strong>muscular junction disease (e.g., signs of myasthenia gravis such as fatigue,<br />

enhancement, variability, Cogan’s lid twitch sign)


Table 18–5. Mechanical Causes of Ptosis<br />

Other systemic and ocular myopathies may cause ptosis but are usually associated<br />

with myopathic signs and symptoms due to <strong>in</strong>volvement of extraocular and other<br />

muscles (Parmeggiani, 1992). Detailed discussion of these myogenic forms of ptosis is<br />

beyond the scope of this text. Myopathies that may cause ptosis are listed <strong>in</strong> Table 18–6.<br />

Is the Ptosis Due to a <strong>Neuro</strong>genic Cause?<br />

Ptosis 413<br />

Redundant sk<strong>in</strong> or fat on the upper eyelid (e.g., dermatochalasis)<br />

Tumors or cysts of the conjunctiva or eyelid (Avisar, 1991)<br />

Infection (e.g., preseptal or orbital cellulitis)<br />

Cicatricial scarr<strong>in</strong>g (e.g., posttraumatic, postsurgical, or post<strong>in</strong>flammatory) (S<strong>in</strong>gh, 1997)<br />

Inflammation and edema<br />

Graves’ disease<br />

Blepharochalasis<br />

Dermatomyositis<br />

Infiltration<br />

Amyloid<br />

Sarcoid<br />

Neoplastic (e.g., breast cancer) (Po, 1996)<br />

Waldenström’s macroglobul<strong>in</strong>emia (Klapper, 1998)<br />

Primary or metastatic tumors or orbital pseudotumor (Kersten, 1995; Po, 1996)<br />

<strong>Neuro</strong>fibroma<br />

Hemangioma<br />

Dermoid<br />

Lymphoma<br />

Contact lenses related (Kersten, 1995; Levy, 1992; van der Bosch, 1992)<br />

Foreign body reaction<br />

Giant papillary conjunctivitis (GPC)<br />

Contact lens migration (Patel, 1998)<br />

Dis<strong>in</strong>sertion of the levator from excessive eyelid manipulation<br />

The neurogenic causes of ptosis are listed <strong>in</strong> Table 18–7. Denervation of the levator<br />

muscle due to a third nerve palsy may result <strong>in</strong> partial or complete ptosis. Levator<br />

excursion is decreased <strong>in</strong> all of these patients. As noted <strong>in</strong> Chapter 11, nuclear third<br />

nerve palsies result <strong>in</strong> bilateral ptosis or no ptosis because both levator muscles are<br />

<strong>in</strong>nervated by a s<strong>in</strong>gle central caudal nucleus. This type of ptosis is usually associated<br />

with other features of a third nerve palsy (e.g., pupil <strong>in</strong>volvement, extraocular muscle<br />

dysfunction), but may rarely occur with other m<strong>in</strong>imal third nerve signs (Good, 1990;<br />

Mart<strong>in</strong>, 1996). Midbra<strong>in</strong> lesions may result <strong>in</strong> ptosis with or without downgaze<br />

paralysis, fatigable ptosis (Kao, 1999; Ragge, 1992), or pseudoptosis (Galetta, 1993;<br />

Johnson, 1992; Lagreze, 1996; Tomecek, 1994).<br />

Ptosis and ipsilateral miosis may be due to a Horner’s syndrome. The associated<br />

features of the Horner’s syndrome are discussed <strong>in</strong> more detail <strong>in</strong> Chapter 20.


414 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 18–6. Myopathies Associated with Ptosis<br />

Chronic progressive external ophthalmoplegia (Rowland, 1997)<br />

Congenital fibrosis (Engle, 1995; Gillies, 1995; Tandon, 1993)<br />

Congenital myopathy<br />

Central core myopathy<br />

Centronuclear myopathy<br />

Multicore myopathy<br />

Nemal<strong>in</strong>e myopathy<br />

Fiber-type disproportion (Ohtaki, 1990)<br />

Congenital muscular dystrophy<br />

Diabetes (possibly due to hypoxia to levator)<br />

Familial periodic paralysis<br />

Myotonia congenita and myotonic dystrophy (Ashizawa, 1992)<br />

Oculopharyngeal dystrophy (Blumen, 1993; Lacomis, 1991; Rowland, 1997)<br />

Rapidly progressive adolescent-onset oculopharyngeal somatic syndrome with<br />

rimmed vacuoles (Rose, 1997)<br />

Inflammatory and <strong>in</strong>filtrative myopathies<br />

Hypothyroid myopathy<br />

Table 18–7. <strong>Neuro</strong>genic Conditions Associated with Ptosis<br />

Third nerve palsy<br />

With or without partial or complete ophthalmoplegia (Tummala, 2001)<br />

With or without aberrant regeneration<br />

Alternat<strong>in</strong>g ptosis <strong>in</strong> abetalipoprote<strong>in</strong>emia<br />

Bra<strong>in</strong>stem <strong>in</strong>farct (Mihaescu, 2000; Saeki, 2000)<br />

Horner’s syndrome<br />

Fisher syndrome (Al-D<strong>in</strong>, 1994; Berlit, 1992; Ishikawa, 1990; Mori, 2001; Yip, 1991)<br />

Acute <strong>in</strong>flammatory polyradiculoneuropathy (Guilla<strong>in</strong>-Barré syndrome)<br />

Chronic <strong>in</strong>flammatory polyradiculoneuropathy (CIDP)<br />

Cerebral ptosis (Afifi, 1990; Averbuch-Heller, 1996, 2002; Barton, 1995; Zachariah, 1994)<br />

Cerebellar ptosis follow<strong>in</strong>g craniovertebral decompression of Chiari I malformation<br />

(Holly, 2001)<br />

M<strong>in</strong>or head trauma <strong>in</strong> patient with chronic hydrocephalus (supranuclear ptosis)<br />

(Suzuki, 2000)<br />

Putam<strong>in</strong>al hemorrhage (Verghese, 1999)<br />

Paradoxic supranuclear <strong>in</strong>hibition of levator tonus<br />

Seizure-<strong>in</strong>duced<br />

Thiam<strong>in</strong>e deficiency<br />

Wernicke’s disease<br />

Recurrent isolated ptosis (last<strong>in</strong>g 6 to 10 weeks) <strong>in</strong> presumed ophthalmoplegic migra<strong>in</strong>e of<br />

childhood (Stidham, 2000)<br />

Relaps<strong>in</strong>g alternat<strong>in</strong>g ptosis (episodes last<strong>in</strong>g days)—reported <strong>in</strong> two sibl<strong>in</strong>gs (Sieb, 2000)


The Fisher variant of Guilla<strong>in</strong>-Barré syndrome may present with supranuclear ptosis<br />

ophthalmoplegia, ataxia, and areflexia (Al-D<strong>in</strong>, 1994; Berlit, 1992; Ishikawa, 1990;<br />

Yip, 1991).<br />

Unilateral or bilateral hemispheric dysfunction (e.g., stroke, arteriovenous malformation,<br />

seizure) may produce ptosis (Afifi, 1990; Averbuch-Heller, 1996, 2002; Barton, 1995;<br />

Zachariah, 1994).<br />

Is <strong>Neuro</strong>muscular Junction Disease<br />

Responsible for the Ptosis?<br />

Myasthenia gravis may result <strong>in</strong> a ptosis that is often variable and may worsen after<br />

susta<strong>in</strong>ed effort or fatigue. Fatigable ptosis, however, has been reported <strong>in</strong> patients with<br />

<strong>in</strong>tracranial etiologies (e.g., hematoma, metastasis) (Kao, 1999). As noted <strong>in</strong> Chapter 15,<br />

myasthenia gravis may result <strong>in</strong> ptosis with or without other extraocular muscle<br />

dysfunction. Other rare causes of neuromuscular junction ptosis <strong>in</strong>clude wound<br />

botulism, Eaton-Lambert syndrome (Brazis, 1997), and topical neuromuscular blockade<br />

(e.g., topical timolol). We recommend that myasthenia gravis be considered <strong>in</strong> every<br />

case of unexpla<strong>in</strong>ed, pa<strong>in</strong>less, unilateral or bilateral ptosis with or without ophthalmoplegia<br />

(class IV, level C).<br />

What Are the Causes of Isolated Ptosis?<br />

The causes of isolated ptosis <strong>in</strong>clude congenital ptosis, trauma (<strong>in</strong>clud<strong>in</strong>g surgery),<br />

steroid-<strong>in</strong>duced ptosis, and aponeurotic ptosis.<br />

Is the Ptosis Secondary to Trauma?<br />

Trauma may damage the sk<strong>in</strong>, soft tissues, muscles, levator complex, or nerve supply of<br />

the eyelid (Keane, 1993). Surgical trauma and=or myotoxicity from the local anesthetic<br />

agents dur<strong>in</strong>g orbital or ocular (<strong>in</strong>clud<strong>in</strong>g strabismus, ret<strong>in</strong>al, corneal, cataract, glaucoma,<br />

and refractive) surgery may also damage the eyelid structures and cause ptosis<br />

(Feibel, 1993; Liu, 1992; Loeffler, 1990; Ropo, 1992). Kaplan et al performed a prospective<br />

analysis of ptosis and cataract surgery, and found that trauma to the superior rectus<br />

complex was the most critical factor (Kaplan, 1985).<br />

Table 18–8. <strong>Cl<strong>in</strong>ical</strong> Features of Aponeurotic<br />

Ptosis<br />

Acquired<br />

Good to excellent levator function ( > 12 mm)<br />

Elevated or absent lid crease<br />

Th<strong>in</strong>n<strong>in</strong>g of the eyelid above the tarsus<br />

Bilateral but may be unilateral or asymmetric<br />

Elderly population<br />

Ptosis 415


416 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 18–1. Evaluation of ptosis.


Is the Ptosis Steroid Induced?<br />

Topical steroids have been implicated <strong>in</strong> some cases of ptosis. Discont<strong>in</strong>uation of the<br />

steroids may reverse the ptosis <strong>in</strong> these cases.<br />

Is Aponeurotic Ptosis Present?<br />

Levator aponeurosis th<strong>in</strong>n<strong>in</strong>g and=or dehiscence may occur as a result of trauma,<br />

surgery, lid swell<strong>in</strong>g, patch<strong>in</strong>g, or, most commonly, as an age-related phenomenon<br />

(Frueh, 1996; Liu, 1993; Older, 1995). The characteristic features of aponeurotic ptosis are<br />

listed <strong>in</strong> Table 18–8.<br />

Patients with aponeurotic ptosis may have significant ptosis <strong>in</strong> downgaze more than<br />

primary position (Dryden, 1992; Wojno, 1993). In the absence of f<strong>in</strong>d<strong>in</strong>gs to suggest<br />

mechanical, neurogenic, myogenic, or neuromuscular etiologies for ptosis, no further<br />

evaluation is necessary. Superior visual field loss may occur due to ptosis and may be an<br />

<strong>in</strong>dication for surgical correction. The surgical treatment of aponeurotic ptosis is well<br />

described <strong>in</strong> the literature and is not reviewed here (Frueh, 1996; Liu, 1993; Older, 1995).<br />

Aponeurotic ptosis does not require any neuroimag<strong>in</strong>g (class III–IV, level B).<br />

<strong>An</strong> approach to the evaluation of ptosis is outl<strong>in</strong>ed <strong>in</strong> Figure 18–1.<br />

References<br />

Ptosis 417<br />

Abe K, Fujimura H, Tatsumi C, et al. (1995). Eyelid ‘‘apraxia’’ <strong>in</strong> patients with motor neuron disease. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 59:629.<br />

Adair JC, Williamson DJG, Heilman KM. (1995). Eyelid open<strong>in</strong>g apraxia <strong>in</strong> focal cortical degeneration. J. <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 58:508–509.<br />

Afifi AK, Corbett JJ, Thompson HS, Wells KK. (1990). Seizure-<strong>in</strong>duced miosis and ptosis: association with<br />

temporal lobe magnetic resonance imag<strong>in</strong>g abnormalities. J Child <strong>Neuro</strong>l 5:142–146.<br />

Al-D<strong>in</strong> AN, <strong>An</strong>derson M, Eeg-Olofsson O, et al. (1994). <strong>Neuro</strong>-ophthalmic manifestations of the syndrome of<br />

ophthalmoplegia, ataxia, and areflexia. A review. Acta <strong>Neuro</strong>l Scand 89:157–163.<br />

Aramideh M, Ongerboer de Visser BW, Koelman JHTM, Speelman JD. (1995). Motor persistence of orbicularis<br />

oculi muscle <strong>in</strong> eyelid-open<strong>in</strong>g disorders. <strong>Neuro</strong>logy 45:897–902.<br />

Ashizawa T, Hejtmancki JF, Liu J, Perryman MB, Epste<strong>in</strong> MF, Koch DD. (1992). Diagnostic value of ophthalmologic<br />

f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> myotonic dystrophy: comparison with risks calculated by haplotype analysis of closely<br />

l<strong>in</strong>ked restriction fragment length polymorphisms. Am J Med Genet 42:55–60.<br />

Averbuch-Heller L, Helmchen C, Horn AKE, et al. (1998). Slow vertical saccades <strong>in</strong> motor neuron disease:<br />

correlation of structure and function. <strong>An</strong>n <strong>Neuro</strong>l 44:641–648.<br />

Averbuch-Heller L, Leigh RJ, Mermelste<strong>in</strong> V, et al. (2002). Ptosis <strong>in</strong> patients with hemispheric stroke. <strong>Neuro</strong>logy<br />

58:620–624.<br />

Averbuch-Heller L, Stahl JS, Remler BR, Leigh RJ. (1996). Bilateral ptosis and upgaze palsy with right hemispheric<br />

lesions. <strong>An</strong>n <strong>Neuro</strong>l 40:465–468.<br />

Avisar R, Leshem Y, Savir H. (1991). Unilateral congenital ptosis due to plexiform neurofibroma, caus<strong>in</strong>g<br />

refraction error and secondary amblyopia. Metab Pediatr Syst Ophthalmol 14:62–63.<br />

Barton JJ, Kardon RH, Slagel D, Thompson HS. (1995). Bilateral central ptosis <strong>in</strong> acquired immunodeficiency<br />

syndrome (review). Can J <strong>Neuro</strong>l Sci 22:52–55.<br />

Berlit P, Rakicky J. (1992). The Miller Fisher syndrome: review of the literature. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:57–63.<br />

Blumen SC, Nisipeanu P, Sadeh M, Asherov A, Tome F, Korczyn AD. (1993). <strong>Cl<strong>in</strong>ical</strong> features of oculopharyngeal<br />

muscular dystrophy among Bukhara Jews. <strong>Neuro</strong>musc Dis 3:575–577.<br />

Boghen D. (1997). Apraxia of lid open<strong>in</strong>g: a review. <strong>Neuro</strong>logy 48:1491–1503.<br />

Brazis PW. (1997). Enhanced ptosis <strong>in</strong> Lambert-Eaton myasthenic syndrome. J <strong>Neuro</strong>-ophthalmol 17:202–203.


418 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Cibis GW, Fitzgerald KM. (1995). Amblyopia <strong>in</strong> unilateral congenital ptosis: early detection by sweep visual<br />

evoked potential. Graefes Arch Cl<strong>in</strong> Exp Ophthalmol 233:605–609.<br />

Dewey RB Jr, Maraganore DM. (1994). Isolated eyelid open<strong>in</strong>g apraxia: report of a new levodopa-responsive<br />

syndrome. <strong>Neuro</strong>logy 44:1752–1754.<br />

Dryden RM, Kahanic DA. (1992). Worsen<strong>in</strong>g of blepharoptosis <strong>in</strong> downgaze. Ophthalmic Plast Reconstr Surg<br />

8:126–129.<br />

Engle EC, Marondel I, Houtman WA, et al. (1995). Congenital fibrosis of the extraocular muscles (autosomal<br />

dom<strong>in</strong>ant congenital external ophthalmoplegia): genetic homogeneity, l<strong>in</strong>kage ref<strong>in</strong>ement, and physical<br />

mapp<strong>in</strong>g on chromosome 12. Am J Hum Genet 57:1086–1094.<br />

Feibel RM, Custer PL, Gordon MO. (1993). Postcataract ptosis: a randomized, double-masked comparison of<br />

peribulbar and retrobulbar anesthesia. Ophthalmology 100:660–665.<br />

Frueh BR, Musch DC. (1996). Evaluation of levator muscle <strong>in</strong>tegrity <strong>in</strong> ptosis with levator force measurement.<br />

Ophthalmology 103:244–250.<br />

Galetta SL, Gray LG, Raps EC, Grossman RI, Schatz NJ. (1993). Unilateral ptosis and contralateral eyelid<br />

retraction from a thalamic-midbra<strong>in</strong> <strong>in</strong>farction. Magnetic resonance imag<strong>in</strong>g correlation. J Cl<strong>in</strong> <strong>Neuro</strong>ophthalmol<br />

13:221–224.<br />

Gigantelli JW, Braddock SR, Johnson LN. (2000). Blepharoptosis and central nervous system abnormalities <strong>in</strong><br />

comb<strong>in</strong>ed valproate and hydanto<strong>in</strong> embryopathy. Ophthalmic Plast Reconstr Surg 16:52–54.<br />

Gillies WE, Harris AJ, Brooks AM, Rivers MR, Wolfe RJ. (1995). Congenital fibrosis of the vertically act<strong>in</strong>g<br />

extraocular muscles. A new group of dom<strong>in</strong>antly <strong>in</strong>herited ocular fibrosis with radiologic f<strong>in</strong>d<strong>in</strong>gs.<br />

Ophthalmology 102:607–612.<br />

Good EF. (1990). Ptosis as the sole manifestation of compression of the oculomotor nerve by an aneurysm of the<br />

posterior communicat<strong>in</strong>g artery. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:59–61.<br />

Gross-Jendroska M, Schatz H, McDonald HR, Johnson RN. (1992). Kearns-Sayre syndrome: a case report and<br />

review (review). Eur J Ophthalmol 2:15–20.<br />

Gusek-Schneider GC, Martus P. (2000). Stimulus deprivation amblyopia <strong>in</strong> human congenital ptosis: a study of<br />

100 patients. Strabismus 8:261–270.<br />

Holly LT, Batzdorf U. (2001). Management of cerebellar ptosis follow<strong>in</strong>g craniovertebral decompression for Chiari<br />

I malformation. J <strong>Neuro</strong>surg 94:21–26.<br />

Hop JW, Frijns CJ, van Gijn J. (1997). Psychogenic pseudoptosis. J <strong>Neuro</strong>l 244:623–624.<br />

Hornblass A, Kass LG, Ziffer AJ. (1995). Amblyopia <strong>in</strong> congenital ptosis. Ophthalmic Surg 26:334–337.<br />

Ishikawa H, Wakakura M, Ishikawa S. (1990). Enhanced ptosis <strong>in</strong> Fisher’s syndrome after Epste<strong>in</strong>-Barr virus<br />

<strong>in</strong>fection. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:197–200.<br />

Jancovic J. (1995). Apraxia of lid open<strong>in</strong>g. Mov Disord 10:5.<br />

Johnson LN, Castro D. (1992). Monocular elevation paresis and <strong>in</strong>complete ptosis due to midbra<strong>in</strong> <strong>in</strong>farction<br />

<strong>in</strong>volv<strong>in</strong>g the fascicular segment of the oculomotor nerve (letter). J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:73.<br />

Kao Y-F, Lan M-Y, Chou M-S, Chen W-H. (1999). Intracranial fatigable ptosis. J <strong>Neuro</strong>-Ophthalmol 19:257–259.<br />

Kaplan LJ, Jaffe NS, Clayman HM. (1985). Ptosis and cataract surgery. A multivariant computer analysis of a<br />

prospective study. Ophthalmology 92:237–242.<br />

Keane JR. (1993). Ptosis and levator paralysis caused by orbital roof fractures. Three cases with subfrontal epidural<br />

hematomas. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:225–228.<br />

Kersten RC, De Concillis C, Kulw<strong>in</strong> DR. (1995). Acquired ptosis <strong>in</strong> the young and middle-aged adult population.<br />

Ophthalmology 102:924–928.<br />

Klapper SR, Jordan DR, Pelletier C, et al. (1998). Ptosis <strong>in</strong> Waldenstrom’s macroglobul<strong>in</strong>emia. Am J Ophthalmol<br />

126:315–317.<br />

Klostermann W, Viereege P, Kömpf D. (1997). Apraxia of eyelid open<strong>in</strong>g after bilateral stereotaxic subthalamotomy.<br />

J <strong>Neuro</strong>-Ophthalmol 17:122–123.<br />

Krack P, Marion MH. (1994). ‘‘Apraxia of lid open<strong>in</strong>g,’’ a focal dystonia: cl<strong>in</strong>ical study of 32 patients. Mov Disord<br />

9:610–615.<br />

Kratky V, Harvey JT. (1992). Tests for contralateral pseudoretraction <strong>in</strong> blepharoptosis. Ophthalmic Plast Reconstr<br />

Surg 8:22–25.<br />

Lacomis D, Kupsky WJ, Kuban KK, Specht LA. (1991). Childhood onset oculopharyngeal muscular dystrophy.<br />

Pediatr <strong>Neuro</strong>l 7:382–384.<br />

Lagreze WD, Warner JE, Zamani AA, Gouras GK, Koralnik IJ, Bienfang DC. (1996). Mesencephalic clefts with<br />

associated eye movement disorders. Arch Ophthalmol 114:429–432.<br />

Levy B, Stamper RL. (1992). Acute ptosis secondary to contact lens wear. Optom Vis Sci 69:565–566.<br />

Limous<strong>in</strong> P, Krack P, Pollak P, et al. (1998). Electrical stimulation of the subthalamic nucleus <strong>in</strong> advanced<br />

Park<strong>in</strong>son’s disease. N Engl J Med 339:1105–1111.


Ptosis 419<br />

Liu D. (1993). Ptosis repair by s<strong>in</strong>gle suture aponeurotic tuck. Surgical technique and long-term results.<br />

Ophthalmology 100:251–259.<br />

Liu D, Bachynski BN. (1992). Complete ptosis as a result of removal of epibulbar lipodermoid. Ophthalmic Plast<br />

Reconstr Surg 8:134–136.<br />

Loeffler M, Solomon LD, Renaud M. (1990). Postcataract extraction ptosis: effect of the bridle suture. J Cataract<br />

Refract Surg 16:501–504.<br />

Lyon DB, Gonner<strong>in</strong>g RS, Dorztbach RK, Lemke BN. (1993). Unilateral ptosis and eye dom<strong>in</strong>ance. Ophthalmic Plast<br />

Reconstr Surg 9:237–240.<br />

Mart<strong>in</strong> JJ Jr, Tenzel RR. (1992). Acquired ptosis: dehiscences and dis<strong>in</strong>sertions. Are they real or iatrogenic?<br />

Ophthalmic Plast Reconstr Surg 8:130–132.<br />

Mart<strong>in</strong> TJ, Corbett JJ, Babikian PV, et al. (1996). Bilateral ptosis due to mesencephalic lesions with relative<br />

preservation of ocular motility. J <strong>Neuro</strong>-Ophthalmol 16:258–263.<br />

McCulloch DL, Wright KW. (1993). Unilateral congenital ptosis: compensatory head postur<strong>in</strong>g and amblyopia.<br />

Ophthalmic Plast Reconstr Surg 9:196–200.<br />

McMullan TF, Coll<strong>in</strong>s AR, Tyers AG, Rob<strong>in</strong>son DO. (2000). A novel X-l<strong>in</strong>ked dom<strong>in</strong>ant condition: X-l<strong>in</strong>ked<br />

congenital isolated ptosis. Am J Hum Genet 66:1455–1460.<br />

McMullan TF, Tyers AG. (2001). X-l<strong>in</strong>ked dom<strong>in</strong>ant congenital isolated bilateral ptosis: the def<strong>in</strong>ition and<br />

characterization of a new condition. Br J Ophthalmol 85:70–73.<br />

Meyer DR, Wobig JL. (1991). Detection of contralateral eyelid retraction associated with blepharoptosis.<br />

Ophthalmology 98:366–375.<br />

Mihaescu M, Brillman J, Rothfus W. (2000). Midbra<strong>in</strong> ptosis caused by periaqueductal <strong>in</strong>farct follow<strong>in</strong>g cardiac<br />

catheterization: early detection with diffusion-weighted imag<strong>in</strong>g. J <strong>Neuro</strong>imag<strong>in</strong>g 10:187–189.<br />

Mori M, Kuwabara S, Fukutake T, et al. (2001). <strong>Cl<strong>in</strong>ical</strong> features and prognosis of Miller Fisher syndrome.<br />

<strong>Neuro</strong>logy 56:1104–1106.<br />

Nazarian SM, Amiri M. (1998). Apraxia of eyelid open<strong>in</strong>g <strong>in</strong> right hemisphere stroke. <strong>Neuro</strong>-<strong>ophthalmology</strong> 20:25.<br />

Ohtaki E, Yamaguch Y, Yamashita Y, et al. (1990). Complete external ophthalmoplegia <strong>in</strong> a patient with congenital<br />

myopathy without specific features (m<strong>in</strong>imal change myopathy). Bra<strong>in</strong> Dev 12:427–430.<br />

Older JJ. (1995). Ptosis repair and blepharoplasty <strong>in</strong> the adult (review). Ophthalmic Surg 26:304–308.<br />

Oosterhuis HJ. (1996). Acquired blepharoptosis. Cl<strong>in</strong> <strong>Neuro</strong>l <strong>Neuro</strong>surg 98:1–7.<br />

Parmeggiani A, Posar A, Leonardi M, Rossi PG. (1992). <strong>Neuro</strong>logical impairment <strong>in</strong> congenital bilateral ptosis<br />

with ophthalmoplegia. Bra<strong>in</strong> Dev 14:107–109.<br />

Patel NP, Sav<strong>in</strong>o PJ, We<strong>in</strong>berg DA. (1998). Unilateral eyelid ptosis and a red eye. Surv Ophthalmol 43:182–187.<br />

Po SM, Custer PL, Smith ME. (1996). Bilateral lagophthalmos. <strong>An</strong> unusual presentation of metastatic breast<br />

carc<strong>in</strong>oma. Arch Ophthalmol 114:1139–1141.<br />

Ragge NK, Hoyt WF. (1992). Midbra<strong>in</strong> myasthenia: fatiguable ptosis, lid twitch sign, and ophthalmoparesis from<br />

a dorsal midbra<strong>in</strong> glioma. <strong>Neuro</strong>logy 42:917–919.<br />

Riley DE, Lang AE, Lewis A, et al. (1990). Cortical-basal ganglionic degeneration. <strong>Neuro</strong>logy 40:1203–1212.<br />

Ropo A, Ruusuvaara P, Nikki P. (1992). Ptosis follow<strong>in</strong>g periocular or general anesthesia <strong>in</strong> cataract surgery. Acta<br />

Ophthalmol 70:262–265.<br />

Rose M, Landon D, Papadimitrious A, et al. (1997). A rapidly progressive adolescent-onset oculopharyngeal<br />

somatic syndrome with rimmed vacuoles <strong>in</strong> two sibl<strong>in</strong>gs. <strong>An</strong>n <strong>Neuro</strong>l 41:25–31.<br />

Rowland LP, Hirano M, DiMauro S, Schon EA. (1997). Oculopharyngeal muscular dystrophy, other ocular<br />

myopathies, and progressive external ophthalmoplegia. <strong>Neuro</strong>mus Disord 7(suppl 1):S15–S21.<br />

Saeki N, Yamaura A, Sunami K. (2000). Bilateral ptosis with pupil spar<strong>in</strong>g because of a discrete midbra<strong>in</strong> lesion:<br />

magnetic resonance imag<strong>in</strong>g evidence of topographic arrangement with<strong>in</strong> the oculomotor nerve. J <strong>Neuro</strong>ophthalmol<br />

20:130–134.<br />

Sieb JP, Hartmann A. (2000). Relaps<strong>in</strong>g alternat<strong>in</strong>g ptosis <strong>in</strong> two sibl<strong>in</strong>gs. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 69:282–283.<br />

Simonsz HJ, Barlocher K, Rotig A. (1992). Kearns-Sayre syndrome develop<strong>in</strong>g <strong>in</strong> a boy who survived Pearson’s<br />

syndrome caused by mitochondrial DNA deletion. Doc Ophthalmol 82:73–79.<br />

S<strong>in</strong>gh SK, Sekhar GC, Gupta S. (1997). Etiology of ptosis after cataract surgery. J Cataract Refract Surg<br />

23:1409–1413.<br />

Steel DH, Harrad RA. (1996). Unilateral congenital ptosis with ipsilateral superior rectus muscle overaction.<br />

Am J Ophthalmol 122:550–556.<br />

Stidham DB, Butler IJ. (2000). Recurrent isolated ptosis <strong>in</strong> presumed ophthalmoplegic migra<strong>in</strong>e of childhood.<br />

Ophthalmology 107:1476–1478.<br />

Suzuki H, Matsubara T, Kanamaru K, Kojima T. (2000). Chronic hydrocephalus present<strong>in</strong>g with bilateral ptosis<br />

after m<strong>in</strong>or head <strong>in</strong>jury: case report. <strong>Neuro</strong>surgery 47:977–980.


420 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Tandon RK, Burke JP, Strachan IM. (1993). Unilateral congenital fibrosis syndrome present<strong>in</strong>g with hypertropia.<br />

Acta Ophthalmol 71:860–862.<br />

Tomecek FJ, Morgan JK. (1994). Ophthalmoplegia with bilateral ptosis secondary to midbra<strong>in</strong> hemorrhage. A case<br />

with cl<strong>in</strong>ical and radiologic correlation. Surg <strong>Neuro</strong>l 41:131–136.<br />

Tozlovanu V, Forget R, Iancu A, Boghen D. (2001). Prolonged orbicularis oculi activity. A major factor <strong>in</strong> apraxia of<br />

lid open<strong>in</strong>g. <strong>Neuro</strong>logy 57:1013–1018.<br />

Tummala RP, Harrison A, Madison MT, Nussbaum ES. (2001). Pseudomyasthenia result<strong>in</strong>g from a posterior<br />

carotid artery wall aneurysm—a novel presentation: case report. <strong>Neuro</strong>surgery 49:1466–1469.<br />

van der Bosch WA, Lemij HG. (1992). Blepharoptosis <strong>in</strong>duced by prolonged hard contact lens wear. Ophthalmology<br />

99:1759–1765.<br />

Verghese J, Mill<strong>in</strong>g C, Rosenbaum DM. (1999). Ptosis, blepharospasm, and apraxia of eyelid open<strong>in</strong>g secondary to<br />

putam<strong>in</strong>al hemorrhage. <strong>Neuro</strong>logy 53:652.<br />

Wojno TH. (1993). Downgaze ptosis. Ophthalmic Plast Reconstr Surg 9:83–89.<br />

Wszolek ZK, Pfeiffer RF, Bhatt MH, et al. (1992). Rapidly progressive autosomal dom<strong>in</strong>ant park<strong>in</strong>sonism and<br />

dementia with pallido-ponto-nigral degeneration. <strong>An</strong>n <strong>Neuro</strong>l 32:31–320.<br />

Yip PK. (1991). Bilateral ptosis, ataxia and areflexia—a variant of Fisher’s syndrome (letter). J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 54:1121.<br />

Zachariah SB, Wilson MC, Zachariah B. (1994). Bilateral lid ptosis on a supranuclear basis <strong>in</strong> the elderly. JAm<br />

Geriatr Soc 42:215–217.


19 r<br />

Lid Retraction and Lid Lag<br />

What Is the <strong>An</strong>atomy of the Eyelids and What<br />

Bra<strong>in</strong>stem Structures Control Lid Elevation?<br />

In normal adults, the upper lid just covers the superior cornea (1–2 mm) and the lower<br />

lid lies slightly below the <strong>in</strong>ferior corneal marg<strong>in</strong>. Eyelid elevation occurs with<br />

contraction of the levator palpebrae superioris (LPS) muscle <strong>in</strong>nervated by the oculomotor<br />

nerve. Accessory muscles <strong>in</strong>clude Müller’s muscle (sympathetic <strong>in</strong>nervation),<br />

which is embedded <strong>in</strong> the LPS and <strong>in</strong>serts ma<strong>in</strong>ly on the tarsal plate, and the frontalis<br />

muscle (<strong>in</strong>nervated by the temporal branch of the facial nerve), which helps to retract<br />

the lid <strong>in</strong> extreme upgaze (Schmidtke, 1992). Tone <strong>in</strong> the LPS normally parallels that of<br />

the superior rectus muscle, and <strong>in</strong> extreme downgaze both muscles are completely<br />

<strong>in</strong>hibited. However, there is an <strong>in</strong>verse relationship between the LPS and the superior<br />

rectus dur<strong>in</strong>g forced lid closure where the eye elevates (Bell’s phenomenon). The motor<br />

neurons for both levator muscles are <strong>in</strong> the unpaired central caudal nucleus (CCN),<br />

located at the dorsal caudal pole of the oculomotor complex adjacent to the medial<br />

rectus and superior rectus subdivisions. With<strong>in</strong> the CCN, motor neurons of both LPS<br />

muscles are <strong>in</strong>termixed. The region of the nuclear complex of the posterior commissure<br />

is <strong>in</strong>volved <strong>in</strong> lid-eye movement coord<strong>in</strong>ation (Schmidtke, 1992).<br />

The upper lid position is abnormal if it exposes a white band of sclera between the lid<br />

marg<strong>in</strong> and the upper corneal limbus. This may be due to lid retraction (related to<br />

overactivity of the LPS, contracture of the LPS, or hyperactivity of Müller’s muscle), or<br />

lid lag, which is noted on attempted downgaze. Bartley divided lid retraction <strong>in</strong>to four<br />

categories: neurogenic, myogenic (<strong>in</strong>clud<strong>in</strong>g disease processes affect<strong>in</strong>g the neuromuscular<br />

junction), mechanical, and miscellaneous (Bartley, 1996). This chapter adopts this<br />

classification, discusses the etiologies of lid lag and lid retraction, and suggests a<br />

diagnostic approach.<br />

421


422 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

What Are the <strong>Neuro</strong>genic Causes of Lid<br />

Retraction and Lid Lag?<br />

<strong>Neuro</strong>genic eyelid retraction and lid lag may be due to supranuclear, nuclear, or<br />

<strong>in</strong>franuclear lesions affect<strong>in</strong>g the LPS or conditions that produce hyperactivity of the<br />

sympathetically <strong>in</strong>nervated Müller’s muscle (Miller, 1985). Preterm <strong>in</strong>fants may have a<br />

benign transient conjugate downward gaze deviation with eyelid retraction thought to<br />

be due to immature myel<strong>in</strong>ation of vertical eye movement control pathways (Kle<strong>in</strong>man,<br />

1994; Miller, 1985). Approximately 80% of normal <strong>in</strong>fants of 14 to 18 weeks of age may<br />

demonstrate bilateral transient lid retraction (‘‘eye-popp<strong>in</strong>g reflex’’) when ambient light<br />

levels are suddenly reduced. Both of these phenomena are usually benign and typically<br />

require no evaluation if transient and <strong>in</strong> isolation (class IV, level C).<br />

Dorsal mesencephalic supranuclear lesions may result <strong>in</strong> eyelid retraction, which is<br />

noted when the eyes are <strong>in</strong> the primary position of gaze or on look<strong>in</strong>g upward (Collier’s<br />

sign or posterior fossa stare). Unlike the retraction from thyroid orbitopathy (see below),<br />

with midbra<strong>in</strong> lid retraction there is typically no retraction <strong>in</strong> downgaze. Patients with<br />

dorsal mesencephalic lesions often have associated vertical gaze palsies and other<br />

dorsal midbra<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs. The etiologies of the dorsal midbra<strong>in</strong> syndrome and the<br />

workup of these patients are discussed <strong>in</strong> Chapter 14. Spells of lid retraction last<strong>in</strong>g 20<br />

to 30 seconds that may be seen with impend<strong>in</strong>g tentorial bra<strong>in</strong> herniation may be due to<br />

a dorsal mesencephalic mechanism (Miller, 1985).<br />

Lesions of the medial and=or pr<strong>in</strong>cipal portion of the nuclear complex of the posterior<br />

commissure (NPC) are <strong>in</strong>volved <strong>in</strong> lid–eye coord<strong>in</strong>ation and provide <strong>in</strong>hibitory modulation<br />

of levator motor neuronal activity (Schmidtke, 1992). <strong>Cl<strong>in</strong>ical</strong> and experimental<br />

evidence suggests an <strong>in</strong>hibitory premotor network <strong>in</strong> the periaqueductal gray (the<br />

supraoculomotor area or supra III) that is dorsal to the third cranial nerve nucleus and<br />

projects from the NPC to the central caudal subnucleus (Galetta, 1993a,b, 1996;<br />

Schmidtke, 1992). Lesions <strong>in</strong> the region of NPC may produce excessive <strong>in</strong>nervation to<br />

the lids with lid retraction <strong>in</strong> primary position. Bilateral eyelid retraction and eyelid lag<br />

with m<strong>in</strong>imal impairment of vertical gaze has been described with a circumscribed<br />

unilateral lesion immediately rostral and dorsal to the red nucleus <strong>in</strong>volv<strong>in</strong>g the lateral<br />

periaqueductal gray area <strong>in</strong> the region of the NPC (Galetta, 1993a,b, 1996). Eyelid lag<br />

without retraction has also been described <strong>in</strong> pretectal disease, imply<strong>in</strong>g that these lid<br />

signs may have separate neural mechanisms (Galetta, 1996). Vertical gaze paralysis<br />

without eyelid retraction may occur. In these cases the fibers and nucleus of the<br />

posterior commissure are spared and the lesions <strong>in</strong>volve the rostral <strong>in</strong>terstitial nucleus<br />

of the medial longitud<strong>in</strong>al fasciculus (MLF), the <strong>in</strong>terstitial nucleus of Cajal, and the<br />

periaqueductal gray area (Schmidtke, 1992). Ipsilateral ptosis and contralateral superior<br />

eyelid retraction may be due to a nuclear oculomotor nerve syndrome (plus-m<strong>in</strong>us lid<br />

syndrome) (Galetta, 1993b; Gaymard, 1992; Vertrugno, 1997). The plus-m<strong>in</strong>us syndrome<br />

results from a unilateral lesion of the third nerve fascicle with extension rostrally and<br />

dorsally to <strong>in</strong>volve the nucleus of the posterior commissure or its connections. The plusm<strong>in</strong>us<br />

syndrome has been described with glioma, third nerve palsy, orbital myositis,<br />

myasthenia gravis, congenital ptosis, and orbital trauma (Vertrugno, 1997). Also, a<br />

patient has been described with a nuclear third nerve palsy, spar<strong>in</strong>g the caudal central<br />

nucleus and its efferent fibers, who had no ipsilateral ptosis but had contralateral lid<br />

retraction (Gaymard, 2000). The contralateral eyelid retraction was thought to be due to<br />

damage to fibers from the NPC, most probably <strong>in</strong> the region of the supraoculomotor<br />

area, and it is <strong>in</strong>ferred from this case that <strong>in</strong>hibitory connections between the NPC and


Lid Retraction and Lid Lag 423<br />

the central caudal nucleus are unilateral and crossed. A similar crossed pattern may also<br />

exist for excitatory afferents to the central caudal nucleus as hemispheric lesions result<br />

<strong>in</strong> contralateral ptosis.<br />

Paroxysmal superior rectus with LPS spasm is a rare and unique disorder described<br />

<strong>in</strong> a s<strong>in</strong>gle patient with multiple sclerosis (Ezra, 1996). Paroxysms of vertical diplopia<br />

and lid retraction <strong>in</strong> this patient lasted 3 to 4 seconds, and exam<strong>in</strong>ation revealed<br />

<strong>in</strong>termittent right hypertropia, lid retraction, and restriction of downgaze. Magnetic<br />

resonance imag<strong>in</strong>g (MRI) revealed multiple lesions consistent with multiple sclerosis,<br />

<strong>in</strong>clud<strong>in</strong>g a lesion <strong>in</strong> the midbra<strong>in</strong> <strong>in</strong> the region of the third nerve fascicle. Carbamazep<strong>in</strong>e<br />

stopped all the symptoms that were thought due to spontaneous spasm of the<br />

superior rectus=levator complex.<br />

Bilateral episodic retraction of the eyelids may occur as a manifestation of epileptic<br />

discharges associated with petit mal or myoclonic seizures or due to ‘‘levator spasms’’<br />

dur<strong>in</strong>g an oculogyric crisis (Miller, 1985). Lid lag may occur on a supranuclear basis <strong>in</strong><br />

progressive supranuclear palsy, likely due to defective <strong>in</strong>hibition of the levator nuclei<br />

dur<strong>in</strong>g downward gaze (Friedman, 1992; Miller, 1985). Lid lag may occur <strong>in</strong> the acute<br />

phases of Guilla<strong>in</strong>-Barré syndrome (Tan, 1990), and lid retraction may also occur with<br />

park<strong>in</strong>sonism (Miller, 1985; Tan, 1990). Lid retraction has also been described with<br />

Fisher syndrome (Al-D<strong>in</strong>, 1994) and POEMS (peripheral neuropathy, organomegaly,<br />

endocr<strong>in</strong>opathy, M-prote<strong>in</strong>, and sk<strong>in</strong> changes) syndrome (Gheradi, 1994).<br />

Rhythmic upward jerk<strong>in</strong>g of the lids (eyelid nystagmus) refers to eyelid twitches that<br />

are synchronous with the fast phase of horizontal nystagmus on lateral gaze. It has been<br />

ascribed to lateral medullary disease where it may be <strong>in</strong>hibited by near effort. Lid<br />

nystagmus may also be provoked by convergence (Pick’s sign) <strong>in</strong> cerebellar or<br />

medullary pathology. There is a slow down drift of the lid corrected by an upward<br />

flick. Rhythmic upward jerk<strong>in</strong>g of the eyelids may also be associated with vertical<br />

nystagmus, palatal myoclonus, or convergence-retraction nystagmus (Miller, 1985) (see<br />

Chapters 14 and 17).<br />

Eyelid retraction may also occur from paradoxic levator excitation that may be<br />

congenital or acquired supranuclear, nuclear, or <strong>in</strong>franuclear lesions (Miller, 1985).<br />

Paradoxic lid retraction may occur with jaw movement or swallow<strong>in</strong>g (the Marcus<br />

Gunn jaw-w<strong>in</strong>k<strong>in</strong>g phenomenon). This trigem<strong>in</strong>o-oculomotor synk<strong>in</strong>esis occurs on a<br />

congenital basis. Levator contraction with contraction of the external pterygoid muscle<br />

is the most common form of trigem<strong>in</strong>o-oculomotor synk<strong>in</strong>esis (Miller, 1985). The<br />

<strong>in</strong>volved eyelid is usually ptotic, but may be normal or even retracted while the jaw<br />

muscles are <strong>in</strong>active. Elevation of the lid occurs when the mandible is moved to the<br />

opposite side, when the mandible is projected forward or the tongue protruded, or on<br />

wide open<strong>in</strong>g of the mouth. These patients commonly have other associated ocular<br />

abnormalities <strong>in</strong>clud<strong>in</strong>g strabismus (e.g., double elevator palsy or superior rectus<br />

palsy), amblyopia, and anisometropia (Miller, 1985). <strong>An</strong>other rare form of trigem<strong>in</strong>ooculomotor<br />

synk<strong>in</strong>esis is levator contraction with contraction of the <strong>in</strong>ternal pterygoid<br />

muscle (i.e., eyelid elevation with closure of the mouth or clench<strong>in</strong>g of the teeth).<br />

Treatment of cases of Marcus Gunn jaw-w<strong>in</strong>k<strong>in</strong>g phenomenon <strong>in</strong>cludes occlusion<br />

therapy for amblyopia, strabismus surgery, and surgery to correct the ptosis or<br />

retraction (Miller, 1985). Paradoxical eyelid retraction may also occur ipsilaterally <strong>in</strong><br />

congenital or acquired horizontal gaze or abducens palsies (Miller, 1985).<br />

Eyelid retraction may also occur with aberrant regeneration of the third nerve. The lid<br />

may elevate when the eye adducts, elevates, or depresses (Stout, 1993) (see Chapter 11).


424 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Partial paresis of the superior rectus muscle (Mauriello, 1993) or orbital floor ‘‘blowout’’<br />

fractures with globe hypotropia may produce an appearance of lid retraction. Secondary<br />

eyelid retraction (pseudoretraction) may also occur if there is ptosis of the opposite<br />

eyelid (especially when the ptosis is due to disease at or distal to the neuromuscular<br />

junction) when fixat<strong>in</strong>g with the eye with the unilateral ptosis (due to Her<strong>in</strong>g’s<br />

law). Compensatory unilateral orbicularis oculi contraction may mask lid retraction;<br />

therefore, if the orbicularis oculi muscle is also weakened as <strong>in</strong> myasthenia gravis,<br />

contralateral lid retraction becomes more evident. Occlusion of the eye on the side of the<br />

ptosis restores the retracted eyelid to a normal position.<br />

Sympathetic overactivity may cause lid retraction by contraction of Müller’s muscle.<br />

Intermittent oculosympathetic irritation may cause cyclic sympathetic spasm. The pupil<br />

dilates for 40 to 60 seconds and may be associated with lid retraction, facial hyperhidrosis,<br />

and headache (Claude-Bernard syndrome) (Burde, 1992). Sympathetic overactivity<br />

may also play a role <strong>in</strong> the lid retraction rarely noted <strong>in</strong> ipsilateral orbital<br />

blowout fractures. Sympathomimetic drops used <strong>in</strong> rout<strong>in</strong>e dilation of the pupils for<br />

ophthalmoscopy (e.g., phenylephr<strong>in</strong>e) may also cause lid retraction. F<strong>in</strong>ally, volitional<br />

bilateral lid retraction may occur <strong>in</strong> anxious or psychotic patients (Burde, 1992).<br />

What Are the <strong>Neuro</strong>muscular and Myopathic<br />

Causes of Lid Retraction and Lid Lag?<br />

Congenital maldevelopment or fibrosis of the LPS muscle or tendon may cause eyelid<br />

retraction or entropion at birth (Coll<strong>in</strong>, 1990; Gillies, 1995; Stout, 1993). This eyelid<br />

retraction may be unilateral or bilateral and may be associated with congenital<br />

abnormalities (Miller, 1985). Other causes of congenital eyelid retraction <strong>in</strong>clude<br />

maternal hyperthyroidism (transient), congenital myotonia, and myotonic dystrophy.<br />

Dysthyroid disease (Graves’ ophthalmopathy) with <strong>in</strong>volvement of the LPS is the<br />

most common cause of acquired unilateral or bilateral susta<strong>in</strong>ed eyelid retraction<br />

(Burde, 1992; Miller, 1985). Patients may show retraction of the upper eyelid associated<br />

with <strong>in</strong>frequent or <strong>in</strong>complete bl<strong>in</strong>k<strong>in</strong>g (Stellwag’s sign) and abnormal widen<strong>in</strong>g of the<br />

palpebral fissure (Dalrymple’s sign). When the patient looks downward, there is often<br />

lid lag; the upper eyelid pauses and then <strong>in</strong>completely follows the eye down (Graefe’s<br />

sign). The retracted upper eyelid rema<strong>in</strong>s elevated <strong>in</strong> downgaze <strong>in</strong> dysthyroid disease;<br />

this differentiates dysthyroid eyelid retraction from dorsal midbra<strong>in</strong> eyelid retraction<br />

(Collier’s sign), where the eyelids are also retracted <strong>in</strong> primary position but are typically<br />

normal <strong>in</strong> downgaze (Burde, 1992).<br />

Eyelid retraction <strong>in</strong> patients with thyroid ophthalmopathy may result from excessive<br />

sympathetic activity, LPS fibrosis, local adhesions of the LPS to fixed orbital tissues, or<br />

contracture of the <strong>in</strong>ferior rectus muscle (Feldon, 1990). The lid retraction may be<br />

controlled by botul<strong>in</strong>um tox<strong>in</strong> <strong>in</strong>jection <strong>in</strong>to the LPS (Biglan, 1994; Ebner, 1993). Surgical<br />

procedures are available to improve eyelid retraction with options <strong>in</strong>clud<strong>in</strong>g lateral<br />

tarsorrhaphy, Müller’s muscle and LPS muscle lengthen<strong>in</strong>g, lower eyelid elevation, and<br />

blepharoplasty with orbital fat excision (Ceisler, 1995). Orbital decompression may<br />

improve lid retraction that is due to distortion from the proptotic globe. Strabismus<br />

surgery may relieve the compensatory component of lid retraction related to restrictive<br />

extraocular muscles, but recessions of the <strong>in</strong>ferior rectus muscle often worsen the eyelid


etraction. Therefore, the order of surgery for patients with thyroid ophthalmopathy<br />

who require different surgical procedures should <strong>in</strong> general be first orbital decompression<br />

followed by strabismus surgery and then lid surgery (class IV, level C).<br />

Myasthenia gravis may also be associated with three types of eyelid retraction:<br />

(1) unilateral ptosis and contralateral eyelid retraction due to <strong>in</strong>nervation to elevate the<br />

ptotic lid; (2) ptosis and brief eyelid retraction last<strong>in</strong>g only seconds follow<strong>in</strong>g a saccade from<br />

downgaze to primary position (Cogan’s lid twitch sign); and (3) transient eyelid retraction<br />

last<strong>in</strong>g seconds or m<strong>in</strong>utes after star<strong>in</strong>g straight ahead or look<strong>in</strong>g upward for several<br />

seconds (possibly due to post-tetanic facilitation of the levator muscle) (Miller, 1985).<br />

Other myopathic causes of lid retraction <strong>in</strong>clude hypokalemic or hyperkalemic<br />

periodic paralysis, myotonic muscular dystrophy, after botul<strong>in</strong>um tox<strong>in</strong> <strong>in</strong>jections of<br />

the eyelids, and after eye surgery, <strong>in</strong>clud<strong>in</strong>g superior rectus recession, ptosis repair, and<br />

enucleation (Bartley, 1996; Leatherbarrow, 1994; Miller, 1985).<br />

What Are the Mechanical and Miscellaneous<br />

Etiologies of Lid Lag and Lid Retraction?<br />

Lid Retraction and Lid Lag 425<br />

The eyelid retraction noted with mechanical causes often responds to correction of the<br />

underly<strong>in</strong>g abnormality (Bartley, 1996). Prom<strong>in</strong>ence of the globe, such as may occur<br />

with severe myopia, buphthalmos, proptosis, cherubism, craniosynostosis, or Paget’s<br />

disease, may cause apparent lid retraction (Bartley, 1996; Leatherbarrow, 1994;<br />

Mauriello, 1993; Stout, 1993). Cicatricial scarr<strong>in</strong>g of the eyelid and LPS fibrosis from<br />

eyelid tumors, hemangioma of the orbit, herpes zoster ophthalmicus, atopic dermatitis,<br />

scleroderma, or thermal or chemical burns may also mechanically retract or distort the<br />

eyelids (Bartley, 1996; Burde, 1992; Stout, 1993). Blowout fractures of the orbital floor<br />

may cause upper eyelid retraction on either a neurogenic or mechanistic basis;<br />

hypotropia of the globe can stimulate <strong>in</strong>creased <strong>in</strong>nervation of the superior rectus,<br />

and LPS or traction on the connective sheath of the LPS can elevate the upper eyelid<br />

mechanically (Bartley, 1996). Contact lens wear may also cause upper eyelid retraction,<br />

presumably by mechanical irritation of the palpebral conjunctiva (Bartley, 1996). Lid<br />

retraction due to a lost hard contact lens becom<strong>in</strong>g embedded <strong>in</strong> the upper eyelid has<br />

also been described (We<strong>in</strong>ste<strong>in</strong>, 1993).<br />

Eyelid retraction, often associated with enophthalmos and hypoglobus, may occur<br />

with chronic maxillary s<strong>in</strong>usitis, maxillary s<strong>in</strong>us hypoplasia, and orbital floor resorption<br />

(silent s<strong>in</strong>us syndrome) (Rub<strong>in</strong>, 1994; Soparker, 1994). Radiation or trauma to the orbit<br />

or s<strong>in</strong>us may also be associated with eyelid retraction (Smitt, 1993). A retracted eyelid<br />

may also be a complication of surgical procedures, <strong>in</strong>clud<strong>in</strong>g trabeculectomy for<br />

glaucoma, scleral buckle, frontal s<strong>in</strong>usotomy, blepharoplasty, orbicularis myectomy,<br />

and cataract extraction (Bartley, 1996; Mauriello, 1993; Miller, 1985).<br />

Other miscellaneous entities that have been reported to be associated with eyelid<br />

retraction <strong>in</strong>clude optic nerve hypoplasia, microphthalmos, Down syndrome, hypertension,<br />

men<strong>in</strong>gitis, sphenoid w<strong>in</strong>g men<strong>in</strong>gioma, and superior cul-de-sac lymphoma<br />

(Bartley, 1996; Stout, 1993). Bilateral upper and lower lid retraction may occur with<br />

hepatic cirrhosis (Summerskill’s sign). The existence of this sign has been questioned, as<br />

many of the orig<strong>in</strong>al patients described may well have had Graves’ ophthalmopathy <strong>in</strong><br />

addition to liver disease, but rare cases without thyroid disease have been documented


426 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 19–1. Etiologies of Upper Lid Retraction and Lid Lag<br />

<strong>Neuro</strong>genic<br />

Benign transient lid retraction <strong>in</strong> preterm <strong>in</strong>fants (‘‘eye-popp<strong>in</strong>g reflex’’ <strong>in</strong> <strong>in</strong>fants)<br />

Dorsal midbra<strong>in</strong> syndrome<br />

Paroxysmal superior rectus and levator spasm <strong>in</strong> multiple sclerosis<br />

Seizures (petit mal or myoclonic)<br />

Oculogyric crisis<br />

Progressive supranuclear palsy<br />

Autosomal-dom<strong>in</strong>ant cerebellar ataxias<br />

Park<strong>in</strong>son’s disease<br />

Guilla<strong>in</strong>-Barré syndrome (<strong>in</strong>clud<strong>in</strong>g Fisher syndrome)<br />

POEMS (polyneuropathy, organomegaly, endocr<strong>in</strong>opathy, M-prote<strong>in</strong>, sk<strong>in</strong> changes) syndrome<br />

Lid nystagmus<br />

Cerebellar or medullary lesions<br />

Associated with vertical nystagmus<br />

Associated with palatal myoclonus<br />

Associated with convergence-retraction nystagmus<br />

Paradoxic levator excitation<br />

Marcus Gunn jaw-w<strong>in</strong>k<strong>in</strong>g phenomenon<br />

Abducens nerve palsy<br />

Aberrant regeneration of the third nerve<br />

Partial superior rectus paresis<br />

Orbital floor fracture<br />

Pseudoretraction<br />

Sympathetic overactivity<br />

Claude-Bernard syndrome<br />

Sympathomimetic drops<br />

Volitional lid retraction<br />

<strong>Neuro</strong>muscular and myopathic<br />

Congenital<br />

Congenital maldevelopment or fibrosis of the levator<br />

Maternal hyperthyroidism<br />

Congenital myotonia<br />

Myotonic dystrophy<br />

Graves’ ophthalmopathy<br />

Hypokalemic or hyperkalemic periodic paralysis<br />

Myotonic muscular dystrophy<br />

After botul<strong>in</strong>um <strong>in</strong>jection <strong>in</strong>to lids<br />

After eye surgery<br />

Superior rectus recession<br />

Ptosis repair<br />

Enucleation<br />

Mechanical<br />

Prom<strong>in</strong>ence of the globe<br />

Myopia<br />

Buphthalmos<br />

(cont<strong>in</strong>ued)


Table 19–1. (cont<strong>in</strong>ued)<br />

Proptosis<br />

Cherubism<br />

Craniosynostosis<br />

Paget’s disease<br />

Cicatricial scarr<strong>in</strong>g and fibrosis<br />

Eyelid tumors<br />

Hemangioma of the orbit<br />

Herpes zoster ophthalmicus<br />

Atopic dermatitis<br />

Scleroderma<br />

Thermal or chemical burns<br />

Blowout fracture of the orbital floor<br />

Contact lens wear<br />

Contact lens embedded <strong>in</strong> upper lid<br />

Enophthalmos and hypoglobus<br />

Silent s<strong>in</strong>us syndrome (Kubis, 2000; Wan, 2000)<br />

Radiation therapy<br />

Trauma<br />

Surgical procedures<br />

Trabeculectomy<br />

Scleral buckle<br />

Frontal s<strong>in</strong>us surgery<br />

Blepharoplasty<br />

Orbicularis myectomy<br />

Cataract extraction<br />

Miscellaneous associations<br />

Optic nerve hypoplasia<br />

Microphthalmos<br />

Down’s syndrome<br />

Hypertension<br />

Men<strong>in</strong>gitis<br />

Sphenoid w<strong>in</strong>g men<strong>in</strong>gioma<br />

Superior cul-de-sac lymphoma<br />

Hepatic cirrhosis<br />

Source: Repr<strong>in</strong>ted from Bartley, 1996, with permission from Elsevier Science.<br />

Lid Retraction and Lid Lag 427<br />

(Bartley, 1991, 1996; Miller, 1985, 1991). Etiologies of upper lid retraction and lid lag are<br />

listed <strong>in</strong> Table 19–1.<br />

<strong>An</strong> approach to the diagnosis of unilateral or bilateral upper eyelid retraction is<br />

outl<strong>in</strong>ed <strong>in</strong> Figure 19–1. <strong>An</strong> adequate history, ophthalmologic exam<strong>in</strong>ation, and<br />

neurologic exam<strong>in</strong>ation should be able to dist<strong>in</strong>guish the major causes of lid retraction<br />

(class IV, level C).


428 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Figure 19–1. Evaluation of lid retraction.<br />

What Are the Etiologies of Lower Eyelid<br />

Retraction?<br />

Like upper eyelid retraction, retraction of the lower eyelid may be due to neurogenic,<br />

myogenic, and mechanical causes (Brazis, 1991). Congenital paradoxical lower eyelid<br />

retraction on upgaze and unilateral congenital lower eyelid retraction, due to the lid<br />

be<strong>in</strong>g tethered to the orbital marg<strong>in</strong>, have been described. Lower eyelid retraction may<br />

be the earliest cl<strong>in</strong>ical lid sign of a lesion of the facial nerve, and facial nerve lesions are<br />

the most common cause of lower lid retraction (Brazis, 1991). Flaccidity of the lower lid<br />

may be an early manifestation of facial muscle paresis <strong>in</strong> myasthenia and myopathies.<br />

Lower lid retraction may occur with the follow<strong>in</strong>g:<br />

Dysthyroid orbitopathy (with or without proptosis)<br />

Proptosis


Table 19–2. Lower Eyelid Retraction<br />

Senile entropion or ectropion<br />

Enophthalmos<br />

After eye muscle (e.g., <strong>in</strong>ferior rectus recession) or orbital surgery (e.g., orbital floor<br />

‘‘blowout’’ fracture repair, orbitotomy, or maxillectomy)<br />

After scarr<strong>in</strong>g and contraction of lid tissue (e.g., from burns, tumors, trauma,<br />

granulomas of the orbital septum, dermatoses, or surgery) (Bartley, 1996)<br />

With a hypertropia, the ipsilateral lid may appear to be retracted, whereas with a<br />

hypotropia there may be an illusion of contralateral lid retraction. Lid retraction may be<br />

due to elevation of the contralateral lower eyelid with facial contracture follow<strong>in</strong>g Bell’s<br />

palsy, spastic-paretic facial contracture with myokymia, hemifacial spasm, enophthalmos,<br />

or Horner’s syndrome ‘‘upside-down’’ ptosis.<br />

The etiologies of lower eyelid retraction are outl<strong>in</strong>ed <strong>in</strong> Table 19–2.<br />

References<br />

Lid Retraction and Lid Lag 429<br />

<strong>Neuro</strong>genic causes<br />

Congenital paradoxical lower eyelid retraction on upgaze<br />

Unilateral congenital lower eyelid retraction due to the lid be<strong>in</strong>g tethered to the orbital marg<strong>in</strong><br />

Lesion of the facial nerve<br />

Myogenic causes<br />

Myasthenia<br />

Myopathies<br />

Dysthyroid orbitopathy<br />

Mechanical causes<br />

Proptosis<br />

Senile entropion or ectropion<br />

Enophthalmos<br />

After eye muscle or orbital surgery, <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>ferior rectus recession, orbital floor blowout<br />

fracture repair, orbitotomy, or maxillectomy<br />

With scarr<strong>in</strong>g and contraction of lid tissue (e.g., burns, tumors, granulomas of the orbital septum,<br />

dermatoses, or surgery)<br />

Apparent lid retraction<br />

Ipsilateral with hypertropia<br />

Contralateral with hypotropia<br />

With elevation of the contralateral lower eyelid from:<br />

Facial contracture follow<strong>in</strong>g Bell’s palsy (Meadows, 2000)<br />

Spastic-paretic facial contracture with myokymia<br />

Hemifacial spasm<br />

Enophthalmos<br />

Horner’s syndrome (‘‘upside-down’’ ptosis)<br />

Al-D<strong>in</strong> AN, <strong>An</strong>derson M, Eeg-Olofsson O, et al. (1994). <strong>Neuro</strong>-ophthalmic manifestations of the syndrome of<br />

ophthalmoplegia, ataxia, and areflexia. A review. Acta <strong>Neuro</strong>l Scand 89:157–163.<br />

Bartley GB. (1996). The differential diagnosis and classification of eyelid retraction. Ophthalmology 103:168–176.


430 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Bartley GB, Gorman CA. (1991). Hepatic cirrhosis as a doubtful cause of eyelid retraction. Am J Ophthalmol<br />

111:109–110.<br />

Biglan AW. (1994). Control of eyelid retraction associated with Graves’ disease with botul<strong>in</strong>um A tox<strong>in</strong>.<br />

Ophthalmic Surg 25:186–188.<br />

Brazis PW, Vogler JB, Shaw KE. (1991). The ‘‘numb-cheek-limp lower lid’’ syndrome. <strong>Neuro</strong>logy 41:327–328.<br />

Burde RM, Sav<strong>in</strong>o PJ, Trobe JD. (1992). <strong>Cl<strong>in</strong>ical</strong> Decisions <strong>in</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 2nd ed. St. Louis, Mosby,<br />

pp. 362–364.<br />

Ceisler EJ, Bilyk JA, Rub<strong>in</strong> PA, et al. (1995). Results of Mullerectomy and levator aponeurosis transposition for the<br />

correction of upper eyelid retraction <strong>in</strong> Graves’ disease. Ophthalmology 102:483–492.<br />

Coll<strong>in</strong> JR, Allen L, Castronuovo S. (1990). Congenital eyelid retraction. Br J Ophthalmol 74:542–544.<br />

Ebner A. (1993). Botul<strong>in</strong>um tox<strong>in</strong> type A <strong>in</strong> upper lid retraction of Graves’ ophthalmopathy. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 13:258–261.<br />

Ezra E, Plant GT. (1996). Paroxysmal superior rectus and levator palpabrae spasm: a unique presentation of<br />

multiple sclerosis. Br J Ophthalmol 80:187–188.<br />

Feldon SE, Lev<strong>in</strong> L. (1990). Graves’ ophthalmopathy: V. Aetiology of upper eyelid retraction <strong>in</strong> Graves’<br />

ophthalmopathy. Br J Ophthalmol 74:484–485.<br />

Friedman DI, Jankovic J, McCrary JA. (1992). <strong>Neuro</strong>-ophthalmic f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> progressive supranuclear palsy. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 12:104–109.<br />

Galetta SL, Gray LG, Raps EC, Schatz NJ. (1993a). Pretectal eyelid retraction and lag. <strong>An</strong>n <strong>Neuro</strong>l 33:554–557.<br />

Galetta SL, Gray LG, Raps EC, et al. (1993b). Unilateral ptosis and contralateral eyelid retraction from a thalamicmidbra<strong>in</strong><br />

<strong>in</strong>farction. Magnetic resonance imag<strong>in</strong>g correlation. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:221–224.<br />

Galetta SL, Raps EC, Liu GT, et al. (1996). Eyelid lag without retraction <strong>in</strong> pretectal disease. J <strong>Neuro</strong>-ophthalmol<br />

16:96–98.<br />

Gaymard B, Huynh C, Laffont I. (2000). Unilateral eyelid retraction. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 68:390–<br />

392.<br />

Gaymard B, Lafitte C, Gelot A, de Toffol BL. (1992). Plus-m<strong>in</strong>us syndrome. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

55:846–848.<br />

Gheradi RK, Chouaub S, Malapert D, et al. (1994). Early weight loss and high serum tumor necrosis factor-alpha<br />

<strong>in</strong> polyneuropathy, organomegaly, endocr<strong>in</strong>opathy, M prote<strong>in</strong>, sk<strong>in</strong> changes syndrome. <strong>An</strong>n <strong>Neuro</strong>l<br />

35:501–505.<br />

Gillies WE, Harris AJ, Brooks AM, et al. (1995). Congenital fibrosis of the vertically act<strong>in</strong>g extraocular muscles: a<br />

new group of dom<strong>in</strong>antly <strong>in</strong>herited ocular fibrosis with radiologic f<strong>in</strong>d<strong>in</strong>gs. Ophthalmology 102:607–612.<br />

Kle<strong>in</strong>man MD, DiMario FJ Jr, Leconche DA, Zalneraitis EL. (1994). Benign transient downward gaze <strong>in</strong> preterm<br />

<strong>in</strong>fants. Pediatr <strong>Neuro</strong>l 10:313–316.<br />

Kubis KC, Danesh-Meyer H, Bilyk JR, et al. (2000). Unilateral lid retraction dur<strong>in</strong>g pregnancy. Surv Ophthalmol<br />

45:69–76.<br />

Leatherbarrow B, Kwartz J, Sunderland S, et al. (1994). The ‘‘baseball’’ orbital implant: a prospective study. Eye<br />

8:569–576.<br />

Mauriello JA Jr, Palydowycz SB. (1993). Upper eyelid retraction after ret<strong>in</strong>al detachment repair. Ophthalmic Surg<br />

24:694–697.<br />

Meadows A, Hall N, Shah-Desai S, et al. (2000). The House-Brackmann system and assessment of corneal risk <strong>in</strong><br />

facial nerve palsy. Eye 14:353–357.<br />

Miller NR. (1985). <strong>An</strong>atomy and physiology of normal and abnormal eyelid position and movement. In: Miller<br />

NR, ed. Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 4th ed. Baltimore, Williams & Wilk<strong>in</strong>s, pp. 932–995.<br />

Miller NR. (1991). Hepatic cirrhosis as a cause of eyelid retraction. Am J Ophthalmol 112:94–95.<br />

Rub<strong>in</strong> PAD, Bilyk JR, Shore JW. (1994). Orbital reconstruction us<strong>in</strong>g porous polyethylene sheets. Ophthalmology<br />

101:1679–1708.<br />

Schmidtke K, Buttner-Ennever JA. (1992). Nervous control of eyelid function. A review of cl<strong>in</strong>ical, experimental<br />

and pathologic data. Bra<strong>in</strong> 115:227–247.<br />

Smitt MC, Donaldson SS. (1993). Radiotherapy is successful treatment of orbital lymphoma. Int J Radiat Oncol Biol<br />

Phys 26:59–66.<br />

Soparker CNS, Patr<strong>in</strong>ely JR, Cuaycong MJ, et al. (1994). The silent s<strong>in</strong>us syndrome. A cause of spontaneous<br />

enophthalmos. Ophthalmology 101:772–778.<br />

Stout AU, Borchert M. (1993). Etiology of eyelid retraction <strong>in</strong> children: a retrospective study. J Pediatr Ophthalmol<br />

Strabismus 30:96–99.<br />

Tan E, Kansu T, Kirkali P, Zileli T. (1990). Lid lag and the Guilla<strong>in</strong>-Barré syndrome. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:121–<br />

123.


Lid Retraction and Lid Lag 431<br />

Vetrugno R, Mascalchi M, Marulli D, et al. (1997). Plus m<strong>in</strong>us lid syndrome due to cerebral glioma. A case report.<br />

<strong>Neuro</strong>-<strong>ophthalmology</strong> 18:149–151.<br />

Wan MK, Francis IC, Carter PR, et al. (2000). The spectrum of presentation of silent s<strong>in</strong>us syndrome. J <strong>Neuro</strong><strong>ophthalmology</strong><br />

20:207–212.<br />

We<strong>in</strong>ste<strong>in</strong> GS, Myers BB. (1993). Eyelid retraction as a complication of an embedded hard contact lens. Am<br />

J Ophthalmol 116:102–103.


This page <strong>in</strong>tentionally left blank


20 r<br />

<strong>An</strong>isocoria and Pupillary<br />

Abnormalities<br />

Careful exam<strong>in</strong>ation of pupillary reaction to light and near stimuli, the difference <strong>in</strong><br />

anisocoria <strong>in</strong> light and dark, and attention to dist<strong>in</strong>ctive associated signs and symptoms<br />

facilitate differentiat<strong>in</strong>g the abnormalities <strong>in</strong> pupil size and response to stimuli. Old<br />

photographs may be helpful <strong>in</strong> def<strong>in</strong><strong>in</strong>g the duration of anisocoria. Generally, the<br />

history and exam<strong>in</strong>ation help dist<strong>in</strong>guish the major entities caus<strong>in</strong>g an abnormal large<br />

pupil (e.g., third nerve palsy, tonic pupil, iris damage, pharmacologic dilation, or<br />

sympathetic irritation) or small pupil (e.g., Horner’s syndrome, simple anisocoria,<br />

pharmacologic miosis). Pharmacologic test<strong>in</strong>g confirms the diagnosis and facilitates<br />

topographic localization <strong>in</strong> many cases. Our algorithm cannot account for patients with<br />

multiple causes for anisocoria. For example, Slav<strong>in</strong> reported a case of physiologic<br />

anisocoria with Horner’s syndrome and equal-sized pupils (Slav<strong>in</strong>, 2000).<br />

Is the <strong>An</strong>isocoria More Apparent <strong>in</strong> the Light<br />

or <strong>in</strong> the Dark?<br />

If the anisocoria is greater <strong>in</strong> dim light (stimulates dilation of the pupils), then the defect<br />

is <strong>in</strong> the sympathetic <strong>in</strong>nervation of the pupil. If the anisocoria is greater <strong>in</strong> bright light<br />

(stimulates constriction of the pupil), then the lesion is <strong>in</strong> the parasympathetic <strong>in</strong>nervation<br />

of the pupil. If a large pupil is poorly reactive to light and the visual afferent system<br />

is normal, then a defect <strong>in</strong> the efferent parasympathetic <strong>in</strong>nervation to this pupil is likely<br />

(Burde, 1992). If the light reaction is difficult to compare to the fellow eye, then a<br />

measurement of the anisocoria <strong>in</strong> light and dark may help determ<strong>in</strong>e the pupillary<br />

abnormality.<br />

433


434 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Is Light-Near Dissociation Present?<br />

If the light reaction is poor <strong>in</strong> both eyes but the near reaction is <strong>in</strong>tact, the patient has<br />

bilateral light-near dissociation of the pupils. Table 20–1 lists the causes of light-near<br />

dissociation.<br />

Argyll Robertson pupils are small and irregular and are characterized by light-near<br />

dissociation, variable iris atrophy, and normal afferent visual function. They are<br />

classically described with neurosyphilis, and the lesion is with<strong>in</strong> the rostral midbra<strong>in</strong><br />

and pretectal oculomotor light reflex fibers on the dorsal side of the Ed<strong>in</strong>ger-Westphal<br />

nucleus. There is spar<strong>in</strong>g of the near fibers that approach this nucleus more ventrally.<br />

The pupils are small because supranuclear adrenergic <strong>in</strong>hibitory fibers to the Ed<strong>in</strong>ger-<br />

Westphal nucleus are blocked. Patients with diabetes may also have small, poorly<br />

reactive pupils with light-near dissociation that may appear similar to the Argyll<br />

Robertson pupil.<br />

Is There Other Evidence for a Third Nerve<br />

Palsy?<br />

Patients with anisocoria and a poorly reactive pupil should be evaluated for ipsilateral<br />

third nerve palsy. Sunderland and Hughes suggested that an extraaxial lesion compress<strong>in</strong>g<br />

the third nerve (e.g., unruptured <strong>in</strong>tracranial aneurysm) may cause a dilated pupil<br />

<strong>in</strong> isolation or with m<strong>in</strong>imal ocular motor nerve paresis. <strong>An</strong>isocoria or a dilated pupil <strong>in</strong><br />

the absence of an extraocular motility deficit and=or ptosis, however, is rarely due to a<br />

third nerve paresis (Sunderland, 1952). Intracranial aneurysms (e.g., posterior commu-<br />

Table 20–1. Etiologies of Light-Near Dissociation<br />

Bilateral afferent disease<br />

Bilateral anterior visual pathway (optic nerve, chiasm, tract)<br />

Bilateral ret<strong>in</strong>opathy<br />

Midbra<strong>in</strong> lesions<br />

Dorsal midbra<strong>in</strong> syndrome (Par<strong>in</strong>aud’s syndrome)<br />

Encephalitis=men<strong>in</strong>gitis<br />

Wernicke’s encephalopathy and alcoholism<br />

Demyel<strong>in</strong>ation<br />

P<strong>in</strong>eal tumors<br />

Vascular disease<br />

Argyll Robertson pupil<br />

Diabetes (autonomic neuropathy)<br />

Tonic pupils (e.g., local orbital, neuropathic, Adie’s pupil)<br />

Aberrant third nerve regeneration (not spar<strong>in</strong>g of near but ‘‘restor<strong>in</strong>g’’ of near)<br />

Syr<strong>in</strong>gomyelia (rare)<br />

Familial amyloidosis<br />

Sp<strong>in</strong>ocerebellar ataxia type 1 (SCA-1) (Mabuchi, 1998)


<strong>An</strong>isocoria and Pupillary Abnormalities 435<br />

nicat<strong>in</strong>g artery-<strong>in</strong>ternal carotid artery junction) often produce a fixed and dilated pupil<br />

(pupil-<strong>in</strong>volved third nerve palsy), but this is almost always associated with other signs<br />

of a third nerve palsy (Miller, 1985). Walsh and Hoyt reported a patient with headache<br />

and a unilateral dilated pupil who was found to have an aneurysm at the junction of the<br />

superior cerebellar artery and basilar artery (Walsh, 1969). One week later, however, the<br />

patient developed other signs of a third nerve palsy. Payne and Adamkiewicz reported<br />

a case of unilateral <strong>in</strong>ternal ophthalmoplegia with a posterior communicat<strong>in</strong>g<br />

aneurysm, but this patient also had an <strong>in</strong>termittent exotropia and variable ptosis<br />

(Payne, 1969). Crompton and Moore reported two cases of isolated pupil dilation due<br />

to aneurysm, but these patients developed severe headache and eventual signs of a<br />

third nerve palsy (Crompton, 1981). Fujiwara et al reviewed 26 patients with an<br />

oculomotor palsy due to cerebral aneurysm and reported three with only ptosis and<br />

anisocoria (Fujiwara, 1989).<br />

Basilar aneurysms can produce isolated <strong>in</strong>ternal ophthalmoplegia, but this f<strong>in</strong>d<strong>in</strong>g is<br />

rare and usually the patient rapidly develops signs of external ophthalmoplegia due to<br />

third nerve dysfunction. Gale and Crockard observed transient unilateral mydriasis <strong>in</strong> a<br />

patient with a basilar aneurysm (Gale, 1982). Miller reported an isolated <strong>in</strong>ternal<br />

ophthalmoplegia <strong>in</strong> a patient with a basilar aneurysm (Miller, 1985). Wilhelm et al<br />

described an oculomotor nerve paresis that began as an isolated <strong>in</strong>ternal ophthalmoplegia<br />

<strong>in</strong> 1979 and then developed <strong>in</strong>to a more typical third nerve palsy <strong>in</strong> 1993 due to a<br />

neur<strong>in</strong>oma of the third nerve (Wilhelm, 1995). Kaye-Wilson et al. also described a<br />

patient who <strong>in</strong>itially had only m<strong>in</strong>imal pupil signs due to a neur<strong>in</strong>oma of the third<br />

nerve (Kaye-Wilson, 1994). A mydriatic pupil was the present<strong>in</strong>g sign of a common<br />

carotid artery dissection with the pupil dilation preced<strong>in</strong>g other signs and symptoms of<br />

a third nerve palsy and cerebral ischemia (Koennecke, 1998). These cases are uncommon<br />

presentations, and <strong>in</strong> general an isolated dilated pupil is more likely to be due to local<br />

iris abnormalities, the tonic pupil syndrome, or pharmacologic dilation than third nerve<br />

palsy (class IV, level C).<br />

Other rare cases of <strong>in</strong>terpeduncular cyst, mesencephalic hemorrhage, presumed<br />

ocular motor nerve <strong>in</strong>flammation due to men<strong>in</strong>gitis (e.g., bacterial, cryptococcal or<br />

tuberculous basal), and direct head trauma to the third nerve at the posterior<br />

petrocl<strong>in</strong>oid ligament have been described that presented with an isolated, unilateral,<br />

fixed, and dilated pupil. Other neurologic signs of a third nerve palsy, however, were<br />

present or appeared over time <strong>in</strong> almost all these patients. Unilateral pupillary<br />

<strong>in</strong>volvement from probable preganglionic oculomotor nerve dysfunction (normal<br />

ductions but pupil m<strong>in</strong>imally reactive to light; however, reacted well to near stimuli)<br />

has also been described with superficial siderosis of the central nervous system (CNS)<br />

with selective <strong>in</strong>volvement of the superficially located pupillary fibers (Pelak, 1999). In a<br />

patient with an isolated dilated pupil <strong>in</strong> the presence of normal extraocular motility, a<br />

third nerve palsy can be safely excluded <strong>in</strong> almost every circumstance simply with close<br />

follow-up (class IV, level C).<br />

In <strong>in</strong>determ<strong>in</strong>ate cases, topical pilocarp<strong>in</strong>e 1% can be used as a simple test for third<br />

nerve palsy versus pharmacologic blockade (see below). A pupil dilated from a third<br />

nerve palsy will constrict to pilocarp<strong>in</strong>e 1%, but one with a parasympathetic pharmacologic<br />

blockade will not.


436 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Is There Evidence for Pharmacologic (or Toxic)<br />

Mydriasis or Miosis?<br />

A careful history is usually all that is required for patients with <strong>in</strong>advertent or<br />

<strong>in</strong>tentional (e.g., glaucoma medication, treatment with topical cycloplegics for uveitis)<br />

exposure to agents that may affect pupil size (e.g., mydriatics or miotics). Table 20–2<br />

lists some medications and environmental agents that may result <strong>in</strong> mydriasis or miosis.<br />

Pharmacologically <strong>in</strong>duced pupil abnormalities may produce a large pupil due to<br />

<strong>in</strong>creased sympathetic tone with dilator stimulation (e.g., ocular decongestants, adrenergic<br />

<strong>in</strong>halants <strong>in</strong> the <strong>in</strong>tensive care unit, etc.) or decreased parasympathetic tone with<br />

sph<strong>in</strong>cter block (e.g., belladonna alkaloids, scopolam<strong>in</strong>e patch, antichol<strong>in</strong>ergic <strong>in</strong>halents,<br />

topical gentamic<strong>in</strong>, lidoca<strong>in</strong>e <strong>in</strong>jection <strong>in</strong> orbit, etc.). Small pupils might <strong>in</strong>dicate<br />

decreased sympathetic tone or <strong>in</strong>creased parasympathetic stimulation (e.g., pilocarp<strong>in</strong>e<br />

glaucoma drops, antichol<strong>in</strong>esterases such as flea collar or <strong>in</strong>secticides, etc.).<br />

Nurses, physicians, and other health care workers are particularly prone to <strong>in</strong>advertent<br />

or <strong>in</strong>tentional exposure to pharmacologic mydriatics. The pupil size of patients<br />

with pharmacologic sph<strong>in</strong>cter blockade is often quite large (8 to 12 mm <strong>in</strong> diameter).<br />

This large, dilated pupil is much greater than the mydriasis usually seen <strong>in</strong> typical third<br />

nerve palsy or tonic pupil syndromes. The pupils are evenly affected for 360 degrees,<br />

unlike the irregular pupil seen <strong>in</strong> the tonic pupil or iris trauma. Topical pilocarp<strong>in</strong>e 1%<br />

can be used as a simple test for pharmacologic blockade. A pupil dilated from a third<br />

nerve palsy will constrict to pilocarp<strong>in</strong>e 1%, but a pupil with a parasympathetic<br />

pharmacologic blockade will constrict poorly or not at all to topical miotics. <strong>An</strong> acute<br />

tonic pupil may be unreactive to either light or near stimuli and may be difficult to<br />

dist<strong>in</strong>guish from a pharmacologically dilated pupil or acute traumatic iridoplegia.<br />

Adrenergic pharmacologic mydriasis (e.g., phenylephr<strong>in</strong>e) typically produces<br />

blanched conjunctival vessels, reta<strong>in</strong>s residual light reaction, and produces a retracted<br />

upper lid due to sympathetic stimulation of the upper lid retractor muscle. Most ‘‘eyewhiten<strong>in</strong>g’’<br />

over-the-counter eyedrops (e.g., oxymetazol<strong>in</strong>e, phenylephr<strong>in</strong>e) conta<strong>in</strong><br />

sympathomimetics too weak to dilate the pupil unless the corneal epithelium is<br />

breached (e.g., contact lens wear). Exposure to antichol<strong>in</strong>esterases can result <strong>in</strong> a<br />

miotic pupil (Apt, 1995; Ellenberg, 1992). For cases of presumed isolated dilated or<br />

constricted pupils due to pharmacologic exposure, we recommend close follow-up to<br />

ensure that the pupil returns to normal size. Confirmatory pharmacologic test<strong>in</strong>g could<br />

be considered <strong>in</strong> atypical or persistent cases (class IV, level C).<br />

Are Intermittent or Transient Pupillary<br />

Phenomena Present?<br />

Transient mydriasis or miosis has been reported <strong>in</strong> the follow<strong>in</strong>g conditions: cluster or<br />

migra<strong>in</strong>e headaches (Drummond, 1991); migra<strong>in</strong>e aura without headache (Soriani,<br />

1996); astrocytoma (Berreen, 1990); Horner’s syndrome after carotid puncture; dur<strong>in</strong>g<br />

or after seizure activity (Masjuan, 1997); after reduction of bilateral orbital floor<br />

fractures (Stromberg, 1988); and <strong>in</strong> normal <strong>in</strong>dividuals. Episodic miosis with ptosis<br />

accompanied by ipsilateral nasal stuff<strong>in</strong>ess may occur without headache (cluster s<strong>in</strong>e<br />

headache) (Salveson, 2000). Tadpole-shaped pupils due to segmental spasm of the pupil<br />

sph<strong>in</strong>cter may also be related to a partial postganglionic Horner’s syndrome or


<strong>An</strong>isocoria and Pupillary Abnormalities 437<br />

Table 20–2. Medications and Environmental Agents Associated with Mydriasis or Miosis<br />

Ocular mydriatics<br />

Medications<br />

Topical<br />

Topical parasympatholytics (antichol<strong>in</strong>ergics)<br />

Atrop<strong>in</strong>e<br />

Cyclopentolate (Cyclogyl)<br />

Eucatrop<strong>in</strong>e<br />

Homatrop<strong>in</strong>e<br />

Oxyphenonium<br />

Scopolam<strong>in</strong>e<br />

Tropicamide (Mydriacyl)<br />

Gentamic<strong>in</strong><br />

Topical sympathomimetics (adrenergic)<br />

Apraclonid<strong>in</strong>e (a-adrenergic agonist) (Morales, 2000)<br />

Ep<strong>in</strong>ephr<strong>in</strong>e<br />

Dipivalyl ep<strong>in</strong>ephr<strong>in</strong>e (Prop<strong>in</strong>e)<br />

Phenylephr<strong>in</strong>e (NeoSynephr<strong>in</strong>e)<br />

Coca<strong>in</strong>e (e.g., topical placed <strong>in</strong> nose may back up <strong>in</strong>to conjunctival sac)<br />

Ocular decongestants (tetrahydrozol<strong>in</strong>e hydrochloride, phenerim<strong>in</strong>e maleate,<br />

chlorpheniram<strong>in</strong>e maleate) (Gelmi, 1994)<br />

Topical dexamethasone (vehicle <strong>in</strong> Decadron)<br />

Topical apraclonid<strong>in</strong>e<br />

Aerosolized albuterol sulfate—ipratropium bromide (antichol<strong>in</strong>ergic) given by loosely fitt<strong>in</strong>g<br />

mask (Goldste<strong>in</strong>, 1997)<br />

Adrenergic drugs given <strong>in</strong> a mist for pulmonary therapy may escape around mask and<br />

condense <strong>in</strong> conjunctival sac<br />

<strong>An</strong>esthetic agents for the airway<br />

Phenylephr<strong>in</strong>e=lidoca<strong>in</strong>e spray (Prielipp, 1994)<br />

Nasal vasoconstrictor (phenylephr<strong>in</strong>e)<br />

Aerosolized atrop<strong>in</strong>e (Nakagawa, 1993)<br />

Local and systemic mydriatics (Miller, 1985)<br />

Atrop<strong>in</strong>e (IV) <strong>in</strong> general anesthesia<br />

Benztrop<strong>in</strong>e<br />

Barracuda meat<br />

Calcium<br />

Coca<strong>in</strong>e (Stewart, 1999)<br />

Diphenhydram<strong>in</strong>e<br />

Ep<strong>in</strong>ephr<strong>in</strong>e (Perlman, 1991)<br />

Fenfluram<strong>in</strong>e=norfenfluram<strong>in</strong>e<br />

Glutethimide<br />

Levodopa<br />

Lidoca<strong>in</strong>e local <strong>in</strong>jection (e.g., orbital <strong>in</strong>jection)<br />

Lysergic acid diethylamide<br />

Magnesium<br />

Nalorph<strong>in</strong>e<br />

Nutmeg (? may not have an effect on pupils)<br />

(cont<strong>in</strong>ued)


438 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 20–2. (cont<strong>in</strong>ued)<br />

Pimozide (? patient also treated with benztrop<strong>in</strong>e)<br />

Propanthel<strong>in</strong>e bromide (Pro-Banth<strong>in</strong>e)<br />

Scopolam<strong>in</strong>e methylbromide (Nussdorf, 2000)<br />

Thiopental<br />

Transdermal scopolam<strong>in</strong>e patches<br />

Tricyclic antidepressants<br />

Plants<br />

Alkaloids (belladonna alkaloids) (antichol<strong>in</strong>ergic effect)<br />

Jimson weed (Datura stramonium)<br />

Blue nightshade or European bittersweet (Solanum dulcamara)<br />

Deadly nightshade (Atropa belladona)<br />

Henbane (Hyoscamus niger)<br />

Moonflower (Datura wrightii or D. meteloides)<br />

Other Datura species (D. suaveolans [angel’s trumpet], aurea, candida, sangu<strong>in</strong>ea, stramonium,<br />

wrightii) (Wilhelm, 1994)<br />

Others<br />

Siderosis bulbi=iron mydriasis—occult <strong>in</strong>traocular iron foreign body (Monteiro, 1993; Scotcher,<br />

1995)<br />

Hypromellose viscoelastic <strong>in</strong> cataract surgery (Tan, 1993)<br />

Ocular miotics<br />

Medications<br />

Topical<br />

Parasympathomimetics (chol<strong>in</strong>ergic)<br />

Aceclid<strong>in</strong>e<br />

Carbachol<br />

Methachol<strong>in</strong>e (Mecholyl)<br />

Organophosphate esters<br />

Physostigm<strong>in</strong>e (eser<strong>in</strong>e)<br />

Pilocarp<strong>in</strong>e<br />

Sympatholytics (antiadrenergic)<br />

Adrenergic blockers<br />

Thymoxam<strong>in</strong>e hydrochloride<br />

Dapiprazole (‘‘RevEyes’’)<br />

Dibenzyl<strong>in</strong>e (hemoxybenzam<strong>in</strong>e)<br />

Phentolam<strong>in</strong>e (Regit<strong>in</strong>e)<br />

Tolazol<strong>in</strong>e (Priscol<strong>in</strong>e)<br />

Guanethid<strong>in</strong>e<br />

Timolol with ep<strong>in</strong>ephr<strong>in</strong>e<br />

Systemic miotics<br />

Adrenergic blockers<br />

Chlorpromaz<strong>in</strong>e<br />

Hero<strong>in</strong><br />

Lidoca<strong>in</strong>e (extradural anesthesia)<br />

Marijuana<br />

Methadone<br />

Morph<strong>in</strong>e and other narcotics<br />

(cont<strong>in</strong>ued)


Table 20–2. (cont<strong>in</strong>ued)<br />

Phenothiaz<strong>in</strong>es<br />

Other<br />

Flea collar (antichol<strong>in</strong>esterase)<br />

Pyrithens and piperonyl butoxide (<strong>in</strong>secticide) (antichol<strong>in</strong>esterase)<br />

migra<strong>in</strong>e phenomenon (occurs between rather than with headache attacks). Some of<br />

these phenomena represent true sympathetic irritation or excess, but the mechanism<br />

rema<strong>in</strong>s controversial. If the transient or <strong>in</strong>termittent nature of the mydriasis can be<br />

firmly established, then these patients should not undergo arteriography or other<br />

test<strong>in</strong>g and should simply be followed for 24 to 48 hours, at which po<strong>in</strong>t improvement<br />

would <strong>in</strong>dicate the benign nature of the mydriasis.<br />

Jacobson reported 24 patients with benign episodic unilateral mydriasis (Jacobson,<br />

1995). The median age of the patients was 31 (range, 14 to 50) and the median duration<br />

of events was 12 hours (range, 10 m<strong>in</strong>utes to 7 days). Associated symptoms <strong>in</strong>cluded<br />

visual blur, headache, orbital pa<strong>in</strong>, monocular photophobia, monocular red eye,<br />

monocular diplopia, and monocular positional transient obscurations. Some cases<br />

were thought due to parasympathetic <strong>in</strong>sufficiency of the iris sph<strong>in</strong>cter. These patients<br />

had associated impaired near vision, impaired accommodative function, and the<br />

anisocoria <strong>in</strong>creased with added ambient light. Other patients had sympathetic hyperactivity<br />

of the iris dilator associated with normal near vision and normal reaction of the<br />

pupil dur<strong>in</strong>g the attack. No associated neurologic disorders were found <strong>in</strong> these<br />

patients. We do not recommend any further evaluation for isolated transient unilateral<br />

mydriasis (class IV, level C).<br />

Is a Structural Iris Abnormality Present?<br />

Careful slit-lamp biomicroscopy of the iris should be performed <strong>in</strong> all patients with<br />

anisocoria to exclude structural iris abnormalities or damage. In many cases, the pupil is<br />

irregular and the structural abnormality can easily be identified. Table 20–3 outl<strong>in</strong>es the<br />

cl<strong>in</strong>ical features of structural iris abnormality and Table 20–4 lists some etiologies of<br />

structural damage to the iris. Abnormalities of the iris are a common cause of<br />

anisocoria. False-positive pharmacologic test<strong>in</strong>g may result <strong>in</strong> patients with structural<br />

abnormalities of the iris that prevent dilation or constriction to pharmacologic agents. In<br />

these cases, it may be necessary to test the <strong>in</strong>tegrity of the pupil dilation or constriction<br />

Table 20–3. <strong>Cl<strong>in</strong>ical</strong> Characteristics of Abnormalities of the Iris Structure<br />

<strong>An</strong>isocoria and Pupillary Abnormalities 439<br />

No associated ptosis or ocular motility disturbance (vs. third nerve palsy)<br />

Pupil often irregular with disruption of pupillary marg<strong>in</strong> due to tears <strong>in</strong> iris sph<strong>in</strong>cter (vs. the smooth<br />

marg<strong>in</strong> seen <strong>in</strong> drug-related pupillary abnormalities)<br />

Irregular contraction of the pupil to light<br />

Eventually iris atrophy may occur<br />

Poor or no response to direct parasympathomimetic (e.g., 1% pilocarp<strong>in</strong>e)


440 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 20–4. Etiologies of Abnormalities of Iris Structure<br />

Congenital aplasia of the iris sph<strong>in</strong>cter and dilator muscles (Buys, 1993)<br />

Increased <strong>in</strong>traocular pressure due to acute angle closure glaucoma (sph<strong>in</strong>cter paresis due to iris<br />

ischemia)<br />

Intraocular <strong>in</strong>flammation (e.g., iritis)<br />

Ischemia (e.g., ocular ischemic syndrome, iris ischemia after anterior chamber air=gas <strong>in</strong>jection after<br />

deep lamellar keratoplasty for keratoconus) (Maur<strong>in</strong>o, 2002)<br />

Mechanical (e.g., iris tumor, <strong>in</strong>traocular lens)<br />

Surgical (e.g., iridectomy, iridotomy, iris damage)<br />

Trauma<br />

Blunt trauma (traumatic iridoplegia)<br />

Sph<strong>in</strong>cter tears at the pupillary marg<strong>in</strong><br />

Atonic pupil after cataract extraction (Behndig, 1998)<br />

capacity by apply<strong>in</strong>g a topical direct sympathomimetic or parasympathomimetic (class<br />

IV, level C).<br />

Is a Tonic Pupil Present?<br />

The typical presentation of the tonic pupil is isolated anisocoria that is greater <strong>in</strong> light.<br />

Patients often present with acute awareness of the dilated pupil. The cl<strong>in</strong>ical features of<br />

a tonic pupil are listed <strong>in</strong> Table 20–5.<br />

Pharmacologic test<strong>in</strong>g with low-dose pilocarp<strong>in</strong>e (1=8%) may demonstrate chol<strong>in</strong>ergic<br />

supersensitivity <strong>in</strong> the tonic pupil (a more miotic response than the fellow eye).<br />

Leavitt et al suggested a solution of 0.0625% pilocarp<strong>in</strong>e (Leavitt, 2002). Unfortunately,<br />

chol<strong>in</strong>ergic supersensitivity is not uniformly present <strong>in</strong> tonic pupils (80% with topical<br />

pilocarp<strong>in</strong>e test<strong>in</strong>g) and is not specific for postganglionic parasympathetic denervation.<br />

Supersensitivity has been reported after oculomotor nerve palsy (Cox, 1991; Jacobson,<br />

1990, 1994). In addition, larger-sized pupils normally constrict more than smaller pupils<br />

to the same dose of topical chol<strong>in</strong>ergics. Jacobson recommends evaluat<strong>in</strong>g chol<strong>in</strong>ergic<br />

supersensitivity responses <strong>in</strong> darkness to m<strong>in</strong>imize the mechanical resistance factors of<br />

large and small pupil size (Jacobson, 1990, 1994). A larger pupil that becomes the<br />

Table 20–5. <strong>Cl<strong>in</strong>ical</strong> Features of a Tonic Pupil<br />

Poor pupillary light reaction<br />

Segmental palsy of the sph<strong>in</strong>cter<br />

Tonic pupillary near response with light-near dissociation (near response not ‘‘spared’’ but<br />

‘‘restored’’ due to aberrant regeneration)<br />

Chol<strong>in</strong>ergic supersensitivity of the denervated muscles<br />

Accommodation paresis (that tends to recover)<br />

Induced astigmatism at near<br />

Tonicity of accommodation<br />

Occasional ciliary cramp with near work<br />

Occasionally regional corneal anesthesia (trigem<strong>in</strong>al ophthalmic division fibers <strong>in</strong> ciliary ganglion<br />

damaged)


smaller pupil <strong>in</strong> darkness after topical chol<strong>in</strong>ergics is more likely a supersensitive<br />

response (Jacobson, 1990, 1994).<br />

Is the Tonic Pupil Isolated?<br />

The history and exam<strong>in</strong>ation should be able to differentiate the various associations of<br />

secondary pupils from idiopathic Adie’s tonic pupil syndrome. Table 20–6 lists the<br />

causes of a tonic pupil.<br />

Is This Adie’s Tonic Pupil Syndrome?<br />

The cl<strong>in</strong>ical features of Adie’s tonic pupil syndrome, based on Thompson’s extensive<br />

review (Thompson, 1977a,b) and the literature, is reported <strong>in</strong> Table 20–7. With the tonic<br />

pupil, the iris sph<strong>in</strong>cter and ciliary muscles become supersensitive to acetylchol<strong>in</strong>e, and<br />

thus when they are stimulated their response is strong and tonic and their relaxation is<br />

slow and susta<strong>in</strong>ed. Initially there is an isolated <strong>in</strong>ternal ophthalmoplegia, and <strong>in</strong> the<br />

acute stage there is no reaction to light or near stimuli at all. The diagnosis of a tonic<br />

pupil can usually be made on cl<strong>in</strong>ical grounds alone (class IV, level B).<br />

What Causes the Adie’s Tonic Pupil<br />

Syndrome?<br />

The pathophysiology of Adie’s tonic pupil is damage to the ciliary ganglion (Kardon,<br />

1998; Phillips, 1996; Soylev, 1997). More than 90% of the ciliary ganglion cells normally<br />

serve the ciliary body and only 3% serve the iris sph<strong>in</strong>cter. After damage to the ciliary<br />

ganglion, aberrant regeneration of fibers orig<strong>in</strong>ally dest<strong>in</strong>ed for the ciliary body now<br />

<strong>in</strong>nervate the iris sph<strong>in</strong>cter. The <strong>in</strong>itially mydriatic pupil may become smaller over time<br />

(‘‘little old Adie’s’’) and <strong>in</strong>deed Adie’s tonic pupil may present as a miotic pupil (acute<br />

awareness rather than acute onset of anisocoria). Although most Adie’s tonic pupils<br />

present unilaterally, bilateral <strong>in</strong>volvement may develop at a rate of 4% per year<br />

(Thompson, 1977a). Thompson reviewed 220 cases from the literature and reported<br />

that 20% were bilateral (Thompson, 1977a). Rarely, Adie’s syndrome may be associated<br />

with a chronic cough likely related to vagal <strong>in</strong>volvement (Kimber, 1998).<br />

Should <strong>Neuro</strong>imag<strong>in</strong>g Studies Be Performed <strong>in</strong><br />

Adie’s Syndrome?<br />

<strong>An</strong>isocoria and Pupillary Abnormalities 441<br />

Once the diagnosis of the Adie’s tonic pupil is confirmed cl<strong>in</strong>ically and=or pharmacologically,<br />

no neuroimag<strong>in</strong>g studies are required (class III–IV, level C).


442 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 20–6. Etiologies of a Tonic Pupil<br />

Local (ocular or orbital) lesion affect<strong>in</strong>g ciliary ganglion or nerve<br />

Infection (Capputo, 1992)<br />

Campylobacter jejuni enteritis (Roberts, 1995)<br />

Cellulitis<br />

Chickenpox<br />

Choroiditis<br />

Diphtheria<br />

Herpes simplex virus<br />

Herpes zoster virus<br />

HTLV-II (Hjelle, 1992)<br />

Influenza<br />

Measles<br />

Parvovirus B19 (Corridan, 1991)<br />

Pertussis<br />

Scarlet fever<br />

S<strong>in</strong>usitis<br />

Syphilis<br />

Varicella virus (Hodgk<strong>in</strong>s, 1993)<br />

Viral hepatitis<br />

Inflammation<br />

Iritis=uveitis damage to ciliary ganglion<br />

Rheumatoid arthritis<br />

Sarcoidosis<br />

Vogt-Koyanagi-Harada syndrome (Kim, 2001a)<br />

Ischemia<br />

Orbital vasculitis<br />

Lymphomatoid granulomatosis (Haider, 1993)<br />

Migra<strong>in</strong>e (Purv<strong>in</strong>, 1995)<br />

Giant cell arteritis<br />

Orbital or choroidal tumor (Haider, 1993)<br />

Polyarteritis nodosa (Bennett, 1999)<br />

Local anesthesia (Perlman, 1991)<br />

Inferior dental block<br />

Injection of retrobulbar alcohol<br />

Surgery (Bodker, 1993; Golnik, 1995; Halpern, 1995; Saiz, 1991)<br />

Cataract surgery (Monson, 1992; Saiz, 1991)<br />

Cryotherapy<br />

Diathermy<br />

Penetrat<strong>in</strong>g keratoplasty<br />

Ret<strong>in</strong>al surgery<br />

Strabismus surgery<br />

Orbital surgery (Bodker, 1993)<br />

Laser therapy<br />

(cont<strong>in</strong>ued)


Table 20–6. (cont<strong>in</strong>ued)<br />

<strong>An</strong>isocoria and Pupillary Abnormalities 443<br />

Toxicity<br />

Qu<strong>in</strong><strong>in</strong>e<br />

Trichloroethylene<br />

Trauma (nonsurgical)<br />

Blunt trauma to ciliary plexus<br />

Orbital floor fracture<br />

Retrobulbar hemorrhage<br />

Damage to short ciliary nerves<br />

<strong>Neuro</strong>pathic<br />

Peripheral or autonomic neuropathy<br />

Amyloidosis (Davies, 1999)<br />

Diabetes<br />

Alcohol-related<br />

Familial dysautonomia<br />

Hereditary neuropathy (e.g., Charcot-Marie-Tooth disease)<br />

Guilla<strong>in</strong>-Barré syndrome<br />

Fisher syndrome (<strong>in</strong>clud<strong>in</strong>g isolated bilateral <strong>in</strong>ternal ophthalmoplegia with IgG anti-GQ1b<br />

antibodies) (Berlit, 1992; Caccavale, 2000; Cher, 1993; Igarishi, 1992; Ishikawa, 1990;<br />

Mori, 2001; Radziwill, 1998; Sawada, 1990)<br />

Chronic <strong>in</strong>flammatory demyel<strong>in</strong>at<strong>in</strong>g polyradiculoneuropathy (Midroni, 1996)<br />

Acute sensorimotor polyneuropathy with tonic pupils and abduction deficit with polyarteritis<br />

nodosa (Bennett, 1999)<br />

Pandysautonomia<br />

Progressive autonomic failure<br />

Shy-Drager syndrome<br />

Ross’ syndrome (tonic pupil, hyporeflexia segmental anhidrosis) (Sh<strong>in</strong>, 2000; Weller, 1992; Wolfe,<br />

1995)<br />

Sjögren’s syndrome (Bachmeyer, 1997; Vetrugno, 1997)<br />

Systemic <strong>in</strong>fectious (e.g., syphilis)<br />

Paraneoplastic<br />

Eaton-Lambert syndrome (Wirtz, 2001)<br />

Carc<strong>in</strong>omatous neuropathy<br />

Congenital neuroblastoma with Hirschsprung disease and central hypoventilation syndrome<br />

(Lambert, 2000)<br />

Unilateral Adie pupil <strong>in</strong> patient with small cell lung cancer and anti-Hu antibodies (Kimura<br />

Bruno, 2000)<br />

Congenital neuroblastoma, Hirschsprung disease, central hypoventilation syndrome<br />

(Lambert, 2000)<br />

Follow<strong>in</strong>g oculomotor nerve palsy (Cox, 1991)<br />

Adie’s tonic pupil syndrome


444 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 20–7. <strong>Cl<strong>in</strong>ical</strong> Features of Adie’s Syndrome<br />

Prevalence 2 cases per 1000 population<br />

Mean age 32 years<br />

Female to male ratio 2.6 : 1<br />

Unilateral 80%<br />

Reduced deep tendon reflexes 89%<br />

Sector palsy 100%*<br />

Accommodative paresis 66%<br />

Bilateral 4% per year<br />

Chol<strong>in</strong>ergic supersensitivity 80%<br />

Decreased regional corneal sensation 90%<br />

Prognosis Accommodative paresis resolves over months<br />

Pupil light reaction usually does not recover<br />

Pupil smaller with time (‘‘little old Adie’s’’)<br />

Most symptoms resolve spontaneously<br />

*In patients with some degree of light reaction.<br />

What Treatment Is Recommended for Adie’s<br />

Syndrome?<br />

Patients with Adie’s syndrome often compla<strong>in</strong> of difficulty read<strong>in</strong>g due to accommodative<br />

paresis. The treatment of Adie’s tonic pupil is usually reassurance alone. Unequal<br />

bifocal read<strong>in</strong>g aids or a unilateral frosted bifocal segment may be needed for patients<br />

with accommodative paresis. The use of topical low-dose pilocarp<strong>in</strong>e or eser<strong>in</strong>e has<br />

been suggested by some authors for Adie’s syndrome, but may precipitate ciliary<br />

spasm, <strong>in</strong>duce myopia, cause browache, or worsen anisocoria due to miosis (Thompson,<br />

1977a,b). We do not generally recommend treatment for Adie’s tonic pupil (class IV,<br />

level C).<br />

When Does One Perform Syphilis Serology <strong>in</strong><br />

Bilateral, Tonic or Miotic, Irregular Pupils<br />

with Light-Near Dissociation?<br />

Thompson recommends that all patients with bilateral tonic pupils should have<br />

serologic test<strong>in</strong>g for syphilis (Thompson, 1977a). Fletcher and Sharpe reported that<br />

five of 60 consecutive patients with tonic pupils had positive serology for syphilis<br />

(Fletcher, 1986). Of these patients, all were bilateral tonic pupils and none presented<br />

with acute mydriasis or cycloplegia. We recommend syphilis serology for unexpla<strong>in</strong>ed<br />

bilateral tonic pupils (class IV, level C).<br />

The Argyll Robertson pupil consists of bilateral, miotic, irregular pupils with lightnear<br />

dissociation. Although classically described with neurosyphilis, other entities may<br />

produce a similar cl<strong>in</strong>ical syndrome. These etiologies <strong>in</strong>clude diabetes, chronic alcoholism,<br />

encephalitis, multiple sclerosis, degenerative diseases of the CNS (e.g., Charcot-


Marie-Tooth), rare midbra<strong>in</strong> tumors, herpes zoster, neurosarcoidosis, and lymphocytic<br />

men<strong>in</strong>goradiculitis.<br />

Is the Pupillary Light Reaction Normal?<br />

If the pupillary light reaction is normal <strong>in</strong> both eyes, then physiologic (simple)<br />

anisocoria (Lam, 1996), a Horner’s syndrome, sympathetic irritation, or pharmacologic<br />

mydriasis should be considered.<br />

Is the <strong>An</strong>isocoria Isolated?<br />

If the patient has an isolated anisocoria (e.g., no ptosis or dilation lag, no evidence of iris<br />

<strong>in</strong>jury or drugs, and not related to Adie’s tonic pupil or other <strong>in</strong>nervational defects),<br />

then simple (physiologic or central) anisocoria is likely to be present (Lam, 1996). Simple<br />

anisocoria may have a prevalence of up to 21% (range 1 to 90% <strong>in</strong> various studies), and<br />

most of these patients have an anisocoria of less than 0.4 mm that is usually only<br />

<strong>in</strong>termittently present (Lam, 1996). The anisocoria tends to be equal <strong>in</strong> light or dark.<br />

Topical coca<strong>in</strong>e will dilate both pupils equally (see ‘‘What Is Pharmacologic Localization<br />

of HS,’’ below). It is assumed that <strong>in</strong> these patients <strong>in</strong>hibition of the sph<strong>in</strong>cter nuclei <strong>in</strong><br />

the midbra<strong>in</strong> is not ‘‘balanced’’ with any precision that is necessary for clear b<strong>in</strong>ocular<br />

vision.<br />

Is a Horner’s Syndrome Present?<br />

Interruption of the ocular sympathetic pathway is known as a Horner’s syndrome (HS).<br />

HS is characterized cl<strong>in</strong>ically by the signs listed <strong>in</strong> Table 20–8.<br />

HS may result from a lesion anywhere along a three-neuron pathway that arises as a<br />

first-order (central) neuron from the posterolateral hypothalamus, descends <strong>in</strong> the<br />

Table 20–8. <strong>Cl<strong>in</strong>ical</strong> F<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> Horner’s Syndrome<br />

<strong>An</strong>isocoria and Pupillary Abnormalities 445<br />

Ipsilateral mild (usually < 2 mm) ptosis (due to denervation of the Müller’s muscle of the upper<br />

eyelid)<br />

‘‘Upside down ptosis’’ (from sympathetic denervation to the lower eyelid retractors)<br />

Apparent enophthalmos<br />

<strong>An</strong>isocoria due to ipsilateral miosis<br />

Dilation lag (slow dilation of the pupil after the lights are dimmed)<br />

Increased accommodative amplitude or accommodative paresis (Miller, 1985)<br />

Transient (acute phase) ocular hypotony and conjunctival hyperemia<br />

Variable ipsilateral facial anhidrosis<br />

Ipsilateral straight hair <strong>in</strong> congenital cases<br />

Heterochromia of the iris (usually congenital but rarely acquired) (Dissenhouse, 1992;<br />

Miller, 1985)<br />

Rarely, neurotrophic corneal endothelial failure with pa<strong>in</strong> and stromal edema (Zamir, 1999)


446 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

bra<strong>in</strong>stem and lateral column of the sp<strong>in</strong>al cord to exit at the cervical (C8) and thoracic<br />

(T1-T2) levels (ciliosp<strong>in</strong>al center of Budge) of the sp<strong>in</strong>al cord as a second-order neuron.<br />

This second-order (<strong>in</strong>termediate) preganglionic neuron exits the ventral root and arches<br />

over the apex of the lung to ascend <strong>in</strong> the cervical sympathetic cha<strong>in</strong>. The second-order<br />

neurons synapse <strong>in</strong> the superior cervical ganglion and exit as a third-order neuron. The<br />

neural fibers for sweat<strong>in</strong>g of the face travel with the external carotid artery. The thirdorder<br />

postganglionic neuron travels with the carotid artery <strong>in</strong>to the cavernous s<strong>in</strong>us.<br />

With<strong>in</strong> the cavernous s<strong>in</strong>us, the sympathetic fibers jo<strong>in</strong> the abducens nerve for a short<br />

course and then travel with the ophthalmic division of the trigem<strong>in</strong>al nerve and jo<strong>in</strong> the<br />

nasociliary branch of the trigem<strong>in</strong>al nerve. The fibers pass through the ciliary ganglion<br />

and to the eye as the long and short ciliary nerves (Burde, 1992; Miller, 1985).<br />

The evaluation of HS <strong>in</strong>cludes two stages (Burde, 1992; Miller, 1985): (1) recognition of<br />

the cl<strong>in</strong>ical syndrome, and (2) confirmation and localization by pharmacologic test<strong>in</strong>g.<br />

Is the HS Isolated?<br />

Nonisolated HS should undergo imag<strong>in</strong>g with attention to the topographic localization<br />

of the cl<strong>in</strong>ical f<strong>in</strong>d<strong>in</strong>gs.<br />

Is a Central HS Present?<br />

Patients with a central HS can usually be identified by the presence of associated<br />

hypothalamic or bra<strong>in</strong>stem signs or symptoms (e.g., contralateral fourth nerve palsy,<br />

diabetes <strong>in</strong>sipidus, disturbed temperature or sleep regulation, men<strong>in</strong>geal signs, vertigo,<br />

sensory deficits, anhidrosis of the body, etc.). The etiologies of central HS are listed <strong>in</strong><br />

Table 20–9.<br />

Is a Preganglionic (Intermediate) HS Present?<br />

The preganglionic (<strong>in</strong>termediate) HS patient may have neck or arm pa<strong>in</strong>, anhidrosis<br />

<strong>in</strong>volv<strong>in</strong>g the face and neck, brachial plexopathy, vocal cord paralysis, or phrenic nerve<br />

palsy (Burde, 1992). The etiologies of preganglionic <strong>in</strong>termediate HS are listed <strong>in</strong><br />

Table 20–10.<br />

Is a Postganglionic HS Present?<br />

The postganglionic HS patient may have ipsilateral pa<strong>in</strong> and other symptoms suggestive<br />

of cluster or migra<strong>in</strong>e headaches (e.g., tear<strong>in</strong>g, facial flush<strong>in</strong>g, rh<strong>in</strong>orrhea)<br />

(DeMar<strong>in</strong>is, 1994; Manzoni, 1991). <strong>An</strong>hidrosis <strong>in</strong> postganglionic HS is often absent<br />

(Thompson, 1977b). Sweat glands of the forehead are supplied by the term<strong>in</strong>al branches<br />

of sympathetics to the <strong>in</strong>ternal carotid, and <strong>in</strong>volvement of these fibers after they have<br />

separated from the rema<strong>in</strong><strong>in</strong>g facial sweat fibers may expla<strong>in</strong> the occurrence of<br />

anhidrosis of the forehead with spar<strong>in</strong>g of the rest of the face <strong>in</strong> these patients.<br />

Postganglionic HS due to cavernous s<strong>in</strong>us lesions (e.g., thrombosis, <strong>in</strong>fection, neoplasm)


Table 20–9. Central Causes of Horner’s Syndrome<br />

Neoplasm<br />

Hypothalamic=pituitary<br />

Third ventricle<br />

Bra<strong>in</strong>stem<br />

Sp<strong>in</strong>al cord<br />

Infection<br />

Syphilis<br />

Poliomyelitis<br />

Men<strong>in</strong>gitis<br />

Demyel<strong>in</strong>ation<br />

Inflammation (e.g., sarcoid)<br />

Trauma (Worth<strong>in</strong>gton, 1998)<br />

Hemorrhage (Müri, 1995)<br />

Ischemia or <strong>in</strong>farction<br />

Midbra<strong>in</strong> (Bassetti, 1995)<br />

Hypothalamic (Aust<strong>in</strong>, 1991; Mutschler, 1994)<br />

Wallenberg syndrome (Kim, 1994)<br />

Giant cell arteritis (unilateral <strong>in</strong>ternuclear ophthalmoplegia with ipsilateral Horner’s syndrome)<br />

(Askari, 1993)<br />

<strong>An</strong>terior sp<strong>in</strong>al artery thrombosis (Smith, 1999)<br />

Syr<strong>in</strong>gomyelia (? if central or preganglionic Horner’s) (Kerrison, 2000)<br />

Source: Aust<strong>in</strong>, 1991; Burde, 1992; Everett, 1999; Miller, 1985; Mutschler, 1994.<br />

<strong>An</strong>isocoria and Pupillary Abnormalities 447<br />

usually is associated with other localiz<strong>in</strong>g signs such as ipsilateral third, fourth, or sixth<br />

nerve palsy or trigem<strong>in</strong>al nerve dysfunction (Miller, 1985).<br />

Dissection of the <strong>in</strong>ternal carotid artery (e.g., traumatic, spontaneous) may result <strong>in</strong><br />

HS. Biousse et al, for example, studied 146 patients with <strong>in</strong>ternal carotid artery<br />

dissections and found that 28% (41 of 146) had a pa<strong>in</strong>ful HS that was isolated <strong>in</strong> half<br />

of the cases (32 of 65) (Biousse, 1998b). Kerty noted HS <strong>in</strong> 23 of 28 patients with <strong>in</strong>ternal<br />

carotid artery dissection (Kerty, 1999). A third-order HS and orbital and=or ipsilateral<br />

head pa<strong>in</strong> or neck pa<strong>in</strong> of acute onset is diagnostic of <strong>in</strong>ternal carotid artery dissection<br />

unless proven otherwise (Biousse, 1998b). Table 20–11 lists the associated signs and<br />

symptoms of a possible carotid artery dissection (Baumgartner, 2001; Bilbao, 1997;<br />

Biousse, 1998b; Brown, 1995; Burde, 1992; C<strong>in</strong>tron, 1995; Cullom, 1994, 1995; Grau,<br />

1997; Kerty, 1999; Leira, 1998; Purv<strong>in</strong>, 1997; Schiev<strong>in</strong>k, 1998; Venketasubramanian,<br />

1998). Patients with these signs should undergo imag<strong>in</strong>g of the head and neck. We<br />

recommend magnetic resonance (MR) imag<strong>in</strong>g and MR angiography of the head and<br />

neck and consideration for carotid angiography <strong>in</strong> cases of HS due to suspected carotid<br />

dissection (class III–IV, level B). Other etiologies of a postganglionic HS are listed <strong>in</strong><br />

Table 20–12.<br />

Although facial sweat<strong>in</strong>g abnormalities may be helpful <strong>in</strong> localiz<strong>in</strong>g a HS, the<br />

performance of cl<strong>in</strong>ical test<strong>in</strong>g with starch and iod<strong>in</strong>e (e.g., thermoregulatory sweat<br />

test) as described by some authors is somewhat time consum<strong>in</strong>g, messy, and may be<br />

difficult to perform <strong>in</strong> the outpatient sett<strong>in</strong>g. Other tests of facial sweat<strong>in</strong>g may not add<br />

to the cl<strong>in</strong>ical or pharmacologic localization of HS.


448 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 20–10. Etiologies of Preganglionic Intermediate Horner’s Syndrome<br />

Neoplasm (<strong>in</strong>clud<strong>in</strong>g neck, head, brachial plexus, lung)<br />

Glomus tumors<br />

Breast cancer<br />

Sarcomas<br />

Lung cancer<br />

Lymphoreticular neoplasms (Emir, 2000)<br />

<strong>Neuro</strong>fibroma<br />

<strong>Neuro</strong>blastoma (Simon, 2001)<br />

Thyroid adenoma (Freeman, 1997)<br />

Syr<strong>in</strong>gomyelia (? if central or preganglionic Horner’s) (Kerrison, 2000)<br />

Mediast<strong>in</strong>al or neck lymphadenopathy<br />

Cervicothoracic abnormalities<br />

Cervical rib<br />

Pachymen<strong>in</strong>gitis<br />

Hypertrophic sp<strong>in</strong>al arthritis<br />

Foram<strong>in</strong>al osteophyte<br />

Ruptured <strong>in</strong>tervertebral disc<br />

Thoracic aneurysm<br />

Herpes zoster <strong>in</strong> T3-T4 distribution (Poole, 1997)<br />

Cont<strong>in</strong>uous thoracic epidural analgesia (Aronson, 2000; Liu, 1998; Menendez, 2000)<br />

Neck, brachial plexus or lung trauma or surgery (Oono, 1999)<br />

Carotid endarterectomy (Perry, 2001)<br />

Birth trauma (Klumpke’s paralysis)<br />

Surgical or procedural trauma (Naimer, 2000)<br />

Upper cervical sympathectomies (Smith, 1999)<br />

<strong>An</strong>terior C3-C6 fusion<br />

Radical thyroid surgery<br />

Chest trauma (Hassan, 2000)<br />

Implantation of vagus nerve stimulator for epilepsy (Kim, 2001b)<br />

Internal jugular ve<strong>in</strong> thrombosis <strong>in</strong> polycythemia vera (Glemarec, 1998)<br />

Thoracic aneurysms (Delabrousse, 2000)<br />

Infection or <strong>in</strong>flammation<br />

Migration of foreign body from pharynx to soft tissues of neck (Scaglione, 1999)<br />

Source: Attar, 1998; Burde, 1992; Miller, 1985.<br />

What Is Alternat<strong>in</strong>g HS?<br />

HS that alternates from one eye to the other (usually over days to weeks) is an<br />

uncommon f<strong>in</strong>d<strong>in</strong>g but has been reported <strong>in</strong> multiple system atrophy (Shy-Drager<br />

syndrome) and <strong>in</strong> cervical sp<strong>in</strong>al cord lesions. Tan et al reported a case and reviewed 25<br />

cases from the literature (one vertebral luxation, 14 cervical cord <strong>in</strong>juries, eight Shy-<br />

Drager syndromes, one syr<strong>in</strong>gomyelia, one unknown, and one radiation myelopathy)<br />

(Tan, 1990). Generalized peripheral or autonomic neuropathies (e.g., diabetes, Fisher’s<br />

syndrome, Shy-Drager syndrome) may also result <strong>in</strong> HS (Miller, 1985).


Is the HS Related to Trauma?<br />

Patients with a clear temporal association of the onset of HS with surgical or<br />

nonsurgical trauma to the sympathetic cha<strong>in</strong> <strong>in</strong> the neck or chest do not require<br />

additional evaluation. Pharmacologic test<strong>in</strong>g may aid <strong>in</strong> localization and confirmation<br />

of the diagnosis (class IV, level C). The etiologies of traumatic HS are listed <strong>in</strong><br />

Table 20–13.<br />

What Is Congenital HS?<br />

<strong>An</strong>isocoria and Pupillary Abnormalities 449<br />

Table 20–11. Associated Signs and Symptoms of Carotid Artery Dissection<br />

Ipsilateral orbital, facial, or neck pa<strong>in</strong> (present <strong>in</strong> 90% of cases; ipsilateral to <strong>in</strong>volved vessel <strong>in</strong> 80%)<br />

Diplopia (transient or persistent)<br />

May be due to cavernous carotid <strong>in</strong>volvement<br />

More likely due to transient or permanent impairment of blood supply through <strong>in</strong>ferolateral<br />

trunk supply<strong>in</strong>g third, fourth, and sixth cranial nerves<br />

Also possible due to orbital (extraocular muscle) ischemia or ophthalmic artery occlusion<br />

May have third, fourth, and=or sixth cranial nerve palsies<br />

Transient carotid distribution ischemic attacks (e.g., amaurosis fugax), sometimes evoked by<br />

changes <strong>in</strong> posture<br />

Transient monocular ‘‘sc<strong>in</strong>tillations’’ or ‘‘flash<strong>in</strong>g lights,’’ often related to postural changes or<br />

exposure to bright lights (possible choroidal ischemia)<br />

Visual loss<br />

<strong>An</strong>terior (AION) or posterior (PION) ischemic optic neuropathy<br />

Central ret<strong>in</strong>al artery occlusion (CRAO), branch ret<strong>in</strong>al artery occlusion (BRAO)<br />

Ophthalmic artery occlusion (often associated with head or neck pa<strong>in</strong>)<br />

Ocular ischemic syndrome<br />

Horner’s syndrome (third order, often pa<strong>in</strong>ful)<br />

Transient unilateral mydriasis (rare) (Inzelberg, 2000)<br />

Neck bruit or swell<strong>in</strong>g<br />

Other neurologic deficits<br />

Dysgeusia<br />

T<strong>in</strong>nitus (often pulsatile)<br />

Syncope<br />

Other cranial neuropathy (VI, IX, X, XI, XII)<br />

Sk<strong>in</strong> biopsies might show ultrastructural connective tissue abnormalities (36 of 65 patients<br />

studied <strong>in</strong> one series) usually without other cl<strong>in</strong>ical manifestations of a connective<br />

tissue disease (Brandt, 2001)<br />

Source: Baumgartner, 2001; Bilbao, 1997; Biousse, 1998b; Brandt, 2001; Brown, 1995; Burde, 1992; C<strong>in</strong>tron,<br />

1995; Cullom, 1995; Grau, 1997; Kerty, 1999; Leira, 1998; Mokhtari, 2000; Purv<strong>in</strong>, 1997; Schiev<strong>in</strong>k, 1998;<br />

Venketasubramanian, 1998.<br />

We<strong>in</strong>ste<strong>in</strong> et al reported 11 patients with congenital HS and divided them <strong>in</strong>to three<br />

groups based on cl<strong>in</strong>ical and pharmacologic test<strong>in</strong>g (We<strong>in</strong>ste<strong>in</strong>, 1980):<br />

1. Obstetric per<strong>in</strong>atal forceps (high forceps and rotation for fetal malposition) trauma to<br />

the carotid sympathetic plexus


450 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Table 20–12. Etiologies of a Postganglionic Horner’s Syndrome.<br />

Cavernous s<strong>in</strong>us lesions (Miller, 1985)<br />

Infection (e.g., thrombosis, herpes zoster) (Smith, 1993)<br />

Inflammatory (e.g., sarcoid, Tolosa-Hunt syndrome)<br />

Intracavernous aneurysm<br />

Ophthalmic artery aneurysm (Pritz, 1999)<br />

Neoplasm (e.g., men<strong>in</strong>gioma, metastatic)<br />

Headache syndromes (e.g., cluster or migra<strong>in</strong>e) (DeMar<strong>in</strong>is, 1994, 1998; Manzoni, 1991)<br />

Inflammatory lesions of adjacent structures<br />

Cervical lymphadenopathy (Bollen, 1998)<br />

Otitis media (caroticotympanic plexus)<br />

Petrositis<br />

Sphenoid s<strong>in</strong>us mucocele<br />

Infectious<br />

Severe purulent otitis media (caroticotympanic plexus)<br />

Herpetic geniculate neuralgia<br />

Men<strong>in</strong>gitis<br />

S<strong>in</strong>usitis<br />

Neoplasm<br />

Cavernous s<strong>in</strong>us<br />

Cervical node metastasis<br />

Cervical sympathetic cha<strong>in</strong> schwannoma or neurilemommas (Ganesan, 1997; Hamza, 1997)<br />

Metastatic<br />

Orbital<br />

Systemic peripheral or autonomic disorders<br />

Diabetes (Smith, 1999)<br />

Amyloidosis (Davies, 1999; Smith, 1999)<br />

Ross’ syndrome (Sh<strong>in</strong>, 2000)<br />

Fisher’s syndrome<br />

Mononeuritis multiplex due to cytomegalovirus (CMV) <strong>in</strong> patient with AIDS (Harada, 1998)<br />

Pure autonomic failure (Smith, 1999)<br />

Hereditary sensory and autonomic neuropathy (HSAN) type III (Smith, 1999)<br />

Familial dysautonomia (Smith, 1999)<br />

Dopam<strong>in</strong>e b-hydroxylase deficiency (Smith, 1999)<br />

Multiple systems atrophy (Shy-Drager syndrome) (Smith, 1999)<br />

Trauma <strong>in</strong>clud<strong>in</strong>g surgery<br />

Basilar skull fracture<br />

Orbital fractures<br />

Radical middle ear surgery<br />

Injection or surgery of the gasserian ganglion<br />

Intraoral trauma to <strong>in</strong>ternal carotid sympathetic plexus<br />

Tonsillectomy<br />

Prolonged abnormal posture dur<strong>in</strong>g coma (Thompson, 1998)<br />

Head trauma with <strong>in</strong>tracranial carotid artery <strong>in</strong>jury (Fujisawa, 2001)<br />

Vascular abnormalities of the <strong>in</strong>ternal carotid artery<br />

Congenital anomalies (e.g., congenital agenesis of <strong>in</strong>ternal carotid artery) (Ryan, 2000)<br />

(cont<strong>in</strong>ued)


Table 20–12. (cont<strong>in</strong>ued)<br />

Fibromuscular dysplasia<br />

Carotid artery aneurysms or dissection (Assaf, 1993; Cullom, 1995; Foster, 1991; Mokri, 1992;<br />

Vighetto, 1990) (see Table 20–11)<br />

Arteriosclerosis or thrombosis of the <strong>in</strong>ternal carotid artery (Koivunen, 1999)<br />

Giant cell arteritis (Pascual-Sedano, 1998)<br />

Source: Burde, 1992; Miller, 1985.<br />

2. Presumed superior cervical ganglion lesions (postganglionic lesions with facial<br />

anhidrosis)<br />

3. Surgical (thoracic) or obstetric trauma (brachial plexus) to the preganglionic pathway<br />

Congenital HS (Weissberg, 2001) may result <strong>in</strong> heterochromia of the irides as the<br />

sympathetic <strong>in</strong>nervation of the iris determ<strong>in</strong>es iris pigmentation. Acquired HS,<br />

however, has also been rarely reported to cause iris heterochromia (Dissenhouse,<br />

1992; Miller, 1985).<br />

Table 20–13. Traumatic Horner’s Syndrome<br />

<strong>An</strong>isocoria and Pupillary Abnormalities 451<br />

Direct or <strong>in</strong>direct trauma to the sympathetic cha<strong>in</strong> (Oono, 1999)<br />

Medical procedures<br />

Chest tube above the third posterior rib (Burde, 1992; Gasch, 1996; Miller, 1985; Resnick, 1993)<br />

Extradural analgesia<br />

Lumbar epidural anesthesia (Biousse, 1998a; Hered, 1998; Jeret, 1995; Paw, 1998)<br />

Thoracic epidural analgesia (Liu, 1998)<br />

Percutaneous catheterization of the <strong>in</strong>ternal jugular ve<strong>in</strong> (Gomez, 1993; Guccione, 1992;<br />

Peake, 1990; Reddy, 1998; Vaswani, 1991; Zamir, 1999; Zelligowsky, 1991)<br />

Swan-Ganz catheterization via the <strong>in</strong>ternal jugular ve<strong>in</strong><br />

Carotid artery damage (e.g., carotid angiography) (Maloney, 1980)<br />

Intraoral anesthesia (Penarrocha-Diago, 2000)<br />

Surgery (Burde, 1992; Gasch, 1996; Hamza, 1997; Resnick, 1993; Miller, 1985)<br />

Cardiac surgery (Barbut, 1996)<br />

Median sternotomy<br />

Intentional surgical damage (e.g., sympathectomy)<br />

Thoracic esophageal surgery (Szawlowski, 1991)<br />

<strong>An</strong>terior cervical sp<strong>in</strong>e surgery (Ebraheim, 2000)<br />

Cervical sympathetic cha<strong>in</strong> schwannoma resection (Hood, 2000)<br />

Other<br />

After patient malposition<strong>in</strong>g (Thompson, 1998)<br />

Interscalene brachial plexus block<br />

Stereotactic thalamotomy<br />

Intrathecal Bicill<strong>in</strong> <strong>in</strong>jections <strong>in</strong> the neck<br />

Traumatic <strong>in</strong>ternal carotid dissection (Schiev<strong>in</strong>k, 1998)<br />

Injection <strong>in</strong>to the carotid artery of hero<strong>in</strong> by a drug addict


452 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

What Is Pharmacologic Localization of HS?<br />

Patients with HS that cannot be localized by cl<strong>in</strong>ical exam<strong>in</strong>ation alone should undergo<br />

pharmacologic studies to confirm the diagnosis of HS and localize it to the preganglionic<br />

or postganglionic levels (class III–IV, level B). Although the cl<strong>in</strong>ical features of HS<br />

are classic, they are not pathognomonic. Ipsilateral ptosis and miosis may occur <strong>in</strong><br />

patients without HS (e.g., levator dehiscence and physiologic anisocoria). Pharmacologic<br />

confirmation is relatively easy to perform and is more specific and sensitive than<br />

cl<strong>in</strong>ical diagnosis alone.<br />

Coca<strong>in</strong>e <strong>in</strong>hibits the reuptake of norep<strong>in</strong>ephr<strong>in</strong>e at the neuromuscular junction.<br />

Therefore, topical 5 to 10% coca<strong>in</strong>e dilates a normal pupil (the mydriatic effect is<br />

small and usually about 1 mm) but does not dilate a pupil with HS (regardless of the<br />

location of the affected sympathetic neuron) as well as it dilates a normal pupil.<br />

Therefore, there is an <strong>in</strong>crease <strong>in</strong> the degree of anisocoria after the coca<strong>in</strong>e test <strong>in</strong> a<br />

patient with HS. M<strong>in</strong>imal dilation of the pupil may occur <strong>in</strong> patients with partial<br />

disruption of the oculosympathetic pathway or first-order neuron <strong>in</strong>volvement (Burde,<br />

1992; Miller, 1985). M<strong>in</strong>imal or no dilation of the pupil after topical coca<strong>in</strong>e confirms<br />

that HS exists, but does not localize the responsible process to a preganglionic or<br />

postganglionic location. Friedman et al reported the response to topical coca<strong>in</strong>e 10% <strong>in</strong><br />

24 normal volunteers and thought that 0.5 mm or more of anisocoria was necessary for<br />

the diagnosis of HS (Friedman, 1984). Van der Wiel and Van Gijn compared 12 patients<br />

with HS and 20 normals and found that an anisocoria of 1.0 mm after topical 5% coca<strong>in</strong>e<br />

was sufficient to diagnose HS (Van der Wiel, 1986). Kardon et al adm<strong>in</strong>istered the<br />

coca<strong>in</strong>e test to 50 normals and 119 patients with HS (Kardon, 1990). A post–coca<strong>in</strong>e test<br />

anisocoria value of 1.0 mm gave a mean odds ratio us<strong>in</strong>g logistic regression analysis of<br />

about 5990 : 1 that HS was present (lower 95% confidence limit 37 : 1). These authors<br />

stated that simply measur<strong>in</strong>g the post–coca<strong>in</strong>e test anisocoria (versus measur<strong>in</strong>g the net<br />

change <strong>in</strong> anisocoria) was the best predictor of HS (Kardon, 1990). The amount of<br />

post–coca<strong>in</strong>e test anisocoria and the mean odds (that a patient has HS) are listed <strong>in</strong><br />

Table 20–14.<br />

Hydroxyamphetam<strong>in</strong>e releases stored norep<strong>in</strong>ephr<strong>in</strong>e from the postganglionic adrenergic<br />

nerve end<strong>in</strong>gs at the dilator muscle of the pupil. Therefore, a preganglionic HS<br />

(with <strong>in</strong>tact postganglionic third-order neuron) dilates after adm<strong>in</strong>istration of topical<br />

hydroxyamphetam<strong>in</strong>e 1% (Paredr<strong>in</strong>e), whereas a postganglionic HS pupil does not<br />

dilate (no norep<strong>in</strong>ephr<strong>in</strong>e stores). It should be noted that a false-negative Paredr<strong>in</strong>e test<br />

may occur with postganglionic HS dur<strong>in</strong>g the first week after <strong>in</strong>jury (Donahue, 1996).<br />

The suggested procedure for pharmacologic test<strong>in</strong>g for HS is outl<strong>in</strong>ed <strong>in</strong> Table 20–15<br />

(class III–IV, level C).<br />

A positive test result is noted if the anisocoria <strong>in</strong>creases after the test versus a negative<br />

result if the anisocoria is dim<strong>in</strong>ished or unchanged (this measurement accounts for any<br />

preexist<strong>in</strong>g anisocoria and psychosensory transient dilation effects) (Cremer, 1990a,b).<br />

In <strong>in</strong>termediate and central preganglionic lesions, the affected pupil usually dilates<br />

more <strong>in</strong> response to hydroxyamphetam<strong>in</strong>e possibly because of enhanced receptor<br />

sensitivity at the dilator muscle (Cremer, 1990a,b). There is no effective pharmacologic<br />

test to differentiate central from <strong>in</strong>termediate preganglionic HS. The hydroxyamphetam<strong>in</strong>e<br />

test should be deferred for 24 to 48 hours follow<strong>in</strong>g the coca<strong>in</strong>e test because<br />

coca<strong>in</strong>e will block the effects of the hydroxyamphetam<strong>in</strong>e (Cremer, 1990a,b). Topical<br />

pharmacologic test<strong>in</strong>g should be performed <strong>in</strong> both eyes (the fellow eye serves as a


Table 20–14. Post–Coca<strong>in</strong>e Test <strong>An</strong>isocoria<br />

and the Mean Odds of Horner’s<br />

Syndrome<br />

<strong>An</strong>isocoria (mm) Mean Odds<br />

0.0 1 : 1<br />

0.1 2 : 1<br />

0.2 6 : 1<br />

0.3 14 : 1<br />

0.4 32 : 1<br />

0.5 77 : 1<br />

0.6 185 : 1<br />

0.7 441 : 1<br />

0.8 1050 : 1<br />

0.9 2510 : 1<br />

1.0 5990 : 1<br />

Source: Kardon, 1990.<br />

control) and iatrogenic disruption of the corneal epithelium (e.g., applanation tonometry<br />

or corneal sensitivity test<strong>in</strong>g) should be avoided prior to test<strong>in</strong>g. Patients with congenital<br />

HS may fail to dilate after topical hydroxyamphetam<strong>in</strong>e due to orthograde transsynaptic<br />

dysgenesis of the postganglionic neuron and may <strong>in</strong> reality have a preganglionic<br />

lesion. Friedman et al noted that the pupils of black patients (with heavily pigmented<br />

irides) dilated poorly with coca<strong>in</strong>e, and therefore the test should be <strong>in</strong>terpreted with<br />

more caution <strong>in</strong> black patients (Friedman, 1984; Kardon, 1990). Patients undergo<strong>in</strong>g<br />

topical pharmacologic test<strong>in</strong>g should be <strong>in</strong>formed that ur<strong>in</strong>e drug screen<strong>in</strong>g tests (for<br />

occupational hir<strong>in</strong>g reasons) rema<strong>in</strong> positive for 24 to 48 hours follow<strong>in</strong>g topical test<strong>in</strong>g.<br />

Maloney et al reviewed the cl<strong>in</strong>ical accuracy of the pharmacologic localization of HS<br />

<strong>in</strong> 267 patients (Maloney, 1980). The hydroxyamphetam<strong>in</strong>e test correctly localized<br />

peripheral postganglionic HS <strong>in</strong> 75 (84%) of 89 patients. The reported sensitivity for<br />

identification of a postganglionic HS by hydroxyamphetam<strong>in</strong>e was 96% (Maloney,<br />

1980). Van der Wiel and Van Gijn reported a sensitivity of only 40% (Van der Wiel, 1983),<br />

but their study had a relatively smaller number of patients and excluded patients with<br />

cluster headache. Cremer et al described the results of hydroxyamphetam<strong>in</strong>e test<strong>in</strong>g <strong>in</strong><br />

54 patients with HS and reported a sensitivity of 93% and specificity of 83% (Cremer,<br />

1990a,b). Patients with an isolated postganglionic HS usually have a benign HS,<br />

whereas patients with a preganglionic HS are at risk for harbor<strong>in</strong>g an underly<strong>in</strong>g<br />

Table 20–15. Pharmacologic Test<strong>in</strong>g for Horner’s Syndrome<br />

<strong>An</strong>isocoria and Pupillary Abnormalities 453<br />

One drop of 1% hydroxyamphetam<strong>in</strong>e or coca<strong>in</strong>e (4% or 10%) is <strong>in</strong>stilled <strong>in</strong> the conjunctival sac<br />

of each eye<br />

Both eyes are wiped with a tissue<br />

20 to 40 seconds later a second drop is applied to each eye (to balance the dosage)<br />

The amount of mydriasis (dilation) is measured and the difference <strong>in</strong> the amount of dilation<br />

between the eyes compared<br />

The coca<strong>in</strong>e test and the hydroxyamphetam<strong>in</strong>e test cannot be given on the same day


454 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

malignancy. Grimson and Thompson described 67 patients with HS (Grimson, 1975).<br />

The <strong>in</strong>cidence of malignant neoplasm <strong>in</strong> the preganglionic HS was almost 50% versus<br />

2% <strong>in</strong> postganglionic HS. Some authors have recommended a screen<strong>in</strong>g chest radiograph<br />

for all cases of HS of undeterm<strong>in</strong>ed etiology due to the small risk of misdiagnosis<br />

of a preganglionic HS by the hydroxyamphetam<strong>in</strong>e test (Gasch, 1996). Wilhelm et al<br />

reviewed 90 cases of HS and reported a specificity of 90% for postganglionic HS and<br />

88% for preganglionic HS (Wilhelm, 1992).<br />

Grimson and Thompson reported 120 patients with HS (Grimson, 1979). Of these 120<br />

patients, 41% were preganglionic, and one half of these were due to underly<strong>in</strong>g<br />

neoplasm (Grimson, 1979). Maloney et al reported an etiology <strong>in</strong> 270 (60%) of 450<br />

cases of HS (Maloney, 1980). Of the 180 cases without a def<strong>in</strong>ed etiology, 65 (36%) were<br />

reexam<strong>in</strong>ed (6 months to 28 years later) without a def<strong>in</strong>ite etiology, and the authors thus<br />

felt this <strong>in</strong>dicated a benign and stable orig<strong>in</strong> of the HS. The etiology of the rema<strong>in</strong><strong>in</strong>g 270<br />

cases was as follows: 60 (22%) tumors (23 benign lesions and 37 malignant lesions); 54<br />

(20%) cluster headaches; 45 (16%) iatrogenic cases (e.g., neck surgery and carotid<br />

angiography); 18 (7%) Raeder’s syndromes; 18 (7%) trauma; 13 (5%) cervical disc<br />

protrusions; 13 (5%) congenital cases; 13 (5%) vascular occlusions; 9 (3%) vascular<br />

anomalies, and 27 (10%) miscellaneous (e.g., pneumothorax, herpes zoster, cervical rib,<br />

and mediast<strong>in</strong>al lymphadenopathy) cases. Of these 270 cases, 34 (13%) were central<br />

preganglionic HS, 120 (44%) were <strong>in</strong>termediate preganglionic HS, and 116 (43%) were<br />

peripheral postganglionic HS. Of particular <strong>in</strong>terest, 13 patients <strong>in</strong> this series had<br />

undetected malignancy, and 10 were due to primary or metastatic tumor <strong>in</strong>volv<strong>in</strong>g<br />

the pulmonary apex. N<strong>in</strong>e of these 10 (90%) patients had arm pa<strong>in</strong> (due to presumed<br />

<strong>in</strong>volvement of the adjacent sympathetic cha<strong>in</strong> and C8-T2 nerves).<br />

Giles and Henderson reported a 35.6% <strong>in</strong>cidence (77 cases) of HS due to underly<strong>in</strong>g<br />

neoplasm (Giles, 1958). Of these 77 cases, 58 were malignant (mostly bronchogenic<br />

carc<strong>in</strong>oma and metastatic disease) and 19 were benign (e.g., neurofibroma and thyroid<br />

adenoma) (Giles, 1958).<br />

Is the Evaluation of HS Different <strong>in</strong> Children?<br />

Giles and Henderson reported birth trauma to be the most common etiology of HS <strong>in</strong><br />

children (Giles, 1958). In children, cervical or thoracic tumors (e.g., neuroblastoma,<br />

neurilemmoma, and other congenital or acquired tumors) may cause HS. We recommend<br />

a complete evaluation <strong>in</strong>clud<strong>in</strong>g imag<strong>in</strong>g (e.g., computed tomography scan) of<br />

the cervicothoracic region <strong>in</strong> all children with unexpla<strong>in</strong>ed HS (e.g., no history of birth<br />

trauma to the brachial plexus or other iatrogenic etiology) (Burde, 1992; Gibbs, 1992;<br />

Miller, 1985). Murasella et al reviewed 405 children with neuroblastoma and 14 had HS;<br />

9 of these 14 patients presented with HS (Murasella, 1984). Woodruff et al reported that<br />

two out of 10 children with HS had neuroblastoma (Woodruff, 1988). Sauer and<br />

Lev<strong>in</strong>sohn described seven patients (younger than 11 years old) with HS due to<br />

sp<strong>in</strong>al cord tumor, traumatic brachial plexus palsy, <strong>in</strong>trathoracic aneurysm, embryonal<br />

cell carc<strong>in</strong>oma, neuroblastoma, rhabdomyosarcoma, and thrombosis of the <strong>in</strong>ternal<br />

carotid artery (Sauer, 1976). Iris coloration is not established until several months of age,<br />

and therefore iris heterochromia is not a helpful differential feature of HS <strong>in</strong> these<br />

patients after the per<strong>in</strong>atal period (Burde, 1992). Patients with a substantial history of<br />

per<strong>in</strong>atal head trauma, such as forceps delivery or with evidence of brachial plexus


<strong>in</strong>jury (Klumpke’s paralysis), and pharmacologic evidence of a postganglionic HS do<br />

not require additional evaluation. Childhood HS without a history of clear trauma<br />

(<strong>in</strong>clud<strong>in</strong>g surgical and birth trauma) to the sympathetic cha<strong>in</strong> often have a preganglionic<br />

(<strong>in</strong>termediate) lesion, and therefore should undergo evaluation for an underly<strong>in</strong>g<br />

neoplasm such as neuroblastoma (Burde, 1992; Miller, 1985; Sauer, 1976; Woodruff,<br />

1988). Other etiologies of congenital HS <strong>in</strong>clude viral <strong>in</strong>fections (e.g., cytomegalovirus or<br />

varicella); fibromuscular dysplasia of the <strong>in</strong>ternal carotid artery (possibly posttraumatic);<br />

and HS <strong>in</strong> association with other congenital anomalies (e.g., facial hemiatrophy,<br />

enterogenous cyst, and cervical vertebral anomaly) (Miller, 1985).<br />

What Are the Indications for Imag<strong>in</strong>g Based<br />

on <strong>Cl<strong>in</strong>ical</strong> and Pharmacologic Localization?<br />

Digre et al prospectively performed MR imag<strong>in</strong>g studies <strong>in</strong> 33 patients with HS (Digre,<br />

1992). Of these 33 patients, 13 were preganglionic HS and 20 were postganglionic HS.<br />

Figure 20–1. Evaluation of anisocoria.<br />

<strong>An</strong>isocoria and Pupillary Abnormalities 455


456 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Patients with preganglionic HS without bra<strong>in</strong>stem signs or symptoms underwent T1weighted<br />

sagittal imag<strong>in</strong>g of the entire neck, offset to the ipsilateral side; coronal<br />

imag<strong>in</strong>g of the posterior sp<strong>in</strong>al cord through anterior neck; and axial T1- and T2weighted<br />

imag<strong>in</strong>g from cervical level 2 (C2) to thoracic level 6 (T6). Preganglionic HS<br />

patients with bra<strong>in</strong>stem signs or symptoms underwent extensive imag<strong>in</strong>g of the<br />

sympathetic axis <strong>in</strong>clud<strong>in</strong>g (1) sagittal imag<strong>in</strong>g of the entire bra<strong>in</strong>; (2) axial T1- and<br />

T2-weighted sagittal bra<strong>in</strong> and upper cervical sp<strong>in</strong>e; (3) imag<strong>in</strong>g offset to the side of<br />

<strong>in</strong>terest; (4) coronal T2-weighted imag<strong>in</strong>g of the carotid and cavernous s<strong>in</strong>uses; and<br />

(5) axial T1- and T2-weighted images from the optic chiasm to C4. Four patients had a<br />

lateral medullary <strong>in</strong>farct out of six patients with central preganglionic HS; two patients<br />

had sp<strong>in</strong>al cord=root compression secondary to disc disease, one had apical Pancoast<br />

lung tumor, and one had paravertebral metastatic mass out of seven patients with<br />

preganglionic HS. There were three carotid dissections out of 20 postganglionic HS.<br />

Table 20–16. Pupillary Signs <strong>in</strong> the ICU<br />

Unilateral large poorly reactive pupil<br />

Third nerve palsy<br />

Contusion of eye<br />

Accidental exposure to aerosolized antichol<strong>in</strong>ergics or spill<strong>in</strong>g of atrop<strong>in</strong>e droplets dur<strong>in</strong>g<br />

preparation of the syr<strong>in</strong>ge<br />

Transient (ipsilateral or contralateral) dur<strong>in</strong>g focal seizure or as part of an absence seizure<br />

Oval unilateral nonreactive pupil—transitory appearance <strong>in</strong> bra<strong>in</strong> death<br />

Bilateral mydriasis with normal reaction to light<br />

<strong>An</strong>xiety, delirium, pa<strong>in</strong><br />

Dur<strong>in</strong>g seizure<br />

Botulism<br />

Drugs—systemic atrop<strong>in</strong>e, aerosolized albuterol, amyl nitrate, magnesium sulfate,<br />

norep<strong>in</strong>ephr<strong>in</strong>e, dopam<strong>in</strong>e, am<strong>in</strong>oglycoside, polypeptide, tetracycl<strong>in</strong>e overdose<br />

Bilateral midposition and fixed to light—bra<strong>in</strong> death<br />

Unilateral small, reactive—Horner’s syndrome<br />

Traumatic carotid dissection<br />

Brachial plexopathy<br />

Internal jugular ve<strong>in</strong> catheterization<br />

Extensive thoracic surgery<br />

Spastic miosis <strong>in</strong> acute corneal penetration <strong>in</strong>jury<br />

Bilateral miosis (reaction present but may be difficult to see even with magnify<strong>in</strong>g glass)<br />

Narcotic agents (e.g., morph<strong>in</strong>e)<br />

<strong>An</strong>y metabolic encephalopathy<br />

Respiratory distress with hypercapnea and tachypnea<br />

Bilateral p<strong>in</strong>po<strong>in</strong>t, reactive<br />

Acute pont<strong>in</strong>e lesion, especially hemorrhage<br />

Nonketonic hyperglycemia


What Is the Evaluation for an Isolated<br />

Postganglionic HS?<br />

We do not typically recommend any evaluation for isolated postganglionic HS (class IV,<br />

level C) (Burde, 1992). A number of headache syndromes may be associated with a<br />

postganglionic HS, <strong>in</strong>clud<strong>in</strong>g cluster headache, migra<strong>in</strong>e (Drummond, 1991), and<br />

Raeder’s syndrome (Pimental, 1993). Cluster headache is typically characterized by<br />

the follow<strong>in</strong>g ipsilateral cl<strong>in</strong>ical manifestations <strong>in</strong> addition to headache: conjunctival<br />

<strong>in</strong>jection, tear<strong>in</strong>g, miosis or mydriasis, ptosis, bradycardia, nasal stuff<strong>in</strong>ess, rh<strong>in</strong>orrhea,<br />

facial hyperhidrosis, or flush<strong>in</strong>g. These cluster accompaniments are related to a<br />

comb<strong>in</strong>ation of sympathetic hypofunction and parasympathetic hyperfunction<br />

(e.g., tear<strong>in</strong>g and rh<strong>in</strong>orrhea). Cremer et al reported that 19 of 39 (49%) postganglionic<br />

HS were due to cluster headache (Cremer, 1990a,b). The headache and facial pa<strong>in</strong> of<br />

Raeder’s syndrome can be mimicked by <strong>in</strong>ternal carotid artery dissection however<br />

(Dihne, 2000), and patients suspected of harbor<strong>in</strong>g a dissection should undergo<br />

appropriate imag<strong>in</strong>g of the carotid artery (class IV, level C).<br />

<strong>An</strong> approach to anisocoria is outl<strong>in</strong>ed <strong>in</strong> Figure 20–1. Table 20–16 reviews pupillary<br />

signs of importance <strong>in</strong> the <strong>in</strong>tensive care unit (ICU) sett<strong>in</strong>g.<br />

References<br />

<strong>An</strong>isocoria and Pupillary Abnormalities 457<br />

Abramson SJ, Berdon WE, Ruzal-Shapiro C, Stolar C, Garv<strong>in</strong> J. (1993). Cervical neuroblastoma <strong>in</strong> eleven <strong>in</strong>fants—<br />

a tumor with favorable prognosis. <strong>Cl<strong>in</strong>ical</strong> and radiologic (US, CT, MRI) f<strong>in</strong>d<strong>in</strong>gs. Pediatr Radiol 23:253–257.<br />

Apt L. (1995). Flea collar anisocoria. Arch Ophthalmol 113:403–404.<br />

Aronson LA, Parker GC, Valley R, Norfleet EA. (2000). Acute Horner syndrome due to thoracic epidural analgesia<br />

<strong>in</strong> a paediatric patient. Paediatr <strong>An</strong>aesth 10:89–91.<br />

Askari A, Jolobe OM, Shepherd DI. (1993). Internuclear ophthalmoplegia and Horner’s syndrome due to<br />

presumed giant cell arteritis. J R Soc Med 86:362.<br />

Assaf M, Sweeney PJ, Kosmorsky G, Masaryk T. (1993). Horner’s syndrome secondary to angiogram negative<br />

subadventitial carotid artery dissection. Can J <strong>Neuro</strong>l Sci 20:62–64.<br />

Attar S, Krasna MJ, Sonett JR, et al. (1998). Superior sulcus (Pancoast) tumor: experience with 105 patients.<br />

<strong>An</strong>n Thorac Surg 66:193–198.<br />

Aust<strong>in</strong> CP, Lessel S. (1991). Horner’s syndrome from hypothalamic <strong>in</strong>farction. Arch <strong>Neuro</strong>l 48:332–334.<br />

Bachmeyer C, Zuber M, Dupont S, et al. (1997). Adie syndrome as the <strong>in</strong>itial sign of primary Sjögren syndrome.<br />

Am J Ophthalmol 123:691–692.<br />

Barbut D, Gold JP, He<strong>in</strong>emann MH, et al. (1996). Horner’s syndrome after coronary artery bypass surgery. Urology<br />

46:181.<br />

Bassetti C, Staikov IN. (1995). Hemiplegia vegetativa alterna (ipsilateral Horner’s syndrome and contralateral<br />

hemihyperhidrosis) follow<strong>in</strong>g proximal posterior cerebral artery occlusion. Stroke 26:702–704.<br />

Baumgartner RW, Arnold M, Baumgartner I, et al. (2001). Carotid dissection with and without ischemic events.<br />

Local symptoms and cerebral artery f<strong>in</strong>d<strong>in</strong>gs. <strong>Neuro</strong>logy 57:827–832.<br />

Behndig A. (1998). Small <strong>in</strong>cision s<strong>in</strong>gle-suture-loop pupilloplasty for postoperative atonic pupil. J Cataract Refract<br />

Surg 24:1429–1431.<br />

Bennett JL, Pelak VA, Mourelatos Z, et al. (1999). Acute sensorimotor polyneuropathy with tonic pupils and<br />

abduction deficit: an unusual presentation of polyarteritis nodosa. Surv Ophthalmol 43:341–344.<br />

Berlit P, Rakicky J. (1992). The Miller Fisher syndrome: review of the literature. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 12:57–63.<br />

Berreen JP, Vrabec MP, Penar PL. (1990). Intermittent pupillary dilatation associated with astrocytoma (letter). Am<br />

J Ophthalmol 109:237–239.<br />

Bilbao R, Amoros S, Murube J. (1997). Horner syndrome as an isolated manifestation of an <strong>in</strong>trapetrous <strong>in</strong>ternal<br />

carotid artery dissection. Am J Ophthalmol 123:562–564.<br />

Biousse V, Guevara RA, Newman NJ. (1998a). Transient Horner’s syndrome after lumbar epidural anesthesia.<br />

<strong>Neuro</strong>logy 51:1473–1475.


458 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Biousse V, Touboul P-J, D’<strong>An</strong>glejan-Chatillon J, et al. (1998b). Ophthalmic manifestations of <strong>in</strong>ternal carotid<br />

dissection. Am J Ophthalmol 126:565–577.<br />

Bodker FS, Cytryn AS, Putterman AM, Marschall MA. (1993). Postoperative mydriasis after repair of orbital floor<br />

fracture. Am J Ophthalmol 115:372–375.<br />

Bollen AE, Krikke AP, de Jager AEJ. (1998). Pa<strong>in</strong>ful Horner syndrome due to arteritis of the <strong>in</strong>ternal carotid artery.<br />

<strong>Neuro</strong>logy 51:1471–1472.<br />

Brandt T, Orberk E, Weber R, et al. (2001). Pathogenesis of cervical artery dissections. Association with connective<br />

tissue abnormalities. <strong>Neuro</strong>logy 57:24–30.<br />

Brown J, Danielson R, Donahue SP, Thompson HS. (1995). Horner’s syndrome <strong>in</strong> subadventitial carotid artery<br />

dissection and the role of magnetic resonance angiography. Am J Ophthalmol 119:811–813.<br />

Burde RM, Sav<strong>in</strong>o PJ, Trobe JD. (1992). <strong>Cl<strong>in</strong>ical</strong> Decisions <strong>in</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. St. Louis, Mosby Year Book,<br />

pp. 326–327, 330–332.<br />

Burde RM, Thompson HS. (1991). Hydroxyamphetam<strong>in</strong>e. A good drug lost? (editorial). Am J Ophthalmol<br />

111:100–102.<br />

Buys Y, Buncic JR, Enzenauer RW, Mednick E, O’Keefe M. (1993). Congenital aplasia of the iris sph<strong>in</strong>cter and<br />

dilator muscles. Can J Ophthalmol 28:72–75.<br />

Caccavale A, Mignemi L. (2000). Acute onset of a bilateral mydriasis <strong>in</strong> Miller-Fisher syndrome: a rare neuroophthalmologic<br />

disease. J <strong>Neuro</strong>-ophthalmol 20:61–62.<br />

Capputo AR, Mickey KJ, Guo S. (1992). A varicella-<strong>in</strong>duced pupil abnormality (letter). Pediatrics 89:685–686.<br />

Cher LM, Merory JM. (1993). Miller Fisher syndrome mimick<strong>in</strong>g stroke <strong>in</strong> immunosuppressed patient with<br />

rheumatoid arthritis respond<strong>in</strong>g to plasma exchange. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:138–140.<br />

C<strong>in</strong>tron R, Kattah J. (1995). Oculosympathetic paresis and hemicrania <strong>in</strong> spontaneous dissection of the <strong>in</strong>ternal<br />

carotid artery. Four cases and review of the literature. <strong>Neuro</strong>-<strong>ophthalmology</strong> 15:241–248.<br />

Corridan PG, Laws DR, Morrell AJ, Murray PI. (1991). Tonic pupils and human parvovirus (B19) <strong>in</strong>fection. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 11:109–110.<br />

Cox TA, Goldberg RA, Rootman J. (1991). Tonic pupil and Czarnecki’s sign follow<strong>in</strong>g third nerve palsy. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 11:55.<br />

Cremer SA, Thompson HS, Digre KB, Kardon RH. (1990a). Hydroxyamphetam<strong>in</strong>e mydriasis <strong>in</strong> normal subjects.<br />

Am J Ophthalmol 110:66–70.<br />

Cremer SA, Thompson HS, Digre KB, Kardon RH. (1990b). Hydroxyamphetam<strong>in</strong>e mydriasis <strong>in</strong> Horner’s<br />

syndrome. Am J Ophthalmol 110:71–76.<br />

Crompton JL, Moore CF. (1981). Pa<strong>in</strong>ful third nerve palsy: how not to miss an <strong>in</strong>tracranial aneurysm. Aust<br />

J Ophthalmol 9:113–115.<br />

Cullom RD Jr, Cullom ME, Kardon R, Digre K. (1995). Two neuro-ophthalmic episodes separated <strong>in</strong> time and<br />

space. Surv Ophthalmol 40:217–224.<br />

Davies DR, Smith SE. (1999). Pupil abnormality <strong>in</strong> amyloidosis with autonomic neuropathy. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 67:819–822.<br />

Delabrousse E, Kastler B, Bernard Y, et al. (2000). MR diagnosis of a congenital abnormality of the thoracic aorta<br />

with an aneurysm of the right subclavian artery present<strong>in</strong>g as a Horner’s syndrome <strong>in</strong> an adult. Eur Radiol<br />

10:650–652.<br />

DeMar<strong>in</strong>is M. (1994). Pupillary abnormalities due to sympathetic dysfunction <strong>in</strong> different forms of idiopathic<br />

headache. Cl<strong>in</strong> Autonomic Res 4:331–338.<br />

DeMar<strong>in</strong>is M, Assenza S, Carletto F. (1998). Oculosympathetic alterations <strong>in</strong> migra<strong>in</strong>e patients. Cephalgia 18:77–84.<br />

Digre KB, Smoker WRK, Johnston P, et al. (1992). Selective MR imag<strong>in</strong>g approach for evaluation of patients with<br />

Horner’s syndrome. AJNR 13:223–227.<br />

Dihne M, Block F, Thron A, Kuker W. (2000). Raeder’s syndrome: a rare presentation of <strong>in</strong>ternal carotid artery<br />

dissection. Cerebrovasc Dis 10:159–160.<br />

Dissenhouse MC, Palay DA, Newman NJ, To K, Albert DM. (1992). Acquired heterochromia with Horner’s<br />

syndrome <strong>in</strong> two adults. Ophthalmology 99:1815–1817.<br />

Donahue SP, Lav<strong>in</strong> PJM, Digre K. (1996). False-negative hydroxyamphetam<strong>in</strong>e (Paredr<strong>in</strong>e) test <strong>in</strong> acute Horner’s<br />

syndrome. Am J Ophthalmol 122:900–901.<br />

Drummond PD. (1991). Cervical sympathetic deficit <strong>in</strong> unilateral migra<strong>in</strong>e headache. Headache 31:669–672.<br />

Ebraheim NA, Lu J, Yang H, et al. (2000). Vulnerability of the sympathetic trunk dur<strong>in</strong>g anterior approach to the<br />

lower cervical sp<strong>in</strong>e. Sp<strong>in</strong>e 25:1603–1606.<br />

Ellenberg DJ, Spector LD, Lee A. (1992). Flea collar pupil (letter). <strong>An</strong>n Emerg Med 21:1170.<br />

Emir S, Kutluk MT, Gogus S, Buyukpamukcu M. (2000). Paraneoplastic cerebellar degeneration and Horner<br />

syndrome: association of two uncommon f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> a child with Hodgk<strong>in</strong> disease. J Pediatr Hematol Oncol<br />

22:158–161.


<strong>An</strong>isocoria and Pupillary Abnormalities 459<br />

Everett CM, Gutowski NJ. (1999). Prostate carc<strong>in</strong>oma present<strong>in</strong>g as bra<strong>in</strong> stem dysfunction. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 66:546.<br />

Fletcher WA, Sharpe JA. (1986). Tonic pupils <strong>in</strong> neurosyphilis. <strong>Neuro</strong>logy 36:188–192.<br />

Foster RE, Kosmorsky GS, Sweeney PJ, Masaryk TJ. (1991). Horner’s syndrome secondary to spontaneous carotid<br />

artery dissection with normal angiographic f<strong>in</strong>d<strong>in</strong>gs (letter). Arch Ophthalmol 109:1499–1500.<br />

Freeman JL, van den Brekel MW, Brown D. (1997). Carc<strong>in</strong>oma of the thyroid present<strong>in</strong>g as Horner’s syndrome.<br />

J Otolaryngol 26:387–388.<br />

Friedman JR, Whit<strong>in</strong>g DW, Kosmorsky GS, Burde RM. (1984). The coca<strong>in</strong>e test <strong>in</strong> normal patients. Am J Ophthalmol<br />

98:808–810.<br />

Fujisawa H, Marukawa K, Kida S, et al. (2001). Abducens nerve palsy and ipsilateral Horner syndrome: a<br />

predict<strong>in</strong>g sign of <strong>in</strong>tracranial carotid <strong>in</strong>jury <strong>in</strong> a head trauma patient. J Traum Injury Infect Crit Care<br />

50:554–556.<br />

Fujiwara S, Fujii K, Nishio S, Matsushima T, Fukui M. (1989). Oculomotor nerve palsy <strong>in</strong> patients with cerebral<br />

aneurysms. <strong>Neuro</strong>surg Rev 12:123–132.<br />

Gale A, Crockard HA. (1982). Transient unilateral mydriasis with basilar aneurysm. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

45:565–566.<br />

Ganesan S, Harar RP, Owen RA, et al. (1997). Horner’s syndrome: a rare presentation of cervical sympathetic<br />

cha<strong>in</strong> schwannoma. J Laryngol Otol 111:493–495.<br />

Gasch AT. (1996). Horner’s syndrome secondary to chest tube placement. <strong>An</strong>n Ophthalmol 28:235–239.<br />

Gelmi C, Ceccuzzi R. (1994). Mydriatic effects of ocular decongestants studied by pupillography. Ophthalmologica<br />

208:243–246.<br />

Gibbs J, Appleton RE, Mart<strong>in</strong> J, F<strong>in</strong>dlay G. (1992). Congenital Horner syndrome associated with non-cervical<br />

neuroblastoma. Dev Med Child <strong>Neuro</strong>l 34:642–644.<br />

Giles CL, Henderson JW. (1958). Horner’s syndrome: an analysis of 216 cases. Am J Ophthalmol 46:289–296.<br />

Glemarec J, Berthelot JM, Chevalet P, et al. (1998). Brachial plexopathy and Horner’s syndrome as the first<br />

manifestation of <strong>in</strong>ternal jugular ve<strong>in</strong> thrombosis <strong>in</strong>augurat<strong>in</strong>g polycythemia vera. Rev Rhum (English<br />

Version) 65:358–359.<br />

Goldste<strong>in</strong> JB, Biousse V, Newman NJ. (1997). Unilateral pharmacologic mydriasis <strong>in</strong> a patient with respiratory<br />

compromise. Arch Ophthalmol 115:806.<br />

Golnik KC, Hund PW III, Apple DJ. (1995). Atonic pupil after cataract surgery. J Cataract Refract Surg 21:<br />

170–175.<br />

Gomez ME, Gonzales I, Lo<strong>in</strong>az C, et al. (1993). <strong>Neuro</strong>logic complications <strong>in</strong> liver transplantation. Acta <strong>Neuro</strong>l<br />

Scand 87:25–31.<br />

Grau AJ, Brandt T, Forst<strong>in</strong>g M, et al. (1997). Infection-associated cervical artery dissection. Three cases.<br />

Stroke 28:453–455.<br />

Grimson BS, Thompson HS. (1975). Drug test<strong>in</strong>g <strong>in</strong> Horner’s syndrome. In: Glaser JS, et al, eds. <strong>Neuro</strong><strong>ophthalmology</strong><br />

Symposium of the University of Miami and the Bascom Palmer Eye Institute. Vol. 8. St. Louis,<br />

Mosby Year Book, p. 265.<br />

Grimson BS, Thompson HS. (1979). Horner’s syndrome: overall view of 120 cases. In. Thompson HS, ed. Topics <strong>in</strong><br />

<strong>Neuro</strong>-<strong>ophthalmology</strong>. Baltimore, Williams and Wilk<strong>in</strong>s, pp. 151–156.<br />

Guccione P, Gagliardi G, Bevilacqua M, Parisi F, Mar<strong>in</strong>o B. (1992). Cardiac catheterization through the <strong>in</strong>ternal<br />

jugular ve<strong>in</strong> <strong>in</strong> pediatric patients. Chest 101:1512–1514.<br />

Haider S. (1993). Tonic pupil <strong>in</strong> lymphomatoid granulomatosis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:38–39.<br />

Halpern BL, Pavilack MA, Gallagher SP. (1995). The <strong>in</strong>cidence of atonic pupil follow<strong>in</strong>g cataract surgery. Arch<br />

Ophthalmol 113:448–450.<br />

Hamza A, Fagan JJ, Weissman JL, Myers EN. (1997). Neurilemomas of the parapharyngeal space. Arch<br />

Otlolaryngol Head Neck Surg 123:622–626.<br />

Harada H, Tamaoka A, Yoshida H, et al. (1998). Horner’s syndrome associated with mononeuritis multiplex due<br />

to cytomegalovirus as the <strong>in</strong>itial manifestation <strong>in</strong> a patient with AIDS. J <strong>Neuro</strong>l Sci 154:91–93.<br />

Hassan AN, Ballester J, Slater N. (2000). Bilateral first rib fractures associated with Horner’s syndrome. Injury<br />

31:273–274.<br />

Hered RW, Cumm<strong>in</strong>gs RJ, Helffrich R. (1998). Persistent Horner’s syndrome after sp<strong>in</strong>al fusion and epidural<br />

analgesia. A case report. Sp<strong>in</strong>e 23:387–390.<br />

Hjelle B, Appenzeller O, Mills R, et al. (1992). Chronic neurodegenerative disease associated with HTLV-II<br />

<strong>in</strong>fection. Lancet 339:645–646.<br />

Hodgk<strong>in</strong>s PR, Luff AJ, Absolon MJ. (1993). Internal ophthalmoplegia—a compilation of ocular varicella. Aust NZ J<br />

Ophthalmol 21:53–54.


460 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Hood RJ, Reibel JF, Jensen ME, Lev<strong>in</strong>e PA. (2000). Schwannoma of the cervical sympathetic cha<strong>in</strong>. <strong>An</strong>n Otol Rh<strong>in</strong>ol<br />

Laryngol 109:48–51.<br />

Igarishi Y, Takeda M, Maekawa H, et al. (1992). Fisher’s syndrome without total ophthalmoplegia. Ophthalmology<br />

205:163–167.<br />

Inzelberg R, Nisipeanu P, Blumen SC, et al. (2000). Transient unilateral mydriasis as the present<strong>in</strong>g sign of aortic<br />

and carotid dissection. <strong>Neuro</strong>logy 55:1934–1935.<br />

Ishikawa H, Wakakura M, Ishikawa S. (1990). Enhanced ptosis <strong>in</strong> Fisher’s syndrome after Epste<strong>in</strong>-Barr virus<br />

<strong>in</strong>fection. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 10:197–200.<br />

Jacobson DM. (1990). Pupillary responses to dilute pilocarp<strong>in</strong>e <strong>in</strong> preganglionic third nerve disorders. <strong>Neuro</strong>logy<br />

40:804–808.<br />

Jacobson DM. (1994). A prospective evaluation of chol<strong>in</strong>ergic supersensitivity of the iris sph<strong>in</strong>cter <strong>in</strong> patients with<br />

oculomotor nerve palsies. Am J Ophthalmol 118:377–383.<br />

Jacobson DM. (1995). Benign episodic unilateral mydriasis. Ophthalmology 102:1623–1627.<br />

Jeret JS, Mazurek AA. (1995). Acute postpartum Horner’s syndrome due to epidural anesthesia. Arch Ophthalmol<br />

113:560.<br />

Johkura K, Hasegawa O, Kuroiwa Y. (2001). Episodic encephalopathy with dilated pupils. <strong>Neuro</strong>logy 56:1115–1116.<br />

Kardon RH, Corbett JJ, Thompson HS. (1998). Segmental denervation and re<strong>in</strong>nervation of the iris sph<strong>in</strong>cter as<br />

shown by <strong>in</strong>frared videographic transillum<strong>in</strong>ation. Ophthalmology 105:313–321.<br />

Kardon RH, Denison CE, Brown CK, Thompson HS. (1990). Critical evaluation of the coca<strong>in</strong>e test <strong>in</strong> the diagnosis<br />

of Horner’s syndrome. Arch Ophthalmol 108:384–387.<br />

Kaye-Wilson LG, Gibson R, Bell JE, Steers AJW. (1994). Oculomotor nerve neur<strong>in</strong>oma, early detection by magnetic<br />

resonance imag<strong>in</strong>g. <strong>Neuro</strong>-<strong>ophthalmology</strong> 14:37–41.<br />

Kerrison JB, Biousse V, Newman NJ. (2000). Isolated Horner’s syndrome and syr<strong>in</strong>gomyelia. J <strong>Neuro</strong>l <strong>Neuro</strong>surg<br />

Psychiatry 69:131–132.<br />

Kerty E. (1999). The <strong>ophthalmology</strong> of <strong>in</strong>ternal carotid artery dissection. Acta Ophthalmol Scand 77:418–421.<br />

Kim JS, Lee JH, Suh DC, Lee MC. (1994). Spectrum of lateral medullary syndrome. Correlation between cl<strong>in</strong>ical<br />

f<strong>in</strong>d<strong>in</strong>gs and magnetic resonance imag<strong>in</strong>g <strong>in</strong> 33 subjects. Stroke 25:1405–1410.<br />

Kim JS, Yu CH, Moon CS. (2001a). Bilateral tonic (Adie’s) pupils <strong>in</strong> Vogt-Koyanagi-Harada syndrome. J <strong>Neuro</strong>ophthalmol<br />

21:205–206.<br />

Kim W, Clancy RR, Liu GT. (2001b). Horner syndrome associated with implantation of a vagus nerve stimulator.<br />

Am J Ophthalmol 131:383–384.<br />

Kimber J, Mitchell D, Mathias CJ. (1998). Chronic cough <strong>in</strong> the Holmes-Adie’s syndrome: association <strong>in</strong> five cases<br />

with autonomic dysfunction. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 65:583–586.<br />

Kimura Bruno M, W<strong>in</strong>terkorn JMS, Edgar MA, et al. (2000). Unilateral Adie pupil as sole ophthalmic sign of<br />

anti-Hu paraneoplastic syndrome. J <strong>Neuro</strong>-Ophthalmol 20:248–249.<br />

Koennecke H-C, Seyfert S. (1998). Mydriatic pupil as the present<strong>in</strong>g sign of common carotid artery dissection.<br />

Stroke 29:2653–2655.<br />

Koivunen P, Lopponen H. (1999). Internal carotid artery thrombosis and Horner’s syndrome as complications of<br />

parapharyngeal abscess. Otolaryngol Head Neck Surg 121:160–162.<br />

Lam BL, Thompson HS, Walls RC. (1996). Effect of light on the prevalence of simple anisocoria. Ophthalmology<br />

103:790–793.<br />

Lambert SR, Yang LLH, Stone C. (2000). Tonic pupil associated with congenital neuroblastoma, Hirschsprung<br />

disease, and central hypoventilation syndrome. Am J Ophthalmol 130:238–240.<br />

Leavitt JA, Wayman LL, Hodge DO, et al. (2002). Pupillary response to four concentrations of pilocarp<strong>in</strong>e <strong>in</strong><br />

normal subjects: application of test<strong>in</strong>g for Adie tonic pupil. Am J Ophthalmol 133:333–336.<br />

Leira EC, Bendixen BH, Kardon RH, Adams HP Jr. (1998). Brief, transient Horner’s syndrome can be the hallmark<br />

of carotid artery dissection. <strong>Neuro</strong>logy 50:289–290.<br />

Lepore FE. (1993). Amaurotic mydriasis. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:200.<br />

Liu M, Kim PS, Chen CK, Smythe WR. (1998). Delayed Horner’s syndrome as a complication of cont<strong>in</strong>uous<br />

thoracic epidural analgesia. J Cardiothorac Vasc <strong>An</strong>esth 12:195–196.<br />

Mabuchi K, Yoshikawa H, Takamori M, et al. (1998). Pseudo-Argyll Robertson pupil of patients with sp<strong>in</strong>ocerebellar<br />

ataxia type 1 (SCA1). J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 65:612–613.<br />

Maloney WF, Younge BR, Moyer NJ. (1980). Evaluation of the causes and accuracy of pharmacologic localization<br />

<strong>in</strong> Horner’s syndrome. Am J Ophthalmol 90:394–402.<br />

Manzoni GC, Micieli G, Zanferrari S, et al. (1991). Cluster headache. Recent developments <strong>in</strong> cl<strong>in</strong>ical characterization<br />

and pathogenesis. Acta <strong>Neuro</strong>l 13:506–513.<br />

Masjuan J, García-Segovia J, Barón M, Alvarez-Cermeno JC. (1997). Ipsilateral mydriasis <strong>in</strong> focal occipitotemporal<br />

seizures. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 63:810–811.


<strong>An</strong>isocoria and Pupillary Abnormalities 461<br />

Maur<strong>in</strong>o V, Allan BDS, Stevens JD, Tuft SJ. (2002). Fixed dilated pupil (Urrets-Zavalia syndrome) after air=gas<br />

<strong>in</strong>jection after deep lamellar keratoplasty for keratoconus. Am J Ophthalmol 133:266–268.<br />

Menendez C, MacMillan DT, Britt LD. (2000). Transient Horner’s syndrome <strong>in</strong> a trauma patient with thoracic<br />

epidural analgesia: a case report. Am Surg 66:756–758.<br />

Midroni G, Dyck PJ. (1996). Chronic <strong>in</strong>flammatory demyel<strong>in</strong>at<strong>in</strong>g polyneuropathy: unusual cl<strong>in</strong>ical features and<br />

therapeutic responses. <strong>Neuro</strong>logy 46:1206–1212.<br />

Miller NR. (1985). Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-<strong>ophthalmology</strong>. 4th ed. Baltimore, Williams and Wilk<strong>in</strong>s,<br />

pp. 425–428, 500–511, 703–705, 1012–1015.<br />

Mokhtari F, Mass<strong>in</strong> P, Paques M, et al. (2000). Central ret<strong>in</strong>al artery occlusion associated with head or neck pa<strong>in</strong><br />

reveal<strong>in</strong>g spontaneous <strong>in</strong>ternal carotid artery dissection. Am J Ophthalmol 129:108–109.<br />

Mokri B, Schiev<strong>in</strong>k WI, Olsen KD, Piepgras DG. (1992). Spontaneous dissection of the cervical <strong>in</strong>ternal carotid<br />

artery. Presentation with lower cranial nerve palsies. Arch Otolaryngol Head Neck Surg 118:431–435.<br />

Monson MC, Mamalis N, Olson RJ. (1992). Toxic anterior segment <strong>in</strong>flammation follow<strong>in</strong>g cataract surgery.<br />

J Cataract Refract Surg 18:184–189.<br />

Monteiro ML, Coppeto JR, Milani JA. (1993). Iron mydriasis. Pupillary paresis from occult <strong>in</strong>traocular foreign<br />

body. J Cl<strong>in</strong> <strong>Neuro</strong>-ophthalmol 13:254–257.<br />

Morales J, Brown SM, Abdul-Rahim AS, Crosson CE. (2000). Ocular effects of apraclonid<strong>in</strong>e <strong>in</strong> Horner syndrome.<br />

Arch Ophthalmol 118:951–954.<br />

Mori M, Kuwabara S, Fukutake T, et al. (2001). <strong>Cl<strong>in</strong>ical</strong> features and prognosis of Miller Fisher syndrome.<br />

<strong>Neuro</strong>logy 56:1104–1106.<br />

Murasella MA, Chan HS, DeBoer G, Gallie BL. (1984). Ocular <strong>in</strong>volvement <strong>in</strong> neuroblastoma: prognostic<br />

implications. Ophthalmology 91:936–940.<br />

Müri RM, Baumgartner RW. (1995). Horner’s syndrome and contralateral trochlear nerve palsy. <strong>Neuro</strong><strong>ophthalmology</strong><br />

15:161–163.<br />

Mutschler V, Sellal F, Maillot C, Maton B, Collard M. (1994). Horner’s syndrome and thalamic lesions. <strong>Neuro</strong><strong>ophthalmology</strong><br />

14:231–236.<br />

Naimer SA, We<strong>in</strong>ste<strong>in</strong> O, Rosenthal G. (2000). Congenital Horner syndrome: a rare though significant complication<br />

of subclavian flap aortoplasty. J Thorac Cardiovasc Surg 120:419–421.<br />

Nakagawa TA, Geurra L, Storgion SA. (1993). Aerosolized atrop<strong>in</strong>e as an unusual cause of anisocoria <strong>in</strong> a child<br />

with asthma. Pediatr Emerg Care 9:153–154.<br />

Nish<strong>in</strong>o H, Rub<strong>in</strong>o FA. (1993). Horner’s syndrome <strong>in</strong> Wegener’s granulomatosis. Report of four cases. J <strong>Neuro</strong>l<br />

<strong>Neuro</strong>surg Psychiatry 56:897.<br />

Nussdorf JD, Berman EL. (2000). <strong>An</strong>isocoria associated with the medical treatment of irritable bowel syndrome.<br />

J <strong>Neuro</strong>-ophthalmol 20:100–101.<br />

Oono S, Saito I, Inukai G, Morisawa K. (1999). Traumatic Horner syndrome without anhidrosis. J <strong>Neuro</strong>-ophthalmol<br />

19:148–151.<br />

Pascual-Sedano B, Roig C. (1998). Horner’s syndrome due to giant cell arteritis. <strong>Neuro</strong>-<strong>ophthalmology</strong> 20:<br />

75–77.<br />

Paw HG. (1998). Horner’s syndrome follow<strong>in</strong>g low-dose epidural <strong>in</strong>fusion for labour; a cautionary tale. Eur<br />

J <strong>An</strong>esth 15:110–111.<br />

Payne JW, Adamkiewicz J. (1969). Unilateral <strong>in</strong>ternal ophthalmoplegia with <strong>in</strong>tracranial aneurysm. Am<br />

J Ophthalmol 68:349–352.<br />

Peake ST, Bollen B. (1990). Unilateral fixed dilated pupil after aortic valve replacement: an unusual comb<strong>in</strong>ation of<br />

causes. J Cardiothorac <strong>An</strong>esth 4:737–739.<br />

Pelak VS, Galetta SL, Grossman RI, et al. (1999). Evidence for preganglionic pupillary <strong>in</strong>volvement <strong>in</strong> superficial<br />

siderosis. <strong>Neuro</strong>logy 53:1130–1132.<br />

Pelton JJ, Ratner IA. (1990). <strong>Neuro</strong>blastoma of the thoracic <strong>in</strong>let. J Pediatr Surg 25:547–549.<br />

Penarrocha-Diago M, Sanchis-Bielsa JM. (2000). Ophthalmologic complications after <strong>in</strong>traoral local anesthesia<br />

with artica<strong>in</strong>e. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90:21–24.<br />

Perk<strong>in</strong> GD. (1994). The pupil. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 57:1179.<br />

Perlman JP, Conn H. (1991). Transient <strong>in</strong>ternal ophthalmoplegia dur<strong>in</strong>g blepharoplasty. A report of three cases.<br />

Adv Ophthalmic Plast Reconstr Surg 7:141–143.<br />

Perry C, Wixon JD, Mills J, Eriksen C. (2001). Horner’s syndrome after carotid endarterectomy—a case report.<br />

Vasc Surg 35:325–327.<br />

Phillips PH, Newman NJ. (1996). Tonic pupil <strong>in</strong> child. J Pediatr Ophthalmol Strabismus 33:331–332.<br />

Pimentel J, Mart<strong>in</strong>s IP. (1993). Raeder’s syndrome. A case with an unusual localization. Cephalgia 13:135.<br />

Poole TR, Acheson JF, Smith SE, Steiger MJ. (1997). Horner’s syndrome due to herpes zoster <strong>in</strong> the T3-T4<br />

dermatome. J R Soc Med 90:395–396.<br />

Prielipp RC. (1994). Unilateral mydriasis after <strong>in</strong>duction of anaesthesia. Can J <strong>An</strong>aesth 41:140–143.


462 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Pritz MB. (1999). Ophthalmic artery aneurysm associated with Horner’s syndrome. Acta <strong>Neuro</strong>chir 141:<br />

891–892.<br />

Purv<strong>in</strong> VA. (1995). Adie’s tonic pupil secondary to migra<strong>in</strong>e. J <strong>Neuro</strong>-ophthalmol 15:43–44.<br />

Purv<strong>in</strong> V, Wall M, Slav<strong>in</strong> M. (1997). Unilateral headache and ptosis <strong>in</strong> a 30-year-old woman. Surv Ophthalmol<br />

42:163–168<br />

Radziwill AJ, Steck AJ, Borruat F-X, Bogousslavsky J. (1998). Isolated <strong>in</strong>ternal ophthalmoplegia associated with<br />

IgG anti-GQ1b antibody. <strong>Neuro</strong>logy 50:307.<br />

Reddy G, Coombes A, Hubbard AD. (1998). Horner’s syndrome follow<strong>in</strong>g <strong>in</strong>ternal jugular ve<strong>in</strong> cannulation.<br />

Intensive Care Med 24:194–196.<br />

Resnick DK. (1993). Delayed pulmonary perforation. A rare complication of tube thoracostomy. Chest 103:311–313.<br />

Roarty JD, Keltner JL. (1990). Normal pupil size and anisocoria <strong>in</strong> newborn <strong>in</strong>fants. Arch Ophthalmol 108:94–95.<br />

Roberts BN, Mills PV, Hawksworth NJ. (1995). Bilateral ptosis, tonic pupils and abducens palsies follow<strong>in</strong>g<br />

Campylobacter jejuni enteritis. Eye 9:657–658.<br />

Ryan FH, Kl<strong>in</strong>e LB, Gomez C. (2000). Congenital Horner’s syndrome result<strong>in</strong>g from agenesis of the <strong>in</strong>ternal<br />

carotid artery. Ophthalmology 107:185–188.<br />

Saiz A, <strong>An</strong>gulo S, Fernandez M. (1991). Atonic pupil: an unusual complication of cataract surgery. Ophthalmic<br />

Surg 22:20–22.<br />

Salveson R. (2000). Cluster headache s<strong>in</strong>e headache: case report. <strong>Neuro</strong>logy 55:451.<br />

Sauer C, Lev<strong>in</strong>sohn MW. (1976). Horner’s syndrome <strong>in</strong> childhood. <strong>Neuro</strong>logy 26:216–220.<br />

Sawada T, Kimura T, Kimura W, et al. (1990). Two cases of Fisher’s syndrome with tectal pupil. Folia Ophthalmol<br />

Jpn 41:1833–1838<br />

Scaglione M, P<strong>in</strong>to F, Grassi R, et al. (1999). Migration of a foreign body from the pharynx to the soft tissues of the<br />

neck: delayed presentation with Horner’s syndrome. AJR 172:1131–1132.<br />

Schiev<strong>in</strong>k WI, Atk<strong>in</strong>son JL, Bartleson JD, Whisnant JP. (1998). Traumatic <strong>in</strong>ternal carotid artery dissections caused<br />

by blunt softball <strong>in</strong>juries. Am J Emerg Med 16:179–182.<br />

Scotcher SM, Cann<strong>in</strong>g CR, Dorrell D. (1995). Siderosis bulbi: an unusual cause of a unilaterally dilated pupil. Br<br />

J Hosp Med 54:110–111.<br />

Sh<strong>in</strong> RK, Galetta SL, T<strong>in</strong>g TY, et al. (2000). Ross syndrome plus. Beyond Horner, Holmes-Adie, and harlequ<strong>in</strong>.<br />

<strong>Neuro</strong>logy 55:1841–1846.<br />

Simon T, Voth E, Berthold F. (2001). Asymmetric salivary gland 123I-meta-iodobenzylguanid<strong>in</strong>e uptake <strong>in</strong> a<br />

patient with cervical neuroblastoma and Horner syndrome. Med Pediatr Oncol 36:489–490.<br />

Slav<strong>in</strong> ML. (2000). Horner syndrome with equal sized pupils <strong>in</strong> a case with underly<strong>in</strong>g physiologic anisocoria.<br />

J <strong>Neuro</strong>-ophthalmol 20:1–2.<br />

Smith EF, Santamar<strong>in</strong>a L, Wol<strong>in</strong>tz AH. (1993). Herpes zoster ophthalmicus as a cause of Horner syndrome. J Cl<strong>in</strong><br />

<strong>Neuro</strong>-ophthalmol 13:250–253.<br />

Smith SA, Smith SE. (1999). Bilateral Horner’s syndrome: detection and occurrence. J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry<br />

66:48–51.<br />

Soriani S, Scarpa P, Arnaldi C, et al. (1996). Migra<strong>in</strong>e aura without headache and ictal fast EEG activity <strong>in</strong> an<br />

11-year-old boy. Eur J Pediatr 155:126–129.<br />

Soylev MF, Saatci O, Kavukcu S, Erg<strong>in</strong> M. (1997). Adie’s syndrome <strong>in</strong> childhood. Acta Paediatr Jpn 39:395–396.<br />

Stewart D, Simpson GT, Nader ND. (1999). Postoperative anisocoria <strong>in</strong> a patient undergo<strong>in</strong>g endoscopic s<strong>in</strong>us<br />

surgery. Reg <strong>An</strong>esth Pa<strong>in</strong> Med 24:467–469.<br />

Stromberg BC, Knibbe M. (1988). <strong>An</strong>isocoria follow<strong>in</strong>g reduction of bilateral orbital floor fractures. <strong>An</strong>n Plast Surg<br />

21:486–488.<br />

Sunderland S. (1952). Mechanism responsible for changes <strong>in</strong> the pupil unaccompanied by disturbances of<br />

extraocular muscle function. Br J Ophthalmol 36:638–644.<br />

Szawlowski AW, Falkowski S, Morys<strong>in</strong>ski T, et al. (1991). Preoperative concurrent chemotherapy and radiotherapy<br />

for local-regional and advanced squamous cell carc<strong>in</strong>oma of the thoracic oesophagus: prelim<strong>in</strong>ary<br />

results of a pilot study. Eur J Surg Oncol 17:575–580.<br />

Tan AK, Humphry RC. (1993). The fixed pupil after cataract surgery: is it related to <strong>in</strong>traocular use of<br />

hypromellose? Br J Ophthalmol 77:639–641.<br />

Tan E, Kansu T, Saygi S, Zileli T. (1990). Alternat<strong>in</strong>g Horner’s syndrome. A case report and review of the<br />

literature. <strong>Neuro</strong>-<strong>ophthalmology</strong> 10:19–22.<br />

Thompson CG. (1998). Horner’s syndrome result<strong>in</strong>g from a prolonged abnormal posture dur<strong>in</strong>g a coma. Aust N Z<br />

J Ophthalmol 26:165–167.<br />

Thompson HS. (1977a). Adie’s syndrome: some new observations. Trans Am Ophthalmol Soc 75:587–626.<br />

Thompson HS. (1977b). Diagnos<strong>in</strong>g Horner’s syndrome. Trans Am Acad Ophthalmol Otolaryngol 83:840–842.


<strong>An</strong>isocoria and Pupillary Abnormalities 463<br />

Van der Wiel HL, Van Gijn J. (1983). Localization of Horner’s syndrome: use and limitations of the hydroxyamphetam<strong>in</strong>e<br />

test. J <strong>Neuro</strong>l Sci 59:229–235.<br />

Van der Wiel HL, Van Gijn J. (1986). The diagnosis of Horner’s syndrome: use and limitations of the coca<strong>in</strong>e test.<br />

J <strong>Neuro</strong>l Sci 73:311–316.<br />

Vaswani S, Garv<strong>in</strong> L, Matuschak GM. (1991). Postganglionic Horner’s syndrome after <strong>in</strong>sertion of a pulmonary<br />

artery catheter through the <strong>in</strong>ternal jugular ve<strong>in</strong>. Crit Care Med 19:1215–1216.<br />

Venketasubramanian N, S<strong>in</strong>gh J, Hui F, Lim MK. (1998). Carotid artery dissection present<strong>in</strong>g as a pa<strong>in</strong>less<br />

Horner’s syndrome <strong>in</strong> a pilot: fit tofly? Aviat Space Environ Med 69:307–310.<br />

Vetrugno R, Liguori R, Cevoli S, et al. (1997). Adie’s tonic pupil as a manifestation of Sjögren’s syndrome. Ital<br />

J <strong>Neuro</strong>l Sci 18:293–295.<br />

Vighetto A, Lisovoski F, Revol A, Trillet M, Almard G. (1990). Internal carotid artery dissection and ipsilateral<br />

hyoglossal nerve palsy (letter). J <strong>Neuro</strong>l <strong>Neuro</strong>surg Psychiatry 53:530–531.<br />

Walsh and Hoyt’s <strong>Cl<strong>in</strong>ical</strong> <strong>Neuro</strong>-Ophthalmology. (1969). Baltimore, Williams and Wilk<strong>in</strong>s.<br />

We<strong>in</strong>ste<strong>in</strong> JM, Zweifel TJ, Thompson HS. (1980). Congenital Horner’s syndrome. Arch Ophthalmol 98:1074–1078.<br />

Weissberg D. (2001). Congenital Horner syndrome. J Thorac Cardiovasc Surg 121:819–820.<br />

Weller M, Wilhelm H, Sommer N, Dichgans J, Wietholter H. (1992). Tonic pupil, areflexia, and segmental<br />

anhidrosis: two additional cases of Ross syndrome and review of the literature. J <strong>Neuro</strong>l 239:231–234.<br />

Wijdicks EFM. (1995). <strong>Neuro</strong>logy of Critical Illness. Philadelphia, FA Davis.<br />

Wilhelm H. (1994). Pupil exam<strong>in</strong>ation and evaluation of pupillary disorders. <strong>Neuro</strong>-<strong>ophthalmology</strong> 14:283–295.<br />

Wilhelm H, Klier R, Toth B, Wilhelm B. (1995). Oculomotor nerve paresis start<strong>in</strong>g as isolated <strong>in</strong>ternal<br />

ophthalmoplegia. <strong>Neuro</strong>-<strong>ophthalmology</strong> 15:211–215.<br />

Wilhelm H, Ochsner H, Kopycziok E, et al. (1992). Horner’s syndrome: a retrospective analysis of 90 cases and<br />

recommendations for cl<strong>in</strong>ical handl<strong>in</strong>g. German J Ophthalmol 1:96–102.<br />

Wirtz PW, de Keizer RJW, de Visser M, et al. (2001). Tonic pupils <strong>in</strong> Lambert-Eaton myasthenic syndrome. Muscle<br />

Nerve 24:444–445.<br />

Wolfe GI, Galetta SL, Teener JW, Katz JS, Bird SJ. (1995). Site of autonomic dysfunction <strong>in</strong> a patient with Ross’<br />

syndrome and postganglionic Horner’s syndrome. <strong>Neuro</strong>logy 45:2094–2096.<br />

Woodruff G, Buncic JR, Mor<strong>in</strong> JD. (1988). Horner’s syndrome <strong>in</strong> children. J Pediatr Ophthalmol Strabismus 25:40–44.<br />

Worth<strong>in</strong>gton JP, Snape L. (1998). Horner’s syndrome secondary to a basilar skull fracture after maxillofacial<br />

trauma. J Oral Maxillofac Surg 56:996–1000.<br />

Zamir E, Chowers I, Ban<strong>in</strong> E, Frucht-Pery J. (1999). <strong>Neuro</strong>trophic corneal endothelial failure complicat<strong>in</strong>g acute<br />

Horner syndrome. Ophthalmology 106:1692–1696.<br />

Zander DR, Just N, Schipper HM. (1998). <strong>An</strong>eurysm of the <strong>in</strong>trapetrous <strong>in</strong>ternal carotid artery present<strong>in</strong>g as<br />

isolated Horner’s syndrome: case report. Can Assoc Radiol J 49:46–48.<br />

Zelligowsky A, Szold A, Seror D, Vromen A, Pffeffermann R. (1991). Horner syndrome: a rare complication of<br />

<strong>in</strong>ternal jugular ve<strong>in</strong> cannulation. J Parenter Enter Nutr 15:199.


Index r<br />

Page numbers <strong>in</strong> italic <strong>in</strong>dicate that the entry on that page is <strong>in</strong> a figure or table.<br />

Abducens nerve paresis. See also Sixth<br />

nerve palsies (SNP)<br />

divergence <strong>in</strong>sufficiency/paralysis,<br />

229–230<br />

localization, 297<br />

one-and-a-half syndrome, 320–321<br />

Abducens nucleus, anatomy,<br />

312, 314<br />

Aberrant regeneration, third nerve palsy<br />

(TNP), 270–271<br />

Abetalipoprote<strong>in</strong>emia, horizontal gaze<br />

palsy, 314–315<br />

Acetazolamide, idiopathic pseudotumor<br />

cerebri therapy, 146, 147<br />

Adie’s tonic pupil syndrome<br />

cl<strong>in</strong>ical features, 441, 444<br />

etiology, 441<br />

neuroimag<strong>in</strong>g studies, 441<br />

therapeutic strategies, 444<br />

Adrenocorticotropic hormone (ACTH),<br />

optic neuritis (ON) therapy,<br />

47–49, 48<br />

Alcohol amblyopia, nutritional optic<br />

neuropathy, cl<strong>in</strong>ical features,<br />

9, 12–14, 17<br />

Alexia, homonymous hemianopsia, optic<br />

radiations, 202<br />

Alzheimer’s disease, homonymous<br />

hemianopsia, 206<br />

<strong>An</strong>eurysm<br />

acquired isolated third nerve palsies<br />

(TNP)<br />

neuroimag<strong>in</strong>g protocols, 268–270<br />

normal sph<strong>in</strong>cter<br />

464<br />

complete extraocular muscle palsy<br />

(type 4A TNP), 264–265<br />

<strong>in</strong>complete extraocular muscle<br />

palsy (type 4B TNP), 266<br />

acquired sixth nerve palsy (SNP), 304<br />

third nerve palsies (TNP),<br />

subarachnoid lesion, 260<br />

<strong>An</strong>gle-closure glaucoma, horizontal<br />

diplopia, 223–226<br />

<strong>An</strong>isocoria<br />

Adie’s syndrome, 441, 444, 444<br />

evaluation protocol, 456, 456<br />

Horner’s syndrome, 445, 445–456<br />

alternat<strong>in</strong>g Horner’s syndrome, 448<br />

central Horner’s syndrome, 446, 447<br />

congenital Horner’s syndrome, 449<br />

imag<strong>in</strong>g and evaluation protocols,<br />

455<br />

isolated Horner’s syndrome, 446<br />

isolated postganglionic Horner’s<br />

syndrome, 455–456<br />

pediatric patients, 454–455<br />

pharmacologic localization, 452–454,<br />

453<br />

postganglionic Horner’s syndrome,<br />

446–447, 449–451<br />

preganglionic (<strong>in</strong>termediate)<br />

Horner’s syndrome, 446, 448<br />

trauma etiology, 449, 451<br />

<strong>in</strong>termittent/transient pupillary<br />

phenomenon, 435, 439<br />

iris structural abnormalities, 439,<br />

439–440<br />

isolated etiology, 445


isolated anisocoria, cl<strong>in</strong>ical evaluation,<br />

445<br />

light-near dissociation, 434, 434<br />

syphilis serology evaluation, 444–445<br />

light reaction, 433<br />

normal pupil, 445<br />

pharmacologic mydriasis/miosis, 435,<br />

437–439<br />

third nerve palsies and, 434–435<br />

tonic pupil, 440–441, 440–443<br />

<strong>An</strong>terior choroidal artery occlusion,<br />

homonymous hemianopsia,<br />

lateral geniculate body<br />

lesions, 200<br />

<strong>An</strong>terior ischemic optic neuropathy<br />

(AION)<br />

associated conditions, 75, 76–78<br />

cl<strong>in</strong>ical presentation, 3<br />

atypical features, 75, 78–79, 79<br />

differential diagnosis, 2<br />

evaluation and treatment, 79–80<br />

future research issues, 80–81<br />

giant cell arteritis (GCA)<br />

cl<strong>in</strong>ical features, 93, 94<br />

atypical features, 98–99, 100–101<br />

corticosteroid therapy, 107–108<br />

diagnostic criteria, 94, 94–96, 96–98,<br />

98–99<br />

ESR elevation, 99, 105<br />

ESR normal values, 99<br />

evaluation flowchart, 109<br />

hematologic test<strong>in</strong>g, 99, 101, 102<br />

laboratory abnormalities, 99, 102, 105<br />

patient evaluation protocols, 104–105,<br />

105<br />

TAB procedures, 101–104<br />

therapeutic regimen, 106–110<br />

oral vs. IV corticosteroids, 106–108<br />

steroid complications, 108, 110<br />

nonarteritic ischemic optic neuropathy,<br />

cl<strong>in</strong>ical features, 73–75, 74–75<br />

<strong>An</strong>terior ischemic optic neuropathy of<br />

the young (AIONY), cl<strong>in</strong>ical<br />

features, 75<br />

<strong>An</strong>terior knee, visual field defects,<br />

junctional characteristics,<br />

192–194<br />

<strong>An</strong>tiacetylchol<strong>in</strong>e receptor antibodies<br />

myasthenia gravis (MG) diagnosis, 341<br />

Index 465<br />

ocular myasthenia gravis (OM)<br />

diagnosis, 341–342<br />

<strong>An</strong>tichol<strong>in</strong>esterase agents, ocular<br />

myasthenia gravis (OM)<br />

management, 343–344<br />

Aponeurotic ptosis<br />

etiology, 415, 415<br />

evaluation protocol, 416, 417<br />

Apraxia of eyelid open<strong>in</strong>g, ptosis<br />

etiology, 410, 411<br />

Argyll Robertson pupil, syphilis serology<br />

test<strong>in</strong>g, 444–445<br />

Arnold-Chiari malformation, seesaw<br />

nystagmus,<br />

374<br />

Arteriorvenous malformations (AVMs),<br />

b<strong>in</strong>ocular transient visual loss,<br />

180–184<br />

Aspir<strong>in</strong> therapy, nonarteritic anterior<br />

ischemic optic neuropathy<br />

(NA-AION), 81–82<br />

Asymmetric b<strong>in</strong>ocular eye oscillations,<br />

nystagmus etiology, 368,<br />

370–372, 373<br />

Ataxia, periodic alternat<strong>in</strong>g esotropia<br />

(PAE), 228<br />

Atherosclerotic disease, monocular TVL<br />

with, 171–172<br />

cl<strong>in</strong>ical features, 173–179<br />

Atypical optic neuritis, cl<strong>in</strong>ical<br />

presentation, 38, 39<br />

Atypical/unexpla<strong>in</strong>ed optic neuropathy,<br />

14, 22<br />

Basilar aneurysms, anisocoria etiology,<br />

435<br />

Bielschowsky’s test, fourth nerve palsies<br />

(FNP), 281<br />

B<strong>in</strong>asal hemianopsia, visual field defects,<br />

196, 198<br />

B<strong>in</strong>ocular diplopia<br />

evaluation protocol, 217<br />

horizontal (esotropia/exotropia),<br />

etiology, 219–220,<br />

221–222<br />

vertical diplopia<br />

cl<strong>in</strong>ical evaluation, 233–234<br />

etiology, 234, 235


466 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

B<strong>in</strong>ocular symmetric conjugate eye<br />

oscillations<br />

etiology, 377–382<br />

evaluation, 376<br />

B<strong>in</strong>ocular symmetric jerk nystagmus<br />

eccentric gaze/maneuver <strong>in</strong>duction,<br />

389–391, 392<br />

etiology, 382–385<br />

B<strong>in</strong>ocular transient visual loss<br />

cl<strong>in</strong>ical signs, 179–183<br />

evaluation protocols, 169–170, 183<br />

Biopsy, horizontal diplopia, 224–226<br />

Bitemporal hemianopsia, visual field<br />

defects, 194, 195–196, 196, 197<br />

Blepharospasm, ptosis, 409–410<br />

Blood pressure monitor<strong>in</strong>g, papilledema<br />

evaluation, 133, 135, 135<br />

Botul<strong>in</strong>um tox<strong>in</strong> therapy<br />

congenital nystagmus, 378<br />

Graves’ ophthalmopathy (GO)<br />

lid retraction, 356<br />

strabismus, 356–357<br />

pendular nystagmus, 381–382<br />

Botulism, vertical diplopia, 238–239<br />

Branstem structures, lid retraction/lid<br />

lag and, 421<br />

Brown’s superior oblique tendon sheath<br />

syndrome, vertical diplopia,<br />

241–242<br />

B-scan echography, papilledema<br />

differential diagnosis, 130<br />

Calcific emboli, monocular TVL, 173<br />

Carbonic anhydrase <strong>in</strong>hibitors,<br />

idiopathic pseudotumor<br />

cerebri therapy, 146,<br />

147<br />

Carotid artery dissection<br />

Horner’s syndrome, cl<strong>in</strong>ical evaluation<br />

and etiology, 447, 449<br />

monocular TVL with, 173–179<br />

Carotid endarterectomy, transient visual<br />

loss risk and, 177–178<br />

Cataract surgery, vertical diplopia,<br />

243–244<br />

Cat-scratch disease, neuroret<strong>in</strong>itis and<br />

optic disc edema with macular<br />

star (ODEMS), 65–66, 67<br />

Cavernous s<strong>in</strong>us lesion<br />

fourth nerve palsy (FNP), 283<br />

sixth nerve palsies (SNP), 297, 301<br />

third nerve palsies (TNP), 260–261<br />

Central caudal nucleus (CCN), lid<br />

retraction/lid lag, 421<br />

Central disorders<br />

convergence spasm, 230–231<br />

horizontal diplopia, 227–228<br />

Central Horner’s syndrome, cl<strong>in</strong>ical<br />

evaluation, 446, 447<br />

Central ret<strong>in</strong>al artery occlusion (CRAO),<br />

giant cell arteritis (GCA)<br />

cl<strong>in</strong>ical diagnosis, 95–96, 96–98, 98–99<br />

corticosteroid therapy, 107–108<br />

Central ret<strong>in</strong>al venous occlusion (CRVO),<br />

venous stasis ret<strong>in</strong>opathy,<br />

differential diagnosis, 171–179<br />

Central venous thrombosis (CVT),<br />

pseudotumor cerebri<br />

syndrome, 136–137<br />

Cerebral bl<strong>in</strong>dness, visual field defects,<br />

homonymous hemianopsia,<br />

204–205<br />

Cerebral <strong>in</strong>farction<br />

cerebral polyopia, 217<br />

homonymous hemianopsia, 206<br />

Cerebral ischemia, transient visual loss,<br />

176–179<br />

Cerebral polyopia, monocular diplopia,<br />

differential diagnosis, 214, 217<br />

Cerebral structural lesions, b<strong>in</strong>ocular<br />

transient visual loss, 180<br />

Cerebrosp<strong>in</strong>al fluid (CSF)<br />

optic neuritis (ON)<br />

lumbar punctures, 46<br />

neuroimag<strong>in</strong>g studies, 44–46<br />

papilledema, cl<strong>in</strong>ical evaluation, 135<br />

pseudotumor cerebri syndrome,<br />

136–137<br />

lumboperitoneal shunt (LSP)<br />

complications and, 148–155,<br />

149<br />

Chiasmal syndromes, visual field<br />

defects, 194, 195–196, 196, 197<br />

Childhood strabismus syndromes,<br />

esotropia/exotropia etiology,<br />

220, 222, 223<br />

Cholesterol emboli, monocular TVL, 172


Chronic progressive external<br />

ophthalmoplegia (CPEO),<br />

ptosis etiology, 412–413,<br />

414<br />

Claude’s syndrome, third nerve palsies<br />

(TNP), fascicular lesion,<br />

258–259<br />

Coca<strong>in</strong>e, pharmacological localization of<br />

Horner’s syndrome, 452–454,<br />

453<br />

Comatose patients, spontaneous eye<br />

oscillations, 396–399,<br />

397–398<br />

Compressive optic neuropathy (CON)<br />

cl<strong>in</strong>ical presentation, 3, 5, 5–12<br />

Graves’ ophthalmopathy (GO)<br />

imag<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs, 349–350<br />

therapeutic strategies, 353, 357–360,<br />

358–359<br />

Computed tomography (CT)<br />

acquired isolated third nerve palsies<br />

(TNP), neuroimag<strong>in</strong>g<br />

protocols, 268–270<br />

gaze-evoked transient visual loss<br />

(TVL), 170–171<br />

Graves’ ophthalmopathy (GO), 349<br />

horizontal gaze palsies, 312<br />

<strong>in</strong>ternuclear ophthalmoplegia (INO),<br />

319<br />

isolated fourth nerve palsies (TNP),<br />

289–290, 290–292<br />

myasthenia gravis (MG) diagnosis, 342<br />

optic neuritis, 44–46<br />

papilledema<br />

cl<strong>in</strong>ical evaluation, 133, 135, 135<br />

differential diagnosis, 130<br />

third nerve palsies (TNP), retrospective<br />

studies, 271–272<br />

Congenital Horner’s syndrome,<br />

evaluation and etiology, 449<br />

Congenital nystagmus, cl<strong>in</strong>ical features<br />

and classification, 377–378<br />

Congenital ptosis, etiology, 410, 411, 412<br />

Congenital syndromes<br />

fourth nerve palsies (FNP), 287<br />

sixth nerve palsy (SNP), evaluation<br />

protocols, 301<br />

vertical diplopia, 239–245<br />

Consecutive esotropia, etiology, 222<br />

Index 467<br />

Contralateral eyelid retraction, third<br />

nerve palsies (TNP), fascicular<br />

lesion, 259<br />

Contralesionally beat<strong>in</strong>g torsional<br />

nystagmus, cl<strong>in</strong>ical features<br />

and etiology, 385<br />

Convergence <strong>in</strong>sufficiency/paralysis<br />

b<strong>in</strong>ocular symmetric jerk nystagmus,<br />

390–391<br />

cl<strong>in</strong>ical features and etiology, 231<br />

downbeat nystagmus, 385–389, 387<br />

horizontal dysconjugate eye<br />

oscillations, 375,<br />

376<br />

Convergence-retraction nystagmus,<br />

horizontal dysconjugate eye<br />

oscillations, 375, 376<br />

Convergence spasm, cl<strong>in</strong>ical features and<br />

etiology, 230–231<br />

Cortical bl<strong>in</strong>dness, visual field defects,<br />

homonymous hemianopsia,<br />

204–205<br />

Corticosteroids<br />

giant cell arteritis (GCA)<br />

complications, 108–110, 111<br />

oral vs. IV therapy, 106–108<br />

treatment protocols, 106<br />

Graves’ ophthalmopathy (GO),<br />

352–353<br />

idiopathic pseudotumor cerebri<br />

therapy, 146, 147<br />

nonarteritic anterior ischemic optic<br />

neuropathy (NA-AION), 80<br />

ocular myasthenia gravis (OM)<br />

management, 344<br />

prognosis, 344–345<br />

optic neuritis (ON) therapy, 47–49, 48<br />

traumatic optic neuropathy (TON)<br />

management, 121–123<br />

Cranial nerve impairment<br />

fourth nerve palsies (FNP)<br />

cavernous s<strong>in</strong>us lesion, 283–284<br />

classifications, 284, 286<br />

cl<strong>in</strong>ical features, 281–283, 284<br />

congenital orig<strong>in</strong>, 287<br />

diagnostic criteria, 282–283, 283<br />

etiologies, 283, 285–286<br />

<strong>in</strong>tracranial lesions, 289–290<br />

midbra<strong>in</strong> lesions, 283


468 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Cranial nerve impairment (cont.)<br />

nonvasculopathic, evaluation<br />

protocols, 287–288, 288–291,<br />

290–292<br />

orbital lesions, 284<br />

subarachnoid space lesion, 283<br />

topographic anatomy, 281<br />

trauma, 287<br />

vasculopathic etiology, 287<br />

horizontal diplopia, 226–227<br />

sixth nerve palsies (SNP)<br />

anatomy, 295, 296–297<br />

cavernous s<strong>in</strong>us lesion, 298–300, 301<br />

evaluation guidel<strong>in</strong>es, 301–304, 303<br />

localization and classification,<br />

298–300<br />

nonisolated SNP, pont<strong>in</strong>e (lower<br />

pons) lesion, 295–296, 298–300<br />

orbital lesion, 301<br />

petrous apex lesion, 297<br />

subarachnoid space lesion, 297, 297<br />

third nerve palsies (TNP)<br />

aberrant regeneration (type 6),<br />

270–271<br />

cavernous s<strong>in</strong>us lesion, 260–261<br />

classification, 253, 254<br />

cl<strong>in</strong>ical features, 253<br />

congenital orig<strong>in</strong>s, 262<br />

fascicular lesion, 258–259<br />

isolated acquired TNP<br />

neuroimag<strong>in</strong>g protocols, 268–270<br />

nontraumatic, 262<br />

normal pupillary sph<strong>in</strong>cter,<br />

extraocular muscle <strong>in</strong>complete<br />

palsy (type 4B), 265–266<br />

normal pupillary sph<strong>in</strong>cter,<br />

extraocular muscle palsy (type<br />

4A), 264–265<br />

subnormal pupillary sph<strong>in</strong>cter<br />

dysfunction, extraocular<br />

muscle palsies (type 4C), 267<br />

localization etiologies, 253, 256–257<br />

nonisolated TNP, cl<strong>in</strong>ical evaluation,<br />

261–262, 263<br />

nuclear lesion, 254–255<br />

orbital lesion, 261<br />

progressive/unresolved (type 5<br />

TNP), 270<br />

retrospective review, 271–272<br />

subarachnoid lesion, 259–260<br />

trauma, 262<br />

vertical diplopia, 237–238<br />

C-reactive prote<strong>in</strong>, giant cell arteritis<br />

(GCA), diagnosis, 99, 101, 102<br />

‘‘Crowded’’ hyperoptic disks,<br />

papilledema, differential<br />

diagnosis, 131, 131<br />

Cyclic esotropia, cl<strong>in</strong>ical features, 228<br />

Cyclodeviation, vertical diplopia,<br />

233–234<br />

Cyclospor<strong>in</strong>, Graves’ ophthalmopathy<br />

(GO) therapy, 353<br />

Dandy criteria, pseudotumor cerebri<br />

syndrome, 135<br />

Decompensation syndromes<br />

esotropia/exotropia etiology, 220, 222,<br />

223<br />

fourth nerve palsies (FNP), 282<br />

vertical diplopia, 239<br />

Decompressions, Graves’<br />

ophthalmopathy (GO),<br />

358–359, 359–361<br />

Deep sclerotomy with collagen implant<br />

(DSCI), transient visual loss,<br />

175<br />

Dental anesthesia, third nerve palsies<br />

(TNP), orbital lesion, 261<br />

Devic’s disease, cl<strong>in</strong>ical features, 39, 42<br />

Diabetes<br />

acquired isolated third nerve palsies<br />

(TNP), normal sph<strong>in</strong>cter,<br />

complete extraocular muscle<br />

palsy (type 4A TNP), 264–265<br />

papillopathy, anterior ischemic optic<br />

neuropathy (AIONY) and, 75,<br />

75<br />

Digox<strong>in</strong>, idiopathic pseudotumor cerebri<br />

therapy, 147<br />

Diplopia<br />

acquired motor fusion deficiency,<br />

231–232<br />

b<strong>in</strong>ocular diplopia, 217<br />

horizontal (esotropia/exotropia),<br />

etiology, 219–220, 221–222<br />

childhood strabismus syndromes,<br />

esotropia/exotropia, 220, 222,<br />

223


convergence <strong>in</strong>sufficiency and<br />

paralysis, 231<br />

convergence spasm, 230–231<br />

cyclic esotropia, 228<br />

divergence <strong>in</strong>sufficiency and paralysis,<br />

228–230<br />

evaluation protocol, 215, 216<br />

foveal displacement syndrome, 245<br />

Graves’ ophthalmopathy (GO), 359,<br />

361<br />

hemifield slide phenomenon, 232<br />

horizontal diplopia<br />

central nerve disorders, 227–228<br />

cranial nerve disorders, 226–227<br />

extraocular muscle disorders,<br />

223–226, 225–226<br />

monocular diplopia, etiology and<br />

evaluation, 215, 217, 217<br />

mysathenia gravis, 218<br />

ocular motor cranial neuropathy, 218<br />

ocular myasthenia gravis (OM),<br />

management of, 342–344<br />

periodic alternat<strong>in</strong>g esotropia, 228<br />

phorias and tropias, functional<br />

assessment,<br />

219<br />

restrictive ophthalmoplegia with<br />

orbital disease, 218<br />

sensory esotropia/exotropia, 222<br />

supranuclear ophthalmoplegia, 219<br />

thyroid eye disease and, 218–219<br />

transient vs. persistent etiologies, 217,<br />

218<br />

vertical diplopia<br />

cranial nerve impairment, 237–238<br />

etiology, 234, 235–236<br />

exam<strong>in</strong>ation protocol, 232–234<br />

extraocular muscle disease, 238–240<br />

mechanical misalignment processes,<br />

240–245<br />

neuromuscular junction diseases,<br />

238<br />

supranuclear processes, 234, 236–237<br />

vertical/horizontal deviation, 219<br />

vitreous hemorrhage, secondary<br />

exotropia, 232<br />

Divergence <strong>in</strong>sufficiency/paralysis<br />

esotropia, 228–230<br />

neurologic disease, 229–230<br />

Index 469<br />

Divergence nystagmus, horizontal<br />

dysconjugate eye oscillations,<br />

375, 376<br />

Doll’s-head maneuver, diplopia<br />

evaluation, supranuclear<br />

process, 219<br />

Dom<strong>in</strong>ant optic atrophy, cl<strong>in</strong>ical features,<br />

19, 20<br />

Dorsal mesencephalic supranuclear<br />

lesions, lid retraction/lid lag,<br />

422<br />

Dorsal mid-bra<strong>in</strong> syndrome, vertical<br />

gaze palsy, 322, 323<br />

Double elevator palsy<br />

cl<strong>in</strong>ical features, 327–328<br />

vertical diplopia, 234, 236–237<br />

congenital conditions, 240<br />

Double Maddox rod test, vertical<br />

diplopia, 233–234<br />

cranial nerve impairment, 238<br />

Downbeat nystagmus, cl<strong>in</strong>ical features<br />

and etiology, 370, 385–389, 387<br />

Drug-<strong>in</strong>duced nystagmus, cl<strong>in</strong>ical<br />

features, 384<br />

Duane’s retraction syndrome, esotropia/<br />

exotropia etiology, 220, 222,<br />

223<br />

Duction movements<br />

diplopia assessment, 219<br />

fourth nerve palsies (FNP), cl<strong>in</strong>ical<br />

evaluation, 281<br />

Dysconjugate bilateral symmetric eye<br />

oscillations, etiology, 372<br />

Eccentric gaze, b<strong>in</strong>ocular symmetric jerk<br />

nystagmus, 389–391, 392<br />

Electrographic status epilepticus,<br />

stuporous/comatose patients,<br />

398–399<br />

Electromyography<br />

apraxia of eyelid open<strong>in</strong>g, 410<br />

myasthenia gravis (MG) diagnosis, 341<br />

Electrophysiologic test<strong>in</strong>g, myasthenia<br />

gravis (MG) diagnosis, 341<br />

Enophthalmos, lid retraction/lid lag, 425<br />

‘‘Entomopia,’’ monocular diplopia, 214,<br />

217<br />

Epileptic nystagmus, cl<strong>in</strong>ical features,<br />

384–385


470 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Erythrocyte sedimentation rate<br />

(ESR), giant cell arteritis<br />

(GCA)<br />

cl<strong>in</strong>ical diagnosis, 94, 94–96, 98–99<br />

corticosteroid therapy, 107–108<br />

elevation patterns, 99<br />

marked elevation, evaluation<br />

protocols, 105, 105<br />

normal values, 99<br />

Esotropia (ET)<br />

cyclic esotropia, 228<br />

divergence <strong>in</strong>sufficiency/paralysis,<br />

228–230<br />

etiology, 219–220, 221–223<br />

childhood strabismus syndromes,<br />

220, 222, 223<br />

periodic alternat<strong>in</strong>g esotropia<br />

(PAE), 228<br />

sensory esotropia, 222<br />

thyroid eye disease, 224–226<br />

Ethambutol exposure, toxic optic<br />

neuropathy, cl<strong>in</strong>ical features,<br />

10–12<br />

Exophthalmos, gaze-evoked transient<br />

visual loss (TVL), 170–171<br />

Exotropia (XT)<br />

cranial nerve lesions, 227<br />

etiology, 219–220, 221–223<br />

childhood strabismus syndromes,<br />

220, 222, 223<br />

isolated medial rectus paresis, 226<br />

orbital trauma, 226<br />

secondary exotropia, vitrous<br />

hemorrhage, 232<br />

sensory exotropia, 222<br />

vitreous hemorrhage, 227–228, 232<br />

Extraocular muscular disorders<br />

acquired isolated third nerve palsies<br />

(TNP)<br />

normal sph<strong>in</strong>cter, complete extraocular<br />

muscle palsy (type 4A TNP),<br />

264–265<br />

normal sph<strong>in</strong>cter, <strong>in</strong>complete<br />

extraocular muscle palsy (type<br />

4B TNP), 265–266<br />

subnormal pupillary sph<strong>in</strong>cter<br />

dysfunction, extraocular<br />

muscle palsies (type 4C TNP),<br />

267<br />

Graves’ ophthalmopathy (GO),<br />

radiotherapy, 355–356<br />

Graves’ ophthalmopathy (GO) and,<br />

therapeutic strategies, 351, 353<br />

horizontal diplopia, 223–226<br />

myasthemia gravis (MG) vs. ocular<br />

myasthenia gravis (OMG),<br />

differential diagnosis,<br />

338–341<br />

vertical diplopia, 238–239<br />

Eyelid nystagmus, etiology, 423–424<br />

Eyelids. See also Lid retraction/lid lag<br />

anatomy, 421<br />

Facial nerve palsy, one-and-a-half<br />

syndrome, 319–320<br />

Fallen eye syndrome, vertical diplopia,<br />

242<br />

Fascicular lesion, third nerve palsies<br />

(TNP), 258–259<br />

Fisher’s syndrome, vertical diplopia, 238<br />

Fluid-attenuated <strong>in</strong>version recovery<br />

(FLAIR) imag<strong>in</strong>g, <strong>in</strong>ternuclear<br />

ophthalmoplegia (INO), 319<br />

Foster Kennedy syndrome, pseudotumor<br />

cerebri syndrome, differential<br />

diagnosis, 143–144<br />

Fourth nerve palsies (FNP)<br />

acquired isolated fourth nerve palsies<br />

(FNP), evaluation protocols,<br />

288, 288–292<br />

cavernous s<strong>in</strong>us lesion, 283–284<br />

classifications, 284, 286<br />

cl<strong>in</strong>ical features, 281–283, 284<br />

congenital orig<strong>in</strong>, 287<br />

diagnostic criteria, 282–283, 283<br />

etiologies, 283, 285–286<br />

<strong>in</strong>tracranial lesions, 289–290<br />

localization and classification, 284,<br />

285–286<br />

midbra<strong>in</strong> lesions, 283<br />

nonvasculopathic, evaluation<br />

protocols, 287–288, 288–291,<br />

290–292<br />

orbital lesions, 284<br />

subarachnoid space lesion, 283<br />

topographic anatomy, 281<br />

trauma, 287<br />

vasculopathic etiology, 287


Foveal displacement syndrome,<br />

b<strong>in</strong>ocular diplopia, 245<br />

Frisen papilledema grad<strong>in</strong>g scale, 131,<br />

134<br />

Fusion procedures, psoria/tropia<br />

management, 219<br />

GABA agonists, vertical nystagmus<br />

management, 388–389<br />

Gabapent<strong>in</strong>, pendular nystagmus<br />

therapy, 381–382<br />

Gaze disorders<br />

abducens nucleus anatomy, 312, 314<br />

horizontal conjugate gaze, anatomy,<br />

311<br />

horizontal gaze palsies<br />

cl<strong>in</strong>ical evaluation, 312, 315<br />

lesion localization and classification,<br />

311, 312–314<br />

<strong>in</strong>ternuclear ophthalmoplegia (INO)<br />

cl<strong>in</strong>ical features, 314–315, 316<br />

etiology, 316, 317–318<br />

evaluation protocols, 318–319<br />

medial longitud<strong>in</strong>al fasciculus (MLF)<br />

anatomy, 312, 314<br />

one-and-a-half syndrome<br />

cl<strong>in</strong>ical evaluation, 319–321, 321<br />

etiologies, 321, 321<br />

p<strong>in</strong>g-pong gaze, stuporous/comatose<br />

patients, 397–399<br />

short-cycle periodic alternat<strong>in</strong>g gaze,<br />

stuporous/comatose patients,<br />

397–399<br />

skew deviation, cl<strong>in</strong>ical features,<br />

327–328<br />

supranuclear monocular elevation<br />

paresis, cl<strong>in</strong>ical features,<br />

327–328<br />

vertical gaze impairment<br />

anatomy, 321<br />

etiology, 322, 324–325<br />

evaluation protocols, 323, 325–326,<br />

326<br />

lesion localization of palsies, 321–322,<br />

322–323<br />

vertical one-and-a-half syndrome,<br />

cl<strong>in</strong>ical features, 327–328<br />

‘‘Gaze-evoked’’ nystagmus, def<strong>in</strong>ed, 367<br />

Index 471<br />

Gaze-evoked nystagmus, etiology,<br />

389–391<br />

Gaze-evoked transient visual loss (TVL),<br />

evaluation of, 169, 170–171<br />

Giant cell arteritis (GCA)<br />

b<strong>in</strong>ocular transient visual loss, 182–183<br />

cl<strong>in</strong>ical features, 93, 94<br />

atypical features, 98–99, 100–101<br />

diagnostic suspicion, 94, 94–96, 96–98,<br />

98–99<br />

ESR elevation, 99, 105<br />

ESR normal values, 99<br />

evaluation flowchart, 109<br />

hematologic test<strong>in</strong>g, 99, 101, 102<br />

laboratory abnormalities, 99, 102, 105<br />

low cl<strong>in</strong>ical suspicion, evaluation<br />

criteria, 105, 105<br />

moderate cl<strong>in</strong>ical suspicion, evaluation<br />

criteria, 104–105<br />

patient evaluation protocols, 104–105,<br />

105<br />

TAB procedures, 101–104<br />

therapeutic regimen, 106–110<br />

complications, 108–110, 111<br />

oral vs. IV corticosteroids, 106–108<br />

steroid complications, 108, 110<br />

transient visual loss, 175<br />

Giant cell myocarditis, horizontal<br />

diplopia, 224–226<br />

Glaucoma, optic disc cupp<strong>in</strong>g, optic<br />

neuropathy, differential<br />

diagnosis, 2<br />

Gliomas, anterior visual pathway, optic<br />

neuropathy, 5, 9<br />

Glucocorticoids, Graves’<br />

ophthalmopathy (GO)<br />

therapy, 354–356, 355<br />

Graves’ ophthalmopathy (GO)<br />

cl<strong>in</strong>ical features, 349, 350<br />

decompression studies, 358–359<br />

evaluation and treatment flowchart,<br />

360<br />

imag<strong>in</strong>g studies, 349–350<br />

immunosuppressive therapy, 352–354<br />

lid retraction, treatment protocols, 356<br />

lid retraction/lid lag, 424–425<br />

ocular and orbital <strong>in</strong>flammation, 352<br />

proptosis and/or compressive optic<br />

neuropathy, 357, 359


472 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Graves’ ophthalmopathy (GO) (cont.)<br />

proptosis without optic neuropathy,<br />

359, 361<br />

radiotherapy, 354–356<br />

strabismus management, 356–357<br />

systemic thyroid status, 350<br />

therapeutic management, 350–352,<br />

355<br />

vertical diplopia, 241<br />

Guilla<strong>in</strong>-Barré syndrome, vertical<br />

diplopia, 238<br />

Guilla<strong>in</strong>-Mollaret triangle lesions,<br />

pendular nystagmus, 382<br />

‘‘Half-moon syndrome,’’ visual field<br />

defects, monocular temporal<br />

crescent, 192<br />

Hematologic test<strong>in</strong>g, giant cell arteritis<br />

(GCA), 99, 101, 102<br />

Hemianopic anosognosia, visual field<br />

defects, occipital lesions,<br />

203–205<br />

Hemifacial spasm, ptosis, 409–410<br />

Hemifield slide phenomenon<br />

b<strong>in</strong>ocular diplopia, 245<br />

cl<strong>in</strong>ical features, 232<br />

Hereditary optic neuropathy, cl<strong>in</strong>ical<br />

features, 19, 20–22, 22<br />

Her<strong>in</strong>g’s law, pseudo-overaction, fourth<br />

nerve palsies (FNP), 282<br />

1H-magnetic resonance spectroscopy,<br />

Graves’ ophthalmopathy<br />

(GO), 350<br />

Homonymous hemianopsia, visual field<br />

defects, 198<br />

lateral geniculate body lesion, 199–200<br />

normal neuroimag<strong>in</strong>g, 205–207<br />

occipital lesions, 202–205<br />

optic radiation, 201–202<br />

optic tract lesions, 198–199<br />

therapeutic management, 207<br />

Horizontal diplopia<br />

b<strong>in</strong>ocular horizontal diplopia, etiology,<br />

219–220, 221–222<br />

central nerve disorders, 227–228<br />

cranial nerve disorders, 226–227<br />

extraocular muscle disorders, 223–226,<br />

225–226<br />

Horizontal dysconjugate eye oscillations,<br />

evaluation and etiology, 375,<br />

376<br />

Horizontal gaze palsies<br />

cl<strong>in</strong>ical evaluation, 312, 315<br />

lesion localization and classification,<br />

311, 312–314<br />

one-and-a-half syndrome, 320–321<br />

Horizontal nystagmus, etiology,<br />

382–383<br />

Horizontal pendular nystagmus,<br />

diagnosis and etiology, 380<br />

Horizontal smooth pursuit defects, lesion<br />

localization, 311, 312–314<br />

Horner’s syndrome<br />

anisocoria, 445, 445–456<br />

alternat<strong>in</strong>g Horner’s syndrome,<br />

448<br />

central Horner’s syndrome, 446, 447<br />

congenital Horner’s syndrome, 449<br />

imag<strong>in</strong>g and evaluation protocols,<br />

455<br />

isolated Horner’s syndrome, 446<br />

isolated postganglionic Horner’s<br />

syndrome, 455–456<br />

pediatric patients, 454–455<br />

pharmacologic localization, 452–454,<br />

453<br />

postganglionic Horner’s syndrome,<br />

446–447, 449–451<br />

preganglionic (<strong>in</strong>termediate)<br />

Horner’s syndrome, 446, 448<br />

trauma etiology, 449, 451<br />

fourth nerve palsy (FNP), cavernous<br />

s<strong>in</strong>us lesion, 283<br />

monocular TVL with, 173–179<br />

ptosis etiology, 413, 414, 415<br />

Hydrocephalus, periodic alternat<strong>in</strong>g<br />

esotropia (PAE), 228<br />

Hydroxyamphetam<strong>in</strong>es,<br />

pharmacological localization<br />

of Horner’s syndrome,<br />

452–454, 453<br />

Hyperdeviation, vertical diplopia,<br />

congenital conditions, 239–240<br />

Hyperglobus, ptosis etiology, 410<br />

Hyperthyroidism, Graves’<br />

ophthalmopathy (GO),<br />

therapeutic strategies, 351


Hypertropia<br />

fourth nerve palsies (FNP), 281–283,<br />

284<br />

ptosis etiology, 410<br />

thyroid eye disease, 224–226<br />

Hypoglobus, lid retraction/lid lag, 425<br />

Ice-pack test, myasthenia gravis (MG)<br />

diagnosis, 340–341<br />

Immunoglobul<strong>in</strong> therapy<br />

Graves’ ophthalmopathy (GO),<br />

353–354<br />

optic neuritis (ON), 49<br />

Immunosuppressive therapy<br />

Graves’ ophthalmopathy (GO),<br />

352–353<br />

saccadic <strong>in</strong>trusions, classification and<br />

etiology, 395<br />

Infectious disease<br />

optical disc edema with macular star<br />

(ODEMA)<br />

cl<strong>in</strong>ical features, 64<br />

differential diagnosis, 64–66, 67<br />

saccadic <strong>in</strong>trusions, classification and<br />

etiology, 393–395<br />

Inferior rectus fibrosis syndrome, vertical<br />

diplopia, 243<br />

Inferior rectus paresis, isolated, third<br />

nerve palsies (TNP), 254–255<br />

Infiltrative optic neuropathy, cl<strong>in</strong>ical<br />

features, 5–6, 8, 13–14<br />

Inflammatory optic neuropathy, cl<strong>in</strong>ical<br />

features, 56, 8, 13–14<br />

‘‘Insect eye,’’ monocular diplopia, 214,<br />

217<br />

Interferon therapy, optic neuritis (ON),<br />

49<br />

Intermittent angle closure glaucoma<br />

monocular transient visual loss,<br />

175–176<br />

read<strong>in</strong>g-evoked TVL, 171<br />

Intermittent LP <strong>in</strong>hibition (ILPI), apraxia<br />

of eyelid open<strong>in</strong>g, 410<br />

Internal carotid artery (ICA),<br />

atherosclerotic disease,<br />

monocular TVL with, 173–179<br />

Internuclear ophthalmoplegia (INO)<br />

cl<strong>in</strong>ical features, 314–315, 316<br />

etiology, 316, 317–318, 318<br />

Index 473<br />

evaluation protocols, 318–319, 320<br />

horizontal gaze palsy, 314<br />

nystagmus etiology, 370<br />

Internuclear ophthalmoplegia (INO) of<br />

abduction, 315<br />

Intracranial lesions, isolated fourth nerve<br />

palsies (TNP), 289–290, 290291<br />

Intracranial pressure<br />

papilledema evaluation, 132–133, 135,<br />

135<br />

pseudotumor cerebri syndrome,<br />

136–137<br />

lumboperitoneal shunt (LSP)<br />

complications and, 148–155,<br />

149<br />

vertical diplopia, 237–238<br />

Ipsilateral ptosis, third nerve palsies<br />

(TNP), fascicular lesion, 259<br />

Iris abnormalities, structural<br />

abnormalities, anisocoria, 439,<br />

439–440<br />

Jakob-Creutzfeldt disease, Heidenha<strong>in</strong><br />

variant, homonymous<br />

hemianopsia, 205–206<br />

Junctional scotoma, visual field defects,<br />

193–194<br />

Kearns-Sayre syndrome, ptosis etiology,<br />

412–413, 414<br />

Kjer’s hereditary optic neuropathy,<br />

cl<strong>in</strong>ical features, 19, 20<br />

Latent nystagmus, diagnosis and<br />

management, 378–379<br />

Lateral geniculate body lesions,<br />

homonymous hemianopsia,<br />

199–200<br />

Leber’s hereditary optic neuropathy<br />

(LHON), cl<strong>in</strong>ical features, 19,<br />

20–21, 22<br />

Levator palpebrae superioris (LPS)<br />

lid retraction/lid lag and, 421, 423–424<br />

vertical diplopia and spasm of, 236<br />

Levodopa, nonarteritic anterior ischemic<br />

optic neuropathy (NA-AION)<br />

therapy, 82–83<br />

Lewy body disease, homonymous<br />

hemianopsia, 206


474 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Lid retraction/lid lag<br />

evaluation protocol, 427, 428<br />

eyelid anatomy, 421<br />

Graves’ ophthalmopathy (GO),<br />

management options, 356<br />

lower eyelid retraction, etiology,<br />

428–429, 429<br />

miscellaneous etiologies, 425, 426–427,<br />

427<br />

neurogenic etiology, 422–424<br />

neuromuscular/myopathic etiology,<br />

424–425<br />

Light-near dissociation<br />

anisocoria, etiology, 434, 434<br />

pupillary abnormalities, syphilis<br />

serology test<strong>in</strong>g, 444–445<br />

Light reaction, anisocoria, 433<br />

normal pupil, 445<br />

Locked-<strong>in</strong> syndrome, cl<strong>in</strong>ical evaluation,<br />

327–328<br />

Lower eyelid retraction, etiologies,<br />

428–429, 429<br />

Lumbar punctures<br />

optic neuritis (ON), <strong>in</strong>dications for, 46<br />

papilledema, cl<strong>in</strong>ical evaluation, 135<br />

progressive/unresolved sixth nerve<br />

palsy (SNP), 304<br />

pseudotumor cerebri therapy, 147<br />

Lumboperitoneal shunt (LPS),<br />

pseudotumor cerebri therapy,<br />

148–155, 149<br />

Lutz posterior INO. See INO of<br />

abduction<br />

Lyme disease, neuroret<strong>in</strong>itis and optic<br />

disc edema with macular star<br />

(ODEMS), 66<br />

Macro-square-wave jerks, saccadic<br />

<strong>in</strong>trusions, classification and<br />

etiology, 393–395<br />

Magnetic resonance imag<strong>in</strong>g (MRI)<br />

acquired isolated third nerve palsies<br />

(TNP), neuroimag<strong>in</strong>g<br />

protocols, 268–270<br />

gaze-evoked transient visual loss<br />

(TVL), 170–171<br />

Graves’ ophthalmopathy (GO), 349<br />

horizontal gaze palsies, 312<br />

Horner’s syndrome evaluation, 455<br />

<strong>in</strong>ternuclear ophthalmoplegia (INO),<br />

319<br />

isolated fourth nerve palsies (TNP),<br />

289–290, 290–292<br />

monocular TVL assessment, 172<br />

nonarteritic anterior ischemic optic<br />

neuropathy (NA-AION),<br />

80–81<br />

optic neuritis, 44–46<br />

multiple sclerosis risk assessment,<br />

51–53<br />

papilledema, cl<strong>in</strong>ical evaluation, 133,<br />

135,<br />

135<br />

pseudotumor cerebri syndrome,<br />

136–137<br />

third nerve palsies (TNP), retrospective<br />

studies, 271–272<br />

transient visual loss assessment,<br />

178–179<br />

vertical gaze palsy, 325–326<br />

Medial longitud<strong>in</strong>al fasciculus (MLF)<br />

anatomy, 312, 314<br />

lid retraction/lid lag etiology, 422–424<br />

one-and-a-half syndrome, 319–321<br />

Medial rectus paresis, isolated<br />

exotropia (XT), 226<br />

third nerve palsies (TNP), 254–255<br />

Men<strong>in</strong>giomas<br />

compressive optic neuropathy, cl<strong>in</strong>ical<br />

features, 5, 67<br />

monocular TVL with, 171–172<br />

Meso-diencephalon disorders, vertical<br />

gaze palsy, 322<br />

Methylprednisolone<br />

giant cell arteritis (GCA) therapy,<br />

106–108<br />

optic neuritis (ON) therapy, 47–49, 48<br />

traumatic optic neuropathy (TON),<br />

122–123<br />

Meyer’s loop, homonymous<br />

hemianopsia, lateral<br />

geniculate body lesions,<br />

199–200<br />

Midbra<strong>in</strong> lesion<br />

fourth nerve palsy (FNP), 283<br />

ptosis etiology, 413, 414, 415<br />

Migra<strong>in</strong>es<br />

b<strong>in</strong>ocular transient visual loss, 179–184


monocular TVL with, 171–172<br />

third nerve palsies (TNP),<br />

subarachnoid lesion, 256–257,<br />

259260<br />

transient visual loss, vasospasm,<br />

175–176<br />

vertical diplopia, 237–238<br />

Miller Fisher syndrome, one-and-a-half<br />

syndrome, 320–321<br />

Morbidity<br />

idiopathic pseudotumor cerebri,<br />

weight fluctuation and<br />

therapy for, 145–147, 146<br />

pseudotumor cerebri syndrome, visual<br />

field loss, 144<br />

Motor fusion deficiency, acquired motor<br />

fusion deficiency, cl<strong>in</strong>ical<br />

features, 231–232<br />

Müller muscle contraction, lid<br />

retraction/lid lag and, 424<br />

Multiple sclerosis (MS)<br />

<strong>in</strong>ternuclear ophthalmoplegia (INO),<br />

316, 317–318, 318<br />

optic neuritis and<br />

lumbar puncture results, 46<br />

neuroimag<strong>in</strong>g studies, 44–46<br />

risk assessment, 50–53, 51–52<br />

therapeutic strategies, 47–49, 48<br />

pendular nystagmus, 379–381<br />

vertical diplopia syndromes, 236–237<br />

Myasthenia gravis (MG). See also Ocular<br />

myasthenia gravis<br />

acquired isolated third nerve palsies<br />

(TNP), normal sph<strong>in</strong>cter,<br />

<strong>in</strong>complete extraocular muscle<br />

palsy (type 4B TNP), 266<br />

antiacetylchol<strong>in</strong>e receptor antibody<br />

test<strong>in</strong>g, 341<br />

diplopia and, 218<br />

horizontal diplopia, 225<br />

lid retraction/lid lag, 425<br />

non-pharmacologic diagnosis,<br />

340–341<br />

ocular myasthenia gravis, differential<br />

diagnosis, 337–341<br />

one-and-a-half syndrome, 320–321<br />

ptosis etiology, 415<br />

thymoma, CT imag<strong>in</strong>g for, 342, 343<br />

vertical diplopia, 238–239<br />

Index 475<br />

Myasthenic pseudo-INO<br />

cl<strong>in</strong>ical features, 318<br />

evaluation protocols, 318<br />

Myopathies<br />

lid retraction/lid lag and, 424–425<br />

ptosis etiology, 412–413, 414<br />

Nerve palsies, convergence spasm,<br />

230–231<br />

<strong>Neuro</strong>fibromatosis-2, papilledema,<br />

135–136<br />

<strong>Neuro</strong>genic disorders<br />

lid retraction/lid lag, 422–424<br />

ptosis etiology, 413, 414, 415<br />

<strong>Neuro</strong>imag<strong>in</strong>g<br />

acquired isolated third nerve palsies<br />

(TNP)<br />

normal sph<strong>in</strong>cter, complete<br />

extraocular muscle palsy (type<br />

4A TNP), 264–265<br />

normal sph<strong>in</strong>cter, <strong>in</strong>complete<br />

extraocular muscle palsy (type<br />

4B TNP), 266<br />

subnormal pupillary sph<strong>in</strong>cter<br />

dysfunction, extraocular<br />

muscle palsies (type 4C TNP),<br />

267<br />

fourth nerve palsy (FNP),<br />

subarachnoid space lesion,<br />

283<br />

homonymous hemianopsia, 205–207<br />

isolated fourth nerve palsies (TNP),<br />

289–290,<br />

290–292<br />

isolated third nerve palsies (TNP),<br />

268–270<br />

<strong>Neuro</strong>muscular junction diseases<br />

ptosis etiology, 415<br />

vertical diplopia, 238<br />

<strong>Neuro</strong>myelitis optica. See Devic’s<br />

disease<br />

<strong>Neuro</strong>ret<strong>in</strong>itis<br />

cl<strong>in</strong>ical features, 63–64<br />

evaluation flowchart, 67, 68<br />

<strong>in</strong>fectious agents, 64–66, 67<br />

optical disc edema with macular star<br />

(ODEMS), differential<br />

diagnosis, 64–67, 65, 67–68


476 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Nonarteritic anterior ischemic optic<br />

neuropathy<br />

(NA-AION)<br />

cl<strong>in</strong>ical features, 73–75, 74–75<br />

atypical features, 75, 78–79, 79<br />

evaluation and treatment, 78–79<br />

future research issues, 80–81<br />

giant cell arteritis (GCA), differential<br />

diagnosis, 95–96, 96–98,<br />

98–99<br />

therapeutic management<br />

aspir<strong>in</strong> therapy, 81–82<br />

experimental treatments, 82–83<br />

flowchart for, 84, 85<br />

optic nerve sheath fenestration, 83,<br />

83–85<br />

Nonketotic hyperglycemia,<br />

homonymous hemianopsia,<br />

206<br />

Nuclear complex of the posterior<br />

commissure (NPC), lid<br />

retraction/lid lag, 422–424<br />

Nuclear lesion, third nerve palsies (TNP),<br />

254–255<br />

Nutritional optic neuropathy<br />

cl<strong>in</strong>ical features, 9, 12–14, 17<br />

Leber’s hereditary optic neuropathy<br />

(LHON), differential<br />

diagnosis, 22<br />

Nylen-Barany maneuver, b<strong>in</strong>ocular<br />

symmetric jerk nystagmus,<br />

391<br />

Nystagmoid jerk<strong>in</strong>g, stuporous/<br />

comatose patients, 398–399<br />

Nystagmus<br />

acquired b<strong>in</strong>ocular pendular<br />

nystagmus, diagnosis and<br />

etiology, 379–380<br />

asymmetric b<strong>in</strong>ocular oscillations,<br />

etiology, 368, 370–372, 373<br />

b<strong>in</strong>ocular/symmetric, b<strong>in</strong>ocular/<br />

asymmetric, or monocular<br />

oscillations, 368<br />

b<strong>in</strong>ocular symmetric conjugate<br />

oscillations, 376<br />

b<strong>in</strong>ocular symmetric jerk nystagmus<br />

eccentric gaze/maneuvered<br />

<strong>in</strong>duction, 389–391<br />

etiology, 382–385<br />

b<strong>in</strong>ocular symmetric pendular<br />

conjugate oscillations,<br />

etiology, 377–382, 383<br />

cl<strong>in</strong>ical features, 367–368, 369<br />

downbeat nystagmus, 385–387, 387<br />

dysconjugate bilateral symmetric eye<br />

oscillations, 372<br />

horizontal dysconjugate oscillations,<br />

etiology, 375, 376<br />

monocular oscillations, etiology, 368,<br />

370–372, 373<br />

periodic alternat<strong>in</strong>g nystagmus (PAN),<br />

384,<br />

384–385<br />

predom<strong>in</strong>antly vertical jerk nystagmus,<br />

385–389<br />

saccadic <strong>in</strong>trusions, 391–395<br />

seesaw nystagmus, etiology, 373–374,<br />

374<br />

spontaneous oscillations, stuporous<br />

and comatose patients,<br />

396–399, 397<br />

upbeat nystagmus, 388, 388–389<br />

Obesity, idiopathic pseudotumor cerebri,<br />

140–142, 141<br />

therapeutic management protocols,<br />

145–147, 146<br />

Occipital epilepsy, idiopathic, b<strong>in</strong>ocular<br />

transient visual loss, 181<br />

Occipital hypoperfusion, b<strong>in</strong>ocular<br />

transient visual loss, migra<strong>in</strong>e<br />

and, 180<br />

Occipital ischemia, bilateral, b<strong>in</strong>ocular<br />

transient visual loss, 182<br />

Occipital lesions, visual field defects,<br />

202–205<br />

Occipital lobe tumors, b<strong>in</strong>ocular<br />

transient visual loss, 180–181<br />

Ocular bobb<strong>in</strong>g<br />

one-and-a-half syndrome, 319–320<br />

stuporous/comatose patients, 398–399<br />

Ocular flutter, saccadic <strong>in</strong>trusions,<br />

classification and etiology,<br />

393–395<br />

Ocular hypoperfusion, monocular TVL<br />

and, 173–179<br />

Ocular <strong>in</strong>flammation, Graves’<br />

ophthalmopathy (GO), 352


Ocular ischemic syndrome, transient<br />

visual loss and, 175–179<br />

Ocular motor cranial neuropathy,<br />

diplopia and, 218<br />

Ocular myasthenia gravis (OM)<br />

evaluation flowchart, 342, 343<br />

management protocols, 342–344<br />

myasthemia gravis (MG), differential<br />

diagnosis, 337–341<br />

non-pharmacologic diagnosis,<br />

340–341<br />

prognosis, 344–345<br />

test<strong>in</strong>g summary, 341–342<br />

thymectomy, <strong>in</strong>dications for, 344<br />

thymoma, CT imag<strong>in</strong>g for, 342, 343<br />

Ocular neuromyotonia (ONM),<br />

horizontal diplopia, 227<br />

Ocular tilt reaction (OTR)<br />

vertical diplopia, 234, 236–237<br />

vertical gaze disorders, 328<br />

Ocular torsion, vertical diplopia, 233–234<br />

Oculomasticatory myorhythmia,<br />

horizontal dysconjugate eye<br />

oscillations, 375,<br />

376<br />

Oculomotor nerve. See also Third nerve<br />

palsies (TNP)<br />

acquired isolated third nerve palsies<br />

(TNP), normal sph<strong>in</strong>cter,<br />

complete extraocular muscle<br />

palsy (type 4A TNP), 264–265<br />

anatomy, 253<br />

Oculopalatal myoclonus<br />

one-and-a-half syndrome, 319–320<br />

pendular nystagmus, 380<br />

One-and-a-half syndrome<br />

cl<strong>in</strong>ical features, 319–321<br />

etiologies and evaluation protocols,<br />

320–321, 321<br />

vertical gaze palsy with, 327–328<br />

Ophthalmoplegia, bilateral preganglionic<br />

<strong>in</strong>ternal, third nerve palsies<br />

(TNP), fascicular lesion,<br />

258–259<br />

Ophthalmoplegic migra<strong>in</strong>e<br />

third nerve palsies (TNP),<br />

subarachnoid lesion, 256–257,<br />

259–260<br />

vertical diplopia, 237–238<br />

Index 477<br />

Opsoclonus-myoclonus syndrome<br />

(OMS), saccadic <strong>in</strong>trusions,<br />

classification and etiology,<br />

394–395, 396<br />

Optic chiasm, visual field defects<br />

chiasmal syndromes, 194, 195–196, 196,<br />

197<br />

junctional characteristics, 192<br />

Optic disc cupp<strong>in</strong>g, optic neuropathy<br />

diagnosis, 2<br />

Optic disc drusen<br />

evaluation protocols, 130<br />

papilledema differential diagnosis,<br />

130<br />

Optic disc edema<br />

differential diagnosis,<br />

pseudopapilledema, 131, 134<br />

evaluation protocol, 154<br />

papilledema, 129<br />

differential diagnosis, optic<br />

neuropathy, 131, 131<br />

pseudopapilledma, differential<br />

diagnosis, 131, 131<br />

Optic disc edema with macular star<br />

(ODEMS)<br />

cl<strong>in</strong>ical presentation, 3, 63–64, 64<br />

evaluation flowchart, 67, 68<br />

<strong>in</strong>fectious agents, 64–66, 67<br />

neuroret<strong>in</strong>itis, differential diagnosis,<br />

64–67, 65, 67–68<br />

prognosis, 67, 69<br />

Optic glioma, compressive optic<br />

neuropathy, cl<strong>in</strong>ical features,<br />

5, 7–8<br />

Optic nerve, visual field defects,<br />

junctional characteristics,<br />

192–194<br />

Optic nerve sheath fenestration (ONSF)<br />

nonarteritic anterior ischemic optic<br />

neuropathy (NA-AION), 83,<br />

8385<br />

pseudotumor cerebri therapy, 148–155,<br />

153<br />

complications, 152–154, 153<br />

Optic neuritis (ON)<br />

anterior ischemic optic neuropathy<br />

(AION), differential diagnosis,<br />

73–75, 74–75<br />

associated disorders, 38, 40–42


478 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Optic neuritis (ON) (cont.)<br />

atypical optic neuritis, cl<strong>in</strong>ical<br />

presentation, 38,<br />

39<br />

cl<strong>in</strong>ical presentation, 3, 35, 36–38<br />

evaluation protocol, 39, 42<br />

lumbar punctures, <strong>in</strong>dications<br />

for, 46<br />

multiple sclerosis (MS) and<br />

lumbar puncture results, 46<br />

neuroimag<strong>in</strong>g studies, 44–46<br />

risk assessment, 50–53, 51–52<br />

therapeutic strategies, 47–49, 48<br />

neuroimag<strong>in</strong>g techniques, 44–46<br />

pediatric patients, cl<strong>in</strong>ical features,<br />

38–39, 43<br />

treatment strategies<br />

immunoglobul<strong>in</strong> therapy, 49<br />

<strong>in</strong>terferon therapy, 49<br />

steroids, 47–49, 48<br />

vision prognosis, 49–50<br />

visual field defects, 35–36<br />

visually evoked potentials (VEPs), 47<br />

Optic neuritis treatment trial (ONTT)<br />

study<br />

cl<strong>in</strong>ical results, 43–44, 44<br />

multiple sclerosis risk assessment,<br />

50–53, 51–52<br />

neuroimag<strong>in</strong>g techniques, multiple<br />

sclerosis lesions, 44–46<br />

therapeutic strategies, 47–49, 48<br />

vision prognosis measurements, 49–50<br />

Optic neuropathies<br />

diagnosis<br />

anterior ischemic optic neuropathy<br />

(AION), 3<br />

atypical/unexpla<strong>in</strong>ed optic<br />

neuropathy, 14, 22<br />

cl<strong>in</strong>ical evaluation flowchart, 4<br />

cl<strong>in</strong>ical features and etiology, 1, 12<br />

compressive optic neuropathy<br />

(CON), 3, 5, 58<br />

hereditary optic neuropathy, 19,<br />

20–22, 22<br />

<strong>in</strong>filtrative/<strong>in</strong>flammatory optic<br />

neuropathy, 56, 7, 8,13<br />

optic disc edema with macular star<br />

(ODEMS), 3<br />

optic neuritis, 3<br />

radiation exposure (RON), 14, 16–17,<br />

18–19<br />

toxic/nutritional optic neuropathy,<br />

914, 15–17<br />

traumatic optic neuropathy (TON), 9<br />

papilledema, differential diagnosis,<br />

131, 131<br />

visual field defects, 191–192<br />

Optic radiations, homonymous<br />

hemianopsia, 201–202<br />

Optic tract lesions, homonymous<br />

hemianopsia, visual field<br />

defects, 198–199<br />

Orbital blow-fracture, vertical diplopia,<br />

242<br />

Orbital disease<br />

diplopia and, restrictive<br />

ophthalmoplegia, 218<br />

horizontal diplopia, orbital<br />

pseudotumor/orbital<br />

myositis, 223–226<br />

Orbital fourth nerve palsies (FNP),<br />

cl<strong>in</strong>ical evaluation, 283<br />

Orbital <strong>in</strong>flammation, Graves’<br />

ophthalmopathy (GO), 352<br />

Orbital lesion<br />

fourth nerve palsies (FNP), 284<br />

sixth nerve palsies (SNP), 301<br />

third nerve palsies (TNP), 261<br />

Orbital myositis<br />

differential diagnosis, 224–226, 226<br />

horizontal diplopia, 223–226<br />

Orbital pseudotumor<br />

differential diagnosis, 224, 225<br />

horizontal diplopia, 223–226<br />

Orbital trauma. See also Traumatic optic<br />

neuropathy (TON)<br />

exotropia (XT), orbital trauma, 226<br />

horizontal diplopia, 225–226<br />

orbital blow-fracture, vertical diplopia,<br />

242<br />

third nerve palsy (TNP), 262<br />

Palatal myoclonus, pendular nystagmus,<br />

380<br />

Papilledema<br />

bilateral<br />

cl<strong>in</strong>ical evaluation, 132–133, 135, 135<br />

etiology, 131, 132


cl<strong>in</strong>ical features, 130–131, 131–134<br />

def<strong>in</strong>ed, 129<br />

differential diagnosis<br />

optic neuropathy, 131, 131<br />

pseudopapilledema, 129–130<br />

etiology, 132<br />

evaluation protocols, 130<br />

monocular TVL with, 171–172<br />

neuroimag<strong>in</strong>g studies, 132–133, 135,<br />

135<br />

pseudotumor cerebri syndrome<br />

cl<strong>in</strong>ical signs, 143–144<br />

def<strong>in</strong>ed, 135–137<br />

stages of, 131, 133<br />

unilateral papilledema, etiology,<br />

131<br />

Papilllomacular bundle, visual field<br />

defects, optic neuropathies,<br />

191–192<br />

Papillomacular <strong>in</strong>volvement, optic<br />

neuritis (ON), 36, 38<br />

Paramedian pont<strong>in</strong>e reticular formation<br />

(PPRF)<br />

horizontal gaze palsy, 314<br />

one-and-a-half syndrome, 319–321<br />

Paroxysmal superior rectus, vertical<br />

diplopia, 236<br />

Pediatric patients<br />

Horner’s syndrome evaluation,<br />

454–455<br />

optic neuritis, cl<strong>in</strong>ical features, 38–39,<br />

43<br />

pseudotumor cerebri syndrome, optic<br />

nerve sheath fenestration<br />

(ONSF) therapy <strong>in</strong>,<br />

151–155<br />

transient visual loss assessment, 179<br />

Pendular nystagmus<br />

acquired monocular variation, etiology,<br />

370<br />

diagnosis and management, 379–382,<br />

383<br />

Pentoxifyll<strong>in</strong>e, Graves’ ophthalmopathy<br />

(GO) therapy, 354<br />

Periodic alternat<strong>in</strong>g esotropia (PAE),<br />

cl<strong>in</strong>ical features, 228<br />

Periodic alternat<strong>in</strong>g nystagmus (PAN),<br />

cl<strong>in</strong>ical features and etiology,<br />

383–385, 384<br />

Index 479<br />

Peripheral ganglion cells, visual field<br />

defects, optic neuropathies,<br />

191–192<br />

Peripheral vestibular disease, horizontal<br />

nystagmus, 382–383<br />

Peripheral visual defects, cl<strong>in</strong>ical<br />

presentation, 36<br />

Pernicious anemia, nutritional optic<br />

neuropathy, cl<strong>in</strong>ical features,<br />

9, 12–14, 17<br />

Petrous apex lesion, sixth nerve palsies<br />

(SNP), 297<br />

Pharmacological localization, Horner’s<br />

syndrome, 452–454, 453,<br />

455<br />

Pharmacological mydriasis/miosis,<br />

anisocoria, 436, 437–439<br />

Phoria syndromes, vertical diplopia,<br />

239<br />

Phorias, diplopia evaluation, 219<br />

‘‘Pie-<strong>in</strong>-the-sky’’ defects, homonymous<br />

hemianopsia, optic radiations,<br />

201–202<br />

‘‘Pie-on-the-floor’’ defects, homonymous<br />

hemianopsia, optic radiations,<br />

201–202<br />

Pilocarp<strong>in</strong>e test<strong>in</strong>g<br />

anisocoria, 435<br />

tonic pupil, 440–441, 442–443<br />

P<strong>in</strong>g-pong gaze, stuporous/comatose<br />

patients, 397–399<br />

P<strong>in</strong>hole device, monocular diplopia, 215,<br />

217, 217<br />

Platelet-fibr<strong>in</strong> emboli, monocular TVL,<br />

173<br />

Plus-m<strong>in</strong>us syndrome, third nerve<br />

palsies (TNP), 259<br />

Polymerase cha<strong>in</strong> reaction (PCR), vertical<br />

gaze palsy evaluation, 326<br />

Pont<strong>in</strong>e (lower pons) lesion<br />

horizontal gaze palsies, 312, 315<br />

sixth nerve palsies (SNP), 295–296,<br />

298–300<br />

vertical gaze palsy, locked-<strong>in</strong><br />

syndrome, 327–328<br />

Posterior cerebral artery <strong>in</strong>farction,<br />

visual field defects,<br />

homonymous hemianopsia,<br />

204–205


480 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Posterior ischemic optic neuropathy<br />

(PION)<br />

associated conditions, 75, 76–78<br />

cl<strong>in</strong>ical features, 74, 7475<br />

Postganglionic Horner’s syndrome<br />

cl<strong>in</strong>ical evaluation and etiology,<br />

446–447, 450–451<br />

evaluation protocols, 455–456<br />

pharmacologic etiology, 454<br />

Postprandial transient visual loss,<br />

evaluation, 174<br />

Prednisone<br />

Graves’ ophthalmopathy (GO) therapy,<br />

351, 353<br />

optic neuritis (ON) therapy, 47–49, 48<br />

Preganglionic (<strong>in</strong>termediate) Horner’s<br />

syndrome<br />

cl<strong>in</strong>ical evaluation and etiology, 446,<br />

448<br />

pharmacologic etiology, 454<br />

Pretarsal motor persistence (PMP),<br />

apraxia of eyelid open<strong>in</strong>g, 410<br />

Pretectal pseudobobb<strong>in</strong>g, stuporous/<br />

comatose patients, 399<br />

Proptosis, Graves’ ophthalmopathy<br />

(GO), treatment alternatives,<br />

357–358, 358–360, 361<br />

Prostigm<strong>in</strong> test, myasthemia gravis (MG)<br />

vs. ocular myasthenia gravis<br />

(OMG), 338–341<br />

Proton density imag<strong>in</strong>g (PDI),<br />

<strong>in</strong>ternuclear ophthalmoplegia<br />

(INO), 319<br />

Pseudo-<strong>in</strong>ternuclear ophthalmoplegia<br />

(INO), nystagmus etiology,<br />

370<br />

Pseudo-one-and-a-half syndrome,<br />

cl<strong>in</strong>ical features, 321<br />

Pseudopapilledema, differential<br />

diagnosis<br />

papilledema, 129–130<br />

true optic disc edema, 131, 134<br />

Pseudoptosis, ptosis, differential<br />

diagnosis, 409, 409<br />

Pseudotumor cerebri syndrome<br />

associated systemic disease, 136,<br />

138–139, 140<br />

cl<strong>in</strong>ical signs, 143–144<br />

def<strong>in</strong>ed, 135–137<br />

drug toxicity and, 137<br />

etiologies, 138–139<br />

evaluation protocols, 144–145<br />

gaze-evoked transient visual loss<br />

(TVL), 170–171<br />

idiopathic pseudotumor cerebri,<br />

140, 141<br />

diagnostic criteria, 140, 141<br />

risk factors and cl<strong>in</strong>ical<br />

characteristics, 140–142<br />

symptoms, 142, 143<br />

therapeutic management protocols,<br />

145–147, 146<br />

symptoms, 142, 143<br />

therapeutic management protocols,<br />

145–147, 146<br />

lumbar punctures, 147<br />

surgical procedures, 148–155,<br />

149, 154<br />

Pseudo-von Graefe phenomenon, third<br />

nerve palsy (TNP), aberrant<br />

regeneration, 270–271<br />

Ptosis<br />

acquired vs. congenital, 410, 411,<br />

412<br />

acquired, etiology, 410, 411, 412<br />

aponeurotic ptosis, 417<br />

apraxia of eyelid open<strong>in</strong>g, 410, 411<br />

blepharospasm, 409–410<br />

evaluation protocol, 416<br />

hemifacial spasm, 409–410<br />

hypertropia/hyperglobus, 410<br />

isolated, classification, 412, 412<br />

isolated, etiology, 415, 415<br />

mechanical etiology, 412, 413<br />

myasthemia gravis (MG) vs. ocular<br />

myasthenia gravis (OMG),<br />

differential diagnosis,<br />

338–341<br />

myogenic etiology, 412–413, 414<br />

neurogenic etiology, 413, 414, 415<br />

neuromuscular junction disease, 415<br />

nonisolated, etiology, 412, 412<br />

ocular myasthenia gravis (OM),<br />

management of, 342–344<br />

pseudoptosis, differential diagnosis,<br />

409, 409<br />

steroid-<strong>in</strong>duced, 417<br />

trauma and, 415


Pupillary abnormalities<br />

<strong>in</strong>termittent/transient phenomenon,<br />

etiology, 436, 439<br />

syphilis serology test<strong>in</strong>g, 444–445<br />

Pupillary sph<strong>in</strong>cter, acquired isolated<br />

third nerve palsies (TNP)<br />

complete extraocular muscle palsy<br />

(type 4A TNP), 264–265<br />

<strong>in</strong>complete extraocular muscle palsy<br />

(type 4B TNP), 265–266<br />

subnormal dysfunction, extraocular<br />

muscle palsies (type 4C TNP),<br />

267<br />

Purtscher’s ret<strong>in</strong>opathy, venous stasis<br />

ret<strong>in</strong>opathy, transient visual<br />

loss, differential diagnosis, 174<br />

Quadrantanopias, homonymous<br />

hemianopsia<br />

occipital lesions, 202–205<br />

optic radiations, 201–202<br />

Quadruple sectoranopia, homonymous<br />

hemianopsia, lateral<br />

geniculate body lesions, 200<br />

Radiation optic neuropathy (RON),<br />

cl<strong>in</strong>ical features, 14, 16–17,<br />

18–19, 19<br />

Radioactive iod<strong>in</strong>e (RAI) therapy,<br />

Graves’ ophthalmopathy<br />

(GO), 351, 353<br />

Radiotherapy, Graves’ ophthalmopathy<br />

(GO), 354–356, 355<br />

Read<strong>in</strong>g-evoked transient visual loss<br />

(TVL), evaluation, 171<br />

Rebound nystagmus, etiology, 389–391<br />

Relative afferent pupillary defect<br />

(RAPD), optic tract lesions,<br />

homonymous hemianopsia,<br />

198–199<br />

Repetitive divergence, stuporous/<br />

comatose patients, 398–399<br />

Restrictive ophthalmopathy, vertical<br />

diplopia, 240–242<br />

Restrictive ophthalmoplegia, orbital<br />

disease, diplopia and, 218<br />

Ret<strong>in</strong>al emboli, monocular TVL and,<br />

172–173, 177, 177–179<br />

Index 481<br />

Ret<strong>in</strong>al fibers, visual field defects, optic<br />

neuropathies, 192<br />

Ret<strong>in</strong>al lesions, visual field defects, 189,<br />

191, 191<br />

Rubeosis iridis, transient visual loss and,<br />

ocular ischemic syndrome,<br />

175–179<br />

Saccadic <strong>in</strong>trusions, classification and<br />

etiology, 391–395, 394<br />

Sc<strong>in</strong>tillat<strong>in</strong>g scotoms, b<strong>in</strong>ocular transient<br />

visual loss, 180–182<br />

Seesaw nystagmus, cl<strong>in</strong>ical features and<br />

etiologies, 373–374, 374<br />

Seizure disorders<br />

b<strong>in</strong>ocular transient visual loss, 180–181<br />

epileptic nystagmus, 384–385<br />

lid retraction/lid lag and, 423–424<br />

Sensory esotropia, etiology, 222<br />

Sensory exotropia, etiology, 222<br />

Short-cycle periodic alternat<strong>in</strong>g gaze,<br />

stuporous/comatose patients,<br />

397–399<br />

Shy-Drager syndrome, alternat<strong>in</strong>g<br />

Horner’s syndrome, 448<br />

Silent s<strong>in</strong>us syndrome, vertical diplopia,<br />

242<br />

S<strong>in</strong>gle-fiber electromyography (SFEMG)<br />

abnormalities<br />

myasthenia gravis (MG) diagnosis, 341<br />

ocular myasthenia gravis (OM)<br />

diagnosis, 341–342<br />

S<strong>in</strong>gle photon emission tomography<br />

(SPECT), b<strong>in</strong>ocular transient<br />

visual loss, migra<strong>in</strong>e and, 180<br />

Sixth nerve palsies (SNP)<br />

anatomy, 295, 296–297<br />

cavernous s<strong>in</strong>us lesion, 298–300, 301<br />

evaluation guidel<strong>in</strong>es, 301–304, 303<br />

isolated vasculopathic, evaluation<br />

protocols, 301–302<br />

localization and classification, 296,<br />

298–300<br />

nonisolated SNP, pont<strong>in</strong>e (lower pons)<br />

lesion, 295–296, 298–300<br />

nonvasculopathic, evaluation<br />

protocols, 302<br />

orbital lesion, 301<br />

petrous apex lesion, 297


482 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Sixth nerve palsies (SNP) (cont.)<br />

progressive/unresolved SNP,<br />

evaluation protocols, 302<br />

subarachnoid space lesion, 297, 297<br />

unilateral isolated SNP, diagnostic<br />

criteria, 296<br />

Skew deviation, cl<strong>in</strong>ical evaluation,<br />

327–328<br />

‘‘Sleep test,’’ myasthenia gravis (MG)<br />

diagnosis, 340–341<br />

Small-cell lung cancer (SCLC), saccadic<br />

<strong>in</strong>trusions, classification and<br />

etiology, 394–395<br />

Smok<strong>in</strong>g<br />

Graves’ ophthalmopathy (GO) therapy,<br />

352<br />

nutritional optic neuropathy, cl<strong>in</strong>ical<br />

features, 9, 12–14, 17<br />

Spasmus nutans, nystagmus etiology,<br />

368, 370<br />

Spontaneous anterior chamber<br />

hemorrhage, transient visual<br />

loss, 175<br />

Spontaneous eye oscillations, stuporous/<br />

comatose patients, 396–399,<br />

397–398<br />

Spontaneous jerk nystagmus, cl<strong>in</strong>ical<br />

features and etiology, 385<br />

Square-wave jerks, saccadic <strong>in</strong>trusions,<br />

classification and etiology,<br />

391–395, 394<br />

Steroids<br />

Graves’ ophthalmopathy (GO) therapy,<br />

354–356, 355<br />

ptosis etiology, 417<br />

Strabismus<br />

divergence <strong>in</strong>sufficiency/paralysis,<br />

228–230<br />

Graves’ ophthalmopathy (GO),<br />

treatment alternatives,<br />

356–357<br />

vertical diplopia, 239–245<br />

Striate cortex lesions, visual field defects,<br />

homonymous hemianopsia,<br />

204–205<br />

Stroke patients, transient visual loss risk<br />

and, 176–179<br />

Stuporous patients, spontaneous eye<br />

oscillations, 396–399, 397–398<br />

Subarachnoid space lesion<br />

fourth nerve palsy (FNP), 283<br />

sixth nerve palsies (SNP), 297, 297<br />

third nerve palsies (TNP), 256–257,<br />

259–260<br />

neuroimag<strong>in</strong>g protocols, 269–270<br />

Superior oblique click syndrome, vertical<br />

diplopia, 241–242<br />

Superior oblique myokymia (SOM)<br />

nystagmus etiology, 370–372<br />

vertical diplopia, 237–238<br />

Superior oblique (SO) palsy<br />

fascicular lesion, 259<br />

pseudo-overaction, fourth nerve<br />

palsies (FNP),<br />

282<br />

vertical diplopia, 236<br />

Superior rectus palsy, isolated, vertical<br />

diplopia, 238–239<br />

Supranuclear gaze disorders<br />

abducens nucleus anatomy, 312,<br />

314<br />

horizontal conjugate gaze, anatomy,<br />

311<br />

horizontal gaze palsies<br />

cl<strong>in</strong>ical evaluation, 312, 315<br />

lesion localization and classification,<br />

311, 312–314<br />

<strong>in</strong>ternuclear ophthalmoplegia (INO)<br />

cl<strong>in</strong>ical features, 314–315, 316<br />

etiology, 316, 317–318<br />

evaluation protocols, 318–319<br />

medial longitud<strong>in</strong>al fasciculus (MLF)<br />

anatomy, 312, 314<br />

one-and-a-half syndrome<br />

cl<strong>in</strong>ical evaluation, 319–321, 321<br />

etiologies, 321, 321<br />

skew deviation, cl<strong>in</strong>ical features,<br />

327–328<br />

supranuclear monocular elevation<br />

paresis, cl<strong>in</strong>ical features,<br />

327–328<br />

vertical gaze impairment<br />

anatomy, 321<br />

etiology, 322, 324–325<br />

evaluation protocols, 323, 325–326,<br />

326<br />

lesion localization of palsies, 321–322,<br />

322–323


vertical one-and-a-half syndrome,<br />

cl<strong>in</strong>ical features, 327–328<br />

Supranuclear monocular elevation<br />

paresis, cl<strong>in</strong>ical features,<br />

327–328<br />

Supranuclear ophthalmoplegia<br />

diplopia and, 219<br />

vertical diplopia, 234, 236–237<br />

Surgical procedures<br />

Graves’ ophthalmopathy (GO)<br />

lid retraction treatments, 356<br />

proptosis and/or compressive optic<br />

neuropathy (CON), 353,<br />

357–358, 358–359, 361<br />

traumatic optic neuropathy (TON),<br />

124, 125, 126<br />

Syphilitic men<strong>in</strong>gitis, neuroret<strong>in</strong>itis and<br />

optic disc edema with macular<br />

star (ODEMS), 65–66<br />

Systemic disease, pseudotumor cerebri<br />

syndrome, 136–137<br />

Systemic lupus erythematosus, transient<br />

visual loss, 175<br />

Systemic thyroid status, Graves’<br />

ophthalmopathy (GO), 350<br />

Temporal artery biopsy (TAB), giant cell<br />

arteritis (GCA)<br />

cl<strong>in</strong>ical diagnosis, 94, 94–96, 96–98,<br />

98–99<br />

<strong>in</strong>dications for, 101–104<br />

therapeutic complications, 108–110, 111<br />

unilateral vs. bilateral TAB, 101–104<br />

Tensilon test, myasthemia gravis (MG)<br />

vs. ocular myasthenia gravis<br />

(OMG), differential diagnosis,<br />

338–341<br />

Third nerve palsies (TNP)<br />

aberrant regeneration (type 6), 270–271<br />

acquired isolated TNP<br />

neuroimag<strong>in</strong>g protocols, 268–270<br />

nontraumatic (type 4), 262<br />

normal pupillary sph<strong>in</strong>cter,<br />

extraocular muscle <strong>in</strong>complete<br />

palsy (type 4B), 265–266<br />

normal pupillary sph<strong>in</strong>cter,<br />

extraocular muscle palsy (type<br />

4A), 264–265<br />

Index 483<br />

subnormal pupillary sph<strong>in</strong>cter<br />

dysfunction, extraocular<br />

muscle palsies (type 4C), 267<br />

anisocoria, 434–435<br />

bilateral, nuclear lesions, 255<br />

cavernous s<strong>in</strong>us lesion, 260–261<br />

classification, 253, 254<br />

cl<strong>in</strong>ical features, 253<br />

congenital orig<strong>in</strong>s, 262<br />

fascicular lesion, 258–259<br />

lid retraction/lid lag and, 423–424<br />

localization etiologies, 253, 256–257<br />

monocular elevator paresis,<br />

subarachnoid lesion, 259–260<br />

nonisolated TNP, cl<strong>in</strong>ical evaluation,<br />

261–262, 263<br />

nuclear lesion, 254–255<br />

orbital lesion, 261<br />

progressive/unresolved (type 5 TNP),<br />

evaluation protocols, 270<br />

ptosis etiology, 413, 414, 415<br />

retrospective review, 271–272<br />

subarachnoid lesion, 259–260<br />

trauma, 262<br />

unilateral TNP, nuclear lesions, 255<br />

Thromboembolic disease, monocular<br />

TVL and, 172–179<br />

Thymectomy, ocular myasthenia gravis<br />

(OM), <strong>in</strong>dications for, 344<br />

Thymoma evaluation, myasthenia gravis<br />

(MG) diagnosis, 342<br />

Thyroid eye disease<br />

diplopia and, 218–219<br />

Graves’ ophthalmopathy<br />

cl<strong>in</strong>ical features, 349, 350<br />

decompression studies, 358–359<br />

evaluation and treatment flowchart,<br />

360<br />

imag<strong>in</strong>g studies, 349–350<br />

immunosuppressive therapy, 352–354<br />

lid retraction, treatment protocols,<br />

356<br />

ocular and orbital <strong>in</strong>flammation, 352<br />

proptosis and/or compressive optic<br />

neuropathy, 357, 359<br />

proptosis without optic neuropathy,<br />

359, 361<br />

radiotherapy, 354–356<br />

strabismus management, 356–357


484 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Thyroid eye disease (cont.)<br />

systemic thyroid status, 350<br />

therapeutic management, 350–352,<br />

355<br />

horizontal diplopia, 224–226, 226<br />

lid retraction/lid lag, 424–425<br />

vertical diplopia, 241<br />

Thyroid ophthalmopathy, b<strong>in</strong>ocular<br />

transient visual loss, 182<br />

Tilted optic disc, papilledema,<br />

differential diagnosis, 131, 131<br />

Tonic pupil<br />

Adie’s tonic pupil syndrome<br />

cl<strong>in</strong>ical features, 441, 444<br />

etiology, 441<br />

neuroimag<strong>in</strong>g studies, 441<br />

therapeutic strategies, 444<br />

anisocoria, 440–441, 442–443<br />

isolated, differential diagnosis, 441,<br />

442–443<br />

syphilis serology test<strong>in</strong>g, 444–445<br />

Toxic optic neuropathy, cl<strong>in</strong>ical features,<br />

914, 15–16<br />

Transient diplopia, etiology, 217, 218<br />

Transient visual loss (TVL)<br />

b<strong>in</strong>ocular TVL<br />

etiology, 179–183<br />

evaluation, 167, 169–170, 183<br />

etiology, 171–179, 177<br />

monocular TVL<br />

duration of episodes, read<strong>in</strong>g-evoked<br />

TVL, 171–179<br />

gaze positions, 168, 168169, 171<br />

patient history, 167<br />

prolonged read<strong>in</strong>g, 171<br />

Transurethral prostatic resection (TURP)<br />

syndrome, b<strong>in</strong>ocular transient<br />

visual loss, 183<br />

Traquair’s junctional scotoma, visual<br />

field defects, 193–194<br />

Trauma. See Orbital trauma<br />

fourth nerve palsies (FNP), 287<br />

Horner’s syndrome and, 449, 451<br />

ptosis etiology, 415<br />

sixth nerve palsy (SNP), evaluation<br />

protocols,<br />

301<br />

Traumatic optic neuropathy (TON)<br />

cl<strong>in</strong>ical features, 9, 119, 119<br />

evaluation and treatment flow chart,<br />

125<br />

grad<strong>in</strong>g and classification, 120, 121<br />

neuroimag<strong>in</strong>g, 119–120<br />

pathogenesis, 119, 120<br />

therapeutic management strategies,<br />

120–126, 125<br />

corticosteroid therapy, 122–123<br />

protocols and classification, 123, 123<br />

surgical management, 124–126<br />

Trigem<strong>in</strong>o-oculomotor synk<strong>in</strong>esis, lid<br />

retraction/lid lag and,<br />

423–424<br />

Trochlear nerve. See also Fourth nerve<br />

palsies (FNP)<br />

localization, 284<br />

Tropias, diplopia evaluation, 219<br />

T2-weighted imag<strong>in</strong>g, <strong>in</strong>ternuclear<br />

ophthalmoplegia (INO), 319<br />

Upbeat nystagmus, cl<strong>in</strong>ical features and<br />

etiology, 386–389, 388<br />

Uveitis-glaucoma-hyphema (UGH)<br />

syndrome, transient visual<br />

loss, 175, 177<br />

Valsalva maneuver<br />

b<strong>in</strong>ocular symmetric jerk nystagmus,<br />

391<br />

gaze-evoked transient visual loss<br />

(TVL), 170–171<br />

Vasculopathic fourth nerve palsies<br />

(FNP), evaluation protocols,<br />

287<br />

Vasculopathic sixth nerve palsy (SNP)<br />

evaluation protocols, 301–302<br />

risk factors, 302<br />

Vasospasm, transient visual loss, 175–176<br />

Venereal Disease Research Laboratory<br />

(VDRL) test, papilledema,<br />

cl<strong>in</strong>ical evaluation, 135<br />

Venous occlusive disease, pseudotumor<br />

cerebri syndrome, evaluation<br />

protocols, 144–145<br />

Venous stasis ret<strong>in</strong>opathy, transient<br />

visual loss, 174–179<br />

Vertebrobasilar transient ischemic<br />

attacks, b<strong>in</strong>ocular transient<br />

visual loss, 182


evaluation protocol, 183<br />

Vertical diplopia<br />

cranial nerve impairment, 237–238<br />

etiology, 234, 235–236<br />

exam<strong>in</strong>ation protocol, 232–234<br />

extraocular muscle disease, 238–240<br />

mechanical misalignment processes,<br />

240–245<br />

monocular elevator paresis, 234,<br />

236–237<br />

neuromuscular junction diseases, 238<br />

supranuclear processes, 234, 236–237<br />

Vertical gaze impairment<br />

anatomy, 321<br />

etiology, 322, 324–325<br />

evaluation protocols, 323, 325–326, 326<br />

lesion localization of palsies, 321–322,<br />

322–323<br />

Vertical jerk nystagmus, cl<strong>in</strong>ical features<br />

and etiology, 385–389<br />

Vertical ocular myoclonus, stuporous/<br />

comatose patients, 399<br />

Vertical pendular nystagmus, etiology,<br />

370<br />

Vertigo, b<strong>in</strong>ocular symmetric jerk<br />

nystagmus, 390–391<br />

Vistibular tone imbalance, nystagmus<br />

etiology, 367368 i368<br />

Visual acuity<br />

optical disc edema with macular star<br />

(ODEMA), 64<br />

pseudotumor cerebri syndrome, optic<br />

nerve sheath fenestration<br />

(ONSF) and, 150–155<br />

traumatic optic neuropathy (TON),<br />

121–122<br />

Visual field defects<br />

bilateral defects, cl<strong>in</strong>ical features, 192,<br />

193<br />

b<strong>in</strong>asal hemianospia, 196, 198<br />

bitemporal hemianopsia, 194, 195–196,<br />

196<br />

evaluation protocols, 190<br />

homonymous hemianopsia, 198<br />

lateral geniculate body lesion,<br />

199–200<br />

normal neuroimag<strong>in</strong>g, 205–207<br />

optic radiation, 201–202<br />

optic tract lesions, 198–199<br />

Index 485<br />

therapeutic management, 207<br />

junctional defects, 192–194<br />

monocular temporal cresent, 192<br />

occipital lesions, 202–205<br />

optic neuritis (ON), 35–36<br />

optic neuropathy, 191–192<br />

pseudotumor cerebri syndrome, 144<br />

ret<strong>in</strong>al lesions, 189, 191, 191<br />

topographical diagnosis, 189, 190<br />

unexpla<strong>in</strong>ed defects, 207–208<br />

unilateral defects, 189<br />

Visual loss<br />

giant cell arteritis (GCA), cl<strong>in</strong>ical<br />

diagnosis, 95–96, 96–98,<br />

98–99<br />

monocular nystagmus, 370<br />

transient visual loss (TVL)<br />

b<strong>in</strong>ocular TVL<br />

etiology, 179–183<br />

evaluation, 167, 169–170, 183<br />

etiology, 171–179, 177<br />

monocular TVL, duration of episodes,<br />

171–179<br />

monocular TVL, gaze positions, 168,<br />

168–169, 171<br />

patient history, 167<br />

prolonged read<strong>in</strong>g, 171<br />

Visually evoked potentials (VEPs), optic<br />

neuritis (ON), <strong>in</strong>dications for,<br />

47<br />

Visual prognosis<br />

nonarteritic anterior ischemic optic<br />

neuropathy (NA-AION), 79<br />

levodopa therapy, 82–83<br />

optic nerve sheath fenestration, 83,<br />

83–85<br />

optic disc edema with macular<br />

(ODEMS), 67, 69<br />

optic neuritis (ON), 49–50<br />

Visual recovery<br />

giant cell arteritis (GCA), therapeutic<br />

protocols, 106–108<br />

optic neuritis (ON), 49–50<br />

traumatic optic neuropathy (TON)<br />

corticosteroid therapy, 122–123<br />

natural history and progression,<br />

120–122<br />

Vitam<strong>in</strong> A, idiopathic pseudotumor<br />

cerebri etiology, 140–142, 141


486 <strong>Cl<strong>in</strong>ical</strong> <strong>Pathways</strong> <strong>in</strong> <strong>Neuro</strong>-Ophthalmology, second edition<br />

Vitam<strong>in</strong> E deficiency syndrome,<br />

horizontal gaze palsy, 314–315<br />

Vitreous hemorrhage, secondary<br />

exotropia, 232<br />

Voluntary nystagmus, diagnosis and<br />

management, 379<br />

Wall-eyed bilateral <strong>in</strong>ternuclear<br />

ophthalmoplegia (WEBINO)<br />

syndrome, horizontal gaze<br />

palsy, 314<br />

Weber’s syndrome, third nerve palsies<br />

(TNP), fascicular lesion,<br />

258–259<br />

Weight reduction programs, idiopathic<br />

pseudotumor cerebri therapy,<br />

145–147, 146<br />

Wernicke’s syndrome, vertical diplopia,<br />

236<br />

Whipple’s disease, vertical gaze palsy,<br />

325–326<br />

Wilbrand’s knee, visual field defects,<br />

junctional characteristics,<br />

192–194

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!