18.01.2013 Views

Abstracts of Posters 8-th European Conference on Mathematical ...

Abstracts of Posters 8-th European Conference on Mathematical ...

Abstracts of Posters 8-th European Conference on Mathematical ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Abstracts</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Posters</str<strong>on</strong>g><br />

presented at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

8-<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g><br />

<strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology,<br />

and<br />

Annual Meeting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Society for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology,<br />

Kraków, June 28 - July 2, 2011


C<strong>on</strong>tents<br />

Rasha Abu Eid 22<br />

Cristian Vasile Achim 24<br />

Ben Adams 25<br />

Ben Adams 26<br />

Evans Afenya 27<br />

Maira Aguiar 28<br />

Helmut Ahammer 30<br />

Marco Ajelli 31<br />

Ilya Akberdin 32<br />

Ada Akerman 33<br />

Masakazu Akiyama 34<br />

Tomas Alarcón 36<br />

Maym<strong>on</strong>a Al-husari 37<br />

Samuel Aliz<strong>on</strong> 38<br />

Wolfgang Alt 39<br />

Krystyna Ambroch 40<br />

Jose Amigó 41<br />

Tea Ammunét 42<br />

Anan<str<strong>on</strong>g>th</str<strong>on</strong>g>i Anandanadesan 44<br />

Masahiro Anazawa 46<br />

Alexander Anders<strong>on</strong> 47<br />

Viggo Andreasen 48<br />

Roumen Anguelov 49<br />

Iris Antes 50<br />

Narcisa Apreutesei 51<br />

Mochamad Apri 52<br />

Daniel Arbelaez Alvarado 53<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Argasinski 54<br />

Julian Arndts 55<br />

Anne Arnold 56<br />

Jesus R. Artalejo 57<br />

Yael Artzy-Randrup 58<br />

Takeshi Asakawa 59<br />

Gianluca Ascolani 60<br />

Laura Astola 62<br />

Irem Atac 63<br />

K<strong>on</strong>stantin Avilov 64<br />

Franciane Azevedo 66<br />

Mostafa Bachar 67<br />

3


4<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stephen Baigent 68<br />

Archana Bajpai 69<br />

Ru<str<strong>on</strong>g>th</str<strong>on</strong>g> Baker 70<br />

Suruchi Bakshi 71<br />

Joanna Balbus 72<br />

Annabelle Ballesta 73<br />

Murad Banaji 74<br />

Leah Band 75<br />

Jörg Bandura 76<br />

Malay Banerjee 77<br />

Maria Barbarossa 78<br />

Susana Barbosa 79<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Bartoszek 80<br />

Wojciech Bartoszek 81<br />

David Basanta 82<br />

David Basanta 83<br />

Andrew Bate 84<br />

Jerry Batzel 85<br />

Robert Bauer 87<br />

Stefan Becker 88<br />

Julio Belm<strong>on</strong>te 90<br />

Sébastien Benzekry 91<br />

Juliana Berbert 92<br />

Ludek Berec 93<br />

Adriana Bernal Escobar 94<br />

Samuel Bernard 95<br />

Roberto Bertolusso 97<br />

Alex Best 98<br />

Anja Be<str<strong>on</strong>g>th</str<strong>on</strong>g>ge 99<br />

Andrzej Bielecki 100<br />

Sebastian Binder 102<br />

Paweł Błażej 103<br />

Jenny Bloomfield 104<br />

Adam Bobrowski 105<br />

Martin Bock 106<br />

Nikolai Bode 107<br />

Christian Bodenstein 108<br />

Marek Bodnar 109<br />

Marek Bodnar 111<br />

Radosław Bogucki 112<br />

Ansgar Bohmann 113<br />

Andreas Bohn 114<br />

Barbara Boldin 115<br />

Dimitra B<strong>on</strong> 116<br />

Axel B<strong>on</strong>acic Marinovic 118<br />

Katarína Boová 119<br />

Wojciech Borkowski 120<br />

Marta Borowska 121


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evert Bosdriesz 122<br />

Roger Bowers 123<br />

Alexander Bratus 124<br />

Carlos A. Braumann 126<br />

Romulus Breban 127<br />

Romulus Breban 128<br />

Victor F Brena-Medina 129<br />

Nick Britt<strong>on</strong> 130<br />

Tom Britt<strong>on</strong> 131<br />

Ellen Brooks-Pollock 132<br />

Mark Broom 133<br />

Lutz Brusch 134<br />

Lutz Brusch 135<br />

Teodor Buchner 137<br />

Svetlana Bunimovich 138<br />

Bruno Bu<strong>on</strong>omo 139<br />

Zdzislaw Burda 140<br />

Reinhard Bürger 141<br />

Jean Baptiste Burie 142<br />

Peter Buske 144<br />

Katarzyna Buszko 145<br />

Anna Cai 146<br />

Yin Cai 147<br />

Hannah Callender 148<br />

Baba Issa Camara 149<br />

Mario Campanella 150<br />

Vincenzo Capasso 152<br />

Vincenzo Capasso 153<br />

Jose A. Carrillo 155<br />

Magda Castel 156<br />

Isaias Chairez-Hernandez 157<br />

Fabio Chalub 158<br />

Osvaldo Chara 159<br />

Arnaud Chauviere 160<br />

Arnaud Chauviere 162<br />

Andrés Chavarría-Krauser 163<br />

Luis Chaves 165<br />

Ibrahim Cheddadi 166<br />

Roman Cherniha 167<br />

Andrey Cherstvy 168<br />

Chadha Chettaoui 170<br />

Keng-Hwee Chiam 171<br />

Ryan Chisholm 172<br />

Nakul Chitnis 173<br />

Ye<strong>on</strong>taek Choi 174<br />

Catalina Ciric 175<br />

Stanca M Ciupe 177<br />

Jean Clairambault 178<br />

5


6<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

James Clarke 179<br />

Christina Cobbold 180<br />

Daniel C<str<strong>on</strong>g>of</str<strong>on</strong>g>field Jr. 181<br />

Piero Colombatto 182<br />

Ornella Cominetti 184<br />

Carsten C<strong>on</strong>radi 185<br />

Jessica C<strong>on</strong>way 186<br />

Flora Cordoleani 187<br />

Stephen Cornell 188<br />

Andres Cortes 189<br />

Adelle Coster 190<br />

Sim<strong>on</strong> Cotter 191<br />

Markus Covert 192<br />

Gheorghe Craciun 193<br />

Fabien Crauste 194<br />

Vittorio Cristini 196<br />

Huguette Croisier 197<br />

Attila Csikasz-Nagy 198<br />

Jing-an Cui 199<br />

Peter Cummings 200<br />

Andras Czirok 201<br />

Harel Dahari 202<br />

Sascha Dalessi 203<br />

Daniel Damineli 205<br />

Agnieszka Danek 206<br />

Erin Daus<strong>on</strong> 208<br />

Fordyce Davids<strong>on</strong> 209<br />

Fordyce Davids<strong>on</strong> 210<br />

Ross Davids<strong>on</strong> 211<br />

Ant<strong>on</strong>i Le<strong>on</strong> Dawidowicz 212<br />

Troy Day 213<br />

Niall Deakin 214<br />

Walter de Back 215<br />

Malgorzata Debowska 216<br />

Jaber Dehghany 217<br />

Eva Deinum 218<br />

Edgar Delgado-Eckert 219<br />

Aurelio V de los Reyes 221<br />

Sara Del Valle 222<br />

Bernd-Sim<strong>on</strong> Dengel 223<br />

Christophe Deroulers 224<br />

Andreas Deutsch 225<br />

Andreas Deutsch 226<br />

Thanate Dhirasakdan<strong>on</strong> 227<br />

Edgar Diaz Herrera 228<br />

Gabriel Dimitriu 229<br />

Gaelle Diserens 230<br />

Susanne Ditlevsen 231


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Narendra Dixit 232<br />

Radu Dobrescu 233<br />

Marina Dolfin 234<br />

Mirela Domijan 235<br />

Alberto d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio 236<br />

Alberto d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio 237<br />

Alexey Doroshkov 238<br />

Christiana Drake 240<br />

Dirk Drasdo 241<br />

Dirk Drasdo 243<br />

Dirk Drasdo 245<br />

Fátima Drubi Vega 247<br />

Wen Duan 248<br />

Jorge Duarte 249<br />

Claire Dufourd 250<br />

Yves Dum<strong>on</strong>t 252<br />

Sara-Jane Dunn 254<br />

Thomas Dunt<strong>on</strong> 255<br />

Geneviève Dup<strong>on</strong>t 256<br />

Bertram Düring 257<br />

Louise Dys<strong>on</strong> 258<br />

Rosemary Dys<strong>on</strong> 259<br />

Michal Dyzma 260<br />

Ken Eames 261<br />

Hermann Eberl 262<br />

Raluca Eftimie 263<br />

Marisa Eisenberg 264<br />

Maciej Jan Ejsm<strong>on</strong>d 265<br />

Ahmed Elaiw 266<br />

Ait Dads Elhadi 267<br />

Federico Elias Wolff 269<br />

Jerzy Ellert 270<br />

Elizabe<str<strong>on</strong>g>th</str<strong>on</strong>g> Elliott 272<br />

Fadoua El Moustaid 273<br />

German Enciso 274<br />

Heiko Enderling 275<br />

Heiko Enderling 276<br />

Radek Erban 277<br />

Stefano Erm<strong>on</strong> 278<br />

Lourdes Esteva 279<br />

Eunok Jung 280<br />

Roger Evans 281<br />

Joep Evers 283<br />

Yoan Eynaud 284<br />

K<strong>on</strong>stantin Fackeldey 286<br />

James Faeder 287<br />

Martin Falcke 289<br />

Martin Falcke 290<br />

7


8<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Chun Fang 291<br />

Jozsef Farkas 292<br />

Ant<strong>on</strong>io Fasano 293<br />

Sergei Fedotov 295<br />

Elisenda Feliu 296<br />

Justin Fernandez 298<br />

Luis Fernandez Lopez 300<br />

Claudia Ferreira 301<br />

Wils<strong>on</strong> Ferreira Jr. 302<br />

Stephan Fischer 303<br />

K. Renee Fister 305<br />

Ben Fitzpatrick 306<br />

Edward Flach 307<br />

Alexander Fletcher 308<br />

Jasmine Foo 309<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Forde 310<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Forde 311<br />

Daniel Forger 312<br />

Scott Fortmann-Roe 313<br />

Pawel Foszner 314<br />

John Fozard 316<br />

Benjamin Franz 317<br />

Avner Friedman 318<br />

Avner Friedman 319<br />

Jan Fuhrmann 320<br />

Sebastian Funk 321<br />

Holly Gaff 322<br />

Holly Gaff 323<br />

Eam<strong>on</strong>n Gaffney 325<br />

Przemyslaw Gagat 326<br />

Elżbieta Gajecka-Mirek 327<br />

Magda Galach 328<br />

Jill Gallaher 330<br />

Joerg Galle 331<br />

Martina Gallenberger 332<br />

Alberto Gandolfi 333<br />

Jose A. Garcia 334<br />

Diana Garcia Lopez 335<br />

Astrid Gasselhuber 336<br />

Tomas Gede<strong>on</strong> 337<br />

Eva Gehrmann 338<br />

Richard Gejji 339<br />

Uduak George 340<br />

Sebastian Gerdes 342<br />

Chloe Gerin 344<br />

Philip Gerlee 345<br />

Philip Gerrish 346<br />

Wulfram Gerstner 347


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Philipp Getto 348<br />

Wayne M. Getz 349<br />

Atiyo Ghosh 350<br />

Jan Gierałtowski 351<br />

Kyriaki Giorgakoudi 353<br />

Chiara Giverso 355<br />

Erida Gjini 356<br />

James Glazier 357<br />

Tilmann Glimm 358<br />

Wojciech Goch 359<br />

Julia Gog 360<br />

Chaitanya Gokhale 361<br />

Meltem Gölgeli 362<br />

Gabriela Gomes 363<br />

Didier G<strong>on</strong>ze 364<br />

Jean-Luc Gouzé 365<br />

Isabell Graf 366<br />

Beata Graff 367<br />

Galina Gramotnev 368<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Greenman 369<br />

Priscilla Greenwood 370<br />

Fabio Grizzi 371<br />

Frédéric Grognard 372<br />

Christian Groh 373<br />

S<strong>on</strong>ja Gruen 375<br />

Z.J. Grzywna 377<br />

Jeremie Guedj 379<br />

Caterina Guiot 380<br />

Caterina Guiot 381<br />

Piotr Gwiazda 382<br />

Piotr Gwiazda 383<br />

Christ<str<strong>on</strong>g>of</str<strong>on</strong>g>oros Hadjichrysan<str<strong>on</strong>g>th</str<strong>on</strong>g>ou 384<br />

Hiroshi Haeno 385<br />

Saliha Hamdous 386<br />

Christina Hamlet 387<br />

Samuel Handelman 388<br />

Le<strong>on</strong>id Hanin 389<br />

Hea<str<strong>on</strong>g>th</str<strong>on</strong>g>er Hardway 390<br />

Jaroslaw Harezlak 391<br />

Andrew Harris 392<br />

Eleanor Harris<strong>on</strong> 393<br />

S.Naser Hashemi 394<br />

Jan Haskovec 395<br />

Jan Haskovec 396<br />

Beata Hat 397<br />

Haralampos Hatzikirou 398<br />

Hassan Hbid 399<br />

Denis Head<strong>on</strong> 400<br />

9


10<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Robert Heise 401<br />

Christian Hellmich 402<br />

Dorota Herman 403<br />

Joachim Hermiss<strong>on</strong> 404<br />

Ana Hernandez 405<br />

Miguel A. Herrero 406<br />

Miguel A. Herrero 407<br />

Eva Herrmann 408<br />

John Hertz 409<br />

Roslyn Hicks<strong>on</strong> 411<br />

Danielle Hilhorst 412<br />

Gina Himes Boor 413<br />

Erwan Hingant 414<br />

Peter Hinow 416<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Hiorns 417<br />

Bar<str<strong>on</strong>g>th</str<strong>on</strong>g>olomaeus Hirt 418<br />

Stefan Hoehme 419<br />

Nadine Hohmann 420<br />

William Holmes 421<br />

Klaus Holst 422<br />

Niels-Henrik Holstein-Ra<str<strong>on</strong>g>th</str<strong>on</strong>g>lou 423<br />

Hermann-Georg Holzhuetter 424<br />

Mary Ann Horn 425<br />

Zhanyuan Hou 426<br />

Thomas House 427<br />

Florence Hubert 428<br />

C. An<str<strong>on</strong>g>th</str<strong>on</strong>g><strong>on</strong>y Hunt 430<br />

Peter Hunter 431<br />

Paul Hurtado 432<br />

Thiemo Hustedt 433<br />

Dagmar Iber 434<br />

Satomi Iino 435<br />

Giuliana Indelicato 436<br />

Jaime Iranzo 437<br />

Shingo Iwami 439<br />

Marta Iwanaszko 440<br />

Sara Jabbari 441<br />

Jędrzej Jabłoski 442<br />

Johannes Jaeger 443<br />

Mehrdad Jafari-Mamaghani 444<br />

Peter Jagers 446<br />

Nick Jagiella 447<br />

Harsh Jain 448<br />

Harsh Jain 449<br />

Roman Jaksik 450<br />

Grzegorz Jamróz 452<br />

Joanna Jaroszewska 453<br />

Joanna Jaruszewicz 454


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Herbert Jelinek 455<br />

W<strong>on</strong>ju Je<strong>on</strong> 456<br />

Yi Jiang 457<br />

Jean-François Joanny 458<br />

Helen Johns<strong>on</strong> 459<br />

Z<str<strong>on</strong>g>of</str<strong>on</strong>g>ia J<strong>on</strong>es 461<br />

Winfried Just 463<br />

Winfried Just 464<br />

Agnieszka Kaczkowska 465<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ias Kahm 466<br />

Yannis Kalaidzidis 468<br />

Hiroko Kamei 469<br />

Yoshitaka Kameo 470<br />

Atsushi Kamimura 472<br />

Christel Kamp 473<br />

Franz Kappel 474<br />

Irina Kareva 475<br />

Arseny Karkach 476<br />

Ilmari Kar<strong>on</strong>en 477<br />

Khalid Kassara 478<br />

Joanna Kawka 479<br />

Toshiya Kazama 480<br />

Bogdan Kaźmierczak 481<br />

Thomas Keef 482<br />

Jan Kelkel 483<br />

David Kelly 484<br />

Harald Kempf 485<br />

Richard Kerner 487<br />

Helen Kettle 489<br />

Evgeniy Khain 490<br />

Evgeniy Khain 491<br />

Adnan Khan 492<br />

Amjad Khan 493<br />

Nino Khatiashvili 494<br />

Hanifeh Khayyeri 495<br />

Eunjung Kim 496<br />

Yangjin Kim 497<br />

Yangjin Kim 498<br />

Julian King 499<br />

Eva Kisdi 501<br />

Istvan Kiss 502<br />

Agnieszka Kitlas 503<br />

Adam Kleczkowski 505<br />

Sabrina Kleessen 506<br />

Vaclav Klika 507<br />

Wlodzimierz Kl<strong>on</strong>owski 508<br />

Sandra Klu<str<strong>on</strong>g>th</str<strong>on</strong>g> 509<br />

Markus Knappitsch 510<br />

11


12<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Michael Knudsen 511<br />

Ryota Kobayashi 512<br />

Tetsuya Kobayashi 513<br />

Marek Kochanczyk 514<br />

Pawel Kocieniewski 516<br />

Martin Koetzing 517<br />

Alvaro Köhn-Luque 518<br />

Semen Koksal 519<br />

Mikhail Kolev 520<br />

Richard Kollár 521<br />

Andrey Kolobov 522<br />

Michał Komorowski 523<br />

Ryusuke K<strong>on</strong> 524<br />

Shigeru K<strong>on</strong>do 525<br />

Bernhard K<strong>on</strong>rad 526<br />

Wilfried K<strong>on</strong>rad 527<br />

Lubomir Kostal 529<br />

Tanya Kostova Vassilevska 530<br />

Il<strong>on</strong>a Kowalik-Urbaniak 531<br />

T. Kozubowski 533<br />

Roberto Kraenkel 534<br />

Roberto Kraenkel 535<br />

Kseniya Kravchuk 536<br />

Axel Krinner 537<br />

J Krishnan 539<br />

Vlastimil Krivan 540<br />

Pawel Krupinski 541<br />

Pawel Krupinski 543<br />

Michal Krzeminski 544<br />

Wojciech Krzyzanski 545<br />

Akisato Kubo 546<br />

Adam Kucharski 547<br />

Michael Kücken 548<br />

Peter Kühl 549<br />

Paul Kulesa 550<br />

Toshikazu Kuniya 551<br />

Christina Kuttler 552<br />

Julia Kzhyshkowska 553<br />

Paweł Lachor 554<br />

Miroslaw Lachowicz 556<br />

Miroslaw Lachowicz 557<br />

Tanny Lai 558<br />

Christoph Landsberg 559<br />

Michel Langlais 560<br />

Petr Lansky 561<br />

Alexei Lapin 562<br />

Anastasia Lavrova 563<br />

Anita Layt<strong>on</strong> 564


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Harold Layt<strong>on</strong> 565<br />

Urszula Ledzewicz 566<br />

Chang Hye<strong>on</strong>g Lee 567<br />

J<strong>on</strong>ggul Lee 568<br />

Nam-Kyung Lee 569<br />

S. Seirin Lee 570<br />

Karin Leiderman 572<br />

Felix Lenk 573<br />

Anne-Cécile Lesart 574<br />

Jacek Leśkow 575<br />

Sivan Leviyang 576<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Li 577<br />

Chelsea Liddell 578<br />

Volkmar Liebscher 579<br />

Magnus Lindh 580<br />

Pietro Lio 581<br />

Tomasz Lipniacki 582<br />

Bartosz Lisowski 584<br />

Alun Lloyd 586<br />

Georgios Lolas 587<br />

Juan Carlos López Alf<strong>on</strong>so 588<br />

MJ Lopez-Herrero 589<br />

Miguel A. Lopez-Marcos 590<br />

Horacio Lopez-Menendez 591<br />

Per Lotstedt 592<br />

Kavi<str<strong>on</strong>g>th</str<strong>on</strong>g>a Louis 593<br />

Jose Lourenço 594<br />

Yoram Louzoun 595<br />

John Lowengrub 596<br />

John Lowengrub 597<br />

Shar<strong>on</strong> Lubkin 598<br />

Torbjörn Lundh 599<br />

Jamie Luo 600<br />

Pavel Lushnikov 601<br />

Angelina Mageni Lutambi 602<br />

Wes Maciejewski 603<br />

Michael C. Mackey 604<br />

Michael C. Mackey 605<br />

Dorota Mackiewicz 606<br />

Paweł Mackiewicz 608<br />

Paul Macklin 609<br />

Paul Macklin 611<br />

Anotida Madzvamuse 613<br />

Carsten Magnus 614<br />

Silvia Mahmood 615<br />

Ludovic Mailleret 616<br />

Danuta Makowiec 617<br />

Danuta Makowiec 619<br />

13


14<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Adam Makuchowski 621<br />

Horst Malchow 622<br />

Solvey Mald<strong>on</strong>ado 623<br />

Jens Malmros 626<br />

Marcin Małogrosz 627<br />

Piero Manfredi 628<br />

Carrie Manore 629<br />

Anna Marciniak-Czochra 630<br />

Anna Marciniak-Czochra 631<br />

Michał Marczyk 632<br />

Glenn Mari<strong>on</strong> 634<br />

Alicia Martinez-G<strong>on</strong>zalez 635<br />

Eduardo Massad 637<br />

Susan Massey 638<br />

Franziska Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>aeus 640<br />

Bertrand Maury 641<br />

Jessica McGillen 642<br />

Alan McKane 643<br />

Nicola McPhers<strong>on</strong> 644<br />

Olesya Melnichenko 645<br />

Renato Mendes Coutinho 646<br />

Berta Mendoza-Juez 647<br />

Aleksander Mendyk 649<br />

Carsten Mente 651<br />

Gülnihal Meral 652<br />

Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>fry Mercer 653<br />

Roeland Merks 654<br />

Roeland Merks 655<br />

Géza Meszéna 656<br />

K<strong>on</strong>radin Metze 657<br />

Michael Meyer-Hermann 659<br />

Alistair Middlet<strong>on</strong> 660<br />

Jacek Miekisz 661<br />

Jacek Miekisz 662<br />

Janusz Mierczynski 663<br />

Florian Milde 664<br />

Judi<str<strong>on</strong>g>th</str<strong>on</strong>g> Miller 665<br />

Harriet Mills 666<br />

Nebojsa Milosevic 667<br />

Maya Mincheva 668<br />

Rachelle Mir<strong>on</strong> 669<br />

Victoria Mir<strong>on</strong>ova 670<br />

Mariola Molenda 672<br />

Rubem M<strong>on</strong>daini 673<br />

Shabnam MoobedMehdiAbadi 674<br />

Yoshihiro Morishita 675<br />

Adam Moroz 676<br />

Charles Mort<strong>on</strong> 677


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Patricia Mostardinha 678<br />

Manuel Mota 679<br />

Iw<strong>on</strong>a Mroz 681<br />

Kalina Mrozek 682<br />

Maciej Mrugala 683<br />

Johannes Müller 684<br />

Sreeharish Muppirisetty 685<br />

Daniele Muraro 686<br />

Philip Murray 688<br />

Robert B. Nachbar 689<br />

Jose Nacher 690<br />

Robyn Nadolny 692<br />

Felix Naef 693<br />

Sundar Nagana<str<strong>on</strong>g>th</str<strong>on</strong>g>an 694<br />

Jun Nakabayashi 695<br />

Tetsuya Nakamura 696<br />

Yukihiko Nakata 697<br />

Toshiyuki Namba 698<br />

Martin Paul Nawrot 700<br />

Bakhyt Nedorezova 701<br />

Jost Neigenfind 702<br />

Zoltan Neufeld 703<br />

Claudia Neuhauser 704<br />

Avidan U. Neumann 705<br />

Sergey Nikolaev 706<br />

Ryosuke Nishi 707<br />

Hiroshi Nishiura 709<br />

Robert Noble 711<br />

Lorette Noiret 713<br />

Robert Nolet 714<br />

Etsuko N<strong>on</strong>aka 715<br />

Ekaterina A. Nosova 716<br />

Ka<str<strong>on</strong>g>th</str<strong>on</strong>g>erine Novoselova 717<br />

Artem Novozhilov 719<br />

Andrzej Nowakowski 720<br />

Tuomas Nurmi 722<br />

Boguslaw Obara 723<br />

Anna Ochab-Marcinek 725<br />

Edward Oczeretko 726<br />

Reuben O’Dea 727<br />

Eryll Ogg 728<br />

Łukasz Olczak 729<br />

Katarzyna Oles 730<br />

Sarah Ols<strong>on</strong> 731<br />

Mette Olufsen 732<br />

Dietmar Ölz 733<br />

Ryosuke Omori 734<br />

Nooshin Omranian 735<br />

15


16<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Natsuki Orita 737<br />

James Osborne 739<br />

Yo-Hey Otake 740<br />

Hans G. O<str<strong>on</strong>g>th</str<strong>on</strong>g>mer 741<br />

Hans G. O<str<strong>on</strong>g>th</str<strong>on</strong>g>mer 742<br />

Johnny Ottesen 743<br />

Aziz Ouhinou 744<br />

Niels Chr Overgaard 745<br />

Marcin Pacholczyk 747<br />

Kevin Painter 748<br />

Kevin Painter 749<br />

Laurence Palk 750<br />

Margriet Palm 751<br />

Peter Pang 752<br />

A. Panorska 753<br />

Casian Pantea 754<br />

Je<strong>on</strong>g-Man Park 755<br />

Su-Chan Park 756<br />

Kalle Parvinen 757<br />

Virginia Pasour 758<br />

Pawel Paszek 759<br />

Kasia Pawelek 760<br />

Jakub Pekalski 761<br />

Zbigniew Peradzyski 763<br />

Victor M. Pérez-García 764<br />

Judi<str<strong>on</strong>g>th</str<strong>on</strong>g> Perez-Velazquez 766<br />

Holger Perfahl 768<br />

Holger Perfahl 770<br />

Valeriy Perminov 771<br />

Fernando Peruani 772<br />

M<strong>on</strong>ika Petelczyc 773<br />

Aleksandra Pfeifer 775<br />

Roland Pieruschka 776<br />

M<strong>on</strong>ika Piotrowska 777<br />

Jaroslaw Piskorski 778<br />

Peter Piv<strong>on</strong>ka 779<br />

Mateusz Plucinski 780<br />

Piotr Podziemski 781<br />

Jean-Christophe Poggiale 783<br />

Ondrej Pokora 784<br />

Sebastian Polak 785<br />

Jan Poleszczuk 786<br />

Andrey Polezhaev 787<br />

Rosalyn Porter 788<br />

Zdenek Pospisil 789<br />

Ilya Potapov 790<br />

Gibin Powa<str<strong>on</strong>g>th</str<strong>on</strong>g>il 792<br />

Sim<strong>on</strong> Praetorius 793


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Jamie Prentice 794<br />

Luigi Preziosi 795<br />

Tadeas Priklopil 796<br />

Stephen Proulx 797<br />

Jens Przybilla 798<br />

Piotr Przymus 799<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Psiuk-Maksymowicz 801<br />

Mariya Ptashnyk 802<br />

Robert Puddicombe 803<br />

Andrea Pugliese 804<br />

Małgorzata Pułka 805<br />

Jan Pyrzowski 806<br />

Amina Qutub 807<br />

Ovidiu Radulescu 808<br />

Marina Rafajlovic 809<br />

Nomenjanahary Alexia Raharinirina 810<br />

Andriamihaja Ramanantoanina 811<br />

Gael Raoul 812<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Rault 813<br />

Mario Recker 814<br />

Charles Reichhardt 815<br />

Katarzyna Rejniak 816<br />

Katarzyna A. Rejniak 817<br />

Katarzyna A. Rejniak 818<br />

Timo<str<strong>on</strong>g>th</str<strong>on</strong>g>y Reluga 819<br />

Grzegorz A Rempala 820<br />

Sarunas Repsys 821<br />

Jennifer Reynolds 822<br />

Benjamin Ribba 823<br />

Tim Ricken 824<br />

Rachel Rider 825<br />

Heiko Rieger 826<br />

Jordi Ripoll 827<br />

Ekaterina Roberts 828<br />

Mick Roberts 829<br />

Mark Roberts<strong>on</strong>-Tessi 830<br />

Raina Robeva 831<br />

Susanna Röblitz 832<br />

Russell Rockne 833<br />

Helena S<str<strong>on</strong>g>of</str<strong>on</strong>g>ia Rodrigues 835<br />

Joanna Rodriguez Chrobak 836<br />

Roberto Rosà 837<br />

Anita Ro<str<strong>on</strong>g>th</str<strong>on</strong>g>-Nebelsick 838<br />

Elina Roto 840<br />

Robert Rovetti 841<br />

Peter Rowat 842<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Rykaczewski 843<br />

Laura Sacerdote 844<br />

17


18<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Holly Gaff, Sadie Ryan 845<br />

Michael Sadovsky 846<br />

Koichi Saeki 848<br />

Roberto Saenz 849<br />

Max Sajitz-Hermstein 850<br />

Guillaume Salbreux 851<br />

Adeline Sams<strong>on</strong> 852<br />

Yara Elena Sanchez Corrales 853<br />

Luis Sanz 854<br />

Akira Sasaki 856<br />

Akiko Satake 857<br />

Andrew Savory 858<br />

Sim<strong>on</strong>e Scacchi 859<br />

Andreas Schadschneider 860<br />

Heinz Schaettler 861<br />

Sascha Schäuble 862<br />

Daniella Schittler 863<br />

Daniela Schlueter 864<br />

Christoph Schmal 865<br />

Christine Schmeitz 866<br />

Deena Schmidt 867<br />

Daniel Schneditz 868<br />

Kristan Schneider 870<br />

Santiago Schnell 871<br />

Richard Schugart 872<br />

Anna Schulze 873<br />

Tilo Schwalger 874<br />

Veit Schwämmle 875<br />

Elissa Schwartz 876<br />

Lars Ole Schwen 877<br />

Marco Scianna 878<br />

Jacob Scott 880<br />

Megan Selbach-Allen 881<br />

Lorenzo Sella 882<br />

Hiromi Seno 884<br />

Anne Seppänen 885<br />

Raffaello Seri 886<br />

Robert Service 887<br />

Armin Seyfried 888<br />

Nikolaos Sfakianakis 889<br />

Nazgol Shahbandi 890<br />

Kieran Sharkey 891<br />

Ryan Sharp 892<br />

Eunha Shim 893<br />

Shigeru Shinomoto 894<br />

Andrey Shuvaev 895<br />

Michael Sieber 896<br />

Justyna Signerska 897


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Wer<strong>on</strong>ika Sikora-Wohlfeld 898<br />

Peter Sim<strong>on</strong> 900<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew Simps<strong>on</strong> 901<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew Simps<strong>on</strong> 902<br />

David Sirl 903<br />

Roberta Sirovich 904<br />

Vladas Skakauskas 905<br />

Alexander Skupin 906<br />

Alexander Skupin 907<br />

Urszula Skwara 908<br />

Jaroslaw Śmieja 909<br />

Charles Smi<str<strong>on</strong>g>th</str<strong>on</strong>g> 910<br />

Robert Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>? 911<br />

Oksana Sorokina 912<br />

Max Souza 913<br />

Eirini Spanou 914<br />

Joanna Stachowska-Piętka 916<br />

Jörn Starruß 918<br />

Michał Startek 919<br />

Tracy Stepien 920<br />

Thomas Stiehl 921<br />

Yv<strong>on</strong>ne Stokes 922<br />

Magdalena Stolarska 923<br />

Nico Stollenwerk 924<br />

Nico Stollenwerk 925<br />

Beatriz Stransky 926<br />

Lior Strauss 928<br />

Zbigniew Struzik 929<br />

Wanda Strychalski 930<br />

Sebastian Student 931<br />

Marc Sturrock 933<br />

Lisa Sundqvist 934<br />

Christina Surulescu 935<br />

Maciej Swat 936<br />

Maciej Swat 938<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Świder 939<br />

David Swig<strong>on</strong> 940<br />

Gabor Szederkenyi 941<br />

Piotr Szopa 942<br />

Joanna Szymanowska-Pułka 943<br />

Paulina Szymanska 945<br />

Zuzanna Szymaska 946<br />

Masoomeh Taghipoor 947<br />

Takenori Takada 949<br />

Daisuke Takahashi 950<br />

Satoshi Takahashi 951<br />

Yasuhiro Takeuchi 952<br />

Massimiliano Tamborrino 953<br />

19


20<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

S<str<strong>on</strong>g>of</str<strong>on</strong>g>ia Tapani 954<br />

Michael Taylor 956<br />

Mickael Teixeira Alves 957<br />

Atsushi Tero 958<br />

Emmanuelle Terry 959<br />

Jeremy Thibodeaux 960<br />

Horst Thieme 961<br />

K<strong>on</strong>stantin Thierbach 962<br />

Michele Thieullen 963<br />

S. Randall Thomas 964<br />

Ruediger Thul 965<br />

Kevin Thurley 966<br />

Sara Tiburtius 967<br />

Marcus Tindall 968<br />

Jaakko Toiv<strong>on</strong>en 969<br />

Christian Tokarski 970<br />

Alina Toma 971<br />

Cristian Tomasetti 972<br />

Paweł Topa 973<br />

Nadine Töpfer 975<br />

Andrea Tosin 977<br />

Suzanne Touzeau 978<br />

Hiroshi Toyoizumi 979<br />

Arne Traulsen 980<br />

Je-Chiang Tsai 981<br />

Reidun Twarock 982<br />

Jacek Tyburczyk 983<br />

Katarzyna Tyc 984<br />

Elpida Tzafestas 985<br />

Agnieszka Ulikowska 987<br />

Margarete Utz 988<br />

Asher Uziel 990<br />

Milan van Hoek 991<br />

Sim<strong>on</strong> van Mourik 993<br />

Bert van Rietbergen 994<br />

Raffaele Vardavas 995<br />

María Vela-Pérez 996<br />

Ezio Venturino 997<br />

Ezio Venturino 998<br />

Paola Vera-Lic<strong>on</strong>a 999<br />

Maurício Vieira Kritz 1000<br />

Irene Vign<strong>on</strong>-Clementel 1002<br />

Fernao Vistulo de Abreu 1003<br />

Guido Vitale 1004<br />

Evgenii Volkov 1005<br />

Vitaly Volpert 1008<br />

Vitaly Volpert 1009<br />

Max v<strong>on</strong> Kleist 1010


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ute v<strong>on</strong> Wangenheim 1012<br />

Anja Voss-Boehme 1013<br />

Joe Yuichiro Wakano 1014<br />

Przemyslaw Waliszewski 1015<br />

Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y Wallace 1017<br />

Georg Wal<str<strong>on</strong>g>th</str<strong>on</strong>g>er 1018<br />

Xiaojing Wang 1020<br />

John Ward 1021<br />

Michael Wats<strong>on</strong> 1022<br />

Agata Wawrzkiewicz 1023<br />

Rafał Wcisło 1024<br />

William Weens 1025<br />

Sebastian Weitz 1026<br />

Bernt Wennberg 1027<br />

Aleksander Wer<strong>on</strong> 1028<br />

Sergiusz Wesołowski 1029<br />

Bruce West 1031<br />

Andy White 1032<br />

Ruscena Wiederholt 1033<br />

Ka<str<strong>on</strong>g>th</str<strong>on</strong>g>leen Wilkie 1034<br />

Lisa Willis 1035<br />

Christian Winkel 1036<br />

Annelene Wittenfeld 1038<br />

Meike Wittmann 1039<br />

Carsten Wiuf 1040<br />

Tomasz Wojdyla 1041<br />

Carina Wollnik 1042<br />

Dariusz Wrzosek 1043<br />

Michelle Wynn 1044<br />

Norio Yamamura 1045<br />

Atsushi Yamauchi 1046<br />

Ping Yan 1047<br />

Xuxin Yang 1048<br />

Je<strong>on</strong>g-Mi Yo<strong>on</strong> 1049<br />

Hiroshi Yoshida 1050<br />

Marcin Zagórski 1051<br />

Marcin Zagorski 1052<br />

Thomas Zerjatke 1053<br />

Lai Zhang 1054<br />

Qingguo Zhang 1055<br />

Michał Zientek 1057<br />

Ulyana Zubairova 1058<br />

Vladimir Zubkov 1059<br />

Paweł Żuk 1060<br />

K<strong>on</strong>stantinos Zygalakis 1062<br />

K<strong>on</strong>stantinos Zygalakis 1063<br />

Index <str<strong>on</strong>g>of</str<strong>on</strong>g> au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors 1065<br />

21


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fractals and Complexity II; Wednesday, June 29, 17:00<br />

Rasha Abu Eid<br />

Dental School, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Aberdeen, Aberdeen, Scotland, United<br />

Kingdom<br />

e-mail: r.abueid@abdn.ac.uk<br />

Przemyslaw Waliszewski<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Urology, Philipps University, Marburg, Germany<br />

Faleh Sawair<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Dentistry , The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Jordan, Amman, Jordan<br />

Gabriel Landini<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Dentistry, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Birmingham, Birmingham, England,<br />

United Kingdom<br />

Takashi Saku<br />

uate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical and Dental Science, Niigata University, Niigata,<br />

Japan<br />

Fractal Geometry in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Oral Epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial<br />

Dysplasia Grading System<br />

Background: Oral epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial dysplasia is linked to <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> progressi<strong>on</strong><br />

to oral squamous cell carcinoma. The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> atypic features and <str<strong>on</strong>g>th</str<strong>on</strong>g>e height<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium to which <str<strong>on</strong>g>th</str<strong>on</strong>g>ey extend have been used in grading dysplasia into<br />

mild, moderate and severe. Precise grading is a source <str<strong>on</strong>g>of</str<strong>on</strong>g> disagreement as <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

assessment carries a degree <str<strong>on</strong>g>of</str<strong>on</strong>g> subjectivity [1,2]. There is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore a need for<br />

developing new morphological definiti<strong>on</strong>s for grading dysplasia based <strong>on</strong> research<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> premalignancy [3]. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study is developing<br />

objective aids in <str<strong>on</strong>g>th</str<strong>on</strong>g>e diagnosis and classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial dysplasia based <strong>on</strong><br />

image analysis, and using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descriptors <str<strong>on</strong>g>of</str<strong>on</strong>g> morphology, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

tissue and cellular levels.<br />

Materials and Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: Eighty images <str<strong>on</strong>g>of</str<strong>on</strong>g> haematoxylin and eosin stained dysplasia<br />

images (mild (25), moderate (27), severe (28)) were analyzed to extract <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial c<strong>on</strong>nective tissue interface (ECTI) pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles using different <str<strong>on</strong>g>th</str<strong>on</strong>g>resholding<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. Box counting, local and local c<strong>on</strong>nected fractal geometry techniques were<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>en applied to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ECTI pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. The spatial distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a set <str<strong>on</strong>g>of</str<strong>on</strong>g> dysplasia cell nuclei were also assessed in different dysplasia grades.<br />

Statistical analyses to compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e different grades <str<strong>on</strong>g>of</str<strong>on</strong>g> dysplasia were performed.<br />

Results: Preliminary results showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e global complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> ECTI pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

as described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e box fractal dimensi<strong>on</strong> (DBOX) was statistically different between<br />

mild (DBOX= 1.09) and bo<str<strong>on</strong>g>th</str<strong>on</strong>g> moderate (DBOX=1.13) and severe dysplasia<br />

(DBOX=1.14) ( p< 0.05, <strong>on</strong>e-way ANOVA), while moderate and severe dysplasia<br />

did not show any significant difference. The local c<strong>on</strong>nected fractal dimensi<strong>on</strong><br />

(LCFD) was not statistically different between mild (LCFD=1.34), moderate<br />

(LCFD=1.34) or severe dysplasia (LCFD=1.34) ( p> 0.05, <strong>on</strong>e- way ANOVA).<br />

C<strong>on</strong>clusi<strong>on</strong>: The initial results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study agree wi<str<strong>on</strong>g>th</str<strong>on</strong>g> our previous findings<br />

[4,5] and provides fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er evidence <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e traditi<strong>on</strong>al classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dysplastic<br />

changes into <str<strong>on</strong>g>th</str<strong>on</strong>g>ree grades might not represent accurately <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphological characteristic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e premalignant change This emphasizes <str<strong>on</strong>g>th</str<strong>on</strong>g>e problems <str<strong>on</strong>g>of</str<strong>on</strong>g> using me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at have elements <str<strong>on</strong>g>of</str<strong>on</strong>g> subjectivity. A quantitative classificati<strong>on</strong> system is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore a<br />

22


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

much preferred opti<strong>on</strong>s. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> quantifiable me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods such as different measures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fractal geometry might be <str<strong>on</strong>g>of</str<strong>on</strong>g> use in establishing new, reproducible systems.<br />

References.<br />

[1] Pindborg J, Reibel J, Holmstrup P. Subjectivity in evaluating oral epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial dysplasia, carcinoma<br />

in situ and initial carcinoma, J Oral Pa<str<strong>on</strong>g>th</str<strong>on</strong>g> 1985, 14: 698-708.<br />

[2] Warnakulasuriya S. Histological grading <str<strong>on</strong>g>of</str<strong>on</strong>g> oral epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial dysplasia: revisited. J Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ol 2001,<br />

194(3): 294-7.<br />

[3] Bosman FT. Dysplasia classificati<strong>on</strong>: pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology in disgrace? J Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ol 2001, 194(2): 143-4.<br />

[4] Abu Eid R, Landini G. Quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e global and local complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elialc<strong>on</strong>nective<br />

tissue interface <str<strong>on</strong>g>of</str<strong>on</strong>g> normal, dysplastic, and neoplastic oral mucosae using digital<br />

imaging. Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>o Res Prac 2003, 199(7):475-482.<br />

[5] Abu-Eid, R. and Landini, G. Oral Epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial Dysplasia: Can Quantifiable Morphological Features<br />

Help in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Grading Dilemma? In: First ImageJ User and Developer <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> Proceedings,<br />

Luxembourg, 2006.<br />

23


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: from physical tools to<br />

applicati<strong>on</strong>s in cancer modeling II; Saturday, July 2, 11:00<br />

Cristian V. Achim<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics, Aalto University School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,Finland<br />

e-mail: criaro@gmail.com<br />

Phase Field Crysyal Model for Liquid Crystals<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> static and dynamical density functi<strong>on</strong>al <str<strong>on</strong>g>th</str<strong>on</strong>g>eory, a phase-field-crystal<br />

model is derived which involves bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e translati<strong>on</strong>al density and <str<strong>on</strong>g>th</str<strong>on</strong>g>e orientati<strong>on</strong>al<br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> ordering as well as a local director field. The equilibrium free-energy functi<strong>on</strong>al<br />

involves local powers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e order parameters up to four<str<strong>on</strong>g>th</str<strong>on</strong>g> order, gradients <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e order parameters up to four<str<strong>on</strong>g>th</str<strong>on</strong>g> order, and different couplings between <str<strong>on</strong>g>th</str<strong>on</strong>g>e order<br />

parameters [1]. The stable phases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium free-energy functi<strong>on</strong>al are calculated<br />

for various coupling parameters. Phase diagrams were obtained by numerical<br />

minimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e free-energy functi<strong>on</strong>al. Am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e stable liquid-crystalline<br />

states are <str<strong>on</strong>g>th</str<strong>on</strong>g>e isotropic, nematic, columnar, smectic A, and plastic crystalline phases<br />

[2]. The plastic crystals can have triangular, square, and h<strong>on</strong>eycomb lattices and<br />

exhibit orientati<strong>on</strong>al patterns wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a complex topology involving a sublattice wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

topological defects. As far as <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics is c<strong>on</strong>cerned, <str<strong>on</strong>g>th</str<strong>on</strong>g>e translati<strong>on</strong>al density<br />

is a c<strong>on</strong>served order parameter while <str<strong>on</strong>g>th</str<strong>on</strong>g>e orientati<strong>on</strong>al ordering is n<strong>on</strong>-c<strong>on</strong>served.<br />

The derived phase-field-crystal model can serve for use in efficient numerical investigati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> various n<strong>on</strong>equilibrium situati<strong>on</strong>s in liquid crystals.<br />

References.<br />

[1] H. Löwen, A phase-field-crystal model for liquid crystals J. Phys.: C<strong>on</strong>dens. Matter 22 (2010)<br />

364105 1–6.<br />

[2] C. V. Achim, R. Wittkowski and H. Löwen, Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> liquid crystalline phases in <str<strong>on</strong>g>th</str<strong>on</strong>g>e phasefield-crystal<br />

model Submitted to Physical Review E.<br />

24


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Vector-borne diseases; Tuesday, June 28, 14:30<br />

Ben Adams<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, UK<br />

e-mail: b.adams@ba<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Durrell D. Kapan<br />

Pacific Biosciences Research Centre, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Hawaii, USA<br />

e-mail: durrell@hawaii.edu<br />

Man bites mosquito: human movement and <str<strong>on</strong>g>th</str<strong>on</strong>g>e urban<br />

epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> vector-borne disease<br />

Some vector-borne diseases, such as dengue, <str<strong>on</strong>g>th</str<strong>on</strong>g>rive in urban envir<strong>on</strong>ments. Eradicati<strong>on</strong><br />

and c<strong>on</strong>trol are significant public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> challenges. The mosquito populati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> metropolitan areas may be heterogeneously distributed in patches <str<strong>on</strong>g>of</str<strong>on</strong>g> high and low<br />

density. These mosquito populati<strong>on</strong> patches may remain stable over time, but people<br />

travel frequently and extensively, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten in highly structured patterns. Here we<br />

investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is type <str<strong>on</strong>g>of</str<strong>on</strong>g> human movement in <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> vectorborne<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens. We use a metapopulati<strong>on</strong> model in which mobile humans c<strong>on</strong>nect<br />

static mosquito subpopulati<strong>on</strong>s. We focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e size distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mosquito subpopulati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e variability in people’s travel patterns. We<br />

assess how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese factors determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each populati<strong>on</strong> subgroup<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive number, <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e endemic equilibrium and<br />

l<strong>on</strong>g-term disease persistence. We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at hubs and reservoirs <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong><br />

can be places people visit frequently, even if <strong>on</strong>ly briefly. A few patches wi<str<strong>on</strong>g>th</str<strong>on</strong>g> large<br />

mosquito populati<strong>on</strong>s can make a city vulnerable to disease outbreaks. Variability<br />

in travel people’s travel patterns can reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>is vulnerability, but may also<br />

enhance <str<strong>on</strong>g>th</str<strong>on</strong>g>e rescue effect and so increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> endemic disease. Successful<br />

public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> interventi<strong>on</strong> may require identifying areas wi<str<strong>on</strong>g>th</str<strong>on</strong>g> large mosquito<br />

populati<strong>on</strong>s and a form <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact tracing <str<strong>on</strong>g>th</str<strong>on</strong>g>at maps <str<strong>on</strong>g>th</str<strong>on</strong>g>e recent movements <str<strong>on</strong>g>of</str<strong>on</strong>g> infected<br />

people to pinpoint <str<strong>on</strong>g>th</str<strong>on</strong>g>e mosquito subpopulati<strong>on</strong> from which <str<strong>on</strong>g>th</str<strong>on</strong>g>ey acquired <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

infecti<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>ose to which <str<strong>on</strong>g>th</str<strong>on</strong>g>ey may have transmitted it.<br />

25


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ben Adams<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, UK<br />

e-mail: b.adams@ba<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Immune cross-reacti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

subharm<strong>on</strong>ic oscillati<strong>on</strong>s in seas<strong>on</strong>al SIR models<br />

SIR type epidemiological models forced by seas<strong>on</strong>al variati<strong>on</strong> in transmissi<strong>on</strong> may<br />

exhibit subharm<strong>on</strong>ic oscillati<strong>on</strong>s in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic period is an integer multiple<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e forcing period. In models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen strains <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence and<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese l<strong>on</strong>g period epidemic patterns is influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e immunological<br />

cross-reacti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e strains. Here we c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> immunological<br />

cross-protecti<strong>on</strong> and cross-enhancement in an annually forced model for an acute<br />

infectious disease. We focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each strain. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at most subharm<strong>on</strong>ic soluti<strong>on</strong>s have an in phase structure.<br />

Out <str<strong>on</strong>g>of</str<strong>on</strong>g> phase structures <strong>on</strong>ly occur when <str<strong>on</strong>g>th</str<strong>on</strong>g>e intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> cross-protecti<strong>on</strong> is wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

a narrow interval. The underlying causes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is relati<strong>on</strong>ship are bound up in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

way <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase structure amplifies or moderates <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune crossreacti<strong>on</strong>.<br />

Time series data for <str<strong>on</strong>g>th</str<strong>on</strong>g>e prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue virus and RSV show multiannual<br />

epidemics <str<strong>on</strong>g>of</str<strong>on</strong>g> different subtypes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an out <str<strong>on</strong>g>of</str<strong>on</strong>g> phase pattern. Our model<br />

analysis suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese patterns are unusual, and likely to be sensitive to any<br />

changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune cross-reacti<strong>on</strong> between subtypes resulting from interventi<strong>on</strong><br />

or evoluti<strong>on</strong>.<br />

26<br />

;


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

V; Wednesday, June 29, 11:00<br />

Evans Afenya<br />

Elmhurst College<br />

e-mail: evansa@elmhurst.edu<br />

Cancer Modeling: Frameworks, Approaches, and Insights<br />

As biomedicine becomes increasingly quantitative in scope and c<strong>on</strong>tent and various<br />

challenges are encountered in <str<strong>on</strong>g>th</str<strong>on</strong>g>e preventi<strong>on</strong>, detecti<strong>on</strong>, treatment, and management<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancers, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models corresp<strong>on</strong>dingly assume importance in<br />

syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esizing and comprehending some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics underlying <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cell aggregates and systems. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is framework, diverse approaches are<br />

adopted for obtaining some models <str<strong>on</strong>g>th</str<strong>on</strong>g>at describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e development and propagati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> malignancy in <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease state. Various techniques are employed in analyzing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e models and biomedical insights <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey engender are discussed and placed<br />

in relevant c<strong>on</strong>text. Predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>fered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e models are <str<strong>on</strong>g>th</str<strong>on</strong>g>en c<strong>on</strong>sidered and<br />

c<strong>on</strong>clusi<strong>on</strong>s are drawn.<br />

27


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modelling dengue fever epidemiology; Saturday, July 2, 08:30<br />

Maíra Aguiar<br />

Centro de Matemática e Aplicações Fundamentais da Universidade de<br />

Lisboa, Lisb<strong>on</strong>, Portugal.<br />

e-mail: maira@ptmat.fc.ul.pt<br />

Sebastien Ballesteros<br />

Centro de Matemática e Aplicações Fundamentais da Universidade de<br />

Lisboa, Lisb<strong>on</strong>, Portugal.<br />

e-mail: sebastien.ballesteros@gmail.com<br />

Bob W. Kooi<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ear<str<strong>on</strong>g>th</str<strong>on</strong>g> and Life Sciences, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology,Vrije<br />

Universiteit, Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands.<br />

e-mail: kooi@falw.vu.nl<br />

Nico Stollenwerk<br />

Centro de Matemática e Aplicações Fundamentais da Universidade de<br />

Lisboa, Lisb<strong>on</strong>, Portugal.<br />

e-mail: nico@ptmat.fc.ul.pt<br />

Modelling dengue fever epidemiology: complex dynamics<br />

and its implicati<strong>on</strong> for data analysis.<br />

It is estimated <str<strong>on</strong>g>th</str<strong>on</strong>g>at every year, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are 70 − 500 milli<strong>on</strong> dengue infecti<strong>on</strong>s,<br />

36 milli<strong>on</strong> cases <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue fever (DF) and 2.1 milli<strong>on</strong> cases <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue hemorragic<br />

fever (DHF), wi<str<strong>on</strong>g>th</str<strong>on</strong>g> more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 20.000 dea<str<strong>on</strong>g>th</str<strong>on</strong>g>s per year [1, 2]. In many countries<br />

in Asia and Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> America DF and DHF has become a substantial public heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

c<strong>on</strong>cern leading to serious social-ec<strong>on</strong>omic costs. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models describing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue viruses has focussed <strong>on</strong> ADE effect and temporary cross<br />

immunity trying to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e irregular behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue epidemics by analyzing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e available data. However, no systematic investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible dynamical<br />

structures has been performed so far. Our study focuses <strong>on</strong> a seas<strong>on</strong>ally forced<br />

(n<strong>on</strong>-aut<strong>on</strong>omous) two-strain model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> temporary cross immunity and possible<br />

sec<strong>on</strong>dary infecti<strong>on</strong>, motivated by dengue fever epidemiology. We extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e previous<br />

studied n<strong>on</strong>-seas<strong>on</strong>al (aut<strong>on</strong>omous) model[3, 4, 5]. by adding seas<strong>on</strong>al forcing<br />

and low import rate <str<strong>on</strong>g>of</str<strong>on</strong>g> infected individuals, which is realistic in <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dengue fever epidemics. A comparative study between <str<strong>on</strong>g>th</str<strong>on</strong>g>ree different scenarios<br />

(n<strong>on</strong>-seas<strong>on</strong>al, low seas<strong>on</strong>al and high seas<strong>on</strong>al wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a low import <str<strong>on</strong>g>of</str<strong>on</strong>g> infected individuals)<br />

is processed and <str<strong>on</strong>g>th</str<strong>on</strong>g>e results are shown and discussed. The extended models<br />

show complex dynamics and qualitatively a very good result when comparing empirical<br />

DHF and simulati<strong>on</strong>. We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e seas<strong>on</strong>al force and import <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infected individuals in such systems, <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological relevance and <str<strong>on</strong>g>th</str<strong>on</strong>g>e implicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e new results in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e available dengue data [6].<br />

References.<br />

[1] Pediatric Dengue Vaccine Initiative. Global Burden <str<strong>on</strong>g>of</str<strong>on</strong>g> Dengue.<br />

(http://www.pdvi.org/about_dengue/GBD.asp).<br />

[2] Word Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Organizati<strong>on</strong>. (2009). Dengue and Dengue Hemorrhagic Fever. (World Heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Org., Geneva, Fact Sheet 117).<br />

[3] M. Aguiar, N. Stollenwerk, A new chaotic attractor in a basic multi-strain epidemiological<br />

model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> temporary cross-immunity. (2007) arXiv:0704.3174v1 [nlin.CD].<br />

28


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[4] M. Aguiar, B. W. Kooi and N. Stollenwerk, Epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> Dengue Fever: A Model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Temporary Cross-Immunity and Possible Sec<strong>on</strong>dary Infecti<strong>on</strong> Shows Bifurcati<strong>on</strong>s and Chaotic<br />

Behaviour in Wide Parameter Regi<strong>on</strong>s. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Model. Nat. Phenom. 4 (2008) 48–70.<br />

[5] M. Aguiar, N. Stollenwerk and B. W. Kooi, Torus bifurcati<strong>on</strong>s, isolas and chaotic attractors<br />

in a simple dengue model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ADE and temporary cross immunity. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Computer Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics 86 (2009) 1867–77.<br />

[6] M. Aguiar, S. Ballesteros, B. Cazelles, B. W. Kooi, and N. Stollenwerk, Seas<strong>on</strong>al two strain<br />

dengue model: complex dynamics and its implicati<strong>on</strong>s for data analysis. Manuscript in preparati<strong>on</strong>.<br />

29


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fractals and Complexity II; Wednesday, June 29, 17:00<br />

Helmut Ahammer<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biophysics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Graz, Austria<br />

e-mail: helmut.ahammer@medunigraz.at<br />

Roland Sedivy<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, Country Medical Centre St.Pölten, Austria<br />

Fractal Dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Anal Intraepi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial Neoplasia (AIN)<br />

AIN is a precancerous c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at is interrelated to infecti<strong>on</strong>s by human papillomaviruses<br />

(HPV) and HIV. The histological classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> AIN is getting more<br />

and more important, due to increasing HPV infecti<strong>on</strong> rates <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout human<br />

populati<strong>on</strong>. Distinct grades <str<strong>on</strong>g>of</str<strong>on</strong>g> neoplasia are known, whereas high grades indicate a<br />

high risk for a tumor progressi<strong>on</strong>. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, <str<strong>on</strong>g>th</str<strong>on</strong>g>e grading diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> histological<br />

slides is not always clear because <str<strong>on</strong>g>of</str<strong>on</strong>g> varying subjective c<strong>on</strong>diti<strong>on</strong>s. In additi<strong>on</strong> to<br />

subjective diagnoses, quantitative classificati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods would be attractive but sophisticated<br />

soluti<strong>on</strong>s have not quantitatively been developed so far. Therefore, <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

study intends to evaluate digital images <str<strong>on</strong>g>of</str<strong>on</strong>g> AIN tissues by incorporating n<strong>on</strong>linear<br />

morphological analysis. AIN tissues were H&E stained and digitally photographed<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a standard microscope. Three distinct grades were diagnosed by a well trained<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologist in order to get a reference. The fractal dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e images grey<br />

value landscapes using Fourier transformati<strong>on</strong> were calculated and compared to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e subjective diagnoses. Distinct grades <str<strong>on</strong>g>of</str<strong>on</strong>g> AIN led to distinct and well separated<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fractal dimensi<strong>on</strong>. Higher grades <str<strong>on</strong>g>of</str<strong>on</strong>g> AIN yielded higher values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fractal dimensi<strong>on</strong>. The c<strong>on</strong>clusi<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>at fractal geometry is well suited for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> AIN. The fractal dimensi<strong>on</strong> reflects <str<strong>on</strong>g>th</str<strong>on</strong>g>e roughness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e images grey<br />

value distributi<strong>on</strong> and is in accordance wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grading. Therefore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e fractal<br />

dimensi<strong>on</strong> is a quantitative value <str<strong>on</strong>g>th</str<strong>on</strong>g>at may routinely support subjective diagnoses.<br />

Keywords: intraepi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial neoplasia, image processing, fractal dimensi<strong>on</strong>, Fourier<br />

transformati<strong>on</strong><br />

30


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Informati<strong>on</strong>, human behaviour and disease; Saturday, July 2, 11:00<br />

Marco Ajelli<br />

Bruno Kessler Foundati<strong>on</strong><br />

e-mail: ajelli@fbk.eu<br />

Piero Poletti<br />

Bruno Kessler Foundati<strong>on</strong><br />

Stefano Merler<br />

Bruno Kessler Foundati<strong>on</strong><br />

Risk percepti<strong>on</strong> and 2009 H1N1 pandemic influenza spread<br />

in Italy<br />

In Italy, <str<strong>on</strong>g>th</str<strong>on</strong>g>e 2009 H1N1 pandemic influenza spread in a peculiar way: after an initial<br />

period characterized by a slow exp<strong>on</strong>ential increase in <str<strong>on</strong>g>th</str<strong>on</strong>g>e weekly H1N1 incidence,<br />

a sudden and sharp increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate was observed. Were behavioral<br />

changes sp<strong>on</strong>taneously performed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> resp<strong>on</strong>sible for such a notable<br />

pattern? In order to answer <str<strong>on</strong>g>th</str<strong>on</strong>g>is questi<strong>on</strong>, a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza<br />

transmissi<strong>on</strong> is proposed and validated. The performed investigati<strong>on</strong>, based <strong>on</strong><br />

model fit to epidemiological data and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> antiviral drugs purchase,<br />

reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at an initial overestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> during <str<strong>on</strong>g>th</str<strong>on</strong>g>e early stage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic, possibly induced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e high c<strong>on</strong>cern for <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> a new<br />

influenza pandemic, results in a pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> spread compliant wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed <strong>on</strong>e.<br />

This study suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at individual choices may have driven <str<strong>on</strong>g>th</str<strong>on</strong>g>e H1N1 dynamics in<br />

Italy during its initial phases and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can drastically affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> future<br />

epidemics, by altering timing, dynamics and overall number <str<strong>on</strong>g>of</str<strong>on</strong>g> cases. In c<strong>on</strong>clusi<strong>on</strong>,<br />

to correctly inform public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> decisi<strong>on</strong>s, sp<strong>on</strong>taneous behavioral changes cannot<br />

be neglected in epidemic modeling.<br />

31


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 14:30<br />

Ilya Akberdin∗,1 Fedor Kazantsev1 Maxim Ri1 Natalya Ri1 Vladimir Tim<strong>on</strong>ov1,2,3 Tamara M. Khlebodarova1 Vitaly A. Likhoshvai1,2 1Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Systems Biology, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cytology and Genetics,<br />

Siberian Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Lavrentyev Ave.,<br />

10, Novosibirsk, 630090, Russia<br />

2Novosibirsk State University, Novosibirsk, Pirogova str. 2, 630090,<br />

Russia<br />

3Siberian State University <str<strong>on</strong>g>of</str<strong>on</strong>g> Telecommunicati<strong>on</strong>s and Informati<strong>on</strong><br />

Sciences, Novosibirsk, Kirova str. 86, 630102, Russia<br />

e-mail: ∗akberdin@bi<strong>on</strong>et.nsc.ru Automatic generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

molecular-genetic systems<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular-genetic systems are based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong><br />

about <str<strong>on</strong>g>th</str<strong>on</strong>g>e structural and functi<strong>on</strong>al organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene networks and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir dynamic<br />

properties <str<strong>on</strong>g>th</str<strong>on</strong>g>at disseminated over hundreds and <str<strong>on</strong>g>th</str<strong>on</strong>g>ousands <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific papers. The<br />

problem arises <str<strong>on</strong>g>of</str<strong>on</strong>g> data comparis<strong>on</strong> and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-uniformed experimental<br />

data, analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> cause-and-effect relati<strong>on</strong>s between molecular structure, dynamics<br />

and phenotypic features <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular-genetic system, and s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware development for<br />

automatic generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models, storage <str<strong>on</strong>g>of</str<strong>on</strong>g> creating models in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

database and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir numerical analysis. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> solving some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e above<br />

menti<strong>on</strong>ed problems we have developed an integrated computer system and models<br />

database <str<strong>on</strong>g>th</str<strong>on</strong>g>at do not <strong>on</strong>ly render automatically <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models<br />

rec<strong>on</strong>structi<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structural and functi<strong>on</strong>al organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene networks<br />

but also implements original approaches and algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms to modeling and studying<br />

molecular-genetic systems. The examples <str<strong>on</strong>g>of</str<strong>on</strong>g> using <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system are dem<strong>on</strong>strated<br />

<strong>on</strong> a modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> some gene regulatory networks.<br />

32


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Genetics; Friday, July 1, 14:30<br />

Ada Akerman<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna, Austria<br />

e-mail: ada.akerman@univie.ac.at<br />

Reinhard Bürger<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna, Austria<br />

Local adaptati<strong>on</strong> under diversifying selecti<strong>on</strong>: A two-locus<br />

migrati<strong>on</strong>- selecti<strong>on</strong> model<br />

A populati<strong>on</strong>-genetic model <str<strong>on</strong>g>of</str<strong>on</strong>g> local adapti<strong>on</strong> in discrete space and time is studied.<br />

We model a populati<strong>on</strong> inhabiting two discrete demes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> gene flow between <str<strong>on</strong>g>th</str<strong>on</strong>g>em.<br />

Genetic drift is ignored as we assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> size is large. We c<strong>on</strong>sider<br />

two linked loci under selecti<strong>on</strong> and assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment favors alternative<br />

alleles in <str<strong>on</strong>g>th</str<strong>on</strong>g>e two demes. An important interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a quantitative trait <str<strong>on</strong>g>th</str<strong>on</strong>g>at is under directi<strong>on</strong>al selecti<strong>on</strong> acting in opposite directi<strong>on</strong><br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e two demes. The trait is assumed to be determined additively, i.e., wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out<br />

epistasis, by two loci <str<strong>on</strong>g>th</str<strong>on</strong>g>at may exhibit dominance. Thus, essentially, disruptive<br />

selecti<strong>on</strong> acts <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trait. This scenario allows us to answer interesting questi<strong>on</strong>s<br />

<strong>on</strong> local adaptati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic variati<strong>on</strong>. We derive explicit<br />

results for <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence and amount <str<strong>on</strong>g>of</str<strong>on</strong>g> polymorphism in several limiting cases such<br />

as weak migrati<strong>on</strong>, weak selecti<strong>on</strong>, tight linkage, and free recombinati<strong>on</strong>. In particular,<br />

we present informative approximati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> well-known measures <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage<br />

disequilibrium and investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage and dominance <strong>on</strong> local<br />

adapti<strong>on</strong> and genetic variati<strong>on</strong>.<br />

References.<br />

[1] Akerman, A., and R. Bürger. Local adaptati<strong>on</strong> under diversifying selecti<strong>on</strong>: A two-locus<br />

migrati<strong>on</strong>- selecti<strong>on</strong> model. Manuscript (2011)<br />

33


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Masakazu Akiyama<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Kyushu University<br />

e-mail: masakazu.akiyam@gmail.com<br />

Atsushi Tero<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Kyushu University<br />

e-mail: tero.atsushi@gmail.com<br />

Ryo Kobayashi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Life Sciences, Hiroshima University<br />

e-mail: ryo@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.sci.hiroshima-u.ac.jp<br />

A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Cleavage<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e present paper, we propose a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> cleavage. Cleavage is<br />

a process during <str<strong>on</strong>g>th</str<strong>on</strong>g>e early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> development in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e fertile egg undergoes<br />

repeated divisi<strong>on</strong> keeping <str<strong>on</strong>g>th</str<strong>on</strong>g>e cluster size almost c<strong>on</strong>stant. During <str<strong>on</strong>g>th</str<strong>on</strong>g>e cleavage<br />

process individual cells repeat cell divisi<strong>on</strong> in an orderly manner to form a blastula,<br />

however, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism which achieves such a coordinati<strong>on</strong> is still not very clear.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e present research, we took sea urchin as an example and focused <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical substances from <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal and vegetal pole. By c<strong>on</strong>sidering<br />

chemotactic moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e centrosomes, we c<strong>on</strong>structed a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> cleavage.<br />

For example, in a sea urchin, <str<strong>on</strong>g>th</str<strong>on</strong>g>e 1st cleavage and <str<strong>on</strong>g>th</str<strong>on</strong>g>e 2nd cleavage happen<br />

al<strong>on</strong>g a field including an animal pole and a vegetal pole (meridi<strong>on</strong>al cleavage). This<br />

detects <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain chemical substance from <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal<br />

pole to a vegetal pole, and is c<strong>on</strong>sidered to use for <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cleavage<br />

plane. The 3rd following cleavage is a field which intersects perpendicularly wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e 1st and <str<strong>on</strong>g>th</str<strong>on</strong>g>e 2nd cleavage plane. However, if it inserts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> glass and pressure is<br />

put and changed from two poles, it is known <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e 3rd cleavage will turn into a<br />

meridi<strong>on</strong>al cleavage. It has suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cleavage plane is<br />

not necessarily decided <strong>on</strong>ly by distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a chemical substance, and receives<br />

influence in a dynamic factor, a geometric factor, etc. from <str<strong>on</strong>g>th</str<strong>on</strong>g>is. Cell divisi<strong>on</strong><br />

may <str<strong>on</strong>g>th</str<strong>on</strong>g>ink <str<strong>on</strong>g>th</str<strong>on</strong>g>at it is prescribed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e aster. Normal divisi<strong>on</strong> takes place, when<br />

<strong>on</strong>e pair <str<strong>on</strong>g>of</str<strong>on</strong>g> asters exist in <strong>on</strong>e cell, and cleavage does not happen wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out an aster.<br />

When four asters exist in a cell, being divided in four is reported. The centrosome<br />

located at <str<strong>on</strong>g>th</str<strong>on</strong>g>e center <str<strong>on</strong>g>of</str<strong>on</strong>g> an aster determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an aster. In order to<br />

form <strong>on</strong>e pair <str<strong>on</strong>g>of</str<strong>on</strong>g> asters, it is required to divide a centrosome in two and to arrange<br />

it in advance <str<strong>on</strong>g>of</str<strong>on</strong>g> it, in a suitable positi<strong>on</strong>. As menti<strong>on</strong>ed above, it turns out <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e decisive role is played when <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e centrosome which has opted for<br />

arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aster determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> cell divisi<strong>on</strong>. Well <str<strong>on</strong>g>th</str<strong>on</strong>g>en, how<br />

does <str<strong>on</strong>g>th</str<strong>on</strong>g>is centrosphere move? The microtubule has c<strong>on</strong>nected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e centrosome<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e aster is c<strong>on</strong>stituted. By work <str<strong>on</strong>g>of</str<strong>on</strong>g> a duplicati<strong>on</strong> regi<strong>on</strong> microtubule, an aster<br />

is repelled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er aster. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e spindle could maintain a fixed<br />

distance wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a cell, in order for an aster microtubule to receive restituti<strong>on</strong> also<br />

34


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

from a film. However, <strong>on</strong>ly in such assumpti<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e directivity <str<strong>on</strong>g>of</str<strong>on</strong>g> divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

egg does not become settled. Then, we assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e factor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong><br />

which exists in an animal pole and a vegetal pole exerted taxis <strong>on</strong> a centrosphere.<br />

We did <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e directivity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spindle<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e form and <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> field <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e egg. As a result, it found out <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>vexity <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>centrati<strong>on</strong> gradient can determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e directivity <str<strong>on</strong>g>of</str<strong>on</strong>g> cell divisi<strong>on</strong>.<br />

We introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e details about <str<strong>on</strong>g>th</str<strong>on</strong>g>is research.<br />

References.<br />

[1] Scott, F.G., Developmental Biology, 2nd ed. Sinauer Associates, Inc. pp. 84-86.<br />

[2] M. Akiyama, A. Tero and R. Kobayashi, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> cleavage J. Theor Biol.<br />

2010 May 7;264(1):84-94.<br />

35


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis II; Wednesday, June<br />

29, 11:00<br />

Tomas Alarc<strong>on</strong><br />

Computati<strong>on</strong>al & Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology Group Centre de Recerca<br />

Matematica (CRM) Barcel<strong>on</strong>a, Spain<br />

e-mail: emailtalarc<strong>on</strong>@crm.cat<br />

A flow-coupled phase-field model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour-induced<br />

angiogenesis<br />

We present a first attempt to formulate a biophysically motivated model <str<strong>on</strong>g>of</str<strong>on</strong>g> structural<br />

vascular adaptati<strong>on</strong> and angiogenesis. In several models <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis so<br />

far, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular structural adaptati<strong>on</strong> being used is <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e proposed by<br />

Pries, Secomb and co-workers. This model was proposed for modelling blood flow<br />

in rat mesentery and, <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore, is unlikely to be an accurate model for tumour<br />

vasculature. We discuss a model <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular adaptati<strong>on</strong> based <strong>on</strong> a biophysical<br />

(including elasticity, surface tensi<strong>on</strong>, etc) descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> capillaries<br />

to increased demands <str<strong>on</strong>g>of</str<strong>on</strong>g> blood flow.<br />

36


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 14:30<br />

Maym<strong>on</strong>a Al-husari<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stra<str<strong>on</strong>g>th</str<strong>on</strong>g>clyde, UK, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics<br />

e-mail: maym<strong>on</strong>a.al-husari@stra<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Dr Steven Webb<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stra<str<strong>on</strong>g>th</str<strong>on</strong>g>clyde, UK, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics<br />

Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumour Intracellular pH: A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Model Examining <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between hydrogen i<strong>on</strong>s and<br />

lactate<br />

N<strong>on</strong>-invasive measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> pH have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> tumour and normal cells<br />

have intracellular pH (pHi) <str<strong>on</strong>g>th</str<strong>on</strong>g>at lies <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e alkaline side <str<strong>on</strong>g>of</str<strong>on</strong>g> neutrality (7.1-7.2).<br />

However, extracellular pH (pHe) is reported to be more acidic in some tumours<br />

compared to normal tissues. Many cellular processes and <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic agents are<br />

known to be highly pH dependent which makes <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular pH regulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> paramount importance. We <str<strong>on</strong>g>th</str<strong>on</strong>g>us develop a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

examines <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> various membrane-based i<strong>on</strong> transporters in tumour pH regulati<strong>on</strong>,<br />

in particular, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between lactate and H+ i<strong>on</strong>s and<br />

whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e lactate/H+ symporter activity is sufficient to give rise to <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed<br />

reversed pH gradient. Using linear stability analysis and numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, we are<br />

able to gain a clear understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between lactate and H+ i<strong>on</strong>s.<br />

We extend <str<strong>on</strong>g>th</str<strong>on</strong>g>is analysis using perturbati<strong>on</strong> techniques to specifically examine a<br />

rapid change in <str<strong>on</strong>g>th</str<strong>on</strong>g>e H+ i<strong>on</strong>s c<strong>on</strong>centrati<strong>on</strong>s relative to lactate. We finally perform<br />

a parameter sensitivity analysis to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> robustness to parameter<br />

variati<strong>on</strong>s. An important result from our study is <str<strong>on</strong>g>th</str<strong>on</strong>g>at a reversed pH gradient is<br />

possible but for unrealistic parameter estimates-pointing to <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible involvement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er mechanisms in <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong> such as acidic vesicles, lysosomes,<br />

golgi and endosomes.<br />

37


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecology and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases; Friday, July 1, 14:30<br />

Samuel Aliz<strong>on</strong><br />

Laboratoire MIVEGEC (UMR CNRS 5290, IRD 224, UM1, UM2), M<strong>on</strong>tpellier,<br />

France<br />

e-mail: samuel.aliz<strong>on</strong>@ird.fr<br />

Sébastien Li<strong>on</strong><br />

Centre d’Écologie F<strong>on</strong>cti<strong>on</strong>nelle et Évolutive, UMR 5175, M<strong>on</strong>tpellier,<br />

France<br />

e-mail: li<strong>on</strong>@cefe.cnrs.fr<br />

Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-host parasite cooperati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

virulence<br />

Infecti<strong>on</strong>s by multiple genotypes are comm<strong>on</strong> in nature and are known to select<br />

for higher levels <str<strong>on</strong>g>of</str<strong>on</strong>g> virulence in some pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens. It has been argued <str<strong>on</strong>g>th</str<strong>on</strong>g>at for<br />

parasites whose virulence is determined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> public goods, such<br />

co-infecti<strong>on</strong>s can select for lower levels <str<strong>on</strong>g>of</str<strong>on</strong>g> virulence. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>is predicti<strong>on</strong> is<br />

rooted in a perspective <str<strong>on</strong>g>th</str<strong>on</strong>g>at neglects epidemiological feedbacks. Here, we analyse<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> parasites producing a public good, for example siderophore-producing<br />

bacteria, using a nested model <str<strong>on</strong>g>th</str<strong>on</strong>g>at ties toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-host and epidemiological<br />

processes. Making <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiology explicit wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an SI model reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

current predicti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at co-infecti<strong>on</strong> should select for less virulent strains for publicgoods<br />

producing parasites is <strong>on</strong>ly valid if bo<str<strong>on</strong>g>th</str<strong>on</strong>g> parasite transmissi<strong>on</strong> and virulence<br />

are a linear functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parasite density. If <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f relati<strong>on</strong>ship such <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

virulence increases more rapidly <str<strong>on</strong>g>th</str<strong>on</strong>g>an transmissi<strong>on</strong>, or if virulence also depends <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> public goods produced, <str<strong>on</strong>g>th</str<strong>on</strong>g>en co-infecti<strong>on</strong>s should select for<br />

more virulent strains. This suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical or empirical studies <str<strong>on</strong>g>th</str<strong>on</strong>g>at seek<br />

to determine optimal virulence wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a single host may not be representative <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e selecti<strong>on</strong> pressures faced by parasites at <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> level. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e same time,<br />

it underlines <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> including epidemiological processes when studying<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases.<br />

38


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanical Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Movement and Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cells and Tissues II;<br />

Wednesday, June 29, 17:00<br />

Wolfgang Alt<br />

Theoretical Biology, University B<strong>on</strong>n, Germany<br />

e-mail: wolf-alt@uni-b<strong>on</strong>n.de<br />

Martin Bock<br />

Theoretical Biology, University B<strong>on</strong>n, Germany<br />

e-mail: mab@uni-b<strong>on</strong>n.de<br />

Mechanical feedback drives cell polarizati<strong>on</strong>, adhesi<strong>on</strong> and<br />

migrati<strong>on</strong><br />

Besides frequently studied regulatory pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways for spatial assembly <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular<br />

motor molecules and cell-cell/matrix adhesi<strong>on</strong> proteins, cf. [1], mainly resp<strong>on</strong>sible<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> and tissue formati<strong>on</strong> are primary<br />

biophysical "actors" such as mass flow, tracti<strong>on</strong> force, tensi<strong>on</strong> and pressure. Their<br />

dynamics determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes <str<strong>on</strong>g>of</str<strong>on</strong>g> cell deformati<strong>on</strong> and translocati<strong>on</strong> as well as<br />

cell-cell cohesi<strong>on</strong>.<br />

As basis for a most simple mechanical model <str<strong>on</strong>g>of</str<strong>on</strong>g> single cell motility we use<br />

a two-phase "reactive, viscous and c<strong>on</strong>tractive fluid" c<strong>on</strong>tinuum model, written<br />

as a hyperbolic-elliptic PDE system <str<strong>on</strong>g>of</str<strong>on</strong>g> Navier-Stokes type. This model is able<br />

to reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed chaotic dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> actin/myosin cluster formati<strong>on</strong> [2].<br />

Then we combine it wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a suitable system <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong>-transport-reacti<strong>on</strong> equati<strong>on</strong>s<br />

for free and bound myosin dimers and integrin adhesi<strong>on</strong> sites [3].<br />

Numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> two- and <strong>on</strong>e-dimensi<strong>on</strong>al model variants reveal sp<strong>on</strong>taneous<br />

and induced fr<strong>on</strong>t-rear polarizati<strong>on</strong> and, subsequently, directi<strong>on</strong>al persistence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong>. Thereby we dem<strong>on</strong>strate, how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese experimentally observed<br />

phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> cell motility can be traced back to an interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

biophysical and biochemical mechanisms such as cell edge protrusi<strong>on</strong>, adhesi<strong>on</strong> site<br />

maturati<strong>on</strong> and force-induced integrin-b<strong>on</strong>d disrupture.<br />

References.<br />

[1] S.M. Rafelski and J.A. Theriot (2004) Crawling toward a unified model <str<strong>on</strong>g>of</str<strong>on</strong>g> cell motility:<br />

spatial and temporal regulat<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> actin dynamics. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry 73 209–239.<br />

[2] E. Kuusela and W.Alt (2009) C<strong>on</strong>tinuum model <str<strong>on</strong>g>of</str<strong>on</strong>g> cell adhesi<strong>on</strong> and migrati<strong>on</strong> J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol.<br />

58 135-161.<br />

[3] W. Alt, M. Bock and Ch. Möhl (2010) Coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> cytoplasm and adhesi<strong>on</strong> dynamics<br />

determines cell polarizati<strong>on</strong> and locomoti<strong>on</strong>. In: A. Chauviere, L. Preziosi, C. Verdier (eds.)<br />

Cell Mechanics: From Single Cell-Based Models to Multiscale Modeling. Taylor & Francis.<br />

Chapt. 4, pp. 89-131 (www.ArXiv.org 0907.5078).<br />

39


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Heart rate dynamics: models and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity (part II);<br />

Wednesday, June 29, 17:00<br />

Krystyna Ambroch<br />

Gdansk University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: ambroch@mif.pg.gda.pl<br />

Time series models for heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y people and patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

LVSD<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk is to discuss time series models which are found as characteristic<br />

for two groups interesting for cardiology. ARIMA models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> GARCH for<br />

residuals <str<strong>on</strong>g>of</str<strong>on</strong>g> ARIMA or squared residuals <str<strong>on</strong>g>of</str<strong>on</strong>g> ARIMA were fitted to RR intervals <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

24h ECG Holter m<strong>on</strong>itoring in group <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 normal subjects wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out past history<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular diseases (average age <str<strong>on</strong>g>of</str<strong>on</strong>g> 53 10yrs). Specific subclass od ARIMA<br />

models were fitted to RR intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> 24h ECG Holter m<strong>on</strong>itoring in group <str<strong>on</strong>g>of</str<strong>on</strong>g> 48<br />

patients (average age <str<strong>on</strong>g>of</str<strong>on</strong>g> 57 10yrs) wi<str<strong>on</strong>g>th</str<strong>on</strong>g> LVSD.<br />

40


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Heart rate dynamics: models and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity (part I);<br />

Wednesday, June 29, 14:30<br />

Jose Amigó<br />

Universidad Miguel Hernandez (Spain)<br />

e-mail: jm.amigo@umh.es<br />

An overview <str<strong>on</strong>g>of</str<strong>on</strong>g> permutati<strong>on</strong> entropy<br />

Permutati<strong>on</strong> entropy was introduced in 2002 by Bandt and Pompe as a complexity<br />

measure for time series. Roughly speaking, permutati<strong>on</strong> entropy replaces <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> leng<str<strong>on</strong>g>th</str<strong>on</strong>g>-L symbol blocks in <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Shann<strong>on</strong>s entropy by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> leng<str<strong>on</strong>g>th</str<strong>on</strong>g>-L ordinal patterns, each pattern being a digest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ups and<br />

downs <str<strong>on</strong>g>of</str<strong>on</strong>g> L c<strong>on</strong>secutive elements <str<strong>on</strong>g>of</str<strong>on</strong>g> a time series. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>en permutati<strong>on</strong> entropy<br />

itself, al<strong>on</strong>g wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different tools based <strong>on</strong> ordinal patterns, have found a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interesting applicati<strong>on</strong>s. To menti<strong>on</strong> a few: Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metric and topological<br />

entropy, complexity analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> time series, detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> determinism in noisy<br />

time series, recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol parameters in symbolic sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> unimodal maps,<br />

and characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong>. In all <str<strong>on</strong>g>th</str<strong>on</strong>g>ese applicati<strong>on</strong>s, computati<strong>on</strong>al<br />

efficiency and robustness against observati<strong>on</strong>al noise are a crucial advantage.<br />

The first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk will be a review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basics <str<strong>on</strong>g>of</str<strong>on</strong>g> permutati<strong>on</strong> entropy.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d part, <str<strong>on</strong>g>th</str<strong>on</strong>g>e focus will be <strong>on</strong> applicati<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> biomedical<br />

series. In particular, we expect to report <strong>on</strong> work in progress in <str<strong>on</strong>g>th</str<strong>on</strong>g>is field.<br />

References.<br />

[1] José M. Amigó, Permutati<strong>on</strong> Complexity in Dynamical Systems. Springer Verlag, 2010 (ISBN:<br />

978-3-642-04083-2)<br />

41


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 11:00<br />

Tea Ammunét<br />

Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku,<br />

FI-20014 Turku, Finland<br />

e-mail: tea.ammunet@utu.fi<br />

Tero Klemola<br />

Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku,<br />

FI-20014 Turku, Finland<br />

Kalle Parvinen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, FI-20014 Turku,<br />

Finland<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change driven invasi<strong>on</strong>:<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> apparent competiti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident and invasive<br />

forest herbivore populati<strong>on</strong> dynamics.<br />

Invasive species can have pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident community via indirect<br />

interacti<strong>on</strong>s. Particularly, forest insect herbivores are known to be able to affect<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e invaded ecosystems by trophic interacti<strong>on</strong>s. Of <str<strong>on</strong>g>th</str<strong>on</strong>g>e indirect mechanisms, apparent<br />

competiti<strong>on</strong> is a highly plausible but less frequently studied structuring<br />

phenomen<strong>on</strong> in terrestrial herbivore communities. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, surprisingly few<br />

studies have been made <str<strong>on</strong>g>of</str<strong>on</strong>g> apparent competiti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive insect<br />

species. The tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g periodic cycles in herbivore populati<strong>on</strong> dynamics can<br />

make <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e indirect effects difficult using experimental setups.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, dynamic m<strong>on</strong>ophagy in established communities may prevent <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> apparent competiti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e community. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<strong>on</strong>going invasi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native species into new envir<strong>on</strong>ments create a stage to observe<br />

apparent competiti<strong>on</strong> before adaptati<strong>on</strong> obscures <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s. Modelling<br />

invasi<strong>on</strong>s based <strong>on</strong> real invader-resident communities can <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore be <str<strong>on</strong>g>of</str<strong>on</strong>g> particular<br />

help when determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e undetectable and l<strong>on</strong>g term effects <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive species.<br />

The winter mo<str<strong>on</strong>g>th</str<strong>on</strong>g>, a cyclic foliage feeding geometrid mo<str<strong>on</strong>g>th</str<strong>on</strong>g>, has expanded its<br />

outbreak range during recent years due to warming winter temperatures. The<br />

mountain birches in <str<strong>on</strong>g>th</str<strong>on</strong>g>e new invaded areas (<str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant green leafed tree in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

areas) have previously been defoliated <strong>on</strong> a 9 to 10 year basis by <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident<br />

autumnal mo<str<strong>on</strong>g>th</str<strong>on</strong>g>. The autumnal mo<str<strong>on</strong>g>th</str<strong>on</strong>g> itself is able to cause drastic foliage loss in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mountain birch forests occasi<strong>on</strong>ally resulting in vast tree dea<str<strong>on</strong>g>th</str<strong>on</strong>g>s. The new invader,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e winter mo<str<strong>on</strong>g>th</str<strong>on</strong>g>, has already been observed to be capable <str<strong>on</strong>g>of</str<strong>on</strong>g> total forest defoliati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> similar magnitude. The two species share, in additi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e host tree, generalist<br />

predators and parasitoids in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese Fennoscandian areas. Asymmetric preference<br />

at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> parasitism and predati<strong>on</strong> rates has been recently observed. In order to<br />

fully see <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> asymmetric effects <str<strong>on</strong>g>of</str<strong>on</strong>g> natural enemies <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e 9 to<br />

11-year populati<strong>on</strong> cycles, a modelling approach was called for. We were especially<br />

interested in, are <str<strong>on</strong>g>th</str<strong>on</strong>g>ese asymmetries able to cause asynchr<strong>on</strong>ous populati<strong>on</strong> cycles<br />

as seen in <str<strong>on</strong>g>th</str<strong>on</strong>g>e area <str<strong>on</strong>g>of</str<strong>on</strong>g> sympatric occurrence. In additi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g term effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

invasi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident community are <str<strong>on</strong>g>of</str<strong>on</strong>g> particular interest, since recent evidence<br />

shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at winter mo<str<strong>on</strong>g>th</str<strong>on</strong>g>s are interacting in several ways wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e local community<br />

and fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er range expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is forest pest does not seem to be restricted by<br />

nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er abiotic nor biotic interacti<strong>on</strong>s.<br />

42


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

We used empirical data from <str<strong>on</strong>g>th</str<strong>on</strong>g>e recent invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cyclic winter mo<str<strong>on</strong>g>th</str<strong>on</strong>g>s in<br />

nor<str<strong>on</strong>g>th</str<strong>on</strong>g>ern Fennoscandia as a starting point and modelled <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> observed<br />

short term asymmetric effects via generalist predators and parasitoids <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g<br />

term populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasive winter and resident autumnal mo<str<strong>on</strong>g>th</str<strong>on</strong>g>s.<br />

Adaptive dynamics <str<strong>on</strong>g>th</str<strong>on</strong>g>eory was used and invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e winter mo<str<strong>on</strong>g>th</str<strong>on</strong>g> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident<br />

community was modelled. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results, apparent competiti<strong>on</strong> and<br />

asymmetries in <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> generalist predators are able to produce <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed<br />

asynchr<strong>on</strong>ous cycles. However, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary branching resulting in evoluti<strong>on</strong>ary<br />

stable coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two species, <str<strong>on</strong>g>th</str<strong>on</strong>g>e system experiences cycles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evoluti<strong>on</strong>ary branching and extincti<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modelled<br />

dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasive species was observed have <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential to inflict drastic<br />

changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mountain birch community.<br />

43


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 17:00<br />

Anan<str<strong>on</strong>g>th</str<strong>on</strong>g>i Anandanadesan<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: anan<str<strong>on</strong>g>th</str<strong>on</strong>g>i@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Alis<strong>on</strong> Karley<br />

Scottish Crop Research Institute<br />

e-mail: Alis<strong>on</strong>.Karley@scri.ac.uk<br />

Steven Hubbard<br />

Scottish Crop Research Institute<br />

e-mail: s.f.hubbard@dundee.ac.uk<br />

Pietá Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Life Sciences, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: p.sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield@dundee.ac.uk<br />

Mark Chaplain<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: chaplain@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

aphid-paraistoid-plant-virus interacti<strong>on</strong>s<br />

Aphids cause c<strong>on</strong>siderable damage to agricultural crops, mainly due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

ability to transmit a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> plant viruses. Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying processes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tribute to plant disease dynamics and how to c<strong>on</strong>tain <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disease requires a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical study. The <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

undertaking requires not <strong>on</strong>ly an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system,<br />

which has been <str<strong>on</strong>g>th</str<strong>on</strong>g>e focus <str<strong>on</strong>g>of</str<strong>on</strong>g> previous work, but also an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial dynamics.<br />

Envir<strong>on</strong>mental stochasticity operates bo<str<strong>on</strong>g>th</str<strong>on</strong>g> spatially and temporally and<br />

is likely to influence aphid populati<strong>on</strong> processes. As a result, disease transmissi<strong>on</strong><br />

by aphids might be influenced by factors acting in additi<strong>on</strong> to density-dependent<br />

processes.<br />

To c<strong>on</strong>struct a realistic model <str<strong>on</strong>g>of</str<strong>on</strong>g> an aphid-natural enemy-plant-virus system,<br />

we are developing a spatial individual-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aphid Macrosiphum euphorbiae<br />

<strong>on</strong> potato plants. Focus is <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e summer asexual aphid<br />

populati<strong>on</strong>s since aphid outbreaks occur when plant material becomes abundant.<br />

Individuals move randomly and/or via chemotaxis <strong>on</strong> a 2-dimensi<strong>on</strong>al domain representing<br />

<strong>on</strong>e or more plants. We take into account bo<str<strong>on</strong>g>th</str<strong>on</strong>g> parasitoid wasp (e.g.<br />

Aphidius ervi) and predator (e.g. syrphid larvae, coccinellids) natural enemies. Envir<strong>on</strong>mental<br />

stochasticity is incorporated into <str<strong>on</strong>g>th</str<strong>on</strong>g>e model by changing variables such<br />

as patch quality, temperature and light intensity. Parameter estimates for <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

are obtained from experimental quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> processes in aphids <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

harbour particular sec<strong>on</strong>dary bacteria or <str<strong>on</strong>g>th</str<strong>on</strong>g>at are free <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary symbi<strong>on</strong>ts. A<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> aphid cl<strong>on</strong>es have been established in culture and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir sec<strong>on</strong>dary bacteria<br />

status c<strong>on</strong>firmed using diagnostic PCR. The individual-based model is used to<br />

assess how sec<strong>on</strong>dary endosymbi<strong>on</strong>ts affect aphid populati<strong>on</strong> dynamics, vector capacity<br />

and trophic interacti<strong>on</strong>s. Previous work <strong>on</strong> host-parasitoid models (Preedy<br />

et al. 2007; Pearce et al. 2006; Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield et al. 2005) suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at a broad-range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

dynamics including spatio-temporal heterogeneity and chaos can emerge from <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

systems and similar results are observed in our model.<br />

44


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] I.G. Pearce, M.A.J. Chaplain, P.G. Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, S.F. Hubbard, Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> multi-species host-parasitoid interacti<strong>on</strong>s: heterogeneous patterns and ecological implicati<strong>on</strong>s<br />

J. Theoretical Biology 241 876–886.<br />

[2] K. Preedy, P.G. Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, M.A.J. Chaplain, S.F. Hubbard, Disease induced dynamics in hostparasitoid<br />

systems: chaos and coexistence Roy. Soc. Interface 4 463–471.<br />

[3] P.G. Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, M.A.J. Chaplain, S.F. Hubbard, Dynamic heterogeneous spatio-temporal pattern<br />

formati<strong>on</strong> in host-parasitoid systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> synchr<strong>on</strong>ized generati<strong>on</strong>s. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biology 50<br />

559-583.<br />

45


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Masahiro Anazawa<br />

Tohoku Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: anazawa@tohtech.ac.jp<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 17:00<br />

Interspecific competiti<strong>on</strong> models derived from competiti<strong>on</strong><br />

between individuals<br />

Populati<strong>on</strong> dynamics, including <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting populati<strong>on</strong>s, result from<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals comprising populati<strong>on</strong>s and interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>em. It<br />

is important to reveal relati<strong>on</strong>ship between populati<strong>on</strong> dynamics and local interacti<strong>on</strong>s<br />

between individuals, and an effective way to do so is deriving populati<strong>on</strong><br />

models from first principles. In a previous study, I derived various discrete-time<br />

populati<strong>on</strong> models for a single species from first principles, and provided a unified<br />

view to understand how various populati<strong>on</strong> models interrelate wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er.<br />

Extending <str<strong>on</strong>g>th</str<strong>on</strong>g>e study above, <str<strong>on</strong>g>th</str<strong>on</strong>g>is study aims at deriving discrete-time interspecific<br />

competiti<strong>on</strong> models, which describe dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> competing two populati<strong>on</strong>s, by<br />

c<strong>on</strong>sidering competiti<strong>on</strong> for resource between individuals and spatial distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> individuals. Competiti<strong>on</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g> each species is assumed to be scramble, c<strong>on</strong>test<br />

or an intermediate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two types. Interspecific competiti<strong>on</strong> models are<br />

derived for various combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two species and<br />

several types <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, a general interspecific<br />

competiti<strong>on</strong> model <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes various competiti<strong>on</strong> models as special cases<br />

is derived for each distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals. Finally, I discuss coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

species, based <strong>on</strong> competiti<strong>on</strong> models derived for c<strong>on</strong>test vs. scramble case, and<br />

show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e ease <str<strong>on</strong>g>of</str<strong>on</strong>g> coexistence depends greatly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> individuals.<br />

46


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance in cancer using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling;<br />

Saturday, July 2, 08:30<br />

Alexander Anders<strong>on</strong><br />

Integrated Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Centre<br />

e-mail: alexander.anders<strong>on</strong>@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

David Basanta<br />

Integrated Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Centre<br />

Regulating drug resistance: Evoluti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e double-bind<br />

Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cell populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic drugs is nearly always<br />

associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance, where minor populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cells escape from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and c<strong>on</strong>tinue to proliferate and lead to cancer recurrence and subsequent<br />

treatment failure. Resistance is also a comm<strong>on</strong> issue in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecology field, where<br />

insects become resistant to chemical pesticides after repeated treatments. However,<br />

unlike <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>cology field, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecologists have used o<str<strong>on</strong>g>th</str<strong>on</strong>g>er strategies to c<strong>on</strong>trol<br />

insect populati<strong>on</strong>s. Specifically, by using biological agents such as predators, parasites,<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens, and parasitoids c<strong>on</strong>trol has been achieved wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out any resulting<br />

resistance. One possible mechanism for <str<strong>on</strong>g>th</str<strong>on</strong>g>e success <str<strong>on</strong>g>of</str<strong>on</strong>g> such biological agents is an<br />

evoluti<strong>on</strong>ary double-bind, where in order to adapt to a given treatment an insect<br />

pays <str<strong>on</strong>g>th</str<strong>on</strong>g>e high cost <str<strong>on</strong>g>of</str<strong>on</strong>g> becoming significantly less fit in comparis<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e unadapted<br />

populati<strong>on</strong>. Here we present an Evoluti<strong>on</strong>ary Game Theory (EGT) model to investigate<br />

such a double-bind approach in <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer. Specifically, we<br />

use EGT to better understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> combinati<strong>on</strong> chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic strategies<br />

when m<strong>on</strong>o-<str<strong>on</strong>g>th</str<strong>on</strong>g>erapies ultimately always lead to drug resistance.<br />

47


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious agents;<br />

Tuesday, June 28, 17:00<br />

Viggo Andreasen<br />

Roskilde University<br />

e-mail: viggo@ruc.dk<br />

The final size <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two competing strains<br />

The competiti<strong>on</strong> between two pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen strains during <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic<br />

represents a fundamental step in <str<strong>on</strong>g>th</str<strong>on</strong>g>e early evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging diseases as well as<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e antigenic drift process. The outcome however, depends not <strong>on</strong>ly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two strains but also <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e timing and size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e introducti<strong>on</strong>,<br />

characteristics <str<strong>on</strong>g>th</str<strong>on</strong>g>at are poorly captured by deterministic mean-field epidemic models.<br />

I will present a framework <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows us to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>ose aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

competiti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be determined from <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean-field models giving <str<strong>on</strong>g>th</str<strong>on</strong>g>e range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> possible outcomes <str<strong>on</strong>g>th</str<strong>on</strong>g>at could be observed in an epidemic wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two cross-reacting<br />

strains.<br />

48


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Roumen Anguelov<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pretoria, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa<br />

e-mail: roumen.anguelov@up.ac.za<br />

Kei<str<strong>on</strong>g>th</str<strong>on</strong>g> A. Berven and Meir Shillor<br />

Oakland University, Michigan, USA<br />

e-mail: berven@oakland.edu, shillor@oakland.edu<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 08:30<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> Wood Frog Populati<strong>on</strong><br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to embed into a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>e Wood Frog,<br />

Rana sylvatica, populati<strong>on</strong> data collected by Berven, [3], over more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 25 years.<br />

The life cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e frogs includes aquatic and terrestrial phases, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong><br />

in each phase is for different resources. Hence, we deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> separate<br />

populati<strong>on</strong>s, each <strong>on</strong>e providing <str<strong>on</strong>g>th</str<strong>on</strong>g>e new recruits for <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er <strong>on</strong>e, see, e.g., [1].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Wood Frogs, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are <str<strong>on</strong>g>th</str<strong>on</strong>g>ree main stages <str<strong>on</strong>g>of</str<strong>on</strong>g> development where<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e individuals compete for different resources. The toads live in <str<strong>on</strong>g>th</str<strong>on</strong>g>e water, and<br />

following <str<strong>on</strong>g>th</str<strong>on</strong>g>eir metamorphosis <str<strong>on</strong>g>th</str<strong>on</strong>g>ey become juvenile frogs, not yet large enough to<br />

reproduce. The <str<strong>on</strong>g>th</str<strong>on</strong>g>ird stage is <str<strong>on</strong>g>of</str<strong>on</strong>g> mature egg laying frogs. The populati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree stages <str<strong>on</strong>g>of</str<strong>on</strong>g> development have different dynamics. Hence, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are modelled<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical tools, which makes assembling <str<strong>on</strong>g>th</str<strong>on</strong>g>e model an interesting<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical problem. Due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e seas<strong>on</strong>s in Michigan, <str<strong>on</strong>g>th</str<strong>on</strong>g>e eggs are laid over<br />

a short time period and <str<strong>on</strong>g>th</str<strong>on</strong>g>e juveniles emerge from <str<strong>on</strong>g>th</str<strong>on</strong>g>e water more or less <str<strong>on</strong>g>th</str<strong>on</strong>g>e same<br />

time, so, we model <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two events by impulses, [4]. The success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e metamorphosis<br />

depends mainly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e toads. Hence, <str<strong>on</strong>g>th</str<strong>on</strong>g>e size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

toads at <str<strong>on</strong>g>th</str<strong>on</strong>g>e time <str<strong>on</strong>g>of</str<strong>on</strong>g> metamorphosis determines bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> juveniles and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir initial size. Similarly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e transfer from juvenile to adults depends mainly <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e frogs. It does not occur at a fixed time, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e juveniles who do not<br />

grow sufficiently to mate need to wait for a year before laying eggs. The grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e toads and <str<strong>on</strong>g>th</str<strong>on</strong>g>e juveniles in size is not uniform across <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> and depends<br />

<strong>on</strong> external factors, as well. It is modelled using PDEs for <str<strong>on</strong>g>th</str<strong>on</strong>g>e density size<br />

distributi<strong>on</strong> at time t. The dea<str<strong>on</strong>g>th</str<strong>on</strong>g> and fertility rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mature frogs are not related<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir age. So <str<strong>on</strong>g>th</str<strong>on</strong>g>eir populati<strong>on</strong> is assumed to be homogeneous and is modelled<br />

by an ODE. Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e derived model comprises a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary and partial<br />

impulsive differential equati<strong>on</strong>s. The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> such a model can<br />

be complicated, see, e.g., [1]. Our analysis and numerical simulati<strong>on</strong>s focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

global properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model as a dynamical system, as in [2]. The results show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model may have a unique soluti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>verges to a stable periodic cycle.<br />

References.<br />

[1] A Ackleh, K Deng, A N<strong>on</strong>aut<strong>on</strong>omous Juvenile-Adult Model: Well-Posedness and L<strong>on</strong>g Term<br />

Behaivior via Comparis<strong>on</strong> Principle, SIAM Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics 6 (2009) 1644–<br />

1661.<br />

[2] R Anguelov, Y Dum<strong>on</strong>t, J M-S Lubuma, E Murei<str<strong>on</strong>g>th</str<strong>on</strong>g>i, Stability Analysis and Dynamics Preserving<br />

N<strong>on</strong>-Standard Finite Difference Schemes for a Malaria Model, Theoretical Populati<strong>on</strong><br />

Biology, to appear.<br />

[3] K A Berven, Density Dependence in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Terrestrial Stage <str<strong>on</strong>g>of</str<strong>on</strong>g> Wood Frogs: Evidence from a<br />

21-Year Populati<strong>on</strong> Study, Copeia, 2009, No. 2, 328–338<br />

[4] V Lakshmikan<str<strong>on</strong>g>th</str<strong>on</strong>g>an, D D Bainov, P S Sime<strong>on</strong>ov, Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Impulsive Differential Equati<strong>on</strong>s,<br />

World Scientific Publishing, 1989.<br />

49


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bridging Time Scales in Biological Sciences; Saturday, July 2, 14:30<br />

Iris Antes<br />

Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Munich<br />

e-mail: antes@wzw.tum.de<br />

Hierarchical approaches for <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biomolecular<br />

recogniti<strong>on</strong><br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e major bottlenecks for <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological processes<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular and atomistic level is <str<strong>on</strong>g>th</str<strong>on</strong>g>e limitati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e time scale and<br />

system size which can be treated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. Much research<br />

has been devoted to <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem and many advanced biophysical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

have been developed for <str<strong>on</strong>g>th</str<strong>on</strong>g>is task. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em are, however, very time c<strong>on</strong>suming<br />

and not applicable to applicati<strong>on</strong>s for which very complex systems must be investigated<br />

and if many different situati<strong>on</strong>s must be investigated simultaneously, like in<br />

computati<strong>on</strong>al drug or protein design. To be able to deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> such applicati<strong>on</strong>s, we<br />

develop hierarchical models, which combine very efficient, discrete me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods from<br />

computati<strong>on</strong>al biology wi<str<strong>on</strong>g>th</str<strong>on</strong>g> more demanding c<strong>on</strong>tinuous biophysical approaches.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e presentati<strong>on</strong> an overview over <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology will be presented toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> examples for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir practical applicati<strong>on</strong>s.<br />

50


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models in Eco-epidemiology II; Wednesday, June 29, 11:00<br />

Narcisa Apreutesei<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Technical University "Gh. Asachi" Iasi,<br />

Romania<br />

e-mail: napreut@gmail.com<br />

Travelling wave soluti<strong>on</strong>s for integro-differential equati<strong>on</strong>s<br />

from populati<strong>on</strong> dynamics<br />

Our talk c<strong>on</strong>cerns some classes <str<strong>on</strong>g>of</str<strong>on</strong>g> integro-differential equati<strong>on</strong>s from populati<strong>on</strong><br />

dynamics, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e integral term describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>local c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resources.<br />

Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> m<strong>on</strong>ostable case and bistable case are investigated. Fredholm property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

corresp<strong>on</strong>ding linear operators can help to prove <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> travelling wave soluti<strong>on</strong>s.<br />

For some models, we can prove <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> traveling waves <strong>on</strong>ly when<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e integral is sufficiently small. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case, <str<strong>on</strong>g>th</str<strong>on</strong>g>e integro-differential<br />

operator is close to <str<strong>on</strong>g>th</str<strong>on</strong>g>e differential <strong>on</strong>e. One uses a perturbati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od which<br />

combines <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fredholm property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearized operators and <str<strong>on</strong>g>th</str<strong>on</strong>g>e implicit functi<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eorem. For large support, numerical simulati<strong>on</strong>s show <str<strong>on</strong>g>th</str<strong>on</strong>g>e propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

periodic travelling waves. For some o<str<strong>on</strong>g>th</str<strong>on</strong>g>er models, Leray-Schauder me<str<strong>on</strong>g>th</str<strong>on</strong>g>od can be<br />

applied. This implies <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a topological degree for <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding<br />

operators and <str<strong>on</strong>g>th</str<strong>on</strong>g>e establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> a priori estimates for <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>. Some<br />

biological interpretati<strong>on</strong>s follow from <str<strong>on</strong>g>th</str<strong>on</strong>g>is study.<br />

51


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Tuesday, June 28, 17:00<br />

Mochamad Apri<br />

Biometris, Wageningen University, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: mochamad.apri@wur.nl<br />

Maarten de Gee<br />

Biometris, Wageningen University, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

Jaap Molenaar<br />

Biometris, Wageningen University, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

Identifying <str<strong>on</strong>g>th</str<strong>on</strong>g>e core <str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical networks: complexity<br />

reducti<strong>on</strong> preserving dynamical behavior<br />

Biochemical systems are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten very complex. The complexity stems from bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents and <str<strong>on</strong>g>th</str<strong>on</strong>g>e intricate interacti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at may occur. When a<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model is used to describe such a system, its complexity may lead to a<br />

very l<strong>on</strong>g computing time, n<strong>on</strong>-identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, and most importantly<br />

may hinder us in understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biochemical system.<br />

Therefore, effective me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are required to capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e key comp<strong>on</strong>ents and<br />

interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system.<br />

We present a novel and efficient reducti<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e core <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

biochemical system. This new me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called<br />

admissible regi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters for which <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

yields <str<strong>on</strong>g>th</str<strong>on</strong>g>e required output. For illustrati<strong>on</strong>al purpose, <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> is first applied<br />

to a very small artificial network, c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> just <str<strong>on</strong>g>th</str<strong>on</strong>g>ree nodes and <str<strong>on</strong>g>th</str<strong>on</strong>g>ree parameters.<br />

Our me<str<strong>on</strong>g>th</str<strong>on</strong>g>od reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are many parameter sets <str<strong>on</strong>g>th</str<strong>on</strong>g>at give rise to similar<br />

dynamical behavior, which indicates, despite its simplicity, <str<strong>on</strong>g>th</str<strong>on</strong>g>e system is not<br />

identifiable. Next, <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> is applied to an epidermal grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor receptor<br />

(EGFR) network model. It turns out <strong>on</strong>ly about 62% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network comp<strong>on</strong>ents are<br />

required to yield <str<strong>on</strong>g>th</str<strong>on</strong>g>e correct resp<strong>on</strong>se to epidermal grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor (EGF), whereas<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e rest could be c<strong>on</strong>sidered redundant. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough parameter sensitivity<br />

is expected to give an indicati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e redundancy <str<strong>on</strong>g>of</str<strong>on</strong>g> a parameter, we found<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at a highly sensitive parameter is not always necessarily important, whereas a<br />

slightly sensitive parameter is not always removable. This implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at parameter<br />

sensitivity <strong>on</strong> its own is not a reliable tool for model reducti<strong>on</strong>.<br />

52


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Daniel Arbelaez Alvarado<br />

Universidad de los Andes, Departamento de Ingenieria Civil y Ambiental.<br />

Bogota, Colombia.<br />

e-mail: d.arbelaez36@uniandes.edu.co<br />

Juan Manuel Cordovez Alvarez<br />

Universidad de los Andes, Departamento de Ingenieria Civil y Ambiental.<br />

Bogota, Colombia.<br />

A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for assessing <str<strong>on</strong>g>th</str<strong>on</strong>g>e spraying as a vector<br />

c<strong>on</strong>trol strategy for Chagas disease in Colombia<br />

Chagas disease or American trypanosomiasis is a neglected disease in Latin America,<br />

which means <str<strong>on</strong>g>th</str<strong>on</strong>g>at attacks people already affected by poverty and inequality.<br />

Over time its manifestati<strong>on</strong>s lead to arrhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mias and heart failure, and in some<br />

cases can cause dea<str<strong>on</strong>g>th</str<strong>on</strong>g>. In Colombia <str<strong>on</strong>g>th</str<strong>on</strong>g>is parasitic disease, <str<strong>on</strong>g>th</str<strong>on</strong>g>at affects 1.2 milli<strong>on</strong><br />

people (wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 milli<strong>on</strong> more at risk <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tracting it), is transmitted<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e insect Rhodnius prolixus in a cycle in which wild animals, domestic animals<br />

and humans, act as reservoir. While research aimed at combating <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

country has shown progress in different fields, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important questi<strong>on</strong>s<br />

to be answered is how efficacious and efficient are <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol interventi<strong>on</strong>s. Little<br />

is known about <str<strong>on</strong>g>th</str<strong>on</strong>g>em and nowadays <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no quantitative tool <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows for<br />

predicti<strong>on</strong>, so <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be used for c<strong>on</strong>trol and preventi<strong>on</strong>. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

work is to propose a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vector and identifying different scenarios <str<strong>on</strong>g>th</str<strong>on</strong>g>at might c<strong>on</strong>tribute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease. In particular we want to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> insecticide house<br />

spraying. Our approach c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear differential equati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e susceptible and infected classes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree populati<strong>on</strong>s:<br />

domiciliated vectors, domestic animals and man. We present an analytical<br />

approach to get <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive number, <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady states and <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibria<br />

as well as an implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model for computer simulati<strong>on</strong>s. In additi<strong>on</strong>,<br />

we show alternatives to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e domiciliated vector populati<strong>on</strong>. We expect <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese preliminary results can be useful in <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol<br />

strategies at local level, and <str<strong>on</strong>g>th</str<strong>on</strong>g>ereby improve decisi<strong>on</strong> making about preventive<br />

management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease.<br />

53


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Game <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical modelling and optimizati<strong>on</strong> in evoluti<strong>on</strong> and ecology I;<br />

Tuesday, June 28, 11:00<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Argasinski<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex<br />

e-mail: argas1@wp.pl<br />

dr Mark Broom<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Science City University L<strong>on</strong>d<strong>on</strong><br />

In which currency are paid pay<str<strong>on</strong>g>of</str<strong>on</strong>g>fs in evoluti<strong>on</strong>ary games?<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard approach to evoluti<strong>on</strong>ary games and replicator dynamics, differences<br />

in fitness can be interpreted as an excess from mean mal<str<strong>on</strong>g>th</str<strong>on</strong>g>usian grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying reas<strong>on</strong>ing, related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> "costs"<br />

and "benefits", <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a silent assumpti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at fitness can be described in some<br />

kind <str<strong>on</strong>g>of</str<strong>on</strong>g> "units". However, in most cases <str<strong>on</strong>g>th</str<strong>on</strong>g>ese units <str<strong>on</strong>g>of</str<strong>on</strong>g> measure are not explicitly<br />

specified. Then <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> arises: are <str<strong>on</strong>g>th</str<strong>on</strong>g>ese <str<strong>on</strong>g>th</str<strong>on</strong>g>eories testable? How can we measure<br />

"benefit" or "cost"? It would be useful to describe and justify strategic "costs"<br />

versus "benefits" reas<strong>on</strong>ing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminology <str<strong>on</strong>g>of</str<strong>on</strong>g> demography, because basic events<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at shape outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> natural selecti<strong>on</strong> are bir<str<strong>on</strong>g>th</str<strong>on</strong>g>s and dea<str<strong>on</strong>g>th</str<strong>on</strong>g>s. In our talk, we<br />

will present <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> such an explicit analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> bir<str<strong>on</strong>g>th</str<strong>on</strong>g>s and dea<str<strong>on</strong>g>th</str<strong>on</strong>g>s in an<br />

evoluti<strong>on</strong>ary game <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic framework.<br />

We will investigate different types <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality pressures, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir combinati<strong>on</strong>s<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> trade <str<strong>on</strong>g>of</str<strong>on</strong>g>fs between mortality and fertility. We will show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is new approach it is possible to model how strictly ecological factors,<br />

which seemed neutral in classical <str<strong>on</strong>g>th</str<strong>on</strong>g>eory, can affect outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e game. For<br />

example we will show <str<strong>on</strong>g>th</str<strong>on</strong>g>at density dependence, affecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> newborns,<br />

can seriously change <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e game.<br />

We will illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> an example game, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Hawk-Dove Game.<br />

Reformulated in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> our new approach, <str<strong>on</strong>g>th</str<strong>on</strong>g>is game shows new details and produces<br />

new biological predicti<strong>on</strong>s. The soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e new model are less abstract;<br />

instead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at "cost" should exceed "benefit" we obtain results in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dead (<str<strong>on</strong>g>th</str<strong>on</strong>g>at can be interpreted as probability <str<strong>on</strong>g>of</str<strong>on</strong>g> dea<str<strong>on</strong>g>th</str<strong>on</strong>g>) individuals<br />

and per capita number <str<strong>on</strong>g>of</str<strong>on</strong>g> newborns, which can be easily estimated from<br />

data. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical approach to trade<str<strong>on</strong>g>of</str<strong>on</strong>g>f analysis, "cost" caused<br />

by increased mortality, can in some cases depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e value <str<strong>on</strong>g>of</str<strong>on</strong>g> expected benefit<br />

interpreted as an increase in fertility.<br />

References.<br />

[1] K. Argasinski, J. Kozłowski How can we model selectively neutral density dependence in<br />

evoluti<strong>on</strong>ary games Theor. Pop. Biol. 73 250–256 2008<br />

[2] J. H<str<strong>on</strong>g>of</str<strong>on</strong>g>bauer, K. Sigmund, Evoluti<strong>on</strong>ary Games and Populati<strong>on</strong> Dynamics. Cambridge University<br />

Press 1998<br />

[3] G. E. Hutchins<strong>on</strong>, Ecological Theatre and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Evoluti<strong>on</strong>ary Play, Yale University Press 1965<br />

[4] A. Lomnicki, Populati<strong>on</strong> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals, Princet<strong>on</strong> University Press 1988<br />

[5] J. Maynard Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>, Evoluti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Games. Cambridge University Press 1982<br />

[6] J. Maynard Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>,. Evoluti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Games. Cambridge University Press 1982<br />

[7] J. Weibull, Evoluti<strong>on</strong>ary Game Theory. MIT Press 1995<br />

54


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 17:00<br />

Julian Arndts<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge; Humboldt University <str<strong>on</strong>g>of</str<strong>on</strong>g> Berlin<br />

e-mail: ja268@cam.ac.uk<br />

Transacti<strong>on</strong> costs and structure formati<strong>on</strong>: an ec<strong>on</strong>omic<br />

approach to biological systems<br />

We harness insights from ec<strong>on</strong>omics and informati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and apply <str<strong>on</strong>g>th</str<strong>on</strong>g>em to biological<br />

systems. Using informati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eory as a c<strong>on</strong>ceptual bridge between biology<br />

and ec<strong>on</strong>omics, biological and ec<strong>on</strong>omic systems can be analyzed and compared,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ereby paving <str<strong>on</strong>g>th</str<strong>on</strong>g>e way towards new models in bioec<strong>on</strong>omics. Driven by <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> replicati<strong>on</strong>, variati<strong>on</strong> and selecti<strong>on</strong>, systems in biology and ec<strong>on</strong>omics evolve<br />

towards ever more refined informati<strong>on</strong> architecture, <str<strong>on</strong>g>th</str<strong>on</strong>g>us lowering transacti<strong>on</strong> costs<br />

in general and informati<strong>on</strong> costs in particular. Hence, transacti<strong>on</strong> costs drive structure<br />

formati<strong>on</strong>. To illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>is principle, we present a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> examples<br />

from biology and ec<strong>on</strong>omics, and explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e following c<strong>on</strong>cepts: First, <str<strong>on</strong>g>th</str<strong>on</strong>g>e role<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> entropy in biological and ec<strong>on</strong>omic systems and <str<strong>on</strong>g>th</str<strong>on</strong>g>ree applicati<strong>on</strong>s: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kelly<br />

criteri<strong>on</strong>, which relates <str<strong>on</strong>g>th</str<strong>on</strong>g>e Shann<strong>on</strong> informati<strong>on</strong> entropy to <str<strong>on</strong>g>th</str<strong>on</strong>g>e limits <str<strong>on</strong>g>of</str<strong>on</strong>g> biological<br />

and ec<strong>on</strong>omic grow<str<strong>on</strong>g>th</str<strong>on</strong>g>; structure formati<strong>on</strong> as local entropy reducti<strong>on</strong>; and <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum<br />

entropy principle. Sec<strong>on</strong>d, <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> higher-order informati<strong>on</strong> and Schelling<br />

points in biological and ec<strong>on</strong>omic systems: <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> Schelling points, or<br />

focal points, can transform informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> first and sec<strong>on</strong>d order into informati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> higher order as well as comm<strong>on</strong> knowledge and hence fundamentally change <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

informati<strong>on</strong> architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> a system. Third, bounded rati<strong>on</strong>ality: due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e limitati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al capacity, biological and ec<strong>on</strong>omic systems face fundamental<br />

trade<str<strong>on</strong>g>of</str<strong>on</strong>g>fs when processing informati<strong>on</strong>. Four<str<strong>on</strong>g>th</str<strong>on</strong>g>, strategic evoluti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive<br />

market hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis. And fif<str<strong>on</strong>g>th</str<strong>on</strong>g>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-equilibrium: escaping<br />

local maxima in biology and ec<strong>on</strong>omics. Utilizing <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>cepts and comparing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems and ec<strong>on</strong>omic systems allows to<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential <str<strong>on</strong>g>of</str<strong>on</strong>g> applying ec<strong>on</strong>omic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory to biology, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e limits<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such applicati<strong>on</strong>s.<br />

55


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 11:00<br />

Anne Arnold<br />

Zoran Nikoloski<br />

Systems Biology and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling Group<br />

Max-Planck Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Plant Physiology, 14476 Potsdam,<br />

Germany<br />

e-mail: arnold@mpimp-golm.mpg.de<br />

e-mail: nikoloski@mpimp-golm.mpg.de<br />

Comparative model analyis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin-Bens<strong>on</strong> cycle<br />

Carb<strong>on</strong> fixati<strong>on</strong>, especially <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin-Bens<strong>on</strong> cycle (CBC), is <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way<br />

for energy storage in carbohydrate products in C3-plants. Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay<br />

between regulati<strong>on</strong> and efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> CBC and its end-products (e.g., sucrose,<br />

starch and amino acids) requires <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models which<br />

can explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic transformati<strong>on</strong>s. Here, we address<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is questi<strong>on</strong> by comparing and ranking <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CBC to<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> best-performing models.<br />

The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CBC and <str<strong>on</strong>g>th</str<strong>on</strong>g>e related pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways for <str<strong>on</strong>g>th</str<strong>on</strong>g>e increase <str<strong>on</strong>g>of</str<strong>on</strong>g> plant<br />

biomass has already resulted in 15 models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> various level <str<strong>on</strong>g>of</str<strong>on</strong>g> detail. The existing<br />

models can be categorized biologically based <strong>on</strong>: (1) chosen boundaries, i.e.,<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> CBC including or excluding end-product syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis, (2) details <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong><br />

modeling, i.e., leaf, cell, or compartment-level, and (3) hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> kinetics<br />

[4], translating <str<strong>on</strong>g>th</str<strong>on</strong>g>e model structure into ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical equati<strong>on</strong>s amenable to extensive<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> spatiotemporal properties. Our focus is placed <strong>on</strong> mass acti<strong>on</strong>,<br />

Michaelis-Menten-like, equilibrium approximati<strong>on</strong>s, and special functi<strong>on</strong>s in c<strong>on</strong>juncti<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> terms.<br />

The ranking <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e SBML-implemented compendium <str<strong>on</strong>g>of</str<strong>on</strong>g> models is carried out<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e following criteria: (1) stability analysis [3], (2) sensitivity analysis,<br />

(3) ability to capture key features extracted from <str<strong>on</strong>g>th</str<strong>on</strong>g>e data [1], and (4) analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> yield. The obtained scores are <str<strong>on</strong>g>th</str<strong>on</strong>g>en combined <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a comprehensive model<br />

ranking scheme, based <strong>on</strong> which <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> best-performing models is selected wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

regard to metabolomics data and detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> candidates for genetic engineering.<br />

References.<br />

[1] S. Arrivault, et al., Use <str<strong>on</strong>g>of</str<strong>on</strong>g> reverse-phase liquid chromatography, linked to tandem mass spectrometry,<br />

to pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin cycle and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er metabolic intermediates in arabidopsis rosettes<br />

at different carb<strong>on</strong> dioxide c<strong>on</strong>centrati<strong>on</strong>s Plant J 59 826–839 (2009).<br />

[2] W.W. Chen, M. Niepel, P.K. Sorger, Classic and c<strong>on</strong>temporary approaches to modeling biochemical<br />

reacti<strong>on</strong>s Genes & Development 24 1861–1875 (2010).<br />

[3] S. Grimbs, J. Selbig, S. Bulik, H.G. Holzhutter, R. Steuer, The stability and robustness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

metabolic states: identifying stabilizing sites in metabolic networks Mol Syst Biol 3 146 (2007).<br />

[4] S. Grimbs, et al., Spatiotemporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin cycle: Multistati<strong>on</strong>arity and symmetry<br />

breaking instabilities BioSystems (2011), in press.<br />

56


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Tuesday, June 28, 14:30<br />

Jesus R. Artalejo<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Complutense University 28040 Madrid Spain<br />

e-mail: jesus_artalejo@mat.ucm.es<br />

The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> expectati<strong>on</strong>s distributi<strong>on</strong> as an alternative to<br />

quasi-stati<strong>on</strong>arity in stochastic biological models<br />

Many stochastic systems, including biological applicati<strong>on</strong>s, use Markov chains in<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a set <str<strong>on</strong>g>of</str<strong>on</strong>g> absorbing states. It is <str<strong>on</strong>g>th</str<strong>on</strong>g>en needed to c<strong>on</strong>sider analogues <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an irreducible chain. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>text, quasi-stati<strong>on</strong>ary<br />

distributi<strong>on</strong>s play a fundamental role to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g-term behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

system. The rati<strong>on</strong>ale for using quasi-stati<strong>on</strong>ary distributi<strong>on</strong> is well established in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e abundant existing literature. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study is to reformulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

means approach which provides a simple alternative. We have a two-fold objective<br />

i) to view <str<strong>on</strong>g>th</str<strong>on</strong>g>e quasi-stati<strong>on</strong>arity and ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> expectati<strong>on</strong>s as two different approaches<br />

for understanding he dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system before absorpti<strong>on</strong>, and<br />

ii) to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> using <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> expectati<strong>on</strong>s distributi<strong>on</strong><br />

as an approximati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e quasi-stati<strong>on</strong>ary distributi<strong>on</strong>.<br />

Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong>s are compared for some selected scenarios, which are mainly<br />

inspired in stochastic epidemic models. Previously, <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vergence to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

quasi-stati<strong>on</strong>ary regime is taking into account in order to make meaningful <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

comparis<strong>on</strong>.<br />

57


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious agents;<br />

Tuesday, June 28, 17:00<br />

Yael Artzy-Randrup<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Evoluti<strong>on</strong>ary Biology and Howard Hughes<br />

Medical Institute, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan<br />

e-mail: yartzy@umich.edu<br />

Severe First and Mild Later: Temporal Strategies in<br />

Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen Evoluti<strong>on</strong><br />

Because pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens replicate wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in hosts and transmit between <str<strong>on</strong>g>th</str<strong>on</strong>g>em, selecti<strong>on</strong><br />

takes place <strong>on</strong> multiple levels. There has been <strong>on</strong>going interest for more <str<strong>on</strong>g>th</str<strong>on</strong>g>an two<br />

decades in trying to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s favoring <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acute,<br />

highly transmissible infecti<strong>on</strong>s, focusing <strong>on</strong> trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissibilityvirulence<br />

trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f and <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong>-persistence trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Studies have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese types <str<strong>on</strong>g>of</str<strong>on</strong>g> trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs lead to intermediate pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen attack rates. These earlier<br />

studies typically c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single trait under a defined trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f.<br />

However, for some pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens, <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e host is likely to be<br />

more complex, determined by more <str<strong>on</strong>g>th</str<strong>on</strong>g>an a single dimensi<strong>on</strong>, opening <str<strong>on</strong>g>th</str<strong>on</strong>g>e door for<br />

more complicated strategies related to disease severity. The protozoa Plasmodium<br />

falciparum (Pf), which causes <str<strong>on</strong>g>th</str<strong>on</strong>g>e most severe type <str<strong>on</strong>g>of</str<strong>on</strong>g> malaria in humans, is <strong>on</strong>e<br />

example <str<strong>on</strong>g>of</str<strong>on</strong>g> such a pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen. During <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> an infecti<strong>on</strong>, Pf has <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability<br />

to express up to 60 different variants <str<strong>on</strong>g>of</str<strong>on</strong>g> surface proteins (PfEMP1) encoded by a<br />

family <str<strong>on</strong>g>of</str<strong>on</strong>g> var genes, which are recognized by <str<strong>on</strong>g>th</str<strong>on</strong>g>e host immune system and which<br />

also act as virulence factors.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> temporal variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> life history traits during<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> an infecti<strong>on</strong>, and we ask whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a temporal dimensi<strong>on</strong><br />

can assist in reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e burden arising from multiple selective pressures. We<br />

allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e life history traits <str<strong>on</strong>g>of</str<strong>on</strong>g> different stages to evolve independently, and as a case<br />

study, we assume <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between transmissi<strong>on</strong> and durati<strong>on</strong>. To capture<br />

multiple selective pressures acting <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parasite, we c<strong>on</strong>sider invasi<strong>on</strong> persistence<br />

trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> critical community size <str<strong>on</strong>g>of</str<strong>on</strong>g> hosts. We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at a<br />

composite strategy <str<strong>on</strong>g>th</str<strong>on</strong>g>at is ordered in time and c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a more transmissible<br />

stage at first, followed by a less transmissible <strong>on</strong>e later, c<strong>on</strong>fers a higher fitness <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

any single, c<strong>on</strong>stant, strategy. These results are relevant to ordered expressi<strong>on</strong> in<br />

P. falciparum <str<strong>on</strong>g>of</str<strong>on</strong>g> severe vs. mild var genes, as well as for acute infecti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are<br />

followed by milder symptoms in some bacterial pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens.<br />

58


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Takeshi Asakawa<br />

System Technologies Laboratories , SONY Corporati<strong>on</strong><br />

e-mail: Takeshi.Asakawa@jp.s<strong>on</strong>y.com<br />

Satoshi Koinuma<br />

Koh-hei Masumoto<br />

Mamoru Nagano<br />

Yasufumi Shigeyoshi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Anatomy and Neurobiology, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Kindai<br />

University<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mammalian circadian center as a<br />

many-body system <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit cycle oscillators<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e present study, we propose a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mammalian circadian<br />

center, or <str<strong>on</strong>g>th</str<strong>on</strong>g>e suprachiasmatic nucleus (SCN), which is described as a many-body<br />

system composed <str<strong>on</strong>g>of</str<strong>on</strong>g> limit cycle oscillators. Each oscillati<strong>on</strong> unit in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SCN was described<br />

as a limit cycle oscillator based <strong>on</strong> a negative autoregulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> per genes by<br />

its protein product PER previously reported (Goldbeter 1995, Leloup & Goldbeter<br />

1998, Kurosawa et al. 2002, G<strong>on</strong>ze et al. 2006). We adopted ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er assumpti<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at oscillators interacted wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a humoral factor, and ignored<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er possible neural interacti<strong>on</strong> or network. Then, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir n<strong>on</strong>linear equati<strong>on</strong>s<br />

were reduced to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Stuart Landau equati<strong>on</strong> forms (Kuramoto, 1996). Our present<br />

model was also c<strong>on</strong>structed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e recent finding <str<strong>on</strong>g>th</str<strong>on</strong>g>at most <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillating neur<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SCN shows damping under <str<strong>on</strong>g>th</str<strong>on</strong>g>e isolated envir<strong>on</strong>ment (Webb et al. 2009).<br />

Therefore, we assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at most <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillating neur<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SCN were damping<br />

oscillators but have potential to generate limit cycle oscillators by appropriate external<br />

forces. In additi<strong>on</strong>, we supposed a phase-dependent gate in <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillators in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e VLSCN which shut out <str<strong>on</strong>g>th</str<strong>on</strong>g>e photic input to <str<strong>on</strong>g>th</str<strong>on</strong>g>e SCN during <str<strong>on</strong>g>th</str<strong>on</strong>g>e day, which had<br />

been recognized in <str<strong>on</strong>g>th</str<strong>on</strong>g>e VLSCN <str<strong>on</strong>g>of</str<strong>on</strong>g> mammalians. We examined whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

reproduced <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymmetrical resynchr<strong>on</strong>izati<strong>on</strong> process associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e abrupt<br />

shift <str<strong>on</strong>g>of</str<strong>on</strong>g> light: dark cycle (LD cycle; L:D=12h:12h). An abrupt shift <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e LD<br />

cycle yielded internal desynchr<strong>on</strong>y between VLSCN and DMSCN transiently which<br />

caused a jet lag syndrome (Nagano et al. 2003). The asymmetry appeared in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

way <str<strong>on</strong>g>of</str<strong>on</strong>g> resynchr<strong>on</strong>izati<strong>on</strong>; it took five days to restore synchr<strong>on</strong>izati<strong>on</strong> after 10-hour<br />

delay and took more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 10 days after six-hour advance. The present model reproduced<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e asymmetrical expended time spent in resynchr<strong>on</strong>izati<strong>on</strong> process after<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e rapid shift <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e LD cycle. The model also reproduced <str<strong>on</strong>g>th</str<strong>on</strong>g>e intrinsic phase<br />

wave shown in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SCN. The phase wave is propagated from <str<strong>on</strong>g>th</str<strong>on</strong>g>e medial regi<strong>on</strong>s to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e lateral regi<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SCN. By placing a small regi<strong>on</strong> c<strong>on</strong>taining short period<br />

oscillators (short period regi<strong>on</strong>: SPR: τ < 24h) and remaining large regi<strong>on</strong> c<strong>on</strong>taining<br />

l<strong>on</strong>g period oscillators (l<strong>on</strong>g period regi<strong>on</strong>: LPR: τ > 24h), <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase wave<br />

appeared, being initiated at SPR and propagated to LPR. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase resp<strong>on</strong>se<br />

curve (PRC) generated from <str<strong>on</strong>g>th</str<strong>on</strong>g>e present model by using <str<strong>on</strong>g>th</str<strong>on</strong>g>e pulse-like input<br />

c<strong>on</strong>siderably corresp<strong>on</strong>ded to empirical PRCs obtained from locomotor activities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rats and mice.<br />

59


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 17:00<br />

Gianluca Ascolani<br />

Laboratory IMNC, CNRS-UMR 8165 and Universities Paris Diderot-<br />

Paris 7 and Paris Sud-11, Orsay, France<br />

e-mail: ascolani@imnc.in2p3.fr<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ilde Badoual<br />

Laboratory IMNC, University Paris Diderot-Paris 7, France<br />

e-mail: badoual@imnc.in2p3.fr<br />

Christophe Deroulers<br />

Laboratory IMNC, University Paris Diderot-Paris 7, France<br />

e-mail: deroulers@imnc.in2p3.fr<br />

Basil Grammaticos<br />

Laboratory IMNC, CNRS-UMR 8165 and Universities Paris Diderot-<br />

Paris 7 and Paris Sud-11, Orsay, France<br />

e-mail: grammaticos@univ-paris-diderot.fr<br />

Migrati<strong>on</strong> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cancerous cells: bey<strong>on</strong>d<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mean field approximati<strong>on</strong><br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> studying diffuse tumors is understanding how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey<br />

diffuse inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e hosting tissues and how fast <str<strong>on</strong>g>th</str<strong>on</strong>g>ey spread. To shed light <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese issues,<br />

we use an approach based <strong>on</strong> a microscopical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells’ dynamics<br />

to reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e meso-macroscopical scale. An example <str<strong>on</strong>g>of</str<strong>on</strong>g> a tumor<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e glioblastoma which grows in <str<strong>on</strong>g>th</str<strong>on</strong>g>e brain and is very invasive. The glioma cells<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e glioblastoma interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cancerous cells exchanging small molecules<br />

and i<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>rough very short links named gap juncti<strong>on</strong> c<strong>on</strong>necti<strong>on</strong>s [1]. In [2], <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors proposed a model in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> automat<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancerous<br />

cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at takes into c<strong>on</strong>siderati<strong>on</strong> gap juncti<strong>on</strong> type interacti<strong>on</strong>s. In [3], <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

hydrodynamic limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells’ diffusi<strong>on</strong> equati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean field-approximati<strong>on</strong><br />

is found, and some differences wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical simulati<strong>on</strong>s are shown. Using<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e approach proposed in [3], we study and analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong><br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> cancerous cells <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-points correlati<strong>on</strong> functi<strong>on</strong>. The cells move<br />

<strong>on</strong> a single occupancy hexag<strong>on</strong>al sites lattice wi<str<strong>on</strong>g>th</str<strong>on</strong>g> periodical border c<strong>on</strong>diti<strong>on</strong>s and<br />

interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nearest neighbors. The interacti<strong>on</strong> affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells by<br />

imposing <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> preserving at least <strong>on</strong>e gap juncti<strong>on</strong> c<strong>on</strong>necti<strong>on</strong> am<strong>on</strong>g<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e closest neighbors wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a given probability. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

correlati<strong>on</strong> functi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparis<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and numerical simulati<strong>on</strong>s<br />

for different values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancerous cells’ density and interacti<strong>on</strong> parameter.<br />

The interacti<strong>on</strong> introduces a short leng<str<strong>on</strong>g>th</str<strong>on</strong>g> correlati<strong>on</strong> am<strong>on</strong>g cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at dynamically<br />

evolves toward stable values depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system variables. Numerical simulati<strong>on</strong>s<br />

show <str<strong>on</strong>g>th</str<strong>on</strong>g>e stable c<strong>on</strong>diti<strong>on</strong> differs from <str<strong>on</strong>g>th</str<strong>on</strong>g>e uniform c<strong>on</strong>diti<strong>on</strong> due to spatial<br />

inhomogeneity and clusters formati<strong>on</strong> also in absence <str<strong>on</strong>g>of</str<strong>on</strong>g> sources and sinks.<br />

References.<br />

[1] L. Cr<strong>on</strong>ier, Gap Juncti<strong>on</strong>s and Cancer: New Functi<strong>on</strong>s for an Old Story, Antioxidants &<br />

Redox Signaling, 11, 2 (2009).<br />

[2] M. Aubert et al., A cellular automat<strong>on</strong> model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioma cells, Phys Biol., 3,<br />

93-100 (2006).<br />

60


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] C. Deroulers et al., Modeling tumor cell migrati<strong>on</strong>: From microscopic to macroscopic models,<br />

Phys. Rev. E, 79, 031917 (2009).<br />

61


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 08:30<br />

Marian Groenenboom 1,3<br />

e-mail: marian.groenenboom@wur.nl<br />

Laura Astola 1,3<br />

e-mail: laura.astola@wur.nl<br />

Victoria Choserot 2,3<br />

e-mail: victoria.choserot@wur.nl<br />

Jaap Molenaar 1,3<br />

e-mail: jaap.molenaar@wur.nl<br />

1 Biometris, Plant Sciences Group, Wageningen University and Research<br />

Center, Wageningen, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

2 Bioscience, Plant Research Internati<strong>on</strong>al, Wageningen, University<br />

and Research Center, Wageningen, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

3 Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands C<strong>on</strong>sortium for Systems Biology, Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>er-<br />

lands<br />

Glycosylati<strong>on</strong> Networks in Tomato, Top-down and<br />

Bottom-up Inference Combined<br />

Tomato (Solanum Lycopersicum) is a comm<strong>on</strong> element in human diet. In 2009,<br />

more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 140000 milli<strong>on</strong> t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tomatoes were produced worldwide. Tomato fruit<br />

c<strong>on</strong>tains relatively large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> flav<strong>on</strong>oids. Flav<strong>on</strong>oids have recently gained<br />

growing interest due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir anticipated positive heal<str<strong>on</strong>g>th</str<strong>on</strong>g> effects as antioxidants.<br />

As is <str<strong>on</strong>g>th</str<strong>on</strong>g>e case for many plant metabolites, flav<strong>on</strong>oids mainly occur in glycosylated<br />

form. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough it is widely accepted <str<strong>on</strong>g>th</str<strong>on</strong>g>at glycosylati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance<br />

to maintain metabolic homeostasis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e diverse glycosides,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e specificity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e involved enzymes is not known. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we combine<br />

experiments and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling to infer <str<strong>on</strong>g>th</str<strong>on</strong>g>e network governing flav<strong>on</strong>ol<br />

glycosylati<strong>on</strong>, and study its functi<strong>on</strong>ing in vivo.<br />

Tomato seedlings are grown under different c<strong>on</strong>diti<strong>on</strong>s, and flav<strong>on</strong>oid glycoside<br />

c<strong>on</strong>centrati<strong>on</strong>s are measured for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>secutive days. To infer <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

flav<strong>on</strong>oid glycosylati<strong>on</strong> network from <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting time-series, we combine two different<br />

approaches. First, we make use <str<strong>on</strong>g>of</str<strong>on</strong>g> a top-down approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at has as starting<br />

point a priori obtained general biological knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular reacti<strong>on</strong>s and<br />

metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways in plants. This knowledge leads to a number <str<strong>on</strong>g>of</str<strong>on</strong>g> candidate<br />

structures for <str<strong>on</strong>g>th</str<strong>on</strong>g>e network. In a fitting procedure, we estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> rates in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model, formulated in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s, by applying an<br />

iterative minimizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od in order to match <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong>s.<br />

The best fitting network is <str<strong>on</strong>g>th</str<strong>on</strong>g>en selected.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e bottom-up approach <strong>on</strong>e directly infers <str<strong>on</strong>g>th</str<strong>on</strong>g>e network structure from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

data via a statistical approach. We explore a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>th</str<strong>on</strong>g>at involves <strong>on</strong>ly simple<br />

matrix manipulati<strong>on</strong>s and standard statistics. In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> frameworks we inherently<br />

exploit <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-series structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data. Because <str<strong>on</strong>g>th</str<strong>on</strong>g>e data are noisy, it turned<br />

out difficult to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e flav<strong>on</strong>oid network using ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e top-down or <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

bottom-up approach separately. However, by combining bo<str<strong>on</strong>g>th</str<strong>on</strong>g> approaches we were<br />

able to obtain a reliable estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network model for flav<strong>on</strong>oid glycosylati<strong>on</strong><br />

in spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>siderable noise.<br />

62


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Irem Atac<br />

Researcher at Kocaeli University, TURKEY<br />

e-mail: irem.atac@kocaeli.edu.trspamuk@kocaeli.edu.tr<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr. Serdal Pamuk<br />

Kocaeli University, TURKEY<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

On The Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Steady-State Soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell<br />

Equati<strong>on</strong>s in a Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> Model<br />

The stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady-state soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial, pericyte and macrophage<br />

cells equati<strong>on</strong>s in a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model originally presented in Levine, H.A., et<br />

al., A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e roles <str<strong>on</strong>g>of</str<strong>on</strong>g> pericytes and macrophages in <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis. I. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> protease inhibitors in preventing angiogenesis,<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.Biosci., 168(1) 2000, 77-115, is studied. Trajectories near <str<strong>on</strong>g>th</str<strong>on</strong>g>e critical points<br />

are drawn and <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results are provided.<br />

63


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Thursday, June 30, 11:30<br />

K.K. Avilov<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> RAS, Moscow, Russia<br />

e-mail: avilov@mail.inm.ras.ru<br />

Case detecti<strong>on</strong> rate: what can be estimated wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out<br />

prevalence surveys?<br />

Case detecti<strong>on</strong> rate (CDR) defined as <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> incident cases <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

disease <str<strong>on</strong>g>th</str<strong>on</strong>g>at are detected (i.e. diagnosed and notified) is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

for m<strong>on</strong>itoring <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiological situati<strong>on</strong> and for forecasting and operati<strong>on</strong>al<br />

research. Moreover, case detecti<strong>on</strong> rates are used as target indicators in political<br />

documents (for example, target 70% CDR for smear-positive tuberculosis had been<br />

set by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Millennium Development Goals [1]).<br />

It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten stated <str<strong>on</strong>g>th</str<strong>on</strong>g>at CDR is hard to estimate because it is calculated as<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e routinely notified incidence to an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> full (unobserved)<br />

incidence, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter being very unreliable. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e field <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e usual<br />

recommendati<strong>on</strong> is performing regular prevalence surveys to calculate incidence<br />

ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er directly or indirectly. But representative prevalence surveys are ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er costly<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g>ten logistically complicated. The workarounds for <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem include using<br />

expert estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> CDR [2] and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term trends and interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

HIV [3].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk, presented will be a model <str<strong>on</strong>g>th</str<strong>on</strong>g>at regards case detecti<strong>on</strong> and disease<br />

progressi<strong>on</strong> as competing processes, <str<strong>on</strong>g>th</str<strong>on</strong>g>us deriving a relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> case detecti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e severity (or age) <str<strong>on</strong>g>of</str<strong>on</strong>g> disease at <str<strong>on</strong>g>th</str<strong>on</strong>g>e moment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

detecti<strong>on</strong> [4]. In many settings some kind <str<strong>on</strong>g>of</str<strong>on</strong>g> disease severity measure is available<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e routine notificati<strong>on</strong> data, and so it is possible to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e CDR. For<br />

tuberculosis, such a measure may use data <strong>on</strong> smear microscopy, bacteriological<br />

tests, chest X-ray, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e physician’s diagnosis.<br />

This approach may be extended to incorporate individual socio-ec<strong>on</strong>omical<br />

properties and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir effect <strong>on</strong> individual case detecti<strong>on</strong> intensity [5]. The analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cases substantially differ in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir availability for<br />

detecti<strong>on</strong>, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> “social involvement” and sex being <str<strong>on</strong>g>th</str<strong>on</strong>g>e most significant factors.<br />

This result erects <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> how much <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e models based <strong>on</strong> homogeneity assumpti<strong>on</strong>s – in <str<strong>on</strong>g>th</str<strong>on</strong>g>is case, <strong>on</strong> evenly<br />

effective detecti<strong>on</strong> system. In fact, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model estimates CDR for <str<strong>on</strong>g>th</str<strong>on</strong>g>e social strata<br />

readily available for case detecti<strong>on</strong>. This estimate al<strong>on</strong>e may be a useful point<br />

indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> practical efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e case detecti<strong>on</strong> system. But wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some support<br />

form prevalence studies (especially targeting <str<strong>on</strong>g>th</str<strong>on</strong>g>e “ill-detectable” strata) it is possible<br />

to estimate CDR and incidence accurately for <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole populati<strong>on</strong>.<br />

References.<br />

[1] Resoluti<strong>on</strong> A/55/2. United Nati<strong>on</strong>s Millennium Declarati<strong>on</strong>. 32. Fifty-fif<str<strong>on</strong>g>th</str<strong>on</strong>g> United Nati<strong>on</strong>s<br />

General Assembly, New York, 18 September 2000 (Document A/RES/53/202).<br />

[2] Dye C, Scheele S, Dolin P, Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ania V, Ravigli<strong>on</strong>e MC. C<strong>on</strong>sensus statement. Global burden<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global<br />

Surveillance and M<strong>on</strong>itoring Project. JAMA. 1999;282(7):677-86.<br />

64


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] Mansoer J, Scheele S, Floyd K, Dye C, Sitienei J, Williams B. New me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for estimating<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tuberculosis case detecti<strong>on</strong> rate in high-HIV prevalence countries: <str<strong>on</strong>g>th</str<strong>on</strong>g>e example <str<strong>on</strong>g>of</str<strong>on</strong>g> Kenya.<br />

Bull. World. Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>. Organ. 2009;87(3):186-92, 192A-192B.<br />

[4] Avilov KK, Romanyukha AA. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis propagati<strong>on</strong> and patient<br />

detecti<strong>on</strong>. Automati<strong>on</strong> and Remote C<strong>on</strong>trol. 2007; 68(9):1604-1617.<br />

[5] Avilov KK. Statistical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> factors determining detected tuberculosis incidence. Russian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical Analysis and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling. 2009; 24(4):309-324.<br />

65


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Franciane Azevedo<br />

Institute for Theoretical Physics<br />

e-mail: fran@ift.unesp.br<br />

Models in Spatial Ecology; Tuesday, June 28, 17:00<br />

The spatial dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diphenic plan<str<strong>on</strong>g>th</str<strong>on</strong>g>opper<br />

We study <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a wing diphenic insect species (when two<br />

phenotypes can arise from <str<strong>on</strong>g>th</str<strong>on</strong>g>e same genotype) where <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> wings can vary<br />

largely, from almost inexistent (brachypterous) to fully developed (macropterous).<br />

Macropterous individuals are born <strong>on</strong>ly when <str<strong>on</strong>g>th</str<strong>on</strong>g>e total density is higher <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

a certain value. This induces a density-dependent diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e species.<br />

We c<strong>on</strong>struct a stage structured (nymphs and adults) model, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> adults fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

sub-divided in macropterous and brachypterous. Space is introduced explicitly by<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> equati<strong>on</strong>s, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> c<strong>on</strong>stant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macropterous subpopulati<strong>on</strong><br />

being much higher <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers.<br />

We focus <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics originating from an initially small and c<strong>on</strong>centrated<br />

populati<strong>on</strong>, which is shown to expand, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> macropterous individuals as predecessors<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er stages. The invasi<strong>on</strong> fr<strong>on</strong>t displays a particular form, originating<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e stage-structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

66


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling physiological systems: model validati<strong>on</strong> and experimental design<br />

issues; Wednesday, June 29, 11:00<br />

Mostafa Bachar<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, King Saud University, Saudi Arabia<br />

e-mail: mbachar@ksu.edu.sa<br />

Franz Kappel<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Scientific Computing, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Graz,<br />

Austria<br />

e-mail: franz.kappel@uni-graz.at<br />

Peter Kotanko<br />

Renal Research Institute, New York<br />

e-mail: PKotanko@rriny.com<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose insulin system during<br />

hemodialysis using different dialysate glucose c<strong>on</strong>centrati<strong>on</strong>s.<br />

This talk we will presents sensitivity identifiably analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose insulin system during hemodialysis based <strong>on</strong> minimal model. This<br />

model incorporates sufficient structure and complexity to allow for examining <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

metabolic acti<strong>on</strong> and regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose and insulin systems. The complexity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model allows for <str<strong>on</strong>g>th</str<strong>on</strong>g>e representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> modes and sites for acti<strong>on</strong> but<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e same time <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters renders <str<strong>on</strong>g>th</str<strong>on</strong>g>e validati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> accessible<br />

data limitati<strong>on</strong> problematic. Subset selecti<strong>on</strong> techniques are employed to examine<br />

which parameters are mostly likely identifiable for a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> potential sources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

data <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system.<br />

67


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent developments in <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> Lotka-Volterra and Kolmogorov<br />

systems; Saturday, July 2, 14:30<br />

Stephen Baigent<br />

University College L<strong>on</strong>d<strong>on</strong><br />

e-mail: s.baigent@ucl.ac.uk<br />

The curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> carrying simplices for competitive<br />

Lotka-Volterra systems<br />

The N dimensi<strong>on</strong>al totally competitive Lotka-Volterra equati<strong>on</strong>s have a Lipschitz<br />

invariant manifold <str<strong>on</strong>g>th</str<strong>on</strong>g>at attracts all points in <str<strong>on</strong>g>th</str<strong>on</strong>g>e first quadrant except <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin.<br />

For N=2 it is known <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is manifold is ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er c<strong>on</strong>vex or c<strong>on</strong>cave, and for N=3<br />

numerical evidence suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e manifold cannot change sign.<br />

I shall discuss a new me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for proving <str<strong>on</strong>g>th</str<strong>on</strong>g>e N=2 case and also outline some recent<br />

progress towards understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e N=3 case, including special cases where <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

manifold can be shown to be c<strong>on</strong>vex, saddle-like or a developable surface.<br />

68


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Archana Bajpai<br />

Micros<str<strong>on</strong>g>of</str<strong>on</strong>g>t Research-University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento CoSBi<br />

e-mail: archana.bioinfo@gmail.com<br />

F. Vaggi<br />

F. Jordan<br />

A. Csikasz-Nagy<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Computati<strong>on</strong>al analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g> regulatory<br />

network <str<strong>on</strong>g>of</str<strong>on</strong>g> fissi<strong>on</strong> yeast cells<br />

The rod shaped fissi<strong>on</strong> yeast cells grow <strong>on</strong>ly at <str<strong>on</strong>g>th</str<strong>on</strong>g>eir tip, unidirecti<strong>on</strong>al grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in<br />

G1 is followed by leng<str<strong>on</strong>g>th</str<strong>on</strong>g> extensi<strong>on</strong> also from <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er end in G2. Microtubules are<br />

resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e proper localizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> z<strong>on</strong>es at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tips and localized<br />

actin polymerizati<strong>on</strong> is needed for grow<str<strong>on</strong>g>th</str<strong>on</strong>g> inducti<strong>on</strong>. Similar actin polymerizati<strong>on</strong><br />

process in <str<strong>on</strong>g>th</str<strong>on</strong>g>e middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell is needed for cytokinesis. Several members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

molecular network <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>nect microtubule and actin dynamics to cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

cell divisi<strong>on</strong> are identified and some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong>s are also known, but <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

data do not give a complete picture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. After identifying <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>served<br />

regulatory molecules and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong>s in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er organisms we perform network<br />

analysis <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicted interacti<strong>on</strong> network <str<strong>on</strong>g>of</str<strong>on</strong>g> fissi<strong>on</strong> yeast grow<str<strong>on</strong>g>th</str<strong>on</strong>g> regulatory<br />

system to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e key core comp<strong>on</strong>ents and <str<strong>on</strong>g>th</str<strong>on</strong>g>e links <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>nect cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

and cell cycle regulati<strong>on</strong>. We are analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e networks also from bottom-up by<br />

creating computati<strong>on</strong>al models for <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e core regulators <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

divisi<strong>on</strong> and cell polarity.<br />

69


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

C<strong>on</strong>necting microscale and macroscale models <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular migrati<strong>on</strong>;<br />

Tuesday, June 28, 17:00<br />

Ru<str<strong>on</strong>g>th</str<strong>on</strong>g> Baker<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: ru<str<strong>on</strong>g>th</str<strong>on</strong>g>.baker@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.yk<br />

Dr Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew Simps<strong>on</strong><br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Queensland University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Corrected mean-field models for spatially-dependent<br />

advecti<strong>on</strong>-diffusi<strong>on</strong>-reacti<strong>on</strong> phenomena<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e exclusi<strong>on</strong>-process literature, mean-field models are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten derived by assuming<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e occupancy status <str<strong>on</strong>g>of</str<strong>on</strong>g> lattice sites is independent. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>is assumpti<strong>on</strong><br />

is questi<strong>on</strong>able, it is <str<strong>on</strong>g>th</str<strong>on</strong>g>e foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many mean-field models. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we<br />

develop me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to relax <str<strong>on</strong>g>th</str<strong>on</strong>g>e independence assumpti<strong>on</strong> for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete exclusi<strong>on</strong><br />

process-based mechanisms motivated by applicati<strong>on</strong>s from <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell biology<br />

literature. Previous investigati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at focussed <strong>on</strong> relaxing <str<strong>on</strong>g>th</str<strong>on</strong>g>e independence assumpti<strong>on</strong><br />

have been limited to studying initially-uniform populati<strong>on</strong>s and ignored<br />

any spatial variati<strong>on</strong>s. These previous corrected mean-field models could not be<br />

applied to many important problems in cell biology such as invasi<strong>on</strong> waves <str<strong>on</strong>g>of</str<strong>on</strong>g> cells<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at are characterised by moving fr<strong>on</strong>ts. Here we propose me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>th</str<strong>on</strong>g>at relax <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

independence assumpti<strong>on</strong> leading to corrected mean-field descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

exclusi<strong>on</strong> process-based models <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporate (i) unbiased motility, (ii) biased<br />

motility, and (iii) unbiased motility wi<str<strong>on</strong>g>th</str<strong>on</strong>g> agent bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and dea<str<strong>on</strong>g>th</str<strong>on</strong>g> processes. The corrected<br />

mean-field models derived here are applicable to spatially-variable processes<br />

including invasi<strong>on</strong> wave-type problems. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere can be large deviati<strong>on</strong>s<br />

between simulati<strong>on</strong> data and traditi<strong>on</strong>al mean-field models based <strong>on</strong> invoking<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e independence assumpti<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e corrected mean-field<br />

models give an improved match to <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> data in all cases c<strong>on</strong>sidered.<br />

70


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Wednesday, June 29, 17:00<br />

Suruchi Bakshi<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: bakshi@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Paul C<strong>on</strong>duit<br />

Sir William Dunn School <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Omer Dushek<br />

Sir William Dunn School <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Ru<str<strong>on</strong>g>th</str<strong>on</strong>g> Baker<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Jordan Raff<br />

Sir William Dunn School <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Eam<strong>on</strong>n Gaffney<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Philip Maini<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Breaking <str<strong>on</strong>g>th</str<strong>on</strong>g>e symmetry: understanding Centrosomin<br />

incorporati<strong>on</strong> in Drosophila centrosomes in order to study<br />

asymmetric divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neural stem cells.<br />

A size asymmetry between <str<strong>on</strong>g>th</str<strong>on</strong>g>e centrosomes in certain Drosophila stem cells is important<br />

for proper asymmetric cell divisi<strong>on</strong>. How <str<strong>on</strong>g>th</str<strong>on</strong>g>is centrosome size asymmetry<br />

is c<strong>on</strong>trolled is a key questi<strong>on</strong> in stem cell biology. It has recently been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

differential rates <str<strong>on</strong>g>of</str<strong>on</strong>g> Centrosomin (Cnn) incorporati<strong>on</strong> into centrosomes may lead<br />

to centrosome size asymmetry in Drosophila neural stem cells. Cnn forms a gradient<br />

in pericentriolar matrix (PCM) and live imaging combined wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fluorescence<br />

recovery after photobleaching (FRAP) analysis has revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at Cnn molecules<br />

first incorporate into <str<strong>on</strong>g>th</str<strong>on</strong>g>e centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PCM and <str<strong>on</strong>g>th</str<strong>on</strong>g>en spreads outwards <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PCM. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we propose a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a coupled system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear reacti<strong>on</strong>-diffusi<strong>on</strong> type equati<strong>on</strong>s to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

observed Cnn behaviour. We hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esise <str<strong>on</strong>g>th</str<strong>on</strong>g>at Cnn binds to its receptors near <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PCM and is c<strong>on</strong>verted into a ’heavy’ form which diffuses slowly as<br />

compared to cytoplasmic Cnn. Diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy Cnn <str<strong>on</strong>g>th</str<strong>on</strong>g>en creates a gradient<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e PCM. Steady state analysis shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at heavy Cnn forms an exp<strong>on</strong>entially<br />

decreasing gradient at steady state, which matches well wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimentally<br />

observed Cnn gradient. Numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model also predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e FRAP<br />

kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> Cnn. Once we understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> Cnn incorporati<strong>on</strong>, we may<br />

be able to predict how <str<strong>on</strong>g>th</str<strong>on</strong>g>is mechanism could be exploited to create centrosome size<br />

asymmetry in Drosophila neural stem cells.<br />

71


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent developments in <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> Lotka-Volterra and Kolmogorov<br />

systems; Saturday, July 2, 14:30<br />

Joanna Balbus<br />

Wroclaw University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: joanna.balbus@pwr.wroc.pl<br />

Average c<strong>on</strong>diti<strong>on</strong>s for permanence in N-species<br />

n<strong>on</strong>aut<strong>on</strong>omous competitive systems <str<strong>on</strong>g>of</str<strong>on</strong>g> PDEs<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we c<strong>on</strong>sider a n<strong>on</strong>aut<strong>on</strong>omous systems <str<strong>on</strong>g>of</str<strong>on</strong>g> PDEs<br />

⎧<br />

⎪⎨<br />

∂ui<br />

∂t<br />

⎪⎩<br />

= ∆ui + fi(t, x, u1, . . . , uN )ui, t > 0, x ∈ Ω, i = 1, . . . , N<br />

Bui = 0, t > 0, x ∈ ∂Ω, i = 1, . . . , N,<br />

where Ω is a bounded domain wi<str<strong>on</strong>g>th</str<strong>on</strong>g> sufficiently smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> boundary ∂Ω, ∆ is <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Laplace operator <strong>on</strong> Ω, and B is <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary operator <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Neumann or Dirichlet<br />

type. Applying <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ahmad and Lazer’s definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lower and upper averages <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a functi<strong>on</strong> we give average c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e permanence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Neumann case we also give a sufficient c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e system to be globally<br />

attractive.<br />

72


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Annabelle Ballesta<br />

INRIA<br />

e-mail: annabelle.ballesta@inria.fr<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

A Combined Experimental and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Approach for<br />

Molecular-based Pers<strong>on</strong>alizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Irinotecan Circadian<br />

Delivery<br />

Irinotecan is an anticancer drug which is currently in use for chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy against<br />

colorectal cancer. Its pharmacokinetics (PK- what <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells do to <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug, e.g.<br />

metabolizati<strong>on</strong>, transport), and pharmacodynamics (PD- what <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug does to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cells, e.g. DNA damage) are largely influenced by 24-hour-period rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

certain proteins including <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug target Topoisomerase I, <str<strong>on</strong>g>th</str<strong>on</strong>g>e activati<strong>on</strong> enzymes<br />

(Carboxylesterases), <str<strong>on</strong>g>th</str<strong>on</strong>g>e deactivati<strong>on</strong> enzymes (UGT1A1,UGT1A9) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ABC<br />

transporters which are resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e efflux <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug. Indeed circadian<br />

rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms have been described for most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose proteins bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in humans and in<br />

mice. A chr<strong>on</strong>omodulated scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> administrati<strong>on</strong> for Irinotecan is already used<br />

in clinic but recent findings highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>e need <str<strong>on</strong>g>of</str<strong>on</strong>g> pers<strong>on</strong>alized chr<strong>on</strong>o<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutics<br />

delivery pattern according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e patient gender and genetic background ([1]).<br />

Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> project TEMPO, Irinotecan chr<strong>on</strong>otoxicity has been studied<br />

in mice and <str<strong>on</strong>g>th</str<strong>on</strong>g>ree classes have been determined wi<str<strong>on</strong>g>th</str<strong>on</strong>g> regards to Irinotecan best circadian<br />

hour <str<strong>on</strong>g>of</str<strong>on</strong>g> administrati<strong>on</strong> (i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e hour which induces <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimal toxicity).<br />

Our modeling approach aims at identifying molecular biomarkers which could discriminate<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e classes and at designing optimal chr<strong>on</strong>omodulated infusi<strong>on</strong><br />

scheme for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em. A whole body physiologically-based PK-PD model has<br />

been built starting from a previous ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model designed <str<strong>on</strong>g>th</str<strong>on</strong>g>anks to a cell<br />

culture study ([2]) . Parameters have been estimated for each mouse class by fitting<br />

available data <strong>on</strong> tissular PK for two different circadian hours <str<strong>on</strong>g>of</str<strong>on</strong>g> administrati<strong>on</strong> and<br />

<strong>on</strong> circadian rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant proteins. Validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

by comparing its output wi<str<strong>on</strong>g>th</str<strong>on</strong>g> independent experimental data is in progress. Then<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter set will be compared in order to find differences between <str<strong>on</strong>g>th</str<strong>on</strong>g>e classes<br />

and optimizati<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms will be applied to <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to design <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically<br />

optimal chr<strong>on</strong>omodulated scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> administrati<strong>on</strong>. This study in mice may give<br />

a hint for determining molecular biomarkers which should be measured in patients<br />

in order to tailored chr<strong>on</strong>omodulated infusi<strong>on</strong> schemes.<br />

1.Lévi F, Okyar A, Dul<strong>on</strong>g S, Innominato PF, Clairambault J., Circadian timing<br />

in cancer treatments, Annu Rev Pharmacol Toxicol. 2010;50:377-421. 2.Ballesta<br />

A, Dul<strong>on</strong>g S, Abbara C, Cohen B, Okyar A, Clairambault J et al. A combined biological<br />

and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical approach to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e anticancer drug Irinotecan molecular<br />

pharmacokinetics-pharmacodynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>trol by <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian clock,<br />

under revisi<strong>on</strong>.<br />

73


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Structure and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Reacti<strong>on</strong> Networks II; Tuesday, June<br />

28, 17:00<br />

Murad Banaji<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Portsmou<str<strong>on</strong>g>th</str<strong>on</strong>g>, UK<br />

e-mail: murad.banaji@port.ac.uk<br />

M<strong>on</strong>ot<strong>on</strong>e dynamics in chemical reacti<strong>on</strong> networks<br />

Proving <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e allowed dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> certain classes <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical reacti<strong>on</strong> networks<br />

(CRNs) is necessarily simple regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetics is bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> interest in itself,<br />

and potentially provides insight into how more complex dynamics can arise. Here,<br />

recent <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <strong>on</strong> m<strong>on</strong>ot<strong>on</strong>e dynamical systems is applied to dem<strong>on</strong>strate local and<br />

global stability <str<strong>on</strong>g>of</str<strong>on</strong>g> equilibria for a class <str<strong>on</strong>g>of</str<strong>on</strong>g> CRNs. The stability results arise from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two structures which occur frequently in CRNs: preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a partial order and <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. The class shown to have<br />

str<strong>on</strong>g stability properties is defined via <str<strong>on</strong>g>th</str<strong>on</strong>g>e network structure, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>ly weak<br />

assumpti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> kinetics. The key c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network are (i)<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e stoichiometric matrix can be factorised in a certain way, and (ii) <str<strong>on</strong>g>th</str<strong>on</strong>g>at an<br />

associated digraph is str<strong>on</strong>gly c<strong>on</strong>nected.<br />

74


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Plants, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and transport processes II; Tuesday, June 28, 14:30<br />

L. R. Band<br />

Centre for Plant Integrative Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, UK<br />

e-mail: Leah.Band@nottingham.ac.uk<br />

S. Úbeda-Tomás<br />

Centre for Plant Integrative Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, UK<br />

e-mail: Susana.Ubeda-Tomas@nottingham.ac.uk<br />

R. J. Dys<strong>on</strong><br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Birmingham, UK<br />

e-mail: R.J.Dys<strong>on</strong>@bham.ac.uk<br />

A. M. Middlet<strong>on</strong><br />

Albert-Ludwigs-Universität, Freiburg, Germany<br />

e-mail: Alistair.Middlet<strong>on</strong>@mail.zbsa.uni-freiburg.de<br />

M. J. Bennett<br />

Centre for Plant Integrative Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, UK<br />

e-mail: Malcolm.Bennett@nottingham.ac.uk<br />

O. E. Jensen<br />

Centre for Plant Integrative Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, UK<br />

e-mail: Oliver.Jensen@nottingham.ac.uk<br />

J. R. King<br />

Centre for Plant Integrative Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, UK<br />

e-mail: John.King@nottingham.ac.uk<br />

Modelling horm<strong>on</strong>e-regulated plant root grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Researchers at <str<strong>on</strong>g>th</str<strong>on</strong>g>e Centre for Plant Integrative Biology are using systems approaches<br />

to investigate plant root grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and development. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we present<br />

a multiscale model <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes how <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>e GA regulates grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e root<br />

el<strong>on</strong>gati<strong>on</strong> z<strong>on</strong>e. The model includes: (i) horm<strong>on</strong>e diffusi<strong>on</strong> and diluti<strong>on</strong>, (ii) a genetic<br />

regulatory network <str<strong>on</strong>g>th</str<strong>on</strong>g>at details how <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>e affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e DELLA proteins,<br />

(iii) a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how <str<strong>on</strong>g>th</str<strong>on</strong>g>e DELLA proteins influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell-wall remodelling<br />

enzymes, and finally (iv) a submodel linking cell-wall remodeling to grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Using<br />

detailed morphological measurements, our model shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g> causes<br />

significant horm<strong>on</strong>e diluti<strong>on</strong> which can led to spatial variati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e key grow<str<strong>on</strong>g>th</str<strong>on</strong>g>regulating<br />

proteins. By modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>is feedback loop, we provide understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotypes observed in wild-type and mutant plants.<br />

75


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Jörg Bandura<br />

Theoretical Biology, IZMB, University <str<strong>on</strong>g>of</str<strong>on</strong>g> B<strong>on</strong>n, Germany<br />

e-mail: bandura@chaos-engine.net<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Wolfgang Alt<br />

Theoretical Biology, IZMB, University <str<strong>on</strong>g>of</str<strong>on</strong>g> B<strong>on</strong>n, Germany<br />

e-mail: wolf.alt@uni-b<strong>on</strong>n.de<br />

Cell migrati<strong>on</strong> inspired design <str<strong>on</strong>g>of</str<strong>on</strong>g> crawling robots<br />

Animal tissue cells (as fibroblasts and keratinocytes) are utilising a unique principle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> locomoti<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesive cell migrati<strong>on</strong> for crawling <strong>on</strong> a fixed substratum.<br />

It is a higly complex process involving <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> and multiple regulati<strong>on</strong><br />

mechanisms [1]. The moving cell is polarised as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> asymmetric cytoskelet<strong>on</strong><br />

modificati<strong>on</strong>s by assembling and disassembling micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments [2]. Transmembrane<br />

glycoproteines such as integrins adhere to <str<strong>on</strong>g>th</str<strong>on</strong>g>e substratum and are dynamically coupled<br />

to actin filaments inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell, which are cross-linked to myosin dimers. By<br />

exerti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tractile stress <str<strong>on</strong>g>th</str<strong>on</strong>g>is actomyosin complex is able to transfer a tracti<strong>on</strong><br />

force <strong>on</strong>to <str<strong>on</strong>g>th</str<strong>on</strong>g>e substratum, enhancing cell polarisati<strong>on</strong>: at <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t, ’s<str<strong>on</strong>g>of</str<strong>on</strong>g>t’ centripetal<br />

forces pull <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell body forwards, whereas in <str<strong>on</strong>g>th</str<strong>on</strong>g>e rear, ’stiff’ centripetal<br />

forces mechanically disrupts <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell from <str<strong>on</strong>g>th</str<strong>on</strong>g>e substratum [3].<br />

This project is using <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic physical principles causing <str<strong>on</strong>g>th</str<strong>on</strong>g>e propulsi<strong>on</strong> during cell<br />

migrati<strong>on</strong> as a bio-inspired approach for designing a new form <str<strong>on</strong>g>of</str<strong>on</strong>g> crawling robot locomoti<strong>on</strong>.<br />

The aim is not to copy <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell migrati<strong>on</strong> mechanism itself but ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er its<br />

basic physical outline. This outline c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> an aut<strong>on</strong>omously induced gradient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stiffness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhering cell cortex, increasing from fr<strong>on</strong>t to rear, persisting during<br />

migrati<strong>on</strong> due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e successive assembly and streng<str<strong>on</strong>g>th</str<strong>on</strong>g>ening <str<strong>on</strong>g>of</str<strong>on</strong>g> micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesi<strong>on</strong> sites. These physical properties are implemented into a computati<strong>on</strong>al<br />

model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> corresp<strong>on</strong>ding simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> an aut<strong>on</strong>omous self-crawling and<br />

self-deforming robot. The two-dimensi<strong>on</strong>al model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> double elastic chains,<br />

linked by radial elastic segments, which adapt <str<strong>on</strong>g>th</str<strong>on</strong>g>eir stiffness and elasticity to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

adhesi<strong>on</strong> or n<strong>on</strong>-adhesi<strong>on</strong> state over time: building up a gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> stiffness during<br />

adhesi<strong>on</strong> and decreasing it after disrupti<strong>on</strong>.<br />

Simulati<strong>on</strong> runs dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is able to move aut<strong>on</strong>omously and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at it is capable to move upwards inclinati<strong>on</strong>s and walls wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out losing stability.<br />

The model is designed simple enough for c<strong>on</strong>structi<strong>on</strong> in reality. This leads to<br />

possibly new forms <str<strong>on</strong>g>of</str<strong>on</strong>g> crawling locomoti<strong>on</strong> in robotics, advantageous in situati<strong>on</strong>s,<br />

where legged and wheeled propulsi<strong>on</strong> is not usable or working.<br />

References.<br />

[1] Lauffenburger DA, Horwitz AF (1996) Cell migrati<strong>on</strong>: a physically integrated molecular process,<br />

Cell, 84, pp. 359–369.<br />

[2] Evans EA, Calderwood DA (2007) Forces and b<strong>on</strong>d dynamics in cell adhesi<strong>on</strong>, Science, 316,<br />

pp. 1148–1153.<br />

[3] Alt W, Bock M, Möhl C (2010) Coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> cytoplasm and adhesi<strong>on</strong> dynamics determines cell<br />

polarizati<strong>on</strong> and locomoti<strong>on</strong>, in: A. Chauvière, L. Preziosi, C. Verdier Cell Mechanics: From<br />

Single Cell-Based Models to Multiscale Modeling, Chapman & Hall CRC, L<strong>on</strong>d<strong>on</strong>, pp. 89–131.<br />

76


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models in Eco-epidemiology I; Wednesday, June 29, 08:30<br />

Malay Banerjee<br />

I. I. T. Kanpur, Kanpur - 208016, INDIA<br />

e-mail: malayb@iitk.ac.in<br />

Deterministic Chaos vs. Stochastic Oscillati<strong>on</strong> in an<br />

Eco-epidemic Model<br />

Eco-epidemiological models <str<strong>on</strong>g>of</str<strong>on</strong>g> prey-predator interacti<strong>on</strong> in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

affecting ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er or bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e species have received significant attenti<strong>on</strong> from various<br />

researchers. Some recent investigati<strong>on</strong> reveals chaotic dynamics for certain range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameter values. Unusual disease related dea<str<strong>on</strong>g>th</str<strong>on</strong>g> or higher grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptible<br />

species or sudden outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease or high rate <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> are possible<br />

explanati<strong>on</strong> behind <str<strong>on</strong>g>th</str<strong>on</strong>g>e chaotic dynamics. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese modeling approaches neglected<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e demographic stochasticity as well as envir<strong>on</strong>mental stochasticity. Main<br />

objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e presentati<strong>on</strong> is to c<strong>on</strong>struct <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic eco-epidemic model based<br />

up<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing deterministic model and study <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics for a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameter values. The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic model is investigated for two<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter values, first set corresp<strong>on</strong>d to stati<strong>on</strong>ary or periodic scenario<br />

and sec<strong>on</strong>d set corresp<strong>on</strong>d to chaotic oscillati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic model. It is<br />

interesting to note <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er species is not chaotic wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in stochastic<br />

setup ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>ey exhibit n<strong>on</strong>-equilibrium fluctuati<strong>on</strong> around some average<br />

values for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> types <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter values. Chance <str<strong>on</strong>g>of</str<strong>on</strong>g> extincti<strong>on</strong> and expected time<br />

to extincti<strong>on</strong> is also studied wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e help <str<strong>on</strong>g>of</str<strong>on</strong>g> exhaustive numerical simulati<strong>on</strong>s.<br />

77


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Wednesday, June 29, 08:30<br />

Maria Barbarossa<br />

Technische Universität München, Chair for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling<br />

e-mail: barbarossa@ma.tum.de<br />

Christina Kuttler<br />

Technische Universität München, Chair for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling<br />

Delay equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> tumoral cells<br />

Cancer is nowadays <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most complex severe diseases in <str<strong>on</strong>g>th</str<strong>on</strong>g>e world. To better<br />

understand it, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biologists have been working for <str<strong>on</strong>g>th</str<strong>on</strong>g>e last decades <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we model a combined treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> immuno- and chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and<br />

its effects <strong>on</strong> a solid tumor.<br />

Many au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors (e.g. Arino, Dys<strong>on</strong> et al.) suggested structured populati<strong>on</strong> models<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer biology. Here, we start wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a tumoral cell populati<strong>on</strong><br />

structured by age and introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs and immuno<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumoral<br />

mass. For a better descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> phase-specific drugs, we define<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree sub-populati<strong>on</strong>s for interphase, mitotic and quiescent cells. Effectors from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

immune system work against every kind <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells, whereas chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is<br />

assumed to be mitosis-specific <strong>on</strong>ly.<br />

Following a similar approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> Bocharov and Hadeler (2000), we derive<br />

a system <str<strong>on</strong>g>of</str<strong>on</strong>g> delay differential equati<strong>on</strong>s equivalent to <str<strong>on</strong>g>th</str<strong>on</strong>g>e original age-structured<br />

model. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough our results apparently resemble <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> Villasana (2003) and Liu<br />

(2007), <str<strong>on</strong>g>th</str<strong>on</strong>g>e model here is not deduced from <str<strong>on</strong>g>th</str<strong>on</strong>g>e mass acti<strong>on</strong> kinetics principles. But<br />

our approach allows us to take care <str<strong>on</strong>g>of</str<strong>on</strong>g> all delayed and undelayed variables and to<br />

locate <str<strong>on</strong>g>th</str<strong>on</strong>g>em at <str<strong>on</strong>g>th</str<strong>on</strong>g>e right place in <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>us providing a better descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological phenomen<strong>on</strong>.<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e delay model bo<str<strong>on</strong>g>th</str<strong>on</strong>g> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e analytical and <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

view and focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer-free equilibrium. Inspired by <str<strong>on</strong>g>th</str<strong>on</strong>g>e work<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors (e.g. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio, 2010), we simulate different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> immuno<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

and estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Our aim is to find c<strong>on</strong>diti<strong>on</strong>s<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor or for its reducti<strong>on</strong> to a life-compatible<br />

size.<br />

References.<br />

[1] O. Arino, A survey <str<strong>on</strong>g>of</str<strong>on</strong>g> structured cell populati<strong>on</strong> dynamics, Acta Bio<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretica 43 (1995).<br />

[2] G. Bocharov, K.P. Hadeler, Structured populati<strong>on</strong> model, c<strong>on</strong>servati<strong>on</strong> laws and delay equati<strong>on</strong>s,<br />

J. Diff. Equa. 168 (2000).<br />

[3] A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio et al., Delay-induced oscillatory dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour-immune system interacti<strong>on</strong>,<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Comp. Mod., Vol.51 (2010)<br />

[4] J. Dys<strong>on</strong>, Asynchr<strong>on</strong>ous exp<strong>on</strong>ential grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in an age-structured populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferating<br />

and quiescent cells, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosc. 177 (2002).<br />

[5] W. Liu et al., A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for M-phase specific chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy including <str<strong>on</strong>g>th</str<strong>on</strong>g>e G0phase<br />

and immunoresp<strong>on</strong>se. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosc. Eng. 4(2), (2007)<br />

[6] M. Villasana, A. Radunskaya, A delay differential equati<strong>on</strong> model for tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

Bio. 47(3), (2003)<br />

[7] M. Barbarossa, C. Kuttler, J. Zinsl, Delay models for tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, in progress.<br />

78


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Mosquito-Borne Diseases; Tuesday, June 28, 11:00<br />

Susana Barbosa<br />

Liverpool School <str<strong>on</strong>g>of</str<strong>on</strong>g> Tropical Medicine<br />

e-mail: sbarbosa@liv.ac.uk<br />

A genetic model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> insecticide resistance in a<br />

heterogeneous envir<strong>on</strong>ment<br />

Protecti<strong>on</strong> measures against insect borne diseases predominantly depend up<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e usage <str<strong>on</strong>g>of</str<strong>on</strong>g> insecticides. Different strategies <str<strong>on</strong>g>of</str<strong>on</strong>g> delivery can use single insecticides<br />

or use <str<strong>on</strong>g>th</str<strong>on</strong>g>em in combinati<strong>on</strong>. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> combined c<strong>on</strong>trol interventi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insecticide resistance in a mosquito populati<strong>on</strong> has not been assessed<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e model presented here is designed to be a starting point.<br />

We incorporate <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> insecticides outside <str<strong>on</strong>g>th</str<strong>on</strong>g>e household and <str<strong>on</strong>g>th</str<strong>on</strong>g>e advent<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new generati<strong>on</strong> l<strong>on</strong>g-lasting insecticidal nets <str<strong>on</strong>g>th</str<strong>on</strong>g>at allegedly have increased efficacy<br />

against pyre<str<strong>on</strong>g>th</str<strong>on</strong>g>roid-resistant malaria vectors. Here we describe a model <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

allows mosquitoes to encounter insecticides in several envir<strong>on</strong>ments and explicity<br />

investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> synergists <strong>on</strong> bednets.<br />

The model includes two parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> using a synergist<br />

in combinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a insecticide: <str<strong>on</strong>g>th</str<strong>on</strong>g>e reduce survival due <str<strong>on</strong>g>th</str<strong>on</strong>g>e synergist and <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mosquitoes (males and females) <str<strong>on</strong>g>th</str<strong>on</strong>g>at encounter bo<str<strong>on</strong>g>th</str<strong>on</strong>g> chemicals. These<br />

parameters had a small correlati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> male and female mean fitness suggesting<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>eir impact in <str<strong>on</strong>g>th</str<strong>on</strong>g>e spreading <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance is small. A sensitivity analysis<br />

pinpointed <str<strong>on</strong>g>th</str<strong>on</strong>g>e baseline fitness <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptible homozygotes and <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mosquitoes <str<strong>on</strong>g>th</str<strong>on</strong>g>at enter <str<strong>on</strong>g>th</str<strong>on</strong>g>e household as <str<strong>on</strong>g>th</str<strong>on</strong>g>e most influential parameters and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<strong>on</strong>es <str<strong>on</strong>g>th</str<strong>on</strong>g>at play <str<strong>on</strong>g>th</str<strong>on</strong>g>e major role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> insecticide resistance.<br />

79


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 14:30<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Bartoszek<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Chalmers University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Sweden<br />

e-mail: krzbar@chalmers.se<br />

Jas<strong>on</strong> Pienaar<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pretoria, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa 0002<br />

e-mail: jas<strong>on</strong>.pienaar@up.ac.za<br />

Thomas Hansen<br />

CEES Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oslo, Oslo Norway<br />

e-mail: t.f.hansen@bio.uio.no<br />

Petter Mostad<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Chalmers University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Sweden<br />

e-mail: mostad@chalmers.se<br />

Multivariate comparative analysis<br />

The need for taking into account phylogenetic dependencies between trait measurements<br />

in comparative analysis is some<str<strong>on</strong>g>th</str<strong>on</strong>g>ing which has become obvious. One<br />

approach to capture <str<strong>on</strong>g>th</str<strong>on</strong>g>is dependency is to assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e trait(s) evolve as a time<br />

dependent branching stochastic differential equati<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e phylogenentic tree.<br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is branch <str<strong>on</strong>g>of</str<strong>on</strong>g> comparative analysis started wi<str<strong>on</strong>g>th</str<strong>on</strong>g> [1] and was<br />

c<strong>on</strong>tinued in [2],[3],[4],[5]. However all <str<strong>on</strong>g>th</str<strong>on</strong>g>ese proposed me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods lacked a fully multivariate<br />

implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed models. We have developed a generalizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models into <str<strong>on</strong>g>th</str<strong>on</strong>g>e fully multivariate setting and implemented an estimati<strong>on</strong><br />

package in R to analyze comparative data under <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models. The multivariate<br />

setting gives us much more flexibility and allows to e.g. model codevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

allometry, indicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f and gain understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> trait coevoluti<strong>on</strong>.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk we will discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e multivariate model, possible hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis (allometry,<br />

trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f) <strong>on</strong>e can study wi<str<strong>on</strong>g>th</str<strong>on</strong>g> it and go <str<strong>on</strong>g>th</str<strong>on</strong>g>rough an example study <str<strong>on</strong>g>of</str<strong>on</strong>g> how sexual<br />

selecti<strong>on</strong> acts <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> male canine and body sizes in Primates.<br />

References.<br />

[1] J. Felsenstein Phylogenies and <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparative me<str<strong>on</strong>g>th</str<strong>on</strong>g>od The American Naturalist 1 1–15.<br />

[2] T. Hansen Stabilizing selecti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> Evoluti<strong>on</strong> 51 1341–<br />

1351.<br />

[3] M. Butler and A. King Phylogenetic comparative analysis: a modelling approach for adaptive<br />

evoluti<strong>on</strong> The American Naturalist 164 683–695.<br />

[4] T. Hansen and J. Pienaar and S. Orzack A comparative me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for studying adaptati<strong>on</strong> to<br />

randomly evolving envir<strong>on</strong>ment Evoluti<strong>on</strong> 62 1965–1977.<br />

[5] J. Pienaar and K. Bartoszek and T. Hansen and K. Voje Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> comparative me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

for studying adaptati<strong>on</strong> <strong>on</strong> adaptive landscapes in prep.<br />

80


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Genetics; Wednesday, June 29, 17:00<br />

Wojciech Bartoszek (1) and Małgorzata Pułka (2)<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Gdańsk University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, ul.<br />

Narutowicza 11/12, 80-233 Gdańsk, Poland<br />

e-mail: bartowk@mifgate.mif.pg.gda.pl (1)<br />

e-mail: mpulka@mif.pg.gda.pl (2)<br />

On dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> quadratic stochastic processes and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

applicati<strong>on</strong>s in biology<br />

A quadratic stochastic operator Q : X → X is defined by a cubic (finite or<br />

infinite) array <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>negative real numbers [qij,k]i,j,k≥1 which satisfy<br />

(1) 0 ≤ qij,k = qji,k ≤ 1 for all i, j, k ≥ 1,<br />

(2) <br />

k=1 qij,k = 1 for any pair (i, j),<br />

where X is ℓ1 or ℓ1 d equipped wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a standard norm. The family <str<strong>on</strong>g>of</str<strong>on</strong>g> all quadratic<br />

stochastic operators is denoted by Q. Any quadratic stochastic operator (process)<br />

Q<br />

<br />

may be viewed as a bilinear mapping Q : X × X → X if we set Q(x, y)(k) =<br />

xiyjqij,k. Clearly Q is m<strong>on</strong>ot<strong>on</strong>e (i.e. Q(x, y) ≥ Q(u, w) whenever x ≥ u ≥<br />

i=1,j=1<br />

0 and y ≥ w ≥ 0) and is bounded as sup x1,y1≤1 Q(x, y)1 = 1 . It follows<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at Q may also be viewed as a mapping Q : D × D → D, where D stands for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

simplex <str<strong>on</strong>g>of</str<strong>on</strong>g> probability vectors. In populati<strong>on</strong> genetics a special attenti<strong>on</strong> is paid to<br />

a n<strong>on</strong>linear mapping D ∋ p → Q(p) = Q(p, p). Here Q : D → D. Roughly speaking<br />

Q(p) represents a distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e next generati<strong>on</strong> if parent’s gens have<br />

a distributi<strong>on</strong> p. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is simplified model <str<strong>on</strong>g>th</str<strong>on</strong>g>e iterates Q k (p), where k = 0, 1, . . . ,<br />

describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a genom. Given an initial distributi<strong>on</strong> p ∈ D <strong>on</strong>e may<br />

ask about asymptotic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trajectory (i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e sequence (Q n (p))n≥0).<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linearity, <str<strong>on</strong>g>th</str<strong>on</strong>g>e trajectories enjoy several unexpected features (as it<br />

was c<strong>on</strong>jectured by S. Ulam). In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we discuss some generic properties in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

set Q. We also present c<strong>on</strong>diti<strong>on</strong>s for asymptotic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Q ∈ Q .<br />

81


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance in cancer using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling;<br />

Saturday, July 2, 08:30<br />

David Basanta<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center<br />

e-mail: david@cancerevo.org<br />

Tumour heterogeneity and its role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resistance<br />

Cancers are known to be heterogeneous which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir streng<str<strong>on</strong>g>th</str<strong>on</strong>g> explaining<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> progressi<strong>on</strong> and resistance. N<strong>on</strong>e<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is heterogeneity<br />

is still poorly understood, especially regarding its impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance<br />

to treatment. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we will briefly discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary mechanisms<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>is heterogeneity as well as it is impact in <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance.<br />

Special attenti<strong>on</strong> will be given to <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s between tumur cells and<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour and stroma and <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese interacti<strong>on</strong>s as a potential<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic target.<br />

82


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

David Basanta<br />

H. Lee M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center & Research Institute<br />

e-mail: david@cancerevo.org<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic and envir<strong>on</strong>mental insults in<br />

glioblastoma carcinogenesis<br />

Glioblastoma, <str<strong>on</strong>g>th</str<strong>on</strong>g>e most comm<strong>on</strong> primary brain tumor, is uniformly fatal, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a<br />

majority <str<strong>on</strong>g>of</str<strong>on</strong>g> patients dying wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in 2 years <str<strong>on</strong>g>of</str<strong>on</strong>g> diagnosis. Emerging data suggests<br />

a small subpopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in glioblastoma have stem cell-like properties and<br />

are key to tumourigenesis. C<strong>on</strong>certed efforts to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying biology<br />

regulating <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cells are currently underway, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an overarching goal <str<strong>on</strong>g>of</str<strong>on</strong>g> identifying<br />

novel tumor-specific pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways <str<strong>on</strong>g>th</str<strong>on</strong>g>at may be effectively targeted as a strategy for<br />

anti-cancer <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy.<br />

An important advancement towards our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma stemlike<br />

cells has been identifying <str<strong>on</strong>g>th</str<strong>on</strong>g>e similarities <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cells share wi<str<strong>on</strong>g>th</str<strong>on</strong>g> normal neural<br />

stem cells; most notable being <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical microenvir<strong>on</strong>ment plays in regulating<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir phenotype. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical work has focused<br />

<strong>on</strong> elements extrinsic to <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour microenvir<strong>on</strong>ment, <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

has yet to be explored in relati<strong>on</strong> to glioblastoma stem-like cell biology. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er,<br />

current laboratory-based models are limited in providing meaningful insight into<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex adaptive systems defining <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor microenvir<strong>on</strong>ment may interact<br />

to c<strong>on</strong>tribute towards glioblastoma tumorigenesis. Our goal is to apply an<br />

integrative approach, coupling ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling wi<str<strong>on</strong>g>th</str<strong>on</strong>g> laboratory-based investigati<strong>on</strong>s,<br />

to better understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between glioblastoma stem-like cells<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment driving tumour initiati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e role hypoxia may play<br />

in modulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor stem-cell niche.<br />

83


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models in Eco-epidemiology II; Wednesday, June 29, 11:00<br />

Andrew Bate<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, BA2 7AY, UK<br />

e-mail: A.M.Bate@ba<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Complex dynamics in an eco-epidemiological model<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we incorporate a disease <strong>on</strong> a predator in a Holling type II predatorprey<br />

model. We establish <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease can have a stabilising effect <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system,<br />

bringing predator-prey oscillati<strong>on</strong>s to coexistent equilibrium. However, results<br />

become complex when disease dynamics are much faster <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e predator-prey<br />

dynamics, i.e. for high transmissi<strong>on</strong> and disease-induced dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates. Numerical<br />

soluti<strong>on</strong>s indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> saddle-node and subcritical Hopf bifurcati<strong>on</strong>s,<br />

as well as turning points and branching in periodic soluti<strong>on</strong>s. This means <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere are regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bistability, in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease can have bo<str<strong>on</strong>g>th</str<strong>on</strong>g> a stabilising and<br />

destabilising effect. This holds for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> density-dependent and frequency-dependent<br />

transmissi<strong>on</strong>.<br />

84


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling physiological systems: model validati<strong>on</strong> and experimental design<br />

issues; Wednesday, June 29, 11:00<br />

Jerry Batel<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Graz<br />

e-mail: jerry.batzel@uni-graz.at<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> Sensitivity Identifiability Analysis in Modeling<br />

Human Physiological Systems<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we discuss techniques to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter estimati<strong>on</strong> problem<br />

in models <str<strong>on</strong>g>th</str<strong>on</strong>g>at characterize human physiological systems. In general, <str<strong>on</strong>g>th</str<strong>on</strong>g>e issue is to<br />

balance model complexity and parameter number wi<str<strong>on</strong>g>th</str<strong>on</strong>g> available data, data <str<strong>on</strong>g>th</str<strong>on</strong>g>at is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten restricted by such c<strong>on</strong>straints as accessibility to measurement sites, <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> error in measurements, cost <str<strong>on</strong>g>of</str<strong>on</strong>g> collecting data, and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e clinical setting, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

need to screen patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> tests <str<strong>on</strong>g>th</str<strong>on</strong>g>at are minimally invasive.<br />

As a template example we will present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiovascular<br />

c<strong>on</strong>trol system <str<strong>on</strong>g>of</str<strong>on</strong>g> mid-level complexity <str<strong>on</strong>g>th</str<strong>on</strong>g>at reflects <str<strong>on</strong>g>th</str<strong>on</strong>g>e various pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways<br />

for short-term blood pressure c<strong>on</strong>trol in resp<strong>on</strong>se to various cardiovascular stresses.<br />

The model includes 10 vascular compartments and baroreflex feedback c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

can alter resistance, heart rate and heart c<strong>on</strong>tractility, and unstressed volume to<br />

counteract a perturbati<strong>on</strong> in blood pressure, returning <str<strong>on</strong>g>th</str<strong>on</strong>g>e pressure to its more or<br />

less steady state <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong>. The unstressed blood volume <str<strong>on</strong>g>of</str<strong>on</strong>g> a vascular element is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e natural filling volume <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be accommodated before stretching <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vascular<br />

wall begins. Additi<strong>on</strong>al volume generates transmural pressures <str<strong>on</strong>g>th</str<strong>on</strong>g>at stretch<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e vascular wall (stressed volume). Unstressed volume does not c<strong>on</strong>tribute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamic pressure which determines blood flow. It is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore a reservoir (particularly<br />

venous unstressed volume) <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be transferred (mobilized) by c<strong>on</strong>trol<br />

mechanisms (<str<strong>on</strong>g>th</str<strong>on</strong>g>rough c<strong>on</strong>stricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vessels) to stressed volume when blood volume<br />

is reduced. The model presented is sufficiently complex to characterize resp<strong>on</strong>ses<br />

to a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> system stresses including reducti<strong>on</strong> in blood volume.<br />

Or<str<strong>on</strong>g>th</str<strong>on</strong>g>ostatic stress is caused by blood pooling in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lower limbs when standing<br />

upright, a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity. This pooling removes a percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> blood from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamic circulati<strong>on</strong>. In changing from <str<strong>on</strong>g>th</str<strong>on</strong>g>e pr<strong>on</strong>e to standing positi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol<br />

system must compensate for what is in effect a reducti<strong>on</strong> in blood volume. A<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental protocols such as head up tilt (HUT) and lower body negative<br />

pressure (LBNP) are used to examine system resp<strong>on</strong>se to or<str<strong>on</strong>g>th</str<strong>on</strong>g>ostatic stress.<br />

To illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e difficulties <str<strong>on</strong>g>th</str<strong>on</strong>g>at arise in assessing c<strong>on</strong>trol resp<strong>on</strong>se via diagnostic<br />

testing, we note <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e HUT and LBNP protocols each have specific effects <strong>on</strong><br />

overall physiology which can obscure <str<strong>on</strong>g>th</str<strong>on</strong>g>e examinati<strong>on</strong> and characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> system<br />

resp<strong>on</strong>se. For example, unstressed blood volume is mobilized in different ways<br />

during LBNP, HUT, and or<str<strong>on</strong>g>th</str<strong>on</strong>g>ostasis [2].<br />

Several aspects and problems <str<strong>on</strong>g>of</str<strong>on</strong>g> model validati<strong>on</strong> will be discussed. Various<br />

tools derived from sensitivity analysis will be applied, including bo<str<strong>on</strong>g>th</str<strong>on</strong>g> classical and<br />

generalized sensitivities and subset selecti<strong>on</strong> [1, 3]. Applied jointly, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese tools can<br />

85


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

provide insight into how specific experimental protocols such as HUT and LBNP<br />

impact model resp<strong>on</strong>se and <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential for parameter estimati<strong>on</strong>.<br />

References.<br />

[1] M. Bur<str<strong>on</strong>g>th</str<strong>on</strong>g>, G. C. Verghese, and M. Vélez-Reyes, Subset selecti<strong>on</strong> for improved parameter<br />

estimati<strong>on</strong> in <strong>on</strong>-line identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a synchr<strong>on</strong>ous generator, IEEE Transacti<strong>on</strong>s <strong>on</strong> Power<br />

Systems 14 (1999), no. 1, 218 – 225.<br />

[2] I. Taneja, C. Moran, M. S. Medow, J. L. Glover, L. D. M<strong>on</strong>tgomery, and J. M. Stewart,<br />

Differential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> lower body negative pressure and upright tilt <strong>on</strong> splanchnic blood volume,<br />

Am J Physiol Heart Circ Physiol 292 (2007), no. 3, H1420 –– H1426.<br />

[3] K. Thomase<str<strong>on</strong>g>th</str<strong>on</strong>g> and C. Cobelli, Generalized sensitivity functi<strong>on</strong>s in physiological system identificati<strong>on</strong>,<br />

Ann Biomed Eng 27 (1999), no. 5, 607 – 616.<br />

86


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell and Tissue Biophysics; Saturday, July 2, 11:00<br />

Robert Bauer<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Illinois at Urbana-Champaign<br />

e-mail: rbauer13@illinois.edu<br />

A queueing <str<strong>on</strong>g>th</str<strong>on</strong>g>eory model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> microtubules<br />

and micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments<br />

Dynamic features <str<strong>on</strong>g>of</str<strong>on</strong>g> microtubules and micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilaments are essential to cell divisi<strong>on</strong>,<br />

cell motility, and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cellular processes. ATP-bound m<strong>on</strong>omeric actin and GTPbound<br />

tubulin polymerize to actin filaments and microtubules, respectively. After<br />

assembly into polymers, nucleotide hydrolysis occurs, which can lead to a change<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>- and <str<strong>on</strong>g>of</str<strong>on</strong>g>f-rates at <str<strong>on</strong>g>th</str<strong>on</strong>g>e polymer ends. A simple stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> such a<br />

polymer from nucleati<strong>on</strong> until complete depolymerizati<strong>on</strong> is presented. The model<br />

assumes <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a sharp boundary between <str<strong>on</strong>g>th</str<strong>on</strong>g>e “newer” part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e polymer<br />

c<strong>on</strong>taining <strong>on</strong>ly ATP-bound actin—<str<strong>on</strong>g>th</str<strong>on</strong>g>e ATP cap (GTP cap in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> tubulin),<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e “older” part, where all nucleotides have underg<strong>on</strong>e hydrolysis. The ATP<br />

cap and GTP cap are modeled as a single-server queue wi<str<strong>on</strong>g>th</str<strong>on</strong>g> reneging, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

server rate (rate <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleotide hydrolysis) plus <str<strong>on</strong>g>th</str<strong>on</strong>g>e reneging rate (<str<strong>on</strong>g>of</str<strong>on</strong>g>f-rate at plus<br />

end <str<strong>on</strong>g>of</str<strong>on</strong>g> filament) exceeds <str<strong>on</strong>g>th</str<strong>on</strong>g>e arrival rate (<strong>on</strong>-rate at plus end <str<strong>on</strong>g>of</str<strong>on</strong>g> filament). Coupled<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>is queue is ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er single server queue <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire<br />

filament and whose arrival and reneging rate switch between two regimes depending<br />

<strong>on</strong> whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e ATP cap has disappeared (first server empty) or not. The model exhibits<br />

dynamic instability and treadmilling for proper choice <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrolysis rate and<br />

<strong>on</strong>/<str<strong>on</strong>g>of</str<strong>on</strong>g>f-rates at polymer ends. Analytic expressi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e life<br />

time and leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymers toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong>s are presented<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir fit to experimental data discussed.<br />

87


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Wednesday, June 29, 11:00<br />

S. Becker, A. Mang, T.A. Schütz, A. Toma, T.M. Buzug<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Engineering, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lübeck, Germany<br />

e-mail: {becker,buzug}@imt.uni-luebeck.de<br />

A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> brain tumor and normal tissue<br />

resp<strong>on</strong>ses to radiati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

The present work introduces a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at simulates <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> malignant brain tumors as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <strong>on</strong> cancerous and<br />

normal tissue. The spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a tumor cell density is described<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> a reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>. In additi<strong>on</strong> to passive diffusi<strong>on</strong> and<br />

proliferati<strong>on</strong> [1–3] <str<strong>on</strong>g>th</str<strong>on</strong>g>is equati<strong>on</strong> incorporates <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> irradiati<strong>on</strong> [2,3]. To account<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e anisotropy <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor diffusi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in white matter, tensor informati<strong>on</strong><br />

deduced from a probabilistic white matter atlas is incorporated into <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

The model also assumes logistic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cell populati<strong>on</strong> resulting in a<br />

lower net proliferati<strong>on</strong> in regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> high cell density. The spatio-temporal effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

radiati<strong>on</strong> is described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear-quadratic model.<br />

In current ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models used to predict tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different treatment schedules, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong><br />

resp<strong>on</strong>se in general is limited to cancerous cells. An optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment outcome,<br />

which includes a maximizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor c<strong>on</strong>trol while minimizing normal<br />

tissue toxicity, however necessitates not <strong>on</strong>ly a quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological effect<br />

<strong>on</strong> cancerous tissue but also <strong>on</strong> heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y tissue. The present model <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore extends<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e standard approaches [2,3] by also modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <strong>on</strong><br />

normal tissue. A sec<strong>on</strong>d differential equati<strong>on</strong> describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal progressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e necrotic density, incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> irradiati<strong>on</strong> <strong>on</strong> cancerous and<br />

normal tissue and a degradati<strong>on</strong> due to phagocytosis. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor radiosensitivity<br />

is varied according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e local density <str<strong>on</strong>g>of</str<strong>on</strong>g> cancerous cells. This allows<br />

for indirectly c<strong>on</strong>sidering <str<strong>on</strong>g>th</str<strong>on</strong>g>e oxygenati<strong>on</strong> and its influence <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e radiosensitivity,<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>e growing tumor increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e lack <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen, which directly corresp<strong>on</strong>ds to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e extent <str<strong>on</strong>g>of</str<strong>on</strong>g> radioresistance.<br />

The numerical results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary brain tumors can<br />

plausibly be determined. The model is also used to quantitatively study <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> irradiati<strong>on</strong> under a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment schedules and dose distributi<strong>on</strong>s.<br />

The results illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed model in finding a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

between tumor c<strong>on</strong>trol and normal tissue toxicity. Incorporati<strong>on</strong> into clinical planning<br />

systems could ultimately facilitate <str<strong>on</strong>g>th</str<strong>on</strong>g>e administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more appropriate,<br />

patient-specific treatment schedules and <str<strong>on</strong>g>of</str<strong>on</strong>g>fers <str<strong>on</strong>g>th</str<strong>on</strong>g>e promise <str<strong>on</strong>g>of</str<strong>on</strong>g> highly individualized<br />

radiati<strong>on</strong> treatment for cancer patients. Avenues for future research include fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

clinical evaluati<strong>on</strong>s, incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell cycle dynamics and extensi<strong>on</strong> to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> external beam radiati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy.<br />

References.<br />

[1] S. Becker and A. Mang and A. Toma and T.M. Buzug, In-Silico Oncology: An Approximate<br />

Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Brain Tumor Mass Effect based <strong>on</strong> Directly Manipulated Free Form Deformati<strong>on</strong>,<br />

2010 Int J CARS 5(5) 607–622.<br />

88


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] G. Powa<str<strong>on</strong>g>th</str<strong>on</strong>g>il and M. Kohandel and S. Sivalogana<str<strong>on</strong>g>th</str<strong>on</strong>g>an and A. Oza and M. Milosevic, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> brain tumor: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, 2007 Phys Med<br />

Biol 52 3291–3306.<br />

[3] R. Rockne and E.C. Alvord jr and J.K. Rockhill and K.R. Swans<strong>on</strong>, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

for brain tumor resp<strong>on</strong>se to radiati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, 2009 J Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biol 58 561–578.<br />

89


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Systems Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Development; Saturday, July 2, 14:30<br />

Julio Belm<strong>on</strong>te<br />

e-mail: jmbelm<strong>on</strong>@indiana.edu<br />

Susan D. Hester<br />

J. Scott Gens<br />

Sherry Clenden<strong>on</strong><br />

James A. Glazier<br />

Biocomplexity Institute, Indiana University, USA<br />

Multi-cell, Multi-scale Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Vertebrate Somitogenesis<br />

Somitogenesis is an early developmental process <str<strong>on</strong>g>th</str<strong>on</strong>g>at establishes <str<strong>on</strong>g>th</str<strong>on</strong>g>e first signs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

segmentati<strong>on</strong> in all vertebrates, patterning <str<strong>on</strong>g>th</str<strong>on</strong>g>e precursors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vertebrae, ribs,<br />

and skeletal muscles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e back and limbs. This process requires coordinati<strong>on</strong><br />

between biological mechanisms at several scales, ranging from genetic regulatory<br />

networks to structural changes at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue level. Understanding how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese mechanisms<br />

interact across scales and how events are coordinated in space and time is<br />

necessary for a complete comprehensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> somitogenesis, including its evoluti<strong>on</strong>ary<br />

flexibility and how we can best apply observati<strong>on</strong>s at single scales and in different<br />

species to understand, prevent and <strong>on</strong>e day treat somitogenesis defects in humans.<br />

So far, mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> somitogenesis have been studied independently, leading to<br />

a scattered set <str<strong>on</strong>g>of</str<strong>on</strong>g> single-scale models. To test <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sistency, integrability and<br />

combined explanatory power <str<strong>on</strong>g>of</str<strong>on</strong>g> current prevailing hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses, we built a multi-cell<br />

composite clock-and-wavefr<strong>on</strong>t model <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes submodels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular<br />

segmentati<strong>on</strong> clock, intercellular coupling via Delta/Notch signaling, an FGF8 determinati<strong>on</strong><br />

fr<strong>on</strong>t, delayed differentiati<strong>on</strong>, clock-wavefr<strong>on</strong>t readout and differential<br />

cell-cell adhesi<strong>on</strong>-driven cell sorting. We identify inc<strong>on</strong>sistencies between existing<br />

submodels and gaps in <str<strong>on</strong>g>th</str<strong>on</strong>g>e current understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> somitogenesis mechanisms and<br />

propose novel submodels and extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> existing submodels where necessary.<br />

2D simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> reas<strong>on</strong>able initial c<strong>on</strong>diti<strong>on</strong>s robustly generate<br />

spatially and temporally regular somites, realistic dynamic morphologies and sp<strong>on</strong>taneous<br />

emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> traveling stripes <str<strong>on</strong>g>of</str<strong>on</strong>g> Lfng. Our model is flexible enough to<br />

generate interspecies-like variati<strong>on</strong> in somite size in resp<strong>on</strong>se to changes in PSM<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate and segmentati<strong>on</strong> clock period, and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e number and wid<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lfng<br />

stripes in resp<strong>on</strong>se to changes in PSM grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate, segmentati<strong>on</strong> clock period and<br />

Wnt3a levels. To our knowledge, our work presents <str<strong>on</strong>g>th</str<strong>on</strong>g>e first embryogenesis model<br />

to successfully combine such a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> scales and mechanisms, representing<br />

an important step in predictive developmental modeling. The model is modular in<br />

nature, which will allow technically straightforward model extensi<strong>on</strong>s and comparis<strong>on</strong>s<br />

between sets <str<strong>on</strong>g>of</str<strong>on</strong>g> hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esized mechanisms and interacti<strong>on</strong>s.<br />

90


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

III; Tuesday, June 28, 17:00<br />

S. Benzekry<br />

LATP , Université de Provence<br />

Laboratoire de Toxicocinétique et Pharmacocinétique.<br />

Marseille, France.<br />

e-mail: benzekry@phare.normalesup.org<br />

Optimal schedules for <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies in metastatic cancers.<br />

An actual important challenge in <strong>on</strong>cology is to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e best temporal administrati<strong>on</strong><br />

protocols for ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er a given drug or <str<strong>on</strong>g>th</str<strong>on</strong>g>e combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various treatments,<br />

in order to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer disease or at least stabilize it. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we present<br />

a model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e metastatic populati<strong>on</strong> structured<br />

by size and "angiogenic capacity" (= vasculature) modified by <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

an anti-angiogenic treatment which affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e vasculature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumors and a cytotoxic<br />

treatment attacking <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancerous cells. The model is a n<strong>on</strong>-aut<strong>on</strong>omous<br />

transport equati<strong>on</strong> in dimensi<strong>on</strong> 2 wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a n<strong>on</strong>local boundary c<strong>on</strong>diti<strong>on</strong><br />

⎧<br />

⎨ ∂tρ + div(Gρ) = 0 ]0, ∞[×Ω<br />

−G ·<br />

⎩<br />

−→ ν ρ(t, σ) = N(σ) <br />

β(x, θ)ρ(t, x, θ)dxdθ + f(t, σ) ]0, ∞[×∂Ω<br />

Ω<br />

ρ(0, ·) = ρ0 (1)<br />

.<br />

(·) Ω<br />

First, we will show <str<strong>on</strong>g>th</str<strong>on</strong>g>e well-posedness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem : existence and uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soluti<strong>on</strong>s. The existence is proved by c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> a numerical scheme c<strong>on</strong>sisting<br />

in straightening <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristics and discretize <str<strong>on</strong>g>th</str<strong>on</strong>g>em. We also present <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is scheme. We use <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to investigate in silico <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> various schedules <str<strong>on</strong>g>of</str<strong>on</strong>g> anticancerous drugs bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary tumor and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e metastases, for example in <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cytotoxic drug<br />

(chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy) and an anti-angiogenic <strong>on</strong>e. These c<strong>on</strong>siderati<strong>on</strong>s lead us to define<br />

and investigate an optimal c<strong>on</strong>trol problem for determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e best schedule <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

drug integrating bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e metastases and primary tumor dynamics.<br />

References.<br />

[1] S. Benzekry, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a two-dimensi<strong>on</strong>al populati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> metastatic<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> including angiogenesis, to appear in J. Evoluti<strong>on</strong> Equati<strong>on</strong>s (2011).<br />

[2] S. Benzekry, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a model for anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in<br />

metastatic cancers, submitted.<br />

[3] Iwata, K. and Kawasaki, K. and Shigesada N., A dynamical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and size<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple metastatic tumors, J. Theor. Biol., 203 177–186, 2000.<br />

[4] Hahnfeldt, P. and Panigraphy, D. and Folkman, J. and Hlatky, L., Tumor development under<br />

angiogenic signaling : a dynamical <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, treatment, resp<strong>on</strong>se and postvascular<br />

dormancy, Cancer Research., 59, 4770–4775, 1999.<br />

[5] A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> combinati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy for tumors. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosc. 222 (2009) 13-26.<br />

91


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 17:00<br />

Juliana Militão Berbert<br />

Institute for Theoretical Physics - IFT/Unesp - São Paulo/SP/Brazil<br />

e-mail: berbertj@gmail.com<br />

Individual’s memory as a parameter to differentiate<br />

populati<strong>on</strong> distributi<strong>on</strong> patterns<br />

Recent studies including satellite analysis have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at movement <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>golian<br />

gazelles can be classified as nomadic. One explanati<strong>on</strong> emerges from <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir habitat is a dynamic envir<strong>on</strong>ment. It was proposed recently <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence<br />

<strong>on</strong> spatial heterogeneity and temporal predictability <str<strong>on</strong>g>of</str<strong>on</strong>g> resources for migrati<strong>on</strong>, nomadism<br />

and residence movement. One can define residence as distributi<strong>on</strong>s in which<br />

an individual over its lifetime occupies a relatively small area compared to <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

range; migrati<strong>on</strong> as a regular, l<strong>on</strong>g-distance pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> movement, and is<br />

typically observed in systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> regular, seas<strong>on</strong>al fluctuati<strong>on</strong>s in envir<strong>on</strong>mental<br />

c<strong>on</strong>diti<strong>on</strong>s; and nomadism occurs when animals are nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er resident nor migratory,<br />

and instead move across <str<strong>on</strong>g>th</str<strong>on</strong>g>e landscape in routes <str<strong>on</strong>g>th</str<strong>on</strong>g>at do not repeat across years.<br />

Here, we propose, at <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual level, <str<strong>on</strong>g>th</str<strong>on</strong>g>at a dependence <strong>on</strong> memory is also<br />

an important parameter characterizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> distributi<strong>on</strong> pattern. The<br />

movement decisi<strong>on</strong>s are based <strong>on</strong> known areas due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal’s memory. Migratory<br />

animals may have a l<strong>on</strong>g memory, perhaps <str<strong>on</strong>g>th</str<strong>on</strong>g>ey know all way between different<br />

locati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir journey. In ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er way, nomadic animals remember some last<br />

visited areas, where <str<strong>on</strong>g>th</str<strong>on</strong>g>ey stayed for a while. Therefore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparis<strong>on</strong> between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e memories toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e landscape predictability can clarify <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual<br />

behavior behind <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> distributi<strong>on</strong> pattern. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach, we<br />

propose some tools for analyzing animals movement.<br />

92


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Tuesday, June 28, 17:00<br />

Luděk Berec<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Ecology, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Entomology, Biology<br />

Centre ASCR, Branišovská 31, 37005 České Budějovice, Czech<br />

Republic<br />

e-mail: berec@entu.cas.cz<br />

Daniel Maxin<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science, Valparaiso University,<br />

1900 Chapel Drive, Valparaiso, IN 46383, USA<br />

e-mail: daniel.maxin@valpo.edu<br />

Double impact <str<strong>on</strong>g>of</str<strong>on</strong>g> sterilizing pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens: added value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

increased life expectancy <strong>on</strong> pest c<strong>on</strong>trol effectiveness<br />

Sterilizing pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens are comm<strong>on</strong>ly assumed not to affect l<strong>on</strong>gevity <str<strong>on</strong>g>of</str<strong>on</strong>g> infected<br />

individuals, and if <str<strong>on</strong>g>th</str<strong>on</strong>g>ey do <str<strong>on</strong>g>th</str<strong>on</strong>g>en negatively. Examples abound, however, <str<strong>on</strong>g>of</str<strong>on</strong>g> species<br />

in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> actually increases life expectancy. This happens<br />

because by decreasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e energy outlay <strong>on</strong> reproducti<strong>on</strong> individuals wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

lowered reproducti<strong>on</strong> can live l<strong>on</strong>ger. Alternatively, fertile individuals are more<br />

susceptible to predators or parasitoids if <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter can capitalize <strong>on</strong> mating signals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e former. Here we develop and analyze an SI epidemiological model to explore<br />

whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er and to what extent does such a life expectancy prol<strong>on</strong>gati<strong>on</strong> due to sterilizing<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens affect host dynamics. In particular, we are interested in an added<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> increased life expectancy <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> successful pest c<strong>on</strong>trol, <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

is, <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> increased lifespan and hence increased potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected individuals<br />

to spread <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease <strong>on</strong> pest c<strong>on</strong>trol effectiveness. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter range in which we observe an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> increased lifespan <str<strong>on</strong>g>of</str<strong>on</strong>g> infectives<br />

is not large, <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect itself can be significant. In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e increase in pest<br />

c<strong>on</strong>trol effectiveness can be very dramatic when disease transmissi<strong>on</strong> efficiency is<br />

close to bir<str<strong>on</strong>g>th</str<strong>on</strong>g> rate, mortality rate <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptibles is relatively high (i.e., <str<strong>on</strong>g>th</str<strong>on</strong>g>e species is<br />

relatively short-lived), and sterilizati<strong>on</strong> efficiency is relatively high. Our results <str<strong>on</strong>g>th</str<strong>on</strong>g>us<br />

characterize pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens <str<strong>on</strong>g>th</str<strong>on</strong>g>at are promising candidates for an effective pest c<strong>on</strong>trol<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>at might possibly be engineered if not occurring naturally.<br />

93


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Adriana Bernal Escobar<br />

Universidad de los Andes<br />

e-mail: ad-berna@uniandes.edu.co<br />

Juan Cordovez<br />

Universidad de los Andes<br />

Esteban Payan<br />

Pan<str<strong>on</strong>g>th</str<strong>on</strong>g>era Foundati<strong>on</strong><br />

Populati<strong>on</strong> Dynamics; Saturday, July 2, 14:30<br />

Spatial explicit dispersal modeling for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

jaguars in Colombia<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>th</str<strong>on</strong>g>at go bey<strong>on</strong>d traditi<strong>on</strong>al c<strong>on</strong>servati<strong>on</strong> paradigms <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> corridors and potential areas for species dispersi<strong>on</strong> have<br />

proven to be an important and useful tool in <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposal <str<strong>on</strong>g>of</str<strong>on</strong>g> new c<strong>on</strong>servati<strong>on</strong> and<br />

management plans (Adriaensen et al., 2003; Beier et al., 2009; Ray et al., 2002; Rabinowitz<br />

& Zeller, 2009). Particularly in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> jaguars, Rabinowitz &<br />

Zeller (2009) gave a first push by analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e species at a metapopulati<strong>on</strong> level<br />

and measuring c<strong>on</strong>nectivity as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey produced a complex pa<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> interc<strong>on</strong>nected<br />

populati<strong>on</strong>s. This model was based <strong>on</strong> a least-cost me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology <str<strong>on</strong>g>th</str<strong>on</strong>g>at in spite <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

its virtuosity gave <strong>on</strong>ly a steady state analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>nectivity and distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e jaguars <str<strong>on</strong>g>th</str<strong>on</strong>g>at does not necessarily reflects <str<strong>on</strong>g>th</str<strong>on</strong>g>e current situati<strong>on</strong>. Their<br />

results identified Colombia as a key element for c<strong>on</strong>nectivity between nor<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

sou<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong>s, but for some parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e country it did not accurately capture<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e most suitable areas for dispersi<strong>on</strong>. We previously proposed an spatially explicit<br />

dispersal model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e least-cost matrix obtained from <str<strong>on</strong>g>th</str<strong>on</strong>g>e least-cost<br />

analysis, to provide temporal informati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>e sustainability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e areas for<br />

jaguar dispersi<strong>on</strong>, and increase accuracy by scaling <str<strong>on</strong>g>th</str<strong>on</strong>g>e area <str<strong>on</strong>g>of</str<strong>on</strong>g> study to Colombia.<br />

The model proved to be a better tool for dynamical studies, however some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong>s showed a deviati<strong>on</strong> from total populati<strong>on</strong> predicti<strong>on</strong> respect to<br />

field data. We speculated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is discrepancy is mainly due to our way to compute<br />

diffusi<strong>on</strong> coefficients, carrying capacities and boundary c<strong>on</strong>diti<strong>on</strong>s. Here we<br />

present a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes a new me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology for estimating<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ose parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes <str<strong>on</strong>g>th</str<strong>on</strong>g>e noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> jaguar c<strong>on</strong>servati<strong>on</strong> units (JCU), as<br />

defined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e current c<strong>on</strong>servati<strong>on</strong> program. Here we present preliminary results<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>is modified model and compare it wi<str<strong>on</strong>g>th</str<strong>on</strong>g> previous simulati<strong>on</strong>s. We found<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at accurately defining <str<strong>on</strong>g>th</str<strong>on</strong>g>e carrying capacity and including boundary c<strong>on</strong>diti<strong>on</strong>s<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at mimic better <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e specie gives an overall improvement in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our ability to predict current populati<strong>on</strong> densities and temporal aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

populati<strong>on</strong> dynamics.<br />

94


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Delay Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s II; Saturday, July 2, 08:30<br />

Samuel Bernard<br />

Université de Ly<strong>on</strong>; Université Ly<strong>on</strong> 1; INSA de Ly<strong>on</strong>, F-69621; Ecole<br />

Centrale de Ly<strong>on</strong>; CNRS, UMR5208, Institut Camille Jordan, 43 blvd<br />

du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France<br />

e-mail: bernard@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.univ-ly<strong>on</strong>1.fr<br />

Fabien Crauste<br />

Université de Ly<strong>on</strong>; Université Ly<strong>on</strong> 1; INSA de Ly<strong>on</strong>, F-69621; Ecole<br />

Centrale de Ly<strong>on</strong>; CNRS, UMR5208, Institut Camille Jordan, 43 blvd<br />

du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France<br />

e-mail: crauste@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.univ-ly<strong>on</strong>1.fr<br />

(1)<br />

Distributed delays stabilize negative feedback loops<br />

We study <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear differential equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> distributed delays<br />

˙x = −ax − b<br />

∞<br />

0<br />

x(t − τ)dη(τ)<br />

where <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficients a and b are c<strong>on</strong>stant, and η(τ) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> delays.<br />

In biological applicati<strong>on</strong>s, discrete delays in <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback loop are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used to<br />

account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e finite time required to perform essential steps before x(t) is affected.<br />

Linear stability properties <str<strong>on</strong>g>of</str<strong>on</strong>g> scalar delayed equati<strong>on</strong>s are fairly well characterized.<br />

However, lumping intermediate steps into a delayed term can produce broad and<br />

atypical delay distributi<strong>on</strong>s, and it is still not clear how <str<strong>on</strong>g>th</str<strong>on</strong>g>at affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability<br />

compared to a discrete delay [1].<br />

When η is a single discrete delay (a Dirac mass), <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e zero soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (1) is fully determined by a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoren originally due to Hayes<br />

[2].<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper is to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> delay distributi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trivial soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (1). It has been c<strong>on</strong>jectured <str<strong>on</strong>g>th</str<strong>on</strong>g>at am<strong>on</strong>g distributi<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a given mean E, <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete delay is <str<strong>on</strong>g>th</str<strong>on</strong>g>e least stable <strong>on</strong>e [3, 4]. This c<strong>on</strong>jecture<br />

has been proved for a = 0 using Lyapunov-Razumikhin functi<strong>on</strong>s [5], and<br />

for distributi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are symmetric about <str<strong>on</strong>g>th</str<strong>on</strong>g>eir means [f(E − τ) = f(E + τ)]<br />

[6, 3, 4, 7]. Here, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>jecture is true.<br />

The general strategy for proving <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> distributed delays is <str<strong>on</strong>g>th</str<strong>on</strong>g>e following.<br />

We use a geometric argument to bound <str<strong>on</strong>g>th</str<strong>on</strong>g>e roots <str<strong>on</strong>g>of</str<strong>on</strong>g> characteric equati<strong>on</strong><br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e roots <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic equati<strong>on</strong> for a single discrete delay. More precisely,<br />

if <str<strong>on</strong>g>th</str<strong>on</strong>g>e leading roots associated to <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete delay are a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> imaginary<br />

roots, <str<strong>on</strong>g>th</str<strong>on</strong>g>en all <str<strong>on</strong>g>th</str<strong>on</strong>g>e roots associated to <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> delays have negative real<br />

parts. We first state a criteri<strong>on</strong> for stability. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en show <str<strong>on</strong>g>th</str<strong>on</strong>g>at a distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n discrete delays is more stable <str<strong>on</strong>g>th</str<strong>on</strong>g>an a certain distributi<strong>on</strong> ∗ wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two delays.<br />

We c<strong>on</strong>struct <str<strong>on</strong>g>th</str<strong>on</strong>g>is most “unstable” distributi<strong>on</strong> and determine <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

delays is positive, so <str<strong>on</strong>g>th</str<strong>on</strong>g>at its stability can be determined using Hayes Theorem.<br />

We <str<strong>on</strong>g>th</str<strong>on</strong>g>en generalize for any distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> delays, and obtaine <str<strong>on</strong>g>th</str<strong>on</strong>g>e most complete<br />

picture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (1) when <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly informati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> delays is <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean.<br />

95


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Theorem 1. The trivial soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (1) is asymptotically stable if a > −b and<br />

a ≥ |b|, or if b > |a| and <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean E <str<strong>on</strong>g>of</str<strong>on</strong>g> η satisfies<br />

E < arccos(−a/b)<br />

√ .<br />

b2 − a2 The zero soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (1) may be asymptotically stable (depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e particular<br />

distributi<strong>on</strong>) if b > |a| and<br />

E ≥ arccos(−a/b)<br />

√ .<br />

b2 − a2 The zero soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Eq. (1) is unstable if a ≤ −b.<br />

References.<br />

[1] S. Campbell, R. Jessop, Approximating <str<strong>on</strong>g>th</str<strong>on</strong>g>e Stability Regi<strong>on</strong> for a Differential Equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a Distributed Delay, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Mod. Nat. Phenom. 4 (2) (2009) 1–27.<br />

[2] N. Hayes, Roots <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transcendental equati<strong>on</strong> associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a certain difference-differential<br />

equati<strong>on</strong>, J. L<strong>on</strong>d. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Soc. 25 (1950) 226–232.<br />

[3] S. Bernard, J. Bélair, M. C. Mackey, Sufficient c<strong>on</strong>diti<strong>on</strong>s for stability <str<strong>on</strong>g>of</str<strong>on</strong>g> linear differential<br />

equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> distributed delay, Discrete C<strong>on</strong>tin. Dynam. Systems Ser. B 1 (2001) 233–256.<br />

[4] F. Atay, Delayed feedback c<strong>on</strong>trol near Hopf bifurcati<strong>on</strong>, Discrete C<strong>on</strong>tin. Dynam. Systems<br />

Ser. S 1 (2) (2008) 197–205.<br />

[5] T. Krisztin, Stability for functi<strong>on</strong>al differential equati<strong>on</strong>s and some variati<strong>on</strong>al problems, Tohoku<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. J 42 (3) (1990) 407–417.<br />

[6] R. Miyazaki, Characteristic equati<strong>on</strong> and asymptotic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> delay-differential equati<strong>on</strong>,<br />

Funkcial. Ekvac. 40 (3) (1997) 481–482.<br />

[7] G. Kiss, B. Krauskopf, Stability implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> delay distributi<strong>on</strong> for first-order and sec<strong>on</strong>dorder<br />

systems, Discrete C<strong>on</strong>tin. Dynam. Systems Ser. B 13 (2) (2010) 327–345.<br />

96


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling I; Tuesday, June 28, 17:00<br />

Roberto Bertolusso<br />

Rice University, Houst<strong>on</strong>, TX, USA<br />

e-mail: rbertolusso@rice.edu<br />

Allan Brasier<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Texas Medical Branch, Galvest<strong>on</strong>, TX, USA<br />

e-mail: arbrasie@utmb.edu<br />

Marek Kimmel<br />

Rice University, Houst<strong>on</strong>, TX, USA<br />

e-mail: kimmel@rice.edu<br />

Tomasz Lipniacki<br />

IPPT, Warszawa, PL<br />

e-mail: tlipnia@ippt.gov.pl<br />

IRF3 and NF-κB: Transcripti<strong>on</strong> factors acting in a<br />

coordinated way under double stranded RNA stimulati<strong>on</strong><br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> innate immunity system under viral attack is still not understood<br />

in detail. However, new insights are emerging based bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong> novel experiments and<br />

<strong>on</strong> system modeling approach. We report a model <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinated resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> IRF3<br />

and NF-κB transcripti<strong>on</strong> factors pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways in A549 lung cancer cells, under double<br />

stranded RNA (dsRNA) stimulati<strong>on</strong>, itself a model for viral RNA. Viral infecti<strong>on</strong><br />

leads to multiplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viral RNA which is sensed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e innate immune system<br />

at a later stage. dsRNA, instead, rapidly activates <str<strong>on</strong>g>th</str<strong>on</strong>g>e IRF3 and NF-κB pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways,<br />

leading to resp<strong>on</strong>ses which are str<strong>on</strong>ger and better localized in time.<br />

dsRNA is sensed bo<str<strong>on</strong>g>th</str<strong>on</strong>g> by RIG-like family <str<strong>on</strong>g>of</str<strong>on</strong>g> helicases (RIG-I) and toll-like receptor<br />

3 (TLR3). Activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RIG-I leads, via multistep pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way, to <str<strong>on</strong>g>th</str<strong>on</strong>g>e nuclear<br />

translocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> IRF3. In turn activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TLR3 leads to phosphorylati<strong>on</strong> and<br />

degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary NF-κB inhibitor IκBα, freeing NF-κB which also translocates<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleus. IRF3 and NF-κB are independently and cooperatively resp<strong>on</strong>sible<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> genes involved in innate immune and<br />

inflammatory resp<strong>on</strong>ses, in particular bo<str<strong>on</strong>g>th</str<strong>on</strong>g> IRF3 and NF-κB are needed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e activati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interfer<strong>on</strong> β. In addti<strong>on</strong> NF-κB also activates a number <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibitors,<br />

am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>em IκBα and A20, inhibiting bo<str<strong>on</strong>g>th</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways or selectively <strong>on</strong>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way.<br />

Three kind <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments were performed:<br />

• Time series (0, 0.5, 1, 2, 4 and 6 hours) <str<strong>on</strong>g>of</str<strong>on</strong>g> key mRNAs induced by NFkB<br />

and IRF3 transcripti<strong>on</strong> factors.<br />

• Time series <str<strong>on</strong>g>of</str<strong>on</strong>g> key phosphorylated proteins at same time points as above.<br />

• Knock-down experiments using small interfering RNA (siRNA) <strong>on</strong> NF-κB,<br />

IRF3, RIG-I, and IKKγ wi<str<strong>on</strong>g>th</str<strong>on</strong>g> and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out dsRNA stimulati<strong>on</strong>.<br />

The emerging deterministic ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model c<strong>on</strong>siders 87 species and 147<br />

reacti<strong>on</strong>. It seems to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e first aggregate model <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> NF-κB and IRF3,<br />

and shows agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental data. In additi<strong>on</strong> we carried out stochastic<br />

simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>etical single-cell experiments, which display bimodality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resp<strong>on</strong>ses not visible in cell-populati<strong>on</strong> experiments.<br />

97


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Alex Best<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sheffield<br />

e-mail: a.best@shef.ac.uk<br />

Steve Webb<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stra<str<strong>on</strong>g>th</str<strong>on</strong>g>clyde<br />

e-mail: steven.webb@stra<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Andy White<br />

Heriot-Watt University<br />

e-mail: a.r.white@hw.ac.uk<br />

Mike Boots<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sheffield<br />

e-mail: m.boots@shef.ac.uk<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 08:30<br />

Host resistance and coevoluti<strong>on</strong> in spatially structured<br />

populati<strong>on</strong>s<br />

Most natural, agricultural and human populati<strong>on</strong>s are structured, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s occurring locally or wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in social groups ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an at<br />

random. This wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-populati<strong>on</strong> spatial and social structure is important to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parasites (e.g. [1]) but little attenti<strong>on</strong> has been paid to how spatial<br />

structure affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> host resistance, and as a c<strong>on</strong>sequence <str<strong>on</strong>g>th</str<strong>on</strong>g>e coevoluti<strong>on</strong>ary<br />

outcome. We examined <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance across a range <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing<br />

patterns using an approximate ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model (pair approximati<strong>on</strong>) and stochastic<br />

simulati<strong>on</strong>s. We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at as reproducti<strong>on</strong> becomes increasingly local,<br />

hosts are always selected to increase resistance. More localised transmissi<strong>on</strong> also<br />

selects for higher resistance, but <strong>on</strong>ly if reproducti<strong>on</strong> is also predominantly local.<br />

If <str<strong>on</strong>g>th</str<strong>on</strong>g>e hosts disperse, lower resistance evolves as transmissi<strong>on</strong> becomes more local.<br />

These effects can be understood as a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic (kin) and ecological<br />

structuring <strong>on</strong> individual fitness. When hosts and parasites coevolve, local interacti<strong>on</strong>s<br />

select for hosts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high defence and parasites wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low transmissibility<br />

and virulence. Crucially, <str<strong>on</strong>g>th</str<strong>on</strong>g>is means <str<strong>on</strong>g>th</str<strong>on</strong>g>at more populati<strong>on</strong> mixing may lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> fast-transmitting highly virulent parasites and reduced resistance<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e host [2].<br />

References.<br />

[1] Boots, M. and Sasaki, A., ’Small worlds’ and <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> virulence: infecti<strong>on</strong> occurs<br />

locally and at a distance Proc. Roy. Soc. B, 266: 1933-1938.<br />

[2] Best, A., Webb, S., White A. and Boots, M., Host resistance and coevoluti<strong>on</strong> in spatially structured<br />

populati<strong>on</strong>s Proc. Roy. Soc. B, In Press (published <strong>on</strong>line, doi:10.1098/rspb.2010.1978).<br />

98


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Anja Be<str<strong>on</strong>g>th</str<strong>on</strong>g>ge<br />

Competence Center Bioinformatics, Institute for Applied Computer<br />

Science, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences Stralsund, Germany<br />

e-mail: anja.be<str<strong>on</strong>g>th</str<strong>on</strong>g>ge@fh-stralsund.de<br />

Are metastases from metastases clinically relevant? A novel<br />

computer model helps understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e metastatic<br />

progressi<strong>on</strong><br />

The process <str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis formati<strong>on</strong> remains enigmatic. Different models exist<br />

for predicting <str<strong>on</strong>g>th</str<strong>on</strong>g>e metastatic spread <str<strong>on</strong>g>of</str<strong>on</strong>g> malignant tumors. However, it is difficult<br />

to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>ese different models for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir clinical relevance. Therefore a novel<br />

computer model was developed which permits comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e different models<br />

quantitatively wi<str<strong>on</strong>g>th</str<strong>on</strong>g> clinical data and which additi<strong>on</strong>ally predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

treatment interventi<strong>on</strong>s. The computer model is based <strong>on</strong> a discrete events simulati<strong>on</strong><br />

approach. The grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary tumor and <str<strong>on</strong>g>th</str<strong>on</strong>g>e metastases is described<br />

via analytical functi<strong>on</strong>s, while a rate functi<strong>on</strong> models <str<strong>on</strong>g>th</str<strong>on</strong>g>e intravasati<strong>on</strong> events <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e primary tumor and its metastases. Events describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e emitted<br />

malignant cells until <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new metastases. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

computer model it was evaluated whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er metastases are able to metastasise and if<br />

late disseminated tumour cells are still capable to form metastases. The simulati<strong>on</strong><br />

results were compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> clinical data from an untreated patient wi<str<strong>on</strong>g>th</str<strong>on</strong>g> hepatocellular<br />

carcinoma and multiple metastases in <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver. Additi<strong>on</strong>ally, <str<strong>on</strong>g>th</str<strong>on</strong>g>e resecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e primary tumour was simulated. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e computer simulati<strong>on</strong>s reveal<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> metastases varies significantly between scenarios where metastases<br />

metastasise and scenarios where <str<strong>on</strong>g>th</str<strong>on</strong>g>ey not. In c<strong>on</strong>trast, <str<strong>on</strong>g>th</str<strong>on</strong>g>e total tumour mass<br />

is nearly unaffected by <str<strong>on</strong>g>th</str<strong>on</strong>g>is mode <str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis formati<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e results<br />

provide evidence <str<strong>on</strong>g>th</str<strong>on</strong>g>at late disseminated tumour cells are still capable <str<strong>on</strong>g>of</str<strong>on</strong>g> forming<br />

metastases. The simulati<strong>on</strong> results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>is particular case <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatocellular<br />

carcinoma, carcinoma metastases exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>e same grow<str<strong>on</strong>g>th</str<strong>on</strong>g> pattern as <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary<br />

tumour. Simulati<strong>on</strong>s also allow estimating how <str<strong>on</strong>g>th</str<strong>on</strong>g>e resecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary<br />

tumour delays or even prevents <str<strong>on</strong>g>th</str<strong>on</strong>g>e patients dea<str<strong>on</strong>g>th</str<strong>on</strong>g>. The simulati<strong>on</strong> results indicate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at for <str<strong>on</strong>g>th</str<strong>on</strong>g>is particular case <str<strong>on</strong>g>of</str<strong>on</strong>g> a hepatocellular carcinoma late metastases, i.e.<br />

metastases from metastases, are irrelevant in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> total tumour mass. Hence<br />

metastases seeded from metastases are clinically irrelevant in our model system.<br />

Only <str<strong>on</strong>g>th</str<strong>on</strong>g>e first metastases seeded from <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary tumour c<strong>on</strong>tribute significantly<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour burden and <str<strong>on</strong>g>th</str<strong>on</strong>g>us cause <str<strong>on</strong>g>th</str<strong>on</strong>g>e patients dea<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

99


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Neurosciences; Thursday, June 30, 11:30<br />

Andrzej Bielecki<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science, Jagiell<strong>on</strong>ian University, ul. Łojasiewicza<br />

6, 30-348 Kraków, Poland<br />

e-mail: bielecki@ii.uj.edu.pl<br />

Piotr Kalita<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science, Jagiell<strong>on</strong>ian University, ul. Łojasiewicza<br />

6, 30-348 Kraków, Poland<br />

e-mail: piotr.kalita@ii.uj.edu.pl<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and numerical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> presynaptic phase<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fast transport<br />

Neurotransmitters in <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal bout<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a presynaptic neur<strong>on</strong> are stored in vesicles,<br />

which diffuse in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoplasm and, after a stimulati<strong>on</strong> signal is received, fuse<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane and release its c<strong>on</strong>tents into <str<strong>on</strong>g>th</str<strong>on</strong>g>e synaptic cleft. It is comm<strong>on</strong>ly<br />

assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at vesicles bel<strong>on</strong>g to <str<strong>on</strong>g>th</str<strong>on</strong>g>ree pools whose c<strong>on</strong>tent is gradually exploited<br />

during <str<strong>on</strong>g>th</str<strong>on</strong>g>e stimulati<strong>on</strong>.<br />

The physiological assumpti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed model are <str<strong>on</strong>g>th</str<strong>on</strong>g>e following:<br />

1. Terminal bout<strong>on</strong> occupies a fixed domain, a fixed part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain<br />

boundary are <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicle release sites.<br />

2. The unknown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicles in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoplasm.<br />

The unit in which <str<strong>on</strong>g>th</str<strong>on</strong>g>is value is expressed can ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er be <str<strong>on</strong>g>th</str<strong>on</strong>g>e mass<br />

or <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicles or <str<strong>on</strong>g>th</str<strong>on</strong>g>e fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytoplasm volume <str<strong>on</strong>g>th</str<strong>on</strong>g>ey<br />

occupy.<br />

3. Vesicles diffuse inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal bout<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esized in<br />

some subdomain <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bout<strong>on</strong>.<br />

4. The efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicle syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis is proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e difference<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium c<strong>on</strong>centrati<strong>on</strong> (above which <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis does<br />

not take place) and current c<strong>on</strong>centrati<strong>on</strong>.<br />

5. Vesicles do not leave <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain unless <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong> potential arrives. The<br />

arrival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong> potential triggers <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicles release<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough some fixed period <str<strong>on</strong>g>of</str<strong>on</strong>g> time. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicles <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be<br />

released in a unit time <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e unit area is proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicle<br />

c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e release site.<br />

6. Nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er re-uptake nor recycling <str<strong>on</strong>g>of</str<strong>on</strong>g> released vesicles is c<strong>on</strong>sidered.<br />

7. The availability <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicles for release depends <strong>on</strong>ly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir locati<strong>on</strong>. The<br />

docking sites are modeled implicitly as <str<strong>on</strong>g>th</str<strong>on</strong>g>e areas in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

release sites specified <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bout<strong>on</strong> boundary.<br />

The following variables and parameters which express various physiological quantities<br />

are introduced:<br />

100<br />

(i) Ω ⊂ R N , N ∈ {2, 3} - <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal bout<strong>on</strong>,<br />

(ii) Ω1 ⊂ Ω - <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain <str<strong>on</strong>g>of</str<strong>on</strong>g> neurotransmitter producti<strong>on</strong>,<br />

(iii) ∂Ωd ⊂ ∂Ω - neurotransmitter release sites <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane,<br />

(iv) f : Ω → R - neurotransmitter source density defined, for example, by<br />

f(x) = 0 outside Ω1 and f(x) = fz <strong>on</strong> Ω1,<br />

(v) ¯ρ - <str<strong>on</strong>g>th</str<strong>on</strong>g>e balance c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neurotransmitter in <str<strong>on</strong>g>th</str<strong>on</strong>g>e bout<strong>on</strong>,


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

(vi) α - <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficient denoting <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> neurotransmitter exocytosis, α is <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicles (or molecules) which are released <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e unit area<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane in unit time by <str<strong>on</strong>g>th</str<strong>on</strong>g>e unit difference <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong><br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell and outside <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell (1 acti<strong>on</strong> potential activates 300 vesicles<br />

and 1 vesicle c<strong>on</strong>tains 103 − 104 molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> neurotransmitter),<br />

(vii) aij : Ω → R - <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> tensor for <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicles wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a neurotransmitter,<br />

(viii) τ - <str<strong>on</strong>g>th</str<strong>on</strong>g>e time period <str<strong>on</strong>g>th</str<strong>on</strong>g>rough which <str<strong>on</strong>g>th</str<strong>on</strong>g>e neurotransmitter is released from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e docked vesicles to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cleft (0.2 - 0.5 ms),<br />

(ix) t0 - <str<strong>on</strong>g>th</str<strong>on</strong>g>e arrival moment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential (it is possible <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are many<br />

such moments during <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong>).<br />

The unknown in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> ρ : Ω × [0, T ] → R denoting <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicles wi<str<strong>on</strong>g>th</str<strong>on</strong>g> neurotransmitter.<br />

The functi<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong><br />

∂ρ(x, t)<br />

(1)<br />

∂t<br />

=<br />

N<br />

<br />

<br />

∂ ∂ρ(x, t)<br />

aij(x) + f(x)(¯ρ − ρ(x, t))<br />

∂xi ∂xj<br />

+ .<br />

i,j=1<br />

The equati<strong>on</strong> is accompanied by boundary and initial c<strong>on</strong>diti<strong>on</strong>s implied directly<br />

by physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicle release as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>eir initial distributi<strong>on</strong> (see [1,2]):<br />

N ∂ρ(x, t)<br />

(2)<br />

aij ni = 0 for (x, t) ∈ (∂Ω − ∂Ωd) × [0, T ],<br />

∂xj<br />

(3)<br />

(4)<br />

N<br />

i,j=1<br />

i,j=1<br />

N<br />

i,j=1<br />

aij<br />

∂ρ(x, t)<br />

ni = 0 for (x, t) ∈ ∂Ωd × ([0, t0) ∪ (t0 + τ, T ]),<br />

∂xj<br />

aij<br />

∂ρ(x, t)<br />

ni = αρ(x, t) for (x, t) ∈ ∂Ωd × [t0, t0 + τ],<br />

∂xj<br />

(5) ρ(x, 0) = ρ0(x) <strong>on</strong> Ω,<br />

where (ni) N i=1 is <str<strong>on</strong>g>th</str<strong>on</strong>g>e unit normal vector directed outside Ω.<br />

The model is analyzed and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicular kinetics using Finite Element<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>od are d<strong>on</strong>e.<br />

References.<br />

[1] A. Bielecki, P. Kalita, Model <str<strong>on</strong>g>of</str<strong>on</strong>g> neurotransmitter fast transport in ax<strong>on</strong> terminal <str<strong>on</strong>g>of</str<strong>on</strong>g> presynaptic<br />

neur<strong>on</strong>, J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 26 (2008) 559–576.<br />

[2] A. Bielecki, P. Kalita, M. Lewandowski, B. Siwek, Numerical simulati<strong>on</strong> for a neurotransmitter<br />

transport model in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ax<strong>on</strong> terminal <str<strong>on</strong>g>of</str<strong>on</strong>g> a presynaptic neur<strong>on</strong>, Biol. Cybern. 102 (2010) 489–<br />

502.<br />

101


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Sebastian Binder<br />

Systems Immunology, Helmholtz Centre for Infecti<strong>on</strong> Research<br />

e-mail: sebastian.binder@helmholtz-hzi.de<br />

Arndt Telschow<br />

Westfälische Wilhelms-Universität Münster<br />

Michael Meyer-Hermann<br />

Systems Immunology, Helmholtz Centre for Infecti<strong>on</strong> Research<br />

Intra-host disseminati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Borrelia sp. during<br />

Lyme disease<br />

Chr<strong>on</strong>ic inflammatory diseases, caused by bacteria, viruses and eukaryotic parasites<br />

pose a <str<strong>on</strong>g>th</str<strong>on</strong>g>reat to public heal<str<strong>on</strong>g>th</str<strong>on</strong>g>. A str<strong>on</strong>g inflammatory reacti<strong>on</strong> causing tissue<br />

damage <str<strong>on</strong>g>of</str<strong>on</strong>g>ten plays an important role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese infecti<strong>on</strong>s. Lyme<br />

disease, caused by an infecti<strong>on</strong> by spirochetes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Borrelia burgdorferi sensu lato<br />

group (B. afzelii, B. garinii, B. burgdorferi s.s.), is a comm<strong>on</strong> tick-borne disease<br />

in Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> America, Europe and parts <str<strong>on</strong>g>of</str<strong>on</strong>g> Asia. The early infecti<strong>on</strong> stage c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mild and mainly localized symptoms. In later stages, <str<strong>on</strong>g>th</str<strong>on</strong>g>e spirochetes can migrate<br />

to different tissues, including <str<strong>on</strong>g>th</str<strong>on</strong>g>e central nervous system, heart and joints, where it<br />

causes str<strong>on</strong>g inflammatory reacti<strong>on</strong>s and tissue damage, leading to severe clinical<br />

symptoms. The infecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese tissues can also become chr<strong>on</strong>ic.<br />

This project aims at modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e disseminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bacteria from <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected<br />

skin site to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er tissues inside a mouse. The model is based <strong>on</strong> experimental<br />

data <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bacterial c<strong>on</strong>centrati<strong>on</strong>s in different tissues from qPCR studies <str<strong>on</strong>g>of</str<strong>on</strong>g> artificially<br />

infected mice <str<strong>on</strong>g>of</str<strong>on</strong>g> a strain displaying clinical disease symptoms similar to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ose in humans and also develops a systemic infecti<strong>on</strong>. The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

disseminati<strong>on</strong> are described by a simple deterministic model <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial<br />

populati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>ree different compartments, including <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

macrophages and spirochetes as an important comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e innate immune<br />

resp<strong>on</strong>se and inflammatory reacti<strong>on</strong> caused by B. burgdorferi. Central questi<strong>on</strong>s<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at may be answered by <str<strong>on</strong>g>th</str<strong>on</strong>g>is model include <str<strong>on</strong>g>th</str<strong>on</strong>g>e infectious bacterial c<strong>on</strong>centrati<strong>on</strong><br />

and elucidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transiti<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e acute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e chr<strong>on</strong>ic infecti<strong>on</strong>.<br />

102


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Genetics and Genomics; Wednesday, June 29, 08:30<br />

Paweł Błażej<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genomics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland<br />

e-mail: blazej.pawel@gmail.com<br />

Paweł Mackiewicz<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genomics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland<br />

Stanisław Cebrat<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genomics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> prokaryotic genome evoluti<strong>on</strong> using coding<br />

signal as selecti<strong>on</strong> pressure<br />

Protein coding genes in prokaryotic chromosomes are subjected to two different<br />

asymmetric mutati<strong>on</strong>al pressures associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> various replicati<strong>on</strong> mechanisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DNA strands (leading and lagging). To simulate evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prokaryotic protein<br />

coding sequences under <str<strong>on</strong>g>th</str<strong>on</strong>g>is asymmetric mutati<strong>on</strong>al pressure, we elaborated<br />

a simulati<strong>on</strong> model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Borrelia burgdorferi genome. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong>al<br />

pressure we applied nucleotide substituti<strong>on</strong> matrices empirically found for <str<strong>on</strong>g>th</str<strong>on</strong>g>e leading<br />

and lagging DNA strands <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome. The selecti<strong>on</strong> pressure was based <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e modified algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for protein coding gene finding, trained <strong>on</strong> annotated B.<br />

burgdorferi protein coding genes. We simulated <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes from differently<br />

replicating strand under <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stant, opposite and changing mutati<strong>on</strong>al<br />

c<strong>on</strong>diti<strong>on</strong>s, mimicking sequence inversi<strong>on</strong>s.<br />

103


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cell systems: from intercellular interacti<strong>on</strong><br />

to tissue-level traits I; Wednesday, June 29, 14:30<br />

Jenny Bloomfield<br />

Heriot Watt University<br />

e-mail: jmb7@hw.ac.uk<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>local cellular interacti<strong>on</strong>s <strong>on</strong> pattern<br />

formati<strong>on</strong><br />

Cells interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir local envir<strong>on</strong>ment, and <str<strong>on</strong>g>th</str<strong>on</strong>g>ese interacti<strong>on</strong>s affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferati<strong>on</strong>,<br />

differentiati<strong>on</strong> and movement <str<strong>on</strong>g>of</str<strong>on</strong>g> cells. While modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>ese interacti<strong>on</strong>s<br />

is obviously important, doing so in a c<strong>on</strong>tinuous model has proved difficult.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will present a c<strong>on</strong>tinuous partial differential equati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a two populati<strong>on</strong> system, using integral terms to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> local envir<strong>on</strong>ment<br />

<strong>on</strong> interacting cells. I will use <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to explore particular cellular<br />

interacti<strong>on</strong>s, and present <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial patterning <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be obtained from such a<br />

system.<br />

104


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Semigroups <str<strong>on</strong>g>of</str<strong>on</strong>g> Operators in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology II; Saturday, July 2, 11:00<br />

Adam Bobrowski<br />

Lublin University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: a.bobrowski@pollub.pl<br />

From a PDE model to an ODE model <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

synaptic depressi<strong>on</strong><br />

We provide a link between two recent models <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> synaptic depressi<strong>on</strong>.<br />

To <str<strong>on</strong>g>th</str<strong>on</strong>g>is end, we correct <str<strong>on</strong>g>th</str<strong>on</strong>g>e err<strong>on</strong>eous boundary c<strong>on</strong>diti<strong>on</strong> and specify <str<strong>on</strong>g>th</str<strong>on</strong>g>e missing<br />

transmissi<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e PDE model <str<strong>on</strong>g>of</str<strong>on</strong>g> Bielecki and Kalita, and show <str<strong>on</strong>g>th</str<strong>on</strong>g>at as<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> coefficients tend to infinity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative permeability coefficients<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membranes involved tend to zero, <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>e PDE model tend to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e original ODE model <str<strong>on</strong>g>of</str<strong>on</strong>g> Aristizabal and Glavinovič. Hence, from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>th</str<strong>on</strong>g>e ODE model is obtained as a singular perturbati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PDE model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> singularities bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e operator and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary and<br />

transmissi<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s. The result is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore c<strong>on</strong>veniently put in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

degenerate c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> semigroups <str<strong>on</strong>g>of</str<strong>on</strong>g> operators, where a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>gly<br />

c<strong>on</strong>tinuous semigroups approaches a semigroup <str<strong>on</strong>g>th</str<strong>on</strong>g>at is str<strong>on</strong>gly c<strong>on</strong>tinuous <strong>on</strong>ly <strong>on</strong><br />

a subspace <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e original Banach space. Biologically, our approach allows a new,<br />

natural interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ODE model’s parameters.<br />

105


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Martin Bock and Wolfgang Alt<br />

Universität B<strong>on</strong>n, IZMB<br />

Theoretische Biologie<br />

Kirschallee 1–3<br />

53115 B<strong>on</strong>n, Germany<br />

e-mail: mab@uni-b<strong>on</strong>n.de<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

On shape and force – from single to interactive cell moti<strong>on</strong><br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fundamental organizati<strong>on</strong> forms <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue in multi-cellular organisms<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi- or endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elium, in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells assemble into a single-layered structure<br />

supported by a str<strong>on</strong>g basal membrane. If an injury damages <str<strong>on</strong>g>th</str<strong>on</strong>g>is barrier,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cells perform a so-called epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial-mesenchymal transiti<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>ey break <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

mutual c<strong>on</strong>necti<strong>on</strong>s and start to migrate. Here we study <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> cell moti<strong>on</strong><br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese effectively two-dimensi<strong>on</strong>al envir<strong>on</strong>ments, where bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cooperati<strong>on</strong> and<br />

individualism c<strong>on</strong>tribute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological functi<strong>on</strong>.<br />

The motility mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cells can be understood in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> twophase<br />

flow models [1]. Extending our earlier 1D work [2], we project <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying<br />

hyperbolic-elliptic PDE system <str<strong>on</strong>g>of</str<strong>on</strong>g> Stokes type <strong>on</strong>to <str<strong>on</strong>g>th</str<strong>on</strong>g>e unit circle. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e lamella<br />

tip we incorporate enhanced actin polymerizati<strong>on</strong> by prescribing suitable pressure<br />

BCs. This enables us to obtain bo<str<strong>on</strong>g>th</str<strong>on</strong>g> shape dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> trajectory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a quasi 2D model cell simultaneously. The corresp<strong>on</strong>ding simulati<strong>on</strong>s exhibit a<br />

correlati<strong>on</strong> between migrati<strong>on</strong> speed and cell shape, as observed in experiments.<br />

For cooperative motility, we argue <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells’ moti<strong>on</strong> is governed by essentially<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e same microscopic stochastic process: cadherin cell-cell adhesi<strong>on</strong> molecules<br />

merely add an attractive interacti<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is way, cytoskeletal c<strong>on</strong>tracti<strong>on</strong> stresses<br />

propagate across adjacent cells and determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e border in between.<br />

The geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is stress-induced competiti<strong>on</strong> for space can be formalized by<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> Vor<strong>on</strong>oi tessellati<strong>on</strong>s. In order overcome <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>venti<strong>on</strong>al polyg<strong>on</strong>al cell<br />

approximati<strong>on</strong>, we propose a c<strong>on</strong>sistent generalizati<strong>on</strong> to partiti<strong>on</strong> space into individual<br />

cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> piecewise spherical or elliptic border [3]. Combined wi<str<strong>on</strong>g>th</str<strong>on</strong>g> aforementi<strong>on</strong>ed<br />

stochastic motility processes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model tissue displays characteristic<br />

morphogenetic rearrangement patterns.<br />

References.<br />

[1] W. Alt and M. Dembo, Cytoplasm dynamics and cell moti<strong>on</strong>: two-phase flow models, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Biosciences 156 207 (1999).<br />

[2] W. Alt, M. Bock, and C. Möhl, Coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> cytoplasm and adhesi<strong>on</strong> dynamics determines<br />

cell polarizati<strong>on</strong> and locomoti<strong>on</strong>. In A. Chauviere, L. Preziosi and C. Verdier, editors, Cell<br />

mechanics: From Single Scale-Based Models to Multiscale Modeling, pages 86–125. Chapman<br />

& Hall / CRC, 2010. Preprint http://arxiv.org/abs/0907.5078<br />

[3] M. Bock, A.K. Tyagi, J.-U. Kreft, and W. Alt, Generalized Vor<strong>on</strong>oi tessellati<strong>on</strong> as a model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two-dimensi<strong>on</strong>al cell tissue dynamics, Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology 72 1696 (2010).<br />

Preprint http://arxiv.org/abs/0901.4469<br />

106


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Crowd Dynamics: Modeling, Analysis and Simulati<strong>on</strong> (Part 2); Wednesday,<br />

June 29, 14:30<br />

Nikolai Bode<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> York<br />

e-mail: nwfb500@york.ac.uk<br />

Social networks and models for collective moti<strong>on</strong><br />

The <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> collective moti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> social networks have, each individually,<br />

received much attenti<strong>on</strong>. Currently, most models <str<strong>on</strong>g>of</str<strong>on</strong>g> collective moti<strong>on</strong> do<br />

not c<strong>on</strong>sider social network structure. The implicati<strong>on</strong>s for c<strong>on</strong>sidering collective<br />

moti<strong>on</strong> and social networks toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er are likely to be important. Social networks<br />

could determine how populati<strong>on</strong>s move in, split up into and form separate groups<br />

(social networks affecting collective moti<strong>on</strong>). C<strong>on</strong>versely, collective movement could<br />

change <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> social networks by creating social ties <str<strong>on</strong>g>th</str<strong>on</strong>g>at did not exist previously<br />

and maintaining existing ties (collective moti<strong>on</strong> affecting social networks).<br />

Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a need to combine <str<strong>on</strong>g>th</str<strong>on</strong>g>e two areas <str<strong>on</strong>g>of</str<strong>on</strong>g> research and examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship<br />

between network structure and collective moti<strong>on</strong>. I will briefly review<br />

different modelling approaches <str<strong>on</strong>g>th</str<strong>on</strong>g>at combine social network structures and collective<br />

moti<strong>on</strong> (e.g. in pedestrian crowds or evacuati<strong>on</strong> wcenarios) and present examples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> my own work suggesting how social networks could impact <strong>on</strong> positi<strong>on</strong>ing and<br />

leader-follower relati<strong>on</strong>ships wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in groups and navigati<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e group level.<br />

107


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Friday, July 1, 14:30<br />

C. Bodenstein1 , B. Knoke1 , S. Schuster1 1 Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics, Friedrich Schiller University Jena, Ernst-<br />

Abbe-Platz 2, D-07743 Jena, Germany<br />

2Current address: Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Engineering, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stuttgart, Germany<br />

e-mail: {christian.bodenstein,stefan.schu}@uni-jena.de<br />

M. Marhl3 , M. Perc3 3 Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia<br />

Protein activati<strong>on</strong> by calcium oscillati<strong>on</strong>s and Jensen’s<br />

Inequality<br />

Oscillating c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular Ca 2+ -i<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance for <str<strong>on</strong>g>th</str<strong>on</strong>g>e signalling<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. It is widely believed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extracellular stimuli<br />

is encoded into an oscillating Ca 2+ pattern, which subsequently is decoded by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+ -sensitive proteins. Besides <str<strong>on</strong>g>th</str<strong>on</strong>g>is advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> an oscillating Ca 2+<br />

signal, we here show <str<strong>on</strong>g>th</str<strong>on</strong>g>at oscillati<strong>on</strong>s additi<strong>on</strong>ally lead to a better activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e target proteins compared to a c<strong>on</strong>stant signal. In two asymptotic cases we can<br />

analytically prove <str<strong>on</strong>g>th</str<strong>on</strong>g>is for arbitrary oscillati<strong>on</strong> shapes and a very general decoding<br />

model, which comprises most previous models <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+ -sensitive proteins. For <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

we use Jensen’s inequality <str<strong>on</strong>g>th</str<strong>on</strong>g>at relates <str<strong>on</strong>g>th</str<strong>on</strong>g>e value <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>vex functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an average<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>vex functi<strong>on</strong>. Moreover, numerical simulati<strong>on</strong>s indicate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at oscillati<strong>on</strong>s lead to a better activati<strong>on</strong> not <strong>on</strong>ly in <str<strong>on</strong>g>th</str<strong>on</strong>g>e two asymptotic cases.<br />

The results underline <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cooperativity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e binding <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> zero-order ultrasensitivity, which are two properties <str<strong>on</strong>g>th</str<strong>on</strong>g>at are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten observed<br />

in experiments <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+ -sensitive target proteins. We compare<br />

our <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical predicti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data from experimental studies investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NFAT and Ras by oscillatory and c<strong>on</strong>stant signals.<br />

References.<br />

[1] Dolmetsch et al., Calcium oscillati<strong>on</strong>s increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficiency and specificity <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong><br />

Nature 392 933–936, 1998.<br />

[2] Kupzig et al., The frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium oscillati<strong>on</strong>s are optimized for efficient calciummediated<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ras and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ERK/MAPK cascade Proc Natl Acad Sci USA 102 7577–<br />

7582, 2005.<br />

108


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Crowd Dynamics: Modeling, Analysis and Simulati<strong>on</strong> (Part 2); Wednesday,<br />

June 29, 14:30<br />

M. Bodnar<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics and Mechanics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland<br />

e-mail: mbodnar@mimuw.edu.pl<br />

J.J.L. Velazquez<br />

ICMAT CSIC,<br />

C. Nicolás Cabrera, 13-15, Campus Cantoblanco UAM,<br />

28049 Madrid, Spain<br />

e-mail: velazque@mat.ucm.es<br />

Derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macroscopic equati<strong>on</strong>s<br />

for individual cell-based models.<br />

Typically, in individual cell-based models cells interact by means <str<strong>on</strong>g>of</str<strong>on</strong>g> some pair potential<br />

and are assumed to evolve according to some stochastic or deterministic<br />

dynamics. Because <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models try to describe interacti<strong>on</strong> between individuals<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ey are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten called microscopic models. They can describe quite complicated<br />

phenomena. The rule which governs <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells dynamics can be usually easily implemented<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical simulati<strong>on</strong> might give some soluti<strong>on</strong>s, in particular<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular automata models. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, if we try to give a<br />

precise ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> it is usually complicated and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> such models is very difficult if possible. Often it is also very difficult to<br />

identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e most relevant parameters or group <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters and its influence <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics.<br />

Our talk will be focused <strong>on</strong> a very particular type <str<strong>on</strong>g>of</str<strong>on</strong>g> models <str<strong>on</strong>g>th</str<strong>on</strong>g>at are analogous<br />

to many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model studied in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature. We will assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e centres <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cells evolve according to ordinary differential equati<strong>on</strong><br />

d<br />

dt XN(k, t) = −<br />

N<br />

∇VN(XN (k, t) − XN (i, t)) ,<br />

i=1<br />

i=k<br />

where N is a number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and functi<strong>on</strong>s XN (k, t) describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e k<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

cell. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at dominant effect in <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics is cell fricti<strong>on</strong> and for <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

reas<strong>on</strong> <strong>on</strong>ly <strong>on</strong>e derivative appears <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e left-hand side. We will derive a equati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at can describe a macroscopic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> ”l<strong>on</strong>g-range”<br />

potentials, <str<strong>on</strong>g>th</str<strong>on</strong>g>is is when <strong>on</strong>e cell/particle interacts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> many o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell/particle density is described by a type <str<strong>on</strong>g>of</str<strong>on</strong>g> porous-medium equati<strong>on</strong>. On<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, if interacti<strong>on</strong> are ”short”, <str<strong>on</strong>g>th</str<strong>on</strong>g>is is a support <str<strong>on</strong>g>of</str<strong>on</strong>g> potential V is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

order <str<strong>on</strong>g>of</str<strong>on</strong>g> typical distance between cells/particles <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic system appears in <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic equati<strong>on</strong>. In 1-D <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

leads to a versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> porous-medium equati<strong>on</strong> discrete in space. However for higher<br />

dimensi<strong>on</strong>s a directi<strong>on</strong>al densities have to be c<strong>on</strong>sidered.<br />

References.<br />

[1] M. Bodnar, J.J.L. Velazquez, Derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macroscopic equati<strong>on</strong>s for individual cell-based<br />

models: a formal approach, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods Appl. Sci., 28, (2005), 1757–1779.<br />

109


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] M. Bodnar, J.J.L. Velazquez, An integro-differential equati<strong>on</strong> arising as a limit <str<strong>on</strong>g>of</str<strong>on</strong>g> individual<br />

cell-based models, J. Diff. Eqs., 222, (2006), 341–380.<br />

[3] K. Oelschläger, Large systems <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting particles and <str<strong>on</strong>g>th</str<strong>on</strong>g>e porous medium equati<strong>on</strong>, J. Diff.<br />

Eqs. 88 (1990), 294–346.<br />

110


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Delay Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s II; Saturday, July 2, 08:30<br />

M. Bodnar<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics and Mechanics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland<br />

e-mail: mbodnar@mimuw.edu.pl<br />

T. Płatkowski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics and Mechanics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland<br />

e-mail: tplatk@mimuw.edu.pl<br />

U. Foryś<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics and Mechanics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland<br />

e-mail: urszula@mimuw.edu.pl<br />

N. Bielczyk<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics and Mechanics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland<br />

e-mail: natalia.bielczyk@gmail.com<br />

J. Poleszczuk<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics and Mechanics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland<br />

e-mail: j.poleszczuk@mimuw.edu.pl<br />

Delay can stabilise: populati<strong>on</strong> and love affairs dynamics.<br />

It is well known <str<strong>on</strong>g>th</str<strong>on</strong>g>at time delay may lead to destabilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a steady state<br />

and oscillati<strong>on</strong>s may arise due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Hopf bifurcati<strong>on</strong>. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at for <str<strong>on</strong>g>th</str<strong>on</strong>g>e system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>e delay <str<strong>on</strong>g>th</str<strong>on</strong>g>e unstable steady state can be stabilised by time<br />

delay. Namely, if for delay equal to 0 <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady state is an unstable node or<br />

unstable spring, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady state may gain stability for larger time delays. We<br />

give a c<strong>on</strong>diti<strong>on</strong> which guarantees <str<strong>on</strong>g>th</str<strong>on</strong>g>is kind <str<strong>on</strong>g>of</str<strong>on</strong>g> behaviour and we illustrate it wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

some linear and n<strong>on</strong>-linear sociological models <str<strong>on</strong>g>of</str<strong>on</strong>g> romantic relati<strong>on</strong>ship.<br />

111


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Semigroups <str<strong>on</strong>g>of</str<strong>on</strong>g> Operators in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology II; Saturday, July 2, 11:00<br />

Radosław Bogucki<br />

Ernst & Young Business Advisory Sp. z o.o.<br />

e-mail: radek.bogucki@gmail.com<br />

Adam Bobrowski<br />

Politechnika Lubelska<br />

Two <str<strong>on</strong>g>th</str<strong>on</strong>g>eorems <strong>on</strong> singularly perturbed semigroups wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

applicati<strong>on</strong>s to some genetic models<br />

In our talk we present two <str<strong>on</strong>g>th</str<strong>on</strong>g>eorems <strong>on</strong> c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> semigroups related to singularly<br />

perturbed abstract Cauchy problems, and apply <str<strong>on</strong>g>th</str<strong>on</strong>g>em to some examples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> recent models in applied ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics. The semigroups c<strong>on</strong>sidered are related<br />

to piecewise deterministic Markov processes jumping between several copies <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

rectangle in M-dimensi<strong>on</strong>al Euclidean space and moving al<strong>on</strong>g deterministic integral<br />

curves <str<strong>on</strong>g>of</str<strong>on</strong>g> some ODEs between jumps. Our <str<strong>on</strong>g>th</str<strong>on</strong>g>eorems describe limit behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e processes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cases <str<strong>on</strong>g>of</str<strong>on</strong>g> fast jumps and fast moti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chosen<br />

variables. These results are motivated by Kepler-Elst<strong>on</strong>’s model <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulati<strong>on</strong><br />

and Lipniacki’s model <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong>. We will also shortly discuss applicati<strong>on</strong>s<br />

to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er models, including <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical ec<strong>on</strong>omics.<br />

112


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ansgar Bohmann<br />

Heidelberg University<br />

e-mail: ansgar.bohmann@uni-hd.de<br />

Angela Stevens<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Münster<br />

e-mail: stevens@mis.mpg.de<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Modeling Viral Spread <strong>on</strong> Tissue or Cell Culture Level<br />

Spreading <str<strong>on</strong>g>of</str<strong>on</strong>g> viral infecti<strong>on</strong>s in tissues as well as in artificial cell cultures relies<br />

<strong>on</strong> various microscopical effects between individual cells. Besides <str<strong>on</strong>g>th</str<strong>on</strong>g>e well known<br />

diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free viri<strong>on</strong>s, which is primitive but important, experimentalist have<br />

recently discovered a vast variety <str<strong>on</strong>g>of</str<strong>on</strong>g> more or less elementary active and directed<br />

transport mechanisms (cf. [1], [2]). Am<strong>on</strong>gst <str<strong>on</strong>g>th</str<strong>on</strong>g>ese viral surfing (cf. [3]) between<br />

cells is particularly interesting, since it may bridge significant distances. In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

experiments transport <str<strong>on</strong>g>of</str<strong>on</strong>g> a few individual viri<strong>on</strong>s from a single infected towards a<br />

single uninfected cell (wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a culture <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly few cells) has been observed via<br />

different techniques such as live cell imaging and electr<strong>on</strong> microscopy. To our<br />

knowledge <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese transport processes <strong>on</strong> a larger scale has not yet been<br />

subject to any systematic studies — nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er experimental nor <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical.<br />

To ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically describe <str<strong>on</strong>g>th</str<strong>on</strong>g>ese phenomena a microscopic model including<br />

different c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> transport and replicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viruses is set up and discussed.<br />

This is c<strong>on</strong>sidered as a preparatory step towards an effective descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall viral transport <strong>on</strong> a meso-scale level. The future goal is to use homogenizati<strong>on</strong><br />

techniques to gain more understanding for <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese different<br />

microscopic processes for <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantitative and qualitative effects <strong>on</strong> spreading <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

viral infecti<strong>on</strong>s in living tissues or cell cultures.<br />

References.<br />

[1] Q. Sattentau Avoiding <str<strong>on</strong>g>th</str<strong>on</strong>g>e void: cell-to-cell spread <str<strong>on</strong>g>of</str<strong>on</strong>g> human viruses Nature Reviews Microbiology<br />

6 815 (2008).<br />

[2] W. Mo<str<strong>on</strong>g>th</str<strong>on</strong>g>es, et al. Minireview: virus cell-to-cell transmissi<strong>on</strong> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Virology 84(17)<br />

8360–8368 (2010).<br />

[3] N. M. Sherer, M. J. Lehmann, et al. Retroviruses can establish filopodial bridges for efficient<br />

cell-to-cell transmissi<strong>on</strong> Nat Cell Biol. 9(3) 310–315 (2007).<br />

113


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Andreas Bohn<br />

ITQB - New University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lisb<strong>on</strong><br />

e-mail: abohn@itqb.unl.pt<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 14:30<br />

Multi-level modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic spatio-temporal<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> phototrophic bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms<br />

Phototrophic bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms are complex microbial communities encased in an extracellular<br />

polymeric matrix and fueled by a significantly present photosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esizing fracti<strong>on</strong><br />

(e.g. cyanobacteria) existing in symbiosis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> heterotrophic bacteria [1]. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e present work we present our <strong>on</strong>going work <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> several integrated,<br />

quantitative approaches to modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm life cycle. In particular an SDE model predicting <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm biomass as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency and size <str<strong>on</strong>g>of</str<strong>on</strong>g> abrupt biomass<br />

detachments, <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called sloughing events, is discussed [2]. We fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore analyze<br />

a kinetic flux-balance based PDE model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal distributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 16 particulate and solute bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm comp<strong>on</strong>ents [3], which has originally been<br />

developed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling framework AQUASIM [4]. Here, we report <strong>on</strong> our<br />

efforts to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> variables and parameters,<br />

in order to obtain a minimal model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> phototrophic<br />

bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms, and achieve integrati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> generic PDE-modeling approaches<br />

to bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms [5]. Our final aim is to c<strong>on</strong>nect bo<str<strong>on</strong>g>th</str<strong>on</strong>g> models in a coherent fashi<strong>on</strong>, and<br />

fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore adjust <str<strong>on</strong>g>th</str<strong>on</strong>g>em wi<str<strong>on</strong>g>th</str<strong>on</strong>g> evidence from experimental data <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm physiology<br />

and morphology, obtained wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a <str<strong>on</strong>g>European</str<strong>on</strong>g> project <strong>on</strong> phototrophic bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms<br />

(http://www.photobi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms.org).<br />

References.<br />

[1] Roeselers et al. (2008) J Appl Phycol 20:227-235<br />

[2] Bohn et al. (2007) Wat Sci Technol 55(8-9):257-264<br />

[3] Wolf et al. (2007) Biotechnol Bioeng 97:1064-1079<br />

[4] Reichert (1996) Wat Sci Technol 30:21-30<br />

[5] Alpkvist and Klapper (2007) Bull Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biol 69:765-789<br />

114


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious agents;<br />

Tuesday, June 28, 17:00<br />

Barbara Boldin<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Natural Sciences and<br />

Informati<strong>on</strong> Technologies<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Primorska<br />

e-mail: barbara.boldin@upr.si<br />

Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-host viral evoluti<strong>on</strong> in a heterogeneous envir<strong>on</strong>ment:<br />

insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e HIV co-receptor switch<br />

From <str<strong>on</strong>g>th</str<strong>on</strong>g>e point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> a pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen, a host is a structured and a heterogeneous<br />

envir<strong>on</strong>ment. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV, for instance, <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial structure is<br />

supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus is found in different tissues while envir<strong>on</strong>mental<br />

heterogeneity originates from <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen being able to exploit different types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

immune cells. We present a simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporates two<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> target cells and some spatial structuring and discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s under<br />

which viral diversificati<strong>on</strong> occurs wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a host. Applying <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

HIV, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at it captures <str<strong>on</strong>g>th</str<strong>on</strong>g>ree main properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called ‘co-receptor<br />

switch’ <str<strong>on</strong>g>th</str<strong>on</strong>g>at is observed in many HIV infecti<strong>on</strong>s: <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial dominance <str<strong>on</strong>g>of</str<strong>on</strong>g> virus<br />

strains <str<strong>on</strong>g>th</str<strong>on</strong>g>at infect CCR5+ cells, <str<strong>on</strong>g>th</str<strong>on</strong>g>e late switch in some (but, importantly, not<br />

all) HIV infecti<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e associated drop in <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> uninfected T-cells.<br />

This suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e co-receptor switch could result from gradual adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e virus populati<strong>on</strong> to target cell heterogeneity. More generally, we argue <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

evoluti<strong>on</strong>ary ecology can help us better understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> some infecti<strong>on</strong>s.<br />

The talk is based <strong>on</strong> joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Samuel Aliz<strong>on</strong> [1].<br />

References.<br />

[1] A. Aliz<strong>on</strong>, B. Boldin: Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-host viral evoluti<strong>on</strong> in a heterogeneous envir<strong>on</strong>ment: insights<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e HIV co-receptor switch. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong>ary Biology, 23, No. 12, (2010), pp.<br />

2625-2635.<br />

115


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Dimitra B<strong>on</strong><br />

GOETHE UNIVERSITY FRANKFURT INSTITUTE OF BIOSTATISTICS<br />

AND MATHEMATICAL MODELLING 60590 FRANKFURT (MAIN), GER-<br />

MANY<br />

e-mail: b<strong>on</strong>@med.uni-frankfurt.de<br />

Eva Herrmann<br />

GOETHE UNIVERSITY FRANKFURT INSTITUTE OF BIOSTATISTICS<br />

AND MATHEMATICAL MODELLING<br />

e-mail: herrmann@med.uni-frankfurt.de<br />

Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PK-PD Models for viral kinetics in<br />

patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> HCV<br />

PK-PD models are used to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> antiviral activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

drugs and combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs in patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> chr<strong>on</strong>ic viral diseases like HCV.<br />

They play an important role in drug development and optimizing antiviral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy.<br />

In order to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral kinetics we implemented a full PK-PD model using<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ordinary differential equati<strong>on</strong> system shown bellow. Target cells, T , are infected<br />

by HCV, V , wi<str<strong>on</strong>g>th</str<strong>on</strong>g> rate β. Infected cells are lost at rate δ per cell and free viri<strong>on</strong>s<br />

are cleared at rate c. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er details are given by <str<strong>on</strong>g>th</str<strong>on</strong>g>e model equati<strong>on</strong>s basing <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e general PK-PD model for Hepatitis C viral kinetics as proposed in Shudo et<br />

al.[1]<br />

VI(t) ˙ = (1 − ε)(1 − ϱ)pI(t) − cV (t)<br />

VN(t) ˙ = (1 − ε)ϱpI(t) − cVn(t)<br />

I(t) ˙ = βT (t)V (t) + pII(t)(1 −<br />

T (t)+I(t)<br />

T (0)+I(0)<br />

) − δI(t)<br />

T ˙<br />

T (t)+I(t)<br />

(t) = γ(1 − T (0)+I(0) )<br />

• T and I are <str<strong>on</strong>g>th</str<strong>on</strong>g>e numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> target cells and infected cells, resp.<br />

• V represents infectious vir<strong>on</strong>s<br />

• VN represents n<strong>on</strong> infectious vir<strong>on</strong>s<br />

• V = VI + VN is <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral load<br />

• p is describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral producti<strong>on</strong> rate in <str<strong>on</strong>g>th</str<strong>on</strong>g>e untreated chr<strong>on</strong>ic patient<br />

• pI is <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferati<strong>on</strong> rate, as in Dahari et al.[2]<br />

• γ is <str<strong>on</strong>g>th</str<strong>on</strong>g>e regenerati<strong>on</strong> rate as in Herrmann et al.[3]<br />

• ε(t) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> IFN<br />

• ϱ is describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e antiviral effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Ribavirin to split <str<strong>on</strong>g>th</str<strong>on</strong>g>e newly produced<br />

virus in infectable virus (VI and VN resp.) as in Dixit et al.[4]<br />

For <str<strong>on</strong>g>th</str<strong>on</strong>g>e PD model, we set ε(t) to ε(t) =<br />

C(t) h<br />

IC h 50 +C(t)h , where C(t) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug<br />

c<strong>on</strong>centrati<strong>on</strong> in serum, IC50 is <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug level which blocks <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral producti<strong>on</strong> by<br />

50% and <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter h is <str<strong>on</strong>g>th</str<strong>on</strong>g>e Hill coefficient (h ≥ 1). The drug effectiveness, ε(t)<br />

gradually increases and <str<strong>on</strong>g>th</str<strong>on</strong>g>en decreases during <str<strong>on</strong>g>th</str<strong>on</strong>g>e first week <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, as C(t) does<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e same for each patient. For fitting <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C(t) to each patient’s PK data,<br />

we estimate all <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>. Afterwards PK parameters are used<br />

to fit individual patient’s Log HCV RNA kinetic data by maximum likelihood in<br />

order to estimate c, δ, V0, IC50 and h. We used an optimizati<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m basing<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Nelder and Mead me<str<strong>on</strong>g>th</str<strong>on</strong>g>od and an ODE solver for stiff equati<strong>on</strong>s. We also<br />

116


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

present an example <str<strong>on</strong>g>of</str<strong>on</strong>g> such an implementati<strong>on</strong> in MatLab as well as wi<str<strong>on</strong>g>th</str<strong>on</strong>g> R to fit<br />

viral kinetic and pharmacokinetic data wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e described full PK-PD model.<br />

References.<br />

[1] E. Shudo, R.M. Ribeiro and A.S. Perels<strong>on</strong>, Modeling Hepatitis C Virus Kinetics under Therapy<br />

using Pharmacokinetic and Pharmacodynamic Informati<strong>on</strong> Expert Opin. Drug Metab.<br />

Toxicol. 2009, 321-332.<br />

[2] Dahari H, Ribeiro RM, Perels<strong>on</strong> AS., Triphasic decline <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis C virus RNA during<br />

antiviral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy Hepatology. 2007 Jul;46(1):16-21.<br />

[3] Herrmann E, Lee JH, Marinos G, Modi M, Zeuzem S., . Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ribavirin <strong>on</strong> hepatitis C viral<br />

kinetics in patients treated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> pegylated interfer<strong>on</strong>. Hepatology. 2003 Jun;37(6):1351-8.<br />

[4] Dixit NM, Layden-Almer JE, Layden TJ, Perels<strong>on</strong> AS., Modelling how ribavirin improves<br />

interfer<strong>on</strong> resp<strong>on</strong>se rates in hepatitis C virus infecti<strong>on</strong>. Nature. 2004 Dec 16;432(7019):922-4.<br />

117


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent advances in infectious disease modelling II; Saturday, July 2, 14:30<br />

Axel B<strong>on</strong>acic Marinovic<br />

RIVM / UMC Utrecht, Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: axel.b<strong>on</strong>acic.marinovic@rivm.nl<br />

Timeliness <str<strong>on</strong>g>of</str<strong>on</strong>g> interventi<strong>on</strong> in epidemic outbreaks<br />

During an epidemic outbreak <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> about which interventi<strong>on</strong> measures should<br />

be applied is tightly linked to how timely <str<strong>on</strong>g>th</str<strong>on</strong>g>ese measures can be applied. As a general<br />

rule, <str<strong>on</strong>g>th</str<strong>on</strong>g>e earlier an interventi<strong>on</strong> is applied <str<strong>on</strong>g>th</str<strong>on</strong>g>e better is its result, however, due<br />

to logistics, policies, m<strong>on</strong>ey, people and reality in general, delays <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interventi<strong>on</strong>s are inevitable. Therefore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> comes down to decide, e.g.,<br />

whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er is it still wor<str<strong>on</strong>g>th</str<strong>on</strong>g> applying a determined interventi<strong>on</strong> (i.e., is it already too<br />

late for it to do some<str<strong>on</strong>g>th</str<strong>on</strong>g>ing?), or whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er a quicker interventi<strong>on</strong> <strong>on</strong> a smaller group<br />

would have a better (or worse) effect <str<strong>on</strong>g>th</str<strong>on</strong>g>an a slower interventi<strong>on</strong> <strong>on</strong> a larger group.<br />

To answer <str<strong>on</strong>g>th</str<strong>on</strong>g>is questi<strong>on</strong> we employ models to analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics<br />

depending <strong>on</strong> when and to whom are <str<strong>on</strong>g>th</str<strong>on</strong>g>e interventi<strong>on</strong>s applied. We show two examples<br />

where <str<strong>on</strong>g>th</str<strong>on</strong>g>e models can support decisi<strong>on</strong> making. The first case shows <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccinati<strong>on</strong> during a measles outbreak in a school depending <strong>on</strong> when after<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e outbreak vaccinati<strong>on</strong> is implemented. The sec<strong>on</strong>d case investigates<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> employing a quicker but less sensitive test <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e gold standard to<br />

diagnose H1N1, followed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positively diagnosed individuals.<br />

118


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Genetics and Genomics; Wednesday, June 29, 08:30<br />

Katarína Boďová<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

Physics and Informatics, Comenius University, Bratislava, Slovakia<br />

e-mail: bodova@fmph.uniba.sk<br />

Ľubomír Tomáška<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences, Comenius University,<br />

Bratislava, Slovakia<br />

Jozef Nosek<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences, Comenius<br />

University, Bratislava, Slovakia<br />

Richard Kollár<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, Comenius University,<br />

Bratislava, Slovakia<br />

Factors determining leng<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> telomeric<br />

structures in absence <str<strong>on</strong>g>of</str<strong>on</strong>g> telomerase<br />

Absence <str<strong>on</strong>g>of</str<strong>on</strong>g> telomerase in cellular structures requires an alternative telomeraseindependent<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way for telomeric sequence leng<str<strong>on</strong>g>th</str<strong>on</strong>g> regulati<strong>on</strong>. Telomeric circles<br />

possibly play an important role in a universal mechanism for stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ends <str<strong>on</strong>g>of</str<strong>on</strong>g> linear DNA <str<strong>on</strong>g>th</str<strong>on</strong>g>at possibly dates back to pre-telomerase ages. It was observed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>eir leng<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong> varies significantly in various types <str<strong>on</strong>g>of</str<strong>on</strong>g> organelles and<br />

organisms. How to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>ese different outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments? In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work<br />

we try to identify and estimate key factors influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

telomeric circles, loops and strand invasi<strong>on</strong>s using numerical simulati<strong>on</strong>s for a model<br />

we have c<strong>on</strong>structed for C. parapsilosis.<br />

119


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Friday, July 1, 14:30<br />

Wojciech Borkowski<br />

Center for Complex Systems, Institute for Social Studies, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

e-mail: wborkowski@uw.edu.pl<br />

Cellular automat<strong>on</strong> eco-systems <str<strong>on</strong>g>th</str<strong>on</strong>g>e simple way to simulate<br />

macroevoluti<strong>on</strong><br />

Keywords: Macroevoluti<strong>on</strong>; Coevoluti<strong>on</strong>; Individual-based models; Predator-Prey;<br />

Cellular automata; Artificial life; Phylogenetic Trees; Food Networks;<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is short talk I will present a simple lattice, cellular automat<strong>on</strong> like model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a multi-species ecosystem suitable for <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent properties <str<strong>on</strong>g>of</str<strong>on</strong>g> macroevoluti<strong>on</strong>.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is model <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> species is not fixednew species c<strong>on</strong>tinuously<br />

emerge by mutati<strong>on</strong> from existing species, <str<strong>on</strong>g>th</str<strong>on</strong>g>en survive or extinct depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

energetic balance between local ecological interacti<strong>on</strong>s. The M<strong>on</strong>te-Carlo numerical<br />

simulati<strong>on</strong>s show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is able to qualitatively reproduce phenomena <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

have been empirically observed, like <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence between size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e isolated<br />

area and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> species inhabiting <str<strong>on</strong>g>th</str<strong>on</strong>g>ere or between primary producti<strong>on</strong> and<br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> food network. The model allows also studying formati<strong>on</strong> and transformati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> food-networks, influence <str<strong>on</strong>g>of</str<strong>on</strong>g> general factors (like intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> primary<br />

producti<strong>on</strong>s) and possible causes <str<strong>on</strong>g>of</str<strong>on</strong>g> mass extincti<strong>on</strong>s, and more generally, <str<strong>on</strong>g>th</str<strong>on</strong>g>e role<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ecological rules and pure chance in macroevoluti<strong>on</strong>. Some results were published<br />

jet (see below), some new will be presented.<br />

HOMEPAGE: www.iss.uw.edu.pl/borkowski/<br />

References.<br />

[1] Borkowski, W., 2009. Simple Lattice Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Macroevoluti<strong>on</strong>. Planet. Space Sci. Vol. 57. No.<br />

4, pp.: 498-507, doi:10.1016/j.pss.2008.10.001<br />

[2] Borkowski W., 2008. Cellular automata model <str<strong>on</strong>g>of</str<strong>on</strong>g> macroevoluti<strong>on</strong>. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Fourteen<str<strong>on</strong>g>th</str<strong>on</strong>g> Nati<strong>on</strong>al <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics in Biology and<br />

Medicine (pp. 18-25), Uniwersytet Warszawski, QPrint Warszawa 2008, ISBN: 83-903893-4-7<br />

(arXiv:0902.3919v1)<br />

[3] Borkowski W., Nowak A., 2009. Zastosowanie modelu samoorganizacji ekosystemów do wyjaśniania<br />

zróżnicowania kulturowego zachowa społecznych. In Układy Złoż<strong>on</strong>e w Naukach<br />

Społecznych - wybrane zagadnienia, pp.: 233-274, Wydawnictwo Naukowe Scholar, Warszawa.<br />

ISBN: 978-83-7383-371-4 (in Polish)<br />

[4] Borkowski W., 2008. Powtarzalność ewolucji w naturze, kulturze i... informatyce. (Repeatability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> in nature, culture and computer science) TEKSTY z ULICY nr 12 (pp. 7-28),<br />

Uniwersytet Śląski, OFFMAX, Katowice 2008, ISBN: 978-83-87248-16-1 (in Polish)<br />

[5] Borkowski W., 2006. Ewolucyjna droga do złoż<strong>on</strong>ości. (Evoluti<strong>on</strong>ary way to complexity) TEK-<br />

STY z ULICY nr 10 (pp. 7-24), Uniwersytet Śląski, OFFMAX, Katowice 2006, ISBN: 83-<br />

87248-13-4 (http://www.memetyka.pl/dokumenty/pliki/zm10_1.pdf) (in Polish)<br />

120


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Marta Borowska<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Informatics, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bialystok, Sosnowa 64, 15-887 Bialystok, Poland<br />

e-mail: mborowska@ii.uwb.edu.pl<br />

Edward Oczeretko<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bialystok,<br />

Wiejska 45A, 15-351 Bialystok, Poland<br />

Synchr<strong>on</strong>izati<strong>on</strong> in coupled n<strong>on</strong>linear dynamical systems<br />

The study <str<strong>on</strong>g>of</str<strong>on</strong>g> coupling in dynamical systems has received an increasing interest since<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e 1990s. Recent studies <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong> have included various measures for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e different types <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong>. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, a comparis<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different measures between coupled dynamical systems in c<strong>on</strong>trolled settings is<br />

still missing. For <str<strong>on</strong>g>th</str<strong>on</strong>g>is aim <str<strong>on</strong>g>th</str<strong>on</strong>g>e noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong> will be used in a loose<br />

sense as <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<strong>on</strong>ym <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signals or <str<strong>on</strong>g>th</str<strong>on</strong>g>e similarity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir dynamics. We present some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>linear dynamics me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

synchr<strong>on</strong>izati<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutual correlati<strong>on</strong> dimensi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross-approximate entropy,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mutual informati<strong>on</strong> functi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>linear interdependencies S, H, N and apply<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese measures to <str<strong>on</strong>g>th</str<strong>on</strong>g>ree coupled model systems. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e reference me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

linear cross-correlati<strong>on</strong> functi<strong>on</strong> was used. We use <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupled Lorenz, Rössler and<br />

Lorenz-Rössler systems. Signals appearing here were used to illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e problems<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> attractors in <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase space, validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for<br />

different parameters wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling streng<str<strong>on</strong>g>th</str<strong>on</strong>g>. Mutual correlati<strong>on</strong> dimensi<strong>on</strong> is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> exchanged between systems. It allows to specify <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relati<strong>on</strong>ship between systems dynamics. Cross approximate entropy is a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> measuring <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity or irregularity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signal. More regular signal has<br />

less value <str<strong>on</strong>g>of</str<strong>on</strong>g> approximate entropy. Mutual informati<strong>on</strong> is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> statistical<br />

independence <str<strong>on</strong>g>of</str<strong>on</strong>g> signals, if <str<strong>on</strong>g>th</str<strong>on</strong>g>e value <str<strong>on</strong>g>of</str<strong>on</strong>g> zero means <str<strong>on</strong>g>th</str<strong>on</strong>g>at two signals are independent.<br />

Low value (close to zero) measures S, H, N indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>e independence between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

systems, while a high value indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>e synchr<strong>on</strong>izati<strong>on</strong>. Correlati<strong>on</strong> functi<strong>on</strong> is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two signals. The results obtained by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms failed to answer <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> which me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is <str<strong>on</strong>g>th</str<strong>on</strong>g>e best. It<br />

turns out <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e results depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system and <str<strong>on</strong>g>th</str<strong>on</strong>g>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> coupling.<br />

121


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Evert Bosdriesz<br />

Systems Bioinformatics, Vrije Universiteit Amsterdam<br />

Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands Bioinformatics Center<br />

e-mail: evert.bosdriesz@falw.vu.nl<br />

Jan Berkhout<br />

Systems Bioinformatics, Vrije Universiteit Amsterdam<br />

Frank Bruggeman<br />

Systems Bioinformatics, Vrije Universiteit Amsterdam<br />

Life Sciences, Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science<br />

Douwe Molenaar<br />

Systems Bioinformatics, Vrije Universiteit Amsterdam<br />

Bas Teusink<br />

Systems Bioinformatics, Vrije Universiteit Amsterdam<br />

The cost and benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme expressi<strong>on</strong><br />

The resources a microorganism has at it’s disposal are limited. Am<strong>on</strong>g o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ings, <str<strong>on</strong>g>th</str<strong>on</strong>g>is implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at expressing enzymes is costly. C<strong>on</strong>sider for instance <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

specific grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis per unit biomass. Expressing<br />

a certain enzyme increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e total biomass and <str<strong>on</strong>g>th</str<strong>on</strong>g>us, unless it c<strong>on</strong>tributes<br />

in some way to <str<strong>on</strong>g>th</str<strong>on</strong>g>e biomass syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate, will decreases <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate. Indeed,<br />

it has been observed <str<strong>on</strong>g>th</str<strong>on</strong>g>at expressing "dummy" proteins has a negative effect <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate [1,2].<br />

In order to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost and benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme expressi<strong>on</strong>, we generalized<br />

a definiti<strong>on</strong> previously proposed by Dekel and Al<strong>on</strong> [1]. The benefit functi<strong>on</strong> is<br />

closely related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e flux c<strong>on</strong>trol coefficient, <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost is <str<strong>on</strong>g>th</str<strong>on</strong>g>e directly related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resources dedicated to <str<strong>on</strong>g>th</str<strong>on</strong>g>e enzyme. The flux is optimized if for each<br />

enzyme its c<strong>on</strong>trol coefficient equals its c<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e total resource usages.<br />

This is generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>, and c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g>, earlier observati<strong>on</strong>s by Klipp and He<br />

[3].<br />

The relati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e benefit functi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e flux c<strong>on</strong>trol coefficients allows<br />

us to intuitively understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> kinetic parameters such as catalytic<br />

c<strong>on</strong>stants and Michaelis-Menten c<strong>on</strong>stants <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e (optimal) flux, at least for small<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. For instance, an enzyme wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a high catalytic c<strong>on</strong>stant typically has a<br />

flux c<strong>on</strong>trol coefficient <str<strong>on</strong>g>th</str<strong>on</strong>g>at rapidly decreases wi<str<strong>on</strong>g>th</str<strong>on</strong>g> it’s c<strong>on</strong>centrati<strong>on</strong>, and we expect<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is enzyme to have a low expressi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal state.<br />

We are currently applying <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost-benefit analysis to self-replicator models<br />

[4].<br />

References.<br />

[1] E. Dekel and U. Al<strong>on</strong> (2005), Optimality and evoluti<strong>on</strong>ary tuning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expressi<strong>on</strong> level <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

protein Nature 436 588–92.<br />

[2] D. M. Stoebel, A.M. Dean, D.E. and Dykhuizen (2008), The cost <str<strong>on</strong>g>of</str<strong>on</strong>g> expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Escherichia<br />

coli lac oper<strong>on</strong> proteins is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e process, not in <str<strong>on</strong>g>th</str<strong>on</strong>g>e product Genetics 178 1653–60.<br />

[3] E. Klipp and R. Heinrich (1999), Competiti<strong>on</strong> for enzymes in metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways: implicati<strong>on</strong>s<br />

for optimal distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme c<strong>on</strong>centrati<strong>on</strong>s and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flux c<strong>on</strong>trol Bio<br />

Systems 54 1–14.<br />

[4] D. Molenaar, R. van Berlo, D. de Ridder and B. Teusink (2009), Shifts in grow<str<strong>on</strong>g>th</str<strong>on</strong>g> strategies<br />

reflect trade<str<strong>on</strong>g>of</str<strong>on</strong>g>fs in cellular ec<strong>on</strong>omics Molecular Systems Biology 5.<br />

122


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Thursday, June 30, 11:30<br />

Roger Bowers<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Liverpool,<br />

Liverpool, L69 7ZL, U.K.<br />

e-mail: sx04@liv.ac.uk<br />

Andy Hoyle<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing Science and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stirling, Stirling, FK9 4LA, U.K.<br />

Andy White<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Maxwell Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Sciences, Heriot Watt University, Edinburgh, EH14 4AS, U.K.<br />

Evoluti<strong>on</strong>ary behaviour in single-species discrete-time<br />

models: <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs, <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying<br />

populati<strong>on</strong> dynamics and density dependence<br />

We study a class <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete-time single-species models typified by <str<strong>on</strong>g>th</str<strong>on</strong>g>e logistic, Hassell<br />

and Ricker forms. These have been used to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> behaviour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ecological systems as, despite <str<strong>on</strong>g>th</str<strong>on</strong>g>eir relative simplicity, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can produce a wide<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics from stable equilibria and cycles to chaos. Here, we investigate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models which has received much less attenti<strong>on</strong>.<br />

We use adaptive dynamics (supported by simulati<strong>on</strong>s) and assume <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are two<br />

evolving parameters linked by a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at, for equilibrium underlying<br />

populati<strong>on</strong> dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary behaviour is restricted to an evoluti<strong>on</strong>ary attractor<br />

or an evoluti<strong>on</strong>ary repellor depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f; branching<br />

cannot be exhibited. We fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er show <str<strong>on</strong>g>th</str<strong>on</strong>g>at, in c<strong>on</strong>trast to recent studies, <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

restricti<strong>on</strong> in evoluti<strong>on</strong>ary behaviour is maintained in <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard Hassell model,<br />

and models which have a similar separable form, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying populati<strong>on</strong><br />

dynamics are cyclic. To gain a broader range <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary behaviour requires<br />

c<strong>on</strong>sidering models in which density-dependence operates differently <strong>on</strong> reproducti<strong>on</strong><br />

and survival. Such models can additi<strong>on</strong>ally for some trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f shapes exhibit<br />

evoluti<strong>on</strong>ary branching or Garden <str<strong>on</strong>g>of</str<strong>on</strong>g> Eden evoluti<strong>on</strong>ary behaviour when <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying<br />

populati<strong>on</strong> dynamics are n<strong>on</strong>-equilibrium. Fundamental to such outcomes are<br />

disc<strong>on</strong>tinuous changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary for c<strong>on</strong>vergence stability (wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to<br />

a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f shape) across transiti<strong>on</strong>s (induced by parameter variati<strong>on</strong>)<br />

between different types <str<strong>on</strong>g>of</str<strong>on</strong>g> underlying populati<strong>on</strong> dynamics. Trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f shape and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying populati<strong>on</strong> dynamics can bo<str<strong>on</strong>g>th</str<strong>on</strong>g> have a marked effect<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological systems<br />

123


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 08:30<br />

Alexander S. Bratus<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Computati<strong>on</strong>al Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Cybernetics, Moscow State<br />

University, Moscow, 119992, Russia<br />

e-mail: alexander.bratus@yandex.ru<br />

Vladimir P. Posvyanskii<br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics–1, Moscow State University <str<strong>on</strong>g>of</str<strong>on</strong>g> Railway Engineering,<br />

Moscow<br />

Artem S. Novozhilov<br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics–1, Moscow State University <str<strong>on</strong>g>of</str<strong>on</strong>g> Railway Engineering,<br />

Moscow<br />

e-mail: anovozhilov@gmail.com<br />

Stability and limit behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a distributed replicator<br />

system<br />

The replicator equati<strong>on</strong> is known to provide a general modeling framework for several<br />

distinct areas in ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biology. In particular, it arises as a selecti<strong>on</strong><br />

equati<strong>on</strong> in populati<strong>on</strong> genetics, as a dynamic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary game<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eory, and as a model for putative chemical reacti<strong>on</strong>s describing prebiotic evoluti<strong>on</strong>.<br />

In its simplest form, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e species is a linear functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relative abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er species, <str<strong>on</strong>g>th</str<strong>on</strong>g>e replicator equati<strong>on</strong> takes <str<strong>on</strong>g>th</str<strong>on</strong>g>e form<br />

<br />

(1) ˙vi = vi (Av)i − f loc (t) , i = 1, . . . , n,<br />

where v = v(t) = (v1, . . . , vn), A is an n × n matrix wi<str<strong>on</strong>g>th</str<strong>on</strong>g> elements aij describing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e j-<str<strong>on</strong>g>th</str<strong>on</strong>g> species to <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e i-<str<strong>on</strong>g>th</str<strong>on</strong>g> species, (Av)i =<br />

n<br />

j=1 aijvj, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean fitness f loc (t) = 〈Av, v〉 = n<br />

i=1 (Av)ivi is chosen such<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at v ∈ Sn = {v : n<br />

i=1 vi = 1}.<br />

There are several different approaches to add space to (1). We suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e global regulati<strong>on</strong> represents a natural and c<strong>on</strong>venient approach to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

replicator equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an explicit spatial structure. To be exact, as a counterpart<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e local model (1) we c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

(2)<br />

∂ui<br />

∂t = ui [(Au)i − f sp (t)] + di∆ui, i = 1, . . . , n,<br />

where now u = u(x, t), x ∈ Ω ⊂ Rk , k = 1, 2, 3, di > 0 are diffusi<strong>on</strong> coefficients,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean integral fitness is given, assuming Niemann’s boundary c<strong>on</strong>diti<strong>on</strong>s,<br />

by f sp (t) = <br />

〈Au, u〉 dx. This approach allows analytical investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (2):<br />

Ω<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tool which was mainly missing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> replicator equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

explicit space. In particular, it is possible to find <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s for asymptotically<br />

stable rest points <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) to be asymptotically stable homogeneous equilibria <str<strong>on</strong>g>of</str<strong>on</strong>g> (2).<br />

In our work, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at for some values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> coefficients spatially<br />

heterogeneous soluti<strong>on</strong>s appear. Using a definiti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean<br />

integral sense we prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese heterogeneous soluti<strong>on</strong>s can be attracting; in<br />

particular <str<strong>on</strong>g>th</str<strong>on</strong>g>is is <str<strong>on</strong>g>th</str<strong>on</strong>g>e case for Eigen’s hypercycle. Defining in some natural way<br />

evoluti<strong>on</strong>ary stable states for <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributed system (2), we provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>is distributed state to be an asymptotically stable stati<strong>on</strong>ary soluti<strong>on</strong> to (2).<br />

124


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] A. S. Bratus, V. P. Posvyanskii. Stati<strong>on</strong>ary soluti<strong>on</strong>s in a closed distributed Eigen–Schuster<br />

evoluti<strong>on</strong> system. Differential equati<strong>on</strong>s, 42:1762–1774, 2006.<br />

[2] A. S. Bratus, V. P. Posvyanskii, and A. S. Novozhilov. Existence and stability <str<strong>on</strong>g>of</str<strong>on</strong>g> stati<strong>on</strong>ary<br />

soluti<strong>on</strong>s to spatially extended autocatalytic and hypercyclic systems under global regulati<strong>on</strong><br />

and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>linear grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates. N<strong>on</strong>linear Analysis: Real World Applicati<strong>on</strong>s, 11:1897–1917,<br />

2010.<br />

[3] A. S. Bratus, V. P. Posvyanskii, and A. S. Novozhilov. A note <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e replicator equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

explicit space and global regulati<strong>on</strong>. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences and Engineering, in press, 2011.<br />

125


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 11:00<br />

Carlos A. Braumann<br />

Centro de Investigação em Matemática e Aplicaçes, Universidade de<br />

Évora<br />

e-mail: braumann@uevora.pt<br />

Patrícia A. Filipe<br />

Centro de Investigação em Matemática e Aplicaçes, Universidade de<br />

Évora<br />

Clara Carlos<br />

Escola Superior de Tecnologia do Barreiro, Insytituto Politécnico<br />

de Setúbal<br />

Nuno M. Brites<br />

Universidade de Évora<br />

Carlos J. Roquete<br />

Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade<br />

de Évora<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it optimizati<strong>on</strong> issues in livestock producti<strong>on</strong> in a<br />

randomly variable envir<strong>on</strong>ment<br />

We use quite general stochastic differential equati<strong>on</strong> models to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> animals raised in a randomly varying<br />

envir<strong>on</strong>ment. These models are c<strong>on</strong>ceptually more adequate to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> random envir<strong>on</strong>mental variati<strong>on</strong>s <strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical regressi<strong>on</strong><br />

techniques (which are appropriate to describe measurement errors). We describe<br />

parameter estimati<strong>on</strong> and predicti<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, illustrating wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data <strong>on</strong> cow grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Mertolengo breed raised in Alentejo (Portugal) under natural c<strong>on</strong>diti<strong>on</strong>s and<br />

show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey outperform <str<strong>on</strong>g>th</str<strong>on</strong>g>e traditi<strong>on</strong>al regressi<strong>on</strong> models in predictive power.<br />

Mixed models, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> random variati<strong>on</strong> am<strong>on</strong>g animals <str<strong>on</strong>g>of</str<strong>on</strong>g> average asymptotic size,<br />

are also c<strong>on</strong>sidered.<br />

An applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models to pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it optimizati<strong>on</strong> in livestock producti<strong>on</strong><br />

is shown.<br />

Assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal is to be sold when it reaches some prescribed age and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are fixed and variable costs (per unit time) in raising <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

selling price is proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal’s weight, we determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal age<br />

at which an animal should be sold in order to maximize pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it.<br />

The first passage time distributi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a prescribed size is studied and used<br />

to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal size at which <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal should be sold. We can <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

determine which policy (selling at a fixed age or selling at a fixed size) is preferable<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> expected pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it.<br />

Some issues related to optimizati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e simultaneous raising <str<strong>on</strong>g>of</str<strong>on</strong>g> several animals<br />

will also be discussed.<br />

126


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent advances in infectious disease modelling II; Saturday, July 2, 14:30<br />

Romulus Breban<br />

Unité d’Epidémiologie des Maladies Emergentes,<br />

Institut Pasteur, 75724 Paris Cedex 15, France<br />

e-mail: romulus.breban@pasteur.fr<br />

The nati<strong>on</strong>wide incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis C in Egypt: Toward<br />

realistic estimates<br />

Recently, <str<strong>on</strong>g>th</str<strong>on</strong>g>e nati<strong>on</strong>wide incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis C in Egypt has attracted much<br />

attenti<strong>on</strong> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e scientific literature and mass media. Alarming new estimates<br />

exceeding 500 000 new cases per year (6.9/1000 per pers<strong>on</strong>-year) have been made<br />

based <strong>on</strong> data originating from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Egyptian Demographic and Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Survey performed<br />

in 2008. However, a more complete analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hepatitis C epidemiology<br />

in Egypt, based <strong>on</strong> additi<strong>on</strong>al nati<strong>on</strong>al-level as well as cohort-level data, reveals a<br />

very different story. First, it unveils a complex epidemic dynamics <str<strong>on</strong>g>th</str<strong>on</strong>g>at violates <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

simplistic me<str<strong>on</strong>g>th</str<strong>on</strong>g>odological assumpti<strong>on</strong>s made for <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence estimates; it <str<strong>on</strong>g>th</str<strong>on</strong>g>us becomes<br />

obvious <str<strong>on</strong>g>th</str<strong>on</strong>g>at incidence has been overestimated. Sec<strong>on</strong>d, a comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

direct incidence measurements in rural cohorts suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e overestimati<strong>on</strong> is<br />

by at least a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree. Accurate estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hepatitis C incidence in<br />

Egypt remains a task for <str<strong>on</strong>g>th</str<strong>on</strong>g>e future.<br />

References.<br />

[1] F.D. Miller, L.J. Abu-Raddad Evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> intense <strong>on</strong>going endemic transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis<br />

C virus in Egypt Proc Natl Acad Sci U S A 107 14757-14762, 2010.<br />

[2] E.M. Lehman, M.L. Wils<strong>on</strong> Epidemic hepatitis C virus infecti<strong>on</strong> in Egypt: estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> past<br />

incidence and future morbidity and mortality J Vir Hep 16 650-658, 2009.<br />

[3] C. Frank C, M.K. Mohamed, G.T. Strickland, D. Lavanchy, R. Ar<str<strong>on</strong>g>th</str<strong>on</strong>g>ur, L.S. Magder, T. Khoby,<br />

Y. Abdel-Wahab, E. Ohn, W. Anwar, I. Sallam The role <str<strong>on</strong>g>of</str<strong>on</strong>g> parenteral antischistosomal <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis C virus in Egypt Lancet 355 887-891, 2000.<br />

[4] A. Mostafa, S. Taylor, M. El-Daly, M. El Hoseiny, I. Bakr, N. Arafa, V. Thiers, F. Rimlinger,<br />

M. Abdel-Hamid, A. F<strong>on</strong>tanet, M.K. Mohamed Is <str<strong>on</strong>g>th</str<strong>on</strong>g>e hepatitis C virus epidemic over in<br />

Egypt? Incidence and risk factors <str<strong>on</strong>g>of</str<strong>on</strong>g> new hepatitis C virus infecti<strong>on</strong>s Liver Int 30 560-566,<br />

2010.<br />

127


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Informati<strong>on</strong>, human behaviour and disease; Saturday, July 2, 11:00<br />

Romulus Breban<br />

Unité d’Epidémiologie des Maladies Emergentes,<br />

Institut Pasteur, 75724 Paris Cedex 15, France<br />

e-mail: romulus.breban@pasteur.fr<br />

Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> newscasts for increasing influenza vaccinati<strong>on</strong><br />

coverage: How much is too much?<br />

Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> pandemic and seas<strong>on</strong>al influenza are receiving more attenti<strong>on</strong> from massmedia<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>an ever before. Frequent topics are epidemic severity, vaccinati<strong>on</strong>, etc.,<br />

changing <str<strong>on</strong>g>th</str<strong>on</strong>g>e way in which we perceive <str<strong>on</strong>g>th</str<strong>on</strong>g>e utility <str<strong>on</strong>g>of</str<strong>on</strong>g> disease preventi<strong>on</strong>. Voluntary<br />

influenza vaccinati<strong>on</strong> has been recently modeled using inductive reas<strong>on</strong>ing games.<br />

Thus, it has been found <str<strong>on</strong>g>th</str<strong>on</strong>g>at severe epidemics cannot be prevented by voluntary<br />

vaccinati<strong>on</strong> unless vaccinati<strong>on</strong> incentives are <str<strong>on</strong>g>of</str<strong>on</strong>g>fered. However, a key assumpti<strong>on</strong><br />

has been <str<strong>on</strong>g>th</str<strong>on</strong>g>at individuals make vaccinati<strong>on</strong> decisi<strong>on</strong>s based <strong>on</strong> whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>ere was<br />

an epidemic each influenza seas<strong>on</strong>; no o<str<strong>on</strong>g>th</str<strong>on</strong>g>er epidemiological informati<strong>on</strong> is available<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>em. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we relax <str<strong>on</strong>g>th</str<strong>on</strong>g>is assumpti<strong>on</strong> and investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> making more informed vaccinati<strong>on</strong> decisi<strong>on</strong>s while no incentives are <str<strong>on</strong>g>of</str<strong>on</strong>g>fered. We<br />

obtain two major results. First, providing additi<strong>on</strong>al epidemiological informati<strong>on</strong><br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e public may stabilize <str<strong>on</strong>g>th</str<strong>on</strong>g>e vaccinati<strong>on</strong> coverage and suppress severe influenza<br />

epidemics. Sec<strong>on</strong>d, when severe epidemics are prevented, if even more epidemiological<br />

informati<strong>on</strong> is released to <str<strong>on</strong>g>th</str<strong>on</strong>g>e public, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e vaccinati<strong>on</strong> coverage decreases.<br />

We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>ree scenarios where individuals know (i) <str<strong>on</strong>g>th</str<strong>on</strong>g>e prevalence, (ii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e vaccinati<strong>on</strong><br />

coverage and (iii) bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e prevalence and <str<strong>on</strong>g>th</str<strong>on</strong>g>e vaccinati<strong>on</strong> coverage every<br />

influenza seas<strong>on</strong>, in additi<strong>on</strong> to whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>ere was an epidemic.<br />

References.<br />

[1] R. Vardavas, R. Breban, S. Blower, Can influenza epidemics be prevented by voluntary vaccinati<strong>on</strong>?<br />

PLoS Comput Biol 3 e85, 2007.<br />

[2] R. Breban, R. Vardavas, S. Blower, Mean-field analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an inductive reas<strong>on</strong>ing game: applicati<strong>on</strong><br />

to influenza vaccinati<strong>on</strong> Phys Rev E 76 031127, 2007.<br />

128


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Víctor F. Breña–Medina<br />

Applied N<strong>on</strong>linear Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bristol<br />

e-mail: envfbm@bris.ac.uk<br />

Alan R. Champneys<br />

Applied N<strong>on</strong>linear Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bristol<br />

e-mail: A.R.Champneys@bristol.ac.uk<br />

Wave–pinning Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Root Hair<br />

Initiati<strong>on</strong><br />

A simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model is developed <str<strong>on</strong>g>of</str<strong>on</strong>g> a key cellular–level process in plant<br />

morphogenesis, namely <str<strong>on</strong>g>th</str<strong>on</strong>g>e biochemical process wich triggers outgrow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a hair<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a root hair cell <str<strong>on</strong>g>of</str<strong>on</strong>g> Arabidopsis. It involves <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e small G–<br />

proteins known as ROPs which bind to a specific locati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane,<br />

triggering cell wall s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening and subsequent hair grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. A n<strong>on</strong>–homogeneous<br />

reacti<strong>on</strong>–diffusi<strong>on</strong> model is taking into account where a catalytic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>e<br />

auxin is described which is experimentally known to play an important role<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hair <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. Local analysis, numerical bifurcati<strong>on</strong> analysis<br />

and numerical simulati<strong>on</strong> in 1D are used to <str<strong>on</strong>g>th</str<strong>on</strong>g>e better understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> locati<strong>on</strong> point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root hair formati<strong>on</strong>.<br />

References.<br />

[1] Chen W. (2009). Localized Patterns in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gray-Scott Model: An Asymptotic and Numerical<br />

Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynamics and Stability. Vancouver: University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia.<br />

[2] Ir<strong>on</strong>, D., Wei J. and Winter M. (2004). Stability analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing patterns generated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Schnakenberg model. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 49(4), pp. 358–390.<br />

[3] J<strong>on</strong>es A.R., Kramer E. M., Knox K., Swarup R., Bennett M. J., Lazary C. M., Ottoline<br />

Leyser H. M. & Griers<strong>on</strong> C. S. (2009). Auxin transport <str<strong>on</strong>g>th</str<strong>on</strong>g>rough n<strong>on</strong>-hair cells sustains roo<str<strong>on</strong>g>th</str<strong>on</strong>g>air<br />

development. Nat. Cell. Biol. 11(1), pp.78–84.<br />

[4] Payne R. J. H. & Griers<strong>on</strong> C. S. (2009). A Theoretical Model for ROP Localisati<strong>on</strong> by Auxin<br />

in Arabidopsis Root Hair Cells. PLoS ONE 4(12): e8337. doi:10.1371/journal.p<strong>on</strong>e.0008337<br />

129


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 11:00<br />

Nicholas F. Britt<strong>on</strong><br />

Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Sciences & Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biology, Univ <str<strong>on</strong>g>of</str<strong>on</strong>g> Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, UK<br />

e-mail: n.f.britt<strong>on</strong>@ba<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Interspecific kleptoparasitism<br />

Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough interspecific kleptoparasitism is widespread, <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical models have<br />

focussed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraspecific case. We develop a game-<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic model <str<strong>on</strong>g>of</str<strong>on</strong>g> interspecific<br />

kleptoparasitism, ultimately based <strong>on</strong> Ruxt<strong>on</strong> and Moody [1], c<strong>on</strong>sidering<br />

optimal host and parasite strategies. We explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>th</str<strong>on</strong>g>at, <strong>on</strong> an ecological<br />

time scale, <str<strong>on</strong>g>th</str<strong>on</strong>g>e system does not settle to a steady state but to oscillatory<br />

behaviour in strategy space.<br />

References.<br />

[1] G D Ruxt<strong>on</strong> and A L Moody, The ideal free distributi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> kleptoparasitism, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Biology 186, 449–458, 1997.<br />

130


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemic models: Networks and stochasticity II; Thursday, June 30, 11:30<br />

Tom Britt<strong>on</strong><br />

Stockholm University<br />

e-mail: tom.britt<strong>on</strong>@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

Dynamic networks in dynamic populati<strong>on</strong>s<br />

We study a randomly growing populati<strong>on</strong> (where new individuals are born and<br />

old die) in which edges between individuals appear and disappear randomly over<br />

time. A specific feature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is <str<strong>on</strong>g>th</str<strong>on</strong>g>at individuals are born wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a "social<br />

index" which affects how frequently <str<strong>on</strong>g>th</str<strong>on</strong>g>ey create new neighbours. For <str<strong>on</strong>g>th</str<strong>on</strong>g>is model<br />

we study asymptotic properties valid after a l<strong>on</strong>g time: <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree distributi<strong>on</strong>,<br />

degree correlati<strong>on</strong> and a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold c<strong>on</strong>diti<strong>on</strong> determining whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er a giant c<strong>on</strong>nected<br />

comp<strong>on</strong>ent exists or not. (Joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ias Lindholm and Tatyana Turova)<br />

131


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ellen Brooks-Pollock<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

e-mail: ellen.brooks.pollock@gmail.com<br />

Tuberculosis - <str<strong>on</strong>g>th</str<strong>on</strong>g>e family disease?<br />

Epidemics; Tuesday, June 28, 11:00<br />

Tuberculosis (TB) cases have been l<strong>on</strong>g been noted to cluster wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in households.<br />

In 1820, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e famous English poet John Keats died <str<strong>on</strong>g>of</str<strong>on</strong>g> TB, he was <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ird<br />

in his family to do so: two years earlier, his bro<str<strong>on</strong>g>th</str<strong>on</strong>g>er died <str<strong>on</strong>g>of</str<strong>on</strong>g> TB, and eight years<br />

before <str<strong>on</strong>g>th</str<strong>on</strong>g>at, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er had also died <str<strong>on</strong>g>of</str<strong>on</strong>g> TB. Years later in 1841, a <str<strong>on</strong>g>th</str<strong>on</strong>g>ird bro<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

developed and died <str<strong>on</strong>g>of</str<strong>on</strong>g> TB.<br />

It is unclear whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> cases represents household transmissi<strong>on</strong> or<br />

shared household risk factors. TB is a chr<strong>on</strong>ic disease and <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g timescales between<br />

infecti<strong>on</strong> and disease mean <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> processes can be difficult to<br />

untangle. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong>, I examine cross-secti<strong>on</strong>al TB data from households<br />

in Lima, Peru, to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> household transmissi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e average<br />

time between cases, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e immunity afforded by a previous TB infecti<strong>on</strong>. Using<br />

probabilistic and SIR-type models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> household structure, we investigate how<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cases changes during <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic. The framework<br />

lends itself for investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple reinfecti<strong>on</strong>s and immunity in<br />

transmissi<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is populati<strong>on</strong>, we estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>at protective immunity c<strong>on</strong>ferred<br />

up to 35% reducti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g> disease. Like <str<strong>on</strong>g>th</str<strong>on</strong>g>e Keats family, we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

household cases can occur decades apart, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e average time between cases<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in households is 3.8 years.<br />

References.<br />

[1] Brooks-Pollock, Becerra, Goldstein, Cohen and Murray (2011) Epidemiological inference from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis cases in households in Lima, Peru The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Infectious<br />

Diseases, in press.<br />

[2] L<strong>on</strong>gini and Koopman (1982) Household and community transmissi<strong>on</strong> parameters from final<br />

distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>s in households Biometrics 38 115–126.<br />

[3] Ball, Mollis<strong>on</strong> and Scalia-Tomba (1997) Epidemics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two levels <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> applied<br />

probability 7 46–89.<br />

132


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Game <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical modelling and optimizati<strong>on</strong> in evoluti<strong>on</strong> and ecology II;<br />

Tuesday, June 28, 14:30<br />

Mark Broom<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Science, City University<br />

e-mail: mark.broom@city.ac.uk<br />

Jan Rychtar<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina<br />

at Greensboro<br />

Evoluti<strong>on</strong> in structured populati<strong>on</strong>s: modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals and groups<br />

Recently models <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> have begun to incorporate structured populati<strong>on</strong>s,<br />

including spatial structure, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary processes <strong>on</strong><br />

graphs (evoluti<strong>on</strong>ary graph <str<strong>on</strong>g>th</str<strong>on</strong>g>eory). One limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is o<str<strong>on</strong>g>th</str<strong>on</strong>g>erwise quite general<br />

framework is <str<strong>on</strong>g>th</str<strong>on</strong>g>at interacti<strong>on</strong>s are restricted to pairwise <strong>on</strong>es, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

edges c<strong>on</strong>necting pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals. Yet many animal interacti<strong>on</strong>s can involve<br />

many players, and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical models also describe such multi-player interacti<strong>on</strong>s.<br />

We shall discuss a more general modelling framework <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> structured<br />

populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e focus <strong>on</strong> competiti<strong>on</strong> between territorial animals, where each<br />

animal or animal group has a "home range" which overlaps wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers,<br />

and interacti<strong>on</strong>s between various group sizes are possible. Depending up<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour c<strong>on</strong>cerned we can embed <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> different evoluti<strong>on</strong>ary games<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in our structure, as occurs for pairwise games such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e pris<strong>on</strong>er’s dilemma<br />

or <str<strong>on</strong>g>th</str<strong>on</strong>g>e Hawk-Dove game <strong>on</strong> graphs. We discuss some examples toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some<br />

important differences between <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach and evoluti<strong>on</strong>ary graph <str<strong>on</strong>g>th</str<strong>on</strong>g>eory.<br />

133


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Lutz Brusch<br />

Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Germany<br />

e-mail: lutz.brusch@tu-dresden.de<br />

Elan Gin<br />

DKFZ Heidelberg, Germany<br />

Elly M. Tanaka<br />

CRTD Dresden, Germany<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

A model for cyst lumen expansi<strong>on</strong> and size regulati<strong>on</strong> via<br />

fluid secreti<strong>on</strong><br />

Many internal epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial organs derive from cysts, which are tissues comprised <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bent epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cell layers enclosing a lumen. I<strong>on</strong> accumulati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lumen drives<br />

water influx and c<strong>on</strong>sequently water accumulati<strong>on</strong> and cyst expansi<strong>on</strong>. Lumensize<br />

recogniti<strong>on</strong> is important for <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organ size. When lumen size<br />

and cyst size are not c<strong>on</strong>trolled, diseases can result; for instance, renal failure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e kidney. We develop a mechanistic ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> lumen expansi<strong>on</strong> in<br />

order to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms for saturati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cyst grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. We include fluid<br />

accumulati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lumen, osmotic and elastic pressure, i<strong>on</strong> transport and stretchinduced<br />

cell divisi<strong>on</strong>. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e lumen volume increases in two phases: first,<br />

due to fluid accumulati<strong>on</strong> stretching <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells, <str<strong>on</strong>g>th</str<strong>on</strong>g>en in <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d phase, <str<strong>on</strong>g>th</str<strong>on</strong>g>e volume<br />

increase follows <str<strong>on</strong>g>th</str<strong>on</strong>g>e increase in cell number until proliferati<strong>on</strong> ceases as stretch<br />

forces relax. The model is quantitatively fitted to published data <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro cyst<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and predicts steady state lumen size as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model parameters.<br />

134


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multi-scale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver: From intracellular signaling to<br />

intercellular interacti<strong>on</strong>; Wednesday, June 29, 08:30<br />

Lutz Brusch<br />

Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: lutz.brusch@tu-dresden.de<br />

Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>leen Heil<br />

Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Martin Sander<br />

Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Fabian Rost<br />

Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Andreas Deutsch<br />

Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Modelling Endocytosis - from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Molecules to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Liver Cell<br />

Endocytosis is a c<strong>on</strong>served cellular process in eukaryotes by which nutrients are assimilated<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. Internalized material is transported by endosomes and sorted<br />

by means <str<strong>on</strong>g>of</str<strong>on</strong>g> endosome transiti<strong>on</strong>s. Endosome transiti<strong>on</strong>s result from dynamic interacti<strong>on</strong>s<br />

am<strong>on</strong>g Rab GTPases. We focus <strong>on</strong> Rab5-Rab7 and Rab5-Rab4/11 interacti<strong>on</strong>s<br />

underlying respectively early-to-late and early-to-recycling endosome transiti<strong>on</strong>s<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at select am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e degradative, recycling and transcytotic routes in liver<br />

cells. As a model <str<strong>on</strong>g>of</str<strong>on</strong>g> endosome transiti<strong>on</strong>s, we c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial c<strong>on</strong>centrati<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> competing GTPases and <str<strong>on</strong>g>th</str<strong>on</strong>g>e shift <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting c<strong>on</strong>centrati<strong>on</strong> fr<strong>on</strong>t<br />

in a <strong>on</strong>e-dimensi<strong>on</strong>al system across <str<strong>on</strong>g>th</str<strong>on</strong>g>e endosomal membrane. Locally, interacting<br />

GTPases can be modelled as a bistable system <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e cut-out switch or <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

toggle switch type [1]. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e toggle switch, all stable steady state soluti<strong>on</strong>s depend<br />

m<strong>on</strong>ot<strong>on</strong>ically <strong>on</strong> parameters whereas <str<strong>on</strong>g>th</str<strong>on</strong>g>e cut-out switch yields an increasing<br />

soluti<strong>on</strong> which <str<strong>on</strong>g>th</str<strong>on</strong>g>en switches <str<strong>on</strong>g>of</str<strong>on</strong>g>f. We extend <str<strong>on</strong>g>th</str<strong>on</strong>g>ose two models by diffusive spatial<br />

coupling. Heterogeneous initial c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong> system lead to<br />

spatially alternating GTPase c<strong>on</strong>centrati<strong>on</strong> domains and interjacent c<strong>on</strong>centrati<strong>on</strong><br />

fr<strong>on</strong>ts. In general, <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t is invading <str<strong>on</strong>g>th</str<strong>on</strong>g>at domain which has <str<strong>on</strong>g>th</str<strong>on</strong>g>e smaller c<strong>on</strong>centrati<strong>on</strong><br />

difference from <str<strong>on</strong>g>th</str<strong>on</strong>g>e unstable saddle soluti<strong>on</strong>. Hence, an intermediate<br />

parameter value exists at which <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t remains stati<strong>on</strong>ary. The toggle switch<br />

kinetics yields <str<strong>on</strong>g>th</str<strong>on</strong>g>is expected behaviour whereas <str<strong>on</strong>g>th</str<strong>on</strong>g>e cut-out switch system shows<br />

novel behaviour. Corresp<strong>on</strong>ding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e toggle switch properties, we propose <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is mechanism underlies <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> Rab5-Rab4/11 domains during<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e early-to-recycling endosome transiti<strong>on</strong>. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatially extended cut-out switch system reinforces <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cut-out<br />

switch for early-to-late endosome transiti<strong>on</strong>s. Moreover, we link <str<strong>on</strong>g>th</str<strong>on</strong>g>is molecular<br />

understanding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell level by means <str<strong>on</strong>g>of</str<strong>on</strong>g> an agent-based model representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> and biophysical interacti<strong>on</strong>s between early endosomes wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <strong>on</strong>e cell.<br />

Simulati<strong>on</strong> results identify critical regulatory steps <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trol efficient cargo flux<br />

which is essential for liver cells.<br />

References.<br />

[1] P. del C<strong>on</strong>te-Zerial, L. Brusch, J. Rink, C. Collinet, Y. Kalaidzidis, M. Zerial and A. Deutsch,<br />

Membrane identity and GTPase cascades regulated by toggle and cut-out switches, Mol. Syst.<br />

Biol. 4, 206, 2008.<br />

135


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Keywords: endocytosis, Rab GTPAses, reacti<strong>on</strong>-diffusi<strong>on</strong> system, travelingwave<br />

soluti<strong>on</strong>s, cut-out switch, toggle switch<br />

136


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Heart rate dynamics: models and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity (part II);<br />

Wednesday, June 29, 17:00<br />

Teodor Buchner<br />

Cardiovascular Physics Group, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Warsaw University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: buchner@if.pw.edu.pl<br />

Oscillati<strong>on</strong>s and synchr<strong>on</strong>izati<strong>on</strong> in human circulatory<br />

system<br />

Human cardiovascular system exhibits interesting dynamics, which is expressed<br />

in beat-by-beat changes <str<strong>on</strong>g>of</str<strong>on</strong>g> such variables as heart rate (interbeat interval) and blood<br />

pressure. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e system is complex, <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is dynamics is complex as well.<br />

Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics is <str<strong>on</strong>g>of</str<strong>on</strong>g> neural or electrophysiological nature, depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

functi<strong>on</strong>al state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart muscle, which is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> an active medium, subject<br />

to neural c<strong>on</strong>trol. Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics is related wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vascular<br />

resp<strong>on</strong>se to <str<strong>on</strong>g>th</str<strong>on</strong>g>e hemodynamic heart acti<strong>on</strong>. This resp<strong>on</strong>se depends <strong>on</strong> vascular resistance<br />

and <strong>on</strong> elastic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vascular wall. The resulting blood pressure<br />

and chemical properties (pH) are c<strong>on</strong>stantly m<strong>on</strong>itored by specific receptors <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

initiate neural reflexes, which applies neural c<strong>on</strong>trol to specific variables. There<br />

are many independent mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at may be activated in order to resp<strong>on</strong>d to<br />

certain fluctuati<strong>on</strong>s. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic times <str<strong>on</strong>g>of</str<strong>on</strong>g> different c<strong>on</strong>trol loops<br />

may differ by order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude.<br />

Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er source <str<strong>on</strong>g>of</str<strong>on</strong>g> complex oscillati<strong>on</strong>s, crucially important for homeostasis is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e respiratory system. All <str<strong>on</strong>g>th</str<strong>on</strong>g>e systems are interrelated in a complex way and give<br />

rise to <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex cardiovascular dynamics. One <str<strong>on</strong>g>of</str<strong>on</strong>g> interesting phenomena <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

arises in such a system is <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiorespiratory synchr<strong>on</strong>izati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e related phenomen<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interdependence between short-term dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> blood pressure,<br />

heart rate and brea<str<strong>on</strong>g>th</str<strong>on</strong>g>ing. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> problems will be addressed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk.<br />

137


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

III; Tuesday, June 28, 17:00<br />

Svetlana Bunimovich<br />

University Center, Ariel, Israel<br />

e-mail: SvetlanaBu@ariel.ac.il<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e activati<strong>on</strong><br />

killer cells after <str<strong>on</strong>g>th</str<strong>on</strong>g>e BCG treatment in bladder cancer<br />

Bladder cancer (BC) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e most frequently occurring urological cancer and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fif<str<strong>on</strong>g>th</str<strong>on</strong>g> most comm<strong>on</strong> cancer am<strong>on</strong>g men, accounting for approximately 200,000 new<br />

cases worldwide annually. I would like to present a new ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> superficial bladder cancer and <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>th</str<strong>on</strong>g>ereup<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> immuno<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bacillus Calmette-Guerin (BCG) combined<br />

or not wi<str<strong>on</strong>g>th</str<strong>on</strong>g> interleukin-2 (IL-2). Intravesical instillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> BCG performed<br />

after surgical removal <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors represents an established treatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> approximately<br />

50% success rate. So far, attempts to improve <str<strong>on</strong>g>th</str<strong>on</strong>g>is efficiency have not led to<br />

essential changes. However, c<strong>on</strong>vincing clinical results have been reported <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> IL-2 to BCG, even <str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>is is still not applied in current practice.<br />

The present model provides insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical outcomes arising in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

bladder from <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> immune cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> tumor cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> BCG<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy associated or not wi<str<strong>on</strong>g>th</str<strong>on</strong>g> IL-2. Specifically, from <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong>s performed<br />

using nine ordinary and n<strong>on</strong>-linear differential equati<strong>on</strong>s we obtained indicati<strong>on</strong>s <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at would result in successful bladder cancer treatment. We show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at immune cells effector lymphocytes, natural killer cells and antigen-presenting<br />

cells expand and reach a sustainable plateau under BCG treatment, which may<br />

account for its beneficial effect, resulting from inflammatory "side-effects" which<br />

eliminate residual or eventual newly arising tumor cells, providing <str<strong>on</strong>g>th</str<strong>on</strong>g>us protecti<strong>on</strong><br />

from fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er cancer development.<br />

138


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Informati<strong>on</strong>, human behaviour and infecti<strong>on</strong> c<strong>on</strong>trol; Saturday, July 2, 08:30<br />

Bruno Bu<strong>on</strong>omo<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Applicati<strong>on</strong>s, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Naples<br />

Federico II, via Cintia, 80126 Naples, Italy<br />

e-mail: bu<strong>on</strong>omo@unina.it<br />

N<strong>on</strong>linear stability <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemic models including<br />

informati<strong>on</strong>-related human behaviour<br />

We study <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>linear stability properties <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemic models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a feedback<br />

mechanism, which describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong>, and <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong>- related<br />

delays, <strong>on</strong> human behaviour [3,4]. In particular, we give a special example<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two stability me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: <str<strong>on</strong>g>th</str<strong>on</strong>g>e geometric me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for global stability,<br />

due to Li and Muldowney [5], and a Lyapunov-based approach, which provides<br />

necessary and sufficient c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e local n<strong>on</strong>linear stability <str<strong>on</strong>g>of</str<strong>on</strong>g> equilibria [6].<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results presented here are included in <str<strong>on</strong>g>th</str<strong>on</strong>g>e recent papers [1] and [2].<br />

References.<br />

[1] B. Bu<strong>on</strong>omo, A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio, D. Lacitignola, Global stability <str<strong>on</strong>g>of</str<strong>on</strong>g> an SIR epidemic model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

informati<strong>on</strong> dependent vaccinati<strong>on</strong>, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci., 216 9–16 (2008).<br />

[2] B. Bu<strong>on</strong>omo, A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio, D. Lacitignola, Rati<strong>on</strong>al exempti<strong>on</strong> to vaccinati<strong>on</strong> for n<strong>on</strong>-fatal<br />

SIS diseases: globally stable and oscillatory endemicity. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci. Eng., 7 561–578 (2010).<br />

[3] A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio, P. Manfredi, Informati<strong>on</strong>-related changes in c<strong>on</strong>tact patterns may trigger oscillati<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e endemic prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases, J. Theor. Biol., 256 473–478 (2009).<br />

[4] A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio, P. Manfredi, E. Salinelli, Vaccinating behaviour, informati<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> SIR vaccine preventable diseases, Theor. Popul. Biol. 71 301–317 (2007).<br />

[5] M. Y. Li, J. S. Muldowney, A geometric approach to global-stability problems, SIAM J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

Anal., 27 1070–1083 (1996).<br />

[6] S. Ri<strong>on</strong>ero, A rigorous reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e L 2 -stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>s to a n<strong>on</strong>linear binary<br />

reacti<strong>on</strong>-diffusi<strong>on</strong> system <str<strong>on</strong>g>of</str<strong>on</strong>g> P.D.E.s to <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>s to a linear binary system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ODE’s, J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Anal. Appl. 319 377–397 (2006).<br />

139


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Z. Burda<br />

Marian Smoluchowski Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics and Mark Kac Complex<br />

Systems Research Centre, Jagell<strong>on</strong>ian University, Reym<strong>on</strong>ta 4, 30-059<br />

Krakow, Poland<br />

e-mail: zdzislaw.burda@uj.edu.pl<br />

A. Krzywicki<br />

Univ Paris-Sud, LPT ; CNRS, UMR8627, Orsay, F-91405, France<br />

e-mail: Andre.Krzywicki@<str<strong>on</strong>g>th</str<strong>on</strong>g>.u-psud.fr<br />

O.C. Martin<br />

Univ Paris-Sud, LPTMS ; CNRS, UMR8626, F-91405, Orsay, France,<br />

INRA, CNRS, UMR0320 / UMR 8120 Génétique Végétale, F-91190 Gifsur-Yvette,<br />

France<br />

e-mail: olivier.martin@u-psud.fr<br />

M. Zagorski<br />

Marian Smoluchowski Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics and Mark Kac Complex<br />

Systems Research Centre, Jagell<strong>on</strong>ian University, Reym<strong>on</strong>ta 4, 30-059<br />

Krakow, Poland<br />

e-mail: Marcin.Zagorskii@gmail.com<br />

Emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> sparsity and motifs in gene regulatory<br />

networks<br />

We c<strong>on</strong>sider a simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulatory dynamics derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical<br />

framework describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e binding <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> factors to DNA. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

networks representing essential interacti<strong>on</strong>s in gene regulati<strong>on</strong> have a minimal c<strong>on</strong>nectivity<br />

compatible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a given functi<strong>on</strong>. We discuss statistical properties using<br />

M<strong>on</strong>te Carlo sampling. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at functi<strong>on</strong>al networks have a specific motifs statistics.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e case where <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory networks are to exhibit multi-stability, we<br />

find a high frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> gene pairs <str<strong>on</strong>g>th</str<strong>on</strong>g>at are mutually inhibitory and self-activating.<br />

In c<strong>on</strong>trast, networks having periodic gene expressi<strong>on</strong> patterns (mimicking for instance<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle) have a high frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> bifan-like motifs involving four genes<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> at least <strong>on</strong>e activating and <strong>on</strong>e inhibitory interacti<strong>on</strong>.<br />

140<br />

;


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Reinhard Bürger<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna<br />

e-mail: reinhard.buerger@univie.ac.at<br />

Ada Akerman<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna<br />

Populati<strong>on</strong> Genetics; Friday, July 1, 14:30<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage and gene flow <strong>on</strong> local adaptati<strong>on</strong>: A<br />

two-locus c<strong>on</strong>tinent-island model<br />

We study a populati<strong>on</strong>-genetic model <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> in a derived (island) populati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at experiences altered envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s and maladaptive gene flow<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestral (c<strong>on</strong>tinental) populati<strong>on</strong>. It is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at locally advantageous<br />

mutati<strong>on</strong>s have arisen <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e island at two linked loci. Gene flow in c<strong>on</strong>cert<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> selecti<strong>on</strong> induces substantial linkage disequilibrium. This has a number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>sequences for evoluti<strong>on</strong>. The central ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical result is an explicit characterizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all possible equilibrium c<strong>on</strong>figurati<strong>on</strong>s. From <str<strong>on</strong>g>th</str<strong>on</strong>g>is, we deduce explicit<br />

expressi<strong>on</strong>s for two measures <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage disequilibrium. We determine explicitly<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> gene flow <str<strong>on</strong>g>th</str<strong>on</strong>g>at admits <str<strong>on</strong>g>th</str<strong>on</strong>g>e preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e locally<br />

adapted haplotype depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong> and selecti<strong>on</strong>. We also<br />

study <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> beneficial mutants <str<strong>on</strong>g>of</str<strong>on</strong>g> small effect <str<strong>on</strong>g>th</str<strong>on</strong>g>at are linked to an already<br />

present, locally adapted allele. As a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage disequilibrium, mutants<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> much smaller effect can invade successfully <str<strong>on</strong>g>th</str<strong>on</strong>g>an predicted by naive single-locus<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eory. This raises interesting questi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic architecture,<br />

in particular, about <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> tightly linked, slightly beneficial<br />

mutati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong> and chromosome inversi<strong>on</strong>s. Finally,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> local adaptati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> load is<br />

explored.<br />

References.<br />

[1] Bürger, R., and A. Akerman. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> linkage and gene flow <strong>on</strong> local adaptati<strong>on</strong>: A<br />

two-locus c<strong>on</strong>tinent-island model. Submitted manuscript (2011)<br />

141


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models in Eco-epidemiology II; Wednesday, June 29, 11:00<br />

J.-B. Burie<br />

UMR CNRS 5251 IMB<br />

INRIA Bordeaux Sud-Ouest, EPI Anubis<br />

Université <str<strong>on</strong>g>of</str<strong>on</strong>g> Bordeaux<br />

3 ter, Place de la Victoire, 33076 Bordeaux, France<br />

e-mail: jean-baptiste.burie@u-bordeaux2.fr<br />

A. Ducrot<br />

UMR CNRS 5251 IMB<br />

INRIA Bordeaux Sud-Ouest, EPI Anubis<br />

Université <str<strong>on</strong>g>of</str<strong>on</strong>g> Bordeaux<br />

3 ter, Place de la Victoire, 33076 Bordeaux, France<br />

e-mail: arnaud.ducrot@u-bordeaux2.fr<br />

Homogenizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a model <str<strong>on</strong>g>of</str<strong>on</strong>g> propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fungal<br />

disease in a heterogenous crop field<br />

For producti<strong>on</strong> purpose, crop fields usually display a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic<br />

spatial structure: vineyards are made <str<strong>on</strong>g>of</str<strong>on</strong>g> vine rows, orchards <str<strong>on</strong>g>of</str<strong>on</strong>g> regularly spaced<br />

trees...<br />

To model <str<strong>on</strong>g>th</str<strong>on</strong>g>is, we introduce a small parameter ε > 0. The crop field, assumed<br />

to be large, is described by a domain Ω ⊂ R N , N = 1, 2 or 3. Let Y = [0, 1] N <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

reference cell, and Y1 ⊂ Y . The set Y1 describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> Y occupied by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

crop. The domain Ω is <str<strong>on</strong>g>th</str<strong>on</strong>g>en equal to Ω ε 1 ∪ Ω ε 2 where<br />

Ω ε 1 = {x ∈ Ω, χY1(x/ε) = 1}, Ω ε 2 = {x ∈ Ω, χY1(x/ε) = 0}.<br />

For example, in a orchard or in a vineyard, each cell Y could c<strong>on</strong>tain a single tree<br />

or vine stock. For a vineyard, each cell Y could also c<strong>on</strong>tain an entire row <str<strong>on</strong>g>of</str<strong>on</strong>g> vine<br />

stocks. This modeling formalism also applies to <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> cultivar mixture fields<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at could be used for disease c<strong>on</strong>trol [2].<br />

We study <str<strong>on</strong>g>th</str<strong>on</strong>g>e propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fungal disease over <str<strong>on</strong>g>th</str<strong>on</strong>g>is field. The following<br />

model is a simplified versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e in [1]. The vectors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e propagati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease are <str<strong>on</strong>g>th</str<strong>on</strong>g>e spores produced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e fungus lesi<strong>on</strong>s. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese spores disperse according to a Fickian diffusi<strong>on</strong> process. Moreover <str<strong>on</strong>g>th</str<strong>on</strong>g>ey may<br />

disperse at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell range, hence <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> coefficient will be or order ε 2 , or at<br />

l<strong>on</strong>g range. A very simple model for <str<strong>on</strong>g>th</str<strong>on</strong>g>is is given by <str<strong>on</strong>g>th</str<strong>on</strong>g>e following system <str<strong>on</strong>g>of</str<strong>on</strong>g> partial<br />

differential equati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e spores producti<strong>on</strong> and dispersal, coupled<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an ordinary differential equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SI type <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e inoculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e crop by <str<strong>on</strong>g>th</str<strong>on</strong>g>e fungus:<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

142<br />

∂Sε S (t, x)<br />

− ε<br />

∂t<br />

2 ∇.(dS(x, x/ε)∇S ε S(t, x)) + S ε S(t, x) = (1 − P (t, x, x/ε))I ε (t, x),<br />

∂Sε L (t, x)<br />

− ∆S<br />

∂t<br />

ε L(t, x) + S ε L(t, x) = P (t, x, x/ε)I ε (t, x),<br />

∂I ε (t, x)<br />

∂t<br />

= χY1<br />

<br />

x<br />

<br />

(S<br />

ε<br />

ε S(t, x) + S ε L(t, x)) (1 − I ε (t, x))


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

for t > 0 and x ∈ Ω a regular bounded open subset <str<strong>on</strong>g>of</str<strong>on</strong>g> R N , supplemented wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Neumann boundary c<strong>on</strong>diti<strong>on</strong>s<br />

and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some initial data.<br />

∂νS ε S(t, x) = ∂νS ε L(t, x) = 0, ∀t > 0 and x ∈ ∂Ω<br />

The state variables are: Sε S <str<strong>on</strong>g>th</str<strong>on</strong>g>e short range spores density, Sε L <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g range<br />

spores density and Iε <str<strong>on</strong>g>th</str<strong>on</strong>g>e diseased foliar surface density. The ode describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Iε is n<strong>on</strong> trivial <strong>on</strong>ly if x ∈ Y1.<br />

Now we are able to show <str<strong>on</strong>g>th</str<strong>on</strong>g>at as ε tend to 0, up to a subsequence, <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model c<strong>on</strong>verges towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a homogenized problem. This homogenized<br />

problem is a coupled system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s at <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic scale (in<br />

Ω) and at <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic <strong>on</strong>e (in Y ). To prove <str<strong>on</strong>g>th</str<strong>on</strong>g>is result, we use standard results<br />

from homogeneizati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eory, see e.g. [3]. The benefit from <str<strong>on</strong>g>th</str<strong>on</strong>g>is homogeneizati<strong>on</strong><br />

process is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e homogenized<br />

problem is easier <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e original <strong>on</strong>e.<br />

References.<br />

[1] B. Burie, A. Cal<strong>on</strong>nec, M. Langlais, Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fungal disease over a vineyard,<br />

in: A. Deutsch, R. Bravo de la Parra, R. deBoer, O. Diekmann, P. Jagers, E. Kisdi, M.<br />

Kretzschmar, P. Lansky, H. Metz (Eds.), Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Systems, vol.<br />

II, Birkhauser, Bost<strong>on</strong>, 2007, pp. 11-21.<br />

[2] F. Didelot, L. Brun and L. Parisi, Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> cultivar mixtures <strong>on</strong> scab c<strong>on</strong>trol in apple orchards,<br />

Plant Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, 56 (2007), pp. 1014-1022.<br />

[3] G. Allaire,Homogeneizati<strong>on</strong> and two-scale c<strong>on</strong>vergence, Siam J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Anal., 23 (1992), pp.<br />

1482-1518.<br />

143


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Tuesday, June 28, 14:30<br />

Peter Buske<br />

Interdisciplinary Center for Bioinformatics, Leipzig University<br />

e-mail: buske@izbi.uni-leipzig.de<br />

Markus Loeffler<br />

Interdisciplinary Center for Bioinformatics, Leipzig University<br />

e-mail: markus.loeffler@imise..uni-leipzig.de<br />

Joerg Galle<br />

Interdisciplinary Center for Bioinformatics, Leipzig University<br />

e-mail: galle@izbi.uni-leipzig.de<br />

Modelling in vitro crypt formati<strong>on</strong><br />

In vitro cultures <str<strong>on</strong>g>of</str<strong>on</strong>g> intestinal tissue have been tried for decades. Only recently<br />

Sato and co-workers succeeded in establishing organoid cultures from single cells [1].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cultures intestinal cells expressing <str<strong>on</strong>g>th</str<strong>on</strong>g>e stem cell marker Lgr5 form cryptlike<br />

structures similar to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose found in vivo. The mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at underlie <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese spatially-organised structures are currently a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> debate.<br />

We here present a 3D biophysical model <str<strong>on</strong>g>of</str<strong>on</strong>g> de novo crypt formati<strong>on</strong> in vitro. The<br />

model builds <strong>on</strong> an individual cell-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> crypt dynamics recently published<br />

by us [2]. We extended <str<strong>on</strong>g>th</str<strong>on</strong>g>is model by introducing a flexible basal membrane. This<br />

membrane can be reorganised by cells showing active matrix metabolism.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, shape changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basal membrane result from a feedback<br />

loop between its curvature and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Wnt-activity <str<strong>on</strong>g>of</str<strong>on</strong>g> adherent cells. Thereby, increased<br />

Wnt-activity increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesi<strong>on</strong> streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>us, forces<br />

local shape changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basal membrane. We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crypt-like structures wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is model depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e elasticity and stiffness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e basal membrane and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesi<strong>on</strong> properties and matrix metabolisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

different cell types.<br />

We suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed mechanism to be a principal <strong>on</strong>e in epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial gland<br />

formati<strong>on</strong>.<br />

References.<br />

[1] T. Sato, Single Lgr5 stem cells build crypt-villus structures in vitro wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out a mesenchymal<br />

niche. Nature 459(7244):262-51–2.<br />

[2] P. Buske, A comprehensive model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal stem cell and tissue organisati<strong>on</strong> in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e intestinal crypt. PLoS Comput Biol. 7(1): e1001045.<br />

144


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

K. Buszko<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Bio-medical Science and<br />

Medical Informatics,Nicolaus Copernicus University, Collegium Medicum<br />

in Bydgoszcz, ul. Jagiellońska 13, 85-094 Bydgoszcz, Poland<br />

e-mail: buszko@cm.umk.pl<br />

K. Stefański<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Bio-medical Science and<br />

Medical Informatics,Nicolaus Copernicus University, Collegium Medicum<br />

in Bydgoszcz, ul. Jagiellońska 13, 85-094 Bydgoszcz, Poland<br />

e-mail: stefan@phys.uni.torun.pl<br />

Transient chaos measurements using finite-time Lyapunov<br />

exp<strong>on</strong>ents in model <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> dynamics<br />

The family <str<strong>on</strong>g>of</str<strong>on</strong>g> logistic maps is <str<strong>on</strong>g>th</str<strong>on</strong>g>e best known n<strong>on</strong>linear model <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong><br />

dynamics. The typical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is c<strong>on</strong>centrated <strong>on</strong> its asymptotic<br />

behaviour. Special attenti<strong>on</strong> is payed to properties <str<strong>on</strong>g>of</str<strong>on</strong>g> trajectories generated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

maps inside periodic windows, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e periodic behaviour occurs [1]-[3]. However<br />

such periodic behaviour is preceded by chaotic transient behaviour. The durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such transient chaos can be prol<strong>on</strong>ged [4],[5] .<br />

We propose a model for estimating <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transient chaos based <strong>on</strong><br />

calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-time Lyapunov exp<strong>on</strong>ents. Lyapunov exp<strong>on</strong>ents bel<strong>on</strong>g to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most useful tools applied for measuring sensitivity to initial c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> asymptotic chaos. We used Lyapunov exp<strong>on</strong>ents for characterizing sensitivity<br />

to initial c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> transient chaos. Before doing <str<strong>on</strong>g>th</str<strong>on</strong>g>at we modify<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e noti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> finite-time Lyapunov exp<strong>on</strong>ent averaging <str<strong>on</strong>g>th</str<strong>on</strong>g>em over a set <str<strong>on</strong>g>of</str<strong>on</strong>g> initial<br />

c<strong>on</strong>diti<strong>on</strong>s and we report results <str<strong>on</strong>g>of</str<strong>on</strong>g> tests providing evidence in favor <str<strong>on</strong>g>of</str<strong>on</strong>g> correctness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such an approach. We also present a model reproducing correctly variati<strong>on</strong> in<br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e finite-time Lyapunov exp<strong>on</strong>ents corresp<strong>on</strong>ding to transient chaos.The<br />

dependence <strong>on</strong> time is verified by comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically predicted values wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ose obtained numerically.<br />

References.<br />

[1] Hasselblatt B. and Katok A., A first Course in Dynamics, Cambrige, Cambrige University<br />

Press, 2003.<br />

[2] Schuster H. G., Deterministic Chaos, Germany, VCH Verlagsgesellschaft mbH, 1988.<br />

[3] Collet P. and Eckmann J.-P., Iterated Maps <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Interval as Dynamical Systems, Bost<strong>on</strong>,<br />

Birkhauser - Bost<strong>on</strong>, 1980.<br />

[4] Jacobs J., Ott E. and Hunt R.,Scaling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> chaotic transients in windows <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

attracting periodicity, Physical Review E, 1997, vol. 56, 6508.<br />

[5] Buszko K. and Stefański K.,Measuring transient chaos in n<strong>on</strong>linear <strong>on</strong>e- and two-dimensi<strong>on</strong>al<br />

maps, Chaos, Solit<strong>on</strong>s and Fractals, 2006, vol. 27, 630.<br />

145


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Biological Systems; Tuesday, June 28, 17:00<br />

Anna Cai<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Irvine<br />

e-mail: acai@uci.edu<br />

Kelly Radtke<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Developmental and Cell Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California,<br />

Irvine<br />

Thomas F. Schilling<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Developmental and Cell Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California,<br />

Irvine<br />

Qing Nie<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics , University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Irvine<br />

Critical roles for intracellular binding proteins in creating a<br />

robust retinoic acid morphogen gradient<br />

Retinoic acid (RA) is a vitamin A derivative <str<strong>on</strong>g>th</str<strong>on</strong>g>at acts as a graded morphogen to<br />

promote posterior cell fates in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vertebrate central nervous system (CNS). CNS<br />

development occurs normally over a 20-fold range <str<strong>on</strong>g>of</str<strong>on</strong>g> RA c<strong>on</strong>centrati<strong>on</strong>s, indicating<br />

a remarkable degree <str<strong>on</strong>g>of</str<strong>on</strong>g> gradient robustness.<br />

Cellular retinoic acid binding proteins (Crabps) transport RA intracellularly<br />

but <str<strong>on</strong>g>th</str<strong>on</strong>g>eir roles in morphogen gradient formati<strong>on</strong> remain unclear. Using a combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al and experimental approaches in zebrafish, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

positive and negative feedback by Crabps <strong>on</strong> RA signaling dramatically improves<br />

robustness. Crabps improve robustness wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in an optimal c<strong>on</strong>centrati<strong>on</strong> range and<br />

transport <str<strong>on</strong>g>of</str<strong>on</strong>g> Crabp bound RA to Cyp26 degradati<strong>on</strong> enzymes appears to be critical<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>ese robustness gains. These results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at Crabps are essential for modulating<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e RA signaling gradient in <str<strong>on</strong>g>th</str<strong>on</strong>g>e face <str<strong>on</strong>g>of</str<strong>on</strong>g> varying levels <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary vitamin A.<br />

146


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Immunology; Wednesday, June 29, 17:00<br />

Yin Cai<br />

Research Group Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Systems, German Cancer Research<br />

Center, Heidelberg, Germany<br />

e-mail: yin.cai@bioquant.uni-heidelberg.de<br />

Thomas Höfer<br />

Research Group Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Systems, German Cancer Research<br />

Center, Heidelberg, Germany<br />

Spatially-resolved ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> T cell antigen<br />

recogniti<strong>on</strong><br />

T cells play a crucial role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive immune resp<strong>on</strong>se. Interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

specific antigens initiate T cell signaling but also ensure <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e majority <str<strong>on</strong>g>of</str<strong>on</strong>g> selfreactive<br />

cells are selectively deleted in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus during its maturati<strong>on</strong>. However,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying mechanisms remain unclear as to why T cells can reliably distinguish<br />

cognate antigens from o<str<strong>on</strong>g>th</str<strong>on</strong>g>er peptides <str<strong>on</strong>g>th</str<strong>on</strong>g>at have <strong>on</strong>ly slightly weaker affinity<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e T cell receptor (TCR). Recent data indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> TCRs at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e interface <str<strong>on</strong>g>of</str<strong>on</strong>g> T cell and antigen-presenting cell could be <str<strong>on</strong>g>th</str<strong>on</strong>g>e key to <str<strong>on</strong>g>th</str<strong>on</strong>g>e exquisite<br />

ligand recogniti<strong>on</strong> specificity. We develop a spatially-resolved ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> individual TCRs. We use stochastic<br />

M<strong>on</strong>te Carlo simulati<strong>on</strong>s to analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e model and its ability to exhibit TCR clustering.<br />

The model aims at rati<strong>on</strong>alizing experiments <str<strong>on</strong>g>th</str<strong>on</strong>g>at have dem<strong>on</strong>strated a<br />

sharp affinity <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold for <str<strong>on</strong>g>th</str<strong>on</strong>g>ymic selecti<strong>on</strong>. It will help us to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

TCR clustering and <str<strong>on</strong>g>th</str<strong>on</strong>g>e core elements initializing T cell signaling during antigen<br />

recogniti<strong>on</strong> and will inform new experimental work.<br />

147


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Undergraduate Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Educati<strong>on</strong> Bey<strong>on</strong>d BIO 2010 (Part II);<br />

Saturday, July 2, 08:30<br />

Hannah Callender<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Portland<br />

What My Biology Students Taught Me About Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Many colleges and universities struggle wi<str<strong>on</strong>g>th</str<strong>on</strong>g> finding ways to meet <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantitative<br />

needs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir biology and life science majors. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e University <str<strong>on</strong>g>of</str<strong>on</strong>g> Portland,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese students have in <str<strong>on</strong>g>th</str<strong>on</strong>g>e past been enrolled in <str<strong>on</strong>g>th</str<strong>on</strong>g>e traditi<strong>on</strong>al calculus sequence,<br />

where <str<strong>on</strong>g>th</str<strong>on</strong>g>e majority <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s are geared heavily towards engineering<br />

and physics. Our biology and life science majors come out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is course not <strong>on</strong>ly<br />

feeling as <str<strong>on</strong>g>th</str<strong>on</strong>g>ough calculus had no c<strong>on</strong>necti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir discipline, but also struggling<br />

more <str<strong>on</strong>g>th</str<strong>on</strong>g>an students in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er disciplines, possibly from lack <str<strong>on</strong>g>of</str<strong>on</strong>g> motivati<strong>on</strong>. Here I<br />

will share my experiences in <str<strong>on</strong>g>th</str<strong>on</strong>g>e development and implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a first semester<br />

biocalculus course and what I learned from my students, including <str<strong>on</strong>g>th</str<strong>on</strong>g>eir beliefs<br />

about ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics pre- and post-biocalculus as well as similarities and differences<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir styles <str<strong>on</strong>g>of</str<strong>on</strong>g> learning ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics.<br />

148


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecosystems Dynamics; Tuesday, June 28, 11:00<br />

Baba Issa Camara<br />

UMR 077 Plant Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, French Nati<strong>on</strong>al Agricultural Institute,<br />

42, rue Georges Morel - BP 60057 49071 Beaucouzé, Angers, France.<br />

e-mail: bicamara@angers.inra.fr<br />

Natalia Sapoukhina<br />

UMR 077 Plant Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, French Nati<strong>on</strong>al Agricultural Institute,<br />

42, rue Georges Morel - BP 60057 49071 Beaucouzé, Angers, France.<br />

e-mail: natalia.sapoukhina@angers.inra.fr<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stratified dispersal rate<br />

The establishment and spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invading organisms have dramatic c<strong>on</strong>sequences<br />

for ecosystems. Many organisms expand <str<strong>on</strong>g>th</str<strong>on</strong>g>eir range by being transferred passively<br />

over short and l<strong>on</strong>g distances simultaneously, <str<strong>on</strong>g>th</str<strong>on</strong>g>us resulting in a stratified dispersal<br />

process [1, 2] . The stochastic events <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-distance dispersal complicate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread rate <str<strong>on</strong>g>of</str<strong>on</strong>g> an invading populati<strong>on</strong>. Our goal is to measure <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

accelerating effect <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary foci created by l<strong>on</strong>g-distance dispersal <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong><br />

spread rate. We developed a spatially explicit host-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen model describing<br />

independently c<strong>on</strong>tinuous short- and stochastic l<strong>on</strong>g-distance dispersal processes.<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exact soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusive spread wi<str<strong>on</strong>g>th</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stratified dispersal allowed us to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-distance<br />

dispersal events <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread rate. Due to independent descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

modes <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal, <str<strong>on</strong>g>th</str<strong>on</strong>g>e developed model can be parameterized easily and used in<br />

epidemiology. The explicit representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-dimensi<strong>on</strong>al habitat allows<br />

coupling our model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a landscape optimizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to design landscapes<br />

unfavorable to fast epidemics spread.<br />

References.<br />

[1] Hengeveld, R. 1989. Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> biological invasi<strong>on</strong>s. Chapman and Hall, L<strong>on</strong>d<strong>on</strong>, UK.<br />

[2] Sapoukhina N., Tyutyunov Y., Sache I. and Arditi R. 2010. Spatially mixed crops to c<strong>on</strong>trol<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e stratified dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> airborne fungal diseases. Ecological Modelling 221 2793–2800.<br />

149


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Crowd Dynamics: Modeling, Analysis and Simulati<strong>on</strong> (Part 1); Wednesday,<br />

June 29, 11:00<br />

Mario Campanella<br />

Delft University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: m.c.campanella@tudelft.nl<br />

Serge Hoogendoorn<br />

Delft University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: s.p.hoogendoorn@tudelft.nl<br />

Winnie Daamen<br />

Delft University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: w.daamen@tudelft.nl<br />

Calibrating walker models: variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters due to<br />

traffic regimes<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> walking behaviours is not a simple task and several<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> walker models have been proposed such as CA [1], discrete choice [2],<br />

social force [3] and utility based models [4]. Albeit different in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

properties, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models share a modelling assumpti<strong>on</strong> in dividing <str<strong>on</strong>g>th</str<strong>on</strong>g>e pedestrian<br />

behaviours in comp<strong>on</strong>ents such as pa<str<strong>on</strong>g>th</str<strong>on</strong>g> following, pedestrian avoidance and obstacle<br />

avoidance behaviours. In all <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g> following comp<strong>on</strong>ent describes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e free-flow c<strong>on</strong>diti<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er two comp<strong>on</strong>ents describe how pedestrians<br />

deviate from <str<strong>on</strong>g>th</str<strong>on</strong>g>eir free-flow behaviours due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er pedestrians. The<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e comp<strong>on</strong>ents are simply added and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir parameters remain c<strong>on</strong>stant<br />

regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> external c<strong>on</strong>diti<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is investigati<strong>on</strong> we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> invariance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters is incorrect leading to significant modelling errors.<br />

To investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e pedestrian behaviours we perform a series <str<strong>on</strong>g>of</str<strong>on</strong>g> calibrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Nomad model [4] wi<str<strong>on</strong>g>th</str<strong>on</strong>g> empirical data from experiments representing different<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> flows such as bidirecti<strong>on</strong>al, crossing and unidirecti<strong>on</strong>al flows. Each pedestrian<br />

trajectory is used to estimate <strong>on</strong>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters using <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology<br />

developed in [5]. The estimated parameter set is <str<strong>on</strong>g>th</str<strong>on</strong>g>en associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e average<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pedestrian <str<strong>on</strong>g>th</str<strong>on</strong>g>at produced <str<strong>on</strong>g>th</str<strong>on</strong>g>e trajectory. The average speed accounts<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e traffic flow intensity <str<strong>on</strong>g>th</str<strong>on</strong>g>at pedestrians had encountered. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g> following parameter display two distinct regimes <str<strong>on</strong>g>th</str<strong>on</strong>g>at corresp<strong>on</strong>d<br />

to free-flow and c<strong>on</strong>gesti<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>at between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two regimes <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a smoo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

variati<strong>on</strong> resembling a sigmoid curve. The parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pedestrian avoidance<br />

comp<strong>on</strong>ent also display significant variati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> walking speeds. The c<strong>on</strong>sequences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese findings is <str<strong>on</strong>g>th</str<strong>on</strong>g>at by showing <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavioural comp<strong>on</strong>ents are affected<br />

by traffic regimes, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey should incorporate variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters to improve <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

estimati<strong>on</strong> quality.<br />

References.<br />

[1] Blue, V.J. and J.L. Adler (1998), Emergent fundamental pedestrian flows from cellular automata<br />

microsimulati<strong>on</strong> Transportati<strong>on</strong> Research Record 1644 29–36.<br />

[2] Ant<strong>on</strong>ini, G., Bierlaire, M. and Weber, M. (2006), Discrete choice models <str<strong>on</strong>g>of</str<strong>on</strong>g> pedestrian walking<br />

behavior Transportati<strong>on</strong> Research Part B: Me<str<strong>on</strong>g>th</str<strong>on</strong>g>odological 40 667–687.<br />

[3] Helbing, D and Molnar, P (1995), Social force model for pedestrian dynamics Physical review<br />

E 51 4282–4286.<br />

[4] Hoogendoorn, S.P. and Bovy, P. H. L. (2003), Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pedestrian flows by optimal c<strong>on</strong>trol<br />

and differential games Optim. C<strong>on</strong>trol Appl. Me<str<strong>on</strong>g>th</str<strong>on</strong>g>. 24 153–172.<br />

150


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[5] Campanella, M. and Hoogendoorn, S.P. and Daamen, W.(2010), A me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology to calibrate<br />

pedestrian walker models using multiple-objectives to appear in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> The Pedestrian<br />

and Evacuati<strong>on</strong> Dynamics, PED2010.<br />

151


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Vincenzo Capasso<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Milan<br />

e-mail: vincenzo.capasso@unimi.it<br />

Edoardo Beretta<br />

CIMAB, Italy<br />

Nadya Morozova<br />

CNRS, France<br />

Cancer; Tuesday, June 28, 11:00<br />

Populati<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer stem cells<br />

Stem cells are cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two specific features - <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to differentiate into all<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> specialized cell types and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to renew <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves. There are several<br />

possible scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer stem cells evoluti<strong>on</strong>, am<strong>on</strong>g which <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymmetric<br />

cell divisi<strong>on</strong>s providing self-renewing, is <str<strong>on</strong>g>th</str<strong>on</strong>g>e main <strong>on</strong>e. The main <str<strong>on</strong>g>th</str<strong>on</strong>g>eory for today<br />

for ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er normal or cancer stem cells is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey differentiate when <str<strong>on</strong>g>th</str<strong>on</strong>g>ey receive<br />

some kind <str<strong>on</strong>g>of</str<strong>on</strong>g> “instructive" signal influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern and speed <str<strong>on</strong>g>of</str<strong>on</strong>g> cell divisi<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e given c<strong>on</strong>diti<strong>on</strong>s. All current experiments reporting <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer<br />

stem cell populati<strong>on</strong>s in culture allow to c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e main feature is <str<strong>on</strong>g>th</str<strong>on</strong>g>e same<br />

- <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cell populati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole populati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells, independently <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e starting c<strong>on</strong>diti<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we compare<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e qualitative behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cells evoluti<strong>on</strong>, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out<br />

and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an underlying signal. In absence <str<strong>on</strong>g>of</str<strong>on</strong>g> an underlying field, we propose a<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model described by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s, while<br />

in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an underlying field it is described by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> delay differential<br />

equati<strong>on</strong>s, by admitting a delayed signal originated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing cells. In particular<br />

we show <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> percentages for <str<strong>on</strong>g>th</str<strong>on</strong>g>e ODE system, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell populati<strong>on</strong>s <strong>on</strong>ly in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an underlying field. The<br />

hope is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper may stimulate fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er experiments to ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

validate or not <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e above menti<strong>on</strong>ed “instructive" signals.<br />

Keywords: Cancer stem cells, delay differential equati<strong>on</strong>s, qualitative behavior,<br />

stability, oscillati<strong>on</strong>s.<br />

152


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

II; Tuesday, June 28, 14:30<br />

Vincenzo Capasso<br />

ADAMSS (Interdisciplinary Centre for Advanced Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

and Statistical Sciences) and Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Universita’<br />

degli Studi di Milano, Italy<br />

e-mail: vincenzo.capasso@unimi.it<br />

Daniela Morale<br />

ADAMSS (Interdisciplinary Centre for Advanced Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

and Statistical Sciences) and Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Universita’<br />

degli Studi di Milano, Italy<br />

An hybrid analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> multiscale models for angiogenesis<br />

Angiogenesis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> new blood vessels, is an important natural process<br />

occurring in <str<strong>on</strong>g>th</str<strong>on</strong>g>e body, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in heal<str<strong>on</strong>g>th</str<strong>on</strong>g> and in disease. It is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> complex<br />

system: <str<strong>on</strong>g>th</str<strong>on</strong>g>e endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells are <str<strong>on</strong>g>th</str<strong>on</strong>g>e building blocks for <str<strong>on</strong>g>th</str<strong>on</strong>g>e vessels and <str<strong>on</strong>g>th</str<strong>on</strong>g>ey interact<br />

by regulati<strong>on</strong> signals, forming a network <str<strong>on</strong>g>of</str<strong>on</strong>g> capillaries in order to reach every part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e body.<br />

As examples <str<strong>on</strong>g>of</str<strong>on</strong>g> real experimental systems we c<strong>on</strong>sider tumour driven angiogenesis<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e embry<strong>on</strong>ic mouse retinal angiogenesis.<br />

An angiogenic system is extremely complex, due to its intrinsic multiscale structure;<br />

a major source <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling derives from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

str<strong>on</strong>g coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetic parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevant stochastic branching-andgrow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e capillary network at <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscale, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a family <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting<br />

underlying fields at a macroscale. This is <str<strong>on</strong>g>th</str<strong>on</strong>g>e reas<strong>on</strong> why in literature we may<br />

find a large variety <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models addressing some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

angiogenic process, and still integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all relevant features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process is an<br />

open problem.<br />

Thus our main goal is not in providing additi<strong>on</strong>al models for <str<strong>on</strong>g>th</str<strong>on</strong>g>e angiogenic<br />

phenomen<strong>on</strong> but in addressing <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical problem <str<strong>on</strong>g>of</str<strong>on</strong>g> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such systems by taking advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir intrinsic multiscale structure.<br />

A satisfactory ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis and <str<strong>on</strong>g>of</str<strong>on</strong>g> many o<str<strong>on</strong>g>th</str<strong>on</strong>g>er fiber processes<br />

requires a geometric <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic fibre processes. We present here a<br />

simplified stochastic geometric model, largely inspired by current literature, bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and biological <strong>on</strong>es, for a spatially structured angiogenic process,<br />

str<strong>on</strong>gly coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a family <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant underlying fields.<br />

The branching mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> blood vessels is modelled as a stochastic marked<br />

counting process describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e bir<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole network<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vessels is modelled as <str<strong>on</strong>g>th</str<strong>on</strong>g>e uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir trajectories; finally, capillary extensi<strong>on</strong>s<br />

are expressed by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> a random number <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic differential equati<strong>on</strong>s,<br />

coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PDEs describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying fields involved in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e process. On <strong>on</strong>e side <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetic parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e capillary<br />

network depend up<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e family <str<strong>on</strong>g>of</str<strong>on</strong>g> underlying fields, <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er side <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying fields relies <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evolving capillary network. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>is <strong>on</strong>e is<br />

a stochastic process, <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese fields will be a set <str<strong>on</strong>g>of</str<strong>on</strong>g> random<br />

partial differential equati<strong>on</strong>s, leading to random kinetic parameters. We are <str<strong>on</strong>g>th</str<strong>on</strong>g>us<br />

facing a problem <str<strong>on</strong>g>of</str<strong>on</strong>g> double stochasticity. This is a major source <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity<br />

153


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

which may tremendously increase as <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells becomes extremely large,<br />

as it may happen in many cases <str<strong>on</strong>g>of</str<strong>on</strong>g> real interest. Under <str<strong>on</strong>g>th</str<strong>on</strong>g>ese last circumstances,<br />

by taking into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e natural multiple scale nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system a mesoscale<br />

may be introduced, which is sufficiently small wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

underlying fields, and sufficiently large wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to typical cell size. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is mesoscale, we may <str<strong>on</strong>g>th</str<strong>on</strong>g>en approximate (law <str<strong>on</strong>g>of</str<strong>on</strong>g> large numbers) <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributi<strong>on</strong><br />

due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e vascularizati<strong>on</strong> process by local mean values, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

underlying fields <str<strong>on</strong>g>th</str<strong>on</strong>g>us providing a family <str<strong>on</strong>g>of</str<strong>on</strong>g> underlying deterministic fields. We<br />

may <str<strong>on</strong>g>th</str<strong>on</strong>g>en use <str<strong>on</strong>g>th</str<strong>on</strong>g>ese approximate mean fields to drive <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevant<br />

stochastic processes cells at <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscale. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is way <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e simple stochasticity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e geometric processes <str<strong>on</strong>g>of</str<strong>on</strong>g> bir<str<strong>on</strong>g>th</str<strong>on</strong>g> (branching) and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is kept, and it is possible<br />

to generate a n<strong>on</strong>trivial and realistic geometric pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e capillary network.<br />

This kind <str<strong>on</strong>g>of</str<strong>on</strong>g> models are known as hybrid models since we have substituted all<br />

stochastic underlying fields by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir averaged counterparts; most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e current<br />

literature could now be reinterpreted al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>ese lines. It is necessary to stress<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at anyhow substituting mean geometric densities <str<strong>on</strong>g>of</str<strong>on</strong>g> tips, or <str<strong>on</strong>g>of</str<strong>on</strong>g> full vessels to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

corresp<strong>on</strong>ding stochastic quantities leads to an acceptable coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong><br />

(percentage error) <strong>on</strong>ly when a law <str<strong>on</strong>g>of</str<strong>on</strong>g> large numbers can be applied, i.e. whenever<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e relevant numbers per unit volume are sufficiently large; o<str<strong>on</strong>g>th</str<strong>on</strong>g>erwise stochasticity<br />

cannot be avoided, and in additi<strong>on</strong> to mean values, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis<br />

and/or simulati<strong>on</strong>s should provide c<strong>on</strong>fidence bands for all quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> interest.<br />

This fact is well evidenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical simulati<strong>on</strong>s. If we homogenize <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

underlying fields ab initio we obtain a trivial capillary network, which c<strong>on</strong>firms<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at during <str<strong>on</strong>g>th</str<strong>on</strong>g>e early phases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network formati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial<br />

cells is not sufficiently large to let us apply laws <str<strong>on</strong>g>of</str<strong>on</strong>g> large numbers yet.<br />

154


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>negative Rad<strong>on</strong> measure spaces wi<str<strong>on</strong>g>th</str<strong>on</strong>g> metric structure<br />

to populati<strong>on</strong> dynamic models; Wednesday, June 29, 17:00<br />

Jose A. Carrillo<br />

ICREA & UAB<br />

e-mail: carrillo@mat.uab.es<br />

On some kinetic models <str<strong>on</strong>g>of</str<strong>on</strong>g> swarming<br />

We will present a kinetic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory for swarming systems <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting, self-propelled<br />

discrete particles. Starting from <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>e particle model, <strong>on</strong>e can c<strong>on</strong>struct soluti<strong>on</strong>s<br />

to a kinetic equati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e single particle probability distributi<strong>on</strong> functi<strong>on</strong> using<br />

distances between measures. Moreover, I will introduce related macroscopic hydrodynamic<br />

equati<strong>on</strong>s. General soluti<strong>on</strong>s include flocks <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant density and fixed<br />

velocity and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er n<strong>on</strong>-trivial morphologies such as compactly supported rotating<br />

mills. The kinetic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory approach leads us to <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macroscopic<br />

structures o<str<strong>on</strong>g>th</str<strong>on</strong>g>erwise not recognized as soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hydrodynamic equati<strong>on</strong>s,<br />

such as double mills <str<strong>on</strong>g>of</str<strong>on</strong>g> two superimposed flows. I will also present and analyse<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous kinetic versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flocking<br />

by Cucker and Smale, which describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e collective behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> an ensemble <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organisms, animals or devices. This kinetic versi<strong>on</strong> introduced in Ha and Tadmor<br />

is obtained from a particle model. The large-time behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> in<br />

phase space is subsequently studied by means <str<strong>on</strong>g>of</str<strong>on</strong>g> particle approximati<strong>on</strong>s and a<br />

stability property in distances between measures. A c<strong>on</strong>tinuous analogue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eorems <str<strong>on</strong>g>of</str<strong>on</strong>g> Cucker-Smale will be shown to hold for <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetic<br />

model. More precisely, <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>s c<strong>on</strong>centrate exp<strong>on</strong>entially fast <str<strong>on</strong>g>th</str<strong>on</strong>g>eir velocity<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir mean while in space <str<strong>on</strong>g>th</str<strong>on</strong>g>ey will c<strong>on</strong>verge towards a translati<strong>on</strong>al flocking<br />

soluti<strong>on</strong>.<br />

155


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 11:00<br />

Magda Castel<br />

Agrocampus Ouest, UMR1099 BiO3P, 35042 Rennes, France<br />

e-mail: castel@agrocampus-ouest.fr<br />

Frederic M. Hamelin<br />

Agrocampus Ouest, UMR1099 BiO3P, 35042 Rennes, France<br />

Sylvain Poggi<br />

INRA, UMR1099 BiO3P, 35653 Le Rheu, France.<br />

Didier Andriv<strong>on</strong><br />

INRA, UMR1099 BiO3P, 35653 Le Rheu, France.<br />

Ludovic Mailleret<br />

INRA, UR880 URIH, 06903 Sophia Antipolis, France.<br />

Evoluti<strong>on</strong>ary insights from semi-discrete plant epidemic<br />

models.<br />

The coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> closely related plant parasitic species is ubiquitous in agriculture.<br />

However, understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecological determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary divergence in<br />

parasites still represents an issue, in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> evoluti<strong>on</strong>ary biology and agricultural sciences.<br />

To our knowledge, <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly ecological mechanism which has been generically<br />

shown to promote phenotypic divergence in plant parasitic species is spatial host<br />

heterogeneity. However, spaceis not <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly source <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological heterogeneity. Interestingly,<br />

crop plant parasites face abrupt, periodic changes in host density due to<br />

planting and harvesting. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, we investigate whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er such heterogeneity<br />

in time can promote evoluti<strong>on</strong>ary divergence as well. We make use <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic<br />

model <str<strong>on</strong>g>th</str<strong>on</strong>g>at combines c<strong>on</strong>tinuous and discrete dynamics, to capture sharp seas<strong>on</strong>al<br />

events. Performing an evoluti<strong>on</strong>ary invasi<strong>on</strong> analysis, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at evoluti<strong>on</strong>ary<br />

branching <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parasite phenotype can occur, assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between<br />

intra- and inter-seas<strong>on</strong> transmissi<strong>on</strong> abilities. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are experimental<br />

evidence for such a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f, <str<strong>on</strong>g>th</str<strong>on</strong>g>is study provides fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er ecological bases for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> closely related plant parasite species. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>is study provides<br />

original insights regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>o- and poly-cyclic sibling plant<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens.<br />

156


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Saturday, July 2, 14:30<br />

Isaias Chairez Hernández 1 , J. Natividad Gurrola Reyes 1 and Cipriano<br />

García Gutiérrez 2<br />

1 IPN CIIDIR Durango México, 2 IPN CIIDIR Sinaloa México, Becarios<br />

de COFAA<br />

e-mail: ichairez@hotmail.com<br />

e-mail: ngurrola@ipn.mx<br />

e-mail: garciacipriano@hotmail.com<br />

Grasshopper populati<strong>on</strong> interpolati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Generalized<br />

linear models<br />

This study was carried up in grassland areas in Durango México. Between latitude<br />

(23.916 o , 25.983 o ) and l<strong>on</strong>gitude ( -104.997 o , -104.010 o ). There were established<br />

sampling sites. At each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese sites, twice a m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g> a grasshopper sampling was<br />

d<strong>on</strong>e from June to November 2003. Three were <str<strong>on</strong>g>th</str<strong>on</strong>g>e most abundant species. The<br />

purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study was to create grasshopper populati<strong>on</strong> maps wi<str<strong>on</strong>g>th</str<strong>on</strong>g> linear regressi<strong>on</strong>.<br />

Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normality failed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependent variables, <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong>s<br />

Poiss<strong>on</strong>, Gamma and Inverse binomial <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e generalized linear models were<br />

analyzed. taking as dependent variable <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> grasshopper surveyed <str<strong>on</strong>g>of</str<strong>on</strong>g> each<br />

species and <str<strong>on</strong>g>th</str<strong>on</strong>g>e independent variables were, latitude ( o ), l<strong>on</strong>gitude ( o ), altitude (m),<br />

slope (percentage), temperature (annual average o C), precipitati<strong>on</strong> (annual mm),<br />

landcover, type <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>, type <str<strong>on</strong>g>of</str<strong>on</strong>g> soil and vegetati<strong>on</strong> index. According to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

deviance criteria <str<strong>on</strong>g>th</str<strong>on</strong>g>e best model was Gamma wi<str<strong>on</strong>g>th</str<strong>on</strong>g> logari<str<strong>on</strong>g>th</str<strong>on</strong>g>mic link functi<strong>on</strong> since<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e deviance 11.211 wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 9 d. f. was lower <str<strong>on</strong>g>th</str<strong>on</strong>g>an 16.91 <str<strong>on</strong>g>th</str<strong>on</strong>g>e 95-<str<strong>on</strong>g>th</str<strong>on</strong>g> percentile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

chi-squared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 9 d.f. The distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e residuals were heterogeneous at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree grasshopper species and <str<strong>on</strong>g>th</str<strong>on</strong>g>e lowest correlati<strong>on</strong> coefficient between predicted<br />

grasshopper and observed was R 2 =0.83. The generalized linear models are alternative<br />

models when <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal assumpti<strong>on</strong> has not been reached and when <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dependent variable is a count data.<br />

157


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fabio Chalub<br />

Universidade Nova de Lisboa<br />

e-mail: chalub@fct.unl.pt<br />

Max Souza<br />

Universidade Federal Fluminense<br />

Populati<strong>on</strong> Dynamics; Thursday, June 30, 11:30<br />

Discrete and c<strong>on</strong>tinous models in evoluti<strong>on</strong>ary dynamics<br />

We study <str<strong>on</strong>g>th</str<strong>on</strong>g>e large populati<strong>on</strong> limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Moran and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Wright-Fisher process,<br />

under <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weak-selecti<strong>on</strong>, and for different scalings. Depending <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e particular choice <str<strong>on</strong>g>of</str<strong>on</strong>g> scalings, we obtain a c<strong>on</strong>tinuous model <str<strong>on</strong>g>th</str<strong>on</strong>g>at may highlight<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic-drift (neutral evoluti<strong>on</strong>) or natural selecti<strong>on</strong>; for <strong>on</strong>e precise scaling,<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> effects are present. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e scalings <str<strong>on</strong>g>th</str<strong>on</strong>g>at take <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic-drift into account,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous model is given by a singular diffusi<strong>on</strong> equati<strong>on</strong>, toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two<br />

c<strong>on</strong>servati<strong>on</strong> laws <str<strong>on</strong>g>th</str<strong>on</strong>g>at are already present at <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete level. For scalings <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

take into account <strong>on</strong>ly natural selecti<strong>on</strong>, we obtain a hyperbolic singular equati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at embeds <str<strong>on</strong>g>th</str<strong>on</strong>g>e Replicator Dynamics and satisfies <strong>on</strong>ly <strong>on</strong>e c<strong>on</strong>servati<strong>on</strong> law. The<br />

derivati<strong>on</strong> is made in two steps: a formal <strong>on</strong>e, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e candidate limit model<br />

is obtained, and a rigorous <strong>on</strong>e, where c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability density is<br />

proved. Additi<strong>on</strong>al results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fixati<strong>on</strong> probabilities are also presented.<br />

158


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Systems Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Development; Saturday, July 2, 14:30<br />

Osvaldo Chara<br />

Zentrum für Informati<strong>on</strong>sdienste und Hochleistungsrechnen (ZIH), Technische<br />

Universität Dresden, Germany<br />

e-mail: osvaldo.chara@tu-dresden.de<br />

Lutz Brusch<br />

Zentrum für Informati<strong>on</strong>sdienste und Hochleistungsrechnen (ZIH), Technische<br />

Universität Dresden, Germany<br />

Brigitte Galliot<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology and Animal Biology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Geneva, Switzerland<br />

Andreas Deutsch<br />

Zentrum für Informati<strong>on</strong>sdienste und Hochleistungsrechnen (ZIH), Technische<br />

Universität Dresden, Germany<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> Wnt3 in early Hydra head regenerati<strong>on</strong><br />

Several organisms including planaria, fish, insects and salamanders resp<strong>on</strong>d to injury<br />

and amputati<strong>on</strong> by regenerating <str<strong>on</strong>g>th</str<strong>on</strong>g>e lost body part. A general open questi<strong>on</strong><br />

is: How does <str<strong>on</strong>g>th</str<strong>on</strong>g>e remaining tissue ’measure’ <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> injury and mount a regenerati<strong>on</strong><br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> adequate magnitude? This questi<strong>on</strong> is studied in <str<strong>on</strong>g>th</str<strong>on</strong>g>e fresh<br />

water polyp Hydra. The Hydra body column can be viewed as a hollow bilayered<br />

tissue cylinder wi<str<strong>on</strong>g>th</str<strong>on</strong>g> head and foot <strong>on</strong> opposite ends referred to as apical and basal,<br />

respectively. The tissue c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e following cell types: ectodermal and endodermal<br />

cells (in <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial lineage), interstitial stem cells, progenitors, neur<strong>on</strong>s,<br />

nematocytes and gland cells (in <str<strong>on</strong>g>th</str<strong>on</strong>g>e interstitial lineage). Previous experiments <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cutting Hydra into two halves showed secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Wnt3 molecules by cells undergoing<br />

apoptosis near <str<strong>on</strong>g>th</str<strong>on</strong>g>e amputati<strong>on</strong> plane <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basal half [1].<br />

We model <str<strong>on</strong>g>th</str<strong>on</strong>g>is immediate Wnt3 resp<strong>on</strong>se and <str<strong>on</strong>g>th</str<strong>on</strong>g>e following resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

different cell types by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled partial differential equati<strong>on</strong>s. We assume<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at Wnt3 is produced by apoptotic cells near <str<strong>on</strong>g>th</str<strong>on</strong>g>e amputati<strong>on</strong> plane, diffuses deeper<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue and subsequently undergoes a lytic degradati<strong>on</strong>. We model <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cell dynamics c<strong>on</strong>sidering cell differentiati<strong>on</strong>, self-renewal, apoptosis (triggered by<br />

amputati<strong>on</strong>), basal loss <str<strong>on</strong>g>of</str<strong>on</strong>g> cells due to migrati<strong>on</strong> toward <str<strong>on</strong>g>th</str<strong>on</strong>g>e extremities al<strong>on</strong>g wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

increases in cell proliferati<strong>on</strong> and cell migrati<strong>on</strong> in resp<strong>on</strong>se to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong><br />

and spatial gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> Wnt3, respectively.<br />

We implemented <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in a simulati<strong>on</strong> program coded in C++. Modeldependent<br />

fitting simulati<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data [1] dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

mechanisms could be resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e measured cell dynamics, corroborating an<br />

important role <str<strong>on</strong>g>of</str<strong>on</strong>g> Wnt3 wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e injury resp<strong>on</strong>se <str<strong>on</strong>g>th</str<strong>on</strong>g>at ultimately determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e regenerati<strong>on</strong> process in Hydra.<br />

References.<br />

[1] Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B.<br />

2009. Apoptotic cells provide an unexpected source <str<strong>on</strong>g>of</str<strong>on</strong>g> Wnt3 signaling to drive hydra head<br />

regenerati<strong>on</strong>. Dev Cell. 17(2):279-89.<br />

159


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

III; Tuesday, June 28, 17:00<br />

Arnaud Chauviere<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University New Mexico, Albuquerque, USA<br />

e-mail: AChauviere@salud.unm.edu<br />

Haralambos Hatzikirou, Vittorio Cristini<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University New Mexico, Albuquerque, USA<br />

Kara Pham, John Lowengrub<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California at Irvine, USA<br />

Helen Byrne<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, UK<br />

Andreas Deutsch<br />

ZIH, Technische Universität Dresden, Germany<br />

The “Go-or-Grow” hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis in glioma grow<str<strong>on</strong>g>th</str<strong>on</strong>g>:<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and analysis<br />

Gliomas are very aggressive brain tumors, in which tumor cells gain <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability<br />

to penetrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding normal tissue. The invasi<strong>on</strong> mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor are not yet fully understood. Our work is motivated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong>/proliferati<strong>on</strong><br />

dichotomy (“Go-or-Grow” hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis), i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e antag<strong>on</strong>istic<br />

migratory and proliferating cellular behaviors in a cell populati<strong>on</strong>, which may play<br />

a central role in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese tumors [3].<br />

In a first part, we present results obtained by using a lattice-gas cellular automat<strong>on</strong><br />

and show <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Go-or-Grow mechanism <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

glioma grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, which we qualitatively compare to in vitro data [5].<br />

In a sec<strong>on</strong>d part, we formulate c<strong>on</strong>tinuum models to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> quiescence phases <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioma cells. We propose a<br />

“Go-or-Rest” model and describe cell migrati<strong>on</strong> as a velocity-jump process including<br />

resting phases. We derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding macroscopic model and show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

anomalous diffusi<strong>on</strong> arises from <str<strong>on</strong>g>th</str<strong>on</strong>g>e switch between motile and quiescent phases. In<br />

particular, sub- and super-diffusi<strong>on</strong> regimes can be observed and are governed by a<br />

parameter describing intrinsic migratory properties <str<strong>on</strong>g>of</str<strong>on</strong>g> cells [2]. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at our<br />

results are in excellent agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> in vitro data <str<strong>on</strong>g>of</str<strong>on</strong>g> glioma tumor expansi<strong>on</strong> [1]<br />

when <str<strong>on</strong>g>th</str<strong>on</strong>g>e switch to quiescence is regulated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell density. We fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore show<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>is density-regulati<strong>on</strong> allows for <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> immotile aggregates in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Turing instability. We use a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical and analytical<br />

techniques to characterize <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> spatio-temporal instabilities<br />

and traveling wave soluti<strong>on</strong>s generated by our model. We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

density-dependent Go-or-Grow mechanism can produce complex dynamics similar<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> tumor heterogeneity and invasi<strong>on</strong>.<br />

References.<br />

[1] M. Aubert et al., A cellular automat<strong>on</strong> model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioma cells, Phys. Biol. 3,<br />

pp. 93-100 (2006).<br />

[2] A. Chauviere et al., Anomalous diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioma cells (2011, in preparati<strong>on</strong>).<br />

[3] A. Giese et al., Cost <str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong>: invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> malignant gliomas and implicati<strong>on</strong>s for treatment,<br />

J. Clin. Onc. 21, pp. 1624–1636 (2003).<br />

160


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[4] K. Pham et al., Density-dependent quiescence in glioma invasi<strong>on</strong>: instability in a simple<br />

reacti<strong>on</strong>-diffusi<strong>on</strong> model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong>/proliferati<strong>on</strong> dichotomy, J. Biol. Dyn. (2011, in<br />

review).<br />

[5] M. Tekt<strong>on</strong>idis et al., Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intrinsic in vitro cellular mechanisms for glioma invasi<strong>on</strong>,<br />

J. Theor. Biol. (2011, in review).<br />

161


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: from physical tools to<br />

applicati<strong>on</strong>s in cancer modeling II; Saturday, July 2, 11:00<br />

Arnaud Chauviere, Haralambos Hatzikirou<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University New Mexico, Albuquerque, USA<br />

e-mail: AChauviere@salud.unm.edu, HHatzikirou@salud.unm.edu<br />

John Lowengrub<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California at Irvine, USA<br />

Vittorio Cristini<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University New Mexico, Albuquerque, USA<br />

Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems<br />

Modeling phenomena in biology <str<strong>on</strong>g>of</str<strong>on</strong>g>ten requires <str<strong>on</strong>g>th</str<strong>on</strong>g>e inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> processes occurring<br />

at different spatial and temporal scales. There is an urgent and challenging<br />

need to describe biological systems utilizing a multiscale landscape and not just a<br />

single scale view. To <str<strong>on</strong>g>th</str<strong>on</strong>g>is end, <str<strong>on</strong>g>th</str<strong>on</strong>g>eories from Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Physics can provide<br />

tools for <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> multiscale phenomena. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk,<br />

we present a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical multiscale framework inspired from Physics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Dynamic<br />

Density Functi<strong>on</strong>al Theory, which we apply to derive a modeling approach for biological<br />

systems <str<strong>on</strong>g>th</str<strong>on</strong>g>at is c<strong>on</strong>sistent across <str<strong>on</strong>g>th</str<strong>on</strong>g>e scales.<br />

Our starting point is to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a multi-cellular<br />

system by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic Langevin equati<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach, each<br />

cell moves as <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>of</str<strong>on</strong>g> a balance <str<strong>on</strong>g>of</str<strong>on</strong>g> forces exerted am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding cells<br />

and by <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell microenvir<strong>on</strong>ment. A random c<strong>on</strong>tributi<strong>on</strong> arises from <str<strong>on</strong>g>th</str<strong>on</strong>g>e local<br />

explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e neighborhood by <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods from statistical physics can be used to derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding generalized<br />

Fokker-Planck equati<strong>on</strong>, which gives <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

probability distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> finding <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system at specific locati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

domain.<br />

An interesting level <str<strong>on</strong>g>of</str<strong>on</strong>g> descripti<strong>on</strong> c<strong>on</strong>sists in assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>e scalar density field<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevant variable for describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. We show how<br />

to derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding functi<strong>on</strong>al Fokker-Planck equati<strong>on</strong>, which gives <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

spatio-temporal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells adopt a particular density<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. At <str<strong>on</strong>g>th</str<strong>on</strong>g>is level <str<strong>on</strong>g>of</str<strong>on</strong>g> descripti<strong>on</strong>, we show how to include cell proliferati<strong>on</strong> and<br />

apoptosis as a stochastic bir<str<strong>on</strong>g>th</str<strong>on</strong>g>-dea<str<strong>on</strong>g>th</str<strong>on</strong>g> process in our framework.<br />

Finally, we present <str<strong>on</strong>g>th</str<strong>on</strong>g>e derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a deterministic macroscopic equati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell density, including cell movement<br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> a balance <str<strong>on</strong>g>of</str<strong>on</strong>g> forces, and cell proliferati<strong>on</strong> and dea<str<strong>on</strong>g>th</str<strong>on</strong>g>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is equati<strong>on</strong>,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell density are regulated by a free energy functi<strong>on</strong>al <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

accounts for interacti<strong>on</strong>s am<strong>on</strong>g cells and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment.<br />

This Dynamic Density Functi<strong>on</strong>al Theory is applied to simple interacting multicellular<br />

systems. We show how microscopic interacti<strong>on</strong>s at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular level (e.g.,<br />

cell-cell adhesi<strong>on</strong> and repulsi<strong>on</strong>) generate correlati<strong>on</strong> terms <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tribute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

corresp<strong>on</strong>ding macroscopic descripti<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue level. We illustrate our approach<br />

for well-established mean-field approximati<strong>on</strong>s such as Keller-Segel- and<br />

Fisher-Kolmogorov-like models.<br />

162


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Plants, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and transport processes II; Tuesday, June 28, 14:30<br />

Andrés Chavarría-Krauser<br />

Center for Modelling and Simulati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Biosciences (BIOMS), Universität<br />

Heidelberg<br />

e-mail: andres.chavarria@bioquant.uni-heidelberg.de<br />

Yejie Du<br />

Heidelberg Institute for Plant Science, Universität Heidelberg<br />

e-mail: duyejie@hip.uni-heidelberg.de<br />

A model <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma membrane flow and cytosis regulati<strong>on</strong> in<br />

growing pollen tubes<br />

In plant sexual reproducti<strong>on</strong>, pollen tubes carry <str<strong>on</strong>g>th</str<strong>on</strong>g>e male genetic informati<strong>on</strong><br />

from pollen grains to ovules. These single cells traverse <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire female tissue to<br />

reach <str<strong>on</strong>g>th</str<strong>on</strong>g>e eggs. Ast<strong>on</strong>ishing high expansi<strong>on</strong> rates and total leng<str<strong>on</strong>g>th</str<strong>on</strong>g>s are achieved:<br />

rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 mm/h in lily flowers and leng<str<strong>on</strong>g>th</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 cm in maize. This extreme grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rates and total leng<str<strong>on</strong>g>th</str<strong>on</strong>g>s demand perfect coordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell wall expansi<strong>on</strong>, cell wall<br />

material depositi<strong>on</strong> and membrane recycling.<br />

During grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, pollen tubes have to have a well defined and tightly regulated<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell wall extensibility. Regulati<strong>on</strong> is achieved by influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e esterificati<strong>on</strong><br />

degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell wall material (mostly pectins) <str<strong>on</strong>g>th</str<strong>on</strong>g>rough Pectin Me<str<strong>on</strong>g>th</str<strong>on</strong>g>yl<br />

Esterases (PME), which activity is in turn regulated by an inhibitor (PMEI). Distinct<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> PME and PMEI are found in pollen tubes. While PME is widely<br />

distributed al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e flanks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pollen tube, PMEI is <strong>on</strong>ly present at <str<strong>on</strong>g>th</str<strong>on</strong>g>e apical<br />

cell wall. To achieve <str<strong>on</strong>g>th</str<strong>on</strong>g>ese distinct distributi<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese enzymes are subjected to<br />

specific cytosis patterns. The cell wall material, pectin, reaches also <str<strong>on</strong>g>th</str<strong>on</strong>g>e wall by<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> exocytosis. It stands to reas<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at, mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> growing pollen tubes<br />

can <strong>on</strong>ly be understood completely, if <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> endocytosis and exocytosis<br />

are also c<strong>on</strong>sidered.<br />

We present a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical approach to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>ese patterns. A model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cytosis regulati<strong>on</strong> is developed and simulati<strong>on</strong>s presented. We address in particular<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimal assumpti<strong>on</strong>s needed to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns reported<br />

recently by Z<strong>on</strong>ia and Munnik, [1]. The movement <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma membrane in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

tip is described by using c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> flow and c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane material.<br />

After obtaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e central equati<strong>on</strong>s, relati<strong>on</strong>s describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e rates <str<strong>on</strong>g>of</str<strong>on</strong>g> endocytosis<br />

and exocytosis are proposed. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at two cytosis receptors (for exocytosis and<br />

endocytosis), which have different recycling rates and activati<strong>on</strong> times, suffice to<br />

describe a stable growing tube. The simulati<strong>on</strong>s show a very good spatial separati<strong>on</strong><br />

between endocytosis and exocytosis, and separati<strong>on</strong> is shown to depend str<strong>on</strong>gly <strong>on</strong><br />

exocytic vesicle delivery. The model shows also <str<strong>on</strong>g>th</str<strong>on</strong>g>at most vesicles in <str<strong>on</strong>g>th</str<strong>on</strong>g>e clear z<strong>on</strong>e<br />

have to be endocytic, in accordance wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature. Membrane flow is essential<br />

to maintain cell polarity, and bi-directi<strong>on</strong>al flow is a natural c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

proposed mechanism. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e first time, a model addressing plasma membrane<br />

flow and cytosis regulati<strong>on</strong> was posed. Therefore, it represents a missing piece in an<br />

integrative model <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen tube grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, in which cell wall mechanics, hydrodynamic<br />

fluxes and regulati<strong>on</strong> mechanisms are combined.<br />

References.<br />

163


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] Z<strong>on</strong>ia and Munnik, Uncovering hidden treasures in pollen tube grow<str<strong>on</strong>g>th</str<strong>on</strong>g> mechanics, Trends in<br />

Plant Science 14: 318–327.<br />

164


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 14:30<br />

Luis Fernando Chaves<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science, Hokkaido University, Sapporo,<br />

Japan<br />

e-mail: lchaves@ees.hokudai.ac.jp<br />

N<strong>on</strong>-linear impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic variability <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e density<br />

dependent regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an insect vector <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

Aedes aegypti is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most comm<strong>on</strong> urban tropical mosquito species and an<br />

important vector <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue, chikungunya, and yellow fever viruses. It is also an organism<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a complex life history where larval stages are aquatic and adults are terrestrial.<br />

This <strong>on</strong>togenetic niche shift could shape <str<strong>on</strong>g>th</str<strong>on</strong>g>e density dependent regulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er mosquito species because events <str<strong>on</strong>g>th</str<strong>on</strong>g>at occur during <str<strong>on</strong>g>th</str<strong>on</strong>g>e larval stages<br />

impact adult densities. Here, we present results from simple density-dependence<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models fitted using maximum likelihood me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to weekly time<br />

series data from Puerto Rico and Thailand. Density dependent regulati<strong>on</strong> was<br />

str<strong>on</strong>g in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong>s. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic forcing indicated <str<strong>on</strong>g>th</str<strong>on</strong>g>at populati<strong>on</strong>s<br />

were more sensitive to climatic variables wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low kurtosis (i.e., highly variable<br />

around <str<strong>on</strong>g>th</str<strong>on</strong>g>e median) rainfall in Puerto Rico and temperature in Thailand. Changes<br />

in envir<strong>on</strong>mental variability appear to drive sharp increases in <str<strong>on</strong>g>th</str<strong>on</strong>g>e abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mosquitoes. The identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exogenous factors forcing <str<strong>on</strong>g>th</str<strong>on</strong>g>e sharp increases in<br />

disease vector populati<strong>on</strong>s using <str<strong>on</strong>g>th</str<strong>on</strong>g>eir statistical properties, such as kurtosis, could<br />

be useful to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> changing climate patterns <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vector-borne diseases.<br />

165


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Friday, July 1, 14:30<br />

Ibrahim Cheddadi<br />

INRIA-Rocquencourt, France<br />

e-mail: ibrahim.cheddadi@inria.fr<br />

Dirk Drasdo<br />

INRIA-Rocquencourt, France<br />

Benoît Per<str<strong>on</strong>g>th</str<strong>on</strong>g>ame<br />

Laboratoire Jacques-Louis Li<strong>on</strong>s, Université Pierre et Marie Curie,<br />

Paris, France<br />

Min Tang<br />

Laboratoire Jacques-Louis Li<strong>on</strong>s, Université Pierre et Marie Curie,<br />

Paris, France<br />

Nicolas Vauchelet<br />

Laboratoire Jacques-Louis Li<strong>on</strong>s, Université Pierre et Marie Curie,<br />

Paris, France<br />

Irène Vign<strong>on</strong>-Clémentel<br />

INRIA-Rocquencourt, France<br />

Towards quantitative individual-based and c<strong>on</strong>tinuum<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor multicellular aggregates<br />

Recent development <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental techniques permits <str<strong>on</strong>g>th</str<strong>on</strong>g>e measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

increasing number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters necessary to parameterize quantitative models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and cancer development.On <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e hand, Individual-cell Based<br />

Models (IBMs) allow to incorporate a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> details <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-level behavior but are<br />

limited to <str<strong>on</strong>g>th</str<strong>on</strong>g>e millimeter scale. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, c<strong>on</strong>tinuum models are well<br />

adapted to larger scales but do not permit such a detailed descripti<strong>on</strong>. Building<br />

a hybrid c<strong>on</strong>tinuum/discrete model is a promising way to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e multiscale<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors from <str<strong>on</strong>g>th</str<strong>on</strong>g>e single cell up to centimeter scale. However, it requires<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> approaches lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e same predicti<strong>on</strong>s. Recently, Byrne and Drasdo<br />

(J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 2009) studied c<strong>on</strong>tinuum models able to capture important aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er compact or very diluted tumor aggregates <str<strong>on</strong>g>of</str<strong>on</strong>g> a previously introduced IBM<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at has been shown to reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e typical grow<str<strong>on</strong>g>th</str<strong>on</strong>g> kinetic <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers and<br />

multi-cellular spheroids (Drasdo et al., J. Stat. Phys. 2007) . Here we extend<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>cept towards a c<strong>on</strong>tinuum model <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e intermediate range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phenotypes by representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e different aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e IBM in more detail. The<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> dynamics predicted by <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two models are quantitatively compared.<br />

166


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological processes in patients <strong>on</strong> dialysis;<br />

Saturday, July 2, 11:00<br />

Roman Cherniha<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Ukrainian Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences,<br />

Tereshchenkivs’ka Street 3, Kyiv 01601, Ukraine;<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Kyiv-Mohyla Academy,<br />

Skovoroda Street 2, Kyiv 04070 , Ukraine<br />

e-mail: cherniha@ima<str<strong>on</strong>g>th</str<strong>on</strong>g>.kiev.ua<br />

Jacek Waniewski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biocybernetics and Biomedical Engineering, PAS,<br />

Ks. Trojdena 4, 02 796 Warszawa, Poland<br />

e-mail: jacekwan@ibib.waw.pl<br />

New exact soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models<br />

describing perit<strong>on</strong>eal transport<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid and solute transport between blood and dialysis<br />

fluid in <str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal cavity has not been formulated fully yet, in spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

well known basic physical laws for such transport. Recent ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical, <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

and numerical studies introduced new c<strong>on</strong>cepts <strong>on</strong> perit<strong>on</strong>eal transport and<br />

yielded better results for <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid and osmotic agent [1]–[4]. However,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> a combined descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> osmotic ultrafiltrati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal<br />

cavity, absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> osmotic agent from <str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal cavity and leak <str<strong>on</strong>g>of</str<strong>on</strong>g> macromolecules<br />

(proteins, e.g., albumin) from blood to <str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal cavity has not<br />

been addressed yet. Therefore, we present here a new extended model for <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

phenomena and investigate its ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical structure. The model is based <strong>on</strong><br />

a <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-comp<strong>on</strong>ent n<strong>on</strong>linear system <str<strong>on</strong>g>of</str<strong>on</strong>g> two-dimensi<strong>on</strong>al partial differential equati<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevant boundary and initial c<strong>on</strong>diti<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e particular case, <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

model produces <strong>on</strong>e, which was studied earlier in papers [1]–[3]. The n<strong>on</strong>-c<strong>on</strong>stant<br />

steady-state soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model obtained are studied. The realistic restricti<strong>on</strong>s<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters arising in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model were established wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aim to obtain<br />

exact formulae for <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-c<strong>on</strong>stant steady-state soluti<strong>on</strong>s. As result, <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact<br />

formulae for <str<strong>on</strong>g>th</str<strong>on</strong>g>e density <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid flux from blood to tissue and <str<strong>on</strong>g>th</str<strong>on</strong>g>e volumetric flux<br />

across <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue were c<strong>on</strong>structed, and two linear aut<strong>on</strong>omous ordinary differential<br />

equati<strong>on</strong>s to find <str<strong>on</strong>g>th</str<strong>on</strong>g>e glucose and albumin c<strong>on</strong>centrati<strong>on</strong>s were derived. The analytical<br />

results were checked, whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are applicable for <str<strong>on</strong>g>th</str<strong>on</strong>g>e descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

glucose-albumin transport in perit<strong>on</strong>eal dialysis.<br />

References.<br />

[1] Cherniha, R., Waniewski, J.: Exact soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for fluid transport in<br />

perit<strong>on</strong>eal dialysis. Ukrainian Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. J., 57, 1112–1119 (2005)<br />

[2] R. Cherniha, V.Dutka, J.Stachowska-Pietka and J.Waniewski. Fluid transport in perit<strong>on</strong>eal<br />

dialysis: a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model and numerical soluti<strong>on</strong>s. //Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological<br />

Systems, Vol.I. Ed. by A.Deutsch et al., Birkhaeuser, P.291-298, 2007<br />

[3] Waniewski J, Dutka V, Stachowska-Pietka J, Cherniha R: Distributed modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> glucoseinduced<br />

osmotic flow. Adv Perit Dial 2007;23:2-6.<br />

[4] Waniewski J, Stachowska-Pietka J, Flessner MF: Distributed modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> osmotically driven<br />

fluid transport in perit<strong>on</strong>eal dialysis: <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical and computati<strong>on</strong>al investigati<strong>on</strong>s. Am J<br />

Physiol Heart Circ Physiol 2009;296:H1960-1968.<br />

167


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Andrey Cherstvy<br />

ICS-2, FZ Juelich, 52425 Juelich, Germany<br />

e-mail: a.cherstvy@gmail.com<br />

A. Kolomeisky<br />

Rice University, Houst<strong>on</strong>, Texas 77005, USA<br />

A. Kornyshev<br />

Imperial College L<strong>on</strong>d<strong>on</strong>, SW7 2AZ, L<strong>on</strong>d<strong>on</strong>, UK<br />

Bioengineering; Tuesday, June 28, 14:30<br />

Protein-DNA interacti<strong>on</strong>s: reaching and recognizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

targets<br />

Search and recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> targets <strong>on</strong> DNA by DNA-binding proteins is a vital<br />

biological process. Some proteins find <str<strong>on</strong>g>th</str<strong>on</strong>g>eir target sequences <strong>on</strong> DNA wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

rates <str<strong>on</strong>g>th</str<strong>on</strong>g>at are 100-1000 times faster <str<strong>on</strong>g>th</str<strong>on</strong>g>an predicted by Smoluchowski diffusi<strong>on</strong> in<br />

3D space. It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten claimed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>ality from 3D in<br />

soluti<strong>on</strong> to 1D <strong>on</strong> DNA is <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic key to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>is facilitated diffusi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DNA-sliding proteins. Recent experiments have shown however <str<strong>on</strong>g>th</str<strong>on</strong>g>at protein<br />

diffusi<strong>on</strong> al<strong>on</strong>g DNA is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten much slower <str<strong>on</strong>g>th</str<strong>on</strong>g>an in soluti<strong>on</strong> (see data <str<strong>on</strong>g>of</str<strong>on</strong>g> Ref. [1]<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e lac repressor). Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e 3D1D space reducti<strong>on</strong> by itself does not ensure a<br />

faster target search. That c<strong>on</strong>troversy pushed us to revisit <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem [2].<br />

We present two <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical models <str<strong>on</strong>g>th</str<strong>on</strong>g>at describe some physical and chemical<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> protein target search and mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA-protein electrostatic recogniti<strong>on</strong>.<br />

First, we c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein target search as a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> 3D diffusi<strong>on</strong><br />

in soluti<strong>on</strong> and 1D sliding al<strong>on</strong>g DNA. Our n<strong>on</strong>-equilibrium model accounts<br />

for protein binding/unbinding to DNA [2]. The model c<strong>on</strong>tains a new correlati<strong>on</strong><br />

term, missing in previous <str<strong>on</strong>g>th</str<strong>on</strong>g>eories, <str<strong>on</strong>g>th</str<strong>on</strong>g>at comes from <str<strong>on</strong>g>th</str<strong>on</strong>g>e accurate descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein<br />

diffusi<strong>on</strong> process in stochastic DNA-protein potential. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e search<br />

time is optimal for an intermediate streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein-DNA interacti<strong>on</strong>s and intermediate<br />

protein c<strong>on</strong>centrati<strong>on</strong>s. The fast search is achieved by a parallel scanning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DNA by many proteins. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>clusi<strong>on</strong>s are c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

recent large-scale M<strong>on</strong>te Carlo simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> protein diffusi<strong>on</strong> [3].<br />

Then, we focus <strong>on</strong> DNA-protein electrostatic interacti<strong>on</strong>s, known to give a<br />

large c<strong>on</strong>tributi<strong>on</strong> to protein-DNA binding affinity. C<strong>on</strong>trary to hydrogen b<strong>on</strong>ding,<br />

electrostatic protein-DNA forces are believed to be largely insensitive to DNA<br />

sequence. We show however how <str<strong>on</strong>g>th</str<strong>on</strong>g>e complementarity <str<strong>on</strong>g>of</str<strong>on</strong>g> charge patterns <strong>on</strong> target<br />

DNA sequence and <strong>on</strong> a model protein can result in electrostatic recogniti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a specific track <strong>on</strong> DNA. This recogniti<strong>on</strong> provokes protein pinning near <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

homologous regi<strong>on</strong> <strong>on</strong> DNA. We obtain analytical expressi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

capturing well and typical times proteins spend in it before <str<strong>on</strong>g>th</str<strong>on</strong>g>ermal escape. These<br />

times are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten l<strong>on</strong>g enough to allow a reorganizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein structure, socalled<br />

interacti<strong>on</strong>-induced protein folding, and formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>ger (hydrogen)<br />

b<strong>on</strong>ds wi<str<strong>on</strong>g>th</str<strong>on</strong>g> DNA. One can <str<strong>on</strong>g>th</str<strong>on</strong>g>us suggest a two-step mechanism for DNA-protein<br />

recogniti<strong>on</strong> [2]: electrostatically mediated protein sliding and pinning followed by<br />

chemical recogniti<strong>on</strong> interacti<strong>on</strong>s.<br />

This mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> protein-DNA recogniti<strong>on</strong> is reminiscent <str<strong>on</strong>g>of</str<strong>on</strong>g> charge adjustment<br />

predicted by us for sequence-specific DNA-DNA electrostatic interacti<strong>on</strong> [4].<br />

The charge complementarity is also known to dominate <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

168


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

protein-protein complexes in soluti<strong>on</strong> [5], rendering such charge zipper complexati<strong>on</strong><br />

pretty general.<br />

Theoretical model <str<strong>on</strong>g>of</str<strong>on</strong>g> protein-DNA charge recogniti<strong>on</strong> has been validated by<br />

our recent analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> real DNA-protein complexes [6]. Structure visualizati<strong>on</strong> for<br />

many DNA-binding proteins indeed reveals a close proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> positively charged<br />

protein residues (Arg, Lys, and Hist) to negative DNA phosphate groups [6]. A<br />

detailed computati<strong>on</strong>al analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Protein Data Bank files <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallized DNAprotein<br />

complexes performed has indicated several important features. We have<br />

observed for instance <str<strong>on</strong>g>th</str<strong>on</strong>g>at in particularly for large structural proteins such as nucleosome<br />

core particles, <str<strong>on</strong>g>th</str<strong>on</strong>g>e sequence-specific DNA-protein charge zipper effects are<br />

str<strong>on</strong>gly pr<strong>on</strong>ounced. Namely, <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lys and Arg <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein surface<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> bound DNA fragment is adjusted to provide a better fit to<br />

sequence-specific pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA phosphates. This indicates sequence-specificity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> electrostatic interacti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>ese complexes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact largely overlooked in literature<br />

before. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively small DNA-protein complexes, <str<strong>on</strong>g>th</str<strong>on</strong>g>at implement<br />

standard motifs <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA recogniti<strong>on</strong>, <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trary, did not reveal any statistical<br />

preference in distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> positively charged protein amino acids wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tacting DNA phosphates [6,7].<br />

References.<br />

[1] R. Austin et al., Phys. Rev. Lett., 97 048302 (2006).<br />

[2] A. G. Cherstvy et al., J. Phys. Chem. B, 112 4741 (2008).<br />

[3] R. K. Das and A. B. Kolomeisky, PCCP, 12 2999 (2010).<br />

[4] A. G. Cherstvy et al., J. Phys. Chem. B, 108 6508 (2004).<br />

[5] A. J. McCoy et al., J. Mol. Biol., 268 570 (1997).<br />

[6] A. G. Cherstvy, J. Phys. Chem. B, 113 4242 (2009).<br />

[7] A. G. Cherstvy, Phys. Chem. Chem. Phys, accepted (2011).<br />

169


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Chadha Chettaoui<br />

INRIA Rocquencourt / INRA Jouy en Josas<br />

e-mail: chadha.chettaoui@gmail.com<br />

Dirk Drasdo<br />

INRIA Rocquencourt<br />

Michel Guillomot<br />

INRA Jouy en Josas<br />

Isabelle Hue<br />

INRA Jouy en Josas<br />

Alain Trubuil<br />

INRA Jouy en Josas<br />

Juhui Wang<br />

INRA Jouy en Josas<br />

Developmental Biology; Thursday, June 30, 11:30<br />

Towards a single-cell-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> early development in<br />

ruminants<br />

Embry<strong>on</strong>ic losses and, after bir<str<strong>on</strong>g>th</str<strong>on</strong>g>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic origins<br />

such as obesity, diabetes, arterial hypertensi<strong>on</strong>, have been observed as critical<br />

in early ruminant (sheep, cow) development.<br />

In order to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible mechanisms leading to such failures, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mechanisms c<strong>on</strong>trolling two developmental phases, <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e blastocyst (a<br />

hollow sphere <str<strong>on</strong>g>of</str<strong>on</strong>g> cells) during late blastula formati<strong>on</strong> as well as early trophoblast<br />

development needs to be understood. The trophoblast is <str<strong>on</strong>g>th</str<strong>on</strong>g>e first epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

appears at <str<strong>on</strong>g>th</str<strong>on</strong>g>e beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> embryogenesis in mammals. It forms <str<strong>on</strong>g>th</str<strong>on</strong>g>e wall <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

blastocyst and helps for implantati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e uterine wall. During early development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trophoblast, a temporal window <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 days from <str<strong>on</strong>g>th</str<strong>on</strong>g>e blastocyst stage, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

trophoblast floats in <str<strong>on</strong>g>th</str<strong>on</strong>g>e uterine liquid, and undergoes an extremely fast grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

el<strong>on</strong>gati<strong>on</strong>. This period <str<strong>on</strong>g>of</str<strong>on</strong>g> early morphogenesis is fundamental for a normal development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo. We established a process chain to quantitatively analyze<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e two developmental phases by experiments, analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> images from <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryos<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different stages, and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling. We analyze c<strong>on</strong>focal images<br />

to infer <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular organizati<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue sheet, and determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cell size and cell shapes prior and during <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo shape transiti<strong>on</strong>.<br />

Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is analysis, we set up a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical single-cell-based<br />

model. Our model cells are parametrized by measurable biophysical and cell biological<br />

quantities. They can migrate, grow and divide, and interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cells<br />

and extracellular matrix by forces. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first step we c<strong>on</strong>sidered a representative<br />

secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing embryo and studied different mechanisms to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

deformati<strong>on</strong>. The model permits predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> several manipulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and<br />

embryo <str<strong>on</strong>g>th</str<strong>on</strong>g>at are currently experimentally tested.<br />

170


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell and Tissue Biophysics; Friday, July 1, 14:30<br />

Keng-Hwee Chiam<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> High Performance Computing, Singapore<br />

e-mail: chiamkh@ihpc.a-star.edu.sg<br />

F<strong>on</strong>g Yin Lim<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> High Performance Computing, Singapore<br />

e-mail: limfy@ihpc.a-star.edu.sg<br />

L. Mahadevan<br />

Havard University, USA<br />

Bleb Statics, Dynamics, Adaptati<strong>on</strong> and Directed Cell<br />

Migrati<strong>on</strong><br />

Cellular blebs are spherical cell membrane protrusi<strong>on</strong>s powered by cytoplasmic flow.<br />

To understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular blebs, we develop a quantitative model to<br />

study how a bleb develops when a porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane detaches from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying cortex. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, we calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimum cytoplasmic<br />

pressure and minimum unsupported membrane leng<str<strong>on</strong>g>th</str<strong>on</strong>g> for a bleb to nucleate and<br />

grow. We also show how a bleb may travel around <str<strong>on</strong>g>th</str<strong>on</strong>g>e periphery <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. We find<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e traveling speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bleb is governed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pressure pulse<br />

induced by local cortical c<strong>on</strong>tracti<strong>on</strong> and we c<strong>on</strong>struct a phase diagram for bleb<br />

existence and moti<strong>on</strong>. Finally, we propose a bleb-based mechanism for directed<br />

migrati<strong>on</strong> during chemotaxis based <strong>on</strong> adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance <str<strong>on</strong>g>of</str<strong>on</strong>g> blebbing. This<br />

adaptati<strong>on</strong> is shown to be robust and is insensitive to perturbati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters.<br />

171


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ryan Chisholm<br />

Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>s<strong>on</strong>ian Tropical Research Institute<br />

e-mail: ryan.chis@gmail.com<br />

Populati<strong>on</strong> Dynamics; Saturday, July 2, 11:00<br />

A <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical model linking interspecific variati<strong>on</strong> in density<br />

dependence to species abundances<br />

Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at govern <str<strong>on</strong>g>th</str<strong>on</strong>g>e comm<strong>on</strong>ness and rarity <str<strong>on</strong>g>of</str<strong>on</strong>g> individual<br />

species is a central challenge in community ecology. Empirical studies have <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

found <str<strong>on</strong>g>th</str<strong>on</strong>g>at abundance is related to traits associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> competitive ability and<br />

suitability to <str<strong>on</strong>g>th</str<strong>on</strong>g>e local envir<strong>on</strong>ment, and more recently also to negative c<strong>on</strong>specific<br />

density dependence. Here, we c<strong>on</strong>struct a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical framework to show how a<br />

species abundance is in general expected to be dependent <strong>on</strong> its per-capita grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate when rare and <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate at which its grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate declines wi<str<strong>on</strong>g>th</str<strong>on</strong>g> increasing abundance<br />

(streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilizati<strong>on</strong>). We argue <str<strong>on</strong>g>th</str<strong>on</strong>g>at per-capita grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate when rare<br />

can be interpreted as competitive ability and <str<strong>on</strong>g>th</str<strong>on</strong>g>at streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilizati<strong>on</strong> largely<br />

reflects negative c<strong>on</strong>specific inhibiti<strong>on</strong>. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en analyze a simple spatially implicit<br />

model in which each species is defined by <str<strong>on</strong>g>th</str<strong>on</strong>g>ree parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at affect its juvenile<br />

survival: its generalized competitive effect <strong>on</strong> o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers, its generalized resp<strong>on</strong>se to<br />

competiti<strong>on</strong>, and an additi<strong>on</strong>al negative effect <strong>on</strong> c<strong>on</strong>specifics. This model facilitates<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e stable coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> an arbitrarily large number <str<strong>on</strong>g>of</str<strong>on</strong>g> species and qualitatively<br />

reproduces empirical relati<strong>on</strong>ships between abundance, competitive ability<br />

and negative c<strong>on</strong>specific density dependence. Our results provide <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical support<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e combined roles <str<strong>on</strong>g>of</str<strong>on</strong>g> competitive ability and negative density dependence<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species abundances in real ecosystems, and suggest new avenues<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> research for understanding abundance in models and in real communities.<br />

172


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Mosquito-Borne Diseases; Tuesday, June 28, 11:00<br />

Nakul Chitnis<br />

Swiss Tropical and Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Institute<br />

e-mail: Nakul.Chitnis@unibas.ch<br />

Diggory Hardy, Nicolas Maire, Amanda Ross, Melissa Penny, Valerie<br />

Crowell, Olivier Briët, Thomas Smi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Swiss Tropical and Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Institute<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling to Support Malaria C<strong>on</strong>trol and<br />

Eliminati<strong>on</strong><br />

We use numerical simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an ensemble <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> malaria in<br />

humans and mosquitoes to help develop target product pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for new interventi<strong>on</strong>s<br />

and to provide robust quantitative predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> effectiveness and cost-effectiveness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different strategies in reducing transmissi<strong>on</strong>, morbidity and mortality.<br />

The individual-based stochastic simulati<strong>on</strong> models include seas<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>;<br />

multiple mosquito populati<strong>on</strong>s; superinfecti<strong>on</strong>, acquired immunity, and variati<strong>on</strong>s<br />

in parasite densities in humans; and <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> heal<str<strong>on</strong>g>th</str<strong>on</strong>g> systems. We describe<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model and show results <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> different interventi<strong>on</strong>s<br />

including indoor residual spraying (IRS), insecticide-treated nets (ITNs), improved<br />

case management, intermittent preventive treatment, and potential vaccine candidates.<br />

Our results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at sustained coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> ITNs and/or IRS reduces malaria<br />

prevalence in two to <str<strong>on</strong>g>th</str<strong>on</strong>g>ree years but does not lead to fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er gains. However, in<br />

some settings, even wi<str<strong>on</strong>g>th</str<strong>on</strong>g> sustained coverage, clinical incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> malaria increases<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> loses its naturally acquired immunity. In some low to medium<br />

transmissi<strong>on</strong> settings, our simulati<strong>on</strong>s suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at high coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> interventi<strong>on</strong>s<br />

can lead to interrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong>, especially if coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an effective<br />

transmissi<strong>on</strong> blocking vaccine.<br />

173


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 11:00<br />

Ye<strong>on</strong>taek Choi<br />

Nati<strong>on</strong>al Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Korea<br />

e-mail: ytchoi@nims.re.kr<br />

Ngo van Thanh<br />

Nati<strong>on</strong>al Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Korea<br />

Tae-Soo Ch<strong>on</strong><br />

Pusan Nati<strong>on</strong>al University, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Korea<br />

Sang-Hee Lee<br />

Nati<strong>on</strong>al Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Korea<br />

Movement pattern analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> C.elegans based <strong>on</strong><br />

Box-Sized-Distributi<strong>on</strong><br />

It is already known <str<strong>on</strong>g>th</str<strong>on</strong>g>at locomoti<strong>on</strong> by C.elegans delivers characteristic patterns <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

movements, e.g. forward and backward movement, rest, omega-turn, and coil-type<br />

turn. However <str<strong>on</strong>g>th</str<strong>on</strong>g>e previous studies, being interested in <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> C.elegans<br />

movement, have had limitati<strong>on</strong> to give enough explanati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immediate c<strong>on</strong>necti<strong>on</strong><br />

between movement and pattern. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we introduced a way to<br />

deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> C.elegans movement patterns, called Box-Sized-Distributi<strong>on</strong> (BSD), in<br />

order to look to <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong> between movement and its pattern. BSD is defined by<br />

introducing a rectangular box which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wid<str<strong>on</strong>g>th</str<strong>on</strong>g>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>gest line formed<br />

by any two points <strong>on</strong> C.elegans, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e height, <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>gest vertical line determined<br />

by wid<str<strong>on</strong>g>th</str<strong>on</strong>g> line. We used experimental data sets for 50 individuals, being obtained<br />

after each c<strong>on</strong>trolled C.elegans was observed by real-time recording system for <str<strong>on</strong>g>th</str<strong>on</strong>g>ree<br />

hours <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e agar plate. As a result, BSD delivers a few interesting facts <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

movement patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> C.elegans : 1) The ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> wid<str<strong>on</strong>g>th</str<strong>on</strong>g> to height <str<strong>on</strong>g>of</str<strong>on</strong>g> a box can<br />

measure <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical activity <str<strong>on</strong>g>of</str<strong>on</strong>g> C.elegans, i.e., speed <str<strong>on</strong>g>of</str<strong>on</strong>g> movement and turn. 2)<br />

BSD makes it possible to explain pattern transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> C.elegans movements. 3)<br />

BSD also obeys a Boltzmann statistics based <strong>on</strong> shape itself.<br />

174


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecosystems Dynamics; Tuesday, June 28, 17:00<br />

Catalina Ciric<br />

EDF; Divisi<strong>on</strong> Recherche et Développement; Département Laboratoire<br />

Nati<strong>on</strong>al d’Hydraulique et Envir<strong>on</strong>nement; 6 quai Watier, 78401 Chatou,<br />

France<br />

e-mail: ciric.cata@gmail.com<br />

Sandrine Charles<br />

Université de Ly<strong>on</strong>, F-69000, Ly<strong>on</strong>; Université Ly<strong>on</strong> 1; CNRS, UMR5558,<br />

Laboratoire de Biométrie et Biologie Évolutive, F-69622, Villeurbanne,<br />

France<br />

Philippe Ciffroy<br />

EDF; Divisi<strong>on</strong> Recherche et Développement; Département Laboratoire<br />

Nati<strong>on</strong>al d’Hydraulique et Envir<strong>on</strong>nement; 6 quai Watier, 78401 Chatou,<br />

France<br />

Aquatic ecosystem modeling: use <str<strong>on</strong>g>of</str<strong>on</strong>g> screening sensitivity<br />

analysis me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to facilitate <str<strong>on</strong>g>th</str<strong>on</strong>g>e calibrati<strong>on</strong> process<br />

In ecological risk assessments, risks imputable to chemicals at <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecosystem level<br />

are usually estimated by extrapolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single-species toxicity test results. But<br />

such approaches fail to account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at inevitably exist am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

comp<strong>on</strong>ent species [1]. Alternately, modeling at <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole ecosystem level reveals<br />

to be a powerful tool by c<strong>on</strong>sidering species interacti<strong>on</strong>s, and by predicting toxic<br />

effects <strong>on</strong> n<strong>on</strong>-target species populati<strong>on</strong>s (indirect effects). The aims <str<strong>on</strong>g>of</str<strong>on</strong>g> our work<br />

are: (i) to develop a new ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model which comprehensively describes<br />

a whole aquatic ecosystem accounting for species interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a clear set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

equati<strong>on</strong>s including bo<str<strong>on</strong>g>th</str<strong>on</strong>g> abiotic and biotic factors; (ii) to incorporate perturbati<strong>on</strong><br />

functi<strong>on</strong>s <strong>on</strong> chosen processes wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in order to predict potential<br />

toxic effects at <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecosystem level and to identify functi<strong>on</strong>al groups at risk; (iii) to<br />

perform a sensitivity analysis, i.e., to screen parameters having <str<strong>on</strong>g>th</str<strong>on</strong>g>e greatest influence<br />

<strong>on</strong> calculated target endpoints. An extensive literature review allowed us to<br />

c<strong>on</strong>ceptualize a whole n<strong>on</strong>-c<strong>on</strong>taminated aquatic ecosystem wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a compartmental<br />

ecological model [2]. Compartments include primary producers (macrophytes and<br />

algae from phytoplankt<strong>on</strong> and periphyt<strong>on</strong>), primary c<strong>on</strong>sumers (juvenile fish and<br />

invertebrate grazers, shredders and collectors) and sec<strong>on</strong>dary c<strong>on</strong>sumers (invertebrate<br />

predators and fish). All compartments are related wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a food web as well<br />

as to abiotic factors such as light, temperature and nutrients. Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er literature<br />

review was carried <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most relevant perturbati<strong>on</strong> functi<strong>on</strong>s ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically<br />

describing how c<strong>on</strong>taminants impact populati<strong>on</strong> dynamics, trophic relati<strong>on</strong>ships<br />

and ecosystem functi<strong>on</strong>ning. These two literature reviews also provided for all parameters<br />

point estimates as well as some probability distributi<strong>on</strong>s. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 13 state<br />

variables (compartments), 23 interacti<strong>on</strong>s between species and 63 ecological processes,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> model parameters was necessarily very high ( 260), making<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e calibrati<strong>on</strong> process very complex and computati<strong>on</strong>ally expensive. To overcome<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese difficulties, sensitivity analyses (SA) seem particularly relevant [3]. They<br />

allow identifying n<strong>on</strong>-influential parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at can <str<strong>on</strong>g>th</str<strong>on</strong>g>en be fixed at a nominal<br />

value wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out significantly reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance <str<strong>on</strong>g>of</str<strong>on</strong>g> outputs. Am<strong>on</strong>g SA me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods,<br />

screening <strong>on</strong>es could be preferred as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are computati<strong>on</strong>ally cheap, compared to<br />

175


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

global <strong>on</strong>es. But screening SA me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are <strong>on</strong>ly qualitative and do not compute<br />

an output variance decompositi<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e input uncertainties. Hence, we first<br />

tested and compared two screening SA me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Morris [4] me<str<strong>on</strong>g>th</str<strong>on</strong>g>od and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od developed by Klepper [4]. In order to check <str<strong>on</strong>g>th</str<strong>on</strong>g>e reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir results,<br />

we sec<strong>on</strong>d carried out a comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> results given by two global quantitative<br />

SA me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Standardized Regressi<strong>on</strong> Coefficients (SRC) me<str<strong>on</strong>g>th</str<strong>on</strong>g>od and me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

FAST. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e last two me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are computati<strong>on</strong>ally expensive, we were <strong>on</strong>ly able<br />

to perform all our comparis<strong>on</strong>s <strong>on</strong> a reduced versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e "Periphyt<strong>on</strong>-<br />

Grazers" submodel, which c<strong>on</strong>tained a very small number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters ( 20). The<br />

Morris me<str<strong>on</strong>g>th</str<strong>on</strong>g>od was finally <str<strong>on</strong>g>th</str<strong>on</strong>g>e best compromise to screen n<strong>on</strong>-influential parameters.<br />

Applied to <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole aquatic model, such a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od allows <strong>on</strong>e to reduce<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying equati<strong>on</strong>s (some parameters are fixed, <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers<br />

have to be calibrated), and c<strong>on</strong>sequently to facilitate <str<strong>on</strong>g>th</str<strong>on</strong>g>e calibrati<strong>on</strong> process from<br />

experimental data.<br />

References.<br />

[1] F.DeLaender; K.A.C.De Schamphelaere, P.A.Vanrolleghem, C.R.Janssen. 2008. Validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an ecosystem modelling approach as a tool for ecological effect assessments. Chemosphere<br />

71:529-545.<br />

[2] S.M.Bartell, G.Lefebvre, G.Kaminski, M.Carreau, K.Rouse Campbell. 1999. An ecosystem<br />

model for assessing ecological risks in Québec rivers, lakes, and reservoirs. Ecological Modelling<br />

124:43-67.<br />

[3] A. Saltelli, K.Chan, E.M.Scott. 2008. Sensitivity analysis. Chicheter. UK: John Wiley & S<strong>on</strong>s<br />

Ltd. 475p.<br />

[4] Max D.Morris. 1991. Factorial sampling plans for preliminary computati<strong>on</strong>al experiments.<br />

Technometrics 33(2):161-174<br />

[5] O. Klepper. 1997. Multivariate aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> model uncertainty analysis: tools for sensitivity<br />

analysis and calibrati<strong>on</strong>. Ecological Modelling 101:1-13<br />

176


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent advances in infectious disease modelling I; Saturday, July 2, 11:00<br />

Stanca M. Ciupe<br />

UL Lafayette<br />

e-mail: msc6503@louisiana.edu<br />

Ruy Ribeiro<br />

Los Alamos Nati<strong>on</strong>al Laboratory<br />

e-mail: ruy@lanl.gov<br />

Alan Perels<strong>on</strong><br />

Los Alamos Nati<strong>on</strong>al Laboratory<br />

e-mail: asp@lanl.gov<br />

Antibody resp<strong>on</strong>ses during Hepatitis B viral infecti<strong>on</strong><br />

Infecti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> hepatitis B virus results in <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> a large excess <str<strong>on</strong>g>of</str<strong>on</strong>g> subviral<br />

particles, which are empty particles wi<str<strong>on</strong>g>th</str<strong>on</strong>g> viral proteins <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir surface but wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out<br />

viral nucleic acids. The reas<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir overproducti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ey<br />

play in HBV pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenesis is not understood. Here, we investigate whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er subviral<br />

particles can serve as a decoy by adsorbing neutralizing antibodies and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore<br />

delaying <str<strong>on</strong>g>th</str<strong>on</strong>g>e clearance <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>. We develop a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> HBVantibody<br />

interacti<strong>on</strong> and determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantitative c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> virus-antibody<br />

and subviral particles-antibody formati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>. We extend<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e results to account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple Hepatitis B surface proteins,<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> which can potentially facilitate infecti<strong>on</strong>. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is extended model we<br />

investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e necessity for <str<strong>on</strong>g>th</str<strong>on</strong>g>e antibody to bind all available surface proteins to<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fer protecti<strong>on</strong>.<br />

177


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

V; Wednesday, June 29, 11:00<br />

Jean Clairambault<br />

INRIA Paris-Rocquencourt, France<br />

e-mail: jean.clairambault@inria.fr<br />

Numerical optimisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anticancer <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutics, especially<br />

chr<strong>on</strong>o<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutics, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> toxicity c<strong>on</strong>straints<br />

I will firstly recall previous results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a chr<strong>on</strong>o<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy delivered<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e general circulati<strong>on</strong>, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> targets <strong>on</strong> two separate cell populati<strong>on</strong>s, heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y<br />

and tumour. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is representati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferating cell populati<strong>on</strong>s under attack<br />

are modelled by simple ordinary differential equati<strong>on</strong>s (ODEs). The variables under<br />

c<strong>on</strong>trol are numbers or densities <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in homogeneous populati<strong>on</strong>s, heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y or tumour,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e actual drug targets being cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates. A Lagrangian is designed from<br />

objective (killing cancer cells) and c<strong>on</strong>straint (preserving heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y cells) functi<strong>on</strong>s.<br />

Its numerical maximizati<strong>on</strong> yields suboptimal soluti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be implemented<br />

as c<strong>on</strong>tinuous drug delivery schedules in programmable pumps <str<strong>on</strong>g>th</str<strong>on</strong>g>at are in use in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e clinic. Chr<strong>on</strong>o<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutics, a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e clinical treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> cancers,<br />

takes advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> circadian clock phase differences <str<strong>on</strong>g>th</str<strong>on</strong>g>at exist between heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y and<br />

cancer cells to optimise drug delivery using such pumps. These differences are represented<br />

as differences between 24 h-periodic modulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug effects in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cell populati<strong>on</strong> models.<br />

Then I will develop more recent aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same optimisati<strong>on</strong> problem,<br />

where, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs, physiologically structured partial differential equati<strong>on</strong>s<br />

(PDEs) representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e divisi<strong>on</strong> cycle in proliferating cell populati<strong>on</strong>s are used<br />

here, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> as variables cell populati<strong>on</strong> number or densities, heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y and tumour.<br />

The variables under c<strong>on</strong>trol are however here not cell numbers, but grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates<br />

(first eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear PDE systems), yielding bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e objective functi<strong>on</strong><br />

(for tumour cells) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>straint functi<strong>on</strong> (for heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y cells), from which a Lagrangian<br />

is also designed. The actual targets <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol are in <str<strong>on</strong>g>th</str<strong>on</strong>g>is representati<strong>on</strong><br />

cell cycle phase transiti<strong>on</strong> rates, which is much more realistic <str<strong>on</strong>g>th</str<strong>on</strong>g>an cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> cytotoxic drugs, since <str<strong>on</strong>g>th</str<strong>on</strong>g>eir effects are not directly exerted by enhancing<br />

dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates, but ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er by blocking cell cycle checkpoints. These checkpoints<br />

are bo<str<strong>on</strong>g>th</str<strong>on</strong>g> physiologically (by circadian clocks) and pharmacologically c<strong>on</strong>trolled.<br />

Differences between heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y and tumour cells are here modelled as different synchr<strong>on</strong>isati<strong>on</strong>s<br />

between cell cycle phases, since heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y cell populati<strong>on</strong>s are assumed<br />

to be more synchr<strong>on</strong>ised, i.e., wi<str<strong>on</strong>g>th</str<strong>on</strong>g> steeper transiti<strong>on</strong> functi<strong>on</strong>s between cell cycle<br />

phases, <str<strong>on</strong>g>th</str<strong>on</strong>g>an tumour cell populati<strong>on</strong>s.<br />

Finally I will present a prospective view, adapted to pers<strong>on</strong>alised medicine,<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic optimisati<strong>on</strong> in <strong>on</strong>cology, which is based <strong>on</strong> physiological modelling<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>roughout <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e targets (cell populati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole body) and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol<br />

means (fate <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs, from <str<strong>on</strong>g>th</str<strong>on</strong>g>eir infusi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e general circulati<strong>on</strong> until <str<strong>on</strong>g>th</str<strong>on</strong>g>eir molecular<br />

acti<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell and tissue level). To make <str<strong>on</strong>g>th</str<strong>on</strong>g>ese views more complete, I will<br />

also present extended principles <str<strong>on</strong>g>of</str<strong>on</strong>g> drug delivery optimisati<strong>on</strong>, presently using <strong>on</strong>ly<br />

toxicity c<strong>on</strong>straints <strong>on</strong> heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y cells, but also in <str<strong>on</strong>g>th</str<strong>on</strong>g>e future, at a different time scale,<br />

simultaneously using drug resistance c<strong>on</strong>straints <strong>on</strong> tumours wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a cell Darwinian<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> view.<br />

178


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

James Clarke<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, UK<br />

e-mail: J.P.Clarke@ba<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Dr. K.A. Jane White<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, UK<br />

e-mail: maskajw@ba<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Dr. Katy Turner<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bristol, UK<br />

e-mail: katy.turner@bristol.ac.uk<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Chlamydia from a public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> viewpoint<br />

Infecti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Chlamydia trachomatis poses a significant public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> problem in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e UK and worldwide. Left untreated <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong> can cause fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er problems<br />

in individuals, including PID, epididymitis, and infertility. People wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Chlamydia<br />

infecti<strong>on</strong>, (or o<str<strong>on</strong>g>th</str<strong>on</strong>g>er bacterial STIs) are also more likely to be infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> HIV<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough sexual c<strong>on</strong>tact. We have been comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> random screening,<br />

c<strong>on</strong>tact tracing, and combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to c<strong>on</strong>trolling Chlamydia<br />

levels in a populati<strong>on</strong> in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong> is already endemic. Our model<br />

system involves a pair approximati<strong>on</strong> approach to mimic sexual c<strong>on</strong>tact structure<br />

and we explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in key c<strong>on</strong>trol parameters over timescales <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

relevance to public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> policy makers. In particular we use our model analysis<br />

to answer <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong>: what combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> screening and c<strong>on</strong>tact tracing should<br />

be employed to minimise prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> Chlamydia over realistic time intervals?<br />

179


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Christina Cobbold<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Glasgow<br />

e-mail: cc@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.gla.ac.uk<br />

Populati<strong>on</strong> Dynamics; Friday, July 1, 14:30<br />

Emerging spatio-temporal patterns in a model <str<strong>on</strong>g>of</str<strong>on</strong>g> insect<br />

invasi<strong>on</strong><br />

Recent empirical studies <str<strong>on</strong>g>of</str<strong>on</strong>g> insect invasi<strong>on</strong>s have provided evidence for invasive<br />

waves wi<str<strong>on</strong>g>th</str<strong>on</strong>g> endogenously generated variance in spread rates. Integrodifference equati<strong>on</strong>s<br />

provide a general framework to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive species when<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e species has distinct grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and dispersal phases. Many insects from temporate<br />

climates satisfy <str<strong>on</strong>g>th</str<strong>on</strong>g>is descripti<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will present an integrodifference<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> insect host-parasitoid co-invasi<strong>on</strong> which exhibits endogenously generated<br />

variance in spread rate. The emerging spatio-temporal patterns which form in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

wake <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pulsed wavefr<strong>on</strong>t may provide insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at lead to<br />

collapse and generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insect outbreaks at <str<strong>on</strong>g>th</str<strong>on</strong>g>e landscape scale.<br />

180


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Daniel C<str<strong>on</strong>g>of</str<strong>on</strong>g>field Jr.<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan-Flint<br />

e-mail: dc<str<strong>on</strong>g>of</str<strong>on</strong>g>fiel@umflint.edu<br />

Vector-borne diseases; Tuesday, June 28, 14:30<br />

A Model for Chagas Disease wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Vector C<strong>on</strong>sumpti<strong>on</strong> and<br />

Transplacental Transmissi<strong>on</strong><br />

Chagas disease is caused by <str<strong>on</strong>g>th</str<strong>on</strong>g>e parasite Trypanosoma cruzi, which is spread primarily<br />

by domestic vectors in <str<strong>on</strong>g>th</str<strong>on</strong>g>e reduviid family, and affects humans and domestic<br />

mammals <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout rural areas in Central and Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> America. An epidemiological<br />

model for Chagas disease in a hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>etical village setting will be presented.<br />

The model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>linear coupled system <str<strong>on</strong>g>of</str<strong>on</strong>g> four differential equati<strong>on</strong>s,<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> which has a delay, <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e total number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vectors, infected vectors, infected humans, and infected domestic mammals.<br />

In additi<strong>on</strong> to bir<str<strong>on</strong>g>th</str<strong>on</strong>g>, dea<str<strong>on</strong>g>th</str<strong>on</strong>g>, and parasite transmissi<strong>on</strong> due to vectors, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

takes into account insecticide spraying, transplacental transmissi<strong>on</strong>, and c<strong>on</strong>sumpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vector by domestic mammals. Steady state analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

c<strong>on</strong>stant coefficients provides a stability c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model parameters. In representative<br />

examples, <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and computer simulati<strong>on</strong>s reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e endemic<br />

equilibrium is locally asymptotically stable.<br />

181


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling viral hepatitis dynamics in-vivo and in-vitro in <str<strong>on</strong>g>th</str<strong>on</strong>g>e era <str<strong>on</strong>g>of</str<strong>on</strong>g> direct<br />

anti-viral agents II; Wednesday, June 29, 08:30<br />

Piero Colombatto<br />

Hepatology Unit, University Hospital <str<strong>on</strong>g>of</str<strong>on</strong>g> Pisa, Pisa, Italy<br />

e-mail: p.colombatto@ao-pisa.toscana.it<br />

Luigi Civitano<br />

Hepatology Unit, University Hospital <str<strong>on</strong>g>of</str<strong>on</strong>g> Pisa, Pisa, Italy<br />

Ver<strong>on</strong>ica Romagnoli<br />

Hepatology Unit, University Hospital <str<strong>on</strong>g>of</str<strong>on</strong>g> Pisa, Pisa, Italy<br />

Pietro Ciccorossi<br />

Hepatology Unit, University Hospital <str<strong>on</strong>g>of</str<strong>on</strong>g> Pisa, Pisa, Italy<br />

Ferruccio B<strong>on</strong>ino<br />

Hepatology Unit, University Hospital <str<strong>on</strong>g>of</str<strong>on</strong>g> Pisa, Pisa, Italy<br />

Maurizia Rossana Brunetto<br />

Hepatology Unit, University Hospital <str<strong>on</strong>g>of</str<strong>on</strong>g> Pisa, Pisa, Italy<br />

Simulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e decline <str<strong>on</strong>g>of</str<strong>on</strong>g> HCV infected hepatocytes by<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling allows for individual tailoring <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Peg-IFN+RBV <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and for a better selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

candidates to <str<strong>on</strong>g>th</str<strong>on</strong>g>e new direct antiviral agents.<br />

Background. We have already shown in a retrospective study <str<strong>on</strong>g>th</str<strong>on</strong>g>at modelling infected<br />

cells dynamics by ALT and HCV RNA decline during <str<strong>on</strong>g>th</str<strong>on</strong>g>e first 4 weeks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy warrants accurate predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment outcome and <str<strong>on</strong>g>of</str<strong>on</strong>g>fer <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility<br />

to compute individual treatment durati<strong>on</strong>. We compared in a randomised c<strong>on</strong>trolled<br />

trial <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e new model tailored (MT) schedule vs <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

traditi<strong>on</strong>al Guide Line (GL). Patients and me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. 100 c<strong>on</strong>secutive patients stratified<br />

by previous <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy (38 nave, 62 retreated), HCV genotype (60 G1-G4 and 40<br />

G2-G3)and peg-IFN type (60 2a and 40 2b), randomly received GL or MT schedules.<br />

GL pts were treated 24 weeks if G2-G3 and 48 weeks if G1-G4 applying week<br />

12 stopping rule in G1 n<strong>on</strong> resp<strong>on</strong>ders (NR). In MT patients ALT and HCV RNA<br />

were measured at day 0-2-4-7-14-21-28 to compute <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> infected cells at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy (Ieot), treatment was stopped at week 6 if computed Ieot at<br />

GL durati<strong>on</strong> > 5000 (NR), o<str<strong>on</strong>g>th</str<strong>on</strong>g>erwise tailored to achieve Ieot < 250. Results. Ieot<br />

could be computed in 42 (84%) MT patients, <str<strong>on</strong>g>th</str<strong>on</strong>g>e remaining 8 pts showed ALT<br />

or HCV-RNA data <str<strong>on</strong>g>th</str<strong>on</strong>g>at did not fit into <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, <str<strong>on</strong>g>th</str<strong>on</strong>g>us <str<strong>on</strong>g>th</str<strong>on</strong>g>ey were treated wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

GL schedules and not included in <str<strong>on</strong>g>th</str<strong>on</strong>g>is analysis. Therapy was wi<str<strong>on</strong>g>th</str<strong>on</strong>g>drawn/modified<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> side effects in 13 (26%) MT and in 9 (18%) GL pts. Therapy was disc<strong>on</strong>tinued<br />

at week 6 because <str<strong>on</strong>g>of</str<strong>on</strong>g> NR in 11 (22%) MT pts and at week 12 in 8 (16%)<br />

GL pts. The SVR rate in <str<strong>on</strong>g>th</str<strong>on</strong>g>ose who completed <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy was 85% according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

MT (mean durati<strong>on</strong> 32 weeks, range:13-56) and 82% according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e GL (mean<br />

durati<strong>on</strong> 38 weeks, range:24-48). Treatment durati<strong>on</strong> in SVR pts ranged between<br />

18-55 weeks in 7 G1 pts, 13-21 weeks in 3 G2 pts and 21-56 weeks in 5 G3 pts.<br />

Mean durati<strong>on</strong> for SVR <str<strong>on</strong>g>of</str<strong>on</strong>g> GL schedules was 21% l<strong>on</strong>ger in resp<strong>on</strong>der patients and<br />

100% in NR. C<strong>on</strong>clusi<strong>on</strong>s. The prospective applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our model c<strong>on</strong>firmed <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

wide diversificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment durati<strong>on</strong> required for SVR, as predicted by<br />

our previous retrospective study, and allowed in clinical practice a fine pers<strong>on</strong>alizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e antiviral treatment at <str<strong>on</strong>g>th</str<strong>on</strong>g>e single patient level. Tailoring treatment to<br />

182


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ieot


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chaste framework;<br />

Tuesday, June 28, 11:00<br />

Ornella Cominetti<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: cominetti@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Philip Maini<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Helen Byrne<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Angela Shifflet<br />

W<str<strong>on</strong>g>of</str<strong>on</strong>g>ford College<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. George Shifflet<br />

W<str<strong>on</strong>g>of</str<strong>on</strong>g>ford College<br />

Using a cell-vertex model to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> differential<br />

adhesi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e intestinal crypt<br />

A cell-based vertex model in Chaste was used to study differential adhesi<strong>on</strong> and cell<br />

positi<strong>on</strong>ing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e intestinal crypt. The results were compared to <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>es obtained<br />

using a different modelling framework, namely <str<strong>on</strong>g>th</str<strong>on</strong>g>e Potts model.<br />

When directly comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e models simulati<strong>on</strong>s we see <str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> models agree<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental data in transit time, migratory velocities and migratory patterns<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cells. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>is is not <str<strong>on</strong>g>th</str<strong>on</strong>g>e case when comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary between<br />

differentiated and transit amplifying cells: while using <str<strong>on</strong>g>th</str<strong>on</strong>g>e Potts model a sharp<br />

boundary can be observed, using <str<strong>on</strong>g>th</str<strong>on</strong>g>e vertex model such boundary is not seen.<br />

Our results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at different modelling frameworks can give different answers<br />

when studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e same phenomen<strong>on</strong>, reinforcing <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> testing<br />

in more <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong>e modelling platform in order to obtain robust results.<br />

184


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Structure and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Reacti<strong>on</strong> Networks I; Tuesday, June<br />

28, 14:30<br />

Carsten C<strong>on</strong>radi<br />

MPI Magdeburg<br />

e-mail: c<strong>on</strong>radi@mpi-magdeburg.mpg.de<br />

Dietrich Flockerzi<br />

MPI Magdeburg<br />

Multistati<strong>on</strong>arity in mass acti<strong>on</strong> networks by linear<br />

inequality systems<br />

Ordinary Differential Equati<strong>on</strong>s (ODEs) are an important tool in many areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Quantitative Biology. For many ODE systems multistati<strong>on</strong>arity (i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> at least two positive steady states) is a desired feature. In general establishing<br />

multistati<strong>on</strong>arity is a difficult task as realistic biological models are large in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

states and (unknown) parameters and in most cases poorly parameterized (because<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> noisy measurement data <str<strong>on</strong>g>of</str<strong>on</strong>g> few comp<strong>on</strong>ents, a very small number <str<strong>on</strong>g>of</str<strong>on</strong>g> data points<br />

and <strong>on</strong>ly a limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> repetiti<strong>on</strong>s). For mass acti<strong>on</strong> networks establishing<br />

multistati<strong>on</strong>arity hence is equivalent to establishing <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> at least two<br />

positive soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a large polynomial system wi<str<strong>on</strong>g>th</str<strong>on</strong>g> unknown coefficients. For<br />

mass acti<strong>on</strong> networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> certain structural properties, expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

stoichiometric matrix and <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> rate-exp<strong>on</strong>ent matrix, we present necessary<br />

and sufficient c<strong>on</strong>diti<strong>on</strong>s for multistati<strong>on</strong>arity <str<strong>on</strong>g>th</str<strong>on</strong>g>at take <str<strong>on</strong>g>th</str<strong>on</strong>g>e form linear inequality<br />

systems. Soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese inequality systems define pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> steady states and<br />

parameter values. We also present a sufficient c<strong>on</strong>diti<strong>on</strong> to identify networks where<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e aforementi<strong>on</strong>ed c<strong>on</strong>diti<strong>on</strong>s hold.<br />

185


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Jessica C<strong>on</strong>way<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia<br />

e-mail: c<strong>on</strong>way@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ubc.ca<br />

Dr. Daniel Coombs<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia<br />

Immunology; Wednesday, June 29, 17:00<br />

C<strong>on</strong>tinuous-time branching processes to model viral load in<br />

treated HIV+ individuals<br />

We will discuss a c<strong>on</strong>tinuous-time, multi-type branching model <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV viral dynamics<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood stream. We are motivated by observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> viral load in<br />

HIV+ patients <strong>on</strong> anti-retroviral treatment (ART). ARTs very effectively limit viral<br />

replicati<strong>on</strong>. However, while <strong>on</strong> ARTs, an HIV+ individual’s viral load remains<br />

n<strong>on</strong>-zero, and blood tests show occasi<strong>on</strong>al viral blips: short periods <str<strong>on</strong>g>of</str<strong>on</strong>g> increased<br />

viral load. We hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esize <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is low viral load can be attributed to activati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cells latently infected by HIV before treatment initiati<strong>on</strong>. Blips <str<strong>on</strong>g>th</str<strong>on</strong>g>en represent<br />

small-probability deviati<strong>on</strong>s from <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean. Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>is system as a branching<br />

process, we derive equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability generating functi<strong>on</strong>. Using a novel<br />

numerical approach we extract probability distributi<strong>on</strong>s for viral load yielding blip<br />

amplitudes c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> patient data. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en compute distributi<strong>on</strong>s <strong>on</strong> durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese blips <str<strong>on</strong>g>th</str<strong>on</strong>g>rough direct numerical simulati<strong>on</strong>. Our stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

latent cell activati<strong>on</strong> reproduces features <str<strong>on</strong>g>of</str<strong>on</strong>g> treated HIV infecti<strong>on</strong>. It can be used<br />

to provide insight into variability <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment outcomes for HIV+ individuals not<br />

available in deterministic models.<br />

186


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 11:00<br />

Flora Cordoleani<br />

Jean-Christophe Poggiale<br />

David Nerini<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ias Gauduch<strong>on</strong><br />

Andrew Morozov<br />

Centre d’Oceanologie de Marseille, Universite de la Mediterranee,<br />

UMR LMGEM 6117 CNRS, Campus de Luminy, Case 901,13288 Marseille<br />

Cedex 09, FRANCE<br />

e-mail: flora.cordoleani@univmed.fr<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> structure sensitivity analysis me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e time, sensitivity analyses performed <strong>on</strong> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models are<br />

limited to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters. Though, it has been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological processes <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e wants to model can<br />

also be very important for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological systems. For instance, several<br />

au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors have highlighted <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>al resp<strong>on</strong>se formulati<strong>on</strong>,<br />

which gives <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sumpti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> predators as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> prey density, can have<br />

a str<strong>on</strong>g impact <strong>on</strong> predator-prey models behavior and stability. This is referred by<br />

[1] as a new type <str<strong>on</strong>g>of</str<strong>on</strong>g> model sensitivity, called <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

The formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological processes can be very complex and it is not rare<br />

to find several possible ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical expressi<strong>on</strong>s to model <strong>on</strong>e process. Indeed,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e process studied is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten difficult to measure in <str<strong>on</strong>g>th</str<strong>on</strong>g>e natural medium and it is<br />

approximated by functi<strong>on</strong>s estimated from laboratory or in situ experiments. These<br />

functi<strong>on</strong>s are c<strong>on</strong>sidered as a good approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomen<strong>on</strong> observed in<br />

natural systems, which is <str<strong>on</strong>g>of</str<strong>on</strong>g> course questi<strong>on</strong>able since it has been dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

natural systems are much more heterogeneous <str<strong>on</strong>g>th</str<strong>on</strong>g>an simplified laboratory systems.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>text, we have decided to develop some simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at will help modelers to detect and to measure if <str<strong>on</strong>g>th</str<strong>on</strong>g>eir system is sensitive to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process studied. We argue <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is type <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis is<br />

essential if <strong>on</strong>e wants to be able to use and comment informati<strong>on</strong>s obtained from<br />

model simulati<strong>on</strong>s. We show an example <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> by investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>al resp<strong>on</strong>se formulati<strong>on</strong> <strong>on</strong> a chemostat-type predator-prey model<br />

dynamics. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e system does exhibit structure sensitivity, which is even<br />

str<strong>on</strong>ger <str<strong>on</strong>g>th</str<strong>on</strong>g>an system parameters sensitivity.<br />

References.<br />

[1] Wood, S. N. and Thomas, M. B., 1999. Super-sensitivity to structure in biological models.<br />

Proc. R. Soc. L<strong>on</strong>d. B 266, 565-570.<br />

187


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 11:00<br />

Stephen Cornell<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leeds, Leeds LS2 9JT,<br />

UK<br />

e-mail: s.j.cornell@leeds.ac.uk<br />

Space, coexistence, and mutual invasibility<br />

Two possible c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at will lead to two species coexisting are: (i) <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a<br />

stable equilibrium point where bo<str<strong>on</strong>g>th</str<strong>on</strong>g> densities are n<strong>on</strong>zero; and (ii) ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er species<br />

can invade <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er when rare. For many simple models <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two c<strong>on</strong>diti<strong>on</strong>s<br />

are equivalent, but <str<strong>on</strong>g>th</str<strong>on</strong>g>is need not be <str<strong>on</strong>g>th</str<strong>on</strong>g>e case. Unfortunately, a dear<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> exact<br />

analytical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods hampers <str<strong>on</strong>g>th</str<strong>on</strong>g>e explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is questi<strong>on</strong> for spatial, stochastic<br />

systems. However, asymptotically exact results can be computed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit where<br />

interacti<strong>on</strong>s take place <strong>on</strong> a large but finite leng<str<strong>on</strong>g>th</str<strong>on</strong>g> scale [1]. Here, I study a spatial,<br />

stochastic Lotka-Volterra competiti<strong>on</strong> model, which is selectively neutral except<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial kernels <str<strong>on</strong>g>th</str<strong>on</strong>g>at describe wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in- and between-species interacti<strong>on</strong>s [2].<br />

The equilibrium stability eigenvalue gives a weal<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> (asymptotically exact) results<br />

for when coexistence is to be expected. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasibility eigenvalues give<br />

different prediti<strong>on</strong>s. I argue <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is is because exp<strong>on</strong>ential grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is not an<br />

appropriate descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> successful invasi<strong>on</strong> in spatial systems. This means <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

approximati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for computing invasi<strong>on</strong> eigenvalues can give misleading<br />

results in evoluti<strong>on</strong>ary studies <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial systems.<br />

References.<br />

[1] O. Ovaskainen and S. J. Cornell Space and Stochasticity in populati<strong>on</strong> dynamics Proc. Natl.<br />

Acad. Sci. USA 103 12781–12786 (2006).<br />

[2] D. J. Murrell and R. Law Heteromyopia and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> similar competitors<br />

Ecology Letters 6 48–19 (2003).<br />

188


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Andres Cortes<br />

Uppsala University, Sweden<br />

e-mail: aj.cortes235@gmail.com<br />

Fredy M<strong>on</strong>serrate<br />

Centro Internaci<strong>on</strong>al de Agricultura Tropical, Cali, Colombia<br />

Santiago Madriñán<br />

Universidad de los Andes, Bogotá, Colombia<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew W. Blair<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Breeding and Genetics, Cornell University, I<str<strong>on</strong>g>th</str<strong>on</strong>g>aca<br />

NY<br />

The Utility <str<strong>on</strong>g>of</str<strong>on</strong>g> Thorn<str<strong>on</strong>g>th</str<strong>on</strong>g>waite and Ham<strong>on</strong> Models for<br />

Potential Evotranspirati<strong>on</strong> and Drought Index Calculati<strong>on</strong>:<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Case <str<strong>on</strong>g>of</str<strong>on</strong>g> Wild Comm<strong>on</strong> Bean<br />

Potential Evotranspirati<strong>on</strong> (PET) is a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical value <str<strong>on</strong>g>th</str<strong>on</strong>g>at aims to characterize<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water <str<strong>on</strong>g>th</str<strong>on</strong>g>at will flux from <str<strong>on</strong>g>th</str<strong>on</strong>g>e soil-biosphere system towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

atmosphere as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> evaporati<strong>on</strong> and transpirati<strong>on</strong>, based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e suppositi<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at available water is infinite. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is research, an agroecological diversity<br />

study based <strong>on</strong> PET was c<strong>on</strong>ducted <strong>on</strong> 104 wild comm<strong>on</strong> beans to estimate drought<br />

tolerance in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir natural habitats. Our wild populati<strong>on</strong> samples covered a range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mesic to very dry habitats from Mexico to Argentina. Two PET models which<br />

c<strong>on</strong>sidered <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature and radiati<strong>on</strong> were coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e precipitati<strong>on</strong><br />

regimens for each collecti<strong>on</strong> site during <str<strong>on</strong>g>th</str<strong>on</strong>g>e last fifty years. We detected<br />

a broader geographic distributi<strong>on</strong> in wild comm<strong>on</strong> beans <str<strong>on</strong>g>th</str<strong>on</strong>g>an in cultivated <strong>on</strong>es.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we found <str<strong>on</strong>g>th</str<strong>on</strong>g>at wild accessi<strong>on</strong>s were distributed am<strong>on</strong>g different precipitati<strong>on</strong><br />

regimens following a latitudinal gradient and <str<strong>on</strong>g>th</str<strong>on</strong>g>at agroecological diversity<br />

was structured into natural populati<strong>on</strong>s. Habitat drought stress index based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Thorn<str<strong>on</strong>g>th</str<strong>on</strong>g>waite potential evotranspirati<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e most promising predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> drought<br />

tolerance. This resource should be coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>siderati<strong>on</strong>s about populati<strong>on</strong><br />

structure as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary history and diversificati<strong>on</strong> process<br />

suffered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e species. Finally, <str<strong>on</strong>g>th</str<strong>on</strong>g>is modeling tool suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at informati<strong>on</strong> from<br />

wild comm<strong>on</strong> bean accessi<strong>on</strong>s should be taken into account in order to exploit variati<strong>on</strong><br />

for drought tolerance in order to minimize significant depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e yield<br />

comp<strong>on</strong>ents.<br />

Key words: Bioclimatic variables, potential evotranspirati<strong>on</strong> models, PET, precipitati<strong>on</strong>,<br />

Thorn<str<strong>on</strong>g>th</str<strong>on</strong>g>waite estimator, Ham<strong>on</strong> estimator<br />

189


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Adelle Coster<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> New Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Wales, Australia<br />

e-mail: A.Coster@unsw.edu.au<br />

Cell and Tissue Biophysics; Friday, July 1, 14:30<br />

Modelling Insulin Acti<strong>on</strong> <strong>on</strong> Glucose Transporters<br />

The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin to a cell causes membrane-embedded glucose transporter<br />

proteins to be transported to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell surface. An experimental technique <str<strong>on</strong>g>th</str<strong>on</strong>g>at is<br />

ideally suited to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>is dynamic process is total internal reflecti<strong>on</strong> microscopy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> single cells, where fluorescent markers are attached to <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecules<br />

and movements recorded. To create s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware capable <str<strong>on</strong>g>of</str<strong>on</strong>g> annotating <str<strong>on</strong>g>th</str<strong>on</strong>g>e recordings<br />

automatically, ideal ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models are required. Features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models and<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware are outlined and compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biological recordings.<br />

190


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> kinetics in biology; Tuesday, June 28, 14:30<br />

Sim<strong>on</strong> Cotter<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: cotter@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

A c<strong>on</strong>strained multiscale approach to modelling biochemical<br />

systems<br />

It is well known <str<strong>on</strong>g>th</str<strong>on</strong>g>at intrinsic noise can play a significant role in biological systems.<br />

Stochastic descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese types <str<strong>on</strong>g>of</str<strong>on</strong>g> systems give far more accurate representati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e true dynamics. Exact me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

systems exist, but can be very computati<strong>on</strong>ally expensive, particularly in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> multiple timescales. Many different me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods exist for reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e system<br />

to <strong>on</strong>e which is <strong>on</strong>ly c<strong>on</strong>cerned wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e slowly evolving variables.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e C<strong>on</strong>diti<strong>on</strong>al SSA (CSSA), a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for sampling<br />

directly from <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>al distributi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fast variables, given a value for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e slow variables. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is, we go <strong>on</strong> to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e C<strong>on</strong>strained Multiscale<br />

Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m (CMA), which uses simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CSSA to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e drift and<br />

diffusi<strong>on</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effective dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e slow variables. We show how <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

approach can give accurate estimates for quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> interest, such as average<br />

period <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong> in biological processes. This is joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Radek Erban<br />

and Kostas Zygalakis (Oxford), and Ioannis Kevrekidis (Princet<strong>on</strong>).<br />

191


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling I; Tuesday, June 28, 17:00<br />

Markus Covert<br />

Stanford University<br />

e-mail: mcovert@stanford.edu<br />

Heterogeneous cellular resp<strong>on</strong>ses via noisy paracrine signals<br />

The mammalian immune resp<strong>on</strong>se is a striking example <str<strong>on</strong>g>of</str<strong>on</strong>g> coordinati<strong>on</strong> between<br />

individual cells. We previously discovered <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> wild-type murine<br />

embry<strong>on</strong>ic fibroblasts (MEFs) to lipopolysaccharide (LPS) depends <strong>on</strong> paracrine<br />

secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor necrosis factor (TNF). We <str<strong>on</strong>g>th</str<strong>on</strong>g>en dem<strong>on</strong>strated in single cells<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e low c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e paracrine TNF signal results in two qualitatively<br />

different resp<strong>on</strong>ses to LPS: roughly <strong>on</strong>e-half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells exhibit a transient NFkappaB<br />

resp<strong>on</strong>se, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er half exhibit a persistent resp<strong>on</strong>se wi<str<strong>on</strong>g>th</str<strong>on</strong>g> NF-kappaB<br />

remaining in <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleus for hours. Only cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at sense <str<strong>on</strong>g>th</str<strong>on</strong>g>e low TNF c<strong>on</strong>centrati<strong>on</strong><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore resp<strong>on</strong>d to <str<strong>on</strong>g>th</str<strong>on</strong>g>e paracrine signal exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistent resp<strong>on</strong>se. The<br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> a low c<strong>on</strong>centrati<strong>on</strong> signal to create qualitatively different subpopulati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cells in resp<strong>on</strong>se to <strong>on</strong>e stimulus led us to ask, how does a single cell resp<strong>on</strong>d to low<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> TNF? To answer <str<strong>on</strong>g>th</str<strong>on</strong>g>is questi<strong>on</strong>, we measured NF-kappaB activity<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>ousands <str<strong>on</strong>g>of</str<strong>on</strong>g> living cells under TNF doses covering four orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude to<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cell resp<strong>on</strong>ses which occur in a populati<strong>on</strong>, and<br />

what effect <str<strong>on</strong>g>th</str<strong>on</strong>g>ese resp<strong>on</strong>ses might have <strong>on</strong> NF-kappaB dependent gene expressi<strong>on</strong>.<br />

192


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Structure and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Reacti<strong>on</strong> Networks I; Tuesday, June<br />

28, 14:30<br />

Gheorghe Craciun<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>sin-Madis<strong>on</strong><br />

e-mail: craciun@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.wisc.edu<br />

Persistence and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Global Attractor C<strong>on</strong>jecture: The Big<br />

Picture<br />

We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g-term behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> systems, and in particular <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical<br />

reacti<strong>on</strong> systems modeled by mass-acti<strong>on</strong> kinetics. We especially focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> "persistence", and its c<strong>on</strong>necti<strong>on</strong>s to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er dynamical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

systems. A system is called persistent if no positive trajectory has a limit point<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e positive or<str<strong>on</strong>g>th</str<strong>on</strong>g>ant. Persistence is important in understanding<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical networks (e.g., will each chemical species be available<br />

indenitely in <str<strong>on</strong>g>th</str<strong>on</strong>g>e future), and also in ecology (e.g., will a species become extinct in<br />

an ecosystem), and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases (e.g., will an infecti<strong>on</strong> die<br />

o, or will it infect <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole populati<strong>on</strong>). We describe two important open problems<br />

for mass-acti<strong>on</strong> systems: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Persistence C<strong>on</strong>jecture and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Global Attractor<br />

C<strong>on</strong>jecture. The Persistence C<strong>on</strong>jecture says <str<strong>on</strong>g>th</str<strong>on</strong>g>at weakly reversible mass-acti<strong>on</strong><br />

systems are persistent, independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> rate parameters.<br />

A pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Persistence C<strong>on</strong>jecture would also imply <str<strong>on</strong>g>th</str<strong>on</strong>g>e Global Attractor C<strong>on</strong>jecture,<br />

which says <str<strong>on</strong>g>th</str<strong>on</strong>g>at complex balanced systems have a global attractor. We<br />

explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>jectures, and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er recent results. This<br />

is joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Casian Pantea and Fedor Nazarov.<br />

193


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Tuesday, June 28, 14:30<br />

Fabien Crauste<br />

Institut Camille Jordan UMR 5208, Université Claude Bernard Ly<strong>on</strong><br />

1, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne cedex, France;<br />

INRIA Team Dracula, INRIA Center Grenoble Rh<strong>on</strong>e-Alpes<br />

e-mail: crauste@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.univ-ly<strong>on</strong>1.fr<br />

Multiscale Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Red Blood Cell Producti<strong>on</strong> using<br />

C<strong>on</strong>tinuous and Hybrid Models<br />

This presentati<strong>on</strong> will be devoted to multiscale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> and regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> red blood cells. It lies up<strong>on</strong><br />

works recently published [1, 2, 3, 4], in collaborati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> N. Bess<strong>on</strong><strong>on</strong>v (Institute<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering Problems, St Petersburg, Russia), I. Demin (Novartis<br />

Pharma, Basel, Switzerland), O. Gandrill<strong>on</strong> (University Ly<strong>on</strong> 1, France), S. Genieys<br />

(INSA de Toulouse, France), P. Kurbatova (University Ly<strong>on</strong> 1), S. Fisher (INSA de<br />

Ly<strong>on</strong>, France), L. Pujo-Menjouet (University Ly<strong>on</strong> 1) and V. Volpert (University<br />

Ly<strong>on</strong> 1, France), wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e INRIA Team Dracula (Ly<strong>on</strong>, France).<br />

Ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis is a complex process, involving cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different maturities,<br />

from very immature stem cells to circulating mature red blood cells. It is regulated<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular level and at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell populati<strong>on</strong> scale. We propose<br />

two complementary approaches for a multiscale model <str<strong>on</strong>g>of</str<strong>on</strong>g> ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis [1, 2, 4],<br />

in which we describe toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er ery<str<strong>on</strong>g>th</str<strong>on</strong>g>roid progenitor (immature red cells) dynamics<br />

and intracellular regulatory network <str<strong>on</strong>g>th</str<strong>on</strong>g>at determines ery<str<strong>on</strong>g>th</str<strong>on</strong>g>roid cell fate. The intracellular<br />

regulati<strong>on</strong> model is based <strong>on</strong> several proteins inhibiting and activating<br />

<strong>on</strong>e an o<str<strong>on</strong>g>th</str<strong>on</strong>g>er, under external acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at influence <str<strong>on</strong>g>th</str<strong>on</strong>g>eir producti<strong>on</strong>.<br />

The levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese proteins will decide <str<strong>on</strong>g>of</str<strong>on</strong>g> cell self-renewal, differentiati<strong>on</strong> or<br />

dea<str<strong>on</strong>g>th</str<strong>on</strong>g> by apoptosis. Ery<str<strong>on</strong>g>th</str<strong>on</strong>g>roid progenitors dynamics are ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er described wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an<br />

individual-based model as discrete elements [1] or wi<str<strong>on</strong>g>th</str<strong>on</strong>g> structured models, ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

compartmental models (systems <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s) [2, 4] or partial<br />

differential equati<strong>on</strong>s [3]. In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cases, n<strong>on</strong>linearities are c<strong>on</strong>sidered in <str<strong>on</strong>g>th</str<strong>on</strong>g>e models<br />

to account for cell fate regulati<strong>on</strong>.<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous models is performed and simulati<strong>on</strong>s are carried out<br />

to c<strong>on</strong>fr<strong>on</strong>t <str<strong>on</strong>g>th</str<strong>on</strong>g>e models to experimental data <str<strong>on</strong>g>of</str<strong>on</strong>g> anemia (blood loss). The IBM is<br />

also c<strong>on</strong>fr<strong>on</strong>ted to experimental data, and <str<strong>on</strong>g>th</str<strong>on</strong>g>is allows c<strong>on</strong>cluding <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e roles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

different feedback c<strong>on</strong>trols and <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> such models, in order to provide<br />

more insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis.<br />

References.<br />

[1] N. Bess<strong>on</strong>ov, F. Crauste, S. Fisher, P. Kurbatova, V. Volpert (2010) Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hybrid<br />

Models to Blood Cell Producti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e B<strong>on</strong>e Marrow, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Model Nat Phenom 6 (7). DOI:<br />

10.1051/mmnp/20116701<br />

[2] F. Crauste, I. Demin, O. Gandrill<strong>on</strong>, V. Volpert (2010) Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical study <str<strong>on</strong>g>of</str<strong>on</strong>g> feedback c<strong>on</strong>trol<br />

roles and relevance in stress ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis, J Theo Biol 263 (3), 303–316.<br />

[3] F. Crauste, L. Pujo-Menjouet, S. Genieys, C. Molina, O. Gandrill<strong>on</strong> (2008) Adding Self-<br />

Renewal in Committed Ery<str<strong>on</strong>g>th</str<strong>on</strong>g>roid Progenitors Improves <str<strong>on</strong>g>th</str<strong>on</strong>g>e Biological Relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> a Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis, J Theo Biol 250, 322–338.<br />

194


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[4] I. Demin, F. Crauste, O. Gandrill<strong>on</strong>, V. Volpert (2010) A multi-scale model <str<strong>on</strong>g>of</str<strong>on</strong>g> ery<str<strong>on</strong>g>th</str<strong>on</strong>g>ropoiesis,<br />

J Biol Dynamics 4 (1), 59–70.<br />

195


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor invasi<strong>on</strong> I; Tuesday, June 28, 11:00<br />

Vittorio Cristini<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> New Mexico<br />

e-mail: vcristini@salud.unm.edu<br />

Multiparameter Computati<strong>on</strong>al Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Invasi<strong>on</strong><br />

Clinical outcome prognosticati<strong>on</strong> in <strong>on</strong>cology is a guiding principle in <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic<br />

choice. A weal<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> qualitative empirical evidence links disease progressi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

tumor morphology, histopa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, invasi<strong>on</strong>, and associated molecular phenomena.<br />

However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantitative c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e known parameters in <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

progressi<strong>on</strong> remains elusive. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling can provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e capability to<br />

quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>necti<strong>on</strong> between variables governing grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, prognosis, and treatment<br />

outcome. By quantifying <str<strong>on</strong>g>th</str<strong>on</strong>g>e link between <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor boundary morphology<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasive phenotype, <str<strong>on</strong>g>th</str<strong>on</strong>g>is work provides a quantitative tool for <str<strong>on</strong>g>th</str<strong>on</strong>g>e study<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumor progressi<strong>on</strong> and diagnostic/prognostic applicati<strong>on</strong>s. This establishes a<br />

framework for m<strong>on</strong>itoring system perturbati<strong>on</strong> towards development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic<br />

strategies and correlati<strong>on</strong> to clinical outcome for prognosis.<br />

196


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

H. Croisier, R. Thul, S. Coombes, I.P. Hall, and B.S. Brook<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, United Kingdom<br />

e-mail: huguette.croisier@nottingham.ac.uk<br />

A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium dynamics in airway<br />

smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> muscle cells including store-operated calcium entry<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e principal causes <str<strong>on</strong>g>of</str<strong>on</strong>g> airway narrowing in as<str<strong>on</strong>g>th</str<strong>on</strong>g>ma is <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> muscle cells lining <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>ducting airways. This c<strong>on</strong>tracti<strong>on</strong> is regulated<br />

by changes in intracellular calcium c<strong>on</strong>centrati<strong>on</strong> ([Ca 2+ ]i). The mechanism<br />

c<strong>on</strong>trolling [Ca 2+ ]i primarily involves ag<strong>on</strong>ist-induced release <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium from internal<br />

stores. Appropriate refilling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese stores is achieved via calcium influx<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular medium into <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoplasm, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>en pumped back<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e stores by sarcoplasmic/endoplasmic reticulum calcium APTase (SERCA).<br />

However, in c<strong>on</strong>trast to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er types <str<strong>on</strong>g>of</str<strong>on</strong>g> muscle cells, calcium influx in airway smoo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

muscle cells (ASMC) occurs mainly <str<strong>on</strong>g>th</str<strong>on</strong>g>rough n<strong>on</strong>-voltage-dependent pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. In<br />

particular, store-operated calcium entry (SOCE), in which calcium influx is triggered<br />

by store depleti<strong>on</strong>, has been shown to play an important role. Therefore, in<br />

order to account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e characterics <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium influx observed in human ASMC<br />

subject to SERCA block or ag<strong>on</strong>ist stimulati<strong>on</strong> [1,2], we develop a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium dynamics in ASMC <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes SOCE. Preliminary simulati<strong>on</strong>s<br />

and phase-plane analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er direct SOCE into <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

internal stores, in additi<strong>on</strong> to cytosolic SOCE, or desensitizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytosolic SOCE<br />

by [Ca 2+ ]i, is required to account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental resp<strong>on</strong>ses reported in [1,2].<br />

This modelling work is part <str<strong>on</strong>g>of</str<strong>on</strong>g> a larger project aiming at developing a multiscale<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> airway hyper-resp<strong>on</strong>siveness in as<str<strong>on</strong>g>th</str<strong>on</strong>g>ma, from <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular mechanisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> airway c<strong>on</strong>tracti<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular level to <str<strong>on</strong>g>th</str<strong>on</strong>g>e biomechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole tissue<br />

[3,4].<br />

References.<br />

[1] S.E. Peel, B. Liu, and I.P. Hall, A key role for STIM1 in store-operated calcium channel<br />

activati<strong>on</strong> in airway smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> muscle. Resp. Research 7: 119 (2006)<br />

[2] S.E. Peel, B. Liu, and I.P. Hall, ORAI and store-operated calcium influx in human airway<br />

smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> muscle cells. Am. J. Resp. Cell and Molec. Biol. 38: 744–749 (2008)<br />

[3] B.S. Brook, S.E. Peel, I.P. Hall, A.Z. Politi, J. Sneyd, Y. Bai, M.J. Sanders<strong>on</strong>, and O.E Jensen,<br />

A biomechanical model <str<strong>on</strong>g>of</str<strong>on</strong>g> ag<strong>on</strong>ist-initiated c<strong>on</strong>tracti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e as<str<strong>on</strong>g>th</str<strong>on</strong>g>matic airway. Resp. Physiol.<br />

and Neurobiol. 170: 44–58 (2010)<br />

[4] A.Z. Politi, G.M. D<strong>on</strong>ovan, M.H. Tawhai, M.J. Sanders<strong>on</strong>, A.-M. Lauz<strong>on</strong>, J.H.T. Bates, and<br />

J. Sneyd, A multiscale, spatially distributed model <str<strong>on</strong>g>of</str<strong>on</strong>g> as<str<strong>on</strong>g>th</str<strong>on</strong>g>matic airway hyper-resp<strong>on</strong>siveness.<br />

J. Theore. Biol. 266: 614–624 (2010)<br />

197


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Saturday, July 2, 11:00<br />

Attila Csikasz-Nagy<br />

The Micros<str<strong>on</strong>g>of</str<strong>on</strong>g>t Research University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento Centre for Computati<strong>on</strong>al<br />

and Systems Biology<br />

e-mail: csikasz@cosbi.eu<br />

Cell signaling network unit dynamics<br />

Cells use a dense network <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways to decide how to resp<strong>on</strong>d to various<br />

external stimuli. Several dynamic aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> complex pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways have been<br />

already described. Here we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at simple generic motifs <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways<br />

(wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out any feedback) could show some interesting dynamics. We investigated <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simplest dynamical elements in biochemical networks: we analyzed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a signaling protein when it enters <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pool in<br />

<strong>on</strong>e state (modified or unmodified) and exits in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese states. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

exit rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two states are comparable, a persistent stimulus results in step<br />

resp<strong>on</strong>ses and can produce ultrasensitivity, however, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e exit rates are imbalanced,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling protein gives transient resp<strong>on</strong>ses to persistent stimuli. Such<br />

adaptive behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways could be used by many organisms. We also<br />

investigated <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical features <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorelays: phosphorelays are extended<br />

two-comp<strong>on</strong>ent signaling systems found in diverse bacteria, lower eukaryotes and<br />

plants. We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e intermediate layers <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorelays can display ultrasensitivity<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at could result in tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way cross-talk. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, it<br />

leads to a high signal to noise ratio for <str<strong>on</strong>g>th</str<strong>on</strong>g>e relay output. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phosporelays might be employed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e sporulati<strong>on</strong> network <str<strong>on</strong>g>of</str<strong>on</strong>g> B. subtilis.<br />

198


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Saturday, July 2, 08:30<br />

Jing-an Cui, Guohua S<strong>on</strong>g<br />

Beijing University <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering & Architecture, Beijing 100044,<br />

China<br />

e-mail: cuijingan@bucea.edu.cn<br />

Models <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious disease c<strong>on</strong>trol wi<str<strong>on</strong>g>th</str<strong>on</strong>g> limit treatment<br />

resource<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> patients need to be treated may exceed <str<strong>on</strong>g>th</str<strong>on</strong>g>e carry capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> local<br />

hospitals during <str<strong>on</strong>g>th</str<strong>on</strong>g>e spreading <str<strong>on</strong>g>of</str<strong>on</strong>g> a severe infectious disease. We propose an epidemic<br />

model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> saturati<strong>on</strong> recovery from infective individuals to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> limited resources for treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> infectives <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergency disease c<strong>on</strong>trol.<br />

It is shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at saturati<strong>on</strong> recovery from infective individuals leads to vital<br />

dynamics, such as bistability and periodicity, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproducti<strong>on</strong> number<br />

R0 is less <str<strong>on</strong>g>th</str<strong>on</strong>g>an unity.<br />

References.<br />

[1] J.Cui, X.Mu, H.Wan,Saturati<strong>on</strong> Recovery Leads to Multiple Endemic Equilibria and Backward<br />

Bifurcati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 254 275–283.<br />

[2] W. Wang, S. Ruan, Bifurcati<strong>on</strong>s in an epidemic model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>stant removal rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

infectives. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Anal. Appl. 291 775–793.<br />

[3] W. Wang, Backward bifurcati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> treatment. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci. 201<br />

58–71.<br />

199


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanical regulati<strong>on</strong> in b<strong>on</strong>e tissue (Sessi<strong>on</strong><br />

I); Wednesday, June 29, 08:30<br />

Peter Cummings<br />

Vanderbilt University<br />

e-mail: peter.cummings@vanderbilt.edu<br />

A Computati<strong>on</strong>al Model <str<strong>on</strong>g>of</str<strong>on</strong>g> B<strong>on</strong>e Resorpti<strong>on</strong> Behavior<br />

B<strong>on</strong>e resorpti<strong>on</strong> by osteoclasts plays a fundamental role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e remodeling<br />

cycle which serves <str<strong>on</strong>g>th</str<strong>on</strong>g>e purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> repairing micro-damage and/or achieving mineral<br />

homeostasis. This process is also essential in grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and remodeling <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e,<br />

where it is tightly coupled to b<strong>on</strong>e formati<strong>on</strong> by osteoblasts. In order to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

static and dynamic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e resorpti<strong>on</strong>, a computati<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e<br />

resorpti<strong>on</strong> has been developed using a cellular automat<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od and its hybrid<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od wi<str<strong>on</strong>g>th</str<strong>on</strong>g> finite element calculati<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, essential features <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e resorpti<strong>on</strong><br />

include <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoclasts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e matrix and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

osteoclasts, and a recruiting signal for osteoclasts from osteocytes <str<strong>on</strong>g>th</str<strong>on</strong>g>at can sense<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e change in mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e matrix such as strain and strainenergy<br />

density. The computati<strong>on</strong>al model provides a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical tool to address<br />

various questi<strong>on</strong>s <strong>on</strong> b<strong>on</strong>e resorpti<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape and size <str<strong>on</strong>g>of</str<strong>on</strong>g> resorbed<br />

b<strong>on</strong>e. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e resorpti<strong>on</strong>, it is<br />

found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e resorpti<strong>on</strong> is str<strong>on</strong>gly affected by <str<strong>on</strong>g>th</str<strong>on</strong>g>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interacti<strong>on</strong>s between osteoclasts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e matrix and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er osteoclasts,<br />

external mechanical loads, and velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> a blood vessel.<br />

200


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cell systems: from intercellular interacti<strong>on</strong><br />

to tissue-level traits I; Wednesday, June 29, 14:30<br />

Andras Czirok<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Kansas Medical Ctr<br />

e-mail: ACZIROK@KUMC.EDU<br />

Vasculogenesis and collective movement <str<strong>on</strong>g>of</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells<br />

The early vascular network is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simplest functi<strong>on</strong>ing organs in <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo.<br />

Its formati<strong>on</strong> involves <strong>on</strong>ly <strong>on</strong>e cell type and it can be readily observed and<br />

manipulated in avian embryos or in vitro explants. The early vascular network <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

warm-blooded vertebrates self-organizes by <str<strong>on</strong>g>th</str<strong>on</strong>g>e collective motility <str<strong>on</strong>g>of</str<strong>on</strong>g> cell streams, or<br />

multicellular "sprouts". The el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese future vascular network segments<br />

depends <strong>on</strong> a c<strong>on</strong>tinuous supply <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, moving al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e sprout towards its tip.<br />

To understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed self-organizati<strong>on</strong> process, we investigate computati<strong>on</strong>al<br />

models c<strong>on</strong>taining interacti<strong>on</strong>s between adherent, polarized and self-propelled cells.<br />

By comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data from in vivo or simplistic in vitro experiments,<br />

we explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> active migrati<strong>on</strong>, tip cells, invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ECM, and<br />

cell guidance by micromechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent cell surfaces.<br />

201


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling viral hepatitis dynamics in-vivo and in-vitro in <str<strong>on</strong>g>th</str<strong>on</strong>g>e era <str<strong>on</strong>g>of</str<strong>on</strong>g> direct<br />

anti-viral agents II; Wednesday, June 29, 08:30<br />

Harel Dahari<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Illinois at Chicago<br />

e-mail: daharih@uic.edu<br />

Modeling hepatitis C virus (HCV) RNA kinetics during<br />

treatment: in vitro and in vivo<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e last decade HCV kinetic modeling in vivo has played an important role<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> HCV dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> antiviral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and <str<strong>on</strong>g>th</str<strong>on</strong>g>ey<br />

have suggested mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> (MOA) for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> interfer<strong>on</strong>-alpha (IFN) and<br />

ribavirin. While we still do not fully understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e MOAs <str<strong>on</strong>g>of</str<strong>on</strong>g> IFN and ribavirin,<br />

understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed HCV RNA pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles during <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy wi<str<strong>on</strong>g>th</str<strong>on</strong>g> new direct<br />

acting agents (DAA) against HCV will shed light <strong>on</strong> HCV-host interacti<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e MOA <str<strong>on</strong>g>of</str<strong>on</strong>g> antivirals. The new cell-culture systems<br />

(in vitro) <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> HCV replicati<strong>on</strong>, infecti<strong>on</strong> and treatment at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular level will provide valuable insights into HCV-host-drug dynamics<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in infected cells; a feature <str<strong>on</strong>g>th</str<strong>on</strong>g>at has been c<strong>on</strong>sidered as a black box. Recent<br />

experimental data (in vitro and in vivo) and modeling efforts in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

IFN/ribavirin/DAAs will be presented.<br />

202


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Thursday, June 30, 11:30<br />

Sascha Dalessi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Genetics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lausanne, Lausanne,<br />

Switzerland<br />

Swiss Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics<br />

e-mail: sascha.dalessi@unil.ch<br />

Gerald Schwank<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Life Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zurich, Zurich,<br />

Switzerland<br />

Aitana Mort<strong>on</strong> de Lachapelle<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Genetics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lausanne, Lausanne,<br />

Switzerland<br />

Swiss Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics<br />

K<strong>on</strong>rad Basler<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Life Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zurich, Zurich,<br />

Switzerland<br />

Sven Bergmann<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Genetics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lausanne, Lausanne,<br />

Switzerland<br />

Swiss Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics<br />

Analytical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Dpp wt pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and tkv cl<strong>on</strong>es in<br />

Drosophila wing imaginal discs<br />

Morphogen c<strong>on</strong>centrati<strong>on</strong> gradients in developing organisms or tissues provide<br />

positi<strong>on</strong>al informati<strong>on</strong> which can induce patterning and space-dependent cell fates<br />

[1]. A well known example is Decapentaplegic (Dpp), involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Drosophila wing imaginal discs, which forms a c<strong>on</strong>centrati<strong>on</strong> gradient al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Anterior-Posterior axis [2].<br />

In a recent work [3], we developed and compared to experimental data a 1D analytical<br />

model describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e Dpp steady state gradient pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and tkv mutant<br />

cl<strong>on</strong>e effects. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, we identify <str<strong>on</strong>g>th</str<strong>on</strong>g>ree distinct Dpp comp<strong>on</strong>ents: external<br />

Dpp, Tkv-bound Dpp and internalized Dpp. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e external Dpp diffuses<br />

from a finite-size producti<strong>on</strong> regi<strong>on</strong> and can bind to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Tkv receptors. The<br />

bound Dpp can unbind or be internalized. The internalized Dpp can be degraded or<br />

transported cell by cell by transcytosis. We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>at transcytosis is receptormediated<br />

and we model it in a pure diffusive way. Assuming a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> free<br />

receptors allows for <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding differential equati<strong>on</strong>s,<br />

from which we obtain simple analytical expressi<strong>on</strong>s for each Dpp comp<strong>on</strong>ent.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e tkv cl<strong>on</strong>al regi<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> receptors as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e receptor-mediated<br />

transcytosis are affected. We c<strong>on</strong>sider loss-<str<strong>on</strong>g>of</str<strong>on</strong>g>-functi<strong>on</strong> (LOF) experiments, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> no<br />

receptors inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e cl<strong>on</strong>e, and gain-<str<strong>on</strong>g>of</str<strong>on</strong>g>-functi<strong>on</strong> (GOF) experiments, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a n−fold<br />

increase <str<strong>on</strong>g>of</str<strong>on</strong>g> receptors.<br />

An extensive qualitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> LOF experiments and quantitative data extracti<strong>on</strong><br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e GOF images allows to (i) c<strong>on</strong>strain <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters space and<br />

find a set <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal parameters (ii) understand which <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e external diffusi<strong>on</strong> or<br />

203


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

transcytosis is <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominating mechanism in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Dpp gradient formati<strong>on</strong> (iii) obtain<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e relative abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> external, Tkv-bound and internalized Dpp. All <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

experimental data and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical results are reported in [3].<br />

References.<br />

[1] L. Wolpert L Positi<strong>on</strong>al informati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular differentiati<strong>on</strong> J. Theor.<br />

Biol. 25(1) 1–47<br />

[2] E. V. Entchev et al. Gradient formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e TGF-beta homolog Dpp Cell 103(6) 981–991<br />

[3] G. Schwank, S. Dalessi et al. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g range Dpp morphogen gradient Manuscript<br />

submitted<br />

204


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Tuesday, June 28, 17:00<br />

Daniel Damineli<br />

PhD Program in Computati<strong>on</strong>al Biology - Instituto Gulbenkian de<br />

Ciências; Instituto de Tecnologia Química e Biológica - Universidade<br />

Nova de Lisboa<br />

e-mail: damineli@itqb.unl.pt<br />

Andreas Bohn<br />

Instituto de Tecnologia Química e Biológica<br />

Minimal modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> two-oscillator circadian systems under<br />

c<strong>on</strong>flicting envir<strong>on</strong>mental cues<br />

Multiple coupled oscillators have been presumed to c<strong>on</strong>stitute <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many organisms. In some cases <str<strong>on</strong>g>th</str<strong>on</strong>g>e different oscillators are driven by<br />

diverse envir<strong>on</strong>mental cues (zeitgebers), as suggested by <str<strong>on</strong>g>th</str<strong>on</strong>g>e light- versus foodentrainable<br />

oscillators in mice and <str<strong>on</strong>g>th</str<strong>on</strong>g>e light- versus temperature-entrainable oscillators<br />

in Drosophila. In order to survey <str<strong>on</strong>g>th</str<strong>on</strong>g>e spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>th</str<strong>on</strong>g>at could emerge<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potentially c<strong>on</strong>flicting zeitgebers wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a multi-oscillator circadian<br />

system, we assume a minimal model c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> two mutually coupled<br />

oscillators, each being exclusively driven by a periodic envir<strong>on</strong>mental signal. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically<br />

we represent <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian system by 2 mutually coupled phase oscillators<br />

[1], A and B, each wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an arbitrary individual period. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e two envir<strong>on</strong>mental<br />

signals are assumed to have <str<strong>on</strong>g>th</str<strong>on</strong>g>e same period (24 h) and are <strong>on</strong>ly separated by a<br />

phase shift DELTA, <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment can be represent by a <str<strong>on</strong>g>th</str<strong>on</strong>g>ird phase oscillator,<br />

which is unidirecti<strong>on</strong>ally coupled to oscillators A and B, respectively, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

DELTA being reflected in a delayed coupling to oscillator B. Performing numerical<br />

studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DELTA, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>mental<br />

and intra-oscillator coupling streng<str<strong>on</strong>g>th</str<strong>on</strong>g>, rich dynamic behavior like bistability and<br />

hysteresis, as well as loss <str<strong>on</strong>g>of</str<strong>on</strong>g> entrainment and quasi-periodicity is observable. Our<br />

study provides insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e putative coupling network required<br />

to maintain <str<strong>on</strong>g>th</str<strong>on</strong>g>e organism in a stable phase-relati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment, even<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e face <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tradictory signals. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, our results can indicate appropriate<br />

experimental strategies to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> inter-oscillator coupling<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative zeitgeber streng<str<strong>on</strong>g>th</str<strong>on</strong>g>, which have been performed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e past, but<br />

mostly lacked guidelines for correct design and interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results. We<br />

finally compare our minimal model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a more complex model, using limit-cycle<br />

oscillators [2], showing <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e principal dynamics are not altered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e inclusi<strong>on</strong><br />

or exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more details.<br />

References.<br />

[1] Kuramoto, Y. (1984) Chemical oscillati<strong>on</strong>s, waves and turbulence. Springer-Verlag, Berlin,<br />

DE.<br />

[2] Oda, G.A. and Friesen, W.O. (2002) A model for splitting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e running wheel activity in<br />

hamsters. J. Biol. Rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms 17(1): 76-88.<br />

205


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Genetics and Genomics; Wednesday, June 29, 08:30<br />

Agnieszka Danek<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science,<br />

Poland<br />

e-mail: agnieszka.danek@polsl.pl<br />

Rafał Pokrzywa<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science,<br />

Poland<br />

e-mail: rafal.pokrzywa@polsl.pl<br />

Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for Searching for Approximate Tandem Repeats<br />

based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Burrows-Wheeler transform<br />

Genomic sequences tend to c<strong>on</strong>tain many types <str<strong>on</strong>g>of</str<strong>on</strong>g> repetitive structures <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g>, ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er interspersed or tandem. Tandem repeats play an important role<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene expressi<strong>on</strong> and transcripti<strong>on</strong> regulati<strong>on</strong>s. They can be used as markers<br />

for DNA mapping and DNA fingerprinting. Some, when occurring in increased,<br />

abnormal number, are known to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e cause <str<strong>on</strong>g>of</str<strong>on</strong>g> inherited diseases. All functi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tandem repeats in genomic sequences are still not well defined and understood.<br />

However, growing biological databases toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> tools for efficient identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese repeats may lead to discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir specific role or correlati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

particular symptoms or diseases.<br />

Perfect tandem repeat c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> successive duplicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some motif. Typically<br />

tandem copies are approximate due to mutati<strong>on</strong>s. Hence approximate tandem<br />

repeat (ATR) can be defined as a c<strong>on</strong>secutive, inexact copies <str<strong>on</strong>g>of</str<strong>on</strong>g> some motif. In our<br />

c<strong>on</strong>siderati<strong>on</strong>s we are assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at two such successive repeats must be <str<strong>on</strong>g>of</str<strong>on</strong>g> equal<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g>s and can differ <strong>on</strong>ly by an established number <str<strong>on</strong>g>of</str<strong>on</strong>g> mismatches. Dissimilarity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two approximate copies is measured using Hamming distance between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>em. We are interested in finding approximate tandem repeat when each repeated<br />

motif is similar enough to <str<strong>on</strong>g>th</str<strong>on</strong>g>e adjacent duplicate.<br />

Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m presented is an enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for finding perfect tandem<br />

repeats in DNA sequences based <strong>on</strong> Burrows-Wheeler transform (BWT). It uses its<br />

intermediate results, groups <str<strong>on</strong>g>of</str<strong>on</strong>g> particular sequences repeated wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole input<br />

string, to find candidates for double ATR — <str<strong>on</strong>g>th</str<strong>on</strong>g>at is <str<strong>on</strong>g>th</str<strong>on</strong>g>e first stage <str<strong>on</strong>g>of</str<strong>on</strong>g> searching. The<br />

sec<strong>on</strong>d stage c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> investigating found candidates and accepting or rejecting<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>em as a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> ATRs. Finally, in last stage, located double ATRs are extended<br />

to c<strong>on</strong>tain as much successive, similar copies, as possible.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first stage <str<strong>on</strong>g>th</str<strong>on</strong>g>e input string is c<strong>on</strong>verted according to BWT. This, toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some auxiliary arrays, allows to make use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e alphabetically sorted array <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

input string suffixes, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out <str<strong>on</strong>g>th</str<strong>on</strong>g>e need <str<strong>on</strong>g>of</str<strong>on</strong>g> storing <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole suffix array structure.<br />

The algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m finds <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e repeated pattern in <str<strong>on</strong>g>th</str<strong>on</strong>g>e suffix<br />

array. It starts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e empty pattern P and recursively appends, in fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> P ,<br />

characters from <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sidered alphabet. This approach uses <str<strong>on</strong>g>th</str<strong>on</strong>g>e results from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

previous iterati<strong>on</strong> to calculate a range <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>s for a l<strong>on</strong>ger pattern and it is<br />

d<strong>on</strong>e in a c<strong>on</strong>stant time, according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea <str<strong>on</strong>g>of</str<strong>on</strong>g> Ferragina and Manzini. Two<br />

sequences from <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> repeated patterns are c<strong>on</strong>sidered a candidate for a<br />

double approximate tandem repeat if <str<strong>on</strong>g>th</str<strong>on</strong>g>ey lay close enough to each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e input string, in particular, if it is possible <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey will form an approximate<br />

206


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

tandem repeat wi<str<strong>on</strong>g>th</str<strong>on</strong>g> established, maximum dissimilarity. To limit <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

redundant candidates <str<strong>on</strong>g>th</str<strong>on</strong>g>e algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m makes use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e property <str<strong>on</strong>g>of</str<strong>on</strong>g> two strings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> n and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Hamming distance h between <str<strong>on</strong>g>th</str<strong>on</strong>g>em, which states <str<strong>on</strong>g>th</str<strong>on</strong>g>at two such<br />

strings have always a comm<strong>on</strong>, matching substring at corresp<strong>on</strong>ding positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> ⌊ n<br />

h+1⌋ at least. Hence, repeated patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> leng<str<strong>on</strong>g>th</str<strong>on</strong>g> d are used to search<br />

<strong>on</strong>ly for ATRs <str<strong>on</strong>g>of</str<strong>on</strong>g> leng<str<strong>on</strong>g>th</str<strong>on</strong>g> n <str<strong>on</strong>g>th</str<strong>on</strong>g>at satisfies <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong> d = ⌊ n<br />

h+1⌋ for all acceptable<br />

h. Additi<strong>on</strong>ally, as positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> previously found ATRs are known, qualifying as a<br />

candidate <str<strong>on</strong>g>th</str<strong>on</strong>g>e ATR discovered before is avoided.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e next stage Hamming distance between found pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> candidates is measured<br />

(checking all possible alignments <str<strong>on</strong>g>of</str<strong>on</strong>g> found candidates) and if it satisfies <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

assumpti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e double approximate tandem repeat is reported. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ird, final<br />

stage, Hamming distance is measured between marginal motif <str<strong>on</strong>g>of</str<strong>on</strong>g> found ATR and<br />

a neighboring string. As l<strong>on</strong>g as it is not greater <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumed maximum, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ATR is extended in <str<strong>on</strong>g>th</str<strong>on</strong>g>at directi<strong>on</strong>.<br />

The developed algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m exploits <str<strong>on</strong>g>th</str<strong>on</strong>g>e advantages <str<strong>on</strong>g>of</str<strong>on</strong>g>fered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e BWT algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e suffix array data structure to return ATRs from <str<strong>on</strong>g>th</str<strong>on</strong>g>e input string, assuming<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at any two c<strong>on</strong>secutive copies wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in ATR differ at most by a provided Hamming<br />

distance.<br />

Acknowledgement: This work was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Uni<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> Social Fund.<br />

References.<br />

[1] R. Pokrzywa, Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Burrows-Wheeler Transform for searching for tandem repeats<br />

in DNA sequences Int. J. Bioinform. Res. Appl. vol. 5 (4) (2009) 432–446.<br />

[2] R. Pokrzywa and A. Polański, BWtrs: A tool for searching for tandem repeats in DNA sequences<br />

based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Burrows-Wheeler transform Genomics 96 (2010) 316–321.<br />

[3] M. Burrows and D.J. Wheeler, A block-sorting lossless data compressi<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m SRC Research<br />

Report 124, Digital Equipment Corporati<strong>on</strong>, Palo Alto, California, May 10 1994.<br />

[4] P. Ferragina and G. Manzini, Opportunistic data structures wi<str<strong>on</strong>g>th</str<strong>on</strong>g> applicati<strong>on</strong>s Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e 41st Annual Symposium <strong>on</strong> Foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science, 2000, pp. 390–398.<br />

207


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Erin Daus<strong>on</strong><br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

Ben Bier<br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

Clyde Martin<br />

Texas Tech University<br />

Models in Spatial Ecology; Tuesday, June 28, 17:00<br />

Repopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ambystoma tigrinum in <str<strong>on</strong>g>th</str<strong>on</strong>g>e West Texas<br />

playas in <str<strong>on</strong>g>th</str<strong>on</strong>g>e period following Antevs Alti<str<strong>on</strong>g>th</str<strong>on</strong>g>ermal: a<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

We c<strong>on</strong>sider a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amphibians in transient wetlands. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> predati<strong>on</strong>,<br />

migrati<strong>on</strong> and finite resources is examined <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a series <str<strong>on</strong>g>of</str<strong>on</strong>g> models based<br />

<strong>on</strong> differential equati<strong>on</strong>s. Logistic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> predati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> satiati<strong>on</strong><br />

can, depending <strong>on</strong> parameters, produce an Allee effect in an isolated habitat. In<br />

particular, a populati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at might <str<strong>on</strong>g>th</str<strong>on</strong>g>rive in isolati<strong>on</strong> may go extinct if migrati<strong>on</strong><br />

becomes an opti<strong>on</strong> and an equilibrium <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s in a coupled system does not<br />

necessarily lead to stable n<strong>on</strong>zero populati<strong>on</strong>s when migrati<strong>on</strong> stops. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

under some circumstances periods <str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong> followed by periods <str<strong>on</strong>g>of</str<strong>on</strong>g> isolati<strong>on</strong> is a<br />

faster way to repopulate a system <str<strong>on</strong>g>th</str<strong>on</strong>g>an a single l<strong>on</strong>g period <str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong>. We apply<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is model to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ambystoma tigrinum populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e highland playas <str<strong>on</strong>g>of</str<strong>on</strong>g> west<br />

Texas to show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in a given rainy period it is unlikely <str<strong>on</strong>g>th</str<strong>on</strong>g>at migrati<strong>on</strong> will occur<br />

except to nearest adjacent p<strong>on</strong>ds. Coupling <str<strong>on</strong>g>th</str<strong>on</strong>g>is result wi<str<strong>on</strong>g>th</str<strong>on</strong>g> rainfall data gives a<br />

rough probability for migrati<strong>on</strong> in a given rainy seas<strong>on</strong>. Field data give an indicati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extincti<strong>on</strong> rates for individual playas. Coupling <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two probabilities<br />

in a percolati<strong>on</strong> process <strong>on</strong> a finite grid gives an indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how many years are<br />

required to restock a whole system <str<strong>on</strong>g>of</str<strong>on</strong>g> playas from a single populated p<strong>on</strong>d. We<br />

show under what assumpti<strong>on</strong>s it is possible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e system <str<strong>on</strong>g>of</str<strong>on</strong>g> about 20,000 playas<br />

to be restocked from a single source by Ambystoma tigrinum in <str<strong>on</strong>g>th</str<strong>on</strong>g>e interval since<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e intense dry period known as Antevs Alti<str<strong>on</strong>g>th</str<strong>on</strong>g>ermal.<br />

208


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mai Jaffar<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: mzamjaffar@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Fordyce A. Davids<strong>on</strong><br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: fdavids<strong>on</strong>@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Hyphal tip morphogenesis<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Tip grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is a mechanism by which cells can expand in a preferred directi<strong>on</strong>. It<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e defining feature <str<strong>on</strong>g>of</str<strong>on</strong>g> filamentous organisms such vegetative fungi and actinomycete<br />

bacteria. The ability to extend by apical grow<str<strong>on</strong>g>th</str<strong>on</strong>g> allows <str<strong>on</strong>g>th</str<strong>on</strong>g>ese organisms<br />

to optimally explore and exploit <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex envir<strong>on</strong>ments <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey normally<br />

inhabit. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> tip grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is a mature subject. However, recent<br />

advances in imaging and genetic manipulati<strong>on</strong> has brought new impetuous<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>is area, as <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms by which cell wall building material is brought<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e tip and subsequently used to extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypha, are now beginning to be<br />

revealed. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are still many open questi<strong>on</strong>s regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e organisati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese complex processes. In particular, how <str<strong>on</strong>g>th</str<strong>on</strong>g>e biomechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell wallplasma<br />

membrane complex and vesicle supply centre (Spitzenkorper) interact is<br />

still largely unknown. We discuss models <str<strong>on</strong>g>th</str<strong>on</strong>g>at treat <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell-wall development as a<br />

c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er geometry or elasticity and detail what progress can be made<br />

regarding tip morphologies from <str<strong>on</strong>g>th</str<strong>on</strong>g>ese basic assumpti<strong>on</strong>s.<br />

209


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modelling bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms: from gene regulati<strong>on</strong> to large-scale structure and<br />

functi<strong>on</strong>; Wednesday, June 29, 17:00<br />

Fordyce A. Davids<strong>on</strong><br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: fdavids<strong>on</strong>@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Chung-Se<strong>on</strong> Yi<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

Nicola Stanley-Wall<br />

Molecular Micriobiology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

Cell differentiati<strong>on</strong> in bacterial bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms<br />

It has been l<strong>on</strong>g understood <str<strong>on</strong>g>th</str<strong>on</strong>g>at isogenic (genetically identical) cells in complex<br />

living organisms can perform different, but co-ordinated roles. This is called cell<br />

differentiati<strong>on</strong> and until recently, it was <str<strong>on</strong>g>th</str<strong>on</strong>g>ought <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is behaviour was restricted<br />

to multi-cellular organisms. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough recent technical advances it has<br />

been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at simple, single-celled organisms such as bacteria, also display cell<br />

differentiati<strong>on</strong> and so to some extent can behave as "multi-cellular collectives". It<br />

has been postulated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-species variati<strong>on</strong> may be essential for survival<br />

in a changing envir<strong>on</strong>ment.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most striking examples <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial cell differentiati<strong>on</strong> is wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a<br />

bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm: a multicellular sessile community <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria encased wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a self-produced<br />

polymeric matrix. It is <str<strong>on</strong>g>th</str<strong>on</strong>g>ought <str<strong>on</strong>g>th</str<strong>on</strong>g>at over 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial col<strong>on</strong>ies in <str<strong>on</strong>g>th</str<strong>on</strong>g>e natural<br />

envir<strong>on</strong>ment exist in <str<strong>on</strong>g>th</str<strong>on</strong>g>is form. Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms are important in all sectors <str<strong>on</strong>g>of</str<strong>on</strong>g> our ec<strong>on</strong>omy<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> examples ranging from human heal<str<strong>on</strong>g>th</str<strong>on</strong>g> (e.g. <str<strong>on</strong>g>th</str<strong>on</strong>g>ey form <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic<br />

infecti<strong>on</strong>s) to bioremediati<strong>on</strong> (e.g. <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are required for <str<strong>on</strong>g>th</str<strong>on</strong>g>e effective treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sewage). The Gram positive bacterium Bacillus subtilis is extensively used in an<br />

industrial c<strong>on</strong>text to produce enzymes for cleaning products and has growing potential<br />

as an alternative and envir<strong>on</strong>mentally friendly pesticide. It has recently been<br />

shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms <str<strong>on</strong>g>of</str<strong>on</strong>g> B. subtilis, <strong>on</strong>ly a subpopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e isogenic cells<br />

produce <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix which surrounds all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells, while a different<br />

subset retain <str<strong>on</strong>g>th</str<strong>on</strong>g>eir flagella (and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore remain motile) and a fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er subset will<br />

undergo sporulati<strong>on</strong>. We discuss a regulatory network <str<strong>on</strong>g>th</str<strong>on</strong>g>at may shed some light<br />

<strong>on</strong> comp<strong>on</strong>ent processes in cell differentiati<strong>on</strong> in B. subtilis. In particular we focus<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phosphorylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se regulator DegU and its c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> cell fate,<br />

detailing how a n<strong>on</strong>-unimodal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> "<strong>on</strong>" cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a populati<strong>on</strong> does<br />

not necessarily come from a classical bistability in <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

regulatory network.<br />

210


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ross Davids<strong>on</strong><br />

SAC<br />

e-mail: ross.davids<strong>on</strong>@sac.ac.uk<br />

Leo Zijerveld<br />

SAC<br />

Glenn Mari<strong>on</strong><br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics Scotland<br />

Mike Hutchings<br />

SAC<br />

Epidemics; Wednesday, June 29, 08:30<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> social structure <strong>on</strong> spatially explicit<br />

epidemiological models<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>th</str<strong>on</strong>g>at social structure plays in influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong><br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in spatial and n<strong>on</strong>-spatial epidemiological models. Social hierarchy is<br />

introduced into such models <str<strong>on</strong>g>th</str<strong>on</strong>g>rough covariates which affect individuals fecundity,<br />

giving rise to realistic populati<strong>on</strong> distributi<strong>on</strong>s. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong>s between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese covariates and <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease prevalence is examined <str<strong>on</strong>g>th</str<strong>on</strong>g>rough analytical and<br />

numerical approaches. Heterogeneous distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e various subpopulati<strong>on</strong>s,<br />

arising from <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-uniform fecundity, tend to increase disease prevalence<br />

compared to homogeneous models, and <str<strong>on</strong>g>th</str<strong>on</strong>g>ese differences are larger when spatial<br />

structure is taken into account. These findings have implicati<strong>on</strong>s for epidemiological<br />

models, and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e deployment <str<strong>on</strong>g>of</str<strong>on</strong>g> disease c<strong>on</strong>trol strategies.<br />

211


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Delay Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s II; Saturday, July 2, 08:30<br />

Ant<strong>on</strong>i Le<strong>on</strong> Dawidowicz<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Jagiell<strong>on</strong>ian University, ul. Łojasiewicza<br />

6, 30-348 Kraków, Poland<br />

e-mail: Ant<strong>on</strong>i.Le<strong>on</strong>.Dawidowicz@im.uj.edu.pl<br />

Anna Poskrobko<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science, Bialystok University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

ul. Wiejska 45A, 15-351 Białystok, Poland<br />

e-mail: a.poskrobko@pb.edu.pl<br />

Jerzy Leszek Zalasiński<br />

Tarnów Regi<strong>on</strong>al Development Agency SA, ul.Szujskiego 66, 33-100<br />

Tarnów, Poland<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> bioenergetic process in green plants<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> delayed argument<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s which describe<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e bioenergetics <str<strong>on</strong>g>of</str<strong>on</strong>g> green plants is c<strong>on</strong>structed. This model is <str<strong>on</strong>g>th</str<strong>on</strong>g>e mosificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

presented in [1] We use <str<strong>on</strong>g>th</str<strong>on</strong>g>ree variables in <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed model:<br />

• x - <str<strong>on</strong>g>th</str<strong>on</strong>g>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> green plants participating in bioenergetic processes;<br />

• y - <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> ATP i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is compound;<br />

• z - <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-organic phosphorus taking part in bioenergetic i.e.<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e total mass <str<strong>on</strong>g>of</str<strong>on</strong>g> ani<strong>on</strong>s P O 3−<br />

4 absorbed from soil after dissociati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phosphates.<br />

We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e following n<strong>on</strong>linear system <str<strong>on</strong>g>of</str<strong>on</strong>g> first order equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> delayed<br />

argument describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e bioenergetic processes in green plants<br />

⎧<br />

⎨<br />

.<br />

⎩<br />

x ′ (t) = ϕ(t)x(t) − c1(x(t)y(t)) γ<br />

y ′ (t) = c2x(t)z(t)(Ax(t − τ) − y(t − τ)) + − c3(x(t)y(t)) γ<br />

z ′ (t) = H(x)c4(c5x(t) − z(t)) − c6x(t)z(t)(Ax(t − τ) − y(t − τ)) +<br />

We present pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence and <str<strong>on</strong>g>th</str<strong>on</strong>g>e uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem<br />

and results <str<strong>on</strong>g>of</str<strong>on</strong>g> computer experiments.<br />

References.<br />

[1] A. L. Dawidowicz, J. L. Zalasiński Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> bioenergetic process in green plants<br />

Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e XVI Nati<strong>on</strong>al <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics to Biology and<br />

Medicine, Krynica, September 14-18, 2010<br />

212


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecology and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases; Friday, July 1, 14:30<br />

Troy Day<br />

Queen’s University<br />

e-mail: tday@mast.queensu.ca<br />

Optimal c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> drug resistant pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens and <str<strong>on</strong>g>th</str<strong>on</strong>g>e mixing<br />

versus cycling c<strong>on</strong>troversy<br />

The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drug resistance presents a major challenge for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases. Numerous recent simulati<strong>on</strong> studies suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at deploying<br />

drugs at an intermediate level in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> can sometimes minimize <str<strong>on</strong>g>th</str<strong>on</strong>g>e total<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious disease outbreaks. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will revisit <str<strong>on</strong>g>th</str<strong>on</strong>g>is issue from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

standpoint <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>eory. I will dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal drug<br />

deployment strategy is, in fact, <strong>on</strong>e <str<strong>on</strong>g>th</str<strong>on</strong>g>at uses a maximal treatment level but <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

times <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment appropriately during <str<strong>on</strong>g>th</str<strong>on</strong>g>e outbreak. From <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>clusi<strong>on</strong> I will<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>en go <strong>on</strong> to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal deployment <str<strong>on</strong>g>of</str<strong>on</strong>g> two drugs. Again, optimal c<strong>on</strong>trol<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eory will be used to shed light <strong>on</strong> recent c<strong>on</strong>troversies about drug mixing versus<br />

drug cycling. I present analytical results dem<strong>on</strong>strating how some situati<strong>on</strong>s lead<br />

to mixing being optimal and o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers lead to a form <str<strong>on</strong>g>of</str<strong>on</strong>g> cycling being optimal. These<br />

results help to partially resolve some discrepancies am<strong>on</strong>g o<str<strong>on</strong>g>th</str<strong>on</strong>g>er studies.<br />

213


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Niall Deakin<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: niall@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Cancer; Friday, July 1, 14:30<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Spread: The<br />

Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Enzyme Degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tissue<br />

Metastatic spread <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer is <str<strong>on</strong>g>th</str<strong>on</strong>g>e main cause <str<strong>on</strong>g>of</str<strong>on</strong>g> dea<str<strong>on</strong>g>th</str<strong>on</strong>g> in patients suffering from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e disease - cancer cells from a primary tumour break away from <str<strong>on</strong>g>th</str<strong>on</strong>g>e central mass<br />

and are disseminated <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout <str<strong>on</strong>g>th</str<strong>on</strong>g>e body where <str<strong>on</strong>g>th</str<strong>on</strong>g>ey re-grow to form sec<strong>on</strong>dary<br />

tumours or metastases. A crucial aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> metastatic spread is <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> local<br />

invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissue. The cancer cells achieve <str<strong>on</strong>g>th</str<strong>on</strong>g>is by <str<strong>on</strong>g>th</str<strong>on</strong>g>e secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

certain enzymes involved in proteolysis (tissue degradati<strong>on</strong>), namely plasmin and<br />

matrix metalloproteinases (MMPs). These overly-expressed proteolytic enzymes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>en proceed to degrade <str<strong>on</strong>g>th</str<strong>on</strong>g>e host tissue allowing <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells to spread <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment by active migrati<strong>on</strong> and interacti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix such as collagen.<br />

Here, we present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cell invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a host tissue<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e macro-scale (cell populati<strong>on</strong>) level. The model c<strong>on</strong>siders cancer cells and<br />

a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different matrix-degrading enzymes (MDEs) from <str<strong>on</strong>g>th</str<strong>on</strong>g>e MMP family<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>, and effect <strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix (ECM) using<br />

systems <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong>-taxis partial differential equati<strong>on</strong>s in an attempt to<br />

capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e qualitative dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migratory resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells,<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a specific focus placed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane-bound MMPs. We use ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

analysis and computati<strong>on</strong>al simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>e- and two-space<br />

dimensi<strong>on</strong>s to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cell density, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>centrati<strong>on</strong> levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e various enzymes and <str<strong>on</strong>g>th</str<strong>on</strong>g>e density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular<br />

matrix. The model exhibits ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er travelling-wave soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells, which<br />

can be used to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum speed <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue, or very<br />

dynamic and heterogeneous spatio-temporal soluti<strong>on</strong>s, which match experimentally<br />

and clinically observed results for aggressive invading carcinoma.<br />

214


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multi-scale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver: From intracellular signaling to<br />

intercellular interacti<strong>on</strong>; Wednesday, June 29, 08:30<br />

Walter de Back<br />

Technische Universität Dresden<br />

e-mail: walter.deback@tu-dresden.de<br />

Lutz Brusch<br />

Technische Universität Dresden<br />

e-mail: lutz.brusch@tu-dresden.de<br />

Andreas Deutsch<br />

Technische Universität Dresden<br />

e-mail: andreas.deutsch@tu-dresden.de<br />

From hepatocyte polarizati<strong>on</strong><br />

to canalicular network formati<strong>on</strong>:<br />

a multiscale approach<br />

The generati<strong>on</strong> and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatocyte polarity is crucial for <str<strong>on</strong>g>th</str<strong>on</strong>g>e proper<br />

functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver, and is important in development, as well as liver regenerati<strong>on</strong>.<br />

It is well-known <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex polarity <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatocytes is characterized by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple basolateral and apical/canalicular poles per cell. Yet, it<br />

remains unclear what molecular and cellular interacti<strong>on</strong>s regulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

segregated membrane domains, and how <str<strong>on</strong>g>th</str<strong>on</strong>g>is affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hepatic<br />

epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium and <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bile canulicular network.<br />

To investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback between <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular and cellular interacti<strong>on</strong>s, we<br />

have developed a multiscale modeling envir<strong>on</strong>ment called Morpheus. This modeling<br />

and simulati<strong>on</strong> framework facilitates <str<strong>on</strong>g>th</str<strong>on</strong>g>e integrative modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> multiscale<br />

cellular systems, and includes solvers for discrete and c<strong>on</strong>tinuous models, a XMLbased<br />

modeling language, and a graphical modeling interface.<br />

To study <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong> and c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatocyte polarity, we established a<br />

hybrid model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two modules. The molecular interacti<strong>on</strong>s between Rho GT-<br />

Pases and phosphoinositides (PIPs) are modeled using a reacti<strong>on</strong>-diffusi<strong>on</strong> (PDE)<br />

formalism. Anisotropic adhesi<strong>on</strong> and bile secreti<strong>on</strong> between cells are represented in<br />

a cellular Potts model. The integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modules is based <strong>on</strong> cell-cell and cellmatrix<br />

signals <str<strong>on</strong>g>th</str<strong>on</strong>g>at trigger polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane proteins, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e downstream<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane domains <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tight juncti<strong>on</strong>s and bile secreti<strong>on</strong><br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e apical/canalicular domain. Our results are compared to quantitative data<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e polarity and tissue morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> murine hepatocytes in in vitro sandwich<br />

cultures.<br />

215


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological processes in patients <strong>on</strong> dialysis;<br />

Saturday, July 2, 11:00<br />

Malgorzata Debowska<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biocybernetics and Biomedical Engineering, Polish Academy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw, Poland<br />

e-mail: mdebowska@ibib.waw.pl<br />

Jacek Waniewski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biocybernetics and Biomedical Engineering, Polish Academy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw, Poland<br />

Compartmental modeling and adequacy <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis<br />

In compartmental modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e patient body may be c<strong>on</strong>sidered as a single compartment,<br />

two compartments (intracellular and extracellular or perfused and n<strong>on</strong>perfused)<br />

or more compartments, as appropriate to <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> investigated solute.<br />

Then <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> solute kinetics can be used for <str<strong>on</strong>g>th</str<strong>on</strong>g>e descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis<br />

and provide support for <str<strong>on</strong>g>th</str<strong>on</strong>g>e assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> its efficiency. Two compartment variable<br />

volume urea kinetic model, based <strong>on</strong> ordinary differential equati<strong>on</strong>s, was used<br />

to simulate numerically different dialysis modalities: 1) c<strong>on</strong>venti<strong>on</strong>al hemodialysis<br />

(HD) wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree dialysis sessi<strong>on</strong>s per week, 2) daily HD wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 6 short sessi<strong>on</strong>s per<br />

week, 3) nocturnal HD wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 6 l<strong>on</strong>g sessi<strong>on</strong>s per week, 4) c<strong>on</strong>tinuous ambulatory<br />

perit<strong>on</strong>eal dialysis (PD) wi<str<strong>on</strong>g>th</str<strong>on</strong>g> four exchanges <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis fluid per day and 5) bimodal<br />

dialysis, i.e., a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 5 days <strong>on</strong> PD and two HD sessi<strong>on</strong>s. The<br />

volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> extracellular (Ve) and intracellular (Vi) compartments were related to<br />

total body volume V as Ve(t) = 1/3V(t) and Vi(t) = 2/3V(t), respectively. The<br />

obtained urea c<strong>on</strong>centrati<strong>on</strong>, mass and distributi<strong>on</strong> volume pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles in patient body<br />

and solute c<strong>on</strong>centrati<strong>on</strong>, mass and dialysate volume pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles allow to calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

following dialysis adequacy indices, DAI: 1) fracti<strong>on</strong>al solute removal, FSR; and<br />

2) equivalent c<strong>on</strong>tinuous clearance, ECC. FSR is defined as total solute mass removed<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e body normalized by solute mass in <str<strong>on</strong>g>th</str<strong>on</strong>g>e body. ECC is defined as<br />

solute removal rate over solute c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular compartment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

patient body. In general, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are four variants <str<strong>on</strong>g>of</str<strong>on</strong>g> DAI linked to <str<strong>on</strong>g>th</str<strong>on</strong>g>e variability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solute c<strong>on</strong>centrati<strong>on</strong>, mass and fluid volume during intermittent dialysis treatment<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different time intervals between treatments. FSR and ECC are related to 1)<br />

peak, 2) peak average, 3) time average and 4) treatment time average reference<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> mass and c<strong>on</strong>centrati<strong>on</strong>, respectively. The system <str<strong>on</strong>g>of</str<strong>on</strong>g> DAI was applied 1)<br />

to compare c<strong>on</strong>venti<strong>on</strong>al, daily and nocturnal HD and c<strong>on</strong>tinuous ambulatory PD,<br />

i.e., treatments wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different dialysis dose and time schedules, 2) to calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> bimodal dialysis, 3) to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> residual renal functi<strong>on</strong><br />

and dialysis into <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment, and 4) to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dialysis dose in metabolically unstable patients. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is investigati<strong>on</strong><br />

are important for practical applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis. Using compartmental models<br />

and solute kinetic analysis we were able to evaluate dialysis adequacy, FSR and<br />

ECC, for simulated dialysis modalities in anuric and n<strong>on</strong>-anuric patients taking<br />

into account <str<strong>on</strong>g>th</str<strong>on</strong>g>eir metabolic state.<br />

216


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Jaber Dehghany<br />

Helmholtz Centre for Infecti<strong>on</strong> Research, Braunschweig, Germany<br />

e-mail: jaber.dehghany@helmholtz-hzi.de<br />

Michael Meyer-Hermann<br />

Helmholtz Centre for Infecti<strong>on</strong> Research, Braunschweig, Germany<br />

e-mail: michael.meyer-hermann@helmholtz-hzi.de<br />

Computer modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin secretory granules’ dynamics<br />

in pancreatic betacell<br />

Insulin is <str<strong>on</strong>g>th</str<strong>on</strong>g>e body’s glucose lowering horm<strong>on</strong>e which is stored in dense-core secretory<br />

granules in pancreatic beta-cells. Glucose-induced insulin secreti<strong>on</strong> follows a<br />

two phase time course: <strong>on</strong>e rapid and transient phase and a week but sustained<br />

phase. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> first phase in insulin secreti<strong>on</strong> results in Type 2 Diabetes, a metabolic<br />

disorder which is rapidly increasing worldwide. Therefore it is important<br />

to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular mechanism underlying biphasic insulin secreti<strong>on</strong>. Total<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> granules, size distributi<strong>on</strong> and spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> granules in a typical<br />

betacell are important in <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed models for stimulated insulin secreti<strong>on</strong><br />

from betacells. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is project we develop an in-silico model based <strong>on</strong> experimental<br />

results to find <str<strong>on</strong>g>th</str<strong>on</strong>g>e true size distributi<strong>on</strong> (TSD), 3D density pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and total number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> granules (N) in a typical betacell. Then we make an agent-based model for<br />

granules dynamics inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell and try to find <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism and explanati<strong>on</strong><br />

behind <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-phase insulin release.<br />

217


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Friday, July 1, 14:30<br />

E.E. Deinum<br />

FOM Institute AMOLF, Amsterdam, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands; Laboratory for<br />

molecular biology, Wageningen University, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: deinum@amolf.nl<br />

R. Geurts<br />

Laboratory for molecular biology, Wageningen University, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

T. Bisseling<br />

Laboratory for molecular biology, Wageningen University, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

B.M. Mulder<br />

FOM Institute AMOLF, Amsterdam, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands; Laboratory for<br />

plant cell biology, Wageningen University, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

Manipulating auxin transport: different strategies leave<br />

different signatures<br />

Auxin is a key horm<strong>on</strong>e in plant development. Am<strong>on</strong>g its roles is <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinati<strong>on</strong><br />

and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> root meristem identity. When a root forms a lateral organ,<br />

differentiated cells turn into a de novo meristem, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aid <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin.<br />

From a developmental perspective, Legume roots are a particularly interesting<br />

example: <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can sprout two different lateral organs: lateral roots and nitrogen<br />

fixing root nodules. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese are formed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e same regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

differentiati<strong>on</strong> z<strong>on</strong>e. In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cases auxin accumulati<strong>on</strong> is found at <str<strong>on</strong>g>th</str<strong>on</strong>g>e locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e organ primordium. The primordia, however, originate from different cell layers<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e organs are induced in different ways. This implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism<br />

behind <str<strong>on</strong>g>th</str<strong>on</strong>g>e local auxin accumulati<strong>on</strong> most likely differs between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two cases.<br />

Inspired by <str<strong>on</strong>g>th</str<strong>on</strong>g>is, we analyzed <str<strong>on</strong>g>th</str<strong>on</strong>g>e general characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree plausible<br />

generic strategies for increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e local auxin c<strong>on</strong>centrati<strong>on</strong>: increasing influx,<br />

decreasing efflux and local producti<strong>on</strong>.<br />

Each strategy results in a pattern wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its own characteristic signature. This<br />

holds in a simple 1D model, but also shows up in a more complex root-like envir<strong>on</strong>ment.<br />

Returning to <str<strong>on</strong>g>th</str<strong>on</strong>g>e legumes: are <str<strong>on</strong>g>th</str<strong>on</strong>g>e differences large enough to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

early differences between bo<str<strong>on</strong>g>th</str<strong>on</strong>g> lateral organ primordia?<br />

218


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Immunology; Wednesday, June 29, 14:30<br />

Edgar Delgado-Eckert<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosystems Science and Engineering, ETH Zürich, Mattenstrasse<br />

26, 4058 Basel, Switzerland.<br />

e-mail: edgar.delgado-eckert@bsse.e<str<strong>on</strong>g>th</str<strong>on</strong>g>z.ch<br />

Michael Shapiro<br />

Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology Department, Tufts University, 150 Harris<strong>on</strong> Ave., Bost<strong>on</strong>,<br />

MA 02111, U.S.A.<br />

e-mail: Michael.Shapiro@tufts.edu<br />

A model <str<strong>on</strong>g>of</str<strong>on</strong>g> host resp<strong>on</strong>se to a multi-stage pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen<br />

Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens <str<strong>on</strong>g>th</str<strong>on</strong>g>at traverse different stages during <str<strong>on</strong>g>th</str<strong>on</strong>g>eir life cycle or during an<br />

infecti<strong>on</strong> process have been studied since <str<strong>on</strong>g>th</str<strong>on</strong>g>e late nineteen<str<strong>on</strong>g>th</str<strong>on</strong>g> century. The most<br />

prominent genus is Plasmodium, causer <str<strong>on</strong>g>of</str<strong>on</strong>g> Malaria. O<str<strong>on</strong>g>th</str<strong>on</strong>g>er important examples are<br />

Trypanosoma and <str<strong>on</strong>g>th</str<strong>on</strong>g>e family <str<strong>on</strong>g>of</str<strong>on</strong>g> herpes viruses. Our focus is <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e herpes virus<br />

Epstein-Barr (EBV), which is known to cycle <str<strong>on</strong>g>th</str<strong>on</strong>g>rough at least four different stages<br />

during infecti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e human body. One remarkable characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> many <str<strong>on</strong>g>of</str<strong>on</strong>g> such pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens is life-l<strong>on</strong>g persistent infecti<strong>on</strong>.<br />

The main goal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se<br />

to such a pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling. In particular, we are interested<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence and properties <str<strong>on</strong>g>of</str<strong>on</strong>g> steady-state behavior corresp<strong>on</strong>ding to life-l<strong>on</strong>g<br />

persistent infecti<strong>on</strong>. Our ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical approach is based <strong>on</strong> standard ODE models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> viral infecti<strong>on</strong>. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e postulated system <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs, we were able to characterize<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibria in full generality regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e number n <str<strong>on</strong>g>of</str<strong>on</strong>g> stages <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen<br />

cycles <str<strong>on</strong>g>th</str<strong>on</strong>g>rough. To establish <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models’ equilibria, we<br />

successfully applied techniques from modern c<strong>on</strong>trol engineering.<br />

If <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen is able to establish infecti<strong>on</strong>, (i.e., <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive number<br />

R0 satisfies R0 > 1), <str<strong>on</strong>g>th</str<strong>on</strong>g>e model’s parameters induce a partial order <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen’s stages. This binary relati<strong>on</strong> j ≻ k is based <strong>on</strong> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate<br />

at which stage j produces stage k wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate at which stage k is lost to dea<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

and transformati<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e next stage k + 1. We say stage j starves stage k if<br />

immune regulati<strong>on</strong> at stage j deprives stage k <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient populati<strong>on</strong> to support<br />

immune regulati<strong>on</strong>. A stage k is called starvable if <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er stage j such<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at j ≻ k. If no such j exists, k is called unstarvable. One <str<strong>on</strong>g>of</str<strong>on</strong>g> our main results<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at, generically, <str<strong>on</strong>g>th</str<strong>on</strong>g>e system has a unique (local) asymptotically stable<br />

fixed point, namely, <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e at which all unstarvable stages are regulated and all<br />

starvable stages are unregulated. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is sense, <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> unstarvable<br />

stages is sufficient to immunologically c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>e starvable stages. At steady<br />

state, immune regulati<strong>on</strong> is <strong>on</strong>ly required against <str<strong>on</strong>g>th</str<strong>on</strong>g>ose stages <str<strong>on</strong>g>th</str<strong>on</strong>g>at are produced<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> relatively higher yield.<br />

This puts wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in reach a principled quantitative explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic infecti<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens such as EBV, including <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> regulati<strong>on</strong> (which is known to<br />

vary from pers<strong>on</strong> to pers<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> EBV), <str<strong>on</strong>g>th</str<strong>on</strong>g>e sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected populati<strong>on</strong>s<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e host resp<strong>on</strong>se.<br />

References.<br />

219


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] E. Delgado-Eckert and M. Shapiro, A model <str<strong>on</strong>g>of</str<strong>on</strong>g> host resp<strong>on</strong>se to a multi-stage pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology. 2010 Oct. 2. [Epub ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> print]. DOI 10.1007/s11538-010-9596-2.<br />

220


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Aurelio de los Reyes V<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Life Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zurich<br />

e-mail: aurelio.delosreyes@imls.uzh.ch<br />

Attila Becskei<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Life Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Zurich<br />

e-mail: attila.becskei@imls.uzh.ch<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Feedback in GAL Signalling Cascade<br />

The GAL network cascade in yeast (Saccharomyces cerevisiae) c<strong>on</strong>tains dynamic<br />

molecular interacti<strong>on</strong>s. The complex interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> galactose, Gal3p, Gal80p<br />

and Gal4p regulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e transcripti<strong>on</strong>al activity <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes in galactose utilizati<strong>on</strong>.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models have been proposed to understand such biological<br />

signalling processes. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er studies suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e models exhibit bistability/multistability<br />

due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e systems’ positive feedback loop, ultrasensitivity, etc.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, an ODE model in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback possesses a sigmoidal characteristic<br />

is used. We are interested to investigate how robustly positive feedback<br />

loop gives rise to bistability depending <strong>on</strong> whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er it is mediated by stoichiometric<br />

complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> signalling proteins, enzymes, or transporter molecules. In particular,<br />

we will examine how feedback in GAL signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way can be used to apprehend<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular memory.<br />

References.<br />

[1] M. Acar, A. Becskei & A. van Oudenaarden, Enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular memory by reducing<br />

stochastic transiti<strong>on</strong>s Nature 435 228–231.<br />

[2] D. Angeli, J. Ferrell Jr. & E. S<strong>on</strong>tag, Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multistability, bifurcati<strong>on</strong>s, and hysteresis<br />

in a large class <str<strong>on</strong>g>of</str<strong>on</strong>g> biological positive-feedback systems PNAS 101 1822–1827.<br />

[3] P.J. Bhat & R. Iyer, Epigenetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e yeast galactose genetic switch J. Biosci. 4 513–522.<br />

[4] V. Kulkarni, V. Kareenhalli, P. Malakar, L. Pao, M. Saf<strong>on</strong>ov, & G. Viswana<str<strong>on</strong>g>th</str<strong>on</strong>g>an, Stability<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e GAL regulatory network in Saccharomyces cerevisiae and Kluyveromyces lactis<br />

BMC Bioinformatics 11 (Suppl 1):S43.<br />

[5] S. Smidtas, V, Schächter & F. Képès, The adaptive filter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e yeast galactose pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way J.<br />

Theor. Biol. 242 372–381.<br />

221


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Informati<strong>on</strong>, human behaviour and disease; Saturday, July 2, 11:00<br />

Sara Y. Del Valle<br />

Los Alamos Nati<strong>on</strong>al Laboratory,<br />

e-mail: sdelvall@lanl.gov<br />

James M. Hyman<br />

Tulane University and Los Alamos Nati<strong>on</strong>al Laboratory<br />

e-mail: mhyman@tulane.edu<br />

Herbert W. He<str<strong>on</strong>g>th</str<strong>on</strong>g>cote<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Iowa<br />

e-mail: herbert-he<str<strong>on</strong>g>th</str<strong>on</strong>g>cote@uiowa.edu<br />

Carlos Castillo-Chavez<br />

Ariz<strong>on</strong>a State University<br />

e-mail: chavez@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.asu.edu<br />

Saman<str<strong>on</strong>g>th</str<strong>on</strong>g>a M. Tracht<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tennessee<br />

e-mail: saman<str<strong>on</strong>g>th</str<strong>on</strong>g>a.tracht@gmail.com<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Behavioral Changes in Smallpox and Influenza<br />

Models<br />

Communicable diseases are highly sensitive to how rapidly people reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

c<strong>on</strong>tact activity patterns and to <str<strong>on</strong>g>th</str<strong>on</strong>g>e precauti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> takes to reduce<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease. Recent experiences wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e H1N1 pandemic show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at an outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> a deadly disease would generate dramatic behavioral changes.<br />

However, models for infectious diseases have focused <strong>on</strong> analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

traditi<strong>on</strong>al interventi<strong>on</strong> strategies such as isolati<strong>on</strong> and vaccinati<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I<br />

will present a model in which some individuals lower <str<strong>on</strong>g>th</str<strong>on</strong>g>eir daily c<strong>on</strong>tact activity<br />

rates or wear masks <strong>on</strong>ce an epidemic has been identified in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir community. I will<br />

dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at even gradual and mild behavioral changes can have a dramatic<br />

impact in slowing <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic and reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e total number <str<strong>on</strong>g>of</str<strong>on</strong>g> cases. I c<strong>on</strong>clude<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at for simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases to be useful, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey must c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> behavioral changes. This is especially true if <str<strong>on</strong>g>th</str<strong>on</strong>g>e model predicti<strong>on</strong>s are<br />

being used to guide public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> policy.<br />

222


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Bernd-Sim<strong>on</strong> Dengel, Holger Perfahl, Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ias Reuss<br />

Center Systems Biology, University Stuttgart, Germany<br />

e-mail: Bernd.Dengel@gmx.de<br />

3D image rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological tissues<br />

To analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e movement and reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs in tissues, a detailed knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue structure is needed. To acquire a better understanding and provide a<br />

model for ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis and simulati<strong>on</strong>s, we c<strong>on</strong>struct a 3D-model from<br />

given image stacks showing various tissues. This model builds <str<strong>on</strong>g>th</str<strong>on</strong>g>e foundati<strong>on</strong> for<br />

particle simulati<strong>on</strong>s and narrows <str<strong>on</strong>g>th</str<strong>on</strong>g>e gap from a discrete to an experimental approach.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore <str<strong>on</strong>g>th</str<strong>on</strong>g>e model serves as a verificati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for simulati<strong>on</strong> data<br />

and provides feedback to refine <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> process.<br />

The image recogniti<strong>on</strong> is implemented using OpenCV, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard<br />

library for computer visi<strong>on</strong> and comes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> efficient algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m useful<br />

to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e different tissue structures. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> an image stack <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

distinguished tissue structure can be c<strong>on</strong>structed to a geometrical model. For verificati<strong>on</strong><br />

and better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results we generate a 3D visualisati<strong>on</strong><br />

using OpenGL. Statistical data can also be calculated using <str<strong>on</strong>g>th</str<strong>on</strong>g>e generated model,<br />

for instance cell volume fracti<strong>on</strong> or mean cell density.<br />

223


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cell systems: from intercellular interacti<strong>on</strong><br />

to tissue-level traits II; Wednesday, June 29, 17:00<br />

Christophe Deroulers<br />

Université Paris Diderot-Paris 7, Laboratoire IMNC, Campus d’Orsay<br />

bat. 440, 91406 Orsay CEDEX, France<br />

e-mail: deroulers.remove<str<strong>on</strong>g>th</str<strong>on</strong>g>is@imnc.in2p3.fr<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ilde Badoual<br />

Université Paris Diderot-Paris 7, Laboratoire IMNC, Campus d’Orsay<br />

bat. 440, 91406 Orsay CEDEX, France<br />

e-mail: badoual.remove<str<strong>on</strong>g>th</str<strong>on</strong>g>is@imnc.in2p3.fr<br />

Basile Grammaticos<br />

CNRS, Laboratoire IMNC, Campus d’Orsay bat. 440, 91406 Orsay CEDEX,<br />

France<br />

e-mail: grammaticos.remove<str<strong>on</strong>g>th</str<strong>on</strong>g>is@univ-paris-diderot.fr<br />

Two examples <str<strong>on</strong>g>of</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-cell interacti<strong>on</strong>s <strong>on</strong><br />

populati<strong>on</strong>s: migrating cancer cells and magnetic<br />

manipulati<strong>on</strong> for tissue engineering<br />

Cell interacti<strong>on</strong>s can have a str<strong>on</strong>g influence <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir populati<strong>on</strong>,<br />

qualitatively as well as quantitatively. Often, <str<strong>on</strong>g>th</str<strong>on</strong>g>e link between <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic<br />

law <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic behaviour is not straightforward, and<br />

requires computer simulati<strong>on</strong>s and/or analytic techniques which can be successfully<br />

borrowed from c<strong>on</strong>densed matter physics.<br />

Here we give two examples <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental situati<strong>on</strong>s where a macroscopic<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells was derived (in a n<strong>on</strong>-rigorous way)<br />

from postulated microscopic interacti<strong>on</strong>s. In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cases, <str<strong>on</strong>g>th</str<strong>on</strong>g>e aim is two-fold. Since<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e models succeed in reproducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e experiments, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can make predicti<strong>on</strong>s<br />

about more complicated, or even unattainable, experimental c<strong>on</strong>diti<strong>on</strong>s. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, in a c<strong>on</strong>text where <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic mechanisms at stake are difficult<br />

to investigate directly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantitative match <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

experiments indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying microscopic hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses may be true.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first experiment, <str<strong>on</strong>g>th</str<strong>on</strong>g>e excluded volume and adhesi<strong>on</strong>, or c<strong>on</strong>tact inhibiti<strong>on</strong>,<br />

interacti<strong>on</strong>s between migrating cancer cells governs <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>th</str<strong>on</strong>g>ey collectively<br />

spread, making it far from a simple diffusi<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d <strong>on</strong>e, heaps <str<strong>on</strong>g>of</str<strong>on</strong>g> cells<br />

were prepared using magnetic nanomanipulati<strong>on</strong>. The shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heaps and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

evoluti<strong>on</strong> depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tact interacti<strong>on</strong>s, and can be understood <str<strong>on</strong>g>th</str<strong>on</strong>g>anks to<br />

simulati<strong>on</strong>s and to a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model.<br />

224


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective phenomena in biological systems; Saturday, July 2,<br />

08:30<br />

Andreas Deutsch<br />

Centre for Informati<strong>on</strong> Services and High Performance Computing,<br />

Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dresden<br />

e-mail: andreas.deutsch@tu-dresden.de<br />

Analyzing emergent behaviour in interacting cell systems<br />

Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent behaviour in interacting cell systems are life cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria<br />

and social amoebae, embry<strong>on</strong>ic tissue formati<strong>on</strong>, wound healing or tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

Thereby, development <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular spatio-temporal ”multi-cellular” pattern may<br />

be interpreted as cooperative phenomen<strong>on</strong> emerging from an intricate interplay <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

local (e.g. by adhesi<strong>on</strong>) and n<strong>on</strong>-local (e.g. via diffusing signals) cell interacti<strong>on</strong>s.<br />

What are cooperative phenomena in interacting cell systems and how can <str<strong>on</strong>g>th</str<strong>on</strong>g>ey be<br />

studied by ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models and computer simulati<strong>on</strong>s?<br />

Typical modelling attempts focus <strong>on</strong> a macroscopic perspective, i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e models<br />

(e.g. partial differential equati<strong>on</strong>s) describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

c<strong>on</strong>centrati<strong>on</strong>s. More recently, cell-based models have been suggested in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fate <str<strong>on</strong>g>of</str<strong>on</strong>g> each individual cell can be tracked. Cellular automata are discrete dynamical<br />

systems and may be utilized as cell-based models.<br />

Here, we analyze spatio-temporal pattern formati<strong>on</strong> in cellular automat<strong>on</strong> models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interacting discrete cells. We introduce lattice-gas cellular automata and a<br />

cellular automat<strong>on</strong> based <strong>on</strong> an extended Potts model <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows to c<strong>on</strong>sider cell<br />

shapes. Model applicati<strong>on</strong>s are bacterial pattern formati<strong>on</strong> and tumour invasi<strong>on</strong>.<br />

DEUTSCH, A. AND DORMANN, S. (2005) Cellular Automat<strong>on</strong> Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Biological Pattern Formati<strong>on</strong>. Birkhauser, Bost<strong>on</strong><br />

225


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor invasi<strong>on</strong> II; Tuesday, June 28, 14:30<br />

Andreas Deutsch<br />

Centre for Informati<strong>on</strong> Services and High Performance Computing,<br />

Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dresden<br />

e-mail: andreas.deutsch@tu-dresden.de<br />

Analyzing emergent behaviour in cellular automat<strong>on</strong> models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong><br />

Deciphering <str<strong>on</strong>g>th</str<strong>on</strong>g>e principles <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong> is crucial for <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy c<strong>on</strong>cepts. While molecular biology me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are required for a better characterizati<strong>on</strong><br />

and identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cancer cells, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling<br />

and computer simulati<strong>on</strong> is needed for investigating collective effects <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong>.<br />

Here, we dem<strong>on</strong>strate how lattice-gas cellular automat<strong>on</strong> (LGCA) models<br />

allow for an adequate descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual invasive cancer cell behaviour. We<br />

will <str<strong>on</strong>g>th</str<strong>on</strong>g>en show how analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e LGCA models allows for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging<br />

properties (in particular <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> speed). Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we propose <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

transiti<strong>on</strong> to invasive tumour phenotypes in some brain tumours can be explained<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic Go or Grow mechanism (migrati<strong>on</strong>/proliferati<strong>on</strong><br />

dichotomy) and oxygen shortage, i.e. hypoxia, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> a growing<br />

tumour. We test <str<strong>on</strong>g>th</str<strong>on</strong>g>is hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis again wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e help <str<strong>on</strong>g>of</str<strong>on</strong>g> a lattice-gas cellular automat<strong>on</strong>.<br />

Finally, we will use our LGCA models for <str<strong>on</strong>g>th</str<strong>on</strong>g>e interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> data from<br />

in vitro glioma cancer cell invasi<strong>on</strong> assays.<br />

References.<br />

[1] DEUTSCH, A. AND DORMANN, S. (2005) Cellular Automat<strong>on</strong> Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Pattern<br />

Formati<strong>on</strong>. Birkhauser, Bost<strong>on</strong>.<br />

[2] GIESE, A., BJERKVIG, R., BERENS, M. AND WESTPHAL, M. (2003) Cost <str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong>:<br />

invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> malignant gliomas and implicati<strong>on</strong>s for treatment. J. Clin. Oncol., 21, 16241636.<br />

[3] GODLEWSKI, J., NOWICKI, M. O., BRONISZ, A., NUOVO, G., PALATINI, J., LAY, M.<br />

D., BROCKLYN, J. V., OSTROWSKI, M. C. AND CHIOCCA, E. A. (2010) Microrna-451<br />

regulates lkb1/ampk signaling and allows adaptati<strong>on</strong> to metabolic stress in glioma cells. Mol.<br />

Cell, 37, 620632.<br />

226


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Thanate Dhirasakdan<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: <str<strong>on</strong>g>th</str<strong>on</strong>g>anate.dhirasakdan<strong>on</strong>@helsinki.fi<br />

Stanley H. Fae<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina at Greensboro<br />

Karl P. Hadeler<br />

Ariz<strong>on</strong>a State University<br />

Horst R. Thieme<br />

Ariz<strong>on</strong>a State University<br />

Epidemics; Wednesday, June 29, 08:30<br />

Coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> vertically and horiz<strong>on</strong>tally transmitted<br />

parasite strains in a simple SI type model<br />

We study an SI type endemic model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>e host and two parasite strains wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

complete cross protecti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e strains. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e strain is exclusively<br />

vertically transmitted and <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er strain is horiz<strong>on</strong>tally (and possibly<br />

also vertically) transmitted. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at each strain reduces fertility and/or<br />

increases mortality <str<strong>on</strong>g>of</str<strong>on</strong>g> infected hosts. Our model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> just <str<strong>on</strong>g>th</str<strong>on</strong>g>ree ordinary<br />

differential equati<strong>on</strong>s. We use <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> persistence to show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e (exclusively) vertically transmitted strain <str<strong>on</strong>g>th</str<strong>on</strong>g>at would go extinct by itself can<br />

persist by protecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e host against <str<strong>on</strong>g>th</str<strong>on</strong>g>e more virulent horiz<strong>on</strong>tally transmitted<br />

strain [2]. There are two more interesting properties <str<strong>on</strong>g>of</str<strong>on</strong>g> our model. First, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>tal to vertical transmissi<strong>on</strong> decreases if <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>tal<br />

transmissi<strong>on</strong> increases, c<strong>on</strong>trary to what <strong>on</strong>e might expects [1]. Sec<strong>on</strong>d, <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium<br />

where bo<str<strong>on</strong>g>th</str<strong>on</strong>g> parasite strains coexist is always locally asymptotically stable<br />

if <str<strong>on</strong>g>th</str<strong>on</strong>g>e horiz<strong>on</strong>tal transmissi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> density-dependent (mass-acti<strong>on</strong>) type, but can<br />

loses its stability and gives rise to a limit cycle if <str<strong>on</strong>g>th</str<strong>on</strong>g>e horiz<strong>on</strong>tal transmissi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

frequency-dependent (standard) type [3].<br />

References.<br />

[1] Stanley H. Fae<str<strong>on</strong>g>th</str<strong>on</strong>g>, Karl P. Hadeler, and Horst R. Thieme. An apparent paradox <str<strong>on</strong>g>of</str<strong>on</strong>g> horiz<strong>on</strong>tal<br />

and vertical disease transmissi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Dynamics, 1(1):45-62, 2007.<br />

[2] Thanate Dhirasakdan<strong>on</strong> and Horst R. Thieme. Persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> vertically transmitted parasite<br />

strains which protect against more virulent horiz<strong>on</strong>tally transmitted strains. In Z. Ma, Y. Zhou,<br />

and J. Wu, editors, Modeling and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Infectious Diseases, 187-215, World Scientific,<br />

2009.<br />

[3] Thanate Dhirasakdan<strong>on</strong> and Horst R. Thieme. Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e endemic coexistence equilibrium<br />

for <strong>on</strong>e host and two parasites. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Phenomena, 5(6):109-138,<br />

2010.<br />

227


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Edgar Díaz Herrera<br />

California State University, Los Angeles and<br />

California Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, C<strong>on</strong>trol Dynamical Systems<br />

e-mail: ediazh@caltech.edu<br />

Turing Theory in an Epidemiological Model<br />

Spatial models quantify disease spread in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemiological parameters<br />

(infecti<strong>on</strong> and recovery rates) <str<strong>on</strong>g>th</str<strong>on</strong>g>at influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> disease propagati<strong>on</strong><br />

traveling epidemic fr<strong>on</strong>ts. A recurrent assumpti<strong>on</strong> behind bo<str<strong>on</strong>g>th</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> models is<br />

uniformity in disease propagati<strong>on</strong>. Such an assumpti<strong>on</strong> while unrealistic facilitates<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is dissertati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uniform mixing<br />

(homogeneity) is relaxed, spatial heterogeneity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> process is<br />

allowed. A novel reacti<strong>on</strong> diffusi<strong>on</strong> model is introduced and used to identify necessary<br />

and sufficient c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e aggregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals <str<strong>on</strong>g>th</str<strong>on</strong>g>at may result<br />

in resp<strong>on</strong>se to <str<strong>on</strong>g>th</str<strong>on</strong>g>e introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a communicable disease. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology and<br />

techniques used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, which exhibits diffusive instability,<br />

include Turing <str<strong>on</strong>g>th</str<strong>on</strong>g>eory, which as far as I know, has not been used in <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>text.<br />

228


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Gabriel Dimitriu<br />

“Gr. T. Popa” University <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine and Pharmacy,<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Informatics,<br />

16 Universitatii street, 700115, Iaşi, Romania<br />

e-mail: dimitriu.gabriel@gmail.com<br />

Immunology; Saturday, July 2, 08:30<br />

Optimal c<strong>on</strong>trols for enhancing natural resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

immune system in obesity-related chr<strong>on</strong>ic inflammati<strong>on</strong><br />

Recent researches shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> obesity has increased by 70 percent<br />

over <str<strong>on</strong>g>th</str<strong>on</strong>g>e past decade [2]. According to World Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Organizati<strong>on</strong> estimates,<br />

over 300 milli<strong>on</strong> adults are obese [4]. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem c<strong>on</strong>tinues to<br />

grow worldwide, many scientific experts c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e obesity crisis a pandemic [3].<br />

Chr<strong>on</strong>ic inflammati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in fat tissue is now recognized as a c<strong>on</strong>tributor to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

many ill heal<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>th</str<strong>on</strong>g>at come wi<str<strong>on</strong>g>th</str<strong>on</strong>g> obesity, from diabetes to cardiovascular<br />

disease. The new discovery may <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore point to a targeted <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy designed<br />

to limit <str<strong>on</strong>g>th</str<strong>on</strong>g>e heal<str<strong>on</strong>g>th</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e obesity epidemic, <str<strong>on</strong>g>th</str<strong>on</strong>g>e researchers say. Unlike<br />

acute inflammati<strong>on</strong>, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e natural resp<strong>on</strong>se to injury or infecti<strong>on</strong>, chr<strong>on</strong>ic<br />

inflammati<strong>on</strong> results from a defective immune resp<strong>on</strong>se. The excessive activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pro-inflammatory cells and proteins can result in additi<strong>on</strong>al defects for surrounding<br />

tissues. These effects <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic inflammati<strong>on</strong> can lead to diseases such as cancer,<br />

kidney failure, a<str<strong>on</strong>g>th</str<strong>on</strong>g>erosclerosis, and type 2 diabetes mellitus.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>eory is applied to an extended versi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model introduced by P. Díaz et al. in [1]. The model is defined by a<br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s and reflects <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular and cellular<br />

interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macrophages, T cells, chemokines, and cytokines <str<strong>on</strong>g>th</str<strong>on</strong>g>at cause<br />

chr<strong>on</strong>ic inflammati<strong>on</strong>, after <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> adipocyte hypertrophy. The model does<br />

not account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e time period in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e subject becomes obese. In comparis<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in [1], here a linear model for pharmacokinetics has been added.<br />

Seeking to maximize <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> drug treatments to <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, we use a c<strong>on</strong>trol<br />

representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment. The optimal c<strong>on</strong>trol is characterized in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

optimality system, which is solved numerically for several scenarios.<br />

References.<br />

[1] P. Díaz, M. Gillespie, J. Krueger, J. Pérez, A. Radebaughe, T. Shearman, G. Vo, and C.<br />

Wheatley, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune system’s role in obesity-related chr<strong>on</strong>ic inflammati<strong>on</strong><br />

ICAM, Virginia Bioinformatics Institute, 2(2) (2009), 26–45.<br />

[2] A. Mokdad, B. Bowman, E. Ford, F. Vinikor, J. Marks, and J. Koplan, The c<strong>on</strong>tinuing<br />

epidemics <str<strong>on</strong>g>of</str<strong>on</strong>g> obesity and diabetes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e United States, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e American Medical<br />

Associati<strong>on</strong>, 286 (2001), 1195–1200.<br />

[3] B. Popkin and C. Doak, The obesity epidemic is a worldwide phenomen<strong>on</strong>, Nutriti<strong>on</strong> Review,<br />

56 (1998), 106–114.<br />

[4] P. Puska, C. Nishida, and D. Porter, World Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Organizati<strong>on</strong> strategy <strong>on</strong> diet, physical<br />

activity, and heal<str<strong>on</strong>g>th</str<strong>on</strong>g>: obesity and overweight, Data and statistics. WHO, 2007.<br />

229


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Gaelle Diserens, Gregory Vuillaume, Thomas Mueller, Marja Talikka,<br />

Yiming Cheng, Julia Hoeng<br />

Philip Morris Internati<strong>on</strong>al R&D, Philip Morris Products S.A., Neuchâtel,<br />

Switzerland<br />

e-mail: Gaelle.Diserens@c<strong>on</strong>tracted.pmi.com, gregory.vuillaume@pmintl.com<br />

Philip Morris Internati<strong>on</strong>al R&D, Philip Morris Research Laboratories<br />

GmbH, Cologne, Germany<br />

Frank Tobin<br />

Tobin C<strong>on</strong>sulting LLC, Newtown Square, Pennsylvania, US<br />

Modeling Early Initiati<strong>on</strong> Processes in Smoking-Induced<br />

Lung Adenocarcinomas<br />

While most cancer models focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor itself, our objective<br />

is to build a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e early initiati<strong>on</strong> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> lung adenocarcinomas induced by smoking. Our goal is to produce<br />

a model <str<strong>on</strong>g>th</str<strong>on</strong>g>at is accurate enough to account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e major phenomenology involved<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese initiati<strong>on</strong> processes, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is able to reproduce all <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data, and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at can explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e timings <str<strong>on</strong>g>of</str<strong>on</strong>g> tumorigenesis based <strong>on</strong> demographic differences.<br />

We have approached <str<strong>on</strong>g>th</str<strong>on</strong>g>e model building in four steps. First, <str<strong>on</strong>g>th</str<strong>on</strong>g>e poorly understood<br />

biology was triaged to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e key biological behaviors causing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

phenotype transiti<strong>on</strong> from normal cells (prior to any smoke exposure) to <str<strong>on</strong>g>th</str<strong>on</strong>g>e earliest<br />

phenotype <str<strong>on</strong>g>th</str<strong>on</strong>g>at could be c<strong>on</strong>sidered a neoplasm. Sec<strong>on</strong>d, <str<strong>on</strong>g>th</str<strong>on</strong>g>e biology was translated<br />

into a n<strong>on</strong>linear ODE model <str<strong>on</strong>g>th</str<strong>on</strong>g>at can reas<strong>on</strong>ably explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> smoking and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at is nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er too complex nor too simplistic. The resulting rate equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

phenotype dynamics c<strong>on</strong>tain first and sec<strong>on</strong>d order terms. The model is augmented<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>straint functi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at have a dual role <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can be used for checking <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> results obey <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling assumpti<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can be used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

optimizati<strong>on</strong> step to insure more reas<strong>on</strong>able parameters.<br />

The <str<strong>on</strong>g>th</str<strong>on</strong>g>ird modeling step c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e acquisiti<strong>on</strong> and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative<br />

biological data to calibrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. Because <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative data<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e scope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is limited, we have adopted a rigorous surrogate<br />

strategy. This allows us to use bo<str<strong>on</strong>g>th</str<strong>on</strong>g> clinical and animal data (including omics).<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> animal data requires care to make sure <str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dose and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

age <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e animals can be properly incorporated into a human model <str<strong>on</strong>g>th</str<strong>on</strong>g>at extends<br />

across an entire adult lifespan. Finally, a strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>strained optimizati<strong>on</strong> is<br />

used to obtain a single set <str<strong>on</strong>g>of</str<strong>on</strong>g> model parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at simultaneously provides a good<br />

fit to all <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data sets and accurately reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e key biological<br />

phenomena, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out producing any unacceptable <strong>on</strong>es.<br />

The model is currently being built and so far c<strong>on</strong>tains approximately 20 differential<br />

equati<strong>on</strong>s involving 50 parameters. We will discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e model building<br />

process, some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e associated ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and computati<strong>on</strong>al challenges, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

need for good data collecti<strong>on</strong> practices, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e value <str<strong>on</strong>g>of</str<strong>on</strong>g> a formal ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

language for <str<strong>on</strong>g>th</str<strong>on</strong>g>e expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complex biological knowledge.<br />

230


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Neurosciences; Wednesday, June 29, 08:30<br />

Susanne Ditlevsen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Denmark<br />

e-mail: susanne@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ku.dk<br />

Priscilla Greenwood<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia, Vancouver, Canada<br />

e-mail: Priscilla.Greenwood@asu.edu<br />

The stochastic Morris-Lecar neur<strong>on</strong> model embeds a<br />

<strong>on</strong>e-dimensi<strong>on</strong>al diffusi<strong>on</strong> and its first-passage-time crossings<br />

Stochastic leaky integrate-and-fire models, i.e. <strong>on</strong>e-dimensi<strong>on</strong>al mean-reverting<br />

diffusi<strong>on</strong>s, are popular tools to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic fluctuati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong>al<br />

membrane potential dynamics due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir simplicity and statistical tractability.<br />

They have been widely applied to gain understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying mechanisms<br />

for spike timing in neur<strong>on</strong>s, and have served as building blocks for more elaborate<br />

models. Especially <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ornstein-Uhlenbeck process is popular, but also o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

models like <str<strong>on</strong>g>th</str<strong>on</strong>g>e square-root model or models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a n<strong>on</strong>-linear drift are sometimes<br />

applied. However, experimental data show varying time c<strong>on</strong>stants, state dependent<br />

noise, a graded firing <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold and time-inhomogeneous input, and higher<br />

dimensi<strong>on</strong>al, more biophysical models are called for.<br />

The stochastic Morris-Lecar neur<strong>on</strong> is a two-dimensi<strong>on</strong>al diffusi<strong>on</strong> which includes<br />

i<strong>on</strong> channel dynamics. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in a neighborhood <str<strong>on</strong>g>of</str<strong>on</strong>g> its stable point,<br />

it can be approximated by a two-dimensi<strong>on</strong>al Ornstein-Uhlenbeck modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

c<strong>on</strong>stant circular moti<strong>on</strong>. The associated radial Ornstein-Uhlenbeck process is an<br />

example <str<strong>on</strong>g>of</str<strong>on</strong>g> a leaky integrate-and-fire model prior to firing. A new model c<strong>on</strong>structed<br />

from a radial Ornstein-Uhlenbeck process toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a simple firing mechanism<br />

based <strong>on</strong> detailed Morris-Lecar firing statistics reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e interspike interval<br />

distributi<strong>on</strong>, and has <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>on</strong>e-dimensi<strong>on</strong>al model.<br />

The result justifies <str<strong>on</strong>g>th</str<strong>on</strong>g>e large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> attenti<strong>on</strong> paid to <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaky integrate-andfire<br />

models.<br />

231


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling viral hepatitis dynamics in-vivo and in-vitro in <str<strong>on</strong>g>th</str<strong>on</strong>g>e era <str<strong>on</strong>g>of</str<strong>on</strong>g> direct<br />

anti-viral agents II; Wednesday, June 29, 08:30<br />

Narendra Dixit<br />

Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Bangalore, India<br />

e-mail: narendra@chemeng.iisc.ernet.in<br />

Pranesh Padmanabhan<br />

Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Bangalore, India<br />

Modelling HCV kinetics in vitro yields estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> E2-CD81 complexes necessary for viral entry into<br />

target cells<br />

Interacti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e hepatitis C virus (HCV) envelop protein E2 and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell<br />

surface receptor CD81 is necessary for HCV entry into target cells. Blocking <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

interacti<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore a promising strategy for <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic and preventive interventi<strong>on</strong>.<br />

The minimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> E2-CD81 complexes <str<strong>on</strong>g>th</str<strong>on</strong>g>at must form across a<br />

virus-cell interface to facilitate virus entry, however, remains unknown. The recently<br />

developed cell culture systems <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow persistent HCV infecti<strong>on</strong> in vitro<br />

present data <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e susceptibility <str<strong>on</strong>g>of</str<strong>on</strong>g> cells to virus entry <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

CD81 expressi<strong>on</strong> level <strong>on</strong> cells. We develop a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at quantitatively<br />

describes several independent experimental observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> viral kinetics<br />

in vitro and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> virus entry as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CD81 expressi<strong>on</strong><br />

level. Comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> model predicti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experiments yield estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold number <str<strong>on</strong>g>of</str<strong>on</strong>g> E2-CD81 complexes necessary for virus entry. The <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold<br />

number depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e affinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e E2-CD81 complex and presents guidelines<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e design and optimal usage <str<strong>on</strong>g>of</str<strong>on</strong>g> entry inhibitors and vaccines <str<strong>on</strong>g>th</str<strong>on</strong>g>at target <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

E2-CD81 interacti<strong>on</strong>.<br />

232


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Radu Dobrescu<br />

e-mail: rd_dobrescu@yahoo.com<br />

Mihai Tanase<br />

POLITEHNICA University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bucharest<br />

Fractals and Complexity I; Wednesday, June 29, 14:30<br />

Using a mix <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular automata in tumor margin analysis<br />

Cellular automata are classical examples <str<strong>on</strong>g>of</str<strong>on</strong>g> models for many complex systems<br />

related to biology, being suitable tools for modeling grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and diffusi<strong>on</strong> phenomena,<br />

especially tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, c<strong>on</strong>sidering <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey have in comm<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> tumors<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> cell and local interacti<strong>on</strong>. The goal in obtaining a good tumor<br />

model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cellular automata, as in any o<str<strong>on</strong>g>th</str<strong>on</strong>g>er model, is a better understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumor dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing <str<strong>on</strong>g>of</str<strong>on</strong>g> better techniques for <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir evoluti<strong>on</strong> in real instances. The <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical ingredients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is experiment are<br />

mixed cellular automata, <str<strong>on</strong>g>th</str<strong>on</strong>g>e fractal dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure generated by an<br />

automat<strong>on</strong> (estimated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e box counting dimensi<strong>on</strong>), <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>tier fractal dimensi<strong>on</strong><br />

between two mixed cellular automata (estimated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e compass dimensi<strong>on</strong>)<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Langt<strong>on</strong>’s Lambda parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> a cellular automat<strong>on</strong>.<br />

References.<br />

[1] B. Pfeifer, K. Kugler, M.M. Tejada. A cellular automat<strong>on</strong> framework for infectious disease<br />

spread simulati<strong>on</strong>. The Open Medical Informatics Journal, 2008; 2: 70-81<br />

233


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Marina Dolfin<br />

Dep. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics - University <str<strong>on</strong>g>of</str<strong>on</strong>g> Messina<br />

e-mail: mdolfin@unime.it<br />

Immunology; Wednesday, June 29, 14:30<br />

A phenomenological approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>al<br />

expansi<strong>on</strong> and immune competiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T cells<br />

This presentati<strong>on</strong> deals wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>al expansi<strong>on</strong> and<br />

immune competiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T cells [1] based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e approach <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuum mechanics.<br />

Field equati<strong>on</strong>s are ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically c<strong>on</strong>structed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic framework <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ermodynamic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> reacting fluid mixtures [2, 3], adapted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e case<br />

in which proliferative events occur [4, 5]. The introduced ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model is<br />

inspired by <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental observati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at during <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> type I hypersensitivity<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Specific ImmunoTherapy, <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> allergen<br />

specific Th1 cells increases [6] and its principal scope is to individuate key parameters<br />

and to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir effect up<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Th1 cell populati<strong>on</strong> over<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Th2 <strong>on</strong>e and viceversa.<br />

References.<br />

[1] N. Bellomo, G. Forni, Complex multicellular systems and immune competiti<strong>on</strong>: New paradigms<br />

looking for a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical <str<strong>on</strong>g>th</str<strong>on</strong>g>eory Current Topics in Developmental Biology 81 (2008) 485–<br />

502.<br />

[2] I. Muller, Thermodynamics, Pitman Advanced Publishing Program (1985).<br />

[3] I. Muller, T. Ruggeri, Rati<strong>on</strong>al Extended Thermodynamics, Springer Tracts in Natural Philosophy,<br />

37 (1998) 84–92.<br />

[4] J.D. Humphrey, K.R. Rajagopal, A c<strong>on</strong>strained mixture model for grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and remodeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>t tissues Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models and Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in Applied Sciences 12 (2002) 407-430.<br />

[5] N. Bellomo, N.K. Li, P.K. Maini, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e foundati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer modelling: selected topics,<br />

speculati<strong>on</strong>s and perspectives Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models and Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in Applied Sciences 18 (2008)<br />

593–646.<br />

[6] Pers<strong>on</strong>al communicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. S. Gangemi <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Policlinico Hospital <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Messina to <str<strong>on</strong>g>th</str<strong>on</strong>g>e au<str<strong>on</strong>g>th</str<strong>on</strong>g>or.<br />

234


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 14:30<br />

Mirela Domijan<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warwick<br />

e-mail: mirela.domijan@warwick.ac.uk<br />

Light and temperature effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian clock<br />

The circadian clock is endogenous 24h timer driving numerous metabolic, physiological,<br />

biochemical and developmental processes. The clock has a complex interacti<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its envir<strong>on</strong>ment as it resp<strong>on</strong>ds to light and temperature cues. It can be<br />

entrained to daily cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> light and temperature, yet it also remains very robust to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir stochastic fluctuati<strong>on</strong>s. Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er key striking feature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e clock is <str<strong>on</strong>g>th</str<strong>on</strong>g>at it can<br />

maintain nearly c<strong>on</strong>stant period over a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological temperatures<br />

(a feature called temperature compensati<strong>on</strong>). These properties enable <str<strong>on</strong>g>th</str<strong>on</strong>g>e clock to<br />

do a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s: it can be used to predict transiti<strong>on</strong>s at dusk and dawn,<br />

measure day leng<str<strong>on</strong>g>th</str<strong>on</strong>g>, and it allows an organism to resp<strong>on</strong>d accurately to seas<strong>on</strong>al<br />

rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. Elucidating <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e clock wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its envir<strong>on</strong>ment can help us<br />

gain greater understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e design principles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is important mechanism.<br />

Here I will present some recent work in <str<strong>on</strong>g>th</str<strong>on</strong>g>is directi<strong>on</strong> [1, 2].<br />

References.<br />

[1] M. Domijan and D.A. Rand, Balance equati<strong>on</strong>s can buffer noisy and sustained envir<strong>on</strong>mental<br />

perturbati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> circadian clocks Interface Focus 1 177–186.<br />

[2] P.D. Gould , N. Ugarte, J. Foreman, M. Domijan, D. McGregor, S. Penfield, D.A. Rand, A.<br />

Hall, K. Halliday, A.J. Millar, Photoreceptors c<strong>on</strong>tribute temperature-specific regulati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

biological clock in Arabidopsis, preprint.<br />

235


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part I;<br />

Tuesday, June 28, 11:00<br />

Alberto d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Oncology, <str<strong>on</strong>g>European</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Oncology,<br />

Milan, Italy<br />

e-mail: alberto.d<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>rio@ifom-ieo-campus.it<br />

The noisy life <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we shall survey some recent <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical results <str<strong>on</strong>g>of</str<strong>on</strong>g> our group <strong>on</strong> how<br />

much and how noise can deeply affect bo<str<strong>on</strong>g>th</str<strong>on</strong>g> natural history <str<strong>on</strong>g>of</str<strong>on</strong>g> tumours and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapies. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first part we shall show how intrinsic noise might beneficial since<br />

it might trigger tumour suppressi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough evasi<strong>on</strong> form immune surveillance.<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, we shall show how extrinsic noise may be negative, since it<br />

might trigger, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in absence and in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies, bounded-noise-induced<br />

induced phase transiti<strong>on</strong>s leading to tumour expansi<strong>on</strong>.<br />

References.<br />

[1] A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio, Phys Rev E (2010)<br />

[2] A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio and A. Gandolfi, Phys Rev E (2010)<br />

[3] G. Caravagna, A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio, P. Milazzo and R. Barbuti, J Theor Biol (2010)<br />

236


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Delay Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s I; Friday, July 1, 14:30<br />

Alberto d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Oncology, <str<strong>on</strong>g>European</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Oncology,<br />

Milan, Italy<br />

e-mail: alberto.d<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>rio@ifom-ieo-campus.it<br />

Malay Banerjee<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Kanpur, India<br />

The interplay between delays and bounded noises in immune<br />

reacti<strong>on</strong> to tumors<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we shall summarize some recent results c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e subtle interplays<br />

existing between <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e baseline levels <str<strong>on</strong>g>of</str<strong>on</strong>g> immunity and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e delays in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor-stimulated activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune system. We set our<br />

analysis in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> bounded noises.<br />

237


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioimaging; Tuesday, June 28, 11:00<br />

Alexey Doroshkov<br />

THE INSTITUTE OF CYTOLOGY AND GENETICS The Siberian Branch<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: ad@bi<strong>on</strong>et.nsc.ru<br />

Mikhail Genaev<br />

Tatyana Pshenichnikova<br />

Dmitry Af<strong>on</strong>nikov<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness in wheat Triticum Aestivum L.<br />

using image processing technique<br />

Leaf hairiness in wheat is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance for adaptati<strong>on</strong> to envir<strong>on</strong>mental factors<br />

including protecti<strong>on</strong> from pests. For example, <str<strong>on</strong>g>th</str<strong>on</strong>g>is trait is <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> drought resistant wheat cultivars referred to <str<strong>on</strong>g>th</str<strong>on</strong>g>e steppe ecological<br />

group. Study <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness morphology and identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding<br />

genes will allow obtaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e varieties which are resistant to hard climatic c<strong>on</strong>diti<strong>on</strong>s<br />

and certain pests. To identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e genes resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaf hairiness,<br />

mass analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a great number <str<strong>on</strong>g>of</str<strong>on</strong>g> plants bel<strong>on</strong>ging to different hybrid populati<strong>on</strong>s<br />

is needed, accompanying wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a laborious manual job. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

more accurate descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trait for correct<br />

determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypic classes is timely. We developed <str<strong>on</strong>g>th</str<strong>on</strong>g>e computerbased<br />

technology for descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative traits <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness. It c<strong>on</strong>tains <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

LHDetect program wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e feature <str<strong>on</strong>g>of</str<strong>on</strong>g> image processing [1,2]. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e LHDetect<br />

<strong>on</strong>e can count <str<strong>on</strong>g>th</str<strong>on</strong>g>e trichome number, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trichomes, and evaluate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e trichome leng<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong> vector for each leaf sample. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigati<strong>on</strong>,<br />

we used <str<strong>on</strong>g>th</str<strong>on</strong>g>e LHDetect program for determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphological properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

leaf hairiness <strong>on</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> wheat genotypes. The technology appeared to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effective approach for a large scale analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness morphological peculiarities<br />

in individual plants. In according wi<str<strong>on</strong>g>th</str<strong>on</strong>g> genotyping <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach can be useful<br />

for quantitative trait loci (QTL) mapping. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study we carried out <str<strong>on</strong>g>th</str<strong>on</strong>g>e detailed<br />

morphology analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness in 8 wheat cultivars: Golubka, Saratovskaya<br />

29, Rodina (almost glabrous leaf), Rodina introgressi<strong>on</strong> line 102/00i (genome c<strong>on</strong>tains<br />

Aegilops speltoides gene, resp<strong>on</strong>sible for trichomes, line has well-haired leaf),<br />

Houng mang may, Janetzkis probat, Chinese syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic and Diamant 2. Chosen cultivares<br />

represent a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness morphology: <str<strong>on</strong>g>th</str<strong>on</strong>g>e trichome density,<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> and distributi<strong>on</strong> pattern greatly varied. Golubka cultivar plants was grown<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e various c<strong>on</strong>diti<strong>on</strong>s. It was shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at drought stressed Golubka plants form<br />

more trichomes <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaf surface, but <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are significantly shorter <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ose<br />

from plants grown in a favourable c<strong>on</strong>diti<strong>on</strong>s. There are at least two possible explanati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong>s. First, much more trichomes are needed to form <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

microclimat in <str<strong>on</strong>g>th</str<strong>on</strong>g>e drought c<strong>on</strong>diti<strong>on</strong>s. Sec<strong>on</strong>d, plant cells cant produce enough<br />

turgor pressure to form a l<strong>on</strong>g trichomes while <str<strong>on</strong>g>th</str<strong>on</strong>g>e drougt stress.<br />

References.<br />

[1] Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e computer-based image processing technique in genetic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf hairiness<br />

in wheat Triticum aestivum L./ A.V.Doroshkov, M.A.Genaev, T.A.Pshenichnikova,<br />

D.A.Af<strong>on</strong>nikov //<str<strong>on</strong>g>th</str<strong>on</strong>g>e 7-<str<strong>on</strong>g>th</str<strong>on</strong>g> internati<strong>on</strong>al c<strong>on</strong>ference <strong>on</strong> bioinformatics <str<strong>on</strong>g>of</str<strong>on</strong>g> genome regulati<strong>on</strong><br />

and structure/ systems biology, june 20-27 2010 Novosibirsk, Russia.<br />

238


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] WheatPGE system for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ships between phenotype, genotype and envir<strong>on</strong>ment<br />

in wheat/ M.A.Genaev, A.V.Doroshkov, D.A.Af<strong>on</strong>nikov //<str<strong>on</strong>g>th</str<strong>on</strong>g>e 7-<str<strong>on</strong>g>th</str<strong>on</strong>g> internati<strong>on</strong>al<br />

c<strong>on</strong>ference <strong>on</strong> bioinformatics <str<strong>on</strong>g>of</str<strong>on</strong>g> genome regulati<strong>on</strong> and structure/ systems biology, june 20-27<br />

2010 Novosibirsk, Russia.<br />

239


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Signals I; Saturday, July 2, 08:30<br />

Christiana Drake<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis<br />

e-mail: cmdrake@ucdavis.edu<br />

Travis Loux<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis<br />

Not Missing at Random and Combined Odds Ratios from<br />

Mixture Models<br />

L<strong>on</strong>gitudinal studies and surveys <str<strong>on</strong>g>of</str<strong>on</strong>g>ten deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> incomplete observati<strong>on</strong>s. The validity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> inference depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e missingness mechanism [Little J.A, and Rubin,<br />

D.B., 2002]. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e missing data mechanism depends <strong>on</strong> observed data <strong>on</strong>ly, estimati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> means and/or regressi<strong>on</strong> coefficients requires adjustment but is possible<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er informati<strong>on</strong>. If <str<strong>on</strong>g>th</str<strong>on</strong>g>e missingness mechanism depends <strong>on</strong> unobserved<br />

data, unbiased estimati<strong>on</strong> requires fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er informati<strong>on</strong>. The informati<strong>on</strong> from random<br />

sub-samples <str<strong>on</strong>g>of</str<strong>on</strong>g> subjects whose resp<strong>on</strong>ses are obtained, can be used to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

data using selecti<strong>on</strong>, shared parameter or pattern mixture models [Allis<strong>on</strong>, 1994],<br />

which are identifiable in <str<strong>on</strong>g>th</str<strong>on</strong>g>is case. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters obtained may not be<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> interest to an investigator. A separate regressi<strong>on</strong> fit to resp<strong>on</strong>ders and<br />

n<strong>on</strong>resp<strong>on</strong>ders will result in two regressi<strong>on</strong> coefficients when a single coefficient for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e whole populati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> interest. Multiple imputati<strong>on</strong> [Rubin, D.B. 1987, Glynn<br />

etal, 1993] can lead to standard statistical analysis. Very large surveys can have<br />

more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 50% n<strong>on</strong>-resp<strong>on</strong>se. A naive approach using multiple imputati<strong>on</strong> results<br />

in data sets wi<str<strong>on</strong>g>th</str<strong>on</strong>g> more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 50% imputed values. We will discuss logistic regressi<strong>on</strong><br />

for a mixture model and compare it to multiple imputati<strong>on</strong> when missingness<br />

depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e unobserved data., The me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are illustrated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Project<br />

Talent data set. The original survey was very large and baseline informati<strong>on</strong> is<br />

available for all participants. Study attriti<strong>on</strong> exceeds 50% but random sub-samples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>resp<strong>on</strong>dents have almost complete follow-up.<br />

Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Missing Data,<br />

2nd editi<strong>on</strong>. New York: John Wiley<br />

Rubin, D.B. (1987). Multiple Imputati<strong>on</strong> for N<strong>on</strong>resp<strong>on</strong>se in Surveys, New<br />

York: John Wiley<br />

Glynn, R., Laird, N., and Rubin, D.B. (1993), The Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Mixture<br />

Models for N<strong>on</strong>ignorable N<strong>on</strong>resp<strong>on</strong>se Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Followups. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e American<br />

Statistical Associati<strong>on</strong>, 88: 984-993.<br />

240


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

From <strong>on</strong>e to many: Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective, emergent behaviors<br />

in biology -I; Tuesday, June 28, 11:00<br />

Dirk Drasdo<br />

Rocquencourt<br />

e-mail: dirk.drasdo@inria.fr<br />

Helen Byrne<br />

Nottingham<br />

Jan G. Hengstler<br />

IFADO<br />

Stefan Hoehme<br />

Leipzig<br />

Possible cell behavior strategies to escape biomechanical<br />

c<strong>on</strong>straints in liver regenerati<strong>on</strong> and tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we will show how cells can escape possible biomechanical c<strong>on</strong>straints.<br />

We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e growing m<strong>on</strong>olayers and multi-cellular spheroids, as<br />

well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferati<strong>on</strong> and regenerati<strong>on</strong> pattern in liver after drug-induced damage<br />

and after hepatectomy. For each example we compare experimental results wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

simulati<strong>on</strong> results <str<strong>on</strong>g>of</str<strong>on</strong>g> single-cell-based models. Our model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e center-based type<br />

c<strong>on</strong>siders each cell as an individual unit parameterized by cell- biophysical and cellbiological<br />

quantities. Cell migrati<strong>on</strong> is mimicked by an equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for each<br />

cell, representing all forces <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at cell and including <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells micro-motility. Part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models is parameterized from image analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er bright field or laser<br />

scanning micrographs for quantitative comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data. We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers and multi-cellular spheroids can be c<strong>on</strong>sistently<br />

explained if proliferati<strong>on</strong> is c<strong>on</strong>trolled not <strong>on</strong>ly by molecular factors but also by a<br />

biomechanical proliferati<strong>on</strong> c<strong>on</strong>trol. The same type <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferati<strong>on</strong> c<strong>on</strong>trol is able<br />

to ensure <str<strong>on</strong>g>th</str<strong>on</strong>g>at unrealistically compressed cell volumes during regenerati<strong>on</strong> after<br />

partial hepatectomy in liver does not occur, and <str<strong>on</strong>g>th</str<strong>on</strong>g>at during tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in liver<br />

vessels are not pushed out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cell mass. After drug induced liver damage<br />

cells around <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called central veins show massive necrosis. The central vein<br />

forms <str<strong>on</strong>g>th</str<strong>on</strong>g>e center <str<strong>on</strong>g>of</str<strong>on</strong>g> a liver lobule, <str<strong>on</strong>g>th</str<strong>on</strong>g>e repetitive functi<strong>on</strong>al unit <str<strong>on</strong>g>of</str<strong>on</strong>g> liver. Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y<br />

cells must move actively to escape unrealistic compressi<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

a mechanism, <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimentally observed regenerati<strong>on</strong> and proliferati<strong>on</strong> pattern<br />

cannot be reproduced. The models <str<strong>on</strong>g>of</str<strong>on</strong>g> regenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> liver after drug induced<br />

damage and after partial hepatectomy made predicti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at could subsequently<br />

be validated.<br />

References.<br />

[1] Drasdo, D., Hoehme, S. and Block, M. (2007) On <str<strong>on</strong>g>th</str<strong>on</strong>g>e Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

Pattern Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Multi-Cellular Systems: What can we Learn from Individual-Cell Based<br />

Models? Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistical Physics, Volume 128, Numbers 1-2, pp. 287-345(59)<br />

[2] Hoehme, S., Brulport, M., Bauer, A., Bedawy, E., Schormann, W., Gebhardt, R., Zellmer,<br />

S., Schwarz, M., Bockamp, E., Timmel, T., G. Hengstler, J.G., and Drasdo, D. (2010). Predicti<strong>on</strong><br />

and validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell alignment al<strong>on</strong>g microvessels as order principle to restore tissue<br />

architecture in liver regenerati<strong>on</strong>. Proc. Natl. Acad. Sci. (USA), 107(23), 10371-10376.<br />

[3] Hoehme and Drasdo, (2010) Biomechanical versus nutrient c<strong>on</strong>trol: what determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> mammalian cell populati<strong>on</strong>s? Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Populati<strong>on</strong> Studies, Volume<br />

17, Issue 3, 2010, 166187.<br />

241


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[4] Byrne and Drasdo, (2009) Individual-based and c<strong>on</strong>tinuum models <str<strong>on</strong>g>of</str<strong>on</strong>g> growing cell populati<strong>on</strong>s:<br />

a comparis<strong>on</strong>. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. Apr;58(4-5):657-87.<br />

242


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multi-scale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver: From intracellular signaling to<br />

intercellular interacti<strong>on</strong>; Wednesday, June 29, 08:30<br />

Dirk Drasdo<br />

Institut Nati<strong>on</strong>al de Recherche en Informatique et en Automatique<br />

(INRIA), Rocquencourt/Paris, France<br />

e-mail: dirk.drasdo@inria.fr<br />

Stefan Hoehme<br />

Research group Multicellular systems // IZBI // University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leipzig,<br />

Germany<br />

Marc Brulport<br />

Leibniz, Research Centre for Working Envir<strong>on</strong>ment and Human Factors,<br />

Dortmund, Germany<br />

Jan G. Hengstler<br />

Leibniz, Research Centre for Working Envir<strong>on</strong>ment and Human Factors,<br />

Dortmund, Germany<br />

Predicti<strong>on</strong> and validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an order principle to restore<br />

tissue architecture in liver regenerati<strong>on</strong> after drug-induced<br />

damage: from experiments to modeling and back<br />

Not much is known about how cells coordinately behave to establish functi<strong>on</strong>al<br />

tissue structure and to restore micro-architecture during regenerati<strong>on</strong>. Research<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>is field suffers from a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> techniques <str<strong>on</strong>g>th</str<strong>on</strong>g>at permits quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue<br />

architecture and its development. To bridge <str<strong>on</strong>g>th</str<strong>on</strong>g>is gap we have established a<br />

procedure based <strong>on</strong> c<strong>on</strong>focal laser scans, image processing and <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al<br />

tissue rec<strong>on</strong>structi<strong>on</strong>, as well as <strong>on</strong> quantitative ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling. To illustrate<br />

our me<str<strong>on</strong>g>th</str<strong>on</strong>g>od we studied regenerati<strong>on</strong> after toxic liver damage. We have<br />

chosen <str<strong>on</strong>g>th</str<strong>on</strong>g>e example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e regenerating liver, because liver functi<strong>on</strong> depends <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e complex micro-architecture formed by hepatocytes (<str<strong>on</strong>g>th</str<strong>on</strong>g>e main type <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in<br />

liver) and micro-vessels (sinusoids) <str<strong>on</strong>g>th</str<strong>on</strong>g>at ensures optimal exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolites<br />

between blood and hepatocytes. Our model <str<strong>on</strong>g>of</str<strong>on</strong>g> regenerati<strong>on</strong> after toxic damage captures<br />

hepatocytes and sinusoids <str<strong>on</strong>g>of</str<strong>on</strong>g> a liver lobule during <str<strong>on</strong>g>th</str<strong>on</strong>g>e regenerati<strong>on</strong> process.<br />

Hepatocytes are modeled as individual agents parameterized by measurable biophysical<br />

and cell-biological quantities. Cell migrati<strong>on</strong> is mimicked by an equati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> for each cell subject to cell-cell-, cell-extra-cellular matrix-, and cellsinusoid-forces,<br />

as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell micro-motility. We dem<strong>on</strong>strate how by iterative<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e above procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments, image processing and modeling<br />

a final model emerged <str<strong>on</strong>g>th</str<strong>on</strong>g>at unambiguously predicted a so far unrecognized mechanism,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> daughter hepatocytes al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e closest sinusoids as essential<br />

for liver regenerati<strong>on</strong>. In absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is mechanism, <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulated tissue architecture<br />

was in dis-agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimentally obtained data and no o<str<strong>on</strong>g>th</str<strong>on</strong>g>er likely<br />

mechanism could replace it. To experimentally validate <str<strong>on</strong>g>th</str<strong>on</strong>g>e model predicti<strong>on</strong>, we<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>ally analyzed <str<strong>on</strong>g>th</str<strong>on</strong>g>e orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> daughter hepatocytes in relati<strong>on</strong> to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e sinusoids. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is analysis clearly c<strong>on</strong>firmed <str<strong>on</strong>g>th</str<strong>on</strong>g>e model predicti<strong>on</strong>.<br />

References.<br />

243


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] Hoehme, S., Brulport, M., Bauer, A., Bedawy, E., Schormann, W., Gebhardt, R., Zellmer,<br />

S., Schwarz, M., Bockamp, E., Timmel, T., G. Hengstler, J.G., and Drasdo, D. (2010). Predicti<strong>on</strong><br />

and validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell alignment al<strong>on</strong>g microvessels as order principle to restore tissue<br />

architecture in liver regenerati<strong>on</strong>. Proc. Natl. Acad. Sci. (USA), 107(23), 10371-10376.<br />

[2] Hoehme, S., Hengstler J.G., Brulport M., Schäfer M., Bauer A., Gebhardt R. and Drasdo<br />

D. (2007) Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> liver regenerati<strong>on</strong> after intoxicati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> CCl. Chemico-<br />

Biological Interacti<strong>on</strong>, 168, 74-93.<br />

244


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: from physical tools to<br />

applicati<strong>on</strong>s in cancer modeling I; Saturday, July 2, 08:30<br />

Dirk Drasdo<br />

INRIA, Paris-Rocquencourt, France & IZBI, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leipzig,<br />

Germany<br />

e-mail: dirk.drasdo@inria.fr<br />

Ignacio Ramis C<strong>on</strong>de<br />

UDM, Spain<br />

Helen Byrne<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, UK<br />

Markus Radszuweit<br />

TU Berlin, Germany<br />

Axel Krinner<br />

Univ. Leipzig, Germany<br />

Joerg Galle<br />

Univ. Leipzig, Germany<br />

Eckehard Schoell<br />

Univ. Leipzig, Germany<br />

Multi-scale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> cells: c<strong>on</strong>cepts and open questi<strong>on</strong>s<br />

The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue organizati<strong>on</strong> and tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is inherently <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-scale<br />

nature. Extracellular signal molecules, metabolites, mutati<strong>on</strong>s may due to cascades<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> molecular intermediates modify <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior and <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

cell resulting in re-organizati<strong>on</strong> processes <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue and organ level. Vice-versa,<br />

changes <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue can feed back to <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular regulati<strong>on</strong> processes.<br />

Limits in computati<strong>on</strong> time requirements and <str<strong>on</strong>g>th</str<strong>on</strong>g>e great complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and<br />

tissues make it impossible to simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e different scales ranging<br />

from molecules to whole organs in great detail. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, many details<br />

<strong>on</strong> smaller scales have <strong>on</strong>ly small or no effects <strong>on</strong> processes <strong>on</strong> larger scales. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

talk we discuss different individual-based models to tissue organizati<strong>on</strong> including<br />

hybrid and multi-scale models.<br />

(1) In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first part we introduce individual-based model c<strong>on</strong>cepts and dem<strong>on</strong>strate<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can be used to explain grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in biological models <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor development,<br />

namely, m<strong>on</strong>olayer, multi-cellular spheroids, and Xenografts (Drasdo et.<br />

al., J. Stat. Phys. 2007 and refs <str<strong>on</strong>g>th</str<strong>on</strong>g>erein, Radszuweit et. al., Phys. Rev. E, 2009).<br />

We c<strong>on</strong>sider two model types: cellular automat<strong>on</strong> models and center-based models.<br />

The first model is parameterized by rules while <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter model is parameterized<br />

by measurable quantities, and directly represents physical forces between <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells,<br />

and between cells and extra-cellular structures. We will critically discuss advantages<br />

and pitfalls <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e different model types and show how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can be linked to<br />

extracellular molecular c<strong>on</strong>centrati<strong>on</strong>s to hybrid models.<br />

(2) In a sec<strong>on</strong>d step we show how intra-cellular, molecular core modules can be<br />

embedded into a single-cell-based model to a multi-scale model. We c<strong>on</strong>sider several<br />

examples: <str<strong>on</strong>g>th</str<strong>on</strong>g>e integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e beta-catenin core module to mimic <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elialmesenchymal<br />

transiti<strong>on</strong> during cancer invasi<strong>on</strong> (Ramis-C<strong>on</strong>de et. al., Biophys.<br />

J. 2008), intravasati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e process by which a tumor cells enters a blood vessel<br />

(Ramis-C<strong>on</strong>de et. al., Phys. Biol. 2009), mesenchymal stem cell differentiati<strong>on</strong><br />

245


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

(Krinner et. al., Cell Prol. 2009; BMC Syst. Biol. 2010), and <str<strong>on</strong>g>th</str<strong>on</strong>g>e change <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cell metabolism during liver regenerati<strong>on</strong> after drug-induced damage. (3) Finally<br />

we show how individual-based models can be used to guide <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>tinuum models c<strong>on</strong>sidering grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> disperse and compact tumor phenotypes<br />

(Byrne and Drasdo, J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 2009).<br />

246


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fátima Drubi<br />

Leiden University<br />

e-mail: drubi@cml.leidenuniv.nl<br />

Patsy Haccou<br />

Leiden University<br />

e-mail: haccou@cml.leidenuniv.nl<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 14:30<br />

Do bacteria form spores as a bet-hedging strategy in<br />

stochastic envir<strong>on</strong>ments?<br />

Many bacteria form spores to survive extreme c<strong>on</strong>diti<strong>on</strong>s, such as lack <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients,<br />

periods <str<strong>on</strong>g>of</str<strong>on</strong>g> drought, or extraordinary high or low temperatures. Detailed observati<strong>on</strong>s<br />

by microbiologists have revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at even in isogenic populati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>ere<br />

is substantial intra-individual variati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e timing <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong> initiati<strong>on</strong>. This<br />

has led to <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at sporulati<strong>on</strong> is a ‘bet hedging strategy’, which has<br />

evolved to cope wi<str<strong>on</strong>g>th</str<strong>on</strong>g> unpredictably varying envir<strong>on</strong>ments. The idea behind <str<strong>on</strong>g>th</str<strong>on</strong>g>is is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at early sporulators have an advantage if <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment gets worse, whereas late<br />

sporulators can pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it more quickly from improving envir<strong>on</strong>ments. Genotypes <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

produce individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> different types <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore ‘spread <str<strong>on</strong>g>th</str<strong>on</strong>g>eir risks’. We will present<br />

a model for studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong> strategies in envir<strong>on</strong>ments where<br />

new resources arrive at stochastic times. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model we make predicti<strong>on</strong>s<br />

about <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s under which bet hedging sporulati<strong>on</strong> strategies might indeed<br />

evolve. The problem is complicated, since it involves density dependent processes<br />

(due to resource depleti<strong>on</strong>) as well as envir<strong>on</strong>mental fluctuati<strong>on</strong>.<br />

Keywords: Evoluti<strong>on</strong>ary modeling; Bed-hedging strategy; Stochastic envir<strong>on</strong>ments;<br />

Sporulati<strong>on</strong>.<br />

References.<br />

[1] T. G. Bent<strong>on</strong> and A. Grant, Optimal reproductive effort in stochastic, density-dependent envir<strong>on</strong>ments.<br />

Evoluti<strong>on</strong> 53(3) 677–688. (1999)<br />

[2] BetNet Project, The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastis heterogeneous networks as bet-hedging adaptati<strong>on</strong>s<br />

to fluctuating envir<strong>on</strong>ments. Financed by The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands Organisati<strong>on</strong> for Scientific Reseach<br />

(NWO). (2009-2011)<br />

[3] A. Grant, Selecti<strong>on</strong> pressures <strong>on</strong> vital rates in density-dependent populati<strong>on</strong>s. Proc. R. Soc.<br />

L<strong>on</strong>d. B 264 303–306. (1997)<br />

[4] P. Haccou and J. McNamara, Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> parental survival <strong>on</strong> clutch size decisi<strong>on</strong>s in fluctuating<br />

envir<strong>on</strong>ments. Evoluti<strong>on</strong>ary ecology 12 459–475. (1998)<br />

[5] E. Kussell, R. Kish<strong>on</strong>y, N. Q. Balaban and S. Leibler, Bacterial persistence: A model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

survival in changing envir<strong>on</strong>ments. Genetics 168 1807–1814. (2005)<br />

[6] J. Seger and H. J. Brockmann, What is bet-hedging? Oxford Surveys in Evoluti<strong>on</strong>ary Biology<br />

4 182–211. (1988)<br />

[7] W. M. Schaffer, Optimal effort in fluctuating envir<strong>on</strong>ments. Am. Nat. 108 783–790. (1974)<br />

247


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Wen Duan<br />

Auckland University, New Zealand<br />

e-mail: wdua004@aucklanduni.ac.nz<br />

Kiho Lee<br />

Otago University, New Zealand<br />

Allan E. Herbis<strong>on</strong><br />

Otago University, New Zealand<br />

James Sneyd<br />

Auckland University, New Zealand<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> adult GnRH neur<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mouse brain<br />

G<strong>on</strong>adotropin-releasing horm<strong>on</strong>e (GnRH) neur<strong>on</strong>s are cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>alamus<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at produce GnRH, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e major horm<strong>on</strong>es <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trols fertility and reproducti<strong>on</strong>.<br />

However, despite <str<strong>on</strong>g>th</str<strong>on</strong>g>eir importance, little is known about <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms<br />

by which GnRH is produced. GnRH neur<strong>on</strong>s exhibit complicated membrane potential<br />

dynamics, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical bursting, and <str<strong>on</strong>g>th</str<strong>on</strong>g>is bursting is closely<br />

coupled to <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular calcium (Ca 2+ ) in ways <str<strong>on</strong>g>th</str<strong>on</strong>g>at are not yet<br />

well understood.<br />

A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model has been c<strong>on</strong>structed to help understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms<br />

underlying <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed behaviours <str<strong>on</strong>g>of</str<strong>on</strong>g> GnRH neur<strong>on</strong>s, and how electrical<br />

bursting synchr<strong>on</strong>izes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> transients in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytosolic Ca 2+ c<strong>on</strong>centrati<strong>on</strong> ([Ca 2+ ]i).<br />

Simulati<strong>on</strong>s show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> all <str<strong>on</strong>g>th</str<strong>on</strong>g>e crucial experimental<br />

data. Most importantly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model predicted <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> particular<br />

[Ca 2+ ]i-activated potassium (K + ) channel (sIAHP−UCL), which was <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

c<strong>on</strong>firmed experimentally. In c<strong>on</strong>trast to <str<strong>on</strong>g>th</str<strong>on</strong>g>e apamin-sensitive [Ca 2+ ]i-activated<br />

K + channels (sIAHP−SK), which c<strong>on</strong>trol bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> firing wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in bursts<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e interburst intervals, sIAHP−UCL solely determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e interburst dynamics.<br />

The work has been published in Lee et al., 2010 and Duan et al., 2011.<br />

References.<br />

[1] Kiho Lee, Wen Duan, James Sneyd, Allan E. Herbis<strong>on</strong>, Two slow calcium-activated afterhyperpolarizati<strong>on</strong><br />

currents c<strong>on</strong>trol burst firing dynamics in g<strong>on</strong>adotropin-releasing horm<strong>on</strong>e<br />

neur<strong>on</strong>s The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Neuroscience 30(18) 6214–6224.<br />

[2] Wen Duan, Kiho Lee, Allan E. Herbis<strong>on</strong>, James Sneyd, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> adult GnRH<br />

neur<strong>on</strong>s in mouse brain and its bifurcati<strong>on</strong> analysis Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 276 22–34.<br />

248


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Jorge Duarte 1,2 , Cristina Januário 1 , Nuno Martins 2 and Josep Sardanyés 3<br />

e-mail: jduarte@deq.isel.ipl.pt<br />

e-mail: cjanuario@deq.isel.ipl.pt<br />

e-mail: nmartins@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ist.utl.pt<br />

e-mail: josep.sardanes@upf.edu<br />

1 ISEL - Engineering Superior Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Lisb<strong>on</strong>, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Department,<br />

Rua C<strong>on</strong>selheiro Emídio Navarro, 1, 1949-014 Lisboa, Portugal<br />

2 Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Departamento<br />

de Matemática„ Instituto Superior Técnico, Av. Rovisco<br />

Pais 1, 1049-001 Lisboa, Portugal<br />

3 Instituto de Biologıa Molecular y Celular de Plantas, Centro Superior<br />

de Investigaci<strong>on</strong>es Científicas-UPV, Ingeniero Fausto Elio s/n,<br />

46022 Valência, Spain<br />

Chaos and crises in a model for cooperative hunting<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperative hunting<br />

extending <str<strong>on</strong>g>th</str<strong>on</strong>g>e McCann and Yodzis model for a <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-species food chain system wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a predator, a prey, and a resource species. The new model c<strong>on</strong>siders <str<strong>on</strong>g>th</str<strong>on</strong>g>at a given<br />

fracti<strong>on</strong> σ <str<strong>on</strong>g>of</str<strong>on</strong>g> predators cooperates in prey’s hunting, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

1 − σ hunts wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out cooperati<strong>on</strong>. We use <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> symbolic dynamics to<br />

study <str<strong>on</strong>g>th</str<strong>on</strong>g>e topological entropy and <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter space ordering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e kneading<br />

sequences associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>e-dimensi<strong>on</strong>al maps <str<strong>on</strong>g>th</str<strong>on</strong>g>at reproduce significant aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e species under several degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperative hunting. Our<br />

model also allows us to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called deterministic extincti<strong>on</strong> via chaotic<br />

crisis and transient chaos in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperative hunting.<br />

249


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Claire Dufourd<br />

Umr PVBMT - CIRAD, FR-974200 Saint Pierre<br />

e-mail: claire.dufourd@gmail.com<br />

Yves Dum<strong>on</strong>t<br />

Umr AMAP - CIRAD, FR-34980 M<strong>on</strong>tpellier<br />

e-mail: yves.dum<strong>on</strong>t@cirad.fr<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Spatio-temporal modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Aedes albopictus dispersal in<br />

Réuni<strong>on</strong> Island. Applicati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e release <str<strong>on</strong>g>of</str<strong>on</strong>g> Sterile Insects.<br />

This work is part <str<strong>on</strong>g>of</str<strong>on</strong>g> a project, called <str<strong>on</strong>g>th</str<strong>on</strong>g>e SIT-project, <str<strong>on</strong>g>th</str<strong>on</strong>g>at aims to develop biological<br />

c<strong>on</strong>trol tools to prevent or stop a Chikungunya epidemic. Chikungunya is somehow<br />

a uncomm<strong>on</strong> disease and before <str<strong>on</strong>g>th</str<strong>on</strong>g>e huge epidemic in Réuni<strong>on</strong> island and in India in<br />

2006, our knowledges <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is virus were small. Recently, in September 2010, a few<br />

cases <str<strong>on</strong>g>of</str<strong>on</strong>g> Chikungunya appeared in Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> France, indicating <str<strong>on</strong>g>th</str<strong>on</strong>g>at Chikungunya is<br />

not <strong>on</strong>ly a tropical disease but can potentially appear in Europe. The appearance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Chikungunya is str<strong>on</strong>gly c<strong>on</strong>nected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spreading <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its principal<br />

vector, Aedes albopictus. This mosquito is now well established in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Europe. In [1] and [2], we were mainly c<strong>on</strong>cerned <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic<br />

and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical vector c<strong>on</strong>trol tools, like adulticides and larvicides, and<br />

mechanical c<strong>on</strong>trol, which c<strong>on</strong>sists in reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e breeding sites. Unfortunately,<br />

using chemical c<strong>on</strong>trol tools, in Réuni<strong>on</strong> Island is not really a good idea. First,<br />

because Réuni<strong>on</strong> Island is a hot spot <str<strong>on</strong>g>of</str<strong>on</strong>g> endemicity, and sec<strong>on</strong>d because mosquito<br />

can develop a resistance to insecticides. In a recent paper, we have developed a<br />

new model <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Sterile Insect Technique (SIT) as an alternative to<br />

insecticides [3].<br />

All published models are temporal models, i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>ey d<strong>on</strong>’t take into account<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial comp<strong>on</strong>ent. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e previous works, we began to fill <str<strong>on</strong>g>th</str<strong>on</strong>g>is gap. Using<br />

mark-release-capture experiments, we have developed a system <str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential<br />

equati<strong>on</strong>s (PDES) in order to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e spreading/displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> an Aedes<br />

albopictus mosquito populati<strong>on</strong>. In a first approach, we have splitted <str<strong>on</strong>g>th</str<strong>on</strong>g>e females<br />

in two biological stages: <strong>on</strong>e representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e female looking for breeding sites, and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er representing females looking for blood meal. This led to a system <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

coupled partial differential equati<strong>on</strong>s. Then, we have c<strong>on</strong>sidered a full model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

more compartments including <str<strong>on</strong>g>th</str<strong>on</strong>g>e aquatic stage, imature females, female looking for<br />

blood meals, female looking for breeding sites, and males, for mating. These led to<br />

a system <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled advecti<strong>on</strong>-reacti<strong>on</strong>-diffusi<strong>on</strong> PDES. Taking into account entomological<br />

knowledges, we have included biological facts into <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s in order<br />

to be as realistic as possible. We developed appropriate numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in order<br />

to get realistic numerical simulati<strong>on</strong>s to be able to compare wi<str<strong>on</strong>g>th</str<strong>on</strong>g> "experiments" in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e fields.<br />

The main applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to optimize vector c<strong>on</strong>trol, using releases<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sterile males combined wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mechanical c<strong>on</strong>trol.<br />

References.<br />

[1] Y. Dum<strong>on</strong>t, F. Chiroleu and C. Domerg, On a temporal model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chikungunya disease:<br />

modeling, <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and numerics, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci. 213 (2008), 70-81.<br />

250


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] Y. Dum<strong>on</strong>t and F. Chiroleu, Vector C<strong>on</strong>trol for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chikungunya Disease, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Bioscience<br />

and Engineering, 7(2) (2010), 315-348.<br />

[3] Y. Dum<strong>on</strong>t and J.M. Tchuenche, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical studies <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Sterile Insect Technique for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Chikungunya Disease and Aedes albopictus, submitted.<br />

251


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Yves Dum<strong>on</strong>t<br />

Umr AMAP - CIRAD, FR-34980 M<strong>on</strong>tpellier<br />

e-mail: yves.dum<strong>on</strong>t@cirad.fr<br />

Vector-borne diseases; Tuesday, June 28, 14:30<br />

Chikungunya: an unusual vector-borne disease. Overview<br />

and new research trends.<br />

In 2006 Réuni<strong>on</strong> Island faced a huge Chikungunya epidemic. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>en, in<br />

2007, and more recently, in september 2010, a few cases <str<strong>on</strong>g>of</str<strong>on</strong>g> Chikungunya appeared<br />

in Italy and in Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> France. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e explosive epidemic in Réuni<strong>on</strong> Island, our<br />

knowledges <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chikungunya virus and its principal vector, Aedes albopictus,<br />

have increased (see [6] for instance). In some sense, Chikungunya is an unusual<br />

vector-borne disease: it has been proved <str<strong>on</strong>g>th</str<strong>on</strong>g>at a mutati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus in 2005<br />

has led to an increase in <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> from human to mosquito,<br />

and had also a str<strong>on</strong>g impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e life-span <str<strong>on</strong>g>of</str<strong>on</strong>g> infected mosquitoes [6], which<br />

may explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e explosive epidemic in 2006 in Réuni<strong>on</strong> Island. All <str<strong>on</strong>g>th</str<strong>on</strong>g>ese biological<br />

assumpti<strong>on</strong>s have been taken into account in <str<strong>on</strong>g>th</str<strong>on</strong>g>e models studied in [2,3]. After some<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical works [1, 2] <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical<br />

vector c<strong>on</strong>trol tools, like adulticides and larvicides, we recently have studied <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

"Pulsed" Sterile Insect Technique (SIT) as a biological alternative to insecticides,<br />

because mosquito can develop a resistance to insecticides [3]. Moreover SIT is<br />

known to be a species-specific envir<strong>on</strong>mentally n<strong>on</strong>polluting me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. In particular,<br />

we showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at frequent and small releases <str<strong>on</strong>g>of</str<strong>on</strong>g> sterile males can be efficient to c<strong>on</strong>trol<br />

an epidemic, but <strong>on</strong>ly if it is c<strong>on</strong>sidered early in <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic.<br />

All published models are temporal models, i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>ey d<strong>on</strong>’t take into account<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial comp<strong>on</strong>ent. Based <strong>on</strong> [2], we have filled <str<strong>on</strong>g>th</str<strong>on</strong>g>is gap, c<strong>on</strong>sidering a patchy<br />

model in order to take into account human displacements between cities in Réuni<strong>on</strong><br />

Island [1]. We have computed <str<strong>on</strong>g>th</str<strong>on</strong>g>e Global Basic Reproducti<strong>on</strong> Number, R0,G, for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e patchy model, and we have showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at even if locally R0 is less <str<strong>on</strong>g>th</str<strong>on</strong>g>an 1, R0,G<br />

can be greater <str<strong>on</strong>g>th</str<strong>on</strong>g>an 1, indicating <str<strong>on</strong>g>th</str<strong>on</strong>g>at populati<strong>on</strong> displacements could have an effect<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e global dynamic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e outbreak. For practical purposes, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at vector<br />

c<strong>on</strong>trol in cities where R0 is large, could be efficient to c<strong>on</strong>trol globally <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic.<br />

Finally, based <strong>on</strong> field experiments, we have include <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial comp<strong>on</strong>ent in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mosquito populati<strong>on</strong>. This leads to a complicate system <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong> linear partial differential equati<strong>on</strong>s [5]. The final aim is to "optimize" locally<br />

vector c<strong>on</strong>trol by reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e breeding sites or/and by using <str<strong>on</strong>g>th</str<strong>on</strong>g>e Pulsed SIT. We<br />

will illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e presentati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> numerical simulati<strong>on</strong>s.<br />

References.<br />

[1] S. Bow<strong>on</strong>g, Y. Dum<strong>on</strong>t, and J.J. Tewa, A patchy model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chikungunya Disease in<br />

Réuni<strong>on</strong> Island, submitted.<br />

[2] Y. Dum<strong>on</strong>t, F. Chiroleu and C. Domerg, On a temporal model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chikungunya disease:<br />

modeling, <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and numerics, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci. 213 (2008), 70-81.<br />

[3] Y. Dum<strong>on</strong>t and F. Chiroleu, Vector C<strong>on</strong>trol for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chikungunya Disease, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Bioscience<br />

and Engineering, 7(2) (2010), 315-348.<br />

[4] Y. Dum<strong>on</strong>t and J.M. Tchuenche, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical studies <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Sterile Insect Technique for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Chikungunya Disease and Aedes albopictus, submitted.<br />

[5] Y. Dum<strong>on</strong>t, and C. Dufourd, Spatio-temporal modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Aedes albopictus dispersal in Réuni<strong>on</strong><br />

Island. Applicati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e release <str<strong>on</strong>g>of</str<strong>on</strong>g> Sterile Insects, submitted to ECMTB 2011.<br />

252


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[6] E. Martin, S. Moutailler, Y. Madec, and A.B. Failloux, Differential resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mosquito<br />

Aedes albopictus from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Indian Ocean regi<strong>on</strong> to two chikungunya isolates, BMC Ecol. 10:8<br />

(2010).<br />

253


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chaste framework;<br />

Tuesday, June 28, 11:00<br />

Sara-Jane Dunn<br />

Computing Laboratory, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: sara-jane.dunn@comlab.ox.ac.uk<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Actin Basket and Basement<br />

Membrane in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Col<strong>on</strong>ic Crypt<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basement membrane is vital in maintaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e integrity and<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> an epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial layer, acting as bo<str<strong>on</strong>g>th</str<strong>on</strong>g> a mechanical support and forming<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e physical interface between epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding c<strong>on</strong>nective tissue.<br />

The functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is membrane is explored here in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial<br />

m<strong>on</strong>olayer <str<strong>on</strong>g>th</str<strong>on</strong>g>at lines <str<strong>on</strong>g>th</str<strong>on</strong>g>e col<strong>on</strong>ic crypt, a test tube shaped gland resp<strong>on</strong>sible for<br />

renewing <str<strong>on</strong>g>th</str<strong>on</strong>g>e intestinal surface <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a coordinated sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> cell divisi<strong>on</strong>, migrati<strong>on</strong><br />

and dea<str<strong>on</strong>g>th</str<strong>on</strong>g>. It is believed <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e first step in colorectal carcinogenesis,<br />

crypts acquire genetic mutati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at disrupt <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> cell proliferati<strong>on</strong><br />

and migrati<strong>on</strong>, which can lead to crypt buckling and fissi<strong>on</strong>. To identify<br />

mechanisms resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>is, a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e crypt wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a realistic, deformable<br />

geometry is required, which takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissue<br />

stroma in maintaining crypt homeostasis <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cell events.<br />

A model is proposed here to directly address <str<strong>on</strong>g>th</str<strong>on</strong>g>ese criteria. An <str<strong>on</strong>g>of</str<strong>on</strong>g>f-lattice<br />

cell-centre modelling approach is adopted, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cell-cell c<strong>on</strong>nectivity defined by a<br />

Delaunay triangulati<strong>on</strong>, and polyg<strong>on</strong>al cell shapes realistically prescribed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dual Vor<strong>on</strong>oi tessellati<strong>on</strong>. As such, cell centres are defined by nodes <str<strong>on</strong>g>th</str<strong>on</strong>g>at are free<br />

to move in space, which are c<strong>on</strong>nected to neighbouring cells al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e lines <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

triangulati<strong>on</strong>. A novel me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basement membrane<br />

benea<str<strong>on</strong>g>th</str<strong>on</strong>g> a growing epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium is presented, which subsequently allows <str<strong>on</strong>g>th</str<strong>on</strong>g>e desired<br />

crypt geometry to develop, ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an to be imposed. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er to <str<strong>on</strong>g>th</str<strong>on</strong>g>is, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous meshwork <str<strong>on</strong>g>of</str<strong>on</strong>g> actin <str<strong>on</strong>g>th</str<strong>on</strong>g>at forms a basket below each<br />

crypt base, and which provides stability to <str<strong>on</strong>g>th</str<strong>on</strong>g>is regi<strong>on</strong>.<br />

Results from in silico simulati<strong>on</strong>s show <str<strong>on</strong>g>th</str<strong>on</strong>g>at homeostasis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e growing epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial<br />

m<strong>on</strong>olayer can be achieved and sustained wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is modelling framework,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e necessary balance <str<strong>on</strong>g>of</str<strong>on</strong>g> interactive cell forces, cell migrati<strong>on</strong> and cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

are presented. This work forms <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis for investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e crypt structure <str<strong>on</strong>g>th</str<strong>on</strong>g>at can occur due to proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells exhibiting mutant<br />

phenotypes, experiments <str<strong>on</strong>g>th</str<strong>on</strong>g>at would not be possible in vivo or in vitro.<br />

This model is proposed as <str<strong>on</strong>g>th</str<strong>on</strong>g>e foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a realistic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial sheet in a deformable envir<strong>on</strong>ment. Whilst it is applied here specifically<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e col<strong>on</strong>ic crypt, <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic principles extend to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er biological epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elia,<br />

such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e interfollicular epidermis, or <str<strong>on</strong>g>th</str<strong>on</strong>g>e olfactory mucous membrane. Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

work and <str<strong>on</strong>g>th</str<strong>on</strong>g>e results presented, hold potential for future research in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er biological<br />

c<strong>on</strong>texts.<br />

254


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Thomas A. Dunt<strong>on</strong><br />

e-mail: <str<strong>on</strong>g>th</str<strong>on</strong>g>omas.dunt<strong>on</strong>@comlab.ox.ac.uk<br />

James M. Osborne<br />

e-mail: james.osborne@comlab.ox.ac.uk<br />

David J. Gavaghan<br />

e-mail: david.gavaghan@comlab.ox.ac.uk<br />

Mark S.P. Sansom<br />

e-mail: mark.sansom@bioch.ox.ac.uk<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

A discrete simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein movement and<br />

protein-protein interacti<strong>on</strong>s in a biological membrane<br />

The membrane is a complex and dynamic system <str<strong>on</strong>g>th</str<strong>on</strong>g>at plays a major role in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic processes <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms. The lateral organizati<strong>on</strong> and dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

proteins in <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane are important factors in c<strong>on</strong>trolling membrane bioactivity.<br />

Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane, which strive to maintain biological realism, enable<br />

us to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>ese processes. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to explore time and<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> scales <str<strong>on</strong>g>th</str<strong>on</strong>g>at are not accessible to all-atom, or even coarse-grained, molecular<br />

dynamics (MD) simulati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are currently undertaken. Here we present a novel<br />

simulati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for a system <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic membrane peptides, WALP-23, in a<br />

DPPC phospholipid bilayer.<br />

We are able to investigate many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e features <str<strong>on</strong>g>th</str<strong>on</strong>g>at are observable in MD simulati<strong>on</strong>s,<br />

but at a fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al cost. The ability to simulate l<strong>on</strong>ger<br />

time and leng<str<strong>on</strong>g>th</str<strong>on</strong>g> scales also enables us to investigate aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulated system<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at we would be unable to investigate wi<str<strong>on</strong>g>th</str<strong>on</strong>g> MD. We can look at <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>ger-term<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein clusters, investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>eir mobility, lifetime and rates <str<strong>on</strong>g>of</str<strong>on</strong>g> coalescence.<br />

We are also able to look at <str<strong>on</strong>g>th</str<strong>on</strong>g>e larger-scale structures <str<strong>on</strong>g>th</str<strong>on</strong>g>at form, allowing<br />

us to make comparis<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental data from techniques like atomic force<br />

microscopy.<br />

We employ an <str<strong>on</strong>g>of</str<strong>on</strong>g>f-lattice model, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane represented as a two dimensi<strong>on</strong>al<br />

sheet and <str<strong>on</strong>g>th</str<strong>on</strong>g>e proteins described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir centre <str<strong>on</strong>g>of</str<strong>on</strong>g> mass.<br />

The simulati<strong>on</strong> uses stochastic Brownian dynamics to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proteins<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough a lipid c<strong>on</strong>tinuum. Forces between proteins, mostly a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

hydrophobic mismatch between <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein and <str<strong>on</strong>g>th</str<strong>on</strong>g>e bilayer, act al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e line <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

centres. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding lipids <strong>on</strong> each protein is manifested bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Brownian moti<strong>on</strong>, and in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

inter-protein forces.<br />

We use MD simulati<strong>on</strong>s to characterise <str<strong>on</strong>g>th</str<strong>on</strong>g>e force between proteins. The interprotein<br />

force for a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> WALP-23 proteins in a DPPC bilayer can be measured<br />

whilst varying <str<strong>on</strong>g>th</str<strong>on</strong>g>e separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir centres <str<strong>on</strong>g>of</str<strong>on</strong>g> mass. The benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e inter-protein force includes c<strong>on</strong>tributi<strong>on</strong>s from different sources. Some <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese, such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e hydrophobic mismatch, would be difficult to characterise wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out<br />

such a calculati<strong>on</strong>. By improving <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameterizati<strong>on</strong> process and looking at<br />

more protein species we can work towards a more varied and realistic membrane<br />

simulati<strong>on</strong>.<br />

255


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling III; Wednesday, June 29,<br />

17:00<br />

Geneviève Dup<strong>on</strong>t<br />

Université Libre de Bruxelles<br />

e-mail: gdup<strong>on</strong>t@ulb.ac.be<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal organisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular<br />

calcium signalling : from mechanism to physiology<br />

Signal-induced Ca2+ oscillati<strong>on</strong>s have been observed in many cell types and play a<br />

primary role in cell physiology. They mediate vital physiological processes such as<br />

secreti<strong>on</strong>, gene expressi<strong>on</strong> or fertilizati<strong>on</strong>. Specificity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological resp<strong>on</strong>ses<br />

is ensured by <str<strong>on</strong>g>th</str<strong>on</strong>g>e high level <str<strong>on</strong>g>of</str<strong>on</strong>g> spatio-temporal organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca2+ dynamics<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic sub-cellular increases, regular oscillati<strong>on</strong>s and intra- or<br />

intercellular Ca2+ waves. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, I’ll illustrate <strong>on</strong> some specific examples how<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between experiments and modelling can help uncovering <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular<br />

mechanisms resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular Ca2+<br />

dynamics and for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir physiological role. The peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ca2+ oscillati<strong>on</strong>s<br />

induced by stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mGluR5 will be presented in more details.<br />

256


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Crowd Dynamics: Modeling, Analysis and Simulati<strong>on</strong> (Part 2); Wednesday,<br />

June 29, 14:30<br />

Bertram Düring<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex<br />

e-mail: b.during@sussex.ac.uk<br />

Kinetic modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> opini<strong>on</strong> leadership<br />

We propose a kinetic model for opini<strong>on</strong> formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g opini<strong>on</strong><br />

leaders. Our approach is based <strong>on</strong> an opini<strong>on</strong> formati<strong>on</strong> model introduced in<br />

Toscani (2006) and borrows ideas from <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> rarefied<br />

gases. Starting from microscopic interacti<strong>on</strong>s am<strong>on</strong>g individuals, we arrive at a<br />

macroscopic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e opini<strong>on</strong> formati<strong>on</strong> process which is characterized by<br />

a system <str<strong>on</strong>g>of</str<strong>on</strong>g> Fokker-Planck type equati<strong>on</strong>s. We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

system and present numerical results.<br />

257


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell migrati<strong>on</strong> during development: modelling and experiment; Saturday,<br />

July 2, 08:30<br />

Louise Dys<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: louise.dys<strong>on</strong>@balliol.ox.ac.uk<br />

Ru<str<strong>on</strong>g>th</str<strong>on</strong>g> Baker<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: ru<str<strong>on</strong>g>th</str<strong>on</strong>g>.baker@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Philip Maini<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: maini@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Paul Kulesa<br />

Stowers Institute for Medical Research<br />

e-mail: PMK@stowers.org<br />

Models <str<strong>on</strong>g>of</str<strong>on</strong>g> neural crest cell migrati<strong>on</strong> during development<br />

Elucidating <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms underlying <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell movement and rearrangement <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

turn a clump <str<strong>on</strong>g>of</str<strong>on</strong>g> cells into a functi<strong>on</strong>ing organism requires close collaborati<strong>on</strong>s between<br />

experimentalists and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modellers. One such important phenomen<strong>on</strong><br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> neural crest cell migrati<strong>on</strong> during embryogenesis. A two-dimensi<strong>on</strong>al<br />

individual-based model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cranial neural crest cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing<br />

chick embryo has been formulated. The model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple agent<br />

types and predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> cells to an underlying chemoattractant which<br />

is used up by <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells. The model is used to make predicti<strong>on</strong>s which are <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

tested experimentally. This talk will outline <str<strong>on</strong>g>th</str<strong>on</strong>g>e stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modelling process,<br />

dem<strong>on</strong>strating how repeated cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> model c<strong>on</strong>structi<strong>on</strong>, experimental validati<strong>on</strong><br />

and testing are vital for fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ering our understanding in <str<strong>on</strong>g>th</str<strong>on</strong>g>e area.<br />

258


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Plants, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and transport processes II; Tuesday, June 28, 14:30<br />

R.J. Dys<strong>on</strong><br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Birmingham<br />

e-mail: R.J.Dys<strong>on</strong>@bham.ac.uk<br />

The mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> plant root grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Many growing plant cells undergo rapid axial el<strong>on</strong>gati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> negligible radial<br />

expansi<strong>on</strong>. Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is driven by high internal turgor pressure causing viscous<br />

stretching <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell wall, a complex structure c<strong>on</strong>taining stiff cellulose micr<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrils,<br />

embedded wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a pectin ground matrix and linked <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a network <str<strong>on</strong>g>of</str<strong>on</strong>g> hemicellulose<br />

crosslinks. This microstructure produces n<strong>on</strong>-linear anisotropic mechanical<br />

behaviour, and can be manipulated under enzymatic c<strong>on</strong>trol to alter <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate. We first present a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical model <str<strong>on</strong>g>of</str<strong>on</strong>g> a growing cell, representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary<br />

cell wall as a <str<strong>on</strong>g>th</str<strong>on</strong>g>in axisymmetric fibre-reinforced viscous sheet supported between<br />

rigid end plates. Asymptotic reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e governing equati<strong>on</strong>s, under simple<br />

sets <str<strong>on</strong>g>of</str<strong>on</strong>g> assumpti<strong>on</strong>s about <str<strong>on</strong>g>th</str<strong>on</strong>g>e fibre and wall properties, yields variants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e traditi<strong>on</strong>al<br />

Lockhart equati<strong>on</strong>, which relates <str<strong>on</strong>g>th</str<strong>on</strong>g>e axial cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate to <str<strong>on</strong>g>th</str<strong>on</strong>g>e internal<br />

pressure. The model provides insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e geometric and biomechanical parameters<br />

underlying bulk quantities such as wall extensibility and shows how ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

dynamical changes in wall material properties or passive fibre reorientati<strong>on</strong> may<br />

suppress cell el<strong>on</strong>gati<strong>on</strong>. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en investigate how <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cell wall microstructure can lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e required dynamic changes in macroscale<br />

wall material properties, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us dem<strong>on</strong>strate a mechanism by which horm<strong>on</strong>es<br />

may regulate plant grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Using knowledge gained from <str<strong>on</strong>g>th</str<strong>on</strong>g>e single cell model, we<br />

c<strong>on</strong>sider a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> hemicellulose crosslink dynamics incorporating<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> strain-enhanced breakage and enzyme-mediated breakage and reformati<strong>on</strong>.<br />

The relati<strong>on</strong>ship between stress and strain-rate is shown to exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic<br />

yielding-type behaviour seen experimentally. The model shows how <str<strong>on</strong>g>th</str<strong>on</strong>g>is stress<br />

strain-rate relati<strong>on</strong>ship is modified in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes and predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crosslinks and stress wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell wall.<br />

259


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling V; Saturday, July 2, 11:00<br />

Michal Dyzma<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research<br />

Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw<br />

e-mail: mdyzma@ippt.gov.pl<br />

Piotr Szopa<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research<br />

Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw<br />

e-mail: pszopa@ippt.gov.pl<br />

Bogdan Kazmierczak<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research<br />

Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw<br />

e-mail: bkazmier@ippt.gov.pl<br />

Three pool model <str<strong>on</strong>g>of</str<strong>on</strong>g> self sustained calcium oscilati<strong>on</strong>s<br />

In additi<strong>on</strong> to energy producti<strong>on</strong>, mitoch<strong>on</strong>dria are involved in crucial cellular<br />

signaling processes. They are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important organelles resp<strong>on</strong>sible for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Ca 2+ regulatory pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. Several ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models explaining<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese mechanisms were created but <strong>on</strong>ly few <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em describe an interplay between<br />

calcium c<strong>on</strong>centrati<strong>on</strong> in endoplasmic reticulum (ER), cytoplasm and mitoch<strong>on</strong>dria<br />

(see e.g. [1]). Experiments measuring calcium c<strong>on</strong>centrati<strong>on</strong>s in mitoch<strong>on</strong>dria and<br />

ER suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> cytosolic microdomains wi<str<strong>on</strong>g>th</str<strong>on</strong>g> locally increased calcium<br />

c<strong>on</strong>centrati<strong>on</strong> (CMDs) in <str<strong>on</strong>g>th</str<strong>on</strong>g>e nearest vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e outer mitoch<strong>on</strong>drial membrane.<br />

CMDs allow Ca 2+ to be taken up by mitoch<strong>on</strong>dria rapidly and form a steep c<strong>on</strong>centrati<strong>on</strong><br />

gradient. Such microdomains have been described lately as a MAM -<br />

mitoch<strong>on</strong>dria-associated ER membrane. To simulate calcium oscillati<strong>on</strong>s more accurately,<br />

we propose a model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an additi<strong>on</strong>al direct calcium flow between ER<br />

and mitoch<strong>on</strong>dria which takes into account recently discovered specific physical<br />

c<strong>on</strong>necti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two organelles. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed model we have shown<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e global existence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>negative soluti<strong>on</strong>s. We examined numerically <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stable limit cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+ oscillati<strong>on</strong>s, basin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir attracti<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cycles period <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters.<br />

References.<br />

[1] M. Marhl, T. Haberichter, M. Brumen, R. Heinrich Complex calcium oscillati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e role<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mitoch<strong>on</strong>dria and cytosolic proteins BioSystems 57 75–86.<br />

260


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemic models: Networks and stochasticity I; Wednesday, June 29, 14:30<br />

Ken Eames<br />

L<strong>on</strong>d<strong>on</strong> School <str<strong>on</strong>g>of</str<strong>on</strong>g> Hygiene and Tropical Medicine<br />

e-mail: Ken.Eames@lshtm.ac.uk<br />

Measuring and modelling changing social c<strong>on</strong>tact patterns<br />

Social networks <str<strong>on</strong>g>of</str<strong>on</strong>g>fer an attractive way <str<strong>on</strong>g>of</str<strong>on</strong>g> viewing patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> human c<strong>on</strong>tacts;<br />

however, it is seldom (never?) possible to accurately measure an epidemiologicallyrelevant<br />

network in all its detail and complexity. In practice, <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore, models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disease spread are obliged to make a range <str<strong>on</strong>g>of</str<strong>on</strong>g> simplificati<strong>on</strong>s. One comm<strong>on</strong> simplificati<strong>on</strong><br />

is to assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tacts do not change over time; more ambitious<br />

models make plausible, <str<strong>on</strong>g>th</str<strong>on</strong>g>ough somewhat ad hoc, assumpti<strong>on</strong>s to capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g>, for example, school holidays. In c<strong>on</strong>trast, we present an age-structured<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> H1N1v influenza (swine flu) in <str<strong>on</strong>g>th</str<strong>on</strong>g>e UK in 2009, parameterised<br />

using data from a social c<strong>on</strong>tact survey completed by an internet-based<br />

cohort <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is simple model can<br />

provide remarkably satisfying representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> disease incidence data. We c<strong>on</strong>clude<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at even when detailed social network data are unavailable all is not lost.<br />

261


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modelling bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms: from gene regulati<strong>on</strong> to large-scale structure and<br />

functi<strong>on</strong>; Wednesday, June 29, 17:00<br />

Hermann Eberl<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Guelph<br />

e-mail: heberl@uoguelph.ca<br />

A numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for a doubly degenrate<br />

diffusi<strong>on</strong>-reacti<strong>on</strong> model describing bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm processes<br />

Some bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm systems and processes can be described by quasilinear parabolic equati<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two n<strong>on</strong>-Fickian diffusi<strong>on</strong> effects: (i) degeneracy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> coefficients<br />

for vanishing biomass density, and (ii) a super-diffusi<strong>on</strong> singularity when <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

maximum biomass density is reached. Phenomen<strong>on</strong> (i) guarantees a well defined<br />

interface between <str<strong>on</strong>g>th</str<strong>on</strong>g>e bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm and <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding aqueous phase <str<strong>on</strong>g>th</str<strong>on</strong>g>at moves at<br />

finite speed, phenomen<strong>on</strong> (ii) ensures <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum biomass density is not exceeded.<br />

In numerical simulati<strong>on</strong>s bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese aspects are not easy to deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g>. We<br />

discuss a simple, yet relatively robust numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at under <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

numerical realisati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> (i) and (ii) are maintained, we give a stability<br />

result, show c<strong>on</strong>vergence numerically by grid refinement, and discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e parallel<br />

speed-up gained <strong>on</strong> OpenMP platforms.<br />

262


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent advances in infectious disease modelling II; Saturday, July 2, 14:30<br />

Raluca Eftimie<br />

McMaster University<br />

e-mail: reftimie@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.mcmaster.ca<br />

Using viruses to eliminate tumours: <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

multi-stability and multi-instability phenomena<br />

Recent advances in virology, gene <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and molecular and cell biology have<br />

provided insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>rough which viruses can boost <str<strong>on</strong>g>th</str<strong>on</strong>g>e antitumour<br />

immune resp<strong>on</strong>se, or can infect and kill directly tumour cells. Here, we<br />

derive a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-tumour effect <str<strong>on</strong>g>of</str<strong>on</strong>g> two viruses<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune cells. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> virus persistence<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour cells. To <str<strong>on</strong>g>th</str<strong>on</strong>g>is end, we focus <strong>on</strong> multi-stability<br />

and multi-instability, two complex phenomena <str<strong>on</strong>g>th</str<strong>on</strong>g>at can cause abrupt transiti<strong>on</strong>s<br />

between different states in biological and physical systems. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer<br />

immuno<str<strong>on</strong>g>th</str<strong>on</strong>g>erapies, <str<strong>on</strong>g>th</str<strong>on</strong>g>e transiti<strong>on</strong>s between a tumour-free and a tumour-present<br />

state were so far associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e multi-stability phenomen<strong>on</strong>. Here, we show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e multi-instability phenomen<strong>on</strong> can lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a homoclinic<br />

bifurcati<strong>on</strong>, which causes <str<strong>on</strong>g>th</str<strong>on</strong>g>e system to switch from a tumour-present to a tumourfree<br />

state. This multi-instability phenomen<strong>on</strong> is driven by <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

virus, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e multi-stability phenomen<strong>on</strong> is driven by <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se.<br />

263


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bridging <str<strong>on</strong>g>th</str<strong>on</strong>g>e Divide: Cancer Models in Clinical Practice; Thursday, June 30,<br />

11:30<br />

Marisa Eisenberg<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, The Ohio State University<br />

e-mail: meisenberg@mbi.osu.edu<br />

Modeling Remnant Ablati<strong>on</strong> Protocols in Thyroid Cancer<br />

Thyroidectomy <str<strong>on</strong>g>of</str<strong>on</strong>g> pediatric and adult patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> differentiated <str<strong>on</strong>g>th</str<strong>on</strong>g>yroid cancer is<br />

typically followed by radioactive iodine treatment to ablate <str<strong>on</strong>g>th</str<strong>on</strong>g>yroid remnants. A<br />

comm<strong>on</strong> protocol for <str<strong>on</strong>g>th</str<strong>on</strong>g>is followup treatment is to give replacement <str<strong>on</strong>g>th</str<strong>on</strong>g>yroid horm<strong>on</strong>e<br />

T4 after surgery as <str<strong>on</strong>g>th</str<strong>on</strong>g>e patient recovers, and <str<strong>on</strong>g>th</str<strong>on</strong>g>en wi<str<strong>on</strong>g>th</str<strong>on</strong>g>draw replacement horm<strong>on</strong>e<br />

for 2-3 weeks to raise TSH levels to 30 mU/L or higher, as radioiodine uptake is<br />

improved when TSH levels are high. Patients may be quite sick and impaired during<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese several weeks, due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e severe clinically hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>yroid c<strong>on</strong>diti<strong>on</strong> generated. To<br />

explore whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>is protocol can be improved, we adapted a physiologically based<br />

ODE model <str<strong>on</strong>g>of</str<strong>on</strong>g> adult hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>alamic-pituitary-<str<strong>on</strong>g>th</str<strong>on</strong>g>yroid axis regulati<strong>on</strong> to incorporate<br />

severe hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>yroid effects, as well as adjusting <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters to model pediatric<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>yroid cancer using pediatric clinical data. We simulated a range <str<strong>on</strong>g>of</str<strong>on</strong>g> replacement<br />

protocols to establish wi<str<strong>on</strong>g>th</str<strong>on</strong>g>drawal times needed to raise TSH levels > 30 mU/L, each<br />

for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue remnant percentages based <strong>on</strong> typical clinical remnants after<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>yroidectomy. We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at use <str<strong>on</strong>g>of</str<strong>on</strong>g> T3-<strong>on</strong>ly after <str<strong>on</strong>g>th</str<strong>on</strong>g>yroidectomy, ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an T4,<br />

can substantially reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e wi<str<strong>on</strong>g>th</str<strong>on</strong>g>drawal time needed prior to radioiodine ablati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, <str<strong>on</strong>g>th</str<strong>on</strong>g>ereby decreasing patient morbidity.<br />

264


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Game <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical modelling and optimizati<strong>on</strong> in evoluti<strong>on</strong> and ecology I;<br />

Tuesday, June 28, 11:00<br />

Maciej Jan Ejsm<strong>on</strong>d<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences, Jagiell<strong>on</strong>ian University<br />

e-mail: maciek.ejsm<strong>on</strong>d@uj.edu.pl<br />

Filip Kapustka<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences, Jagiell<strong>on</strong>ian University<br />

Macrin Czarnołęski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences, Jagiell<strong>on</strong>ian University<br />

Jan Kozłowski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences, Jagiell<strong>on</strong>ian University<br />

More capital or income breeding optimal strategies for<br />

indeterminate growers in <str<strong>on</strong>g>th</str<strong>on</strong>g>e seas<strong>on</strong>al envir<strong>on</strong>ment<br />

We use dynamic optimizati<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m to find adaptive schedules <str<strong>on</strong>g>of</str<strong>on</strong>g> energy allocati<strong>on</strong><br />

to grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and reproducti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e seas<strong>on</strong>al envir<strong>on</strong>ment for an organism <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

can be capital or income breeder. Value <str<strong>on</strong>g>of</str<strong>on</strong>g> newborns in our model is related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

timing <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong>. Our results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between newborns<br />

value and storing reserves for reproducti<strong>on</strong> can be highly negatively correlated.<br />

Importantly <str<strong>on</strong>g>th</str<strong>on</strong>g>e reliance <strong>on</strong> reserves in reproducti<strong>on</strong> may be optimal wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

stochastic changes in envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s usually assumed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

capital breeding evoluti<strong>on</strong>. Our results c<strong>on</strong>firm also <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea <str<strong>on</strong>g>th</str<strong>on</strong>g>at optimality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

capital breeding strategy depends <strong>on</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> energy channeling from reserves<br />

to reproducti<strong>on</strong>.<br />

265


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Saturday, July 2, 08:30<br />

A. M. Elaiw<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, King Abdulaziz University,<br />

P.O. Box 80203, Jeddah 21589, Saudi Arabia.<br />

e-mail: a_m_elaiw@yahoo.com<br />

Global properties <str<strong>on</strong>g>of</str<strong>on</strong>g> virus dynamics models wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

multi-target cells and delays<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, we propose a class <str<strong>on</strong>g>of</str<strong>on</strong>g> virus dynamics models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multi-target cells<br />

and intracellular delays and study <str<strong>on</strong>g>th</str<strong>on</strong>g>eir global properties. We first study <str<strong>on</strong>g>th</str<strong>on</strong>g>e global<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a virus dynamics model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two target cells and delays. Then we<br />

introduce two new virus dynamics models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multi-target cells and delays. The<br />

first model is a (2n + 1)-dimensi<strong>on</strong>al n<strong>on</strong>linear delay ODEs <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus, n class <str<strong>on</strong>g>of</str<strong>on</strong>g> target cells (uninfected cells) and n class <str<strong>on</strong>g>of</str<strong>on</strong>g> infected<br />

target cells. The sec<strong>on</strong>d model generalizes <str<strong>on</strong>g>th</str<strong>on</strong>g>e first <strong>on</strong>e by assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong><br />

rate is given by saturati<strong>on</strong> functi<strong>on</strong>al resp<strong>on</strong>se. Two classes <str<strong>on</strong>g>of</str<strong>on</strong>g> time delays<br />

are incorporated into <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models, (i) <str<strong>on</strong>g>th</str<strong>on</strong>g>e times needed for newly infected cells<br />

to start to produce viruses, (ii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e time for newly produced virus to become infectious<br />

(matures). Lyapunov functi<strong>on</strong>als are c<strong>on</strong>structed to establish <str<strong>on</strong>g>th</str<strong>on</strong>g>e global<br />

asymptotic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e uninfected and infected steady states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models.<br />

We have proven <str<strong>on</strong>g>th</str<strong>on</strong>g>at if <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproducti<strong>on</strong> number R0 is less <str<strong>on</strong>g>th</str<strong>on</strong>g>an unity <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e uninfected steady state is globally asymptotically stable, and if R0 > 1 (or if<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e infected steady state exists) <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected steady state is globally asymptotically<br />

stable.<br />

Keywords: Global stability; viral infecti<strong>on</strong>; intracellular delays; direct Lyapunov<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od.<br />

266


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Wednesday, June 29, 08:30<br />

E.Ait Dads<br />

Université Cadi Ayyad, Département de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques, Faculté des<br />

Sciences, B.P. 2390 Marrakech, Morocco<br />

e-mail: aitdads@ucam.ac.ma<br />

P. Cieutat<br />

Laboratoire de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques de Versailles, Université de Versailles<br />

Saint-Quentin en Yvelines, 45 Avenue des Etats-Unis, 78035 Versailles<br />

Cedex, France<br />

e-mail: Philippe.Cieutat@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.uvsq.fr<br />

L. Lhachimi<br />

Université Cadi Ayyad, Département de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques, Faculté des<br />

Sciences, B.P. 2390 Marrakech, Morocco<br />

e-mail: lhachimi@voila.fr<br />

Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> Positive Almost Periodic or Ergodic Soluti<strong>on</strong>s<br />

for Some Neutral N<strong>on</strong>linear Integral Equati<strong>on</strong>s<br />

As we all know, <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al differential<br />

equati<strong>on</strong>s (FDE) has great <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical and practical significance and is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

problems <str<strong>on</strong>g>of</str<strong>on</strong>g> great interest to scholars in <str<strong>on</strong>g>th</str<strong>on</strong>g>e field. Since Yoshizawa [2] presented an<br />

excellent result for <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic soluti<strong>on</strong>s to FDE wi<str<strong>on</strong>g>th</str<strong>on</strong>g> bounded delay,<br />

Cooke and Huang [3], Burt<strong>on</strong> and Hatvani [1] generalized Yoshizawa’s result to<br />

FDE wi<str<strong>on</strong>g>th</str<strong>on</strong>g> infinite delay. We remark <str<strong>on</strong>g>th</str<strong>on</strong>g>at, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no phenomen<strong>on</strong><br />

which is purely periodic, <str<strong>on</strong>g>th</str<strong>on</strong>g>is gives <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e almost periodic situati<strong>on</strong>.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, we c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e following neutral n<strong>on</strong>linear integral equati<strong>on</strong><br />

(1) x(t) = γx(t − σ) + (1 − γ)<br />

t<br />

t−σ<br />

f(s, x(s)) ds,<br />

where 0 ≤ γ < 1, σ > 0 and f : R × R + → R + is a c<strong>on</strong>tinuous map.<br />

We give sufficient c<strong>on</strong>diti<strong>on</strong>s which guarantee <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> almost periodic<br />

soluti<strong>on</strong>s for Equati<strong>on</strong> (1). We also treat <str<strong>on</strong>g>th</str<strong>on</strong>g>e ergodic soluti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at means <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

asymptotically almost periodic, <str<strong>on</strong>g>th</str<strong>on</strong>g>e weakly almost periodic and pseudo almost periodic<br />

soluti<strong>on</strong>s. Hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses <str<strong>on</strong>g>of</str<strong>on</strong>g> our results do not impose <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> f(t, .)<br />

is m<strong>on</strong>ot<strong>on</strong>e. To state our results, we use a variant <str<strong>on</strong>g>of</str<strong>on</strong>g> Hilbert’s projective metric<br />

<strong>on</strong> a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> a space <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous and bounded functi<strong>on</strong>s.<br />

References.<br />

[1] T. A. Burt<strong>on</strong> and L. Hatvani, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> some n<strong>on</strong>linear<br />

functi<strong>on</strong>al-differential equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> unbounded delay, N<strong>on</strong>linear Anal. TMA 16, 389-396,<br />

(1991).<br />

[2] T. Yoshizawa, Stability <str<strong>on</strong>g>th</str<strong>on</strong>g>eory by Liapunov’s sec<strong>on</strong>d me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, Publicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, No. 9 The Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan, Tokio, 1966.<br />

[3] K. L. Cooke and W. Z. Huang, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem for linearizati<strong>on</strong> for state-dependent delay<br />

differential equati<strong>on</strong>s, Proc. Amer. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Soc. 124, 1417-1426, (1996).<br />

[4] E. Ait Dads, O. Arino, K. Ezzinbi, Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic soluti<strong>on</strong> for some neutral n<strong>on</strong>linear<br />

integral equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> delay time dependent, Facta Univ. Ser. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Inform. 11 (1996), 79-92.<br />

[5] E. Ait Dads, K. Ezzinbi, Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> positive pseudo-almost periodic soluti<strong>on</strong> for a class<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al equati<strong>on</strong>s arising in epidemic problems, Cybernet. Systems Anal. 30 (1994),<br />

900-910.<br />

267


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[6] E. Ait Dads, K. Ezzinbi, Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> positive pseudo-almost-periodic soluti<strong>on</strong> for some n<strong>on</strong>linear<br />

infinite delay integral equati<strong>on</strong>s arising in epidemic problems, N<strong>on</strong>linear Anal. 41<br />

(2000), 1-13.<br />

[7] S. Busenberg, K. Cooke, Periodic soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> delay differential equati<strong>on</strong>s arising in some<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics, Applied N<strong>on</strong>linear Analysis (Proc. Third Internat. C<strong>on</strong>f., Univ. Texas,<br />

Arlingt<strong>on</strong>, Tex., 1978), pp. 67-78, Academic Press, New York, 1979.<br />

[8] K. Cooke, J. Kaplan, A periodicity <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold <str<strong>on</strong>g>th</str<strong>on</strong>g>eorem for epidemics and populati<strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>,<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci. 31 (1976), 87-104.<br />

[9] K. Ezzinbi, M. Hachimi, Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> positive almost periodic soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al equati<strong>on</strong>s<br />

via Hilbert’s projective metric, N<strong>on</strong>linear Anal. 26 (1996), 1169-1176.<br />

[10] D. Guo, V. Lakshmikan<str<strong>on</strong>g>th</str<strong>on</strong>g>am, Positive soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear integral equati<strong>on</strong>s arising in<br />

infectious diseases, J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Anal. Appl. 134 (1988), 1-8.<br />

268


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Federico Elias Wolff<br />

Chalmers University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics<br />

e-mail: federice@student.chalmers.se<br />

Anders Erikss<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology<br />

Bernhard Mehlig<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics<br />

Models for extincti<strong>on</strong> in metapopulati<strong>on</strong>s<br />

Standard metapopulati<strong>on</strong> models assume a timescale separati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e local<br />

dynamics (fast), and <str<strong>on</strong>g>th</str<strong>on</strong>g>e global dynamics, allowing for a much simpler treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole populati<strong>on</strong>. This assumpti<strong>on</strong> is however not realistic. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a Master<br />

equati<strong>on</strong> we implement a metapopulati<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> general wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-patch dynamics.<br />

We implement a Fokker-Planck approximati<strong>on</strong>, by means <str<strong>on</strong>g>of</str<strong>on</strong>g> expanding <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

inverse number <str<strong>on</strong>g>of</str<strong>on</strong>g> patches, to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e quasi-steady state and <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> typical<br />

fluctuati<strong>on</strong>s. We use also WKB <str<strong>on</strong>g>th</str<strong>on</strong>g>eory in order to calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected time to<br />

extincti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>. We compare our results to numerical simulati<strong>on</strong>s,<br />

and lastly to <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard metapopulati<strong>on</strong> model.<br />

269


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Heart rate dynamics: models and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity (part II);<br />

Wednesday, June 29, 17:00<br />

J. Ellert<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiology - Intensive Therapy and Internal Diseases,<br />

Poznan University <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Sciences, Przybyszewskiego 49, Poznan,<br />

Poland<br />

e-mail: jeel@epoczta.pl<br />

J. Piskorski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ziel<strong>on</strong>a Gora, Szafrana 4a, Ziel<strong>on</strong>a<br />

Gora, Poland<br />

e-mail: jaropis@zg.home.pl<br />

T. Krauze<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiology - Intensive Therapy and Internal Diseases,<br />

Poznan University <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Sciences, Przybyszewskiego 49, Poznan,<br />

Poland<br />

e-mail: tomaszkrauze@wp.pl<br />

P. Guzik<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiology - Intensive Therapy and Internal Diseases,<br />

Poznan University <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Sciences, Przybyszewskiego 49, Poznan,<br />

Poland<br />

e-mail: pguzik@ptkardio.pl<br />

Heart rate asymmetry and its reflecti<strong>on</strong> in HRV complexity<br />

measures<br />

Heart rate asymmetry (HRA) is a physiological phenomen<strong>on</strong> by which <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> decelerati<strong>on</strong>s to short-term variability is greater <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerati<strong>on</strong>s,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> accelerati<strong>on</strong>s to l<strong>on</strong>g -term variability is greater <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> decelerati<strong>on</strong>s. After shuffling <str<strong>on</strong>g>th</str<strong>on</strong>g>e above differences vanish, so it was c<strong>on</strong>cluded<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at HRA depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RR intervals series. Complexity based<br />

measures, such as sample entropy or symbolic dynamics, try to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a dataset trying it <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuum between perfect order and randomness.<br />

It is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore interesting to see if <str<strong>on</strong>g>th</str<strong>on</strong>g>e two approaches are related.<br />

Materials and me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: 30-min ECG recordings were obtained from 200<br />

heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y subjects, 87 women. Variance based asymmetry descriptors (SD1a, SD1d,<br />

SD2a, SD2d, SDNNa, SDNNd, C1d, C2d, Cd) and sample entropy (SampEn) as<br />

well as parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> symbolic dynamics (V0, V1, V2, SymbEnt) were calculated<br />

for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em. The associati<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese parameters was studied wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-parametric Kendall correlati<strong>on</strong>.<br />

Results: The variance based HRA descriptors are not associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> SampEn.<br />

C1d, C2d and Cd are statistically significantly correlated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> SampEn for<br />

m=1 (τ=−0.3, −0.13, −0.12) and <strong>on</strong>ly C1d is correlated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> SampEn for m=2<br />

(τ = −0.25). All variance parameters are correlated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> symbolic<br />

dynamic, negatively wi<str<strong>on</strong>g>th</str<strong>on</strong>g> V0 and positively wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e remaining parameters.<br />

C1d is negatively correlated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> V0 (τ = 0.3) and positively wi<str<strong>on</strong>g>th</str<strong>on</strong>g> all <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

symbolic dynamic parameters, a similar observati<strong>on</strong> can be made <str<strong>on</strong>g>of</str<strong>on</strong>g> C2d and Cd,<br />

but <str<strong>on</strong>g>th</str<strong>on</strong>g>e magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e correlati<strong>on</strong> coefficient is very small.<br />

270


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Discussi<strong>on</strong>: HRA descriptors are associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e studied complexity based<br />

parameters. The nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is associati<strong>on</strong> is, however unclear, and needs fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

study.<br />

271


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Elizabe<str<strong>on</strong>g>th</str<strong>on</strong>g> Elliott<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leeds<br />

e-mail: jhs5ece@leeds.ac.uk<br />

Stephen Cornell<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leeds<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 14:30<br />

Dispersal polymorphism and species’ invasi<strong>on</strong>s<br />

The speed at which species range expansi<strong>on</strong>s occur has important c<strong>on</strong>sequences<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>servati<strong>on</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> species experiencing climate change and for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic organisms. Dispersal and populati<strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate are known<br />

to affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>, however, little is known about what <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

having a community <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal phenotypes is <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> range expansi<strong>on</strong>.<br />

We use reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a species wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two<br />

dispersal phenotypes into a previously unoccupied landscape. These phenotypes<br />

differ in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir dispersal rate and populati<strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> phenotypes can result in faster range expansi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>an if <strong>on</strong>ly a<br />

single phenotype is present in <str<strong>on</strong>g>th</str<strong>on</strong>g>e landscape. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at typically <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong><br />

can occur up to twice as fast as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is polymorphism. This has implicati<strong>on</strong>s<br />

for predicting <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species, suggesting <str<strong>on</strong>g>th</str<strong>on</strong>g>at speeds cannot just be<br />

predicted from looking at a single phenotype and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a community<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypes needs to be taken into c<strong>on</strong>siderati<strong>on</strong>.<br />

272


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Fadoua El Moustaid<br />

e-mail: fadoua@aims.ac.za<br />

Dr. Aziz Ouhinou<br />

e-mail: aziz@aims.ac.za<br />

Dr. Lafras Uys<br />

e-mail: Lafras@aims.ac.za<br />

African Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences,<br />

Stellenbosch University,<br />

6-8 Melrose road, Muizenberg 7945, Cape town, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial attachment to surfaces:<br />

Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm initiati<strong>on</strong><br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterial bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm is a multi-stage process c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> five<br />

stages, namely, initial attachment <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria to surfaces or interfaces, irreversible<br />

attachment, first maturati<strong>on</strong>, sec<strong>on</strong>d maturati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e detachment <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria.<br />

Our interest in <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, is to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm initiati<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e early stage at<br />

low bacterial density, we use a stochastic model to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e bacterial movement<br />

towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e interfaces. Then when <str<strong>on</strong>g>th</str<strong>on</strong>g>e density is significantly high we develop<br />

a n<strong>on</strong>-linear system <str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Keller-Segel type model to<br />

illustrate more biological facts such as chemotaxis and sensing chemicals producti<strong>on</strong>.<br />

The numerical simulati<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>e models show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e sensing chemicals are highly<br />

c<strong>on</strong>centrated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e interfaces which attract more bacteria to <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundaries, and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is makes a good agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological observati<strong>on</strong>s.<br />

References.<br />

[1] J.W. Costert<strong>on</strong>, Introducti<strong>on</strong> to bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Antimicrobial Agents 11<br />

217–221.<br />

273


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Biological Systems; Tuesday, June 28, 17:00<br />

German A. Enciso<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Irvine<br />

e-mail: enciso@uci.edu<br />

Protein scaffolds can enhance <str<strong>on</strong>g>th</str<strong>on</strong>g>e bistability <str<strong>on</strong>g>of</str<strong>on</strong>g> multisite<br />

phosphorylati<strong>on</strong> systems<br />

The phosphorylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a substrate at multiple sites is a comm<strong>on</strong> protein modificati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at can give rise to important structural and electrostatic changes. Scaffold<br />

proteins can enhance protein phosphorylati<strong>on</strong> by facilitating interacti<strong>on</strong> between a<br />

protein kinase enzyme and its target substrate. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we c<strong>on</strong>sider a simple<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> a scaffold protein and show <str<strong>on</strong>g>th</str<strong>on</strong>g>at under certain c<strong>on</strong>diti<strong>on</strong>s,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e scaffold can substantially raise <str<strong>on</strong>g>th</str<strong>on</strong>g>e likelihood <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting<br />

system will exhibit bistable behavior. This phenomen<strong>on</strong> is especially pr<strong>on</strong>ounced<br />

when <str<strong>on</strong>g>th</str<strong>on</strong>g>e enzymatic reacti<strong>on</strong>s have a Km larger <str<strong>on</strong>g>th</str<strong>on</strong>g>an 10 micromolar. We also find<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at bistable systems tend to have a specific kinetic c<strong>on</strong>formati<strong>on</strong>, and we provide<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis a number <str<strong>on</strong>g>of</str<strong>on</strong>g> necessary c<strong>on</strong>diti<strong>on</strong>s for bistability,<br />

such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple phosphorylati<strong>on</strong> sites and <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

scaffold binding/unbinding rates <strong>on</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorylated sites.<br />

274


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

From <strong>on</strong>e to many: Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective, emergent behaviors<br />

in biology -II; Tuesday, June 28, 14:30<br />

Heiko Enderling<br />

Center <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer Systems Biology, Tufts University School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine<br />

e-mail: heiko.enderling@tufts.ed<br />

Emerging tumor morphologies from cancer cell interacti<strong>on</strong>s<br />

We present a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer<br />

stem cells and n<strong>on</strong>-stem cancer cells. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is driven by<br />

cancer stem cells and modulated by n<strong>on</strong>-stem cancer cells. Intrinsic cell parameters<br />

yield different kinetics and populati<strong>on</strong> ratios, and a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor morphologies<br />

emerge.<br />

275


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance in cancer using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling;<br />

Saturday, July 2, 08:30<br />

Heiko Enderling<br />

Center <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer Systems Biology, Tufts University School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine<br />

e-mail: heiko.enderling@tufts.ed<br />

Emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> radioresistance <str<strong>on</strong>g>th</str<strong>on</strong>g>rough selecti<strong>on</strong> for cancer<br />

stem cells in solid tumors<br />

Tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and progressi<strong>on</strong> is a complex phenomen<strong>on</strong> dependent <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g><br />

multiple intrinsic and extrinsic factors. Necessary for tumor development is a<br />

small subpopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potent cells, so-called cancer stem cells, which also produce<br />

a distinct populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-stem cancer cells. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong>s compete wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er yielding interesting tumor dynamics. During radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy treatment<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e intrinsic tumor dynamics are perturbed, resulting in selecti<strong>on</strong> and expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resistant cancer stem cells.<br />

276


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Radek Erban<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: erban@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Cellular Systems Biology; Thursday, June 30, 11:30<br />

Stochastic modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong> processes in<br />

biology<br />

Many cellular and subcellular biological processes can be described in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusing<br />

and chemically reacting species. Several stochastic simulati<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms<br />

(SSAs) suitable for <str<strong>on</strong>g>th</str<strong>on</strong>g>e modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> such reacti<strong>on</strong>-diffusi<strong>on</strong> processes have been<br />

recently proposed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, two comm<strong>on</strong>ly used SSAs will be<br />

studied. The first SSA is an <strong>on</strong>-lattice model described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong><br />

master equati<strong>on</strong>. The sec<strong>on</strong>d SSA is an <str<strong>on</strong>g>of</str<strong>on</strong>g>f-lattice model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Brownian moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual molecules and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir reactive collisi<strong>on</strong>s. The c<strong>on</strong>necti<strong>on</strong>s<br />

between SSAs and <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic models (based <strong>on</strong> reacti<strong>on</strong>-diffusi<strong>on</strong><br />

PDEs) will be presented. I will c<strong>on</strong>sider chemical reacti<strong>on</strong>s bo<str<strong>on</strong>g>th</str<strong>on</strong>g> at a surface and<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e bulk. I will show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e "microscopic" parameters should be chosen to<br />

achieve <str<strong>on</strong>g>th</str<strong>on</strong>g>e correct "macroscopic" reacti<strong>on</strong> rate. This choice is found to depend <strong>on</strong><br />

which SSA is used. I will also present multiscale algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms which use models wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a different level <str<strong>on</strong>g>of</str<strong>on</strong>g> detail in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al domain.<br />

277


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Reports from US - African BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Initiative: C<strong>on</strong>servati<strong>on</strong><br />

Biology; Saturday, July 2, 14:30<br />

Stefano Erm<strong>on</strong><br />

Cornell University<br />

e-mail: erm<strong>on</strong>ste@cs.cornell.edu<br />

Chata Sanogo<br />

Université Ibn-T<str<strong>on</strong>g>of</str<strong>on</strong>g>ail<br />

A Bio-ec<strong>on</strong>omic Model For Tropical Forest Harvesting and<br />

Habitat Loss<br />

We plan to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> between tropical forest harvesting and <str<strong>on</strong>g>th</str<strong>on</strong>g>e habitat<br />

loss for <str<strong>on</strong>g>th</str<strong>on</strong>g>e B<strong>on</strong>obos and Pygmy Chimpanzees (Pan paniscus) living in <str<strong>on</strong>g>th</str<strong>on</strong>g>e forest.<br />

Starting from data collected for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Idanre Forest Reserve in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lowland rain<br />

forest z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> -Western Nigeria (and literature review), we c<strong>on</strong>structed an<br />

analytic model <str<strong>on</strong>g>th</str<strong>on</strong>g>at classifies <str<strong>on</strong>g>th</str<strong>on</strong>g>e trees into 6 size classes according to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir diameter<br />

and captures <str<strong>on</strong>g>th</str<strong>on</strong>g>e forest grow<str<strong>on</strong>g>th</str<strong>on</strong>g> over time. Our model assumes linear dynamics and<br />

uses a Leslie-like matrix <str<strong>on</strong>g>th</str<strong>on</strong>g>at was fitted to historical time series.<br />

We modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>e ec<strong>on</strong>omic aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e logging activity by introducing variable<br />

(dependent <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effort) and fixed (independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effort) costs, estimated from<br />

real world data. Moreover, to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e ec<strong>on</strong>omic value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trees in each size<br />

class, we c<strong>on</strong>structed a functi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at relates <str<strong>on</strong>g>th</str<strong>on</strong>g>e diameter to <str<strong>on</strong>g>th</str<strong>on</strong>g>e volume, from which<br />

we obtain a m<strong>on</strong>etary value by looking at market prices <str<strong>on</strong>g>of</str<strong>on</strong>g> tropical wood.<br />

We plan to include a populati<strong>on</strong> dynamic model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal populati<strong>on</strong>s<br />

living in <str<strong>on</strong>g>th</str<strong>on</strong>g>e area <str<strong>on</strong>g>th</str<strong>on</strong>g>at is dynamically coupled to <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e forest.<br />

In particular, we plan to capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> each size class <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e carrying capacity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e B<strong>on</strong>obos and Chimpanzees populati<strong>on</strong>s.<br />

Our final goal is to quantitatively study <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> harvesting policies in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic benefits and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> survival probability, in order to obtain<br />

insights <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> more sustainable logging practices.<br />

278


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics <str<strong>on</strong>g>of</str<strong>on</strong>g> Neglected Tropical Diseases; Wednesday, June 29, 11:00<br />

Lourdes Esteva<br />

Facultad de Ciencias, UNAM<br />

e-mail: lesteva@lya.fciencias.unam.mx<br />

Gustavo Cruz-Pacheco<br />

Instituto de Investigaci<strong>on</strong>es en Matemáticas Aplicadas y en Sistemas,<br />

UNAM<br />

e-mail: cruz@mym.iimas.unam.mx<br />

Cristobal Vargas<br />

Departamento de C<strong>on</strong>trol Automático, CINVESTAV-IPN<br />

e-mail: cvargas@ctrl.cinvestav.mx<br />

Modelling transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chagas’ disease<br />

Chagas disease, also known as American trypanosomiasis, is a potentially life<str<strong>on</strong>g>th</str<strong>on</strong>g>reatening<br />

illness caused by <str<strong>on</strong>g>th</str<strong>on</strong>g>e protozoan parasite, Trypanosoma cruzi (T. cruzi)<br />

which is found mainly in Latin America. The main mode <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chagas<br />

disease in endemic areas is <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e bite <str<strong>on</strong>g>of</str<strong>on</strong>g> an insect vector called a triatomine<br />

bug. The disease may also be spread <str<strong>on</strong>g>th</str<strong>on</strong>g>rough blood transfusi<strong>on</strong> and organ transplantati<strong>on</strong>,<br />

ingesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food c<strong>on</strong>taminated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> parasites, and from a mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er to<br />

her fetus. C<strong>on</strong>trol measures are limited since vaccines to prevent <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease are<br />

not available, and drugs are effective <strong>on</strong>ly in <str<strong>on</strong>g>th</str<strong>on</strong>g>e acute and early chr<strong>on</strong>ic phase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infecti<strong>on</strong>, but have adverse effects. C<strong>on</strong>trol measures include insecticides to kill <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

vector, screening blood d<strong>on</strong>ors, and treatment to patients in <str<strong>on</strong>g>th</str<strong>on</strong>g>e acute phase. Recently,<br />

a c<strong>on</strong>troversial strategy, Zooprophylaxis, has been proposed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vector transmitted diseases. This technique refers to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> vector-borne<br />

diseases by attracting vectors to domestic animals in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen cannot<br />

amplify (a dead-end host).<br />

In order to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e different c<strong>on</strong>trol measures for Chagas<br />

disease, in <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we develop a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model c<strong>on</strong>sidering four populati<strong>on</strong>s:<br />

humans, vectors, and susceptible and no susceptible domestic animals to Chagas<br />

infecti<strong>on</strong>. We obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease, and <str<strong>on</strong>g>th</str<strong>on</strong>g>rough it<br />

we evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol measures.<br />

279


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fluid-structure interacti<strong>on</strong> problems in biomechanics; Saturday, July 2, 08:30<br />

Jung Eunok<br />

K<strong>on</strong>kuk University<br />

e-mail: junge@k<strong>on</strong>kuk.ac.kr<br />

Yung Sam Kim<br />

Chung-Ang University<br />

Wanho Lee<br />

K<strong>on</strong>kuk University<br />

A heart model in <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole circulatory system<br />

We present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> left heart governed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e partial differential<br />

equati<strong>on</strong>s. This heart is coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a lumped model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole circulatory<br />

system governed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e ordinary differential equati<strong>on</strong>s. The immersed boundary<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is used to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracardiac blood flow and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac valve<br />

moti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal circulati<strong>on</strong> in humans. We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraventricular<br />

velocity field and <str<strong>on</strong>g>th</str<strong>on</strong>g>e velocity curves over <str<strong>on</strong>g>th</str<strong>on</strong>g>e mitral ring and across outflow tract.<br />

The pressure and flow are also measured in <str<strong>on</strong>g>th</str<strong>on</strong>g>e left and right heart and <str<strong>on</strong>g>th</str<strong>on</strong>g>e systemic<br />

and pulm<strong>on</strong>ary arteries. The simulati<strong>on</strong> results are comparable to <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing<br />

measurements.<br />

280


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>luids, Solute Transport, and Hemodynamics; Wednesday, June 29, 11:00<br />

Roger Evans<br />

M<strong>on</strong>ash University, Australia<br />

e-mail: roger.evans@m<strong>on</strong>ash.edu<br />

Bruce S. Gardiner<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Western Australia<br />

David W. Smi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Western Australia<br />

Paul M. O’C<strong>on</strong>nor<br />

Medical College <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>sin<br />

A computati<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> whole kidney oxygen regulati<strong>on</strong><br />

incorporating arterial to venous oxygen shunting<br />

Background: Our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> renal tissue oxygenati<strong>on</strong> is complicated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen to diffuse directly from arteries to veins in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cortex; referred<br />

to here as arterial-to-venous (AV) oxygen shunting. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in renal arterial blood, and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen by<br />

kidney tissue, affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e PO2 gradients driving AV oxygen shunting. To understand<br />

how AV oxygen shunting influences kidney oxygenati<strong>on</strong>, we c<strong>on</strong>structed a<br />

computati<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen transport in <str<strong>on</strong>g>th</str<strong>on</strong>g>e renal cortex. Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: The model<br />

is based <strong>on</strong> a quantitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree dimensi<strong>on</strong>al morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rat<br />

renal circulati<strong>on</strong> (1). It c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a multiscale hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> eleven counter-current<br />

vascular modules, representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e various branch levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cortical vasculature.<br />

At each level equati<strong>on</strong>s describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e reactive-advecti<strong>on</strong>-diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen are<br />

solved. Factors critical in renal oxygen transport incorporated into <str<strong>on</strong>g>th</str<strong>on</strong>g>e model include:<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e parallel geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> arteries and veins and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir size, variati<strong>on</strong> in blood<br />

velocity in each vessel, oxygen c<strong>on</strong>sumpti<strong>on</strong> and transport, and n<strong>on</strong>-linear binding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen to hemoglobin. Because quantitative informati<strong>on</strong> regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e barriers<br />

to AV oxygen diffusi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e kidney is not available, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model was calibrated<br />

against published measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> outer cortical microvascular PO2 and renal venous<br />

PO2 (2). As <str<strong>on</strong>g>th</str<strong>on</strong>g>e outer cortex is <str<strong>on</strong>g>th</str<strong>on</strong>g>e most well oxygenated part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e kidney,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is approach provides a c<strong>on</strong>servative estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> AV oxygen<br />

shunting. Results: The model predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>at AV oxygen shunting is quantitatively<br />

similar to total renal oxygen c<strong>on</strong>sumpti<strong>on</strong> under basal physiological c<strong>on</strong>diti<strong>on</strong>s. It is<br />

predicted <str<strong>on</strong>g>th</str<strong>on</strong>g>at oxygen shunting increases as renal oxygen c<strong>on</strong>sumpti<strong>on</strong> increases or<br />

arterial PO2 increases, or when renal blood flow or hematocrit are reduced. Assuming<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e barriers for AV oxygen diffusi<strong>on</strong> are quantitatively similar <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cortical circulati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>at AV oxygen shunting occurs mostly in<br />

distal vascular elements. Regardless, in severe ischemia or anemia, or when kidney<br />

oxygen c<strong>on</strong>sumpti<strong>on</strong> increases, AV oxygen shunting in proximal vascular elements<br />

may reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e oxygen c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> blood destined for <str<strong>on</strong>g>th</str<strong>on</strong>g>e medullary circulati<strong>on</strong>.<br />

C<strong>on</strong>clusi<strong>on</strong>s: Cortical AV oxygen shunting limits oxygen delivery to cortical tissue<br />

and stabilizes tissue PO2 when arterial PO2 changes, but renders bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cortex<br />

and medulla susceptible to hypoxia when oxygen delivery falls or c<strong>on</strong>sumpti<strong>on</strong><br />

increases. The model also predicts how much kidney oxygen c<strong>on</strong>sumpti<strong>on</strong> must<br />

change, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e face <str<strong>on</strong>g>of</str<strong>on</strong>g> altered renal blood flow, to maintain cortical tissue PO2 at a<br />

stable level.<br />

281


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] Nordsletten DA et al. Structural morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> renal vasculature. Am J Physiol Heart Circ<br />

Physiol 291: H296-309, 2006.<br />

[2] Welch WJ et al. Nephr<strong>on</strong> pO2 and renal oxygen usage in <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypertensive rat kidney. Kidney<br />

Int 59: 230-237, 2001.<br />

282


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Crowd Dynamics: Modeling, Analysis and Simulati<strong>on</strong> (Part 1); Wednesday,<br />

June 29, 11:00<br />

Joep Evers<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science, TU Eindhoven,<br />

The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: j.h.m.evers@student.tue.nl<br />

Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a multi-comp<strong>on</strong>ent crowd via a<br />

two-scale approach, working in a setting <str<strong>on</strong>g>of</str<strong>on</strong>g> measure-<str<strong>on</strong>g>th</str<strong>on</strong>g>eory,<br />

mixture-<str<strong>on</strong>g>th</str<strong>on</strong>g>eory and <str<strong>on</strong>g>th</str<strong>on</strong>g>ermodynamics<br />

We present a strategy to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> crowds in heterogeneous domains.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is framework, <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e crowd is c<strong>on</strong>sidered from a two-fold perspective:<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> macroscopically and microscopically. This means <str<strong>on</strong>g>th</str<strong>on</strong>g>at we are enabled<br />

to examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e large scale behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e crowd (where <str<strong>on</strong>g>th</str<strong>on</strong>g>e crowd is essentially<br />

c<strong>on</strong>sidered as a c<strong>on</strong>tinuum), and simultaneously we are able to capture phenomena<br />

happening at <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual pedestrian’s level. On bo<str<strong>on</strong>g>th</str<strong>on</strong>g> scales we specify mass<br />

measures and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir transport, and we unify <str<strong>on</strong>g>th</str<strong>on</strong>g>e micro and macro approaches in a<br />

single model. Thus we benefit from <str<strong>on</strong>g>th</str<strong>on</strong>g>e advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> working wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a c<strong>on</strong>tinuum<br />

descripti<strong>on</strong>, while we can also tract (i.e. zoom in to) microscopic features. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

model we couple <str<strong>on</strong>g>th</str<strong>on</strong>g>e measure-<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical framework described above to <str<strong>on</strong>g>th</str<strong>on</strong>g>e ideas<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mixture <str<strong>on</strong>g>th</str<strong>on</strong>g>eory in c<strong>on</strong>tinuum mechanics (formulated in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> measures). This<br />

allows us to define several c<strong>on</strong>stituents (read: sub-populati<strong>on</strong>s) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e large crowd,<br />

each having its own partial velocity field. We <str<strong>on</strong>g>th</str<strong>on</strong>g>us have <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility to examine<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e interactive behavior between sub-groups <str<strong>on</strong>g>th</str<strong>on</strong>g>at have distinct characteristics. We<br />

especially aim at giving special properties to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose pedestrians <str<strong>on</strong>g>th</str<strong>on</strong>g>at are represented<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic (discrete) part in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. In real life situati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>ey would<br />

play <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> firemen, tourist guides, leaders, terrorists, predators (c<strong>on</strong>sidering<br />

animals instead <str<strong>on</strong>g>of</str<strong>on</strong>g> people) etc. Since typically <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is <strong>on</strong>ly a relatively small number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such people in a crowd, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are most naturally modeled as individuals <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e micro-scale. However, we are not interested in <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> pedestrians<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e (large) crowd, <str<strong>on</strong>g>th</str<strong>on</strong>g>us it suffices to simplify here, and model<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>em as a c<strong>on</strong>tinuum. By identifying a suitable c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy for <str<strong>on</strong>g>th</str<strong>on</strong>g>e system,<br />

we derive an entropy inequality. From <str<strong>on</strong>g>th</str<strong>on</strong>g>is inequality restricti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed<br />

velocity fields follow. Obeying <str<strong>on</strong>g>th</str<strong>on</strong>g>ese restricti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling phase, we make<br />

our assumpti<strong>on</strong>s more feasible. Joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Adrian Muntean.<br />

283


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecosystems Dynamics; Tuesday, June 28, 11:00<br />

Yoan Eynaud<br />

Laboratoire de Microbiologie, de Géochimie et d’Ecologie Marines,<br />

UMR CNRS 6117, Centre d’Océanologie de Marseille (OSU) Université<br />

de la Méditerranée - Campus de Luminy, case 901 13288 Marseille<br />

cedex 9<br />

e-mail: yoan.eynaud@univmed.fr<br />

Melika Baklouti<br />

Laboratoire d’Océanographie Physique et Biogéochimique, UMR CNRS<br />

6535, Centre d’Océanologie de Marseille (OSU) Université de la Méditerranée<br />

- Campus de Luminy, case 901 13288 Marseille cedex 9<br />

e-mail: melika.baklouti@univmed.fr<br />

Jean-Christophe Poggiale<br />

Laboratoire de Microbiologie, de Géochimie et d’Ecologie Marines,<br />

UMR CNRS 6117, Centre d’Océanologie de Marseille (OSU) Université<br />

de la Méditerranée - Campus de Luminy, case 901 13288 Marseille<br />

cedex 9<br />

e-mail: jean-christophe.poggiale@univmed.fr<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesopelagic ecosystem: how far details are<br />

important ?<br />

The role played by carb<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e global change led researchers to focus <strong>on</strong> its<br />

cycle wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e biosphere. Since 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ear<str<strong>on</strong>g>th</str<strong>on</strong>g> surface is covered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e ocean,<br />

understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e remineralizati<strong>on</strong> processes occuring am<strong>on</strong>g oceanic realms is crucial.<br />

However our knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesopelagic layer is still poor and if logistical<br />

issues can partially explain <str<strong>on</strong>g>th</str<strong>on</strong>g>is lack, our limited capacity in modelling marine<br />

ecosystems are resp<strong>on</strong>sible as well. Thus we need to improve our way to model<br />

marine ecosystems and more precisely, how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey behave. An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e role<br />

played by details in ecological modelling is essential, and if some works have been<br />

d<strong>on</strong>e <strong>on</strong> simple model (Fussmann and Blazius, 2005; Poggiale et al., 2010), it appears<br />

interesting to study more complex systems, such as a mesopelagic model.<br />

A few models already exist (Anders<strong>on</strong> and Tang, 2010; Jacks<strong>on</strong> et al.,2001; Stemmann<br />

et al., 2004) but n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em have used <str<strong>on</strong>g>th</str<strong>on</strong>g>e DEB <str<strong>on</strong>g>th</str<strong>on</strong>g>eory in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>structi<strong>on</strong><br />

hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses, which leads in a complexificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model at <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological scale.<br />

Since we aim to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e role played by details in modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesopelagic<br />

layer, we here work <strong>on</strong> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> different level <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological complexicity and trophic<br />

web organizati<strong>on</strong>. Thus, we have built 3 mesopelagic model <str<strong>on</strong>g>of</str<strong>on</strong>g> different trophic web<br />

complexicity, all using DEB <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and compare it to n<strong>on</strong>-mecanistic approaches.<br />

Our results shows <str<strong>on</strong>g>th</str<strong>on</strong>g>e details required in modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesopelagic ecosystem and<br />

enhance our knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> trophic web modelling.<br />

References.<br />

[1] G.F. Fussmann and B. Blasius, “Community resp<strong>on</strong>se to enrichment is highly sensitive to<br />

model structure.,” Biology letters, vol. 1, Mar. 2005, pp. 9-12.<br />

284


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] J.-C. Poggiale, M. Baklouti, B. Queguiner, and S. a L.M. Kooijman, “How far details are<br />

important in ecosystem modelling: <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-limiting nutrients in phytoplankt<strong>on</strong>zooplankt<strong>on</strong><br />

interacti<strong>on</strong>s.,” Philosophical transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>d<strong>on</strong>. Series<br />

B, Biological sciences, vol. 365, Nov. 2010, pp. 3495-507.<br />

[3] T.R. Anders<strong>on</strong> and K.W. Tang, “Carb<strong>on</strong> cycling and POC turnover in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesopelagic z<strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ocean: Insights from a simple model,” Deep Sea Research Part II: Topical Studies in<br />

Oceanography, vol. 57, Aug. 2010, pp. 1581-1592.<br />

[4] G. a Jacks<strong>on</strong> and A.B. Burd, “A model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particle flux in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mid-water<br />

column c<strong>on</strong>trolled by subsurface biotic interacti<strong>on</strong>s,” Deep Sea Research Part II: Topical<br />

Studies in Oceanography, vol. 49, 2001, pp. 193-217.<br />

[5] L. Stemmann, G. a Jacks<strong>on</strong>, and D. Ians<strong>on</strong>, “A vertical model <str<strong>on</strong>g>of</str<strong>on</strong>g> particle size distributi<strong>on</strong>s<br />

and fluxes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e midwater column <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes biological and physical processes—Part I:<br />

model formulati<strong>on</strong>,” Deep Sea Research Part I: Oceanographic Research Papers, vol. 51, Jul.<br />

2004, pp. 865-884.<br />

285


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bridging Time Scales in Biological Sciences; Saturday, July 2, 14:30<br />

K<strong>on</strong>stantin Fackeldey<br />

Zuse Institute Berlin, Takustrasse 7, 14195 Berlin<br />

e-mail: fackeldey@zib.de<br />

Efficient Simulati<strong>on</strong> in Protein Modelling and<br />

N<strong>on</strong>-equilibrium Processes<br />

The behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a molecule is described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Boltzmann distributi<strong>on</strong> in c<strong>on</strong>formati<strong>on</strong><br />

space. In classical molecular dynamics a trajectory describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e time<br />

dependent dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a protein. Thereby <str<strong>on</strong>g>th</str<strong>on</strong>g>e time step is c<strong>on</strong>fined to <str<strong>on</strong>g>th</str<strong>on</strong>g>e fastest<br />

oscillati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e covalent b<strong>on</strong>ds and <str<strong>on</strong>g>th</str<strong>on</strong>g>us shortens <str<strong>on</strong>g>th</str<strong>on</strong>g>e absolute simulati<strong>on</strong> time.<br />

C<strong>on</strong>trary, events which are relevant for protein design, such as protein folding occur<br />

<strong>on</strong>ly after comparably l<strong>on</strong>g time. Thus we have a time gap, between <str<strong>on</strong>g>th</str<strong>on</strong>g>e fastest<br />

simulati<strong>on</strong> which determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum possible simulati<strong>on</strong> time and <str<strong>on</strong>g>th</str<strong>on</strong>g>e rare<br />

events which have a great impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein. Additi<strong>on</strong>ally<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> increasing size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecule <str<strong>on</strong>g>th</str<strong>on</strong>g>e dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding c<strong>on</strong>formati<strong>on</strong><br />

space and <str<strong>on</strong>g>th</str<strong>on</strong>g>us <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al complexity grow<str<strong>on</strong>g>th</str<strong>on</strong>g>s.<br />

C<strong>on</strong>sequently <strong>on</strong>e seeks for me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods which extract <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevant informati<strong>on</strong> out <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> data wi<str<strong>on</strong>g>th</str<strong>on</strong>g> less computati<strong>on</strong>al complexity. This is <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic c<strong>on</strong>cept<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coarse graining techniques. These me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact, <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e rare events can be “detected” by ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e last few decades<br />

various coarse graining techniques have been developed in order to bridge <str<strong>on</strong>g>th</str<strong>on</strong>g>is time<br />

gap in biological processes. Here, we focus <strong>on</strong> c<strong>on</strong>formati<strong>on</strong> dynamics, where in<br />

c<strong>on</strong>trast to classical MD <strong>on</strong>e is interested in <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metastable states<br />

and transiti<strong>on</strong> probabilities. Moreover meshfree me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are introduced for a suitable<br />

discretizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>formati<strong>on</strong> space in high dimensi<strong>on</strong>s.<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>is basis, we focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e force simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> equilibrium processes which<br />

play an important role in protein miss folding diseases such as Alzheimer’s disease.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we motivate how results from computer simulati<strong>on</strong> and experimental<br />

data from laboratory can be combined in a meaningful way.<br />

286


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling II; Wednesday, June 29,<br />

14:30<br />

James R. Faeder<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Computati<strong>on</strong>al and Systems Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pittsburgh<br />

e-mail: faeder@pitt.edu<br />

Rule-Based Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular and Cellular Processes<br />

Cells possess complex sensory mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at are governed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e biochemical<br />

interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins. A typical signaling protein possesses multiple interacti<strong>on</strong><br />

sites, whose activity can be modified bo<str<strong>on</strong>g>th</str<strong>on</strong>g> by direct chemical modificati<strong>on</strong> (termed<br />

”post-translati<strong>on</strong>al modificati<strong>on</strong>”) and by <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> modificati<strong>on</strong> or interacti<strong>on</strong><br />

at o<str<strong>on</strong>g>th</str<strong>on</strong>g>er sites (termed ”allostery”). This complexity at <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein level leads to<br />

combinatorial complexity at <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling networks - an individual protein<br />

has many potential states <str<strong>on</strong>g>of</str<strong>on</strong>g> modificati<strong>on</strong> and interacti<strong>on</strong>, which gives rise to an<br />

ever-multiplying set <str<strong>on</strong>g>of</str<strong>on</strong>g> possible complexes and poses a major barrier to traditi<strong>on</strong>al<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> modeling and simulati<strong>on</strong> [1]. Here, I will review major developments in<br />

modeling, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> from my work and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers, <str<strong>on</strong>g>th</str<strong>on</strong>g>at have helped to tame <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

difficulties.<br />

The need to simplify <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> signal transducti<strong>on</strong> models and to expand<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir scope has motivated <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> rule-based modeling languages,<br />

such as BioNetGen [2] and Kappa [3], which provide a rich and yet c<strong>on</strong>cise descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> signaling proteins and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong>s. Their success is dem<strong>on</strong>strated by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e growing community <str<strong>on</strong>g>of</str<strong>on</strong>g> users and <str<strong>on</strong>g>th</str<strong>on</strong>g>e substantial number <str<strong>on</strong>g>of</str<strong>on</strong>g> models <str<strong>on</strong>g>th</str<strong>on</strong>g>at have<br />

been developed and published. While greatly facilitating <str<strong>on</strong>g>th</str<strong>on</strong>g>e translati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> knowledge<br />

about signaling biochemistry into models, however, rule-based languages do<br />

not directly address <str<strong>on</strong>g>th</str<strong>on</strong>g>e combinatorial challenges involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

models, which arise from <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> network implied by <str<strong>on</strong>g>th</str<strong>on</strong>g>e rules. For<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese, new agent-based stochastic simulati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods have been developed for rulebased<br />

models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> computati<strong>on</strong>al requirements <str<strong>on</strong>g>th</str<strong>on</strong>g>at are independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> possible species (i.e., complexes) and proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules<br />

(e.g., proteins) being simulated. In additi<strong>on</strong>, general and efficient implementati<strong>on</strong>s<br />

are now available <str<strong>on</strong>g>th</str<strong>on</strong>g>at enable <str<strong>on</strong>g>th</str<strong>on</strong>g>e rapid simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rule-based models <str<strong>on</strong>g>of</str<strong>on</strong>g> virtually<br />

any complexity. NFsim is <strong>on</strong>e such simulator <str<strong>on</strong>g>th</str<strong>on</strong>g>at stands out because <str<strong>on</strong>g>of</str<strong>on</strong>g> its<br />

efficiency and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to course-grain complex interacti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e incorporati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> high-level functi<strong>on</strong>s into <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate laws <str<strong>on</strong>g>th</str<strong>on</strong>g>at govern rule applicati<strong>on</strong> [4]. The<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic simulati<strong>on</strong>s, however, exacerbates <str<strong>on</strong>g>th</str<strong>on</strong>g>e already difficult problems<br />

comm<strong>on</strong> to all complex models <str<strong>on</strong>g>of</str<strong>on</strong>g> relating model parameters to model behavior<br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> estimating parameter values based <strong>on</strong> experimental observati<strong>on</strong>s and data.<br />

For <str<strong>on</strong>g>th</str<strong>on</strong>g>ese, new statistical model checking algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms and tools have been developed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at allow model properties to be determined from a minimal number <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong><br />

runs [5]. Taken toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er, rule-based modeling languages and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir associated tools<br />

address <str<strong>on</strong>g>th</str<strong>on</strong>g>e issue <str<strong>on</strong>g>of</str<strong>on</strong>g> combinatorial complexity in cell regulatory networks, allowing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e development, simulati<strong>on</strong>, and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> unprecedented scope and<br />

detail and, we hope, predictive capability.<br />

References.<br />

287


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] W. S. Hlavacek and J. R. Faeder (2009) Sci. Signaling 2 pe46.<br />

[2] J. R. Faeder, M. L. Blinov, and W. S. Hlavacek (2009) Me<str<strong>on</strong>g>th</str<strong>on</strong>g>. Mol. Biol. 500, 113–167.<br />

[3] V. Danos, J. Feret, W. F<strong>on</strong>tana, and J. Krivine (2007) Lect. Notes. Comput. Sci 4807,139-157.<br />

[4] M. W. Snedd<strong>on</strong>, J. R. Faeder, and T. Em<strong>on</strong>et (2011) Nature Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods 8, 177–183.<br />

[5] E. M. Clarke, et al. (2008) Lect. Notes. Comput. Sci. 5307, 231-250.<br />

288


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Martin Falcke<br />

Max Delbrück Center for Molecular Medicine<br />

e-mail: martin.falcke@mdc-berlin.de<br />

Kevin Thurley<br />

Max Delbrück Center for Molecular Medicine<br />

Noisy Cells; Saturday, July 2, 14:30<br />

Random but reliable: Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> spike sequences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

IP3-induced Ca2+ signaling<br />

Ca2+ is a universal sec<strong>on</strong>d messenger in eucaryotic cells transmitting informati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> spikes. A prominent mechanism to generate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese spikes involves Ca2+ release from <str<strong>on</strong>g>th</str<strong>on</strong>g>e endoplasmic reticulum (ER) Ca2+<br />

store via IP3-sensitive channels. Puffs are elemental events <str<strong>on</strong>g>of</str<strong>on</strong>g> IP3-induced Ca2+<br />

release <str<strong>on</strong>g>th</str<strong>on</strong>g>rough single clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> channels. Intracellular Ca2+ dynamics are a<br />

stochastic system, but a complete stochastic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory has not been developed yet.<br />

As a new c<strong>on</strong>cept, we formulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> interpuff interval and puff<br />

durati<strong>on</strong> distributi<strong>on</strong>s, since unlike <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> individual channels, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can<br />

be measured in vivo. Our <str<strong>on</strong>g>th</str<strong>on</strong>g>eory reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e typical spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca2+ signals<br />

like puffs, spiking and bursting in analytically treatable test cases as well as in more<br />

realistic simulati<strong>on</strong>s. We find c<strong>on</strong>diti<strong>on</strong>s for spiking and calculate interspike interval<br />

(ISI) distributi<strong>on</strong>s. Signal form, average ISI and ISI distributi<strong>on</strong>s depend sensitively<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e details <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster properties and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir spatial arrangement. In difference to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at, <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e average and <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ISIs does not<br />

depend <strong>on</strong> cluster properties and cluster arrangement, and is robust wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect<br />

to cell variability. It is c<strong>on</strong>trolled by <str<strong>on</strong>g>th</str<strong>on</strong>g>e global feedback processes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ca2+<br />

signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way (e.g. via IP3-3-kinase or ER depleti<strong>on</strong>). That relati<strong>on</strong> is essential<br />

for pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way functi<strong>on</strong>, since it ensures frequency encoding despite <str<strong>on</strong>g>th</str<strong>on</strong>g>e randomness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ISIs and determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximal spike train informati<strong>on</strong> c<strong>on</strong>tent. Hence, we<br />

find a divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tasks between global feedbacks and local cluster properties which<br />

guarantees robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong> while maintaining sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

average ISI.<br />

289


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling IV; Saturday, July 2, 08:30<br />

Martin Falcke<br />

Max Delbrück Center for Molecular Medicine<br />

e-mail: martin.falcke@mdc-berlin.de<br />

Kevin Thurley<br />

Max Delbrück Center for Molecular Medicine<br />

How does single channel behavior cause cellular Ca2+<br />

spiking?<br />

The behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways is determined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir comp<strong>on</strong>ents, feedbacks and self-organizati<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e participating molecules.<br />

But usually systems are too complex to understand in detail how cellular behavior<br />

relates to molecular behavior. Intracellular Ca2+ signaling <str<strong>on</strong>g>of</str<strong>on</strong>g>fers an opportunity to<br />

understand <str<strong>on</strong>g>th</str<strong>on</strong>g>at relati<strong>on</strong> in detail, since it is comprised from relatively few different<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules. A well-studied system involves Ca2+ liberati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough inositol<br />

trisphosphate receptor (IP3R) channels wherein <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular dynamics emerge<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough a hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> events. Opening <str<strong>on</strong>g>of</str<strong>on</strong>g> single Ca2+ channels can induce local<br />

Ca2+ release events evoked by channel clusters (called puffs), <str<strong>on</strong>g>th</str<strong>on</strong>g>e combined acti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> which results in repetitive global cellular Ca2+ spikes. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough cellular behavior<br />

and single channel properties have been characterized in detail before, <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

study investigates statistical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cluster dynamics by analyzing highresoluti<strong>on</strong><br />

data from TIRF microscopy in two mammalian cell lines. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

interpuff intervals (IPIs) are significantly shorter <str<strong>on</strong>g>th</str<strong>on</strong>g>an cellular interspike intervals<br />

(ISIs), <str<strong>on</strong>g>th</str<strong>on</strong>g>at puff-activity is stochastic wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a recovery time much shorter <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cellular refractory period, and <str<strong>on</strong>g>th</str<strong>on</strong>g>at IPIs show no sign <str<strong>on</strong>g>of</str<strong>on</strong>g> periodicity. These results<br />

str<strong>on</strong>gly suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at Ca2+ spikes do not arise from oscillatory cluster dynamics,<br />

but <str<strong>on</strong>g>th</str<strong>on</strong>g>at cellular repetitive spiking and its typical time scales arise from collective<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole cluster array.<br />

290


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 11:00<br />

Chun Fang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: chun.fang@helsinki.fi<br />

Mats Gyllenberg and Yi Wang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> China<br />

e-mail: mats.gyllenberg@helsinki.fi and yi.wang@helsinki.fi<br />

Asymptotic almost periodicity <str<strong>on</strong>g>of</str<strong>on</strong>g> competitive-cooperative<br />

systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> almost periodic time dependence<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is report, we are interested in <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic almost periodicity for a<br />

positively bounded moti<strong>on</strong> πt(x, g) by investigating its ω-limit set. We proved if<br />

ω(x, g) is hyperbolic, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is, <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearized equati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>e flow <strong>on</strong> ω(x, g) has<br />

an Exp<strong>on</strong>ential Dichotomy <strong>on</strong> ω(x, g). Then ω(x, g) is 1-cover <str<strong>on</strong>g>of</str<strong>on</strong>g> H(f), <str<strong>on</strong>g>th</str<strong>on</strong>g>at is,<br />

πt(x, g) is asymptotically almost periodic.<br />

291


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Semigroups <str<strong>on</strong>g>of</str<strong>on</strong>g> Operators in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology II; Saturday, July 2, 11:00<br />

Jozsef Farkas<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling<br />

e-mail: jzf@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.stir.ac.uk<br />

Wentzell semigroups in biology<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we are going to introduce linear and n<strong>on</strong>linear physiologically structured<br />

populati<strong>on</strong> models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> diffusi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e size-space. We equip our model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Wentzell boundary c<strong>on</strong>diti<strong>on</strong>s which can be recast as dynamic c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

boundary. We apply our model for a populati<strong>on</strong> in which individuals are structured<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to a pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen load which represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous structuring variable.<br />

Then <str<strong>on</strong>g>th</str<strong>on</strong>g>e compartment <str<strong>on</strong>g>of</str<strong>on</strong>g> uninfected individuals carries mass. For a much<br />

earlier attempt see: Waldstaetter et al. in SIAM JMA (1988). We will discuss<br />

existence and positivity <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s and qualitative questi<strong>on</strong>s: such as existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> steady states and asymptotic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s. We will be working in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>gly c<strong>on</strong>tinuous semigroups and utilising some<br />

earlier results, see e.g. Favini et al. in J. Evol. Eq. (2002).<br />

292


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

IV; Wednesday, June 29, 08:30<br />

Ant<strong>on</strong>io Fasano<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics "Ulisse Dini", University <str<strong>on</strong>g>of</str<strong>on</strong>g> Florence,<br />

Italy<br />

e-mail: fasano@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.unifi.it<br />

Alessandro Bertuzzi<br />

IASI CNR, Rome, Italy<br />

Alberto Gandolfi<br />

IASI CNR, Rome, Italy<br />

Carmela Sinisgalli<br />

IASI CNR, Rome, Italy<br />

Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor spheroids: adopting a Bingham scheme<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell comp<strong>on</strong>ent<br />

Avascular multicellular spheroids are <str<strong>on</strong>g>th</str<strong>on</strong>g>e simplest form <str<strong>on</strong>g>of</str<strong>on</strong>g> tumours <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be<br />

studied experimentally under c<strong>on</strong>trolled c<strong>on</strong>diti<strong>on</strong>s. They can be grown in suspensi<strong>on</strong>s<br />

(<str<strong>on</strong>g>th</str<strong>on</strong>g>us being subject to atmospheric pressure) or in a gel which <str<strong>on</strong>g>of</str<strong>on</strong>g>fers some<br />

mechanical resistance to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir expansi<strong>on</strong>. They are made <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferating cells,<br />

quiescent cell and <str<strong>on</strong>g>of</str<strong>on</strong>g> dead cells progressively degrading to liquid. The whole cell<br />

populati<strong>on</strong> is embedded in an extracellular fluid, which provides <str<strong>on</strong>g>th</str<strong>on</strong>g>e mass required<br />

for cell replicati<strong>on</strong>.<br />

During <str<strong>on</strong>g>th</str<strong>on</strong>g>e last years it has become evident <str<strong>on</strong>g>th</str<strong>on</strong>g>at, despite <str<strong>on</strong>g>th</str<strong>on</strong>g>e advantage <str<strong>on</strong>g>of</str<strong>on</strong>g>fered<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e simple geometry, <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> (or even <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady<br />

state) <str<strong>on</strong>g>of</str<strong>on</strong>g> a multicellular spheroid is generally very complicated and requires <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

choice <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stitutive equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. A<br />

peculiar difficulty is originated by its composite nature. Various papers have been<br />

devoted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> spheroids evoluti<strong>on</strong>, assigning an important role to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

deformability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system <str<strong>on</strong>g>of</str<strong>on</strong>g> mutually interacting cells by introducing interacti<strong>on</strong><br />

potentials (depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell volume fracti<strong>on</strong>) and c<strong>on</strong>stitutive laws <str<strong>on</strong>g>th</str<strong>on</strong>g>at may<br />

include yield stress and elasticity (see [1]).<br />

Here we want to present an evoluti<strong>on</strong> model in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e main assumpti<strong>on</strong>s<br />

are:<br />

(i)<str<strong>on</strong>g>th</str<strong>on</strong>g>e cell volume fracti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e viable regi<strong>on</strong> is c<strong>on</strong>stant,<br />

(ii)<str<strong>on</strong>g>th</str<strong>on</strong>g>e rheological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e viable z<strong>on</strong>e are <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>es<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a Bingham fluid,<br />

(iii)<str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly species c<strong>on</strong>sidered in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells metabolism is oxygen and <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> metabolites is neglected.<br />

Thus our model is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-fluid approach. The inspiring<br />

criteri<strong>on</strong> was to incorporate some physically relevant feature (as it can be <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> intercellular links providing a stress <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold for flow), but introducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

minimum possible number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stitutive quantities. Formulating a Bingham-like<br />

scheme proved to be not so simple, since some classical models are not compatible<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> velocity fields <str<strong>on</strong>g>th</str<strong>on</strong>g>at have necessarily to occur in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> a growing spheroid.<br />

Thus <str<strong>on</strong>g>th</str<strong>on</strong>g>is aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis is particularly delicate. The spheroid evoluti<strong>on</strong><br />

is followed from <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial fully proliferating phase, to <str<strong>on</strong>g>th</str<strong>on</strong>g>e stage which includes a<br />

necrotic liquid core, possibly reaching an asymptotic equilibrium (<str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

293


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

steady states has been studied in <str<strong>on</strong>g>th</str<strong>on</strong>g>e same framework in <str<strong>on</strong>g>th</str<strong>on</strong>g>e paper [2]). Despite <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

many simplificati<strong>on</strong>s (to which we add some less important assumpti<strong>on</strong>s, like <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> interfaces separating <str<strong>on</strong>g>th</str<strong>on</strong>g>e various classes <str<strong>on</strong>g>of</str<strong>on</strong>g> cells), <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem turns out<br />

to be c<strong>on</strong>siderably complicated. An existence <str<strong>on</strong>g>th</str<strong>on</strong>g>eorem and numerical simulati<strong>on</strong>s<br />

will be presented.<br />

References.<br />

[1] D. Ambrosi, L. Preziosi. Cell adhesi<strong>on</strong> mechanisms and stress relaxati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tumours. Biomech. Model. MechanoBiol. 8 (2009) 397-413.<br />

[2] A. FASANO, M. GABRIELLI, A. GANDOLFI. Investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady state <str<strong>on</strong>g>of</str<strong>on</strong>g> multicellular<br />

spheroids by revisiting <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-fluid model. To appear <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci. Eng.<br />

294


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor invasi<strong>on</strong> II; Tuesday, June 28, 14:30<br />

Sergei Fedotov<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Manchester<br />

e-mail: sergei.fedotov@manchester.ac.uk<br />

Migrati<strong>on</strong>-Proliferati<strong>on</strong> Dichotomy in Tumor Cell<br />

Proliferati<strong>on</strong> and migrati<strong>on</strong> dichotomy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cell invasi<strong>on</strong> is examined wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

a two-state c<strong>on</strong>tinuous time random walk (CTRW) model. The overall spreading<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells is obtained by using a Hamilt<strong>on</strong>-Jacobi formalism. Random<br />

switching between cell proliferati<strong>on</strong> and migrati<strong>on</strong> is taken into account, and its<br />

influence <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t propagati<strong>on</strong> rate is studied.<br />

295


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Elisenda Feliu, Carsten Wiuf<br />

Bioinformatics Research Centre<br />

e-mail: feliu.elisenda@gmail.com, wiuf@cs.au.dk<br />

Cellular Systems Biology; Thursday, June 30, 11:30<br />

Enzyme sharing as a cause <str<strong>on</strong>g>of</str<strong>on</strong>g> multistati<strong>on</strong>arity in signaling<br />

systems<br />

Bistability, and more generally multistability, in biological systems is seen as a<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular decisi<strong>on</strong> making. Compared to systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a single steady<br />

state, <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple stable steady states provide a possible switch between<br />

different resp<strong>on</strong>ses and increased robustness wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to envir<strong>on</strong>mental<br />

noise. To understand cellular signaling, it is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental importance to<br />

know i) which systems can exhibit multistati<strong>on</strong>arity and ii) what are <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological<br />

c<strong>on</strong>diti<strong>on</strong>s enabling it.<br />

Here, we c<strong>on</strong>sider biological systems where a signal is transmitted by phosphorylati<strong>on</strong>.<br />

Kinases catalyze phosphorylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (protein) substrates, and phosphatases<br />

catalyse dephosphorylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same substrates. Biological systems are<br />

known in which several different kinases phosphorylate a single substrate and o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers<br />

where a single kinase phosphorylate several different substrates. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore,<br />

phosphorylati<strong>on</strong> in more <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong>e site can be carried out by a unique kinase or, as<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> priming kinases, different <strong>on</strong>es. The same phenomena are observed<br />

c<strong>on</strong>cerning phosphatases and dephosphorylati<strong>on</strong>.<br />

The interplay between kinases, phosphatases and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir substrates increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong> we determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> multistati<strong>on</strong>arity in small motifs <str<strong>on</strong>g>th</str<strong>on</strong>g>at repeatedly occur in signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways.<br />

Our simple modules are built <strong>on</strong> a <strong>on</strong>e-site modificati<strong>on</strong> cycle and c<strong>on</strong>tain <strong>on</strong>e or two<br />

cycles combined in all possible ways wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e above features regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> modificati<strong>on</strong> sites, and competiti<strong>on</strong> and n<strong>on</strong>-specificity <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes, incorporated.<br />

We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

a) Multistati<strong>on</strong>arity arises whenever a single enzyme is resp<strong>on</strong>sible for catalyzing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two different but linked substrates.<br />

b) The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple steady states requires substrate saturati<strong>on</strong> and<br />

two opposing dynamics acting <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same substrate.<br />

c) Multistati<strong>on</strong>arity in some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e systems occurs independently <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong><br />

rates.<br />

The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling is based <strong>on</strong> mass-acti<strong>on</strong> kinetics. This implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

steady states are soluti<strong>on</strong>s to a system <str<strong>on</strong>g>of</str<strong>on</strong>g> polynomial equati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemical<br />

c<strong>on</strong>centrati<strong>on</strong>s and enables <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> algebraic arguments as previously proven<br />

successful, e.g. [1], [3]. In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>clusi<strong>on</strong>s are derived in full generality<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out restoring to simulati<strong>on</strong>s or random generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters. See [2].<br />

References.<br />

[1] E. Feliu, M. Knudsen, L. N. Andersen, and C. Wiuf. An algebraic approach to signaling<br />

cascades wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n layers. arXiv, q-bio.QM, Aug 2010.<br />

[2] E. Feliu, and C. Wiuf. Enzyme sharing as a cause <str<strong>on</strong>g>of</str<strong>on</strong>g> multistati<strong>on</strong>arity in signaling systems.<br />

arXiv, q-bio.QM, Feb 2011.<br />

296


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] M. Thoms<strong>on</strong> and J. Gunawardena. Unlimited multistability in multisite phosphorylati<strong>on</strong> systems.<br />

Nature, 460:274–277, 2009.<br />

297


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanical regulati<strong>on</strong> in b<strong>on</strong>e tissue (Sessi<strong>on</strong><br />

II); Wednesday, June 29, 11:00<br />

J. Fernandez<br />

Auckland Bioengineering Institute, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Auckland, 70<br />

Sym<strong>on</strong>ds St, Auckland, New Zealand<br />

e-mail: j.fernandez@auckland.ac.nz<br />

R. Das<br />

Mechanical Engineering, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Auckland, New Zealand<br />

e-mail: r.das@auckland.ac.nz<br />

J. Cornish<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Auckland, New Zealand<br />

e-mail: j.cornish@auckland.ac.nz<br />

D. Thomas<br />

Melbourne Dental School, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Melboune, Australia<br />

e-mail: cd<str<strong>on</strong>g>th</str<strong>on</strong>g>omas@unimelb.edu.au<br />

J. Clement<br />

Melbourne Dental School, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Melboune, Australia<br />

e-mail: johngc@unimelb.edu.au<br />

P. Piv<strong>on</strong>ka<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science and S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware Engineering, The University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Western Australia, Australia<br />

e-mail: peter.piv<strong>on</strong>ka@uwa.edu.au<br />

P. Hunter<br />

Auckland Bioengineering Institute, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> auckland, New<br />

Zealand<br />

e-mail: p.hunter@auckland.ac.nz<br />

A multiscale b<strong>on</strong>e remodelling framework using <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Physiome Project markup languages<br />

Numerous computati<strong>on</strong>al b<strong>on</strong>e models have explored remodelling and b<strong>on</strong>e resp<strong>on</strong>se<br />

at ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell level, micro level or macro level (whole b<strong>on</strong>e). However,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere have been limited attempts to link informati<strong>on</strong> across <str<strong>on</strong>g>th</str<strong>on</strong>g>ese spatial scales<br />

[1]. Treatments such as milk-derived Lact<str<strong>on</strong>g>of</str<strong>on</strong>g>errin <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy [2], have been shown to<br />

increase mineralised b<strong>on</strong>e by modifiying <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> active b<strong>on</strong>e absorbing cells<br />

(osteoclasts) and b<strong>on</strong>e forming cells (osteoblasts). This, in turn, changes <str<strong>on</strong>g>th</str<strong>on</strong>g>e micro<br />

b<strong>on</strong>e architecture and <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall c<strong>on</strong>tinuum streng<str<strong>on</strong>g>th</str<strong>on</strong>g> observed at <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole<br />

b<strong>on</strong>e level. A multiscale computati<strong>on</strong>al framework <str<strong>on</strong>g>th</str<strong>on</strong>g>at passes informati<strong>on</strong> across<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial scales will allow us to evaluate treatments and study disease progressi<strong>on</strong>.<br />

The focus <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study is to (i) outline <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial linkages from <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

whole b<strong>on</strong>e using <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework and markup languages developed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Physiome<br />

Project [3]; and (ii) dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>is framework by looking at an anabolic treatment,<br />

Lact<str<strong>on</strong>g>of</str<strong>on</strong>g>errin, and how it modifies osteoblast/osteoclast numbers, influences<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e strain pattern at <str<strong>on</strong>g>th</str<strong>on</strong>g>e micro b<strong>on</strong>e level and changes whole b<strong>on</strong>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

The multiscale modelling framework developed as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e IUPS Physiome<br />

Project [4] was used to link <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial scales. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell level <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e remodelling<br />

process describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e RANK-RANKL-OPG pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way [5] was implemented in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e CellML markup language [6]. This describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoblasts (b<strong>on</strong>e<br />

298


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

forming) and osteoclasts (b<strong>on</strong>e resorbing) cells in resp<strong>on</strong>se to a heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y, diseased or<br />

treatment state. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e micro level a particulate me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, ’Smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> Particle Hydrodynamics’<br />

(SPH) was used to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e micro strain <str<strong>on</strong>g>of</str<strong>on</strong>g> a b<strong>on</strong>e cube (1mm x 1mm x<br />

1mm) [7]. SPH has <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to handle highly fragmenting solid structures, b<strong>on</strong>e<br />

additi<strong>on</strong> and removal. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e micro level a b<strong>on</strong>e remodelling algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m based <strong>on</strong><br />

strain excitati<strong>on</strong> adapted from <str<strong>on</strong>g>th</str<strong>on</strong>g>e work <str<strong>on</strong>g>of</str<strong>on</strong>g> Prendergast [8] was used to add or remove<br />

b<strong>on</strong>e in order to maintain b<strong>on</strong>e density. At <str<strong>on</strong>g>th</str<strong>on</strong>g>is level <str<strong>on</strong>g>th</str<strong>on</strong>g>e oste<strong>on</strong> cortical pore<br />

structure was visible and <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and resorpti<strong>on</strong> patterns based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoclasts/osteoblasts lead to a changing architecture and overall b<strong>on</strong>e<br />

streng<str<strong>on</strong>g>th</str<strong>on</strong>g>. The macro model (whole b<strong>on</strong>e) was a Femur geometry from <str<strong>on</strong>g>th</str<strong>on</strong>g>e AnatML<br />

database, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> material properties described using FieldML. A spatially varying<br />

density and Young’s modulus was fitted from CT images using <str<strong>on</strong>g>th</str<strong>on</strong>g>e CT number<br />

and a grey-scale mapping. The macro level models are physiologically loaded from<br />

muscle forces and ground reacti<strong>on</strong> force data taken from gait experiments [9]. The<br />

whole b<strong>on</strong>e model provides <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e micro models. The<br />

proposed computati<strong>on</strong>al framework has <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential to improve understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

how cellular level changes influence whole b<strong>on</strong>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

References.<br />

[1] Webster D and Mueller R., WIREs Systems Biology and Medicine. Review: 1-11, 2010<br />

[2] Naot D, et al., Clin Med Res. 3(2):93-101, 2005.<br />

[3] Hunter, P.J. and T.K, Borg, Nat Rev Mol Cell Biol 4(3):237-43, 2003.<br />

[4] Lloyd, C.M., et al., Bioinformatics 24(18):2122-3, 2008.<br />

[5] Piv<strong>on</strong>ka P, et al., B<strong>on</strong>e 43(2):249-263, 2008.<br />

[6] CellML, www.cellml.org/.<br />

[7] Fernandez JW, et al., Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> 6<str<strong>on</strong>g>th</str<strong>on</strong>g> World C<strong>on</strong>gress <strong>on</strong> Biomechanics, Singapore, 1-6<br />

August. 31:784-787, 2010.<br />

[8] McNamara L and Prendergast P, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomechanics, 40(6):1381-1391, 2007<br />

[9] Fernandez JW and Pandy MG, Exp Phys 91(2): 371-382, 2006<br />

299


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Luis F. Lopez<br />

Eduardo Massad<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sao Paulo Medical School<br />

e-mail: lopez@usp.br<br />

Epidemics; Thursday, June 30, 11:30<br />

Time-dependent discret, Ising-like model for SIS epidemic<br />

systems<br />

Standard SIS (Susceptible-Infected-Susceptible), SIR and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er similar epidemic<br />

systems are comm<strong>on</strong>ly modeled as mean field dynamic systems or simulated<br />

as different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular automata. We model a SIS system as an asymmetric<br />

Ising model. In its simplest versi<strong>on</strong>, each individual is c<strong>on</strong>sidered fixed to <str<strong>on</strong>g>th</str<strong>on</strong>g>e nodes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a square lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> linear size L and <str<strong>on</strong>g>th</str<strong>on</strong>g>ey interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir nearest neighbors<br />

<strong>on</strong>ly. Then each individual is represented by a vector which may assume <str<strong>on</strong>g>th</str<strong>on</strong>g>e values<br />

1 (susceptible) or −1 (infected) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> a susceptible to become<br />

infected and an infected to recover depend respectively <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> infected<br />

neighbors and a c<strong>on</strong>stant field H. Here we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e SIS model is c<strong>on</strong>sistent<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> time dependent probabilities in a Glauber fashi<strong>on</strong>, derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e classic meanfield<br />

equati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>rough extensive M<strong>on</strong>te Carlo simulati<strong>on</strong>s, we show how spatial<br />

heterogeneities arise naturally from <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

300


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics <str<strong>on</strong>g>of</str<strong>on</strong>g> Neglected Tropical Diseases; Wednesday, June 29, 11:00<br />

C.P. Ferreira<br />

Depto de Bioestatística, Instituto de Biociências, Univ. Estadual<br />

Paulista, 18618-000, Botucatu, SP, Brazil<br />

e-mail: pio@ibb.unesp.br<br />

S.T.R. Pinho<br />

Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador,<br />

BA, Brazil<br />

e-mail: suani@ufba.br<br />

L. Esteva<br />

Facultad de Ciencias, Universidad Naci<strong>on</strong>al Autónoma de México, 04510,<br />

México, D.F., Mexico<br />

e-mail: esteva@lya.fciencias.unam.mx<br />

F.R. Barreto 1<br />

V.C.M. Silva 2<br />

M.G.L. Teixeira 3<br />

Instituto de Saúde Coletiva, Universidade Federal da Bahia, 0110-040,<br />

Salvador, BA, Brazil<br />

e-mail: 1 florisneide@ufba.br, 2 morato@gmail.com, 3 magloria@ufba.br<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue real epidemics<br />

The infectious diseases are still a relevant problem for human life. Nowadays, due to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e intense flow <str<strong>on</strong>g>of</str<strong>on</strong>g> people around <str<strong>on</strong>g>th</str<strong>on</strong>g>e world and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cities, <str<strong>on</strong>g>th</str<strong>on</strong>g>e understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir complex dynamics is a multidisciplinary issue. C<strong>on</strong>cerning dengue, a vector<br />

transmitted disease, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no vaccine against any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e four serotypes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

virus, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough many efforts have been d<strong>on</strong>e in <str<strong>on</strong>g>th</str<strong>on</strong>g>at directi<strong>on</strong>. As a result, dengue<br />

transmissi<strong>on</strong> c<strong>on</strong>trol is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aquatic and adult mosquito<br />

forms. So far, <str<strong>on</strong>g>th</str<strong>on</strong>g>e modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue may be very helpful for<br />

testing bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adopted vector c<strong>on</strong>trol strategies and <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> future vaccines.<br />

In Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> and Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> America, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are records <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> all serotypes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dengue virus, while in Brazil, until now, <strong>on</strong>ly 3 serotypes (DENV1, DENV2 and<br />

DENV3) have been reported. However, Brazil is resp<strong>on</strong>sible for 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue cases<br />

in Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> America and 60% <str<strong>on</strong>g>of</str<strong>on</strong>g> notified cases around <str<strong>on</strong>g>th</str<strong>on</strong>g>e world. The circulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree serotypes represent an important risk factor for <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue<br />

hemorrhagic fever (DHF). Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough all <str<strong>on</strong>g>th</str<strong>on</strong>g>e efforts applied by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Brazilian dengue<br />

c<strong>on</strong>trol program to stop dengue transmissi<strong>on</strong>, it is still a relevant problem in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

first decade <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is century. Two factors had been associated to <str<strong>on</strong>g>th</str<strong>on</strong>g>e failure <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue<br />

c<strong>on</strong>trol: <str<strong>on</strong>g>th</str<strong>on</strong>g>e vector’s adaptive capacity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> new virus strains.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we use a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for dengue transmissi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

aim to analyze and compare two dengue epidemics <str<strong>on</strong>g>th</str<strong>on</strong>g>at occurred at Salvador, Brazil<br />

in 1995-1996 and 2002. Using real data, we obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e force <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>, Λ, and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive number,R0 for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> epidemics. We also obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e time<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effective reproducti<strong>on</strong> number, R(t), which result to be a very<br />

asuitable measure to comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> epidemics. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

estimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> R0 and R(t) we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trol applied <strong>on</strong>ly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adult stage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mosquito populati<strong>on</strong> is not sufficient to stop dengue transmissi<strong>on</strong>, emphasizing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol applied <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aquatic mosquito phase.<br />

301


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Wils<strong>on</strong> Ferreira Jr.<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Campinas - SP - Brazil<br />

e-mail: wils<strong>on</strong>@ime.unicamp.br<br />

Lucy T. Takahashi<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vicosa - MG - Brazil<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 14:30<br />

Dengue Epidemics : Urbi et Orbi<br />

Dengue is a viral disease which plagues most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tropical regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e world,<br />

mainly <str<strong>on</strong>g>th</str<strong>on</strong>g>ose wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high humidity and dense populati<strong>on</strong>. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease is not<br />

permanent (since it is <str<strong>on</strong>g>th</str<strong>on</strong>g>rough in about 3 weeks) and in most cases not fatal, never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless<br />

it has an enormous impact in <str<strong>on</strong>g>th</str<strong>on</strong>g>e public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> system and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ec<strong>on</strong>omic<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e affected regi<strong>on</strong>s. The viral infecti<strong>on</strong> is <strong>on</strong>ly transmitted by infected<br />

mosquito Aedes egypti which <strong>on</strong>ly get <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus by biting infected humans. So, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dengue epidemics depends str<strong>on</strong>gly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human movement (<str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

infected individuals) and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a large populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mosquitoes vectors.<br />

The coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong>s plus <str<strong>on</strong>g>th</str<strong>on</strong>g>e movement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human populati<strong>on</strong><br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis for <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at we present, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e vector populati<strong>on</strong><br />

evolves locally (in urban areas) while <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected humans are resp<strong>on</strong>sible<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e large distance phenomena (orbi). We have tested <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in <str<strong>on</strong>g>th</str<strong>on</strong>g>e State <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sao Paulo-Brazil by devising a network c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> its largest 60 cities linked by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e highway traffic between <str<strong>on</strong>g>th</str<strong>on</strong>g>em as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir inter c<strong>on</strong>necti<strong>on</strong>s. At each<br />

city we have used a simple and homogeneous model <str<strong>on</strong>g>of</str<strong>on</strong>g> vector-epidemic dynamics.<br />

The simulati<strong>on</strong> were made by starting a focus <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> in a far west city <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

state (which is comm<strong>on</strong>ly observed) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e geographical and time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

results are quite close to <str<strong>on</strong>g>th</str<strong>on</strong>g>e data obtained from <str<strong>on</strong>g>th</str<strong>on</strong>g>e State Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Department in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e last decade. The main goal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to have a reliable s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware to predict<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic burst , detect its main spreading nodes so <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

resp<strong>on</strong>sible public system can act sparsely (which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly way it can afford to<br />

do) but quickly in order to block <str<strong>on</strong>g>th</str<strong>on</strong>g>e fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong>.<br />

302


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Genetics; Wednesday, June 29, 17:00<br />

Stephan Fischer<br />

INSA-Ly<strong>on</strong>, CNRS, INRIA, LIRIS, UMR5205, F-69621, France<br />

e-mail: stephan.fischer@insa-ly<strong>on</strong>.fr<br />

Carole Knibbe<br />

Université Ly<strong>on</strong> 1, CNRS, INRIA, LIRIS, UMR5205, F-69622, France<br />

e-mail: carole.knibbe@liris.cnrs.fr<br />

Samuel Bernard<br />

Université Ly<strong>on</strong> 1, CNRS, INRIA, Institut Camille Jordan, UMR 5208,<br />

F-69222, France<br />

e-mail: bernard@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.univ-ly<strong>on</strong>1.fr<br />

Guillaume Besl<strong>on</strong><br />

INSA-Ly<strong>on</strong>, CNRS, INRIA, LIRIS, UMR5205, F-69621, France<br />

e-mail: guillaume.besl<strong>on</strong>@liris.cnrs.fr<br />

Unravelling laws <str<strong>on</strong>g>of</str<strong>on</strong>g> genome evoluti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and individual-based models<br />

In order to investigate laws <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genome organizati<strong>on</strong> over large evoluti<strong>on</strong>ary<br />

time scales, our lab has developed an individual-based model simulating<br />

Darwinian selecti<strong>on</strong> and most <str<strong>on</strong>g>of</str<strong>on</strong>g> mutati<strong>on</strong>s and rearrangements underg<strong>on</strong>e by a<br />

chromosome during asexual reproducti<strong>on</strong>. In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e chromosome<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number and leng<str<strong>on</strong>g>th</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> genes are free to vary. It was shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

evoluti<strong>on</strong>ary success depends not <strong>on</strong>ly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness but also <strong>on</strong> an appropriate<br />

trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between genome robustness and variability. This indirect selective pressure<br />

regulates <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> coding DNA, but also, more surprisingly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-coding DNA, if large rearrangements are taken into account. The higher <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

sp<strong>on</strong>taneous rate <str<strong>on</strong>g>of</str<strong>on</strong>g> duplicati<strong>on</strong>s and deleti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e more compact <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e surviving lineages [1].<br />

This phenomen<strong>on</strong> is reminiscent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e error-<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold effect described by Eigen<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e quasispecies <str<strong>on</strong>g>th</str<strong>on</strong>g>eory [2, 3], where <str<strong>on</strong>g>th</str<strong>on</strong>g>e per-digit mutati<strong>on</strong> rate q sets a maximum<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> digits ν <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be reproducibly preserved: ν < − ln(σ0)<br />

ln(q) , where σ0 is a<br />

parameter quantifying <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness superiority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fittest sequence. If <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong><br />

rate is increased bey<strong>on</strong>d <str<strong>on</strong>g>th</str<strong>on</strong>g>is limit, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> structure breaks down, and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> disperses over sequence space. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>is effect was mostly<br />

studied in <str<strong>on</strong>g>th</str<strong>on</strong>g>e special case where all sequences have an equal leng<str<strong>on</strong>g>th</str<strong>on</strong>g> and <strong>on</strong>ly point<br />

mutati<strong>on</strong>s can occur. In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum chain leng<str<strong>on</strong>g>th</str<strong>on</strong>g> νmax applies<br />

<strong>on</strong>ly to <str<strong>on</strong>g>th</str<strong>on</strong>g>e segments <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tribute to fitness [3], and <str<strong>on</strong>g>th</str<strong>on</strong>g>us cannot directly explain<br />

our results regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-coding DNA.<br />

The computati<strong>on</strong>al model cannot be c<strong>on</strong>sidered as an analytic pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

observed relati<strong>on</strong>. Here, we combine <str<strong>on</strong>g>th</str<strong>on</strong>g>e intuiti<strong>on</strong> and power <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis. By relaxing Eigen’s hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses, we developed simpler<br />

dynamical models <str<strong>on</strong>g>th</str<strong>on</strong>g>at exhibit essentially <str<strong>on</strong>g>th</str<strong>on</strong>g>e same behavior as <str<strong>on</strong>g>th</str<strong>on</strong>g>e original computati<strong>on</strong>al<br />

model as far as genome leng<str<strong>on</strong>g>th</str<strong>on</strong>g> and coding/n<strong>on</strong>-coding ratio is c<strong>on</strong>cerned.<br />

These models yield a better insight <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> essential parameters and<br />

303


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

provide valuable feedback for computati<strong>on</strong>al simulati<strong>on</strong>s. In return, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese computati<strong>on</strong>al<br />

improvements lead to new relati<strong>on</strong>s and limits <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be investigated<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically, closing <str<strong>on</strong>g>th</str<strong>on</strong>g>e emulati<strong>on</strong> loop.<br />

References.<br />

[1] C. Knibbe, A. Coul<strong>on</strong>, O. Mazet, J.M. Fayard, G. Besl<strong>on</strong> (2007). A L<strong>on</strong>g-Term Evoluti<strong>on</strong>ary<br />

Pressure <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Amount <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>coding DNA. Molecular Biology and Evoluti<strong>on</strong> 24(10) 2344–<br />

2353.<br />

[2] M. Eigen (1971), Selforganizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matter and <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological macromolecules.<br />

Naturwissenschaften 58(10) 465–523.<br />

[3] M. Eigen, J. McCaskill, P. Schuster (1988). Molecular Quasi-Species. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical<br />

Chemistry 92:6881-6891.<br />

304


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

II; Tuesday, June 28, 14:30<br />

K. Renee Fister<br />

Murray State University<br />

e-mail: renee.fister@murraystate.edu<br />

Optimal c<strong>on</strong>trol scenarios in cancer treatment strategies<br />

Models depicting cancer dynamics are investigated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal<br />

c<strong>on</strong>trol strategies to minimize <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells, toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e drugs, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost<br />

associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e regimen. The ordinary differential equati<strong>on</strong> models coupled<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> state c<strong>on</strong>straints will be studied and some numerical results will be discussed.<br />

305


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ben Fitzpatrick<br />

Loyola Marymount University<br />

e-mail: bfitzpatrick@lmu.edu<br />

Regulatory Networks; Saturday, July 2, 11:00<br />

Modeling and Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gene Regulatory Networks and<br />

Envir<strong>on</strong>mental Stress Resp<strong>on</strong>se<br />

This talk investigates <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulatory networks governing cold<br />

shack resp<strong>on</strong>se in budding yeast, Saccharomyces cerevisiae, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

differential equati<strong>on</strong> model. The inverse problem <str<strong>on</strong>g>of</str<strong>on</strong>g> determining model parameters<br />

from observed data is our primary interest. We fit <str<strong>on</strong>g>th</str<strong>on</strong>g>e differential equati<strong>on</strong> model to<br />

microarray data from a cold shock experiment using a Bayesian maximum likelihood<br />

approach, and we discuss future efforts involving gene deleti<strong>on</strong> experiments and<br />

related modeling problems.<br />

306


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance in cancer using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling;<br />

Saturday, July 2, 08:30<br />

Edward H. Flach<br />

Integrated Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa,<br />

FL, USA<br />

Inna Fedorenko<br />

Molecular Oncology, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa, FL, USA<br />

Kim Paraiso<br />

Molecular Oncology, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa, FL, USA<br />

Keiran S. M. Smalley<br />

Molecular Oncology, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa, FL, USA<br />

Cutaneous Oncology, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa, FL, USA<br />

Alexander R. M. Anders<strong>on</strong><br />

Integrated Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa,<br />

FL, USA<br />

Cancer drug treatment is unnatural selecti<strong>on</strong><br />

Targeted drug treatment reduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour volume, but <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is almost always<br />

recurrence even under chr<strong>on</strong>ic treatment. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour populati<strong>on</strong> is<br />

heterogenous. Then <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug treatment is a selecti<strong>on</strong> process, targeting specific<br />

subpopulati<strong>on</strong>s. If treatment is stopped, phenotypic drift causes reversi<strong>on</strong> towards<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e original wild-type populati<strong>on</strong>.<br />

Our model is a discrete populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> an ODE.<br />

The cells each have a distinct phenotype. This phenotype determines <str<strong>on</strong>g>th</str<strong>on</strong>g>eir fitness.<br />

The fitness changes under drug c<strong>on</strong>diti<strong>on</strong>s: we define a fitness landscape for bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

drug and drug-free c<strong>on</strong>diti<strong>on</strong>s.<br />

Experimentati<strong>on</strong> shows evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly partial reversi<strong>on</strong> to wild-type. We<br />

extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness landscape to multiple fitness “wells”. Reversi<strong>on</strong><br />

after drug treatment <strong>on</strong>ly fills <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wells. The overall behaviour matches<br />

experimental observati<strong>on</strong>s.<br />

Our model c<strong>on</strong>cept extends to c<strong>on</strong>sidering alternative treatments. Temporal<br />

variati<strong>on</strong> appears unhelpful but well-chosen combinati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies could be effective.<br />

This approach gives a quantitative predicrti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment strategies.<br />

307


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chaste framework;<br />

Tuesday, June 28, 11:00<br />

Dr Alexander Fletcher<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: alexander.fletcher@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Modelling biological systems in Chaste: an overview<br />

Computati<strong>on</strong>al models <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> biological processes have been implemented<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chaste framework (http://web.comlab.ox.ac.uk/chaste). In <str<strong>on</strong>g>th</str<strong>on</strong>g>is,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d talk <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mini-symposium, we provide an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, focusing<br />

in particular <strong>on</strong> models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intestinal crypt. We discuss how multiscale<br />

modelling may be used to gain insight into processes such as crypt homeostasis,<br />

m<strong>on</strong>ocl<strong>on</strong>al c<strong>on</strong>versi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> dysregulated proliferati<strong>on</strong> and adhesi<strong>on</strong><br />

<strong>on</strong> crypt dynamics. We also dem<strong>on</strong>strate how <str<strong>on</strong>g>th</str<strong>on</strong>g>e generality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chaste framework<br />

allows a quantitative comparis<strong>on</strong> to be made <str<strong>on</strong>g>of</str<strong>on</strong>g> different cell-based modelling<br />

frameworks. We c<strong>on</strong>clude wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er biological systems <str<strong>on</strong>g>th</str<strong>on</strong>g>at are<br />

being modelled wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in Chaste.<br />

308


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance in cancer using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling;<br />

Saturday, July 2, 08:30<br />

Jasmine Foo<br />

Harvard University, Dana Farber Cancer Institute<br />

e-mail: jfoo@jimmy.harvard.edu<br />

Modeling diversity in drug-resistant populati<strong>on</strong>s using<br />

multitype branching processes<br />

I will discuss a c<strong>on</strong>tinuous-time bir<str<strong>on</strong>g>th</str<strong>on</strong>g>-dea<str<strong>on</strong>g>th</str<strong>on</strong>g> process model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumorigenesis<br />

where resistance mutati<strong>on</strong>s c<strong>on</strong>fer random additive fitness (bir<str<strong>on</strong>g>th</str<strong>on</strong>g> rate) changes<br />

sampled from a mutati<strong>on</strong>al fitness distributi<strong>on</strong>. We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resistant populati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic limit, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese features <strong>on</strong> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness landscape. We study <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance from bo<str<strong>on</strong>g>th</str<strong>on</strong>g> exp<strong>on</strong>entially increasing sensitive cell populati<strong>on</strong>s<br />

(pre-treatment) and exp<strong>on</strong>entially declining populati<strong>on</strong>s (during treatment).<br />

Using experimental data, we apply <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to study characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> a drugresistant<br />

subpopulati<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e time <str<strong>on</strong>g>of</str<strong>on</strong>g> diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic myeloid leukemia, and<br />

discuss implicati<strong>on</strong>s for treatment strategies. (Joint work w/R. Durrett, K. Leder,<br />

J. Mayberry. F. Michor)<br />

309


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent advances in infectious disease modelling I; Saturday, July 2, 11:00<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Forde<br />

Hobart and William Smi<str<strong>on</strong>g>th</str<strong>on</strong>g> Colleges; Geneva, NY, USA<br />

e-mail: forde@hws.edu<br />

Stanca Ciupe<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Louisiana at Lafayette, Lafayette, LA, USA<br />

e-mail: msc6503@louisiana.edu<br />

Reducing HIV Reservoirs by Induced Activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Latently<br />

Infected Cells<br />

Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> patients infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> HIV is effective at lowering <str<strong>on</strong>g>th</str<strong>on</strong>g>e serum viral<br />

c<strong>on</strong>centrati<strong>on</strong> to below <str<strong>on</strong>g>th</str<strong>on</strong>g>e limits <str<strong>on</strong>g>of</str<strong>on</strong>g> detecti<strong>on</strong>, but <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus persists in reservoirs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> latently infected cells, such as resting memory T cells. Because <str<strong>on</strong>g>th</str<strong>on</strong>g>e latent pool<br />

may serve as a source for reemergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus after <str<strong>on</strong>g>th</str<strong>on</strong>g>e cessati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment,<br />

speeding its decay is a necessary step toward eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV from <str<strong>on</strong>g>th</str<strong>on</strong>g>e patient.<br />

One strategy for reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e latent pool is to artificially activate memory T cells.<br />

We present a model <str<strong>on</strong>g>of</str<strong>on</strong>g> viral infecti<strong>on</strong> including anti-retroviral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> latently infected cells. We explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative roles <str<strong>on</strong>g>of</str<strong>on</strong>g> homeostatic<br />

proliferati<strong>on</strong> and transient viremic events in maintaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e latent pool. Using<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is model, we evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential use <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial activati<strong>on</strong> to enhance HIV<br />

treatment.<br />

310


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling viral hepatitis dynamics in-vivo and in-vitro in <str<strong>on</strong>g>th</str<strong>on</strong>g>e era <str<strong>on</strong>g>of</str<strong>on</strong>g> direct<br />

anti-viral agents II; Wednesday, June 29, 08:30<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Forde<br />

Hobart and William Smi<str<strong>on</strong>g>th</str<strong>on</strong>g> Colleges; Geneva, NY, USA<br />

e-mail: forde@hws.edu<br />

Yang Kuang<br />

Ariz<strong>on</strong>a State University, Tempe, AZ, USA<br />

e-mail: kuang@asu.edu<br />

Aar<strong>on</strong> Packer<br />

Ariz<strong>on</strong>a State University, Tempe, AZ, USA<br />

e-mail: aar<strong>on</strong>.packer@asu.edu<br />

Modeling Early Events in Hepatitis Delta Virus Infecti<strong>on</strong><br />

Delta hepatitis virus (HDV) is a dependent satellite virus <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis B virus.<br />

HDV relies <strong>on</strong> surface proteins produced by HBV to create new virus particles, but<br />

also has an inhibitory effect <str<strong>on</strong>g>of</str<strong>on</strong>g> HBV replicati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e two species compete for<br />

comm<strong>on</strong> resources inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>is dependence and competiti<strong>on</strong><br />

could provide targets for antiviral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies to eliminate or prevent chr<strong>on</strong>ic HDV<br />

superinfecti<strong>on</strong>.<br />

By exploring <str<strong>on</strong>g>th</str<strong>on</strong>g>e early events in HDV replicati<strong>on</strong>, we explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

viral release from newly infected hepatocytes, including a delay in <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

viral release and a precipitous decline in producti<strong>on</strong> after 12 days. We fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er explore<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese dynamics for <str<strong>on</strong>g>th</str<strong>on</strong>g>e establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic hepatitis<br />

delta in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cases <str<strong>on</strong>g>of</str<strong>on</strong>g> coinfecti<strong>on</strong> and superinfecti<strong>on</strong>.<br />

311


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Neurosciences; Wednesday, June 29, 08:30<br />

Daniel Forger<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan<br />

e-mail: forger@umich.edu<br />

Casey O. Diekman<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, Ohio State University<br />

The surprising complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> signal processing in clock<br />

neur<strong>on</strong>s<br />

Neur<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e suprachiasmatic nucleus (SCN) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>alamus act as <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

central daily pacemakers in mammals. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese neur<strong>on</strong>s, a molecular circadian<br />

clock is closely coupled to <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong>s electrical activity to process timekeeping<br />

signals from <str<strong>on</strong>g>th</str<strong>on</strong>g>e external world, and to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e signals <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong>s will send<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e body. This is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> many emerging examples <str<strong>on</strong>g>of</str<strong>on</strong>g> how neur<strong>on</strong>al<br />

firing influences, and is influenced by, intracellular biochemical systems.<br />

For as l<strong>on</strong>g as <str<strong>on</strong>g>th</str<strong>on</strong>g>ese neur<strong>on</strong>s had been studied, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey had been assumed to<br />

encode <str<strong>on</strong>g>th</str<strong>on</strong>g>e time <str<strong>on</strong>g>of</str<strong>on</strong>g> day indicated by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir internal molecular clock by <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate at<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>ey fire acti<strong>on</strong> potentials. Here, I will present analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at suggests much more complex coding, largely based <strong>on</strong> a balance between<br />

calcium and sodium dynamics. Bifurcati<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model we<br />

have developed <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>s which c<strong>on</strong>trol daily timekeeping in mammals suggested<br />

a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical states, including depolarized low amplitude membrane oscillati<strong>on</strong>s<br />

and depolarizati<strong>on</strong> block. These states were c<strong>on</strong>firmed experimentally<br />

by colleagues. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er simulati<strong>on</strong>s suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at rest membrane potential may be<br />

more important <str<strong>on</strong>g>th</str<strong>on</strong>g>an spike rate for signaling in clock neur<strong>on</strong>s. This suggests a new<br />

modeling paradigm when c<strong>on</strong>sidering signaling from membrane to DNA and back.<br />

312


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 08:30<br />

Scott Fortmann-Roe<br />

UC Berkeley<br />

e-mail: scottfr@berkeley.edu<br />

Orr Spiegel<br />

Hebrew University <str<strong>on</strong>g>of</str<strong>on</strong>g> Jerusalem<br />

Roi Harel<br />

Hebrew University <str<strong>on</strong>g>of</str<strong>on</strong>g> Jerusalem<br />

Wayne Getz<br />

UC Berkeley<br />

Ran Na<str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

Hebrew University <str<strong>on</strong>g>of</str<strong>on</strong>g> Jerusalem<br />

Automatic Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Vulture Behavior using Machine<br />

Learning Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms Applied to Accelerometer Data<br />

Accelerometer data has been shown to be an effective tool for identifying certain<br />

animal behaviors. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, I present <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> tri-axial accelerometer data<br />

as a predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> seven ground-tru<str<strong>on</strong>g>th</str<strong>on</strong>g>ed Griff<strong>on</strong> vulture (Gyps fulvus) behaviors:<br />

active flight, eating, laying down, passive flight, preening, running, and standing.<br />

Five different machine learning algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms were trained and validated <strong>on</strong> subsets<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> over nine-hundred observati<strong>on</strong>s, each 16 to 25 sec<strong>on</strong>ds in leng<str<strong>on</strong>g>th</str<strong>on</strong>g>. Prior to classificati<strong>on</strong>,<br />

summary statistics for <str<strong>on</strong>g>th</str<strong>on</strong>g>e accelerometer data were calculated and used<br />

as inputs into <str<strong>on</strong>g>th</str<strong>on</strong>g>e machine learning algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. The algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms tested were Linear<br />

Discriminate Analysis, Classificati<strong>on</strong> and Regressi<strong>on</strong> Trees, Random Forests,<br />

Artificial Neural Networks, and Support Vector Machines. Of <str<strong>on</strong>g>th</str<strong>on</strong>g>ese me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Random Forest predictors were found to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e most accurate while Linear Discriminate<br />

Analysis predictors were <str<strong>on</strong>g>th</str<strong>on</strong>g>e least accurate. Classificati<strong>on</strong> accuracies for<br />

all predictors were in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 80% to 90% range. Using results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e machine learning<br />

algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms we determined <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e different summary statistics for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e classificati<strong>on</strong> effort. Generally, measures <str<strong>on</strong>g>of</str<strong>on</strong>g> variance were found to be more<br />

important <str<strong>on</strong>g>th</str<strong>on</strong>g>an measures <str<strong>on</strong>g>of</str<strong>on</strong>g> central tendency or correlati<strong>on</strong>.<br />

313


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 08:30<br />

Pawel Foszner<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Pawel.Foszner@polsl.pl<br />

Roman Jaksik<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Roman.Jaksik@polsl.pl<br />

Aleksandra Gruca<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Aleksandra.Gruca@polsl.pl<br />

Joanna Polanska<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Joanna.Polanska@polsl.pl<br />

Andrzej Polanski<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Andrzej.Polanski@polsl.pl<br />

Efficient reannotati<strong>on</strong> system for verifying genomic targets<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> DNA microarray probes<br />

Systems for data cleaning for supporting analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA microarray<br />

experiments are becoming important elements <str<strong>on</strong>g>of</str<strong>on</strong>g> bioinformatics aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> gene<br />

expressi<strong>on</strong> analysis [1]. It has been dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at data cleaning at <str<strong>on</strong>g>th</str<strong>on</strong>g>e level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> microarray probes, based <strong>on</strong> most recent knowledge <strong>on</strong> genomic data, can substantially<br />

improve results <str<strong>on</strong>g>of</str<strong>on</strong>g> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular classifiers. However, due to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole genome browsing projects, available services and data for<br />

reannotati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microarray probes are still quite sparse. In our research we have<br />

created an efficient reannotati<strong>on</strong> tool by combining <str<strong>on</strong>g>th</str<strong>on</strong>g>e well known gene search tool<br />

BLAT [2] wi<str<strong>on</strong>g>th</str<strong>on</strong>g> appropriately designed database and tools for operati<strong>on</strong>s <strong>on</strong> it.<br />

We show properties <str<strong>on</strong>g>of</str<strong>on</strong>g> our tool by using two Affymetrix chips HG U133A and<br />

HG 1.0 ST. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e Affymetrix microarrays, <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene intensity is calculated <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> gene probes c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> 25-mer oligo-nucleotides. For many reas<strong>on</strong>s, in<br />

many cases, <str<strong>on</strong>g>th</str<strong>on</strong>g>e calculated value does not match <str<strong>on</strong>g>th</str<strong>on</strong>g>e real expressi<strong>on</strong>. These reas<strong>on</strong>s<br />

include single nucleotide polymorphism, adjusting <str<strong>on</strong>g>th</str<strong>on</strong>g>e probe to ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er gene or intr<strong>on</strong>.<br />

Our task was to check how many probes can truly determine gene expressi<strong>on</strong>.<br />

We have developed a database which c<strong>on</strong>tains informati<strong>on</strong> about how <str<strong>on</strong>g>th</str<strong>on</strong>g>e probes<br />

are aligned to <str<strong>on</strong>g>th</str<strong>on</strong>g>e latest human genome. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>ose matches to <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome, for<br />

each probe we found mRNA and EST sequences. In our presentati<strong>on</strong> we compare<br />

reannotati<strong>on</strong> results for analyzed Affymetrix chips, based <strong>on</strong> two different built <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Human Genome, HG18 and HG19. Improving <str<strong>on</strong>g>th</str<strong>on</strong>g>e quality <str<strong>on</strong>g>of</str<strong>on</strong>g> data can be fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

verified by comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e misclassificati<strong>on</strong> rates for classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microarray data<br />

obtained using <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>ficial affymetrix CDF files and CDF file created by us. The<br />

informati<strong>on</strong> obtained from reannotati<strong>on</strong>s can help to update <str<strong>on</strong>g>th</str<strong>on</strong>g>e CDF files, and can<br />

significantly improve <str<strong>on</strong>g>th</str<strong>on</strong>g>e quality <str<strong>on</strong>g>of</str<strong>on</strong>g> classificati<strong>on</strong>.<br />

Acknowledgements. This work was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Community<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Social Fund.<br />

314


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] Ramil N. Nurtdinov, Mikhail O. Vasiliev,Anna S. Ershova, Ilia S. Lossev and Anna S. Karyagina,<br />

PLANdbAffy: probe-level annotati<strong>on</strong> database for Affymetrix expressi<strong>on</strong> microarrays Nucleic<br />

Acids Research, 2010, 38 D726–D730.<br />

[2] Kent,W.J., BLAT–<str<strong>on</strong>g>th</str<strong>on</strong>g>e BLAST-like alignment tool. Genome Res. 12 656–664.<br />

315


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

C<strong>on</strong>necting microscale and macroscale models <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular migrati<strong>on</strong>;<br />

Tuesday, June 28, 17:00<br />

John Fozard<br />

CPIB, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

e-mail: john.fozard@nottingham.ac.uk<br />

Helen Byrne<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

e-mail: helen.byrne@nottingham.ac.uk<br />

Oliver Jensen<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

e-mail: oliver.jensen@nottingham.ac.uk<br />

John King<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

e-mail: john.king@nottingham.ac.uk<br />

Discrete and c<strong>on</strong>tinuum modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and signalling<br />

in biological tissue<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e recent work [1], we examined me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for deriving c<strong>on</strong>tinuum approximati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e-dimensi<strong>on</strong>al individual-based models (IBM) for systems <str<strong>on</strong>g>of</str<strong>on</strong>g> tightly adherent<br />

cells, such as an epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial m<strong>on</strong>olayer. Each cell occupies a bounded regi<strong>on</strong>, defined<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its endpoints, has bo<str<strong>on</strong>g>th</str<strong>on</strong>g> elastic and viscous mechanical properties<br />

and is subject to drag generated by adhesi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e substrate. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete system is governed by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> differential-algebraic equati<strong>on</strong>s. This<br />

IBM is <str<strong>on</strong>g>th</str<strong>on</strong>g>en approximated by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential equati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells. We c<strong>on</strong>sider two different techniques: <str<strong>on</strong>g>th</str<strong>on</strong>g>e usual c<strong>on</strong>tinuum<br />

approximati<strong>on</strong> which is appropriate when cellular properties vary slowly between<br />

neighbouring cells, and a multiple-scales approach which is appropriate when cellular<br />

properties are spatially periodic (so may be heterogeneous, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> substantial<br />

variati<strong>on</strong> between adjacent cells). In <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter case, <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between mean<br />

cell pressure and mean cell leng<str<strong>on</strong>g>th</str<strong>on</strong>g>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuum model is found to be historydependent<br />

when cell viscosity is significant. We apply <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

accelerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a wound edge observed in wound-healing assays.<br />

References.<br />

[1] Fozard JA, Byrne HM, Jensen OE, King JR, C<strong>on</strong>tinuum approximati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> individual-based<br />

models for epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial m<strong>on</strong>olayers. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Med Biol. (2010) 27(1) 39–74.<br />

316


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Benjamin Franz<br />

Oxford University (OCCAM)<br />

e-mail: franz@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 17:00<br />

Hybrid modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong>: coupling<br />

individual-based models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> partial differential equati<strong>on</strong>s<br />

Two approaches to ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

literature: (i) individual-based (agent-based) models, which describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each cell, and (ii) macroscopic partial differential equati<strong>on</strong>s (PDEs), which are<br />

written for cell c<strong>on</strong>centrati<strong>on</strong>s. A widely studied example <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> is chemotaxis,<br />

where cells move according to extracellular chemicals <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be altered by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cells <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case, systems <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled PDEs are used to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and external chemicals. A more detailed descripti<strong>on</strong> is given<br />

by hybrid models <str<strong>on</strong>g>th</str<strong>on</strong>g>at couple an individual-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> PDEs for<br />

extracellular chemicals. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we will give an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid models used<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature. Examples will include chemotaxis <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria and eukaryotic cells.<br />

We will analyse similarities and differences between hybrid models and macroscopic<br />

PDEs.<br />

317


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bridging <str<strong>on</strong>g>th</str<strong>on</strong>g>e Divide: Cancer Models in Clinical Practice; Thursday, June 30,<br />

11:30<br />

Avner Friedman<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, Ohio State University<br />

e-mail: afriedman@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ohio-state.edu<br />

Therapeutic approaches to brain cancer<br />

The standard treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> newly diagnosed glioblastoma, <str<strong>on</strong>g>th</str<strong>on</strong>g>e most aggressive brain<br />

cancer, is surgical resecti<strong>on</strong> followed by radiati<strong>on</strong> and chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. This treatment,<br />

however, has failed to signi<br />

cantly extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e patient’s life expectancy which is typically <strong>on</strong>e year. By <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

time <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease is diagnosed, tumor cells have already migrated to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er parts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e brain. Based <strong>on</strong> clinical data, we shall evaluate dierent combinati<strong>on</strong> protocols <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resecti<strong>on</strong>, radiati<strong>on</strong> and chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <str<strong>on</strong>g>th</str<strong>on</strong>g>at may increase a patient’s survival time.<br />

We shall also c<strong>on</strong>sider viral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, currently at <str<strong>on</strong>g>th</str<strong>on</strong>g>e preclinical stage, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e eect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> drugs <str<strong>on</strong>g>th</str<strong>on</strong>g>at slow down glioma cell migrati<strong>on</strong>. The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models used in<br />

our analysis are based, primarily, <strong>on</strong> systems <str<strong>on</strong>g>of</str<strong>on</strong>g> partial dierential equati<strong>on</strong>s.<br />

318


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part I;<br />

Tuesday, June 28, 11:00<br />

Avner Friedman<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, and Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

The Ohio State University, Columbus, USA<br />

e-mail: afriedman@mbi.osu.edu<br />

Bei Hu<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Notre Dame, Notre Dame,<br />

USA<br />

The development <str<strong>on</strong>g>of</str<strong>on</strong>g> fingers in solid tumors<br />

We c<strong>on</strong>sider a solid tumor in a regi<strong>on</strong> which is modeled ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er as a porous medium<br />

(by Darcy’s law) or as fluid-like tissue (by Stokes equati<strong>on</strong>). We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

proliferating and dying cells move around wi<str<strong>on</strong>g>th</str<strong>on</strong>g> velocity v in a way <str<strong>on</strong>g>th</str<strong>on</strong>g>at keeps <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

density c<strong>on</strong>stant in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor regi<strong>on</strong> D(t). The nutrient c<strong>on</strong>centrati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

velocity v satisfy a system <str<strong>on</strong>g>of</str<strong>on</strong>g> PDEs in D(t). The aggressivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor is<br />

represented by a parameter µ which relates nutrient c<strong>on</strong>centrati<strong>on</strong> to proliferating<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> cells. It is shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a stati<strong>on</strong>ary spherically symmetric soluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> radius R which depends <strong>on</strong> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model parameters but not <str<strong>on</strong>g>of</str<strong>on</strong>g> µ. We<br />

prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is soluti<strong>on</strong> is asymptotically stable for µ > µ∗ and <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exist infinite<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> branches <str<strong>on</strong>g>of</str<strong>on</strong>g> stati<strong>on</strong>ary soluti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> arbitrarily large number <str<strong>on</strong>g>of</str<strong>on</strong>g> fingers,<br />

indicating <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis. We also prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid-like tumor develops<br />

more fingers <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor wi<str<strong>on</strong>g>th</str<strong>on</strong>g> porous medium c<strong>on</strong>sistency.<br />

319


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell and Tissue Biophysics; Thursday, June 30, 11:30<br />

Jan Fuhrmann<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Universität Heidelberg<br />

e-mail: jan.fuhrmann@uni-hd.de<br />

Angela Stevens<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Universität Münster;<br />

formerly Universität Heidelberg<br />

e-mail: stevens@mis.mpg.de<br />

On a parabolic model for particle alignment<br />

In [1] we proposed a model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiati<strong>on</strong> <strong>on</strong> cell polarizati<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e first<br />

steps <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular moti<strong>on</strong>. Now, numerical simulati<strong>on</strong>s indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

shocks in <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese equati<strong>on</strong>s which may be interpreted as fr<strong>on</strong>ts <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

active barbed ends <str<strong>on</strong>g>of</str<strong>on</strong>g> actin filaments being established in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell.<br />

The original model included <str<strong>on</strong>g>th</str<strong>on</strong>g>e descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> actin m<strong>on</strong>omers and filaments<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out taking into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutual alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter. In order to understand<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aligning filaments we deduced from <str<strong>on</strong>g>th</str<strong>on</strong>g>e given model a simple<br />

parabolic system describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oriented particles wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fixed velocity,<br />

undergoing diffusi<strong>on</strong> and mutual alignment. This system, c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> no more<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>an two equati<strong>on</strong>s, may be used to model different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> aligning particles, e.g.<br />

myxobacteria.<br />

For <str<strong>on</strong>g>th</str<strong>on</strong>g>is model we analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e totally symmetric state which<br />

corresp<strong>on</strong>ds to a n<strong>on</strong> polarized cell against small perturbati<strong>on</strong>s. Here, <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> alignment terms will be discussed. We fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore derive<br />

traveling wave soluti<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>e system and show how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey emerge numerically from<br />

small initial data. We will <str<strong>on</strong>g>th</str<strong>on</strong>g>us observe polarizati<strong>on</strong> fr<strong>on</strong>ts developing from an<br />

initially almost symmetric state.<br />

References.<br />

[1] J. Fuhrmann, J. Käs, A. Stevens, Initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytoskeletal asymmetry for cell polarizati<strong>on</strong><br />

and movement. J Theor Biol 249.2 278–288.<br />

320


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Informati<strong>on</strong>, human behaviour and infecti<strong>on</strong> c<strong>on</strong>trol; Saturday, July 2, 08:30<br />

Sebastian Funk<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, Zoological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>d<strong>on</strong><br />

e-mail: sf429@cam.ac.uk<br />

Marcel Sala<str<strong>on</strong>g>th</str<strong>on</strong>g>é<br />

Pennsylvania State University<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Human Behaviour <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Spread<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Infectious Diseases<br />

People can protect <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves against being infected by a disease by changing <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

behaviour in resp<strong>on</strong>se to an outbreak, for example, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough wearing face masks or<br />

reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>eir number <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious c<strong>on</strong>tacts. This type <str<strong>on</strong>g>of</str<strong>on</strong>g> behavioural change can<br />

affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease itself. Here, I will discuss different ways to<br />

model <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> human behaviour <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases, as well<br />

as challenges <str<strong>on</strong>g>th</str<strong>on</strong>g>erein. As an example, I will present a model in which individuals<br />

are influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir peers as awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a disease as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

disease itself spread in <str<strong>on</strong>g>th</str<strong>on</strong>g>e social networks <str<strong>on</strong>g>of</str<strong>on</strong>g> influence and disease.<br />

321


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Undergraduate Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Educati<strong>on</strong> Bey<strong>on</strong>d BIO 2010 (Part I);<br />

Wednesday, June 29, 14:30<br />

Holly Gaff<br />

Old Domini<strong>on</strong> University<br />

e-mail: hgaff@odu.edu<br />

Agent-based models <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting populati<strong>on</strong>s<br />

Agent-based models, also called individual-based models, are computer-based models<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong>s and interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> aut<strong>on</strong>omous agents <str<strong>on</strong>g>th</str<strong>on</strong>g>at represent<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>. These models are powerful simulati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at can<br />

capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergent phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> a natural system. These types <str<strong>on</strong>g>of</str<strong>on</strong>g> models have<br />

been applied to many different areas <str<strong>on</strong>g>of</str<strong>on</strong>g> research such as ecology, e.g., white-tailed<br />

deer and pan<str<strong>on</strong>g>th</str<strong>on</strong>g>er populati<strong>on</strong>s in Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Florida, and epidemiology, e.g., human disease<br />

outbreaks in a realistic urban area. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most beneficial aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

models is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are easily understood and explainable to bo<str<strong>on</strong>g>th</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g> and biology<br />

students. A framework for teaching how to develop an agent-based model and<br />

examples <str<strong>on</strong>g>of</str<strong>on</strong>g> such models will be presented.<br />

322


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Reports from US - African BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Initiative: C<strong>on</strong>servati<strong>on</strong><br />

Biology; Saturday, July 2, 14:30<br />

Holly Gaff<br />

Old Domini<strong>on</strong> University<br />

e-mail: hgaff@odu.edu<br />

Sadie Ryan<br />

College <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Forestry, SUNY<br />

Overview: Reports from US - African BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Initiative: C<strong>on</strong>servati<strong>on</strong> Biology<br />

How do you combine <str<strong>on</strong>g>th</str<strong>on</strong>g>e expertise <str<strong>on</strong>g>of</str<strong>on</strong>g> graduate students trained as ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematicians<br />

and c<strong>on</strong>servati<strong>on</strong> biologists, from two c<strong>on</strong>tinents, to explore important questi<strong>on</strong>s in<br />

African c<strong>on</strong>servati<strong>on</strong> biology? This questi<strong>on</strong> was at <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e US-African BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Initiative: C<strong>on</strong>servati<strong>on</strong> Biology, a jointly funded<br />

enterprise <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Center for Discrete Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Theoretical Computer Science<br />

(DIMACS), <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute at Ohio State University<br />

(MBI), <str<strong>on</strong>g>th</str<strong>on</strong>g>e Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology (SMB), <str<strong>on</strong>g>th</str<strong>on</strong>g>e L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Society<br />

(LMS), and <str<strong>on</strong>g>th</str<strong>on</strong>g>e US Nati<strong>on</strong>al Science Foundati<strong>on</strong> (NSF). Two advanced studies<br />

institutes, or ASIs, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> guest lecturers, a follow-up workshop and fieldtrips to see,<br />

first-hand, <str<strong>on</strong>g>th</str<strong>on</strong>g>e local c<strong>on</strong>servati<strong>on</strong> needs in questi<strong>on</strong>, were held in Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa (2010)<br />

and Kenya (2011).<br />

Researchers working in <str<strong>on</strong>g>th</str<strong>on</strong>g>e fields <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and c<strong>on</strong>servati<strong>on</strong><br />

biology provided a series <str<strong>on</strong>g>of</str<strong>on</strong>g> lectures in populati<strong>on</strong> viability analysis, global climate<br />

change, harvesting, disease modeling, c<strong>on</strong>servati<strong>on</strong> genetics, remote sensing,<br />

reserve design, agent-based modeling and practical c<strong>on</strong>cerns in real-world c<strong>on</strong>servati<strong>on</strong><br />

and management. These lectures established a comm<strong>on</strong> background am<strong>on</strong>g<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e students, while examining <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> fields pertinent to research into questi<strong>on</strong>s<br />

in ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling in c<strong>on</strong>servati<strong>on</strong> biology. These lectures were augmented<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> computati<strong>on</strong>al exercises, in multiple s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware platforms, giving students<br />

hands-<strong>on</strong> experience and coded examples to build <strong>on</strong>. Students from <str<strong>on</strong>g>th</str<strong>on</strong>g>e US<br />

and ten African countries from <str<strong>on</strong>g>th</str<strong>on</strong>g>e fields <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, ecology, c<strong>on</strong>servati<strong>on</strong> biology,<br />

and wildlife and natural resource management came toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er for an intense<br />

week <str<strong>on</strong>g>of</str<strong>on</strong>g> training, reinforced and implemented in group projects.<br />

Projects were formulated, c<strong>on</strong>ceived and chosen by <str<strong>on</strong>g>th</str<strong>on</strong>g>e students, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> guidance<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e mentors. They included: agent-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-poaching strategies<br />

am<strong>on</strong>gst villages wi<str<strong>on</strong>g>th</str<strong>on</strong>g> human-elephant c<strong>on</strong>flict, modifying epidemiological models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bovine tuberculosis in African buffalo to understand directed culling efforts in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

face <str<strong>on</strong>g>of</str<strong>on</strong>g> different transmissi<strong>on</strong> scenarios, modeling populati<strong>on</strong> viability and management<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> impacts <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e flamingoes in Lake Nakuru, spatial modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape<br />

fragmentati<strong>on</strong> and elephant movement corridors in Kenya, to name a few. Projects<br />

were initiated at <str<strong>on</strong>g>th</str<strong>on</strong>g>e institutes, and plans for c<strong>on</strong>tinuing work, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough email and<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er means <str<strong>on</strong>g>of</str<strong>on</strong>g> communicati<strong>on</strong>s were formalized and approved by faculty mentors.<br />

This mini-symposium is a product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiative <str<strong>on</strong>g>th</str<strong>on</strong>g>at was not part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

original prospectus for funding. The initiative funded a follow-up institute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

originally planned single combined institute and workshop. Faculty who would<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>erwise not have met each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er have been inspired to collaboratively apply for<br />

funding to c<strong>on</strong>tinue teaching <str<strong>on</strong>g>th</str<strong>on</strong>g>ese institutes, and to c<strong>on</strong>duct joint research in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

323


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

future. A minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree publicati<strong>on</strong>s and 5 talks are resulting from student<br />

projects formed at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese institutes, so far, and established c<strong>on</strong>necti<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Sou<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

African Wildlife College (SAWC) and Kenya Wildlife Services Training Institute<br />

(KWSTI) at Naivasha are spawning new ideas and project bases.<br />

324


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Turing !! Turing?? <strong>on</strong> morphogenesis via experimental and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

approaches; Wednesday, June 29, 17:00<br />

Eam<strong>on</strong>n A. Gaffney<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: gaffney@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.oxa.c.uk<br />

Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing’s Pattern Formati<strong>on</strong> Mechanism On<br />

Growing Domains<br />

The prospect <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g range signalling by diffusible morphogens initiating large<br />

scale pattern formati<strong>on</strong> has been c<strong>on</strong>templated since <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial work <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 1950s and has been explored <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically and experimentally in numerous<br />

developmental settings. However, Turing ′ s pattern formati<strong>on</strong> mechanism exhibits<br />

sensitivity to <str<strong>on</strong>g>th</str<strong>on</strong>g>e details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial c<strong>on</strong>diti<strong>on</strong>s suggesting <str<strong>on</strong>g>th</str<strong>on</strong>g>at, in isolati<strong>on</strong>, it cannot<br />

robustly generate pattern wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in noisy biological envir<strong>on</strong>ments. Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> developmental<br />

self-organisati<strong>on</strong>, in particular a growing domain, have been suggested<br />

as a mechanism for robustly inducing a sequential cascade <str<strong>on</strong>g>of</str<strong>on</strong>g> self-organisati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>us<br />

circumventing <str<strong>on</strong>g>th</str<strong>on</strong>g>e difficulties <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivity. This propositi<strong>on</strong> is explored in detail<br />

for generalisati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing’s model which include fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er biological aspects, for<br />

example, <str<strong>on</strong>g>th</str<strong>on</strong>g>e inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> dynamics or intrinsic noise.<br />

325


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Przemyslaw Gagat<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genomics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland<br />

e-mail: gagat@smorfland.uni.wroc.pl<br />

Paweł Mackiewicz<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genomics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland<br />

Andrzej Bodyl<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biodiversity and Evoluti<strong>on</strong>ary Tax<strong>on</strong>omy, Zoological<br />

Institute, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wroclaw, ul. Przybyszewskiego 63/77, 51-148<br />

Wroclaw, Poland<br />

Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein targeting via endomembrane system to<br />

primary plastids<br />

Before 1.5 billi<strong>on</strong> years ago a heterotrophic eukaryotic ancestor <str<strong>on</strong>g>of</str<strong>on</strong>g> glaucophytes, red<br />

algae, and green plants engulfed cyanobacteria, which <str<strong>on</strong>g>th</str<strong>on</strong>g>en were transformed into<br />

primary plastids wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two envelope membranes. Gene transfer from <str<strong>on</strong>g>th</str<strong>on</strong>g>e cyanobacterial<br />

genome to <str<strong>on</strong>g>th</str<strong>on</strong>g>e host nucleus fostered <str<strong>on</strong>g>th</str<strong>on</strong>g>e integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e endosymbi<strong>on</strong>t<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e host but it is still not clear how protein products <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transferred genes<br />

were initially transported back into <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestral primary plastid. At present, almost<br />

all proteins encoded by <str<strong>on</strong>g>th</str<strong>on</strong>g>e host nucleus are imported into primary plastids<br />

post-translati<strong>on</strong>ally using N-terminal transit peptides and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Toc and Tic transloc<strong>on</strong>s.<br />

Because <str<strong>on</strong>g>th</str<strong>on</strong>g>ese transloc<strong>on</strong>s c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> many specialized protein subunits, it is<br />

hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esized <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein import into <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestral plastid proceeded by a simpler<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e host endomembrane system involving <str<strong>on</strong>g>th</str<strong>on</strong>g>e endoplasmic<br />

reticulum (ER) and/or <str<strong>on</strong>g>th</str<strong>on</strong>g>e Golgi apparatus (GA). In accordance wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis,<br />

five known proteins wi<str<strong>on</strong>g>th</str<strong>on</strong>g> N-terminal signal peptides, which are directed to<br />

primary plastids in vesicles derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>e endomembrane system, could be c<strong>on</strong>sidered<br />

relics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is primordial import pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way. To test if it is true, we performed<br />

phylogenetic analyses as well as applied o<str<strong>on</strong>g>th</str<strong>on</strong>g>er bioinformatics tools specialized in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N-terminal targeting signals. Our analyses show <str<strong>on</strong>g>th</str<strong>on</strong>g>at all nuclearencoded<br />

plastid-targeted proteins wi<str<strong>on</strong>g>th</str<strong>on</strong>g> signal peptides are <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e eukaryotic (not<br />

cyanobacterial) origin and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>eir homologs are equipped wi<str<strong>on</strong>g>th</str<strong>on</strong>g> signal peptides<br />

resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir co-translati<strong>on</strong>al import to <str<strong>on</strong>g>th</str<strong>on</strong>g>e ER. This indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>ly a<br />

limited subset <str<strong>on</strong>g>of</str<strong>on</strong>g> host proteins, normally targeted to different secretory compartments,<br />

exploited <str<strong>on</strong>g>th</str<strong>on</strong>g>eir signal peptides to reach higher plant primary plastids via<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e endomembrane system. Thus, currently known plastid proteins wi<str<strong>on</strong>g>th</str<strong>on</strong>g> signal<br />

peptides cannot be c<strong>on</strong>sidered a relic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e primordial plastid vesicular trafficking.<br />

The protein import into primary plastids was dominated right from <str<strong>on</strong>g>th</str<strong>on</strong>g>e beginning<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e gradually evolving Toc-Tic-based pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way while <str<strong>on</strong>g>th</str<strong>on</strong>g>e vesicular trafficking<br />

to primary plastids evolved sec<strong>on</strong>darily l<strong>on</strong>g after <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary endosymbiosis and<br />

probably <strong>on</strong>ly in <str<strong>on</strong>g>th</str<strong>on</strong>g>e land plant lineage.<br />

326


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Signals II; Saturday, July 2, 11:00<br />

Elżbieta Gajecka-Mirek<br />

State Higher Vocati<strong>on</strong>al School in Nowy Sącz<br />

e-mail: egajecka@pwsz-ns.edu.pl<br />

AR-Sieve Bootstrap Me<str<strong>on</strong>g>th</str<strong>on</strong>g>od and Its Applicati<strong>on</strong> in<br />

Biological Time Series<br />

The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> estimating characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> time series is c<strong>on</strong>sidered. The<br />

bootstrap procedure, introduced by Bühlmann (1997), based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

autoregressive process sieve is used. AR(p(n)) model is fitted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed data<br />

and a bootstrap sample is generated by resampling from <str<strong>on</strong>g>th</str<strong>on</strong>g>e centered residuals.<br />

The autoregressive sieve bootstrap is alternative me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to <str<strong>on</strong>g>th</str<strong>on</strong>g>e approach based <strong>on</strong><br />

asymptotic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory. The AR-sieve bootstrap me<str<strong>on</strong>g>th</str<strong>on</strong>g>od was applied to medical data:<br />

Heart Rate time series.<br />

References.<br />

[1] P.J. Brockwell, R.A. Davis, Time Series: Theory and Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods Springer-Verlag, 1987.<br />

[2] P. Bülman, Botstrap for Time Series Statistical Science 2002, Vol. 17, No. 1 52–72.<br />

[3] P. Bülman, Sieve bootstrap for time series Bernoulli 3(2), 1997,123-148.<br />

[4] S.N. Lahiri, Resampling Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for Dependent Data Springer, 2003.<br />

[5] R.H. Shumway, D.S. St<str<strong>on</strong>g>of</str<strong>on</strong>g>fer Time Series Analysis and Its Applicati<strong>on</strong>sSpringer, 2006.<br />

[6] http://physi<strong>on</strong>et.org<br />

327


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological processes in patients <strong>on</strong> dialysis;<br />

Saturday, July 2, 11:00<br />

Magda Galach<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biocybernetics and Biomedical Engineering, PAS<br />

e-mail: mgalach@ibib.waw.pl<br />

Jacek Waniewski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biocybernetics and Biomedical Engineering, PAS, Warsaw,<br />

Poland<br />

Ol<str<strong>on</strong>g>of</str<strong>on</strong>g> Heimburger<br />

Divisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Baxter Novum and Renal Medicine, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical<br />

Science, Interventi<strong>on</strong> and Technology, Karolinska Institutet,<br />

Stockholm, Sweden<br />

Daniel Schneditz<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology, Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Graz, Graz, Austria<br />

Andrzej Werynski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biocybernetics and Biomedical Engineering, PAS<br />

Bengt Lindholm<br />

Divisi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Baxter Novum and Renal Medicine, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical<br />

Science, Interventi<strong>on</strong> and Technology, Karolinska Institutet,<br />

Stockholm, Sweden.<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose-insulin system in patients <strong>on</strong> dialysis<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most comm<strong>on</strong> causes <str<strong>on</strong>g>of</str<strong>on</strong>g> end-stage renal disease (ESRD) worldwide is diabetes<br />

mellitus. According to <str<strong>on</strong>g>th</str<strong>on</strong>g>e US Renal Data System in 2005 above 44% <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

ESRD patients were diabetics. The process <str<strong>on</strong>g>of</str<strong>on</strong>g> regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose c<strong>on</strong>centrati<strong>on</strong><br />

in blood is complicated and can be substantially affected by uremia and dialysis,<br />

which bo<str<strong>on</strong>g>th</str<strong>on</strong>g> may have an impact <strong>on</strong> secreti<strong>on</strong> and clearance <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose and insulin,<br />

and <strong>on</strong> insulin resistance leading to hypo- or hyperglycemia. Low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> blood<br />

glucose may cause shock and dea<str<strong>on</strong>g>th</str<strong>on</strong>g>, while too high levels are toxic. Thus, it is<br />

essential <str<strong>on</strong>g>th</str<strong>on</strong>g>at glucose levels must be tightly regulated and an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis (perit<strong>on</strong>eal dialysis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> glucose-based soluti<strong>on</strong> and hemodialysis) <strong>on</strong><br />

plasma glucose and insulin c<strong>on</strong>centrati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance. A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model describing glucose-insulin regulati<strong>on</strong> was based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models proposed by<br />

Stolwijk and Hardy (1974) and Tolic et al (2000). Two different sources <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose<br />

were taken into account: hepatic glucose producti<strong>on</strong> and an external source (e.g.<br />

food digesti<strong>on</strong>, intravenous glucose infusi<strong>on</strong> or transport between dialysis fluid in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal cavity and blood). There are <str<strong>on</strong>g>th</str<strong>on</strong>g>ree types <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose utilizati<strong>on</strong>: 1)<br />

glucose leaves blood to enter most cells <str<strong>on</strong>g>th</str<strong>on</strong>g>rough facilitated diffusi<strong>on</strong> (insulin independent<br />

glucose utilizati<strong>on</strong>), 2) in certain types <str<strong>on</strong>g>of</str<strong>on</strong>g> cells (e.g. muscle and adipose<br />

tissue) insulin helps to stimulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e facilitated diffusi<strong>on</strong> process (insulin dependent<br />

glucose utilizati<strong>on</strong>), 3) glucose can be also excreted by <str<strong>on</strong>g>th</str<strong>on</strong>g>e kidneys. As regards insulin,<br />

two sources are taken into account: pancreatic insulin producti<strong>on</strong> c<strong>on</strong>trolled<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e glucose c<strong>on</strong>centrati<strong>on</strong> and external source <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin (e.g. injecti<strong>on</strong>). Insulin<br />

is degradated <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a reacti<strong>on</strong> involving <str<strong>on</strong>g>th</str<strong>on</strong>g>e insulinase at a rate proporti<strong>on</strong>al to<br />

insulin c<strong>on</strong>centrati<strong>on</strong> in blood. All <str<strong>on</strong>g>th</str<strong>on</strong>g>ese assumpti<strong>on</strong>s are used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mass balance<br />

equati<strong>on</strong> describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood c<strong>on</strong>centrati<strong>on</strong> changes <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose and insulin during<br />

dialysis (perit<strong>on</strong>eal dialysis and hemodialysis). The clinical parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

328


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

glucose-insulin system, insulin sensitivity index and glucose effectiveness at basal<br />

and zero insulin (GEZI) were also estimated using clinical data from: 1) six hour<br />

perit<strong>on</strong>eal dialysis dwells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> glucose 3.86% soluti<strong>on</strong> performed in 13 stable, fasting,<br />

n<strong>on</strong>-diabetic patients, and 2) hemodialysis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a bolus <str<strong>on</strong>g>of</str<strong>on</strong>g> 33% glucose infused<br />

into blood in 8 stable, n<strong>on</strong>-diabetic maintenance hemodialysis patients during <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

regular dialysis treatment. Computer simulati<strong>on</strong>s based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model were performed<br />

for each patient and each dialysis sessi<strong>on</strong> to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e model parameters.<br />

The mean values and standard deviati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters were calculated and<br />

compared for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> studies. There were statistically significant differences between<br />

hemodialysis and perit<strong>on</strong>eal dialysis patients especially in <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters describing<br />

insulin regulati<strong>on</strong> such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e insulin catabolism rate and <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximal level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

insulin generati<strong>on</strong>. Clinical and modeling results dem<strong>on</strong>strated high interpatient<br />

variability in glucose and insulin c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles during a perit<strong>on</strong>eal dwell<br />

and during hemodialysis, and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e glucose-insulin system.<br />

The proposed model was able to adequately reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e clinical data <strong>on</strong><br />

glucose and insulin transport and plasma levels and to distinguish patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out abnormalities in glucose regulati<strong>on</strong>.<br />

329


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Jill Gallaher<br />

e-mail: jill.gallaher@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

Alexander R. A. Anders<strong>on</strong><br />

e-mail: alexander.anders<strong>on</strong>@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

Integrated Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology,<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center,<br />

12902 Magnolia Dr., Tampa, FL 33612.<br />

Cancer; Saturday, July 2, 14:30<br />

Phenotypic inheritance transforms heterogeneity in tumor<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Cell-to-cell variati<strong>on</strong> is seen in almost all aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer from initiati<strong>on</strong> to<br />

invasi<strong>on</strong> and subsequent metastasis. Our current understanding at <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic scale<br />

gives little informati<strong>on</strong> <strong>on</strong> translating to actual changes in cell behavior, which<br />

will ultimately dictate tumor aggressiveness and treatability. Cell behavior can be<br />

described in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypic traits, e.g., proliferati<strong>on</strong>, migrati<strong>on</strong>, and apoptosis<br />

rates. Because <str<strong>on</strong>g>th</str<strong>on</strong>g>ese traits vary across a tumor populati<strong>on</strong> a useful way to represent<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>em is in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong>s. How traits are passed <strong>on</strong> as cells divide and<br />

compete for space and resources affects how <str<strong>on</strong>g>th</str<strong>on</strong>g>e trait distributi<strong>on</strong>s evolve.<br />

An <str<strong>on</strong>g>of</str<strong>on</strong>g>f-lattice cellular automata model is built where cells are ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er initiated as<br />

a tight cluster, to simulate a growing tumor mass, or as a dispersed populati<strong>on</strong>, to<br />

represent a cell culture experiment. These initial spatial distributi<strong>on</strong>s give different<br />

outcomes and lead us to questi<strong>on</strong> how heterogeneity in vitro can be translated in<br />

vivo. We combine <str<strong>on</strong>g>th</str<strong>on</strong>g>e model’s trait distributi<strong>on</strong>s, repopulati<strong>on</strong> times, and morphological<br />

features wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biological data to analyze how treatment resistance emerges<br />

and how it might be regulated.<br />

330


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 14:30<br />

Joerg Galle<br />

Interdisciplinary Centre for Bioinformatics, University Leipzig<br />

e-mail: galle@izbi.uni-leipzig.de<br />

Lydia Steiner<br />

Interdisciplinary Centre for Bioinformatics, University Leipzig<br />

Hans Binder<br />

nterdisciplinary Centre for Bioinformatics, University Leipzig<br />

Transcripti<strong>on</strong>al regulati<strong>on</strong> by hist<strong>on</strong>e modificati<strong>on</strong>s<br />

Transcripti<strong>on</strong>al regulati<strong>on</strong> in cells makes use <str<strong>on</strong>g>of</str<strong>on</strong>g> diverse mechanisms to ensure <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

functi<strong>on</strong>al states can be maintained and adapted to variable envir<strong>on</strong>ments. Am<strong>on</strong>g<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese mechanisms are cis-regulatory modules and chromatin modificati<strong>on</strong>s. Unraveling<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese different layers <str<strong>on</strong>g>of</str<strong>on</strong>g> regulati<strong>on</strong> represents a challenge <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Molecular Systems Biology. We here introduce a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> genomewide<br />

transcripti<strong>on</strong>al regulati<strong>on</strong> governed by hist<strong>on</strong>e modificati<strong>on</strong>s. This model describes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e binding <str<strong>on</strong>g>of</str<strong>on</strong>g> protein complexes to DNA which are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> reading and<br />

writing hist<strong>on</strong>e marks. Cooperative molecular interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein<br />

complexes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA and <str<strong>on</strong>g>th</str<strong>on</strong>g>e modified hist<strong>on</strong>es create a regulatory memory and<br />

allow for switch-like changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expressi<strong>on</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome. We provide<br />

analytical results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory states <strong>on</strong> i) <str<strong>on</strong>g>th</str<strong>on</strong>g>e (de-) modificati<strong>on</strong><br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e (de-)me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylases, ii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e accessibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA-binding<br />

regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein complexes and iii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>es <str<strong>on</strong>g>th</str<strong>on</strong>g>at act cooperatively;<br />

and discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular envir<strong>on</strong>ment <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese properties. We<br />

dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at according to our model proliferati<strong>on</strong> activity per se can switch<br />

expressi<strong>on</strong> states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> suppressed inheritance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

hist<strong>on</strong>e marks. We apply our model to transcripti<strong>on</strong>al regulati<strong>on</strong> by trxG- and<br />

PcG-binding to DNA. By analysing ChIP-seq data <str<strong>on</strong>g>of</str<strong>on</strong>g> mouse ESC we provide evidence<br />

for cooperative modes <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e modificati<strong>on</strong>s. Thereby, our data suggest a<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cooperative chromatin regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> about 10kb which agrees<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e loop leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> an un-interrupted chromatin fibre. Our results provide new<br />

insights into genome-wide transcripti<strong>on</strong>al regulati<strong>on</strong> by hist<strong>on</strong>e modificati<strong>on</strong>s and<br />

represent a first step towards simulati<strong>on</strong> studies <strong>on</strong> changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epigenome during<br />

ageing and disease.<br />

331


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Medical Physiology; Tuesday, June 28, 11:00<br />

Martina Gallenberger ∗<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Biometry, Helmholtz Zentrum München,<br />

Germany<br />

e-mail: martina.gallenberger@helmholtz-muenchen.de<br />

Burkhard A. Hense<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Biometry, Helmholtz Zentrum München,<br />

Germany<br />

Christina Kuttler<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Technical University Munich, Germany<br />

A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for glucose and insulin dynamics<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> direct c<strong>on</strong>necti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e β-cell cycle<br />

The term diabetes mellitus describes a group <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic diseases wi<str<strong>on</strong>g>th</str<strong>on</strong>g> persisting<br />

hyperglycemia as <str<strong>on</strong>g>th</str<strong>on</strong>g>e main symptom. Interest is increasingly focused <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e understanding<br />

and treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease because <str<strong>on</strong>g>of</str<strong>on</strong>g> its rising prevalence and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> severe complicati<strong>on</strong>s. Recent experimental results indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e β-cell cycle for <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> diabetes mellitus.<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, insulin and <str<strong>on</strong>g>th</str<strong>on</strong>g>e β-cell cycle<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s. The basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

system is built by <str<strong>on</strong>g>th</str<strong>on</strong>g>ree different models. To analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

work <str<strong>on</strong>g>of</str<strong>on</strong>g> Grodsky [1] introducing a packet hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis for insulin storage has been<br />

modified. This has been c<strong>on</strong>nected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose (Topp et al. [2])<br />

and a model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e β-cell cycle based <strong>on</strong> Daukste et al. [3]. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

system c<strong>on</strong>sists in its explicit incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e β-cell cycle wi<str<strong>on</strong>g>th</str<strong>on</strong>g> insulin directly<br />

enhancing <str<strong>on</strong>g>th</str<strong>on</strong>g>e replicati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e presentati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model and its development will be introduced as well as its<br />

capability <str<strong>on</strong>g>of</str<strong>on</strong>g> accounting for metabolic failures in <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong> to diabetes.<br />

References.<br />

[1] Grodsky, G.M., A <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold distributi<strong>on</strong> hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis for packet storage <str<strong>on</strong>g>of</str<strong>on</strong>g> insulin and its ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

modeling, The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical Investigati<strong>on</strong> 51 (1972), 2047-2059<br />

[2] Topp, B., Promislow, K., De Vries, G., Miura, R.M., Finegood, D.T., A model <str<strong>on</strong>g>of</str<strong>on</strong>g> β-cell mass,<br />

insulin and glucose kinetics: pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways to diabetes, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 206 (2000),<br />

605-619<br />

[3] Daukste, L., Basse, B., Bagueley, B.C., Wall, D.J.N., Using a stem cell and progeny model to<br />

illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between cell cycle times <str<strong>on</strong>g>of</str<strong>on</strong>g> in vivo human tumour cell tissue populati<strong>on</strong>s,<br />

in vitro primary cultures and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell lines derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>em, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical<br />

Biology (2009), 1-9<br />

332


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

II; Tuesday, June 28, 14:30<br />

Alberto Gandolfi<br />

Istituto di Analisi dei Sistemi ed Informatica "A. Ruberti" - CNR,<br />

Rome, Italy<br />

e-mail: alberto.gandolfi@iasi.cnr.it<br />

Alberto d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Oncology, Milan, Italy<br />

Vascularizati<strong>on</strong> and chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy: inferences from a simple<br />

model<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models <str<strong>on</strong>g>of</str<strong>on</strong>g> chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy are currently developed making <strong>on</strong>ly reference<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells. We propose to model chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy taking<br />

into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutual interacti<strong>on</strong> between tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumor vasculature. By adopting a simple model for <str<strong>on</strong>g>th</str<strong>on</strong>g>is interacti<strong>on</strong>, and assuming<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> a drug can be modulated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e vessel density, we studied<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stant c<strong>on</strong>tinuous and bolus-based chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, and combined <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies in<br />

which a chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic drug is associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an antiangiogenic agent [1]. The<br />

model allows to represent <str<strong>on</strong>g>th</str<strong>on</strong>g>e vessel-disrupting activity <str<strong>on</strong>g>of</str<strong>on</strong>g> some standard chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic<br />

drugs, and shows, in case <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant c<strong>on</strong>tinuous drug administrati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple stable equilibria. The multistability suggests an explanati<strong>on</strong><br />

for some sudden losses <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol observed during <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e beneficial<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular “pruning” exherted by antiangiogenic agents in combined <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy.<br />

References.<br />

[1] A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio and A. Gandolfi: Chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <str<strong>on</strong>g>of</str<strong>on</strong>g> vascularised tumours: role <str<strong>on</strong>g>of</str<strong>on</strong>g> vessel density<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular "pruning", J. Theor. Biol. 2010, 264, 253-265.<br />

333


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Immunology; Wednesday, June 29, 17:00<br />

José A. García<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Preventive and Social Medicine, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Otago,<br />

PO Box 913, Dunedin 9054, New Zealand<br />

e-mail: jose.garcia@otago.ac.nz<br />

Aidin Jalilzadeh<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Otago, Dunedin<br />

9054, New Zealand<br />

e-mail: aidin_jalilzadeh@yahoo.com<br />

Boris Baeumer<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Otago, PO<br />

Box 913, Dunedin 9054, New Zealand<br />

e-mail: bbaeumer@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.otago.ac.nz<br />

A reinforced random walk model for studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e acute<br />

inflammatory resp<strong>on</strong>se<br />

The <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> reinforced random walks (RRWs) provides a natural framework<br />

for modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e movement <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals. RRWs are in particular suitable for<br />

modelling cell motility in resp<strong>on</strong>se to <strong>on</strong>e or more c<strong>on</strong>trol substances [1]. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

past RRWs have been used to model angiogenesis and solid tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

metastasis [2, 3].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we have developed a spatio-temporal ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong>-advecti<strong>on</strong>-reacti<strong>on</strong> equati<strong>on</strong>s, to capture some aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tissue inflammatory resp<strong>on</strong>se. Two sorts <str<strong>on</strong>g>of</str<strong>on</strong>g> cell movement mechanisms are c<strong>on</strong>sidered:<br />

1. Chemotactic as <str<strong>on</strong>g>th</str<strong>on</strong>g>e major physiological effect <str<strong>on</strong>g>th</str<strong>on</strong>g>at leads <str<strong>on</strong>g>th</str<strong>on</strong>g>e movement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> leukocytes towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e site <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>/inflammati<strong>on</strong>, 2. Leukocytes’ random<br />

motility described via diffusi<strong>on</strong> process. The proposed model accounts for (1) antigen<br />

recogniti<strong>on</strong>, (2) <str<strong>on</strong>g>th</str<strong>on</strong>g>e effector functi<strong>on</strong> (activati<strong>on</strong>/inhibiti<strong>on</strong>), (3) innate immune<br />

resp<strong>on</strong>se, (4) eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antigen and resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong> and (5) returning<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e immune cells back to a steady state. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> a persistent source <str<strong>on</strong>g>of</str<strong>on</strong>g> antigen,<br />

i.e. chr<strong>on</strong>ic infecti<strong>on</strong>, it is observed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se reaches an equilibrium<br />

level. 2-D Matlab simulati<strong>on</strong>s have enabled us to visualise <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e immune cells and chemicals.<br />

Our simulati<strong>on</strong>s could provide insights for better understanding complex diseases<br />

associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> chr<strong>on</strong>ic inflammati<strong>on</strong> like cancer and autoimmunity.<br />

References.<br />

[1] EA Codling, et al, Random walk models in biology J R Soc Interface (2008) 5 813–834.<br />

[2] MJ Plank and BD Sleeman, A reinforced random walk model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour angiogenesis and<br />

anti-angiogenic strategies Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Med Biol (2003) 20 135–181.<br />

[3] ARA Anders<strong>on</strong>, et al, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour invasi<strong>on</strong> and metastasis Comp Ma<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g> Med (2000) 2 129–154.<br />

334


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Diana Garcia Lopez<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Manchester<br />

e-mail: diana.garcia@manchester.ac.uk<br />

Sam Brown<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Edinburgh<br />

Ben Quigley<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Alan McKane<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Manchester<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Specialist-v-generalist host-parasite interacti<strong>on</strong>s: influence<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria-phage infecti<strong>on</strong><br />

The main models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetics underlying host-parasite infecti<strong>on</strong>s are <str<strong>on</strong>g>th</str<strong>on</strong>g>e matchingalleles<br />

(MA) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene-for-gene (GFG) models. These can be interpreted as two<br />

extremes <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>tinuum <str<strong>on</strong>g>th</str<strong>on</strong>g>at ranges from <strong>on</strong>e-to-<strong>on</strong>e specific matching in all hostparasite<br />

pairs (MA) to many-to-<strong>on</strong>e generalist interacti<strong>on</strong>s in some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese (GFG).<br />

We have incorporated <str<strong>on</strong>g>th</str<strong>on</strong>g>is variable degree <str<strong>on</strong>g>of</str<strong>on</strong>g> generalism into a simple epidemiological<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria by lytic phages, adopting a fully stochastic<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics and analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e different dynamical<br />

regimes <str<strong>on</strong>g>th</str<strong>on</strong>g>at appear al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e MA-to-GFG c<strong>on</strong>tinuum.<br />

335


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 11:00<br />

Astrid Gasselhuber<br />

Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina; Vienna University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: astrid.gs@gmail.com<br />

Dieter Haemmerich<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pediatric Cardiology, Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina,<br />

Charlest<strong>on</strong>, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina, USA; Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioengineering,<br />

Clems<strong>on</strong> University, Clems<strong>on</strong>, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina, USA<br />

Computati<strong>on</strong>al Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Targeted Drug Delivery via<br />

Low-Temperature Sensitive Liposomes and image-guided<br />

focused ultrasound<br />

The chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic agent doxorubicin (DOX) is comm<strong>on</strong>ly used in cancer treatment,<br />

but causes dose limiting side effects. Various liposomal drug carriers were<br />

developed to overcome short plasma half-life and negative side effects <str<strong>on</strong>g>of</str<strong>on</strong>g> chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic<br />

agents. Low temperature sensitive liposomes (LTSL) release <str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>tent<br />

<strong>on</strong>ly if exposed to a temperature above approximately 40 C and in c<strong>on</strong>trast release<br />

a relatively small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> drug at normal body temperature. The combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

LTSL wi<str<strong>on</strong>g>th</str<strong>on</strong>g> local heat generated by image-guided focused ultrasound enables n<strong>on</strong>invasively<br />

targeted drug delivery. We developed an axial symmetric computati<strong>on</strong>al<br />

model to simulate temperature, blood perfusi<strong>on</strong>, and drug c<strong>on</strong>centrati<strong>on</strong>s in different<br />

compartments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. The model describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e release <str<strong>on</strong>g>of</str<strong>on</strong>g> drug from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e liposomes, transport mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug between different compartments<br />

and spatio-temporal drug and liposome c<strong>on</strong>centrati<strong>on</strong>s. We compared two cases:<br />

Tissue heated to hyper<str<strong>on</strong>g>th</str<strong>on</strong>g>ermic temperatures wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a target temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 43C, and<br />

hyper<str<strong>on</strong>g>th</str<strong>on</strong>g>ermia followed by a short high temperature exposure wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a target temperature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 68 C <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same regi<strong>on</strong>. Blood perfusi<strong>on</strong> was reduced <str<strong>on</strong>g>of</str<strong>on</strong>g> 7% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e baseline<br />

value wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e heated area after hyper<str<strong>on</strong>g>th</str<strong>on</strong>g>ermia, whereas it was completely eliminated<br />

inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e target regi<strong>on</strong> in case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e high-temperature exposure. Due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

eliminated blood flow drug is facilitated to remain trapped wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue. The<br />

plasma c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DOX reached a peak value <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.1 g/g at t=3 min in bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

cases. The intracellular c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DOX during hyper<str<strong>on</strong>g>th</str<strong>on</strong>g>ermia followed by<br />

short high temperature exposure was almost two times higher <str<strong>on</strong>g>th</str<strong>on</strong>g>an hyper<str<strong>on</strong>g>th</str<strong>on</strong>g>ermia<br />

al<strong>on</strong>e wi<str<strong>on</strong>g>th</str<strong>on</strong>g> peak values <str<strong>on</strong>g>of</str<strong>on</strong>g> 18 g/g and 10 g/g, respectively. The complex interacti<strong>on</strong><br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>ermal cancer treatments and locally induced chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy agents,<br />

require a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between heat exposure<br />

and pharmacokinetics in order to optimize drug delivery.<br />

336


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulati<strong>on</strong>; Tuesday, June 28, 11:00<br />

Tomas Gede<strong>on</strong><br />

M<strong>on</strong>tana State University<br />

e-mail: gede<strong>on</strong>@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.m<strong>on</strong>tana.edu<br />

Lisa Davis<br />

M<strong>on</strong>tana State University<br />

Modelling delays induced by transcripti<strong>on</strong> and translati<strong>on</strong><br />

Delays are always present In gene regulati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are increasingly finding <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

way into models <str<strong>on</strong>g>of</str<strong>on</strong>g> gene networks . In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will discuss sources <str<strong>on</strong>g>of</str<strong>on</strong>g> delays in<br />

gene regulati<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>en c<strong>on</strong>centrate <strong>on</strong> our recent attempts to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> and translati<strong>on</strong>. The resulting models closely resemble old linear<br />

and n<strong>on</strong>linear traffic models.<br />

337


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Eva Gehrmann<br />

Technische Universität Darmstadt<br />

Institut für Festkörperphysik<br />

Hochschulstr. 6, 64289 Darmstadt<br />

e-mail: evachr@fkp.tu-darmstadt.de<br />

Barbara Drossel<br />

Technische Universität Darmstadt<br />

Institut für Festkörperphysik<br />

Hochschulstr. 6, 64289 Darmstadt<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Boolean versus c<strong>on</strong>tinuous dynamics <strong>on</strong> simple two-gene<br />

modules<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> simple modules composed <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

genes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two or <str<strong>on</strong>g>th</str<strong>on</strong>g>ree regulating c<strong>on</strong>necti<strong>on</strong>s. C<strong>on</strong>tinuous dynamics for mRNA<br />

and protein c<strong>on</strong>centrati<strong>on</strong>s is compared to a Boolean model for gene activity. Using<br />

a generalized me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, we study wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a single framework different c<strong>on</strong>tinuous<br />

models and different types <str<strong>on</strong>g>of</str<strong>on</strong>g> regulatory functi<strong>on</strong>s, and establish c<strong>on</strong>diti<strong>on</strong>s under<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>e system can display stable oscillati<strong>on</strong>s. These c<strong>on</strong>diti<strong>on</strong>s depend <strong>on</strong>ly <strong>on</strong><br />

general features such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevant time scales, <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperativity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulating interacti<strong>on</strong>s, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e logical structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s.<br />

Our results combine and generalize <str<strong>on</strong>g>th</str<strong>on</strong>g>e findings <str<strong>on</strong>g>of</str<strong>on</strong>g> several disc<strong>on</strong>nected previous<br />

studies.<br />

References.<br />

[1] Gross, Thilo and Feudel, Ulrike, Generalized models as a universal approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear dynamical systems Physical Review E 73 (1) (2006).<br />

[2] Gehrmann, Eva and Drossel, Barbara, Boolean versus c<strong>on</strong>tinuous dynamics <strong>on</strong> simple twogene<br />

modules Physical Review E 82 (4) (2010).<br />

338


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Biological Systems; Tuesday, June 28, 17:00<br />

Richard Gejji<br />

Postdoc<br />

e-mail: rgejji@mbi.osu.edu<br />

Macroscopic model <str<strong>on</strong>g>of</str<strong>on</strong>g> reversing self-propelled bacteria<br />

Periodic reversals in systems <str<strong>on</strong>g>of</str<strong>on</strong>g> self-propelled rod shaped bacteria enable <str<strong>on</strong>g>th</str<strong>on</strong>g>em to<br />

effectively resolve traffic jams formed during swarming and maximize <str<strong>on</strong>g>th</str<strong>on</strong>g>eir swarming<br />

rate. A c<strong>on</strong>necti<strong>on</strong> is shown between a microscopic <strong>on</strong>e dimensi<strong>on</strong>al cell-based<br />

stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> reversing n<strong>on</strong>-overlapping bacteria and a macroscopic n<strong>on</strong>-linear<br />

diffusi<strong>on</strong> equati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular density. Boltzmann-Matano analysis<br />

is used to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>linear diffusi<strong>on</strong> equati<strong>on</strong> corresp<strong>on</strong>ding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e specific<br />

reversal frequency. A combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microscopic and macroscopic models are used<br />

for studying swarming rates <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria reversing at different frequencies.<br />

Cell populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high reversal frequencies are able to spread out<br />

effectively at high densities. If <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells rarely reverse, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are able to spread<br />

out at lower densities but are less efficient at spreading out at higher densities.<br />

339


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell and Tissue Biophysics; Saturday, July 2, 11:00<br />

Uduak George<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex, Bright<strong>on</strong>, BN1 9QH,<br />

UK<br />

e-mail: ude20@sussex.ac.uk<br />

Angélique Stéphanou<br />

IN3S, Faculté de Médecine de Grenoble, 38706 La Tr<strong>on</strong>che cedex,<br />

France<br />

e-mail: angelique.stephanou@imag.fr<br />

Anotida Madzvamuse<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex, Bright<strong>on</strong>, BN1 9QH,<br />

UK<br />

e-mail: a.madzvamuse@sussex.ac.uk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and numerical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> cell membrane<br />

deformati<strong>on</strong>s as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> actin dynamics<br />

Actin is a molecule <str<strong>on</strong>g>th</str<strong>on</strong>g>at exists in two different forms which can be m<strong>on</strong>omeric as<br />

globular actin (G-actin) or assembled into <str<strong>on</strong>g>th</str<strong>on</strong>g>e polar filamentous form (F-actin).<br />

It resides in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cytoskelet<strong>on</strong> and plays an important role in c<strong>on</strong>trolling cell<br />

motility and maintaining cell shape [3]. Cell motility c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> numerous highly<br />

coordinated events which involve a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical kinetics and physical<br />

forces, transport and movements <str<strong>on</strong>g>of</str<strong>on</strong>g> a polymer protein network interacting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a<br />

vast number <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er proteins. These events can be treated ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically by combining<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuum mechanics and biochemical kinetics [2]. These models<br />

have proven to be useful for decoding cell motility processes [1]. The model we c<strong>on</strong>sider<br />

is a system <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a force balance equati<strong>on</strong> and a reacti<strong>on</strong>-diffusi<strong>on</strong><br />

equati<strong>on</strong> describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical properties and biochemical kinetic <str<strong>on</strong>g>of</str<strong>on</strong>g> actin respectively.<br />

We solve <str<strong>on</strong>g>th</str<strong>on</strong>g>e model equati<strong>on</strong>s by use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e moving grid finite element<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od whose key advantage is in its ability to treat moving boundary problems<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> pr<strong>on</strong>ounced curvature and is very beneficial in <str<strong>on</strong>g>th</str<strong>on</strong>g>e accurate representati<strong>on</strong><br />

and approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. Assuming slow domain evoluti<strong>on</strong> we<br />

validate <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical results by comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e finite element soluti<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose<br />

predicted by linear stability <str<strong>on</strong>g>th</str<strong>on</strong>g>eory. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical scheme computes<br />

spatially inhomogeneous steady state soluti<strong>on</strong>s which coincides wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose predicted<br />

by linear stability <str<strong>on</strong>g>th</str<strong>on</strong>g>eory close to bifurcati<strong>on</strong> points [4].<br />

Far away from instability, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is able to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular<br />

actin dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting shapes and movements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane.<br />

In particular, by varying <str<strong>on</strong>g>th</str<strong>on</strong>g>e pressure coefficient and <str<strong>on</strong>g>th</str<strong>on</strong>g>e measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tractile<br />

t<strong>on</strong>icity parameter, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model behaviour gives uniform expansi<strong>on</strong>s, c<strong>on</strong>tracti<strong>on</strong>s<br />

and irregular deformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell centre staying mostly<br />

unchanged in <str<strong>on</strong>g>th</str<strong>on</strong>g>e majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cases c<strong>on</strong>sidered. The model also allow us to<br />

compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e actin distributi<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity where large deformati<strong>on</strong>s occur and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e results we obtain are found to be c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose observed experimentally.<br />

References.<br />

[1] C. Franco, T. Tzvetkova-Chevolleau and A. Stéphanou, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Discrete Adhesive<br />

Patterns for Cell Shape and Motility: A Computati<strong>on</strong>al Approach Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Model. Nat. Phenom.<br />

(2010), 5(1):56-83.<br />

340


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] Alex Mogilner, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> cell motility: have we got its number? J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. (2009),<br />

58:105-134.<br />

[3] Ville O. Paavilainen, Enni Bertling, Sandra Falck and Pekka Lappalainen, Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytoskeletal<br />

dynamics by actin-m<strong>on</strong>omer-binding proteins Trends in Cell Biology (2004), 14(7):<br />

386-394.<br />

[4] Uduak George, Angélique Stéphanou and Anotida Madzvamuse, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling and<br />

Numerical Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Actin Dynamics in an Eukaryotic cell. In preparati<strong>on</strong>.<br />

341


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Immunology; Wednesday, June 29, 14:30<br />

Sebastian Gerdes<br />

Institute for Medical Informatics and Biometry, Medical Faculty Carl<br />

Gustav Carus, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: sebastian.gerdes@tu-dresden.de<br />

Ingmar Glauche<br />

Institute for Medical Informatics and Biometry, Medical Faculty Carl<br />

Gustav Carus, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: ingmar.glauche@tu-dresden.de<br />

Ingo Roeder<br />

Institute for Medical Informatics and Biometry, Medical Faculty Carl<br />

Gustav Carus, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: ingo.roeder@tu-dresden.de<br />

Can polycl<strong>on</strong>ality prevent <str<strong>on</strong>g>th</str<strong>on</strong>g>e outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> leukemia?<br />

T cell receptor (TCR) polycl<strong>on</strong>al mature T cells are surprisingly resistant to<br />

<strong>on</strong>cogenic transformati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough retroviral inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T cell <strong>on</strong>cogenes. It has<br />

been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at leukemia/lymphoma did not occur up<strong>on</strong> transplantati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polycl<strong>on</strong>al<br />

T cells into RAG1-1-deficient recipients, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e T-cells were transduced<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high copy numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> gammaretroviral vectors encoding potent T cell <strong>on</strong>cogenes<br />

[1]. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er studies dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e transplantati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T cells from<br />

TCR m<strong>on</strong>ocl<strong>on</strong>al OT1 mice <str<strong>on</strong>g>th</str<strong>on</strong>g>at were transduced wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same protocol resulted<br />

in leukemia/lymphoma. The underlying mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at prevent <strong>on</strong>cogenesis in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e polycl<strong>on</strong>al situati<strong>on</strong> and endorse <str<strong>on</strong>g>th</str<strong>on</strong>g>e outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> leukemia in <str<strong>on</strong>g>th</str<strong>on</strong>g>e m<strong>on</strong>ocl<strong>on</strong>al<br />

situati<strong>on</strong> are currently unclear.<br />

Using a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling approach, we challenge <str<strong>on</strong>g>th</str<strong>on</strong>g>e arising hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at polycl<strong>on</strong>ality induces competiti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e T cell repertoire, which in turn<br />

suppresses <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> a leukemic cl<strong>on</strong>e. As a starting point, we developed a<br />

simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> T cell homeostasis emphasizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e analogy <str<strong>on</strong>g>of</str<strong>on</strong>g> T cell homeostasis<br />

to species coexisting in ecological niches. The key assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

T cell survival is critically dependent <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cl<strong>on</strong>e-specific TCR<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> self-peptide-MHC-complexes (corresp<strong>on</strong>ding to envir<strong>on</strong>mental niches).<br />

Based <strong>on</strong> our modelling results, we speculate about <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

leukemic cl<strong>on</strong>e. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in our model framework, we are able to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed<br />

phenomena under <str<strong>on</strong>g>th</str<strong>on</strong>g>e following two assumpti<strong>on</strong>s about <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

leukemic cl<strong>on</strong>e: (i) The leukemic cl<strong>on</strong>e is less competent <str<strong>on</strong>g>th</str<strong>on</strong>g>an o<str<strong>on</strong>g>th</str<strong>on</strong>g>er T cell cl<strong>on</strong>es in<br />

acquiring survival stimuli from niches. (ii) Proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leukemic cl<strong>on</strong>e is less<br />

dependent <strong>on</strong> niche interacti<strong>on</strong>. This is a plausible assumpti<strong>on</strong> as <str<strong>on</strong>g>th</str<strong>on</strong>g>e transgenes<br />

are potent <strong>on</strong>cogenes capable <str<strong>on</strong>g>of</str<strong>on</strong>g> activating mitotic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways.<br />

From our results we c<strong>on</strong>clude, <str<strong>on</strong>g>th</str<strong>on</strong>g>at cl<strong>on</strong>al competiti<strong>on</strong> is a possible mechanism<br />

to counterbalance cl<strong>on</strong>al dominance. Our modeling results allow us to foster <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

design <str<strong>on</strong>g>of</str<strong>on</strong>g> fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er biological experiments. A future goal is to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimum<br />

cl<strong>on</strong>al complexity <str<strong>on</strong>g>th</str<strong>on</strong>g>at is needed in order to c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>e leukemic cl<strong>on</strong>e under <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

given circumstances.<br />

342


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] Newrzela S, Cornils K et al. Resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> mature T cells to <strong>on</strong>cogene transformati<strong>on</strong>. Blood.<br />

2008;112(6):2278–2286.<br />

343


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

III; Tuesday, June 28, 17:00<br />

C. Gerin1 , M. Badoual1 , C. Deroulers1 , B. Grammaticos1 , J. Pallud2,3 ,<br />

E. Mand<strong>on</strong>net4 1IMNC, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Paris VII-Paris XI, CNRS, UMR 8165, Orsay,<br />

France<br />

2Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Neurosurgery, Sainte-Anne Hospital, Paris, France<br />

3University René Descartes Paris-V, Paris, France<br />

4Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Neurosurgery, Lariboisière Hospital, Paris, France<br />

e-mail: gerin@imnc.in2p3.fr<br />

When do a low-grade glioma appear?<br />

Gliomas are <str<strong>on</strong>g>th</str<strong>on</strong>g>e most comm<strong>on</strong> tumour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e brain. The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> WHO grade<br />

II and higher gliomas is <str<strong>on</strong>g>th</str<strong>on</strong>g>e infiltrati<strong>on</strong>: it is not possible to see <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole tumour<br />

<strong>on</strong> a MRI examinati<strong>on</strong> because a part <str<strong>on</strong>g>of</str<strong>on</strong>g> it is underside <str<strong>on</strong>g>th</str<strong>on</strong>g>e detecti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold [1].<br />

Inevitably an anaplastic transformati<strong>on</strong> occurs, <str<strong>on</strong>g>th</str<strong>on</strong>g>at rapidly causes <str<strong>on</strong>g>th</str<strong>on</strong>g>e demise <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e patient.<br />

A recent clinical study showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> low-grade gliomas appears<br />

linear, at roughly 2 mm/yr [2]. Is it possible to assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at it is always true ?<br />

Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is property, can we extrapolate <str<strong>on</strong>g>th</str<strong>on</strong>g>e date <str<strong>on</strong>g>of</str<strong>on</strong>g> bir<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> gliomas ? To answer<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is questi<strong>on</strong>s, we use a diffusi<strong>on</strong>-proliferati<strong>on</strong> model, employed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> success for<br />

high-grade gliomas [3]. It is a simple model (few parameters) <str<strong>on</strong>g>th</str<strong>on</strong>g>at can explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>stant velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t visible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> MRI at large times.<br />

This model is based <strong>on</strong> a partial differential equati<strong>on</strong> where <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumour cells is determined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> and by <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells.<br />

We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour is symmetric and begins wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a single cell.<br />

The model predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a "silent period": <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour is growing,<br />

but remains under <str<strong>on</strong>g>th</str<strong>on</strong>g>e detecti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold and <str<strong>on</strong>g>th</str<strong>on</strong>g>us it is not visible. A c<strong>on</strong>sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is phase is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e extrapolati<strong>on</strong> always underestimates <str<strong>on</strong>g>th</str<strong>on</strong>g>e age <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour<br />

predicted by <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong>-proliferati<strong>on</strong> model.<br />

We analyse data <strong>on</strong> real-life patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. We estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e age <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour at <str<strong>on</strong>g>th</str<strong>on</strong>g>e time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first MRI examinati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e age <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e patient at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour and <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> and proliferati<strong>on</strong>.<br />

We also apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to patients who do not present symptoms, and we<br />

find, as expected, <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour age at time <str<strong>on</strong>g>of</str<strong>on</strong>g> MRI is smaller <str<strong>on</strong>g>th</str<strong>on</strong>g>an in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> symptomatic patients.<br />

References.<br />

[1] J. Pallud, P. Varlet,B. Devaux, S. Geha, M. Badoual, C. Deroulers, P. Page, E. Dezamis, C.<br />

Daumas-Duport, and F.-X. Roux Diffuse low-grade oligodendrogliomas extend bey<strong>on</strong>d MRIdefined<br />

abnormalities Neurology 74 1724-1731,2010.<br />

[2] E. Mand<strong>on</strong>net, J. Y. Delattre, M. L. Tanguy, K. R. Swans<strong>on</strong>, A. F. Carpentier, H. Duffau, P.<br />

Cornu, R. Van Effenterre, E. C. Jr. Alvord and L. Capelle C<strong>on</strong>tinuous grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> mean tumor<br />

diameter in a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> grade II gliomas Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> Neurology 53 524–528 2003.<br />

[3] K. R. Swans<strong>on</strong>, E. C. Alvord, and J. D. Murray. A quantitative model for differential motility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gliomas in grey and white matter Cell Prolif 33(5) 317–329 2000.<br />

344


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Saturday, July 2, 14:30<br />

Philip Gerlee<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: philip.gerlee@gu.se<br />

Sven Nelander<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: sven.nelander@gu.se<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypic switching <strong>on</strong> glioma grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is c<strong>on</strong>tingent <strong>on</strong> numerous intra-cellular and extra-cellular processes,<br />

such as an elevated rate <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferati<strong>on</strong>, evasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> apoptosis and angiogenesis<br />

[1]. Out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese, proliferati<strong>on</strong> has traditi<strong>on</strong>ally been singled out as <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most important, and has generally been <str<strong>on</strong>g>th</str<strong>on</strong>g>e target <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-cancer <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies. Recently,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere has been a growing interest in <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cell motility, and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is is especially true in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma, which generally exhibit diffuse<br />

morphologies stemming from <str<strong>on</strong>g>th</str<strong>on</strong>g>e high motility <str<strong>on</strong>g>of</str<strong>on</strong>g> individual glioma cells.<br />

In order to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong>, we propose a 3-dimensi<strong>on</strong>al cellular<br />

automat<strong>on</strong> model, which describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a glioma c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> up 10 6<br />

cells. In accordance wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e go or grow hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis [2] each cell can be ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er in a<br />

proliferating or motile state. The switching between <str<strong>on</strong>g>th</str<strong>on</strong>g>e states is achieved by means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a two-state Markov chain wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in each cell, characterised by two parameters pm,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> remaining in <str<strong>on</strong>g>th</str<strong>on</strong>g>e motile state, and pp <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding parameter<br />

for proliferati<strong>on</strong>. Simulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular automat<strong>on</strong> and by sweeping <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter<br />

space <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotypic switching model we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e most invasive tumours<br />

(i.e. wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e highest grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate) occur at (pm, pp) ≈ (0.9, 0.9), i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are<br />

characterised by bo<str<strong>on</strong>g>th</str<strong>on</strong>g> proliferative and motile behaviour, and by a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phenotypic persistence. We also find <str<strong>on</strong>g>th</str<strong>on</strong>g>at for each pp ∈ [0, 1] <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a pm = 0 such<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate is maximised.<br />

These observati<strong>on</strong>s are in agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental results, where glioma<br />

cell lines wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a lower proliferative capacity have been observed to rise to larger<br />

tumours when implanted in mice [3]. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er it suggest cancer cell motility as a<br />

potential target for <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy.<br />

References.<br />

[1] Hanahan, D., Weinberg, R., 2000. The hallmarks <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer. Cell 100:57–70.<br />

[2] A. Giese, R. Bjerkvig, M.E. Berens and M Westphal, 2003. Cost <str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong>: invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

malignant gliomas and implicati<strong>on</strong>s for treatment. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical Oncology 8:1624–1636.<br />

[3] R. Chen et al. 2010. A Hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> Self-Renewing Tumor-Initiating Cell Types in Glioblastoma.<br />

Cancer Cell 17:362–375.<br />

345


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemiology, Eco-Epidemiology and Evoluti<strong>on</strong>; Saturday, July 2, 11:00<br />

Philip Gerrish<br />

CMAF, Lisb<strong>on</strong> University<br />

e-mail: pgerrish@unm.edu<br />

Genomic mutati<strong>on</strong> rates <str<strong>on</strong>g>th</str<strong>on</strong>g>at cause extincti<strong>on</strong>: general<br />

evoluti<strong>on</strong>ary predicti<strong>on</strong>s<br />

When mutati<strong>on</strong> rates are low, increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong> rate can give rise to an increase<br />

in adaptati<strong>on</strong> rate. If mutati<strong>on</strong> rate is increased fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er, however, a point<br />

may be reached at which fitness declines despite c<strong>on</strong>tinued adaptive and/or compensatory<br />

evoluti<strong>on</strong>. If fitness decline persists, it intuitively culminates in populati<strong>on</strong><br />

extincti<strong>on</strong>. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical formalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is criteri<strong>on</strong> for extincti<strong>on</strong> gives rise to<br />

a simple relati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at puts a dynamic upper limit <strong>on</strong> viable mutati<strong>on</strong> rates. The<br />

particular ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical guise <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is relati<strong>on</strong> suggests encompassing generality,<br />

which we c<strong>on</strong>firm using individual-based simulati<strong>on</strong>s. Additi<strong>on</strong>ally, we re-derive<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e classical "error <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold" formula and show, by proxy, <str<strong>on</strong>g>th</str<strong>on</strong>g>at it is similarly general<br />

when used dynamically an attribute not previously recognized. Finally, we<br />

dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e utility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e insights gained from <str<strong>on</strong>g>th</str<strong>on</strong>g>ese developments wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an<br />

example applicati<strong>on</strong> to immunology.<br />

346


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stochastic models in computati<strong>on</strong>al neuroscience I; Wednesday, June 29, 14:30<br />

Wulfram Gerstner<br />

Richard Naud<br />

Skander Mensi<br />

Christian Pozzorini<br />

EPFL Lausanne<br />

e-mail: wulfram.gerstner@epfl.ch<br />

Predicting acti<strong>on</strong> potentials and membrane potential <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

neur<strong>on</strong>s<br />

If neur<strong>on</strong>s receive a current <str<strong>on</strong>g>th</str<strong>on</strong>g>at is generated by a filtered point process, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey fire<br />

spikes at specific moments in time, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> little variati<strong>on</strong> from <strong>on</strong>e trial to <str<strong>on</strong>g>th</str<strong>on</strong>g>e next.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talks I will discuss<br />

(i) how to compare spike trains and measure reliability<br />

(ii) how to extract adaptative currents from <str<strong>on</strong>g>th</str<strong>on</strong>g>e data<br />

(iii) how to systematicaly c<strong>on</strong>struct neur<strong>on</strong> models from simple models to more<br />

complex <strong>on</strong>es.<br />

347


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Delay Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s I; Friday, July 1, 14:30<br />

Philipp Getto<br />

BCAM Basque Center For Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

e-mail: phgetto@yahoo.com<br />

A differential equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> state-dependent delay from cell<br />

populati<strong>on</strong> dynamics<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is research is an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e maturati<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cell populati<strong>on</strong>s.<br />

The regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is process leads to a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

dynamics as a differential equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> state-dependent delay, i.e., an object <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

great ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical challenge. We show for <str<strong>on</strong>g>th</str<strong>on</strong>g>is system well-posedness and give<br />

some results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> equilibria.<br />

348


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 17:00<br />

Wayne M. Getz<br />

Dept. Envir<strong>on</strong>mental Science, Policy and Management<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> California at Berkeley, CA 94720-3114, USA<br />

e-mail: getz@nature.berkeley.edu<br />

A Biomass Flow Approach to Populati<strong>on</strong> Models and Food<br />

Webs<br />

The dominant differential equati<strong>on</strong> paradigm for modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> species interacting in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> a food web retains at its core<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e basic prey-predator and competiti<strong>on</strong> models formulati<strong>on</strong> by Alfred J. Lotka<br />

(1880-1945) and Vito Volterra (1860-1940) nearly nine decades ago. This framework<br />

lacks a trophic-level-independent formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> leading<br />

to ambiguities in how to treat populati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are simultaneously bo<str<strong>on</strong>g>th</str<strong>on</strong>g> prey and<br />

predator. Also, it does not fundamentally include inertial processes needed to account<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s to fluctuating resource envir<strong>on</strong>ments. Here I<br />

present an approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at corrects bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese deficits and provides a unified framework<br />

for accounting for biomass transformati<strong>on</strong> in food webs <str<strong>on</strong>g>th</str<strong>on</strong>g>at include bo<str<strong>on</strong>g>th</str<strong>on</strong>g> live<br />

and dead comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> all species in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. This biomass transformati<strong>on</strong><br />

formulati<strong>on</strong> (BTW) allows for a unified treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> webs <str<strong>on</strong>g>th</str<strong>on</strong>g>at include c<strong>on</strong>sumers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> live and dead material—bo<str<strong>on</strong>g>th</str<strong>on</strong>g> carnivores and carcassivores, herbivores and<br />

detrivores—and incorporates scavengers, parasites, and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er neglected food web<br />

c<strong>on</strong>sumpti<strong>on</strong> categories in a coherent manner. I trace how BTW is an outgrow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e metaphysiological grow<str<strong>on</strong>g>th</str<strong>on</strong>g> modeling paradigm and provide a general compact<br />

formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BTW in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> a live/dead/deficit-stress <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-variable differential<br />

equati<strong>on</strong> formulati<strong>on</strong> for each species in <str<strong>on</strong>g>th</str<strong>on</strong>g>e food web. I <str<strong>on</strong>g>th</str<strong>on</strong>g>en illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is new paradigm to provide insights into two-species competiti<strong>on</strong><br />

in variable envir<strong>on</strong>ments and discuss applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BTW to food webs <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporate<br />

parasites and pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens.<br />

349


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Atiyo Ghosh<br />

Leiden University<br />

e-mail: ghosh@cml.leidenuniv.nl<br />

Populati<strong>on</strong> Dynamics; Saturday, July 2, 11:00<br />

Quantifying Stochastic Introgressi<strong>on</strong> Processes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Hazard<br />

Rates<br />

Introgressi<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e permanent incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes from <strong>on</strong>e populati<strong>on</strong> into<br />

ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er. It has become <str<strong>on</strong>g>of</str<strong>on</strong>g> particular c<strong>on</strong>cern wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e advent <str<strong>on</strong>g>of</str<strong>on</strong>g> genetically modified<br />

crops, since <str<strong>on</strong>g>th</str<strong>on</strong>g>e introgressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genetically modified crop genes into <str<strong>on</strong>g>th</str<strong>on</strong>g>eir wild<br />

relatives could have adverse effects <strong>on</strong> local biodiversity. Modeling introgressi<strong>on</strong><br />

can become a difficult task, compounded by stochasticity <strong>on</strong> several levels, from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> certain plants, to different wea<str<strong>on</strong>g>th</str<strong>on</strong>g>er patterns. This talk<br />

outlines how a branching process based approach can be used to derive a measure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> introgressi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e hazard rate, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability per generati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at introgressi<strong>on</strong> occurs given it hasn’t occurred before. Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

hazard rate wi<str<strong>on</strong>g>th</str<strong>on</strong>g> randomness <strong>on</strong> different levels, from individual to envir<strong>on</strong>mental,<br />

form <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk.<br />

350


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Heart rate dynamics: models and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity (part I);<br />

Wednesday, June 29, 14:30<br />

J. Gierałtowski<br />

Cardiovascular Physics Group, Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Systems Divisi<strong>on</strong>,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Warsaw University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: gieraltowski@if.pw.edu.pl<br />

J. J. Żebrowski<br />

Cardiovascular Physics Group, Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Systems Divisi<strong>on</strong>,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Warsaw University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

R. Baranowski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiology, Warsaw<br />

Generalized multifractal analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> heart rate variability<br />

recordings wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> arrhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mia<br />

The regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human heart rate is <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>of</str<strong>on</strong>g> many inputs e.g. <str<strong>on</strong>g>th</str<strong>on</strong>g>e activity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sympa<str<strong>on</strong>g>th</str<strong>on</strong>g>etic and parasympa<str<strong>on</strong>g>th</str<strong>on</strong>g>etic nervous system, respirati<strong>on</strong> and its c<strong>on</strong>trol<br />

or such pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies as ectopic activity or delayed c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac tissue - each<br />

having its own characteristic time scale and magnitude. The MF-DFA (MultiFractal<br />

Detrended Fluctuati<strong>on</strong> Analysis) me<str<strong>on</strong>g>th</str<strong>on</strong>g>od used by us allows to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e different c<strong>on</strong>trols systems and pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies. Because it requires stati<strong>on</strong>arity <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is applied in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature to heart rate variability recordings wi<str<strong>on</strong>g>th</str<strong>on</strong>g> less <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

5% <str<strong>on</strong>g>of</str<strong>on</strong>g> arrhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mia.<br />

We analyzed <str<strong>on</strong>g>th</str<strong>on</strong>g>e published MF-DFA me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, using syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic data and chosen<br />

RR intervals series. We developed an original, generalized versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e MF-DFA<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od - multiscale multifractal analysis MMA. We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e f(α) curve is a major source <str<strong>on</strong>g>of</str<strong>on</strong>g> artifacts. We <str<strong>on</strong>g>th</str<strong>on</strong>g>us focused <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e local Hurst exp<strong>on</strong>ent h <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e multifractal parameter q: h(q) and we allowed<br />

it to depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e scale s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard MF-DFA <str<strong>on</strong>g>th</str<strong>on</strong>g>e time scale s is fixed,<br />

somewhat arbitrarily (usually from 50 intervals up to 500). Thus, we obtained <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

h(q, s) dependence - a surface - <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> which tells us what is <str<strong>on</strong>g>th</str<strong>on</strong>g>e magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e fluctuati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>e RR intervals have in different time scales (different frequency<br />

bands). MMA was found to be immune to noise c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data (we<br />

tested up to 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> noise). It also allows to study heart rate variability wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an<br />

arbitrary level <str<strong>on</strong>g>of</str<strong>on</strong>g> arrhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mia required for clinical applicati<strong>on</strong>s.<br />

We analyzed 51 24-hour recordings <str<strong>on</strong>g>of</str<strong>on</strong>g> heart rate variability (36 males age 16-64,<br />

15 females age 11-57: 42 heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y pers<strong>on</strong>s, 9 cardiac arrest cases including 5 wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out<br />

organic heart disease). We did not remove arrhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mia from <str<strong>on</strong>g>th</str<strong>on</strong>g>e recordings. We<br />

limited <str<strong>on</strong>g>th</str<strong>on</strong>g>e study to <str<strong>on</strong>g>th</str<strong>on</strong>g>e night hours to avoid arbitrary daytime activity. Our<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical criteri<strong>on</strong> was able to distinguish, in a blind test, heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y subjects<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e high risk cardiac arrest cases including <str<strong>on</strong>g>th</str<strong>on</strong>g>ose wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out organic disease.<br />

The different peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> each recording have a unique effect <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e multiscale MF-DFA analysis e.g. <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> arrhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mia may readily be<br />

identified from <str<strong>on</strong>g>th</str<strong>on</strong>g>e results. Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e new me<str<strong>on</strong>g>th</str<strong>on</strong>g>od allows to recognize and assign<br />

a complexity measure to features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart rate variability which hi<str<strong>on</strong>g>th</str<strong>on</strong>g>erto went<br />

unnoticed when using standard, linear diagnostic me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods and MF-DFA.<br />

References.<br />

351


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H. E. Stanley,<br />

Multifractal detrended fluctuati<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>stati<strong>on</strong>ary time series Physica A 316 87.<br />

[2] A. Saichev, D. Sornette, Generic multifractality in exp<strong>on</strong>entials <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g memory processes<br />

Physical Review E 74 011111.<br />

352


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell and Tissue Biophysics; Thursday, June 30, 11:30<br />

Kyriaki Giorgakoudi<br />

Institute for Animal Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Pirbright Laboratory, Ash Road,<br />

Surrey, GU24 0NF, UK<br />

e-mail: Kyriaki.Giorgakoudi@bbsrc.ac.uk, K.Giorgakoudi@lboro.ac.uk<br />

Sim<strong>on</strong> Gubbins<br />

Institute for Animal Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Pirbright Laboratory, Ash Road,<br />

Surrey, GU24 0NF, UK<br />

e-mail: Sim<strong>on</strong>.Gubbins@bbsrc.ac.uk<br />

John Ward<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Loughborough University,<br />

Leicestershire, LE11 3TU, UK<br />

e-mail: John.Ward@lboro.ac.uk<br />

Zhid<strong>on</strong>g Zhang<br />

Nati<strong>on</strong>al Centre for Foreign Animal Disease, Canadian Food<br />

Inspecti<strong>on</strong> Agency, 1015 Arlingt<strong>on</strong> Street, Winnipeg, MB, R3E 3M4,<br />

Canada<br />

e-mail: Zhid<strong>on</strong>g.Zhang@inspecti<strong>on</strong>.gc.ca<br />

David Schley<br />

Institute for Animal Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Pirbright Laboratory, Ash Road,<br />

Surrey, GU24 0NF, UK<br />

e-mail: David.Schley@bbsrc.ac.uk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> foot-and-mou<str<strong>on</strong>g>th</str<strong>on</strong>g> disease virus<br />

infecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells.<br />

Foot-and-mou<str<strong>on</strong>g>th</str<strong>on</strong>g> disease (FMD) is a highly infectious animal disease <str<strong>on</strong>g>th</str<strong>on</strong>g>at affects<br />

cloven ho<str<strong>on</strong>g>of</str<strong>on</strong>g>ed animals (including cattle, sheep and pigs) and causes acute clinical<br />

signs such as vesicular lesi<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e foot and mou<str<strong>on</strong>g>th</str<strong>on</strong>g>, lameness, fever and pain; in<br />

more severe cases it can lead to dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> young livestock. In areas where FMD is<br />

endemic, it is c<strong>on</strong>sidered to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e main <str<strong>on</strong>g>th</str<strong>on</strong>g>reat to animal heal<str<strong>on</strong>g>th</str<strong>on</strong>g> and ec<strong>on</strong>omic development,<br />

while an outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> FMD in 2001 in <str<strong>on</strong>g>th</str<strong>on</strong>g>e United Kingdom, a disease-free<br />

country, resulted in 6.5 milli<strong>on</strong> animals being slaughtered and losses <str<strong>on</strong>g>of</str<strong>on</strong>g> £6 billi<strong>on</strong>.<br />

Persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> FMD virus (FMDV) occurs in previously infected but apparently<br />

recovered animals, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pharyngeal area, specifically in <str<strong>on</strong>g>th</str<strong>on</strong>g>e dorsal s<str<strong>on</strong>g>of</str<strong>on</strong>g>t palate [1].<br />

These carrier animals are a possible source <str<strong>on</strong>g>of</str<strong>on</strong>g> virus transmissi<strong>on</strong>, and potentially<br />

facilitate viral mutati<strong>on</strong>s. In additi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> FMDV, <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus appears<br />

not to cause lysis in <str<strong>on</strong>g>th</str<strong>on</strong>g>e dorsal s<str<strong>on</strong>g>of</str<strong>on</strong>g>t palate, even <str<strong>on</strong>g>th</str<strong>on</strong>g>ough lesi<strong>on</strong>s appears <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e t<strong>on</strong>gue and cor<strong>on</strong>ary band.<br />

Presented in <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model which aims to test <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at it is <str<strong>on</strong>g>th</str<strong>on</strong>g>e different structure <str<strong>on</strong>g>of</str<strong>on</strong>g> epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells, ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e intrinsic properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e t<strong>on</strong>gue and dorsal s<str<strong>on</strong>g>of</str<strong>on</strong>g>t palate <str<strong>on</strong>g>th</str<strong>on</strong>g>at determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e extent <str<strong>on</strong>g>of</str<strong>on</strong>g> FMDV lysis. A<br />

simple ODE compartmental model <str<strong>on</strong>g>of</str<strong>on</strong>g> Schley et al (2010) [2] c<strong>on</strong>sidered static live<br />

cells and indicated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial tissues in <str<strong>on</strong>g>th</str<strong>on</strong>g>e t<strong>on</strong>gue and<br />

dorsal s<str<strong>on</strong>g>of</str<strong>on</strong>g>t palate are important for cell lysis and FMDV persistence. Here, <str<strong>on</strong>g>th</str<strong>on</strong>g>is has<br />

been extended to a spatially explicit system <str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential equati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

353


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral dynamics in <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial layers <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> tissue types. The model<br />

accounts for <str<strong>on</strong>g>th</str<strong>on</strong>g>e movement <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <str<strong>on</strong>g>th</str<strong>on</strong>g>rough grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, and includes heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cell layers which form <str<strong>on</strong>g>th</str<strong>on</strong>g>e epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium. New experimental data, required to fit<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model, has been collected and applied, toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> existing results from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

literature. We will present numerical results from a limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, relevant<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e timescale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e early infecti<strong>on</strong> stages before <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se becomes<br />

effective and discuss key insights. A full active system which accounts for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lesi<strong>on</strong>s is work in progress.<br />

References.<br />

[1] S. Alexandersen, Z. Zhang, A. I. D<strong>on</strong>alds<strong>on</strong>, and A. J. M. Garland, The pa<str<strong>on</strong>g>th</str<strong>on</strong>g>o- genesis and<br />

diagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> foot-and-mou<str<strong>on</strong>g>th</str<strong>on</strong>g> disease. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Comparative Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology 129 1–36.<br />

[2] D. Schley, J. Ward, and Z. Zhang, Modelling foot-and-mou<str<strong>on</strong>g>th</str<strong>on</strong>g> disease virus dynamics in<br />

oral epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium to help identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> lysis. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology<br />

http://dx.doi.org/10.1007/s11538-010-9576-6 11–26.<br />

354


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor invasi<strong>on</strong> II; Tuesday, June 28, 14:30<br />

Chiara Giverso<br />

Politecnico di Torino<br />

e-mail: chiara.giverso@polito.it<br />

Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> cell aggregates and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> meso<str<strong>on</strong>g>th</str<strong>on</strong>g>elial linings.<br />

The transmigrati<strong>on</strong> across <str<strong>on</strong>g>th</str<strong>on</strong>g>e meso<str<strong>on</strong>g>th</str<strong>on</strong>g>elial lining is a fundamental step in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong> and formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis. We reproduce in vitro transmeso<str<strong>on</strong>g>th</str<strong>on</strong>g>elial<br />

migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ovarian cancer cells, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

integrates: (a) an Extended Cellular Potts Model (CPM), <str<strong>on</strong>g>th</str<strong>on</strong>g>at captures mechanisms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cellular adhesi<strong>on</strong>, shape c<strong>on</strong>straints, moti<strong>on</strong> in resp<strong>on</strong>se to chemo-attractants and<br />

degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extracellular matrix (ECM); (b) a c<strong>on</strong>tinuous model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong><br />

and uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> chemo-attractants, and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e release <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix metalloproteinases<br />

(MMPs). Simulati<strong>on</strong>s are in good agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biological experiments (provided<br />

by N. Lo Bu<strong>on</strong>o and A. Funaro, Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Immunogenetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Molinette<br />

Hospital in Turin), showing <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall process is str<strong>on</strong>gly regulated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix metalloproteinases (MMPs) and by <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> adhesive<br />

properties between cells. In particular in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular aggregates <str<strong>on</strong>g>th</str<strong>on</strong>g>e process<br />

is more destructive.<br />

Indeed <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability <str<strong>on</strong>g>of</str<strong>on</strong>g> cells to form aggregates is fundamental in many biological<br />

processes and it seems promising to study spheroid mechanical behavior, because<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t biological tissues may serve as a parameter in <str<strong>on</strong>g>th</str<strong>on</strong>g>e diagnosis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumor metastatic potential. We study <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> multicellular<br />

aggregates, treated as porous materials, composed <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and filled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> water,<br />

to derive an elasto-visco-plastic model. The cellular c<strong>on</strong>stituent is resp<strong>on</strong>sible for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e elastic and <str<strong>on</strong>g>th</str<strong>on</strong>g>e plastic behavior (due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e rearrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> adhesive b<strong>on</strong>ds<br />

between cells). On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, <str<strong>on</strong>g>th</str<strong>on</strong>g>e liquid c<strong>on</strong>stituent is resp<strong>on</strong>sible <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

viscous-like resp<strong>on</strong>se during deformati<strong>on</strong>. The model is used to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e uniaxial<br />

homogeneous compressi<strong>on</strong> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> when a c<strong>on</strong>stant load is applied and when<br />

a fixed deformati<strong>on</strong> is imposed and subsequently released. Results are compared<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics observed in mechanical experiments found in literature.<br />

References.<br />

[1] C. Giverso, M. Scianna, L. Preziosi, N. Lo Bu<strong>on</strong>o and A. Funaro. Individual cell-based model<br />

for in-vitro meso<str<strong>on</strong>g>th</str<strong>on</strong>g>elial invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ovarian cancer. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Phenomena,<br />

Vol. 5, 2010, pp. 203–223.<br />

355


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Vector-borne diseases; Tuesday, June 28, 14:30<br />

Erida Gjini<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Glasgow, University<br />

Gardens, Glasgow G12 8QW, UK<br />

e-mail: egjini@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.gla.ac.uk<br />

Christina A. Cobbold<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Glasgow, University<br />

Gardens, Glasgow G12 8QW, UK<br />

Daniel T. Hayd<strong>on</strong><br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biodiversity, Animal Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> and Comparative Medicine,<br />

College <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Veterinary & Life Sciences, Graham Kerr Building,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Glasgow, Glasgow, G12 8QQ<br />

J. D. Barry<br />

Glasgow Biomedical Research Centre, Wellcome Trust Centre for<br />

Molecular Parasitology, 120 University Place, Glasgow G12 8TA,<br />

Scotland, UK<br />

Optimizing pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen fitness: <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e antigenic<br />

archive for African Trypanosomes<br />

Antigenic variati<strong>on</strong> processes play a central role in vector-borne infectious diseases<br />

and are likely to resp<strong>on</strong>d to host immune mechanisms and epidemiological characteristics.<br />

A key priority in disease c<strong>on</strong>trol and understanding pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen evoluti<strong>on</strong><br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanisms by which pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens regulate antigenic diversity<br />

and how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese affect larger-scale populati<strong>on</strong> processes. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-host populati<strong>on</strong><br />

ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> antigen switching pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens is not a new topic, increasing access<br />

to genetic data provides us wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a rapidly widening opportunity to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evoluti<strong>on</strong>ary ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> antigenic variati<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we study <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure and functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e antigenic archive <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e African Trypanosome,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e parasite resp<strong>on</strong>sible for sleeping sickness. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic<br />

architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e archive has important c<strong>on</strong>sequences for pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen fitness wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

and between hosts. The optimality criteria we find for <str<strong>on</strong>g>th</str<strong>on</strong>g>e antigenic archive arise<br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> typical trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs between transmissi<strong>on</strong> and virulence. Our analysis<br />

suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at different traits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e host populati<strong>on</strong> can select for different aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e antigenic archive, reinforcing <strong>on</strong>ce more <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> host heterogeneity<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> parasites.<br />

356


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

From <strong>on</strong>e to many: Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective, emergent behaviors<br />

in biology -I; Tuesday, June 28, 11:00<br />

James Glazier<br />

Indiana University<br />

e-mail: glazier@indiana.edu<br />

Abbas Shirinifard<br />

Indiana University<br />

Multi-scale, Multi-cell Computati<strong>on</strong>al Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Choroidal<br />

Neovascularizati<strong>on</strong> in Age-Related Macular Degenerati<strong>on</strong><br />

Choroidal neovascularizati<strong>on</strong> (CNV) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macular area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e retina is <str<strong>on</strong>g>th</str<strong>on</strong>g>e major<br />

cause <str<strong>on</strong>g>of</str<strong>on</strong>g> severe visi<strong>on</strong> loss in patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> age-related macular degenerati<strong>on</strong> (AMD)<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> visi<strong>on</strong> loss in adults in <str<strong>on</strong>g>th</str<strong>on</strong>g>e developed world. In CNV, after<br />

choriocapillaries initially penetrate Bruch’s Membrane (BrM), <str<strong>on</strong>g>th</str<strong>on</strong>g>e invading vessels<br />

may regress or expand (CNV initiati<strong>on</strong>). After initiati<strong>on</strong>, during early and late<br />

CNV, <str<strong>on</strong>g>th</str<strong>on</strong>g>e expanding vasculature usually spreads in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree distinct patterns:<br />

in a layer between BrM and <str<strong>on</strong>g>th</str<strong>on</strong>g>e retinal pigment epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium (sub-RPE, occult or<br />

Type 1 CNV), in a layer between <str<strong>on</strong>g>th</str<strong>on</strong>g>e RPE and <str<strong>on</strong>g>th</str<strong>on</strong>g>e photoreceptors (subretinal,<br />

classic or Type 2 CNV) or in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> loci simultaneously (combined pattern or Type<br />

3 CNV). The factors determining bo<str<strong>on</strong>g>th</str<strong>on</strong>g> CNV initiati<strong>on</strong> and progressi<strong>on</strong> are poorly<br />

understood. While most previous studies <str<strong>on</strong>g>of</str<strong>on</strong>g> CNV have assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at it is primarily<br />

related to grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor effects or to local holes in BrM, our simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al (3D) multi-cell model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e maculae <str<strong>on</strong>g>of</str<strong>on</strong>g> normal and pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ological<br />

retinas successfully recapitulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree clinically observed types <str<strong>on</strong>g>of</str<strong>on</strong>g> CNV, under<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at initiati<strong>on</strong> and early and late CNV result from combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

impairment <str<strong>on</strong>g>of</str<strong>on</strong>g>: 1) RPE-RPE epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial juncti<strong>on</strong>s (i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e outer blood-retinal barrier),<br />

2) <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basement membrane <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RPE (BaM) to BrM, and 3)<br />

adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RPE to <str<strong>on</strong>g>th</str<strong>on</strong>g>e photoreceptor outer segments (POS). Our key findings<br />

are <str<strong>on</strong>g>th</str<strong>on</strong>g>at when an endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial tip cell or immune cell penetrate BrM: 1) RPE wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

normal epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial juncti<strong>on</strong>s and basal attachment to BrM and apical attachment to<br />

POS resists CNV, showing <str<strong>on</strong>g>th</str<strong>on</strong>g>at higher rates <str<strong>on</strong>g>of</str<strong>on</strong>g> EC activati<strong>on</strong> due to excess vascular<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors by <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves are insufficient to produce CNV. 2) Similarly small<br />

holes in BrM do not, by <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves, initiate CNV. 3) RPE wi<str<strong>on</strong>g>th</str<strong>on</strong>g> normal epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial<br />

juncti<strong>on</strong>s and normal apical RPE-POS adhesi<strong>on</strong>, but weak adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BaM<br />

to BrM (e.g. due to lipid accumulati<strong>on</strong> in BrM) initially results in Type 1 CNV.<br />

4) Normal adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> BaM to BrM, but reduced apical RPE-POS and epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial<br />

RPE-RPE binding (e.g. due to inflammati<strong>on</strong>) initially results in Type 2 CNV. 5)<br />

Simultaneous reducti<strong>on</strong> in RPE-RPE epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial binding and BaM-BrM adhesi<strong>on</strong><br />

results in early Type 1 or 2 CNV which <str<strong>on</strong>g>of</str<strong>on</strong>g>ten progresses to Type 3 CNV as neovascularizati<strong>on</strong><br />

fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er perturbs RPE-RPE adhesi<strong>on</strong> and BaM-BrM attachment.<br />

These findings suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at previously neglected changes in adhesi<strong>on</strong> ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e more <str<strong>on</strong>g>of</str<strong>on</strong>g>ten hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esized excess producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors dominate<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> CNV initiati<strong>on</strong> and progressi<strong>on</strong>.<br />

357


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Tilmann Glimm<br />

Western Washingt<strong>on</strong> University<br />

e-mail: glimmt@wwu.edu<br />

Developmental Biology; Friday, July 1, 14:30<br />

Pattern formati<strong>on</strong> in reacti<strong>on</strong>-diffusi<strong>on</strong> systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an<br />

external morphogen gradient<br />

Gradients <str<strong>on</strong>g>of</str<strong>on</strong>g> signalling molecules are abundant in <str<strong>on</strong>g>th</str<strong>on</strong>g>e early embryo. They are central<br />

to early development. The Turing mechanism in reacti<strong>on</strong>-diffusi<strong>on</strong> systems<br />

is a paradigm for pattern formati<strong>on</strong> which has been proposed as an explanati<strong>on</strong><br />

for many developmental phenomena. We propose a generic model <str<strong>on</strong>g>of</str<strong>on</strong>g> a reacti<strong>on</strong>diffusi<strong>on</strong><br />

system c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> an activator and an inhibitor molecule in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a linear morphogen gradient. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is morphogen gradient is established<br />

independently <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong> system. Hence it is referred to as<br />

an "external" morphogen. It acts by increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e activator<br />

proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphogen c<strong>on</strong>centrati<strong>on</strong>. The model is motivated by several<br />

existing models in developmental biology in which a Turing patterning mechanism<br />

is proposed and various chemical gradients are known to be important for development.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically, <str<strong>on</strong>g>th</str<strong>on</strong>g>is leads to reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> explicit<br />

spatial dependence. We investigate how <str<strong>on</strong>g>th</str<strong>on</strong>g>e Turing pattern is affected, if it exists.<br />

We also show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter range where a Turing pattern is not possible,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e system may never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless produce “Turing-like” patterns. We also apply our<br />

general findings to a model <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e pattern formati<strong>on</strong> in vertebrate limbs and show<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey may shed light <strong>on</strong> some experimental findings c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e protein S<strong>on</strong>ic Hedgehog.<br />

References.<br />

[1] T. Glimm, J. Zhang and Y.-Q. Shen Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing patterns wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an external linear<br />

morphogen gradient N<strong>on</strong>linearity 22 10, 2541-2560 (2009).<br />

[2] T. Glimm, J. Zhang, Y.-Q. Shen and S. A. Newman Reacti<strong>on</strong>-diffusi<strong>on</strong> systems and external<br />

morphogen gradients: The two-dimensi<strong>on</strong>al case, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an applicati<strong>on</strong> to skeletal pattern<br />

formati<strong>on</strong> submitted (2010).<br />

[3] M. Alber, T. Glimm, H.G.E. Hentschel, B. Kazmierczak, Y.-T. Zhang, J. Zhu and S. A.<br />

Newman The morphostatic limit for a model <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal pattern formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vertebrate<br />

limb Bull. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 70 460–483 (2008).<br />

358


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Wojciech Goch<br />

Uniwersytet Warszawski<br />

e-mail: Wojciech_Goch@wp.pl<br />

Wojciech Bal<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry and Biophysics Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

The range <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc i<strong>on</strong>s depends <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ligand binding reacti<strong>on</strong> rate c<strong>on</strong>stant and <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial<br />

c<strong>on</strong>centrati<strong>on</strong><br />

The range <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> zinc i<strong>on</strong>s depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ligand binding<br />

reacti<strong>on</strong> rate c<strong>on</strong>stant and <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial c<strong>on</strong>centrati<strong>on</strong> Wojciech Goch a), and Wojciech<br />

Bal b)<br />

a) student <str<strong>on</strong>g>of</str<strong>on</strong>g> Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics and Mechanics at Warsaw<br />

University b) Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry and Biophysics, Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences,<br />

Warsaw<br />

We present <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a reversible chemical associati<strong>on</strong> reacti<strong>on</strong> in an equilibrium state. We derived <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

infinite system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e central moments from a set <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s<br />

called Chemical Master Equati<strong>on</strong>. Next, we performed a series <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical simulati<strong>on</strong>s<br />

in order to find appropriate assumpti<strong>on</strong>s in our model. Finally, by placing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese assumpti<strong>on</strong>s into <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s, we derived <str<strong>on</strong>g>th</str<strong>on</strong>g>e explicit formulas <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first<br />

two central moments. The sec<strong>on</strong>d central moment determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e partner <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>us, we are able to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e probability factor <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. We compared <str<strong>on</strong>g>th</str<strong>on</strong>g>e obtained results<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> numerical simulati<strong>on</strong>s. The essential result is <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical formula<br />

describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting<br />

molecules <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> rate c<strong>on</strong>stants and <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial c<strong>on</strong>centrati<strong>on</strong>s. The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e approximati<strong>on</strong>, could be expanded to<br />

much more complicated systems. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od was tested <strong>on</strong> several experimental<br />

data available in literature for interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Zn(II) i<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biomolecules, including<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a zinc finger complex, for which K_d = k_<str<strong>on</strong>g>of</str<strong>on</strong>g>f/k_<strong>on</strong><br />

= 50 pM. For <str<strong>on</strong>g>th</str<strong>on</strong>g>is particular example, <str<strong>on</strong>g>th</str<strong>on</strong>g>e volume, in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e virtual experiment<br />

was performed, was V = 0.5 pL, initial c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> reagents were: [Zn] _Free<br />

=50 pM, [ZnP] = 50 M, [P] = 50 M and, as a result, <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

zinc i<strong>on</strong>s was estimated to be ca. 26%, translating into <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kd<br />

value in <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> 59% 190%.<br />

359


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Julia Gog<br />

DAMTP, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

e-mail: jrg20@cam.ac.uk<br />

Adam Kucharski<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

Strain dynamics and influenza drift<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most exciting current areas in infectious disease modelling is in bringing<br />

toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic and evoluti<strong>on</strong>ary dynamics. Influenza drift is perhaps <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most striking example <str<strong>on</strong>g>of</str<strong>on</strong>g> where <str<strong>on</strong>g>th</str<strong>on</strong>g>e two processes must be c<strong>on</strong>sidered toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er:<br />

epidemics give rise to new strains, which in turn permit new epidemics.<br />

We will begin wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a general introducti<strong>on</strong> to models <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple strains, and<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir challenges, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> technical and in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> capturing observed biological<br />

phenomena. In most populati<strong>on</strong>-based models <str<strong>on</strong>g>of</str<strong>on</strong>g> strain dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> variables grows exp<strong>on</strong>entially wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> strains. We present two items<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our recent work, each <str<strong>on</strong>g>of</str<strong>on</strong>g> which avoids <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem in <strong>on</strong>e way or ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er:<br />

1) The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary c<strong>on</strong>straints <strong>on</strong> influenza drift: standard drift<br />

models assume influenza is free to mutate to escape host immunity. In practice,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere may be some functi<strong>on</strong>al cost associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese mutati<strong>on</strong>s, and <str<strong>on</strong>g>th</str<strong>on</strong>g>is can<br />

be incorporated into a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model. In c<strong>on</strong>trast to unc<strong>on</strong>strained drift<br />

models, <str<strong>on</strong>g>th</str<strong>on</strong>g>is system is bistable, exhibiting bo<str<strong>on</strong>g>th</str<strong>on</strong>g> drift-like patterns and single strain<br />

dynamics for <str<strong>on</strong>g>th</str<strong>on</strong>g>e same parameter values. This raises some important questi<strong>on</strong>s for<br />

vaccinati<strong>on</strong> strategies.<br />

2) Age-structure and immune history: al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough relatively simple assumpti<strong>on</strong>s<br />

about <str<strong>on</strong>g>th</str<strong>on</strong>g>e acquisiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> immunity capture well <str<strong>on</strong>g>th</str<strong>on</strong>g>e general dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza<br />

drift, recent outbreaks have highlighted <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sidering <str<strong>on</strong>g>th</str<strong>on</strong>g>e details<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> precisely how immunity is acquired by an individual over <str<strong>on</strong>g>th</str<strong>on</strong>g>eir lifetime. In<br />

particular, strains <str<strong>on</strong>g>th</str<strong>on</strong>g>at infect us when we are young may be disproporti<strong>on</strong>ately<br />

important (e.g. <str<strong>on</strong>g>th</str<strong>on</strong>g>rough original antigenic sin), and <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se may be<br />

weakened in <str<strong>on</strong>g>th</str<strong>on</strong>g>e elderly.<br />

360<br />

;


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Game <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical modelling and optimizati<strong>on</strong> in evoluti<strong>on</strong> and ecology II;<br />

Tuesday, June 28, 14:30<br />

Chaitanya S. Gokhale and Arne Traulsen<br />

Research Group for Evoluti<strong>on</strong>ary Theory, Max-Planck-Institute for<br />

Evoluti<strong>on</strong>ary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany<br />

e-mail: gokhale@evolbio.mpg.de<br />

Multiplayer evoluti<strong>on</strong>ary games: from selecti<strong>on</strong> to mutati<strong>on</strong><br />

Evoluti<strong>on</strong>ary game <str<strong>on</strong>g>th</str<strong>on</strong>g>eory is an abstract and simple, but very powerful way to<br />

model evoluti<strong>on</strong>ary dynamics. Even complex biological phenomena can sometimes<br />

be abstracted to simple two player games. But <str<strong>on</strong>g>of</str<strong>on</strong>g>ten, <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> between<br />

several parties determines evoluti<strong>on</strong>ary success. In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cases, <strong>on</strong>e can resort to<br />

multiplayer games. Public goods games are a special class <str<strong>on</strong>g>of</str<strong>on</strong>g> multiplayer games<br />

which have been studied in great detail. A general approach to multiplayer games<br />

has al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough has remained limited [3]. We extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e replicator analysis to general<br />

d player games wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n strategies and comment <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum number <str<strong>on</strong>g>of</str<strong>on</strong>g> equilibria<br />

possible. Moving <strong>on</strong> to finite populati<strong>on</strong>s we provide general c<strong>on</strong>diti<strong>on</strong>s for a<br />

strategy to be favoured by natural selecti<strong>on</strong> in a d player game wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two strategies<br />

[4]. Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er important evoluti<strong>on</strong>ary force is mutati<strong>on</strong>s, which has <strong>on</strong>ly recently<br />

yielded to analytical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods [1, 2]. We derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a d player, n<br />

strategy system in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong>-selecti<strong>on</strong> equilibrium [5]. The average frequencies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e strategies at <str<strong>on</strong>g>th</str<strong>on</strong>g>is equilibrium are obtained via recursi<strong>on</strong>s using coalescence<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eory [6]. Multiplayer multi strategy games <str<strong>on</strong>g>of</str<strong>on</strong>g>fer <str<strong>on</strong>g>th</str<strong>on</strong>g>e generality which helps us to<br />

apply <str<strong>on</strong>g>th</str<strong>on</strong>g>em to diverse entities like from alleles to behavioural strategies.<br />

References.<br />

[1] T. Antal, H. Ohtsuki, J. Wakeley, P. D. Taylor, and M. A. Nowak. Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperati<strong>on</strong><br />

by phenotypic similarity. Proc. Natl. Acad. Sci. USA, 106:8597–8600, 2009a.<br />

[2] T. Antal, A. Traulsen, H. Ohtsuki, C. E. Tarnita, and M. A. Nowak. Mutati<strong>on</strong>-selecti<strong>on</strong><br />

equilibrium in games wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple strategies. J. Theor. Biol., 258:614–622, 2009b.<br />

[3] M. Broom. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> multiplayer game <str<strong>on</strong>g>th</str<strong>on</strong>g>eory in <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological populati<strong>on</strong>s.<br />

Comments <strong>on</strong> Theoretical Biology, 8:103–123, 2003.<br />

[4] C. S. Gokhale and A. Traulsen. Evoluti<strong>on</strong>ary games in <str<strong>on</strong>g>th</str<strong>on</strong>g>e multiverse. Proc. Natl. Acad. Sci.<br />

U.S.A., 107(12):5500–5504, 2010.<br />

[5] C. S. Gokhale and A. Traulsen. Mutati<strong>on</strong>-selecti<strong>on</strong> equilibrium in evoluti<strong>on</strong>ary games wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

multiple players and multiple strategies. Submitted, 2011.<br />

[6] J. F. C. Kingman. Origins <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coalescent. 1974-1982. Genetics, 156(4):1461–1463, 2000.<br />

ISSN 0016-6731 (Print).<br />

361


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Meltem Gölgeli<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Biometry, Helmholtz Zentrum München,<br />

Germany<br />

e-mail: meltem.goelgeli@helmholtz-muenchen.de<br />

Burkhard A. Hense<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Biometry, Helmholtz Zentrum München,<br />

Germany<br />

Christina Kuttler<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Technical University Munich, Germany<br />

Johannes Müller<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Technical University Munich, Germany<br />

A stochastic modelling approache for bacterial cell-cell<br />

communicati<strong>on</strong><br />

Quorum sensing is a form <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial communicati<strong>on</strong> via so-called autoinducers<br />

which regulates many bacterial processes. In an experiment, bacteria (Pseudom<strong>on</strong>as<br />

putida) were attached in a flow chamber. There, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey grow in small microcol<strong>on</strong>ies;<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bacteria (ON or OFF, influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e present autoinducer c<strong>on</strong>centrati<strong>on</strong>)<br />

can be observed via Gfp (a fluorescence protein) by c<strong>on</strong>focal laser scanning<br />

microscopy. We developed stochastic modelling approaches which allow to quantify<br />

e.g. rates <str<strong>on</strong>g>of</str<strong>on</strong>g> cell divisi<strong>on</strong>, activati<strong>on</strong> or detachment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bacteria. The autoinducer<br />

producti<strong>on</strong> can also be c<strong>on</strong>sidered in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model and depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>e bacterial<br />

states in <str<strong>on</strong>g>th</str<strong>on</strong>g>e microcol<strong>on</strong>y. The model (a kind <str<strong>on</strong>g>of</str<strong>on</strong>g> extended bir<str<strong>on</strong>g>th</str<strong>on</strong>g>-dea<str<strong>on</strong>g>th</str<strong>on</strong>g> process) can<br />

be adapted numerically to data <str<strong>on</strong>g>of</str<strong>on</strong>g> quite different situati<strong>on</strong>s: e.g. flow versus n<strong>on</strong>flow,<br />

and by <str<strong>on</strong>g>th</str<strong>on</strong>g>at helps to understand better <str<strong>on</strong>g>th</str<strong>on</strong>g>e steps <str<strong>on</strong>g>of</str<strong>on</strong>g> cell activati<strong>on</strong> and how<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ey can be influenced.<br />

References.<br />

[1] Thomas, J.W., Numerical Partial Differential Equati<strong>on</strong>s, Springer Verlag (1995)<br />

[2] Holden, H., Oksendal, B., Uboe, J., Zhang, T., Stochastic Partial Differential Equati<strong>on</strong>s,<br />

Birkhäuser (1996)<br />

[3] Müller, J., Kuttler, C., Hense, Burkhard A., Zeiser, S., Liebscher,V. Transcripti<strong>on</strong>, intercellular<br />

variability and correlated random walk,Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences 216(2008), 30-39<br />

[4] Czupp<strong>on</strong>, P., Stochastische Modelliereung v<strong>on</strong> Zell-Zell Kommunikati<strong>on</strong>, TUM Bachelor-<br />

Arbeit (2010).<br />

362


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious agents;<br />

Tuesday, June 28, 17:00<br />

Gabriela Gomes<br />

Instituto Gulbenkian de Ciencia, Oeias, Portugal<br />

e-mail: ggomes@igc.gulbenkian.pt<br />

Andrea Parisi<br />

Departamento de Fisica, Faculdade de Ciencias, Universidade de Lisboa<br />

Ana Nunes<br />

Departamento de Fisica, Faculdade de Ciencias, Universidade de Lisboa<br />

Heterogeneity in antibody range is required for <str<strong>on</strong>g>th</str<strong>on</strong>g>e antigenic<br />

drift <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza A viruses<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences for <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a rapidly mutating<br />

virus <str<strong>on</strong>g>of</str<strong>on</strong>g> a heterogeneous immune resp<strong>on</strong>se in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at several<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence and phylogenetic patterns typical <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza A may be<br />

understood in <str<strong>on</strong>g>th</str<strong>on</strong>g>is framework. Limited diversity and rapid drift <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e circulating<br />

viral strains result from <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> two interacting subpopulati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two<br />

different types <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>se, narrow or broad, up<strong>on</strong> infecti<strong>on</strong>. The subpopulati<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e narrow immune resp<strong>on</strong>se acts as a reservoir where c<strong>on</strong>secutive<br />

neutral mutati<strong>on</strong>s escape immunity and can persist. Strains wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> accumulated<br />

mutati<strong>on</strong>s escape immunity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er subpopulati<strong>on</strong> as well, causing<br />

larger epidemic peaks in <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole populati<strong>on</strong>, and reducing strain diversity. These<br />

recurrent larger epidemics have been identified in <str<strong>on</strong>g>th</str<strong>on</strong>g>e data and associated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

modelling literature wi<str<strong>on</strong>g>th</str<strong>on</strong>g> "cluster jumps", or mutati<strong>on</strong>s whose antigenic effect is<br />

larger and generate strains for which <str<strong>on</strong>g>th</str<strong>on</strong>g>e pool <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptibles in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> is<br />

also larger. Our model reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed epidemic peak height variati<strong>on</strong> and<br />

antigenic drift patterns wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out any assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> punctuated antigenic evoluti<strong>on</strong>.<br />

363


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Didier G<strong>on</strong>ze<br />

Université Libre de Bruxelles<br />

e-mail: dg<strong>on</strong>ze@ulb.ac.be<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Modeling circadian clocks as coupled damped oscillators<br />

Circadian rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms represent <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e more c<strong>on</strong>spicuous examples <str<strong>on</strong>g>of</str<strong>on</strong>g> biological<br />

rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. Manifested at <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological, behavioral, and cellular levels, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese 24hour<br />

rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms originate at <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular level, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a complex gene regulatory<br />

network. In mammals, <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian pacemaker is located in <str<strong>on</strong>g>th</str<strong>on</strong>g>e suprachiasmatic<br />

nuclei <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>alamus (SCN). We have developed deterministic models using<br />

n<strong>on</strong>-linear ordinary differential equati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> aut<strong>on</strong>omous<br />

circadian oscillati<strong>on</strong>s in single cells, for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir entrainment by light-dark<br />

cycles, and for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir phase shifting by light pulses. The model can be used to unravel<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e links between molecular alterati<strong>on</strong>s (e.g. mutati<strong>on</strong>s in clock genes) and<br />

clock-related physiological pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies (such as sleep phase disorders). We have<br />

investigated <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling between <str<strong>on</strong>g>th</str<strong>on</strong>g>e SCN cells and proposed a synchr<strong>on</strong>izati<strong>on</strong><br />

mechanism based <strong>on</strong> neurotransmitter release. Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>at (1) efficient synchr<strong>on</strong>izati<strong>on</strong> is achieved when <str<strong>on</strong>g>th</str<strong>on</strong>g>e average neurotransmitter<br />

c<strong>on</strong>centrati<strong>on</strong> dampens individual oscillators and (2) phases <str<strong>on</strong>g>of</str<strong>on</strong>g> individual<br />

cells are governed by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir intrinsic periods. These results illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible interplay<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e single-cell oscillator and <str<strong>on</strong>g>th</str<strong>on</strong>g>e inter-cellular coupling mechanisms.<br />

364


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Tuesday, June 28, 17:00<br />

Madalena Chaves<br />

Project-team COMORE, INRIA, 06902 Sophia Antipolis, France<br />

e-mail: madalena.chaves@inria.fr<br />

Jean-Luc Gouzé<br />

Project-team COMORE, INRIA, 06902 Sophia Antipolis, France<br />

e-mail: gouze@sophia.inria.fr<br />

Qualitative C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> a Bistable Genetic Network<br />

The c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> a generic model for a genetic network is studied using piecewise<br />

affine differential systems. The system is <str<strong>on</strong>g>th</str<strong>on</strong>g>e well-known bistable switch wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two<br />

genes and proteins x1, x2:<br />

˙x1 = uκ1s − (x2, θ2) − γ1x1<br />

˙x2 = uκ2s − (x1, θ1) − γ2x2.<br />

where κi denote producti<strong>on</strong> rates, γi denote <str<strong>on</strong>g>th</str<strong>on</strong>g>e degradati<strong>on</strong> rate c<strong>on</strong>stants, and<br />

θi <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold c<strong>on</strong>centrati<strong>on</strong>s. The step functi<strong>on</strong> represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each gene by <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er.<br />

s − (r, θ) =<br />

1, r < θ<br />

0, r > θ.<br />

This class <str<strong>on</strong>g>of</str<strong>on</strong>g> piecewise affine systems (PWA) was first introduced by [1], and is<br />

widely used for modeling genetic regulatory networks [2]. It is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

state measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> x1, x2 are qualitative (each variable is at high or low c<strong>on</strong>centrati<strong>on</strong>)<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible input values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol u are also qualitative<br />

(no c<strong>on</strong>trol, high value or low value). The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach is to obtain<br />

c<strong>on</strong>trol laws which can be implemented in <str<strong>on</strong>g>th</str<strong>on</strong>g>e laboratory, using <strong>on</strong>ly qualitative<br />

knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system’s variables. Soluti<strong>on</strong>s are given for <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolling<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e bistable switch to ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>of</str<strong>on</strong>g> its <str<strong>on</strong>g>th</str<strong>on</strong>g>ree steady states [3].<br />

References.<br />

[1] L. Glass and S.A. Kauffman. The logical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous, n<strong>on</strong>linear biochemical c<strong>on</strong>trol<br />

networks. J. Theor. Biol., 39:103–129, 1973.<br />

[2] R. Casey, H. de J<strong>on</strong>g, and J.L. Gouzé. Piecewise-linear models <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic regulatory networks:<br />

equilibria and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir stability. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol., 52:27–56, 2006.<br />

[3] M. Chaves and J.L. Gouzé. Qualitative C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetic Networks: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Bistable Switch<br />

Example. Technical Report, INRIA, 2010, http://hal.inria.fr/<br />

365


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: from physical tools to<br />

applicati<strong>on</strong>s in cancer modeling II; Saturday, July 2, 11:00<br />

Isabell Graf<br />

Universität Augsburg<br />

e-mail: grafisab@googlemail.com<br />

Homogenizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a reacti<strong>on</strong>-diusi<strong>on</strong> system modeling<br />

carcino- gens inside a human cell<br />

We use a reacti<strong>on</strong>-diusi<strong>on</strong> model to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> potentially cancercausing<br />

chemicals inside a human cell. We show how periodic homogenizati<strong>on</strong> can<br />

be used to upscale rigorously <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diusi<strong>on</strong> equati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytosol as well<br />

as <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e endoplasmic reticulum. The resulting macromodel is also<br />

suitable for direct implementati<strong>on</strong>. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical simulati<strong>on</strong>s will be shown.<br />

366


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Heart rate dynamics: models and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity (part I);<br />

Wednesday, June 29, 14:30<br />

Beata Graff<br />

Hypertensi<strong>on</strong> Unit, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Hypertensi<strong>on</strong> and Diabetology,<br />

Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Gdańsk, Poland<br />

e-mail: bgraff@gumed.edu.pl<br />

Grzegorz Graff<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Gdańsk University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Technology, Poland<br />

e-mail: graff@mif.pg.gda.pl<br />

Agnieszka Kaczkowska<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Gdańsk University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Technology, Poland<br />

e-mail: kaczkowska.agnieszka@gmail.com<br />

Entropy-based measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heart rate variability: a clinical approach<br />

N<strong>on</strong>-linear dynamics is a powerful approach to understanding physiological data but<br />

n<strong>on</strong>-linear me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods usually require l<strong>on</strong>g data sets. In 1991, Pincus et al. introduced<br />

Approximate Entropy, a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity which can be applied to short and<br />

noisy time series <str<strong>on</strong>g>of</str<strong>on</strong>g> clinical data [1]. Subsequently, o<str<strong>on</strong>g>th</str<strong>on</strong>g>er entropy-based me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some improvements were added and presently <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are many examples <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

successful applicati<strong>on</strong> in medicine. An overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most promising applicati<strong>on</strong>s<br />

in heart rate variability assessment will be presented. Advantages and limitati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods from <str<strong>on</strong>g>th</str<strong>on</strong>g>e physician’s point <str<strong>on</strong>g>of</str<strong>on</strong>g> view will be discussed based <strong>on</strong><br />

recently published papers and our own results.<br />

References.<br />

[1] S. Pincus, Approximate entropy as a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> system complexity Proc Nati Acad Sci. USA<br />

88 (6) 2297–2301.<br />

367


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Immunology; Saturday, July 2, 08:30<br />

Galina Gramotnev<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Queensland, St.<br />

Lucia, QLD 4072, Australia<br />

e-mail: d.gramotnev@centre-pst.com<br />

Dmitri K. Gramotnev<br />

Centre for Psychosomatic Treatment, GPO Box 1272, Aspley, QLD<br />

4034, Australia<br />

Generalised Stress: A unifying model for psychological stress<br />

and psychosomatic treatment<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> psychological stress and psychosomatic<br />

treatment <strong>on</strong> patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> serious immune-related diseases and c<strong>on</strong>diti<strong>on</strong>s is bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

challenging and important for <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> new quantifiable and effective<br />

treatment approaches for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases and c<strong>on</strong>diti<strong>on</strong>s, including cancers [1],<br />

myeloproliferative blood diseases [2], etc. The development <str<strong>on</strong>g>of</str<strong>on</strong>g> such quantitative<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models is impeded by <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e characterisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> psychological<br />

stress and psychosomatic treatment is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten based up<strong>on</strong> subjective percepti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e involved human subjects (including preservative cogniti<strong>on</strong>). In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

paper, we introduce and justify a new model based <strong>on</strong> a c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> generalised<br />

stress <str<strong>on</strong>g>th</str<strong>on</strong>g>at ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically unifies psychological stress and psychosomatic (hypnotic)<br />

treatment. This model correlates <str<strong>on</strong>g>th</str<strong>on</strong>g>e two independently and subjectively<br />

reported levels <str<strong>on</strong>g>of</str<strong>on</strong>g> psychological stress and psychosomatic treatment <strong>on</strong> two different<br />

arbitrary scales to an objectively measured physiological parameter platelet<br />

count. As a result, <str<strong>on</strong>g>th</str<strong>on</strong>g>e two subjectively reported quantities are reduced to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

same unit scale and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically unified into <strong>on</strong>e new quantity called generalised<br />

stress. Excellent applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is dem<strong>on</strong>strated <strong>on</strong> an example<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a 3.5 years l<strong>on</strong>gitudinal study <str<strong>on</strong>g>of</str<strong>on</strong>g> blood parameters in a patient wi<str<strong>on</strong>g>th</str<strong>on</strong>g> myel<str<strong>on</strong>g>of</str<strong>on</strong>g>ibrosis,<br />

who was subjected to severe work-related psychological stress and psychosomatic<br />

(hypnotic) treatment. The stress and treatment were statistically shown to have a<br />

major (dominant) impact <strong>on</strong> blood platelet counts well described by an exp<strong>on</strong>ential<br />

dependence <strong>on</strong> cumulative levels <str<strong>on</strong>g>of</str<strong>on</strong>g> generalized stress. Only 12 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e total<br />

variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> platelet counts could be attributed to factors o<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an psychological<br />

stress and psychosomatic treatment. The developed model will be instrumental for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e quantified analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> psychological stress and psychosomatic<br />

treatment for patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> immune and blood disorders. It also dem<strong>on</strong>strates a<br />

unique role <str<strong>on</strong>g>of</str<strong>on</strong>g> platelets for neuroimmunological pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways for psychological stress<br />

and psychosomatic treatment.<br />

References.<br />

[1] B. L. Andersen, et al, Biobehavioral, immune, and heal<str<strong>on</strong>g>th</str<strong>on</strong>g> benefits following recurrence for<br />

psychological interventi<strong>on</strong> participants, Clinical Cancer Res, 16, 270-278, 2010.<br />

[2] D. K. Gramotnev, G. Gramotnev, Psychological stress and psychosomatic treatment: Major<br />

impact <strong>on</strong> serious blood disorders?, NeuroImmunoModulati<strong>on</strong>, 18, 171-183, 2011.<br />

368


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Greenman<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling, UK<br />

e-mail: j.v.greenman@stir.ac.uk<br />

Virginia Pasour<br />

US Army Research Office<br />

Ecosystems Dynamics; Tuesday, June 28, 14:30<br />

Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen exclusi<strong>on</strong> in eco-epidemiological models<br />

It is well known <str<strong>on</strong>g>th</str<strong>on</strong>g>at external forcing (whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er periodic or stochastic) can alter <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>diti<strong>on</strong>s under which a populati<strong>on</strong> is excluded from or can establish itself wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

an ecological system. This phenomen<strong>on</strong> is largely understood when <str<strong>on</strong>g>th</str<strong>on</strong>g>e forcing<br />

<strong>on</strong>ly has <strong>on</strong>e comp<strong>on</strong>ent but less so when <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are multiple comp<strong>on</strong>ents, especially<br />

when some are envir<strong>on</strong>mental while o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers are c<strong>on</strong>trols imposed by management to<br />

achieve its objectives. The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> how to exercise <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>trols is <str<strong>on</strong>g>of</str<strong>on</strong>g> importance<br />

in eco-epidemiological systems where <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen is to be excluded, particularly<br />

so in wildlife systems <str<strong>on</strong>g>th</str<strong>on</strong>g>at impinge <strong>on</strong> human heal<str<strong>on</strong>g>th</str<strong>on</strong>g> and livelihood. Much <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e work in <str<strong>on</strong>g>th</str<strong>on</strong>g>is area has focused <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying unforced<br />

and unmanaged system but progress has also been made <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> specific<br />

c<strong>on</strong>trols (e.g. culling, vaccinati<strong>on</strong>) in systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> periodic envir<strong>on</strong>mental forcing<br />

(e.g. <strong>on</strong> bir<str<strong>on</strong>g>th</str<strong>on</strong>g> rate, infecti<strong>on</strong> transmissi<strong>on</strong>). In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we wish to add to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

literature by taking an algebraic approach based <strong>on</strong> a quadratic approximati<strong>on</strong> in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e forcing streng<str<strong>on</strong>g>th</str<strong>on</strong>g>, linking directly to <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen exclusi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold <str<strong>on</strong>g>th</str<strong>on</strong>g>rough<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e rare invader approximati<strong>on</strong>. This approach generates explicit formulae for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

distorti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold when <str<strong>on</strong>g>th</str<strong>on</strong>g>e forcing is <str<strong>on</strong>g>of</str<strong>on</strong>g> moderate streng<str<strong>on</strong>g>th</str<strong>on</strong>g>. We<br />

can <str<strong>on</strong>g>th</str<strong>on</strong>g>en efficiently explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> specific eco-epidemiological models<br />

and to make general statements about <str<strong>on</strong>g>th</str<strong>on</strong>g>eir behaviour. The algebraic analysis<br />

provides a sound basis to extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis to large streng<str<strong>on</strong>g>th</str<strong>on</strong>g> forcing by numerical<br />

simulati<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> importance when <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold reflects res<strong>on</strong>ance in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

resident subsystem and <str<strong>on</strong>g>th</str<strong>on</strong>g>e subharm<strong>on</strong>ics and chaos <str<strong>on</strong>g>th</str<strong>on</strong>g>at increased forcing can<br />

create. Applicati<strong>on</strong>s include <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> added structure<br />

in epidemiological models and <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> forcing <strong>on</strong> coexistence in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> apparent competiti<strong>on</strong> mediated by pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen or predator.<br />

369


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stochastic models in computati<strong>on</strong>al neuroscience I; Wednesday, June 29, 14:30<br />

Priscilla Greenwood<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia<br />

e-mail: pgreenw@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.asu.edu<br />

Priscilla Greenwood<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia, Vancouver<br />

Peter Rowat<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, San Diego<br />

C<strong>on</strong>tinuity across bifurcati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic Morris Lecar<br />

output distributi<strong>on</strong>s<br />

Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic Morris Lecar model neur<strong>on</strong>, type II, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> i<strong>on</strong> channel noise,we<br />

investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e inter-spike interval distributi<strong>on</strong> as increasing levels <str<strong>on</strong>g>of</str<strong>on</strong>g> applied current<br />

drive <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a sub-critical Hopf bifurcati<strong>on</strong>. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e exp<strong>on</strong>ential tail <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ISI distributi<strong>on</strong> is c<strong>on</strong>tinuous over <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> plausible applied current, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuities in <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase-portrait <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e seldom-c<strong>on</strong>sidered distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>secutive spikes is geometric wi<str<strong>on</strong>g>th</str<strong>on</strong>g> associated parameter similarly c<strong>on</strong>tinuous as<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> applied current over <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire input range.<br />

370


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Fabio Grizzi<br />

IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy.<br />

e-mail: fabio.grizzi@humanitasresearch.it<br />

Irene Guaraldo<br />

Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Rome La Sapienza, Rome, Italy.<br />

Fractal Geometry: a helpful way for looking cancer<br />

complexity<br />

Cancer research has underg<strong>on</strong>e radical changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e past few years. Amount <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong><br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic and clinical levels is no l<strong>on</strong>ger <str<strong>on</strong>g>th</str<strong>on</strong>g>e issue. Ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er, how to<br />

handle <str<strong>on</strong>g>th</str<strong>on</strong>g>is informati<strong>on</strong> has become <str<strong>on</strong>g>th</str<strong>on</strong>g>e major obstacle to progress. System biology<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e latest fashi<strong>on</strong> in cancer biology, driven by advances in technology <str<strong>on</strong>g>th</str<strong>on</strong>g>at have<br />

provided us wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a suite <str<strong>on</strong>g>of</str<strong>on</strong>g> omics techniques. It can be seen as a c<strong>on</strong>ceptual approach<br />

to biological research <str<strong>on</strong>g>th</str<strong>on</strong>g>at combines reducti<strong>on</strong>ist (parts) and integrati<strong>on</strong>ist<br />

(interacti<strong>on</strong>s) research, to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> entities. In<br />

geometrical terms, cancerous lesi<strong>on</strong>s can be depicted as fractal entities mainly characterized<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir irregular shape, self-similar structure, scaling relati<strong>on</strong>ship and<br />

n<strong>on</strong>-integer or fractal dimensi<strong>on</strong>. It is indubitable <str<strong>on</strong>g>th</str<strong>on</strong>g>at The Fractal Geometry <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nature has provided an innovative paradigm, a novel epistemological approach for<br />

interpreting <str<strong>on</strong>g>th</str<strong>on</strong>g>e anatomical world. It is also known <str<strong>on</strong>g>th</str<strong>on</strong>g>at ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir derivatives have proved to be possible and practical in <strong>on</strong>cology. Viewing<br />

cancer as a system <str<strong>on</strong>g>th</str<strong>on</strong>g>at is dynamically complex in time and space will probably<br />

reveal more about its underlying behavioural characteristics. It is encouraging <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematicians, biologists and clinicians c<strong>on</strong>tribute toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er towards a comm<strong>on</strong><br />

quantitative understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer complexity.<br />

371


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Game <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical modelling and optimizati<strong>on</strong> in evoluti<strong>on</strong> and ecology I;<br />

Tuesday, June 28, 11:00<br />

Andrei R. Akhmetzhanov<br />

INRIA Sophia-Antipolis, Project Biocore (France) &<br />

McMaster University, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology (Canada)<br />

e-mail: akhmetzhanov@gmail.com<br />

Pierre Bernhard<br />

INRIA Sophia-Antipolis, Project Biocore (France)<br />

e-mail: Pierre.Bernhard@inria.fr<br />

Frédéric Grognard<br />

INRIA Sophia-Antipolis, Project Biocore (France)<br />

e-mail: Frederic.Grognard@inria.fr<br />

Ludovic Mailleret<br />

INRA Sophia-Antipolis, UR880 (France)<br />

e-mail: Ludovic.Mailleret@sophia.inra.fr<br />

Dynamic game for optimal resource allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

annual plants and grazing c<strong>on</strong>sumers<br />

In [1] au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors have formulated a model <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal resource allocati<strong>on</strong> in annual<br />

plants wi<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>stant grazing pressure al<strong>on</strong>g a seas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed leng<str<strong>on</strong>g>th</str<strong>on</strong>g>. The plant has<br />

two choices: ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er to invest nutrients in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vegetative part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e plant or in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

reproductive part. This kind <str<strong>on</strong>g>of</str<strong>on</strong>g> problem has been stated and solved as a problem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> optimal c<strong>on</strong>trol using P<strong>on</strong>tryagin’s maximum principle.<br />

In our work we c<strong>on</strong>sider a similar model but we take into account <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

grazing pressure <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e plant varies in time and occurs due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>sumers in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. C<strong>on</strong>sumers are also faced wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an allocati<strong>on</strong> dilemma<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e investment <str<strong>on</strong>g>of</str<strong>on</strong>g> time in increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>eir internal energy <str<strong>on</strong>g>th</str<strong>on</strong>g>rough grazing<br />

or in reproducti<strong>on</strong> (see for details [2]). Hence we are dealing here wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a dynamic<br />

game <str<strong>on</strong>g>of</str<strong>on</strong>g> two players which are known to be fairly advanced ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical objects<br />

[3]. Its resoluti<strong>on</strong> address interesting questi<strong>on</strong>s such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> an adaptive,<br />

ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an fixed, grazing pressure <strong>on</strong> plants phenology.<br />

References.<br />

[1] N. Yamamura, N. Fujita, M. Hayashi, Y. Nakamura, A. Yamauchi, Optimal phenology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

annual plants under grazing pressure Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 246 530–537, 2007<br />

[2] A.R. Akhmetzhanov, F. Grognard, L. Mailleret, Optimal life-history strategies in seas<strong>on</strong>al<br />

c<strong>on</strong>sumer-resource dynamics In revisi<strong>on</strong> for Evoluti<strong>on</strong><br />

[3] T. Basar, G.J. Olsder Dynamic N<strong>on</strong>-Cooperative Game Theory, 2nd ed., SIAM, Philadelphia,<br />

1999<br />

372


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

IV; Wednesday, June 29, 08:30<br />

C. M. Groh and B. D. Sleeman<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leeds, Leeds, LS2<br />

9JT, UK<br />

e-mail: c.m.groh@leeds.ac.uk<br />

M. E. Hubbard<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leeds, Leeds, LS2 9JT, UK<br />

e-mail: m.e.hubbard@leeds.ac.uk<br />

P. F. J<strong>on</strong>es<br />

Leeds Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Medicine, Leeds, LS9 7TF, UK<br />

e-mail: p.j<strong>on</strong>es@leeds.ac.uk<br />

P. M. Loadman, N. Periasamy and R. M. Phillips<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer Therapeutics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bradford, BD7 1DP,<br />

UK<br />

e-mail: p.m.loadman@bradford.ac.uk<br />

S. W. Smye<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Physics, Leeds Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics, Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

Therapeutics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leeds, LS2 9JT, UK<br />

e-mail: s.w.smye@leeds.ac.uk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Doxorubicin Transport wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in Solid<br />

Tumours<br />

The efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> treating tumours wi<str<strong>on</strong>g>th</str<strong>on</strong>g> chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic agents, such as doxorubicin,<br />

is dependent <strong>on</strong> how much drug reaches <str<strong>on</strong>g>th</str<strong>on</strong>g>e regi<strong>on</strong>s most distant from<br />

drug supply in sufficient c<strong>on</strong>centrati<strong>on</strong>s. Primerau et al. [1] show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> doxorubicin decreases exp<strong>on</strong>entially wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distance from <str<strong>on</strong>g>th</str<strong>on</strong>g>e nearest<br />

blood vessel. It is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore important to understand how drug penetrates <str<strong>on</strong>g>th</str<strong>on</strong>g>rough<br />

cancerous tissue and how <str<strong>on</strong>g>th</str<strong>on</strong>g>e penetrati<strong>on</strong> depends <strong>on</strong> treatment c<strong>on</strong>straints, such<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>e pharmacokinetic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile or <str<strong>on</strong>g>th</str<strong>on</strong>g>e dose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e injecti<strong>on</strong>.<br />

Evans et al. [2] develop a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug penetrati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough<br />

a multicellular layer, incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>e “flip-flop” mechanism as a form <str<strong>on</strong>g>of</str<strong>on</strong>g> transport<br />

to and from cells and a Pgp-pump mechanism, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>ought to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e leading<br />

mechanism for <str<strong>on</strong>g>th</str<strong>on</strong>g>e increased drug resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells. Because <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is<br />

bespoke to a transwell geometry, it has been successfully validated by experiments<br />

and important transport rates have been estimated.<br />

Building <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e work <str<strong>on</strong>g>of</str<strong>on</strong>g> Evans et al. [2], a model is presented for a geometry<br />

closer to <str<strong>on</strong>g>th</str<strong>on</strong>g>at encountered in-vivo: a cylindrical blood vessel surrounded by multiple<br />

layers <str<strong>on</strong>g>of</str<strong>on</strong>g> cancerous cells. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e limited amount <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane proteins<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at facilitate <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug is incorporated into <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, leading to<br />

Michaelis-Menten transport terms. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different pharmacokinetic<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles representing bolus injecti<strong>on</strong>s, repeated bolus injecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lower<br />

c<strong>on</strong>centrati<strong>on</strong> and infusi<strong>on</strong>s over several hours are assessed for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir ability to deliver<br />

drug to <str<strong>on</strong>g>th</str<strong>on</strong>g>e outer layers in <str<strong>on</strong>g>th</str<strong>on</strong>g>e most efficacious manner.<br />

References.<br />

373


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] A. J. Primeau, A. Rend<strong>on</strong>, D. Hedley, L. Lilge, and I. F. Tannock, The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e anticancer<br />

drug doxorubicin in relati<strong>on</strong> to blood vessels in solid tumors, Clinical Cancer Research<br />

11 8782–8788.<br />

[2] C. J. Evans, R. M. Phillips, P. F. J<strong>on</strong>es, P. M. Loadman, B. D. Sleeman, C. J. Twelves and<br />

S. W. Smye, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> doxorubicin penetrati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough multicellular layers,<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 257 598–608.<br />

374


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in computati<strong>on</strong>al neuroscience II; Wednesday, June 29,<br />

17:00<br />

S<strong>on</strong>ja Grün<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Neuroscience and Medicine (INM-6), Research Center<br />

Jülich, Jülich, Germany & RWTH Aachen University, Aachen, Germany<br />

e-mail: s.gruen@fz-juelich.de<br />

Scales <str<strong>on</strong>g>of</str<strong>on</strong>g> Neur<strong>on</strong>al Data and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Problem <str<strong>on</strong>g>of</str<strong>on</strong>g> Interacti<strong>on</strong><br />

Cortical informati<strong>on</strong> processing was suggested to be performed via functi<strong>on</strong>al<br />

groups <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, called cell assemblies [1]. Theoretical work supported <str<strong>on</strong>g>th</str<strong>on</strong>g>is idea by<br />

indicating <str<strong>on</strong>g>th</str<strong>on</strong>g>at synchr<strong>on</strong>ous input to a neur<strong>on</strong> is much more effective in emitting<br />

a spike <str<strong>on</strong>g>th</str<strong>on</strong>g>an uncorrelated input. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>is coding scheme was c<strong>on</strong>troversially<br />

discussed, first supporting indicati<strong>on</strong>s for spike synchr<strong>on</strong>y were published, so<strong>on</strong> after<br />

techniques became available to simultaneously record from more <str<strong>on</strong>g>th</str<strong>on</strong>g>an a single<br />

neur<strong>on</strong>. Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> excess spike synchr<strong>on</strong>y was found to be dynamic and related<br />

to behaviorally relevant instances in time. As expressed by different recording<br />

techniques (e.g. acti<strong>on</strong> potentials, local field potential (LFP)), <str<strong>on</strong>g>th</str<strong>on</strong>g>e brain exhibits<br />

interesting phenomena <strong>on</strong> several spatial and temporal scales. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e various measures <str<strong>on</strong>g>of</str<strong>on</strong>g> cortical activity now experimentally available is<br />

largely unknown. The characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint signature <str<strong>on</strong>g>of</str<strong>on</strong>g> cortical processing<br />

in functi<strong>on</strong>ally meaningful c<strong>on</strong>texts provides insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevant scales and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

potentially hierarchical organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> brain processes.<br />

The mechanisms underlying neur<strong>on</strong>al coding and in particular <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> temporal<br />

spike coordinati<strong>on</strong> are hotly debated. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>is debate is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>founded<br />

by an implicit discussi<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate analysis me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods.<br />

To avoid wr<strong>on</strong>g interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> data, <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> simultaneous spike trains<br />

for correlati<strong>on</strong> needs to be properly adjusted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e features <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental spike<br />

trains. Neur<strong>on</strong>al spiking activity is typically not stati<strong>on</strong>ary in time, but neur<strong>on</strong>s<br />

’resp<strong>on</strong>d’ by changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir firing rates to external stimuli or behavioral c<strong>on</strong>texts.<br />

Also, data are not stati<strong>on</strong>ary across trials, but <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical features may change<br />

during <str<strong>on</strong>g>th</str<strong>on</strong>g>e experiment. Parametric approaches may be applied to experimental<br />

data to account for <str<strong>on</strong>g>th</str<strong>on</strong>g>ese aspects, however, <str<strong>on</strong>g>th</str<strong>on</strong>g>e data may also c<strong>on</strong>tain features (e.g.<br />

deviati<strong>on</strong> from Poiss<strong>on</strong>) <str<strong>on</strong>g>th</str<strong>on</strong>g>at do not allow an analytical treatment or parametric<br />

testing. Ignorance <str<strong>on</strong>g>of</str<strong>on</strong>g> such features present in parallel spike trains are potent generators<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> false positives, but can be avoided by including <str<strong>on</strong>g>th</str<strong>on</strong>g>ose features in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

null-hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e significance test. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>text <str<strong>on</strong>g>th</str<strong>on</strong>g>e usage <str<strong>on</strong>g>of</str<strong>on</strong>g> surrogate data<br />

becomes increasingly important to deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> such complex data [2].<br />

The assembly hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at entities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ought or percepti<strong>on</strong> are represented<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e coordinated activity <str<strong>on</strong>g>of</str<strong>on</strong>g> (large) neur<strong>on</strong>al groups. However, whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

or not <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamic formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell assemblies c<strong>on</strong>stitutes a fundamental principle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cortical informati<strong>on</strong> processing remains a c<strong>on</strong>troversial issue <str<strong>on</strong>g>of</str<strong>on</strong>g> current research.<br />

While initially mainly technical problems limited <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental surge for support<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e assembly hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e recent advent <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-electrode arrays reveals<br />

fundamental shortcomings <str<strong>on</strong>g>of</str<strong>on</strong>g> available analysis tools. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough larger samplings <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

simultaneous recordings from <str<strong>on</strong>g>th</str<strong>on</strong>g>e cortical tissue are expected to ease <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> assembly activity, it implies <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand an increase in <str<strong>on</strong>g>th</str<strong>on</strong>g>e number<br />

375


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> parameters to be estimated. It is usually infeasible to simply extend existing<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to such massively parallel data due to a combinatorial explosi<strong>on</strong> and a<br />

lack <str<strong>on</strong>g>of</str<strong>on</strong>g> reliable statistics if individual spike patterns are c<strong>on</strong>sidered. Due to limitati<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental data, in particular in respect to stati<strong>on</strong>arity,<br />

all parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e full system cannot be estimated. Thus new c<strong>on</strong>cepts need<br />

to be developed and I will give a short review <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods we developed <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> massively parallel (hundred or more) spike trains for correlated<br />

activities [3].<br />

Alternatively, <strong>on</strong>e may directly observe a measure <str<strong>on</strong>g>th</str<strong>on</strong>g>at reflects <str<strong>on</strong>g>th</str<strong>on</strong>g>e activity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>s, as does <str<strong>on</strong>g>th</str<strong>on</strong>g>e local field potential (LFP). It has been<br />

c<strong>on</strong>jectured <str<strong>on</strong>g>th</str<strong>on</strong>g>at LFP oscillati<strong>on</strong>s may represent an alternative network-averaged<br />

signature <str<strong>on</strong>g>of</str<strong>on</strong>g> assembly activati<strong>on</strong>s. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aim to test <str<strong>on</strong>g>th</str<strong>on</strong>g>is hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis we study<br />

and found <str<strong>on</strong>g>th</str<strong>on</strong>g>at in different species and brain areas spikes are locked to <str<strong>on</strong>g>th</str<strong>on</strong>g>e LFP and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e locking may even increase wi<str<strong>on</strong>g>th</str<strong>on</strong>g> learning. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we found <str<strong>on</strong>g>th</str<strong>on</strong>g>at excess<br />

spike synchr<strong>on</strong>y is much better locked to <str<strong>on</strong>g>th</str<strong>on</strong>g>e LFP <str<strong>on</strong>g>th</str<strong>on</strong>g>an chance synchr<strong>on</strong>ous events<br />

or individual spikes clearly indicating <str<strong>on</strong>g>th</str<strong>on</strong>g>at significant excess spike synchr<strong>on</strong>y reflects<br />

coordinated network activity <strong>on</strong> larger scales as expressed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e LFP [4].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong> I will give an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential obstacles in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

correlati<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> parallel neur<strong>on</strong>al data and possible routes to overcome <str<strong>on</strong>g>th</str<strong>on</strong>g>em.<br />

References.<br />

[1] Hebb. The organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> behavior. John Wiley, 1949<br />

[2] Grün (2009) Data-driven significance estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precise spike correlati<strong>on</strong>. J Neurophysiol,<br />

101, 1126-1140<br />

[3] Grün & Rotter (eds) Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> parallel spike trains. Springer, 2010<br />

[4] Denker, Roux, Lindén, Diesmann, Riehle, Grün (2011) Local field potentials reflects surplus<br />

spike synchr<strong>on</strong>y. Cerebral Cortex (in press)<br />

376


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell and Tissue Biophysics; Saturday, July 2, 11:00<br />

Z.J. Grzywna<br />

P. Borys<br />

M. Krasowska<br />

P. Pawełek<br />

Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Physics and Biophysics, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical<br />

Chemistry and Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymers, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Silesian<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Gliwice, Poland<br />

e-mail: Zbigniew.Grzywna@polsl.pl<br />

Role and activity <str<strong>on</strong>g>of</str<strong>on</strong>g> some chosen voltage-gated K+ and Na+<br />

channels ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> and analyses.<br />

I<strong>on</strong> channels play crucial role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical impulses,<br />

particularly in nerve and muscle cells. Channels are integral proteins immersed in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cells lipid bilayer, which itself has usually poor i<strong>on</strong>ic permeati<strong>on</strong>. Channels<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ird order structure creates a transmembrane pore a passage for i<strong>on</strong>s. As comes<br />

out from experiments, permeability <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>rough channels fluctuates in time, and<br />

is determine by varying structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e channel. Modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>ic flux is called<br />

gating, which may be driven by different stimuli like chemical species or variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

electric potential. It is interesting <str<strong>on</strong>g>th</str<strong>on</strong>g>at even if channel is subjected to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stant,<br />

positive transmembrane voltage <str<strong>on</strong>g>th</str<strong>on</strong>g>at should keep it open, its permeability decreases<br />

after short time channel inactivati<strong>on</strong>. It is <str<strong>on</strong>g>th</str<strong>on</strong>g>an clear <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e voltage gating is not<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly <strong>on</strong>e mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> gating present in i<strong>on</strong> channels. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we will discuss,<br />

so called ball and chain model <str<strong>on</strong>g>of</str<strong>on</strong>g> inactivati<strong>on</strong> addressed to potassium Shaker<br />

channel [1-3]. Polypeptide ball a part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e channels protein <str<strong>on</strong>g>th</str<strong>on</strong>g>at is resp<strong>on</strong>sible<br />

for inactivati<strong>on</strong>, is treaded as a Brownian particle te<str<strong>on</strong>g>th</str<strong>on</strong>g>ered <strong>on</strong> polypeptide chain.<br />

Its wandering was described by means <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> (parabolic and hyperbolic operators)<br />

[4,5]. First passage time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ball was calculated and compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

experimental data [2]. Sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e paper is devoted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e sodium channel<br />

activity in rat prostate cancer cells as well as human breast cancer cells. Fractal<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods were used to analyze quantitative differences in secretory membrane activities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two rat prostate cancer cell lines (Mat-LyLu and AT-2) <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g and weak<br />

metastatic potential, respectively [6]. Each cells endocytic activity was determined<br />

by horseradish peroxidase uptake. Digital images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> vesicular staining<br />

were evaluated by multifractal analyses: generalized fractal dimensi<strong>on</strong> (Dq)<br />

and its Legendre transform f(a), as well as partiti<strong>on</strong>ed iterated functi<strong>on</strong> system<br />

semifractal (PIFS-SF) analysis. These approaches revealed c<strong>on</strong>sistently <str<strong>on</strong>g>th</str<strong>on</strong>g>at, under<br />

c<strong>on</strong>trol c<strong>on</strong>diti<strong>on</strong>s, all multifractal parameters and PIFS-SF codes determined<br />

had values greater for Mat-LyLu compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> AT-2 cells. This would agree generally<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e endocytic/vesicular activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e str<strong>on</strong>gly metastatic Mat-LyLu<br />

cells being more developed <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding weakly metastatic AT-2 cells.<br />

All <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters studied were sensitive to tetrodotoxin (TTX) pre-treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cells, which blocked voltage-gated Na+ channels (VGSCs). Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters<br />

had a simple dependence <strong>on</strong> VGSC activity, whereby pre-treatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> TTX<br />

reduced <str<strong>on</strong>g>th</str<strong>on</strong>g>e values for <str<strong>on</strong>g>th</str<strong>on</strong>g>e MAT-LyLu cells and eliminated <str<strong>on</strong>g>th</str<strong>on</strong>g>e differences between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e two cell lines. For o<str<strong>on</strong>g>th</str<strong>on</strong>g>er parameters, however, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere was a complex dependence<br />

377


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<strong>on</strong> VGSC activity. The possible physical/physiological meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

parameters studied and <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> involvement <str<strong>on</strong>g>of</str<strong>on</strong>g> VGSC activity in c<strong>on</strong>trol<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> endocytosis/ secreti<strong>on</strong> are discussed. Basically, <str<strong>on</strong>g>th</str<strong>on</strong>g>e same sort <str<strong>on</strong>g>of</str<strong>on</strong>g> approach had<br />

been used to analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e endocytic membrane activities <str<strong>on</strong>g>of</str<strong>on</strong>g> two human breast cancer<br />

cell lines (MDA-MB-231 and MCF-7) <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g and weak metastatic potential,<br />

respectively, were studied in a comparative approach [7]. Uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> horseradish<br />

peroxidase was used to follow endocytosis. Dependence <strong>on</strong> i<strong>on</strong>ic c<strong>on</strong>diti<strong>on</strong>s and<br />

voltage-gated sodium channel (VGSC) activity were characterized. Fractal me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

were used to analyze quantitative differences in vesicular patterning. Digital<br />

quantificati<strong>on</strong> showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at MDA-MB-231 cells took up more tracer (i.e., were more<br />

endocytic) <str<strong>on</strong>g>th</str<strong>on</strong>g>an MCF-7 cells. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e former, uptake was totally dependent <strong>on</strong><br />

extracellular Na+ and partially dependent <strong>on</strong> extracellular and intracellular Ca2+<br />

and protein kinase activity. Analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e generalized fractal dimensi<strong>on</strong> (D(q )) and<br />

its Legendre transform f(alpha) revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at under c<strong>on</strong>trol c<strong>on</strong>diti<strong>on</strong>s, all multifractal<br />

parameters determined had values greater for MDA-MB-231 compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

MCF-7 cells, c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> endocytic/vesicular activity being more developed in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e str<strong>on</strong>gly metastatic cells. All fractal parameters studied were sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

VGSC blocker tetrodotoxin (TTX). Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters had a "simple" dependence<br />

<strong>on</strong> VGSC activity, if present, whereby pretreatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> TTX reduced <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

values for <str<strong>on</strong>g>th</str<strong>on</strong>g>e MDA-MB-231 cells and eliminated <str<strong>on</strong>g>th</str<strong>on</strong>g>e differences between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

cell lines. For o<str<strong>on</strong>g>th</str<strong>on</strong>g>er parameters, however, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere was a "complex" dependence <strong>on</strong><br />

VGSC activity. The possible physical/physiological meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

parameters studied and <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> involvement <str<strong>on</strong>g>of</str<strong>on</strong>g> VGSC activity in c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

endocytosis/secreti<strong>on</strong> are discussed.<br />

References.<br />

[1] K.Małysiak, P.Borys, Z.J.Grzywna, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e ball and chain model by simple and hyperbolic<br />

diffusi<strong>on</strong> - an analytical approach, Acta Physica Pol<strong>on</strong>ica B, 5, (2007)<br />

[2] K.Małysiak, Z.J.Grzywna, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ball and chain model <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> channel inactivati<strong>on</strong>, Cellular and Molecular Biology Letters, 13,<br />

535 - 552 (2008)<br />

[3] K. Małysiak, Z. J. Grzywna, Electrostatic interacti<strong>on</strong>s during Kv1.2 N-type inactivati<strong>on</strong>: random<br />

walk simulati<strong>on</strong>, <str<strong>on</strong>g>European</str<strong>on</strong>g> Biophysics Journal 38, 1003 (2009)<br />

[4] P. Borys, Z. J. Grzywna, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e recovery from inactivati<strong>on</strong> by <str<strong>on</strong>g>th</str<strong>on</strong>g>e chain in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ball and chain<br />

model, Cellular and Molecular Biology Letters, 13, 526-534 (2008)<br />

[5] A. Wawrzkiewicz, K.Pawelek, P.Borys, B. Dworakowska, Z.J. Grzywna, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e random walk<br />

model s<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e BK i<strong>on</strong> channel kinetics, Physical Biology -submitted<br />

[6] M. Krasowska, Z.J. Grzywna, M.E. Mycielska, M.B.A. Djamgoz, Patterning <str<strong>on</strong>g>of</str<strong>on</strong>g> endocytic vesicles<br />

and its c<strong>on</strong>trol by voltage - gated Na+ channel activity in rat prostate cancer cells: fractal<br />

analyses , Eur.Biophys. J., 33, 535, (2004)<br />

[7] M. Krasowska, Z. J. Grzywna, M. E. Mycielska, M. B. A. Djamgoz, Fractal analysis and i<strong>on</strong>ic<br />

dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> endocytic membrane activity <str<strong>on</strong>g>of</str<strong>on</strong>g> human breast cancer cells. <str<strong>on</strong>g>European</str<strong>on</strong>g> Biophysics<br />

Journal, 38, 1115 (2009)<br />

378


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling viral hepatitis dynamics in-vivo and in-vitro in <str<strong>on</strong>g>th</str<strong>on</strong>g>e era <str<strong>on</strong>g>of</str<strong>on</strong>g> direct<br />

anti-viral agents I; Tuesday, June 28, 17:00<br />

Jeremie Guedj<br />

Los Alamos Nati<strong>on</strong>al Laboratory<br />

e-mail: guedj@lanl.gov<br />

Harel Dahari<br />

Uni <str<strong>on</strong>g>of</str<strong>on</strong>g> Illinois at Chicago<br />

Alan Perels<strong>on</strong><br />

Los Alamos Nati<strong>on</strong>al Laboratory, NM, USA<br />

Determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e early hepatitis C viral decline after<br />

treatment initiati<strong>on</strong><br />

The standard model <str<strong>on</strong>g>of</str<strong>on</strong>g> HCV infecti<strong>on</strong> and treatment (Neumann et al., 1998, Science<br />

282(5386):103-107) has played an important role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> HCV RNA<br />

decay after <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interfer<strong>on</strong> (IFN)-based <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is model and<br />

assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at IFN rapidly reduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e average rate <str<strong>on</strong>g>of</str<strong>on</strong>g> viri<strong>on</strong> producti<strong>on</strong>, it has been<br />

possible to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e antiviral effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, as well as to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> HCV clearance rate. However it will be shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is model cannot predict<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e early viral decline observed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some new direct-acting antiviral (DAA) agents<br />

if <strong>on</strong>e uses <str<strong>on</strong>g>th</str<strong>on</strong>g>e HCV clearance rate estimated during IFN-based <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, which hints<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> HCV decline under treatment may not be fully understood.<br />

Indeed <strong>on</strong>e limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard model is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular viral replicati<strong>on</strong>,<br />

which is directly targeted by DAA agents, is not taken into account. In<br />

order to provide a more comprehensive understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

early viral decline after treatment initiati<strong>on</strong>, a new multi-scale model <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>siders<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> intra- and extra-cellular level <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> will be introduced. Simulati<strong>on</strong><br />

studies will show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> HCV RNA<br />

decay allows to <strong>on</strong>e to dissect <str<strong>on</strong>g>th</str<strong>on</strong>g>e antiviral effectiveness in blocking different stages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> viral replicati<strong>on</strong>. Based <strong>on</strong> data from several clinical trials, HCV kinetics under<br />

different classes <str<strong>on</strong>g>of</str<strong>on</strong>g> DAAs will be compared and <str<strong>on</strong>g>th</str<strong>on</strong>g>e implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is new<br />

approach for <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e HCV clearance rate will be discussed.<br />

379


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor invasi<strong>on</strong> I; Tuesday, June 28, 11:00<br />

Caterina Guiot<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Torino, Italia<br />

e-mail: caterina.guiot@unito.it<br />

Ant<strong>on</strong>io S. Gliozzi<br />

Politecnico di Torino, Italia<br />

Pier Paolo Delsanto<br />

Politecnico di Torino, Italia<br />

Lumped models for tumor progressi<strong>on</strong><br />

(Primary)tumors have been described mainly as localized entities which grow by<br />

mitotic duplicati<strong>on</strong> (wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a given intrinsic maximal grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate) in restricted c<strong>on</strong>diti<strong>on</strong>s.<br />

Such restricti<strong>on</strong>s will slow tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate until a proper value <str<strong>on</strong>g>of</str<strong>on</strong>g> carrying<br />

capacity is reached.<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most popular scenarios, reflecting tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in specific phases<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> development ( avascular phase, ’multipassage’syngenic transplant in mice, development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e necrotic core, angiogenesis, invasive phase,..)can be satisfactorily<br />

described by means <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Phenomenological Universality (PUN) me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, which<br />

assumes <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor volume V depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate c(t), whose effective<br />

time derivative can be approximated by a series expansi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e variable c(t) itself:<br />

dV/dt = c(t) V; dc/dt = -alpha c - beta c2 +...<br />

Retaining <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stant term we get <str<strong>on</strong>g>th</str<strong>on</strong>g>e unlimited grow<str<strong>on</strong>g>th</str<strong>on</strong>g> U(0), while by<br />

c<strong>on</strong>sidering <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear term <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gompertz law U(1) is obtained, accounting for a<br />

time-varying grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate and a c<strong>on</strong>stant carrying capacity.U(2), which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e following<br />

term, corresp<strong>on</strong>ds to <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called West law, whose main characteristics is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> accounting for tumor vascularizati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough an ’optimal’ fractal network.<br />

As a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> fact, U(2) entails a variati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall tumor carrying capacity,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at in a more general sense becomes not <strong>on</strong>ly dependent from <str<strong>on</strong>g>th</str<strong>on</strong>g>e limiting volume<br />

for tumor development, but <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, including<br />

nutrients availability, switch to different metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways, horm<strong>on</strong>al influences<br />

and so <strong>on</strong>.<br />

Provided <str<strong>on</strong>g>th</str<strong>on</strong>g>e two main parameters, i.e. grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate and carrying capacity, are<br />

modulated in time to properly account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e internal metabolism and <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor and its envir<strong>on</strong>ment respectively, a full descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

’natural history’ <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor can finally be obtained. Comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> available<br />

data and clinical descripti<strong>on</strong> ( e.g. for <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> prostate cancer) will help in finely<br />

modulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e model parameters. Even more interestingly, such a general model is<br />

suitable for ’<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical’ validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic efficiency. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

t(t), whose functi<strong>on</strong>al form can be expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor radiosensitivity,<br />

drug resistance, etc., can be incorporated into Eqn. 1 by substituting c(t) wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e difference c(t) - t(t). Spatially inhomogeneous tumor patterns can be included<br />

provided different ’cl<strong>on</strong>es’ <str<strong>on</strong>g>of</str<strong>on</strong>g> cells are accounted for.<br />

In c<strong>on</strong>clusi<strong>on</strong>, by retaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor biological complexity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressively<br />

changing values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate and carrying capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor-host system,<br />

a easy-to-handle lumped-model can be worked out, which can prove useful to fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

stimulate and improve cooperati<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>eoreticians and clinicians.<br />

380


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemiology, Eco-Epidemiology and Evoluti<strong>on</strong>; Saturday, July 2, 11:00<br />

Caterina Guiot1 , Ilaria Stura2 , Ezio Venturino2 , Lorenzo Priano1,3 , Alessandro<br />

Mauro1,3 1Dipartimento di Neuroscienze<br />

Università di Torino, Italy.<br />

2Dipartimento di Matematica “Giuseppe Peano”,<br />

Università di Torino, Italy.<br />

Email: ezio.venturino@unito.it<br />

1Dipartimento di Neurologia e Neuroriabilitazi<strong>on</strong>e,<br />

IRCCS Ist. Auxologico Italiano, Piancavallo (VB), Italy.<br />

Multi-scale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> human sleep<br />

Sleep is a complex dynamic process, regulated bo<str<strong>on</strong>g>th</str<strong>on</strong>g> by “l<strong>on</strong>g time” circadian<br />

and homeostatic rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms and <str<strong>on</strong>g>th</str<strong>on</strong>g>e alternance between Rapid Eyes Movement (REM)<br />

and n<strong>on</strong> REM (NREM) sleep and by <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> peculiar “short-time” transient<br />

Electro Encephalo Graphics (EEG) events, namely Transient Synchr<strong>on</strong>ized<br />

EEG Patterns (TSEP), which are <str<strong>on</strong>g>th</str<strong>on</strong>g>ought to be expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>ous cortical<br />

neur<strong>on</strong> discharges and are supposed to play <str<strong>on</strong>g>th</str<strong>on</strong>g>e main role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e building-up <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NREM sleep and flexible adaptati<strong>on</strong> against perturbati<strong>on</strong>s. Our study aims at collecting,<br />

analyzing and modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e time series <str<strong>on</strong>g>of</str<strong>on</strong>g> TSEP related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e achievement,<br />

maintenance and interrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NREM sleep, in physiological c<strong>on</strong>diti<strong>on</strong>s.<br />

381


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Semigroups <str<strong>on</strong>g>of</str<strong>on</strong>g> Operators in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology I; Wednesday, June 29, 08:30<br />

Piotr Gwiazda<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw,<br />

Banacha 2, 02-097 Warszawa<br />

e-mail: pgwiazda@mimuw.edu.pl<br />

Split-up algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m in <str<strong>on</strong>g>th</str<strong>on</strong>g>e metric space for <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

structured populati<strong>on</strong> dynamics<br />

The talk is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint research wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Jose Carillo, Rinaldo Colombo,<br />

Anna Marciniak-Czochra and Agnieszka Ulikowska. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e example <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structured<br />

populati<strong>on</strong> equati<strong>on</strong>s we mean <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> so-called age-structured model<br />

(transport equati<strong>on</strong> in a half space wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>-local boundary c<strong>on</strong>diti<strong>on</strong>s) or size<br />

structured model (transport equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an integral term in space <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e right<br />

hand side), see for more details B. Per<str<strong>on</strong>g>th</str<strong>on</strong>g>ame "Transport equati<strong>on</strong>s in ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

biology" 2007. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological reas<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a need for using initial data in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e space <str<strong>on</strong>g>of</str<strong>on</strong>g> Rad<strong>on</strong> measures. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e Lipschitz-bounded distance (flat metric)<br />

we prove Lipschitz dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>s to linear and n<strong>on</strong>linear system w.r.t.<br />

initial data and coefficients <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s. Significant simplificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e calculati<strong>on</strong>s<br />

is d<strong>on</strong>e by using <str<strong>on</strong>g>th</str<strong>on</strong>g>e split-up algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m, dealing separately wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a semigroup<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transport and a semigroup <str<strong>on</strong>g>of</str<strong>on</strong>g> an integral kernel operator.<br />

382


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>negative Rad<strong>on</strong> measure spaces wi<str<strong>on</strong>g>th</str<strong>on</strong>g> metric structure<br />

to populati<strong>on</strong> dynamic models; Wednesday, June 29, 17:00<br />

Piotr Gwiazda<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw,<br />

Banacha 2, 02-097 Warszawa<br />

e-mail: pgwiazda@mimuw.edu.pl<br />

Mertics <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e space <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e measures and transport equati<strong>on</strong><br />

The talk will be a short introducti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e issue <str<strong>on</strong>g>of</str<strong>on</strong>g> abstract me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> Wasserstein<br />

and related metrics in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eir applicati<strong>on</strong>s to soluti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

space <str<strong>on</strong>g>of</str<strong>on</strong>g> Rad<strong>on</strong> measures for linear and n<strong>on</strong>linear PDEs. However <str<strong>on</strong>g>th</str<strong>on</strong>g>e topic was<br />

studied in many aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> PDEs coming from ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical physics, but in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biology it is not very well understood. As an introductory<br />

talk to <str<strong>on</strong>g>th</str<strong>on</strong>g>e mini-symposium we will give some survey <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important facts,<br />

to give some general feeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e topic.<br />

383


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Game <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical modelling and optimizati<strong>on</strong> in evoluti<strong>on</strong> and ecology II;<br />

Tuesday, June 28, 14:30<br />

Christ<str<strong>on</strong>g>of</str<strong>on</strong>g>oros Hadjichrysan<str<strong>on</strong>g>th</str<strong>on</strong>g>ou<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Science, City University, L<strong>on</strong>d<strong>on</strong> EC1V 0HB,<br />

UK<br />

e-mail: Christ<str<strong>on</strong>g>of</str<strong>on</strong>g>oros.Hadjichrysan<str<strong>on</strong>g>th</str<strong>on</strong>g>ou.1@city.ac.uk<br />

Mark Broom<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Science, City University, L<strong>on</strong>d<strong>on</strong> EC1V 0HB,<br />

UK<br />

e-mail: Mark.Broom.1@city.ac.uk<br />

Jan Rychtar<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nor<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Carolina at Greensboro, Greensboro NC27402, USA<br />

e-mail: rychtar@uncg.edu<br />

Evoluti<strong>on</strong>ary games <strong>on</strong> graphs<br />

Evoluti<strong>on</strong>ary game dynamics models have been mainly studied <strong>on</strong> homogeneous<br />

infinite populati<strong>on</strong>s. However, real populati<strong>on</strong>s are nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er homogeneously mixed<br />

nor infinite. This study investigates <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic evoluti<strong>on</strong>ary game dynamics in<br />

structured populati<strong>on</strong>s as represented by graphs. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we c<strong>on</strong>sider analytically<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e fixati<strong>on</strong> probability and <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary process (absorpti<strong>on</strong><br />

time) when a single mutant individual invades into <str<strong>on</strong>g>th</str<strong>on</strong>g>ree simple graphs <str<strong>on</strong>g>of</str<strong>on</strong>g> finite<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices: <str<strong>on</strong>g>th</str<strong>on</strong>g>e star, <str<strong>on</strong>g>th</str<strong>on</strong>g>e circle and <str<strong>on</strong>g>th</str<strong>on</strong>g>e complete graph. Applying <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

obtained results, it is <str<strong>on</strong>g>th</str<strong>on</strong>g>en shown <str<strong>on</strong>g>th</str<strong>on</strong>g>e significant impact <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

populati<strong>on</strong> might have <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary process. As a specific example, we c<strong>on</strong>sider<br />

a Hawk-Dove type game. Finally, it is dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e update<br />

rule (evoluti<strong>on</strong>ary dynamics) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary process does not significantly affect<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invader mutants in homogeneous populati<strong>on</strong>s, it might<br />

cause significant changes in populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a n<strong>on</strong>-homogeneous structure.<br />

References.<br />

[1] Broom, M., Hadjichrysan<str<strong>on</strong>g>th</str<strong>on</strong>g>ou, C., Rychtar, J. (2010), Evoluti<strong>on</strong>ary games <strong>on</strong> graphs and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary process Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Royal Society A 466 1327–1346.<br />

[2] Broom, M., Hadjichrysan<str<strong>on</strong>g>th</str<strong>on</strong>g>ou, C., Rychtar, J. (2011), Evoluti<strong>on</strong>ary games <strong>on</strong> star graphs<br />

under various updating rules Dynamic Games and Applicati<strong>on</strong>s (submitted).<br />

384


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stem cells and cancer; Wednesday, June 29, 14:30<br />

Hiroshi Haeno<br />

Dana-Farber Cancer Institute/ Harvard School <str<strong>on</strong>g>of</str<strong>on</strong>g> Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

e-mail: hiroshi@jimmy.harvard.edu<br />

Ross L. Levine<br />

Memorial Sloan-Kettering Cancer Center<br />

D. Gary Gilliland<br />

Merck Research Laboratories<br />

Franziska Michor<br />

Dana-Farber Cancer Institute/ Harvard School <str<strong>on</strong>g>of</str<strong>on</strong>g> Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

A progenitor cell origin <str<strong>on</strong>g>of</str<strong>on</strong>g> myeloid malignancies<br />

All cancers rely <strong>on</strong> cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at have properties <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term self-renewal or stemness<br />

to maintain and propagate <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor, but <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell <str<strong>on</strong>g>of</str<strong>on</strong>g> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> most cancers<br />

is still unknown. Here, we design a stochastic ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> hematopoietic<br />

stem and progenitor cells to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer initiati<strong>on</strong>.<br />

We c<strong>on</strong>sider different evoluti<strong>on</strong>ary pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways leading to cancer-initiating cells<br />

in JAK2V617F-positive myeloproliferative neoplasms (MPN): (i) <str<strong>on</strong>g>th</str<strong>on</strong>g>e JAK2V617F<br />

mutati<strong>on</strong> may arise in a stem cell; (ii) a progenitor cell may first acquire a mutati<strong>on</strong><br />

c<strong>on</strong>ferring self-renewal, followed by acquisiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e JAK2V617F mutati<strong>on</strong>;<br />

(iii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e JAK2V617F mutati<strong>on</strong> may first emerge in a progenitor cell, followed by<br />

a mutati<strong>on</strong> c<strong>on</strong>ferring self-renewal; and (iv) a mutati<strong>on</strong> c<strong>on</strong>ferring self-renewal to<br />

progenitors may arise in <str<strong>on</strong>g>th</str<strong>on</strong>g>e stem cell populati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out causing a change in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

stem cell’s phenotype, followed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e JAK2V617F mutati<strong>on</strong> emerging in a progenitor<br />

cell. We find ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical evidence <str<strong>on</strong>g>th</str<strong>on</strong>g>at a progenitor is <str<strong>on</strong>g>th</str<strong>on</strong>g>e most likely cell <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

origin <str<strong>on</strong>g>of</str<strong>on</strong>g> JAK2V617F-mutant MPN. These results may also have relevance to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

tumor types arising in tissues <str<strong>on</strong>g>th</str<strong>on</strong>g>at are organized as a differentiati<strong>on</strong> hierarchy.<br />

385


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Saliha Hamdous<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tizi-Ouzou, Algeria<br />

e-mail: hamdoussaliha2002@yahoo.fr<br />

Hisao Fujita Yashima<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turin, Italy<br />

e-mail: hisao.fujitayashima@unito.it<br />

Luigi Manca<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Marne la Vally, France<br />

e-mail: Luigi.Manca@univ-mlv.fr<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 08:30<br />

Invariant Measure for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Stochastic Models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Populati<strong>on</strong> Dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Spatial Diffusi<strong>on</strong><br />

We c<strong>on</strong>sider a stochastic equati<strong>on</strong>s system modeling populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong><br />

and prey-predator type wi<str<strong>on</strong>g>th</str<strong>on</strong>g> diffusi<strong>on</strong> in a territorial domain. We prove<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> an invariant measure for <str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e prey-predator<br />

stochastic models. To dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results, we apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e Krylov-Bogoliubov’s<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eorem, who requires an estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic equati<strong>on</strong>s<br />

system.<br />

To obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e appropriate estimates we apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e Itô’s formula in infinite dimensi<strong>on</strong><br />

space to an adequate functi<strong>on</strong>.<br />

References.<br />

[1] S. Hamdous, H. Fujita Yashima: Mesure invariante pour le système d’équati<strong>on</strong>s stochastiques<br />

du modèle de compétiti<strong>on</strong> avec diffusi<strong>on</strong> spatiale. Rend. Sem. Mat. Padova, vol 122 (2009)<br />

p.p. 85-98.<br />

[2] S. Hamdous, L. Manca, H. Fujita Yashima: Mesure invariante pour le système d’équati<strong>on</strong>s<br />

stochastiques du modèle de proie-prédateur avec diffusi<strong>on</strong> spatiale. Rend. Sem. Mat. Padova,<br />

vol 124 (2010) p.p. 57-75.<br />

[3] R. Rudnicki: L<strong>on</strong>g-time behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> a stochastic prey-predator model. Stoch. Proc. Appl.,<br />

vol. 108 (2003), pp. 93-107.<br />

[4] E. Tornatore: Stochastic equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> dynamic wi<str<strong>on</strong>g>th</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> a domain. Rend.<br />

Circ. Mat. Palermo, Serie II, Tomo 52 (2003), pp. 15-29.<br />

386


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fluid-structure interacti<strong>on</strong> problems in biomechanics; Saturday, July 2, 08:30<br />

Christina Hamlet<br />

e-mail: chamlet@email.unc.edu<br />

Laura A. Miller<br />

e-mail: lam9@email.unc.edu<br />

Austin Baird<br />

e-mail: abaird@email.unc.edu<br />

Terry Rodriguez<br />

e-mail: tjrodrig@email.unc.edu<br />

Excitable tissues in fluids<br />

A wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> numerical, analytical, and experimental work in recent years has<br />

focused <strong>on</strong> understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> between fluids and elastic structures in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular flows, animal swimming and flying, cellular flows, and<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er biological problems. While great progress has been made in understanding<br />

such systems, less is known about how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese excitable tissues modulate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir mechanical<br />

properties in resp<strong>on</strong>se to fluid forces and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er envir<strong>on</strong>mental cues. The<br />

broad goal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to develop a framework to integrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

acti<strong>on</strong> potentials wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> muscles, to <str<strong>on</strong>g>th</str<strong>on</strong>g>e movement <str<strong>on</strong>g>of</str<strong>on</strong>g> organs and<br />

organisms, to <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid, and back to <str<strong>on</strong>g>th</str<strong>on</strong>g>e nervous system <str<strong>on</strong>g>th</str<strong>on</strong>g>rough envir<strong>on</strong>mental<br />

cues. Such coupled models can <str<strong>on</strong>g>th</str<strong>on</strong>g>en be used to understand how small<br />

changes in tissue physics can result in large changes in performance at <str<strong>on</strong>g>th</str<strong>on</strong>g>e organ<br />

and organism level. Two examples will be discussed in <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong>. The first<br />

example c<strong>on</strong>siders how active c<strong>on</strong>tracti<strong>on</strong>s generated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac c<strong>on</strong>ducti<strong>on</strong> system<br />

can enhance flows in tubular hearts, particularly at low Reynolds numbers. The<br />

sec<strong>on</strong>d example c<strong>on</strong>siders how <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s between pacemakers in <str<strong>on</strong>g>th</str<strong>on</strong>g>e upside<br />

down jellyfish can alter feeding currents generated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e bell pulsati<strong>on</strong>s. In bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

cases, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ultimate goal is to simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e electropotentials in <str<strong>on</strong>g>th</str<strong>on</strong>g>e nervous system<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at trigger mechanical changes in 1D fibers representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e muscular bands. The<br />

muscular c<strong>on</strong>tracti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>en apply forces to <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundaries <str<strong>on</strong>g>th</str<strong>on</strong>g>at interacts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fluid modeled by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Navier-Stokes equati<strong>on</strong>s. The computati<strong>on</strong>al framework used<br />

to solve <str<strong>on</strong>g>th</str<strong>on</strong>g>ese problems is <str<strong>on</strong>g>th</str<strong>on</strong>g>e immersed boundary me<str<strong>on</strong>g>th</str<strong>on</strong>g>od originally developed by<br />

Charles Peskin.<br />

387


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 14:30<br />

Samuel Handelman<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, The Ohio State University, Columbus<br />

OH<br />

e-mail: shandelman@mbi.osu.edu<br />

J. S. Verducci<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, The Ohio State University, Columbus OH<br />

J. J. Kwiek<br />

The Center for Microbial Interface Biology, Ohio State University<br />

College <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Columbus OH<br />

S. B. Kumar<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Biosciences, The Ohio State University,<br />

Columbus OH<br />

D. A. Janies<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomedical Informatics, Ohio State University College<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Columbus OH<br />

GENPHEN: Genotype/Phenotype Associati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Reference to Phylogeny<br />

When genome sequences are obtained from organisms wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different associated phenotypes,<br />

it should be possible to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>ose sequence properties which c<strong>on</strong>fer a<br />

given phenotype. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary relati<strong>on</strong>ships between organisms lead<br />

to n<strong>on</strong>-independence between <str<strong>on</strong>g>th</str<strong>on</strong>g>e sequence properties. For example, <str<strong>on</strong>g>th</str<strong>on</strong>g>e HIV-1<br />

virus has a populati<strong>on</strong> structure reflecting bo<str<strong>on</strong>g>th</str<strong>on</strong>g> transmissi<strong>on</strong> between individuals<br />

and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e HIV-1 quasispecies wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in each patient. This n<strong>on</strong>-independence<br />

can introduce interdependence between unrelated mutati<strong>on</strong>s giving a false appearance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> causati<strong>on</strong>. These evoluti<strong>on</strong>ary relati<strong>on</strong>ships are an issue even in HIV-1<br />

where recombinati<strong>on</strong> is rapid, and are pervasive in humans, where linkage disequilibrium<br />

is extensive. In human disease studies, <str<strong>on</strong>g>th</str<strong>on</strong>g>is can sometimes be overcome by<br />

comparing siblings: alleles comm<strong>on</strong> <strong>on</strong>ly in sick siblings are likely true causative alleles.<br />

GENPHEN identifies, in a phylogenetic rec<strong>on</strong>structi<strong>on</strong>, sibling lineages where<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotype varies. Then, GENPHEN uses modified proporti<strong>on</strong>al hazard models<br />

to identify causal polymorphisms. GENPHENs advantages include: speed practical<br />

for high-<str<strong>on</strong>g>th</str<strong>on</strong>g>roughput sequence data, estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> relative streng<str<strong>on</strong>g>th</str<strong>on</strong>g> or speed <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

effects, and improved precisi<strong>on</strong> even vs. o<str<strong>on</strong>g>th</str<strong>on</strong>g>er tree-based me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: 50%-300%<br />

improvement in precisi<strong>on</strong> at same recall, ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er to predict experimental correlati<strong>on</strong>s<br />

(obtained from STRING: http://string-db.org/) or in simulati<strong>on</strong>s under biologically<br />

reas<strong>on</strong>able parameters <strong>on</strong> HIV quasispecies sequence trees.<br />

388


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

IV; Wednesday, June 29, 08:30<br />

Le<strong>on</strong>id Hanin<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Idaho State University, USA<br />

e-mail: hanin@isu.edu<br />

The End <str<strong>on</strong>g>of</str<strong>on</strong>g> Linear-Quadratic Era in Radiati<strong>on</strong> Biology<br />

We review ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and biological grounds for <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear-quadratic (LQ) model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> irradiated cell survival. The LQ model was a tool <str<strong>on</strong>g>of</str<strong>on</strong>g> choice in quantitative<br />

radiati<strong>on</strong> biology for more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 60 years. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e premises <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

LQ model are unrealistic, especially for intermediate and high doses <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong>.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we develop a more realistic cell survival model based <strong>on</strong> rigorous<br />

accounting for microdosimetric effects [1]. The new model is applicable to low,<br />

intermediate, and high acute doses <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong>, and unlike <str<strong>on</strong>g>th</str<strong>on</strong>g>e LQ model, it does<br />

not assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> primary lesi<strong>on</strong>s is Poiss<strong>on</strong>. For<br />

small doses, <str<strong>on</strong>g>th</str<strong>on</strong>g>e new model can be approximated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e LQ model. However, for<br />

high doses, <str<strong>on</strong>g>th</str<strong>on</strong>g>e best fitting LQ model grossly underestimates cell survival. The<br />

same is also true for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>venti<strong>on</strong>al LQ model, <strong>on</strong>ly more so. It is shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at for<br />

high doses, <str<strong>on</strong>g>th</str<strong>on</strong>g>e microdosimetric distributi<strong>on</strong> can be approximated by a Gaussian<br />

distributi<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding cell survival probabilities are compared.<br />

This is a joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Dr. Marco Zaider from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Memorial Sloan-Kettering<br />

Cancer Center, New York.<br />

References.<br />

[1] L.G. Hanin and M. Zaider (2010), Cell-survival probability at large doses: an alternative to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e linear-quadratic model, Physics in Medicine and Biology, v. 55, pp. 4687-4702.<br />

389


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Hea<str<strong>on</strong>g>th</str<strong>on</strong>g>er Hardway<br />

Bost<strong>on</strong> University<br />

e-mail: hhardway@bu.edu<br />

Tasso Kaper<br />

Bost<strong>on</strong> University<br />

Cyn<str<strong>on</strong>g>th</str<strong>on</strong>g>ia Bradham<br />

Bost<strong>on</strong> University<br />

Developmental Biology; Wednesday, June 29, 17:00<br />

Dorsal-ventral patterning in sea urchin and Drosophila<br />

embryos<br />

The dorsal-ventral axis in Drosophila is specified by gradients <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e morphogenetic<br />

proteins (BMPs). While initially secreted in a broad regi<strong>on</strong>, later c<strong>on</strong>centrate<br />

into a narrow band, designating <str<strong>on</strong>g>th</str<strong>on</strong>g>e dorsal-most 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo. Modeling<br />

papers have focused <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics seen in Drosophila, but <str<strong>on</strong>g>th</str<strong>on</strong>g>e same mechanism<br />

specifies <str<strong>on</strong>g>th</str<strong>on</strong>g>e sea urchin axis. Yet in urchins, <str<strong>on</strong>g>th</str<strong>on</strong>g>e BMP secreti<strong>on</strong> and expressi<strong>on</strong><br />

domains are complementary. Reacti<strong>on</strong>-diffusi<strong>on</strong> models are c<strong>on</strong>sidered for <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterning<br />

seen in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> organisms, but are limited in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir capabilities to reproduce<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e sharp curvature seen in <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological data. While positive feedback is likely<br />

resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er c<strong>on</strong>centrating <str<strong>on</strong>g>th</str<strong>on</strong>g>e BMP gradient, we c<strong>on</strong>sider alternative<br />

types <str<strong>on</strong>g>th</str<strong>on</strong>g>at could account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterning seen in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> organisms.<br />

390


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Signals I; Saturday, July 2, 08:30<br />

Modeling mass spectrometry proteomics data using<br />

n<strong>on</strong>parametric regressi<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

Jaroslaw Harezlak<br />

Indiana University School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biostatistics,<br />

410 W 10<str<strong>on</strong>g>th</str<strong>on</strong>g> St., Suite 3000, Indianapolis, IN 46202, USA<br />

e-mail: harezlak@iupui.edu<br />

The amount and complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data collected from <str<strong>on</strong>g>th</str<strong>on</strong>g>e mass spectrometry<br />

instruments has outpaced <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>odological developments in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir processing.<br />

We propose a number <str<strong>on</strong>g>of</str<strong>on</strong>g> approaches to address <str<strong>on</strong>g>th</str<strong>on</strong>g>e issues arising in modeling such<br />

data. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods used include local polynomial kernel regressi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> adaptive<br />

bandwid<str<strong>on</strong>g>th</str<strong>on</strong>g> selecti<strong>on</strong> and wavelet me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. We address <str<strong>on</strong>g>th</str<strong>on</strong>g>e issues <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-stati<strong>on</strong>arity<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance process and correlated errors. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

preliminary simulati<strong>on</strong> studies and apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to a lung cancer SELDI-TOF<br />

MS data set.<br />

391


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> and cortical actin at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular level;<br />

Saturday, July 2, 08:30<br />

Andrew Harris<br />

L<strong>on</strong>d<strong>on</strong> Centre for Nanotechnology<br />

e-mail: uccaarh@ucl.ac.uk<br />

Measuring <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> cell m<strong>on</strong>olayers<br />

Cell m<strong>on</strong>olayers are c<strong>on</strong>tinuously exposed to mechanical stresses in development<br />

and normal physiological functi<strong>on</strong>. Mutati<strong>on</strong>s in cytoskeletal and cell-cell adhesi<strong>on</strong><br />

proteins lead to patient symptoms associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> increased tissue fragility, however<br />

a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for characterizing m<strong>on</strong>olayer mechanics is lacking. We have developed<br />

a novel system for tensile testing <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>olayers which are suspended between two<br />

test rods. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rods is rigid acting as a reference whilst <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er is flexible<br />

to allow for force measurement. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> stress-strain curves during m<strong>on</strong>olayer<br />

extensi<strong>on</strong> enables <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a m<strong>on</strong>olayer in plane elastic modulus. The<br />

c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different cytoskeletal filaments to m<strong>on</strong>olayer elasticity is ascertained<br />

by treatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> inhibitors. By depolymerising <str<strong>on</strong>g>th</str<strong>on</strong>g>e actin cytoskelet<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Latrunculin<br />

B a substantial decrease in <str<strong>on</strong>g>th</str<strong>on</strong>g>e elastic modulus can be observed.<br />

392


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Eleanor Harris<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, UK<br />

e-mail: E.M.Harris<strong>on</strong>@ba<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Ben Adams<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ba<str<strong>on</strong>g>th</str<strong>on</strong>g>, UK<br />

e-mail: B.Adams@ba<str<strong>on</strong>g>th</str<strong>on</strong>g>.ac.uk<br />

Epidemics; Tuesday, June 28, 11:00<br />

Epidemic Models for Leishmaniasis: Elucidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Key<br />

Processes and Parameters<br />

Leishmaniasis is a vector-borne Neglected Tropical Disease. It is caused by Leishmania<br />

protozoa transmitted between humans by infected female sandflies. Previously<br />

associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impoverished in Africa, Leishmaniasis is now c<strong>on</strong>sidered to be<br />

an emerging disease as it spreads across a range <str<strong>on</strong>g>of</str<strong>on</strong>g> locati<strong>on</strong>s from Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> America to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Mediterranean Basin. We present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Leishmaniasis. We use a range <str<strong>on</strong>g>of</str<strong>on</strong>g> techniques including elasticity analysis to make<br />

a comprehensive assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> various processes and parameters<br />

in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e igniti<strong>on</strong> and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e vector<br />

populati<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e critical link when determining whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er an infecti<strong>on</strong> can become<br />

established in a naive populati<strong>on</strong>, but <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e host populati<strong>on</strong> is key in <str<strong>on</strong>g>th</str<strong>on</strong>g>e perpetuati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> endemic infecti<strong>on</strong>. We c<strong>on</strong>clude by discussing <str<strong>on</strong>g>th</str<strong>on</strong>g>e implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

analysis for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Leishmaniasis in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e world.<br />

393


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Saturday, July 2, 08:30<br />

S.Naser Hashemi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer<br />

Science, Amirkabir University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,Tehran, Iran<br />

e-mail: nhashemi@aut.ac.ir<br />

Fazeleh S.M.Salehi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer<br />

Science, Amirkabir University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,Tehran, Iran<br />

"Modeling C<strong>on</strong>trol Strategies for Influenza Epidemic wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Emergence and Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Drug Resistance"<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important problems in preventing influenza outbreak is <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> drug resistance during disease infecti<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we model an influenza<br />

epidemic c<strong>on</strong>sidering emergence and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drug resistance. Since antiviral<br />

treatment is not effective <strong>on</strong> resistant infecteds, we implement <str<strong>on</strong>g>th</str<strong>on</strong>g>e quarantine c<strong>on</strong>trol<br />

strategy to mitigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e final size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic. In additi<strong>on</strong>, prophylaxis and<br />

treatment strategies are c<strong>on</strong>sidered in our model. A system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential<br />

equati<strong>on</strong> is formulated for a SIQR influenza epidemic model. The influences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese <str<strong>on</strong>g>th</str<strong>on</strong>g>ree main c<strong>on</strong>trol strategies are investigated <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e final size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic.<br />

Numerical simulati<strong>on</strong>s show <str<strong>on</strong>g>th</str<strong>on</strong>g>at implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal quarantine and treatment<br />

toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er leads to outbreak c<strong>on</strong>tainment. The basic reproducti<strong>on</strong> numbers and<br />

c<strong>on</strong>trol reproducti<strong>on</strong> numbers are calculated for sensitive and resistant strains.<br />

394


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Crowd Dynamics: Modeling, Analysis and Simulati<strong>on</strong> (Part 1); Wednesday,<br />

June 29, 11:00<br />

Jan Haskovec<br />

RICAM, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: jan.haskovec@oeaw.ac.at<br />

Massimo Fornasier<br />

RICAM, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

Jan Vybiral<br />

RICAM, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

Particle systems and kinetic equati<strong>on</strong>s modelling interacting<br />

agents in high dimensi<strong>on</strong><br />

We explore how c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> high-dimensi<strong>on</strong>al data compressi<strong>on</strong> via random projecti<strong>on</strong>s<br />

<strong>on</strong>to lower-dimensi<strong>on</strong>al spaces can be applied for tractable simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

certain dynamical systems modeling complex interacti<strong>on</strong>s. In such systems, <strong>on</strong>e<br />

has to deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> agents (typically milli<strong>on</strong>s) in spaces <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

describing each agent <str<strong>on</strong>g>of</str<strong>on</strong>g> high-dimensi<strong>on</strong> (<str<strong>on</strong>g>th</str<strong>on</strong>g>ousands or more). Even wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

todays powerful computers, numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> such systems are prohibitively<br />

expensive. We propose an approach for <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical systems governed<br />

by functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacency matrices in high-dimensi<strong>on</strong>, by random projecti<strong>on</strong>s<br />

via Johns<strong>on</strong>-Lindenstrauss embeddings, and recovery by compressed sensing techniques.<br />

395


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Moving Organisms: From Individuals to Populati<strong>on</strong>s; Wednesday, June 29, 17:00<br />

Jan Haskovec<br />

RICAM, Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: jan.haskovec@oeaw.ac.at<br />

Radek Erban<br />

OCCAM, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

From individual to collective behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled velocity<br />

jump processes: a locust example<br />

A class <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic individual-based models, written in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled velocity<br />

jump processes, is presented and analysed. This modelling approach incorporates<br />

recent experimental findings <strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> locusts. It exhibits n<strong>on</strong>trivial dynamics<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a phase change behaviour and recovers <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed group directi<strong>on</strong>al<br />

switching. Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected switching times, in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals<br />

and values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model coefficients, are obtained using <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding<br />

Fokker-Planck equati<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit <str<strong>on</strong>g>of</str<strong>on</strong>g> large populati<strong>on</strong>s, a system <str<strong>on</strong>g>of</str<strong>on</strong>g> two kinetic<br />

equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>local and n<strong>on</strong>linear right hand side is derived and analyzed. The<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> its soluti<strong>on</strong>s is proven and <str<strong>on</strong>g>th</str<strong>on</strong>g>e systems l<strong>on</strong>g-time behaviour is investigated.<br />

Finally, a first step towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean field limit <str<strong>on</strong>g>of</str<strong>on</strong>g> topological interacti<strong>on</strong>s<br />

is made by studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> shrinking <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> radius in <str<strong>on</strong>g>th</str<strong>on</strong>g>e individualbased<br />

model in <str<strong>on</strong>g>th</str<strong>on</strong>g>e large populati<strong>on</strong> limit.<br />

396


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling III; Wednesday, June 29,<br />

17:00<br />

Beata Hat-Plewinska, Bogdan Kazmierczak and Tomasz Lipniacki<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research, Warsaw, Poland<br />

e-mail: bhat@ippt.gov.pl<br />

e-mail: bkazmier@ippt.gov.pl<br />

e-mail: tlipnia@ippt.gov.pl<br />

B cell activati<strong>on</strong> triggered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e small receptor cluster: a computati<strong>on</strong>al study<br />

B cells are activated in resp<strong>on</strong>se to <str<strong>on</strong>g>th</str<strong>on</strong>g>e binding <str<strong>on</strong>g>of</str<strong>on</strong>g> polyvalent ligands, which<br />

induces <str<strong>on</strong>g>th</str<strong>on</strong>g>e aggregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B cell receptors. The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> even small clusters<br />

c<strong>on</strong>taining less <str<strong>on</strong>g>th</str<strong>on</strong>g>an 1% <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>th</str<strong>on</strong>g>e receptors is sufficient for activati<strong>on</strong>. This observati<strong>on</strong><br />

led us to <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e receptor cluster serves <strong>on</strong>ly as a switch<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at turns <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e activati<strong>on</strong> process, involving also <str<strong>on</strong>g>th</str<strong>on</strong>g>e remaining receptors. We<br />

have proposed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e system is bistable, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us its local activati<strong>on</strong> may start<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a traveling wave, which spreads activati<strong>on</strong> over <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire mebrane.<br />

We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimal size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e activatory cluster decreases wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoplasm and kinase diffusi<strong>on</strong> coefficient. It is particularly small<br />

when kinases are restricted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane. These findings are c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> B cells, which have extremely <str<strong>on</strong>g>th</str<strong>on</strong>g>in cytoplasmic layer and in which<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e receptor interacting Src family kinases are te<str<strong>on</strong>g>th</str<strong>on</strong>g>ered to <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane.<br />

397


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor invasi<strong>on</strong> I; Tuesday, June 28, 11:00<br />

Haralampos Hatzikirou<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> New Mexico<br />

e-mail: hhatzikirou@salud.unm.edu<br />

Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> glioma tumor invasi<strong>on</strong><br />

Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> malignant glioma tumors is typically very aggressive and a highly complex<br />

phenomen<strong>on</strong> involving molecular and cellular processes at various spatiotemporal<br />

scales, whose precise interplay is still not fully understood. By means <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling, we compare <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical results to <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data<br />

and deduce microscopic interacti<strong>on</strong>s (cellular mechanisms) from microscopic and<br />

macroscopic observables (experimental data). In particular, using multicellular<br />

spheroid data, we exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>e key role <str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong>/proliferati<strong>on</strong> in tumor invasi<strong>on</strong><br />

dynamics. Finally, we study <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> vascularizati<strong>on</strong> <strong>on</strong> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e help <str<strong>on</strong>g>of</str<strong>on</strong>g> a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> in vivo data from implanted xenografts <str<strong>on</strong>g>of</str<strong>on</strong>g> U87 MG in<br />

nude mice brain and a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model.<br />

398


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Delay Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s II; Saturday, July 2, 08:30<br />

M.L. Hbid<br />

LMDP, UMI - UMMISCO (IRD -UPMC). Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, University Cadi Ayyad, BP 2390, Marrakech, Morocco.<br />

Unité Associée au CNRST (URAC02), Unité Associée au CNERS<br />

e-mail: hassan.hbid@gmail.com<br />

Delay in Structured Populati<strong>on</strong> Models.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to put in evidence <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> delays, distributed delays<br />

and state-dependent delays in models, especialy in <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold models for structured<br />

populati<strong>on</strong> dynamics. A unified approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models is provided, based <strong>on</strong><br />

solving <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding balance law (hyperbolic P.D.E.) al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic<br />

lines and showing <str<strong>on</strong>g>th</str<strong>on</strong>g>e comm<strong>on</strong> underlying ideas. Size and age-structured models<br />

in different fields are presented: fish populati<strong>on</strong>s, insect populati<strong>on</strong>s, cell proliferati<strong>on</strong><br />

and epidemics. Existence and uniqueness results related to such models will<br />

be discussed as well as some results <str<strong>on</strong>g>of</str<strong>on</strong>g> semigroup’s properties , <str<strong>on</strong>g>of</str<strong>on</strong>g> stability, and<br />

bifurcati<strong>on</strong> results.<br />

399


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Turing !! Turing?? <strong>on</strong> morphogenesis via experimental and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

approaches; Wednesday, June 29, 17:00<br />

Denis Head<strong>on</strong><br />

The Roslin Institute, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Edinburgh<br />

e-mail: denis.head<strong>on</strong>@roslin.ed.ac.uk<br />

Kevin Painter<br />

Heriot Watt University<br />

Chunyan Mou<br />

The Roslin Institute, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Edinburgh<br />

Periodic patterning across heterogeneous fields: insights<br />

from embry<strong>on</strong>ic fea<str<strong>on</strong>g>th</str<strong>on</strong>g>er development<br />

Vertebrate skin is characterized by its patterned array <str<strong>on</strong>g>of</str<strong>on</strong>g> pigments and structural<br />

appendages such as fea<str<strong>on</strong>g>th</str<strong>on</strong>g>ers, hairs and scales. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> lines <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence point to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Turing type mechanism in laying out <str<strong>on</strong>g>th</str<strong>on</strong>g>e periodic pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> fea<str<strong>on</strong>g>th</str<strong>on</strong>g>ers<br />

and hairs in <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing skin. Several candidate Activator and Inhibitor<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways which act during <str<strong>on</strong>g>th</str<strong>on</strong>g>is process have been identified, <str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e full set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>em remains to be defined. B<strong>on</strong>e morphogenetic proteins<br />

(BMPs) act as key Inhibitors during fea<str<strong>on</strong>g>th</str<strong>on</strong>g>er formati<strong>on</strong>, and we have uncovered different<br />

sensitivities to <str<strong>on</strong>g>th</str<strong>on</strong>g>is Inhibitor in different regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e skin. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en focused<br />

<strong>on</strong> combining ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and experimental approaches to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pattern outcomes and propensity for pattern change arising from <str<strong>on</strong>g>th</str<strong>on</strong>g>e operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a Turing type system across a field wi<str<strong>on</strong>g>th</str<strong>on</strong>g> unequal Inhibitor sensitivities.<br />

400


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Tuesday, June 28, 14:30<br />

Robert Heise and Zoran Nikoloski<br />

Systems Biology and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling group, Max-Planck Institute<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Plant Physiology, Postdam, Germany<br />

e-mail: heise@mpimp-golm.mpg.de<br />

e-mail: nikoloski@mpimp-golm.mpg.de<br />

Extensi<strong>on</strong>s to Kinetic Flux Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluxes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e central carb<strong>on</strong> metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana<br />

Determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary and transient behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic networks is<br />

tightly coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> quantitative descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic states, characterized by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> fluxes and metabolite c<strong>on</strong>centrati<strong>on</strong>s. Despite recent<br />

progress in me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for estimating <str<strong>on</strong>g>th</str<strong>on</strong>g>e flux distributi<strong>on</strong>s in a metabolic network<br />

based <strong>on</strong> 13 C labeled metabolomics data, <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing approaches ultimately rely <strong>on</strong><br />

precise stoichiometry, atomic mappings, and availability <str<strong>on</strong>g>of</str<strong>on</strong>g> data for all metabolites<br />

participating <str<strong>on</strong>g>th</str<strong>on</strong>g>e analyzed biochemical reacti<strong>on</strong>s. Kinetic Flux Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling (KPF) is<br />

a recently proposed me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for determining reacti<strong>on</strong> fluxes based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e washout<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e unlabeled fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a metabolite pool and is described mass-acti<strong>on</strong>-like<br />

differential equati<strong>on</strong> model [1,2]. However, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out substantial assumpti<strong>on</strong>s, KPF<br />

is applicable <strong>on</strong>ly to linear pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways.<br />

Here we propose an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> KPF based <strong>on</strong> simulated annealing <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> branched and circular pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. Our approach does not rely <strong>on</strong> atomic<br />

maps, and can efficiently utilize <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-resolved distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> isotopomers to<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluxes in an experimentally studied metabolic network. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

proposed approach, we quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e flux distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e central carb<strong>on</strong> metabolism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-resolved isotopomoer data over<br />

60 minutes for 16 metabolites toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> informati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>eir subcellular<br />

localizati<strong>on</strong>. We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e findings due to partial data inclusi<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to bo<str<strong>on</strong>g>th</str<strong>on</strong>g> metabolites and different time scales. In additi<strong>on</strong>,<br />

we dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at our me<str<strong>on</strong>g>th</str<strong>on</strong>g>od toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e employed data can be used to<br />

discriminate between different models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying metabolic network.<br />

References.<br />

[1] J. Yuan, W.U. Fowler, E. Kimball, W. Lu, J.D. Rabinowitz (2006) Kinetic flux pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nitrogen assimilati<strong>on</strong> in Escherichia coli Nat. Chem. Biol. 2 529–530.<br />

[2] J. Yuan, B.D. Bennett, J.D. Rabinowitz (2008) Kinetic flux pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling for quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cellular metabolic fluxes Nat. Prot. 1 1328–1340.<br />

401


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanical regulati<strong>on</strong> in b<strong>on</strong>e tissue (Sessi<strong>on</strong><br />

I); Wednesday, June 29, 08:30<br />

Christian Hellmich<br />

Vienna University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: christian.hellmich@tuwien.ac.at<br />

B<strong>on</strong>e fibrillogenesis and mineralizati<strong>on</strong>: Quantitative<br />

analysis and implicati<strong>on</strong>s for tissue elasticity<br />

Data from b<strong>on</strong>e drying, demineralizati<strong>on</strong>, and deorganificati<strong>on</strong> tests, collected over<br />

a time span <str<strong>on</strong>g>of</str<strong>on</strong>g> more <str<strong>on</strong>g>th</str<strong>on</strong>g>an eighty years, evidence a myriad <str<strong>on</strong>g>of</str<strong>on</strong>g> different chemical compositi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different b<strong>on</strong>e materials. However, careful analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data, as to<br />

extract <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemical c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hydroxyapatite, <str<strong>on</strong>g>of</str<strong>on</strong>g> water, and <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material<br />

(mainly collagen) in <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular b<strong>on</strong>e matrix, reveals an ast<strong>on</strong>ishing fact:<br />

it appears <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exists a unique bilinear relati<strong>on</strong>ship between organic c<strong>on</strong>centrati<strong>on</strong><br />

and mineral c<strong>on</strong>centrati<strong>on</strong>, across different species, organs, and age groups,<br />

from early childhood to senility: During organ grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mineral c<strong>on</strong>centrati<strong>on</strong><br />

increases linearly wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e organic c<strong>on</strong>centrati<strong>on</strong> (which increases during fibrillogenesis),<br />

while from adul<str<strong>on</strong>g>th</str<strong>on</strong>g>ood <strong>on</strong>, fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mineral c<strong>on</strong>centrati<strong>on</strong><br />

is accompanied by a decrease in organic c<strong>on</strong>centrati<strong>on</strong>. These relati<strong>on</strong>ships imply<br />

unique mass density-c<strong>on</strong>centrati<strong>on</strong> laws for fibrillogenesis and mineralizati<strong>on</strong>, which<br />

- in combinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> micromechanical models - deliver ’universal’ mass densityelasticity<br />

relati<strong>on</strong>ships in extracellular b<strong>on</strong>e matrix - valid across different species,<br />

organs, and ages. They turn out as quantitative reflecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e well-instrumented<br />

interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoblasts, osteoclasts, osteocytes, and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir precursors, c<strong>on</strong>trolling,<br />

in a fine-tuned fashi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemical genesis and c<strong>on</strong>tinuous transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

extracellular b<strong>on</strong>e matrix. C<strong>on</strong>siderati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aformenti<strong>on</strong>ed rules may str<strong>on</strong>gly<br />

affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential success <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue engineering strategies, in particular when translating,<br />

via micromechanics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e aformenti<strong>on</strong>ed grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and mineralizati<strong>on</strong> characteristics<br />

into tissue-specific elastic properties.<br />

402


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Dorota Herman<br />

Center for Systems Biology, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Birmingham, Edgbast<strong>on</strong>, Birmingham B15 2TT, UK<br />

e-mail: dxh885@bham.ac.uk<br />

Christopher M. Thomas<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Birmingham, Edgbast<strong>on</strong>, Birmingham<br />

B15 2TT, UK<br />

Dov J. Stekel<br />

Integrative Systems Biology, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nottingham, LE12 5RD, UK<br />

Evoluti<strong>on</strong>ary optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> negative and co-operative<br />

autoregulati<strong>on</strong> in RK2 plasmids<br />

The central c<strong>on</strong>trol oper<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RK2 plasmid is negatively and co-operatively<br />

autoregulated by dimers <str<strong>on</strong>g>of</str<strong>on</strong>g> two global plasmid regulators, KorA and KorB. Several<br />

roles for negative feedbacks in biosystems have been proposed by many researchers,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>ese roles include reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> noise, increased robustness, speeding <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se<br />

time and reducing burden <strong>on</strong> host. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we seek to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary<br />

adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RK2 central c<strong>on</strong>trol oper<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese proposed roles, using<br />

comparative analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wild type system wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simpler systems.<br />

We used a stochastic, multi-scale model <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes negative and co-operative<br />

gene autoregulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e central c<strong>on</strong>trol oper<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e plasmid, plasmid replicati<strong>on</strong><br />

and host cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and divisi<strong>on</strong>. Keeping track <str<strong>on</strong>g>of</str<strong>on</strong>g> an RK2 plasmid line, we can<br />

observe <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> protein abundance from entry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e plasmid into a naive<br />

host <str<strong>on</strong>g>th</str<strong>on</strong>g>rough to steady state. The comparative analyses between <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> in<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wild type central c<strong>on</strong>trol oper<strong>on</strong> and models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> simpler, adequate<br />

architectures show a speed up <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se time and a decrease in burden for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

host, indicated by a decrease in <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> produced mRNAs. In comparis<strong>on</strong>,<br />

minimal increased robustness and reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> internal noise in steady state <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bacterial grow<str<strong>on</strong>g>th</str<strong>on</strong>g> phase were observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese anayses. We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at possible<br />

reas<strong>on</strong>s for evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex negative feedback regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RK2 central<br />

c<strong>on</strong>trol oper<strong>on</strong> are <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fast resp<strong>on</strong>se times and reduced burden to<br />

host, and <str<strong>on</strong>g>th</str<strong>on</strong>g>at it is unlikely <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is regulatory system has evolved to reduced noise<br />

or increase robustness.<br />

403


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Joachim Hermiss<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna<br />

e-mail: joachim.hermiss<strong>on</strong>@univie.ac.at<br />

Speciati<strong>on</strong>; Wednesday, June 29, 08:30<br />

Dobshansky-Muller incompatibilities in parapatry<br />

The accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dobshansky-Muller incompatibilities is a widely accepted<br />

mechanism for speciati<strong>on</strong> in allopatric populati<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong>, we analyze<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e scope and limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is mechanism if <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>s are not fully separated.<br />

We use classical migrati<strong>on</strong>-selecti<strong>on</strong> models to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e limiting rates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gene-flow <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow i) for <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin and ii) for <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> a single<br />

Dobshansky-Muller incompatibility in parapatry. We use our results to discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological and genetic factors (such as recombinati<strong>on</strong> rate, streng<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e incompatibility, level <str<strong>on</strong>g>of</str<strong>on</strong>g> local adaptati<strong>on</strong>) for <str<strong>on</strong>g>th</str<strong>on</strong>g>e speciati<strong>on</strong> process in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> gene-flow.<br />

404


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Ana Hernandez<br />

Centro de investigación y de estudios avanzados del instituto politecnico<br />

naci<strong>on</strong>al CINVESTAV-IPN Unidad Mérida<br />

e-mail: ahernandezh@mda.cinvestav.mx<br />

Rodrigo Huerta Quintanilla<br />

Centro de investigación y de estudios avanzados del instituto politecnico<br />

naci<strong>on</strong>al CINVESTAV-IPN Unidad Mérida<br />

Body mass variati<strong>on</strong> in a two-dimensi<strong>on</strong>al regular network<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we study <str<strong>on</strong>g>th</str<strong>on</strong>g>e mass variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human body using <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Chow and Hall[1]. We implement <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at provide a framework to<br />

c<strong>on</strong>sider a model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e single pers<strong>on</strong> mass dynamics, as well as a network in<br />

which agents can interact am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>em. We use as a comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e total energy expenditure per day (E) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e daily energy intake (I). We feed<br />

our model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data obtained from <str<strong>on</strong>g>th</str<strong>on</strong>g>e FAO and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er references[2]. We compare<br />

our results wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data from mexican tables for pers<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different ages. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network we took a two-dimensi<strong>on</strong>al regular lattice wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 400 agents,<br />

each agent have a initial mass (Mo), initial intake (Io), and an initial total energy<br />

expenditure (Eo).In order to fit our model we proposed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e intake equati<strong>on</strong><br />

changes like I(t)=Io(deltaM)gamma, where deltaM=M(t)/Mo. We c<strong>on</strong>sider ages<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e agents between 19 and 65 years.We could see how <str<strong>on</strong>g>th</str<strong>on</strong>g>e change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial<br />

energy c<strong>on</strong>diti<strong>on</strong>s produced large changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e average mass <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network and<br />

in some cases <str<strong>on</strong>g>th</str<strong>on</strong>g>e agent’s mass can big very large and also can have low values, ie,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a large spread in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mass values. Also we studied how <str<strong>on</strong>g>th</str<strong>on</strong>g>e average mass<br />

changes when <str<strong>on</strong>g>th</str<strong>on</strong>g>e agents have different numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> links. We have implemnted <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

model to cover ages between 0 and 18 years old, as well.<br />

405


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part I;<br />

Tuesday, June 28, 11:00<br />

Miguel A. Herrero<br />

IMI and Departamento de Matematica Aplicada, Universidad Complutense,<br />

Madrid, Spain<br />

e-mail: Miguel_Herrero@mat.ucm.es<br />

A. Fasano<br />

Dipartimento di Matematica, Università di Firenze, Viale Morgagni<br />

67A, 50134 Firenze, Italy.<br />

e-mail: fasano@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.unifi.it<br />

M. R. Rodrigo<br />

Departamento Académico de Matemáticas, Instituto Tecnológico aut<strong>on</strong>omo<br />

de México, Rio H<strong>on</strong>do 1, San Angel, México.<br />

Wave propagati<strong>on</strong> and tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Travelling waves (TWs), a particular type <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Reacti<strong>on</strong>-Diffusi<strong>on</strong> systems<br />

which move wi<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>stant speed, have been widely employed to model various aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumour invasi<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is lecture, I shall deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some TWs <str<strong>on</strong>g>th</str<strong>on</strong>g>at have been<br />

recently used to describe particular types <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. More precisely, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

capability to reproduce some observed morphological features will be addressed,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>eir dynamical properties and <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying biological<br />

processes will be discussed.<br />

406


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor invasi<strong>on</strong> II; Tuesday, June 28, 14:30<br />

Miguel A. Herrero<br />

IMI and Departamento de Matematica Aplicada, Universidad Complutense<br />

, Madrid, Spain<br />

e-mail: Miguel_Herrero@mat.ucm.es<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal radiati<strong>on</strong> dose <strong>on</strong> a<br />

target tissue volume<br />

A key problem in radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy c<strong>on</strong>sists in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e appropriate dose to be<br />

delivered to a clinical target in order to achieve maximum efficiency over malignant<br />

tissue <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e hand, while at <str<strong>on</strong>g>th</str<strong>on</strong>g>e same time sparing heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y tissue and organs<br />

at risk as much as possible. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is lecture a model problem will be presented and<br />

discussed to address <str<strong>on</strong>g>th</str<strong>on</strong>g>at issue , and a number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding soluti<strong>on</strong>s will be discussed<br />

407


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling viral hepatitis dynamics in-vivo and in-vitro in <str<strong>on</strong>g>th</str<strong>on</strong>g>e era <str<strong>on</strong>g>of</str<strong>on</strong>g> direct<br />

anti-viral agents I; Tuesday, June 28, 17:00<br />

Eva Herrmann<br />

Goe<str<strong>on</strong>g>th</str<strong>on</strong>g>e University Frankfurt<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biostatistics and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling<br />

60590 Frankfurt (Main), Germany<br />

e-mail: herrmann@uni-frankfurt.de<br />

PK-PD Models for viral kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> combinati<strong>on</strong> treatments<br />

in viral hepatitis<br />

Even in <str<strong>on</strong>g>th</str<strong>on</strong>g>e era <str<strong>on</strong>g>of</str<strong>on</strong>g> direct anti-viral agents, interfer<strong>on</strong>-based combinati<strong>on</strong> treatments<br />

are very important. It is well known <str<strong>on</strong>g>th</str<strong>on</strong>g>at serum levels <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-acting interfer<strong>on</strong>s can<br />

vary c<strong>on</strong>siderably and <str<strong>on</strong>g>th</str<strong>on</strong>g>at PK <str<strong>on</strong>g>of</str<strong>on</strong>g> interfer<strong>on</strong> has an observable influence <strong>on</strong> viral<br />

kinetics also in combinati<strong>on</strong> treatment. Therefore, reliable viral kinetic modeling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interfer<strong>on</strong>-based treatments should deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>-c<strong>on</strong>stant treatment efficacies<br />

based <strong>on</strong> PK-PD models.<br />

The first topic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk will focus <strong>on</strong> modeling results which analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different PK and treatment schedules <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-acting interfer<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment<br />

efficacy and <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance. Overall, high or low peak-to-trough<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PK <str<strong>on</strong>g>of</str<strong>on</strong>g> interfer<strong>on</strong> has <strong>on</strong>ly minor influence <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance<br />

as l<strong>on</strong>g as <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall interfer<strong>on</strong> efficacy is not changed.<br />

Sec<strong>on</strong>dly, we will illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>at modeling PK <str<strong>on</strong>g>of</str<strong>on</strong>g> direct antivirals can be quite<br />

challenging and simple open <strong>on</strong>e-compartment models may be too simplistic to obtain<br />

reliable modeling results which fit wi<str<strong>on</strong>g>th</str<strong>on</strong>g> observed PK pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles.<br />

Besides some <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical background and illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong> results, we<br />

will also show some clinical data analysis where a full PK-PD approach can give<br />

some indicati<strong>on</strong>s how to optimize treatments.<br />

408


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Neurosciences; Thursday, June 30, 11:30<br />

Joanna Tyrcha<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Statistics, Stockholm University<br />

e-mail: joanna@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

John Hertz<br />

Niels Bohr Institute, Copenhagen; Nordita, Stockholm<br />

e-mail: hertz@nbi.dk<br />

Yasser Roudi<br />

Kavli Institute, NTNU, Tr<strong>on</strong>dheim; Nordita, Stockholm<br />

e-mail: yasserroudi@gmail.com<br />

Network rec<strong>on</strong>structi<strong>on</strong> from n<strong>on</strong>stati<strong>on</strong>ary spike trains<br />

Existing approaches to <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> extracting neur<strong>on</strong>al c<strong>on</strong>nectivity from spike<br />

data [1,2] assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e network is in a stati<strong>on</strong>ary state, which it is not in many<br />

experiments. Here we describe a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for inferring bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network c<strong>on</strong>nectivity<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-dependent external drive <str<strong>on</strong>g>th</str<strong>on</strong>g>at causes <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>stati<strong>on</strong>arity.<br />

C<strong>on</strong>sider an experiment in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong>s recorded are subjected repeatedly<br />

to a potentially unknown external input (such as would arise from sensory<br />

stimulati<strong>on</strong>). The spikes are assumed to be binned in time and represented by a<br />

binary array: Si(t, r) = 1 indicates a spike and Si(t, r) = −1 indicates no spike<br />

by neur<strong>on</strong> i in time bin t <str<strong>on</strong>g>of</str<strong>on</strong>g> repetiti<strong>on</strong> r <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e measurement. We fit <str<strong>on</strong>g>th</str<strong>on</strong>g>ese data to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e simplest kind <str<strong>on</strong>g>of</str<strong>on</strong>g> binary stochastic model: At time step t <str<strong>on</strong>g>of</str<strong>on</strong>g> repetiti<strong>on</strong> r, each<br />

formal neur<strong>on</strong> receives a net input, Hi(t, r) = hi(t)+ <br />

j JijSj(t, r), and it takes <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

value +1 at <str<strong>on</strong>g>th</str<strong>on</strong>g>e next step wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a probability given by a logistic sigmoidal functi<strong>on</strong><br />

1/[1 + exp(−Hi(t, r))] <str<strong>on</strong>g>of</str<strong>on</strong>g> Hi(t, r). Maximizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data leads to<br />

learning rules<br />

(1)<br />

(2)<br />

δhi(t) = ηh {〈Si(t + 1, r)〉r − 〈tanh[Hi(t, r))]〉r]}<br />

δJij = ηJ {〈Si(t + 1, r)Sj(t, r)〉rt − 〈tanh[Hi(t, r)]Sj(t, r)〉rt}<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e model parameters – <str<strong>on</strong>g>th</str<strong>on</strong>g>e couplings Jij and external inputs hi(t). For weak<br />

coupling or densely c<strong>on</strong>nected networks, faster alternative algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms are possible<br />

[3], based <strong>on</strong> expanding (1) and (2) around mean-field and TAP [4] equati<strong>on</strong>s for<br />

mi(t) = 〈Si(r, t)〉r.<br />

Here we present results <str<strong>on</strong>g>of</str<strong>on</strong>g> applying bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is and me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods assuming stati<strong>on</strong>arity<br />

to (1) data generated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic model itself (<str<strong>on</strong>g>th</str<strong>on</strong>g>e realizable case), (2)<br />

data from a realistic computati<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> a small cortical network, and (3)<br />

data recorded from salamander retina under visual stimulati<strong>on</strong>. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at, in<br />

all <str<strong>on</strong>g>th</str<strong>on</strong>g>ree cases, performing <str<strong>on</strong>g>th</str<strong>on</strong>g>e rec<strong>on</strong>structi<strong>on</strong> assuming stati<strong>on</strong>arity systematically<br />

overestimates <str<strong>on</strong>g>th</str<strong>on</strong>g>e couplings in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network: <str<strong>on</strong>g>th</str<strong>on</strong>g>e algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms effectively invent fictitious<br />

couplings to explain stimulus-induced correlati<strong>on</strong>s. The n<strong>on</strong>stati<strong>on</strong>ary treatment<br />

outlined above enables us to find, for sufficient data, <str<strong>on</strong>g>th</str<strong>on</strong>g>e correct (weaker)<br />

couplings and to extract <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e external input.<br />

References.<br />

[1] E Schneidman, M Berry, R Segev and W Bialek, Weak pairwise correlati<strong>on</strong>s imply str<strong>on</strong>gly<br />

correlated networks states in a neural populati<strong>on</strong>, Nature 440 1007-1012 (2006).<br />

[2] Y Roudi, J Tyrcha and J Hertz, Ising model for neural data: Model quality and approximate<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for exctracting functi<strong>on</strong>al c<strong>on</strong>nectivity, Phys Rev E 79 051915 (2009).<br />

409


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] Y Roudi and J Hertz, Mean Field Theory for N<strong>on</strong>equilibrium Network Rec<strong>on</strong>structi<strong>on</strong>, Phys<br />

Rev Lett 106 048702 (2011).<br />

[4] D Thouless et al, Soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ‘solvable model <str<strong>on</strong>g>of</str<strong>on</strong>g> a spin glass’, Phil Mag 35 593-601 (1977).<br />

410


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Tuesday, June 28, 17:00<br />

R.I. Hicks<strong>on</strong><br />

Nati<strong>on</strong>al Centre for Epidemiology and Populati<strong>on</strong> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Australian<br />

Nati<strong>on</strong>al University, Canberra, ACT 0200, AUSTRALIA<br />

e-mail: Roslyn.Hicks<strong>on</strong>@anu.edu.au<br />

G.N. Mercer<br />

Nati<strong>on</strong>al Centre for Epidemiology and Populati<strong>on</strong> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Australian<br />

Nati<strong>on</strong>al University, Canberra, ACT 0200, AUSTRALIA<br />

e-mail: Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>f.Mercer@anu.edu.au<br />

K.M. Lokuge<br />

Nati<strong>on</strong>al Centre for Epidemiology and Populati<strong>on</strong> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Australian<br />

Nati<strong>on</strong>al University, Canberra, ACT 0200, AUSTRALIA<br />

e-mail: Kamalini.Lokuge@anu.edu.au<br />

H. Nguyen<br />

Crawford School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec<strong>on</strong>omics & Government, Australian Nati<strong>on</strong>al<br />

University, Canberra, ACT 0200, AUSTRALIA<br />

e-mail: Hoa.Nguyen@anu.edu.au<br />

Evaluating c<strong>on</strong>trol strategies for TB in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Torres Strait<br />

Island regi<strong>on</strong><br />

There is a high prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis (TB) in Papua New Guinea (PNG),<br />

which is exacerbated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> drug-resistant TB strains and HIV infecti<strong>on</strong>.<br />

This is an important public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> issue not <strong>on</strong>ly locally wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in PNG, but also in<br />

Australia due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e high cross-border traffic in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Torres Strait Island–Western<br />

Province (PNG) treaty regi<strong>on</strong>. We use a metapopulati<strong>on</strong> model to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> varying c<strong>on</strong>trol strategies in <str<strong>on</strong>g>th</str<strong>on</strong>g>e regi<strong>on</strong>, and perform a sensitivity analysis<br />

to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important parameters.<br />

411


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Moving Organisms: From Individuals to Populati<strong>on</strong>s; Wednesday, June 29, 17:00<br />

Danielle Hilhorst<br />

Laboratoire de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques, Université de Paris-Sud 11<br />

e-mail: Danielle.Hilhorst@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.u-psud.fr<br />

Masayasu Mimura<br />

Institute for Advanced Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Meiji University,<br />

1-1 Higashi Mita, Tama-ku, Kawasaki, 214-8571 Japan<br />

A n<strong>on</strong>linear parabolic-hyperbolic PDE model for c<strong>on</strong>tact<br />

inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

We c<strong>on</strong>sider a parabolic-hyperbolic system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear partial differential equati<strong>on</strong>s<br />

which describes a simplified model for c<strong>on</strong>tact inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> two cell<br />

populati<strong>on</strong>s. In <strong>on</strong>e space dimensi<strong>on</strong> it is known <str<strong>on</strong>g>th</str<strong>on</strong>g>at global soluti<strong>on</strong>s exist and <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ey satisfy <str<strong>on</strong>g>th</str<strong>on</strong>g>e segregati<strong>on</strong> property which reflects <str<strong>on</strong>g>th</str<strong>on</strong>g>e inhibiti<strong>on</strong> mechanism: if <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

two populati<strong>on</strong>s are initially segregated - in ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical terms <str<strong>on</strong>g>th</str<strong>on</strong>g>is is translated<br />

into disjoint spatial supports <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir densities - <str<strong>on</strong>g>th</str<strong>on</strong>g>is property remains valid for<br />

all later times. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we use recent results <strong>on</strong> transport equati<strong>on</strong>s and<br />

Lagrangian flows to obtain similar results in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> arbitrary space dimensi<strong>on</strong>s.<br />

412


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Reports from US - African BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Initiative: C<strong>on</strong>servati<strong>on</strong><br />

Biology; Saturday, July 2, 14:30<br />

Gina Himes Boor<br />

M<strong>on</strong>tana State University<br />

e-mail: gkhimesboor@m<strong>on</strong>tana.edu<br />

Shar<strong>on</strong> Baruch-Mordo<br />

Using individual-based movement models to investigate<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent herding behavior in African buffalo<br />

Ungulate species worldwide have been observed to aggregate into variable-sized<br />

temporary or permanent herds. One important <str<strong>on</strong>g>th</str<strong>on</strong>g>read <str<strong>on</strong>g>of</str<strong>on</strong>g> research in ecology has<br />

been to try to understand why such aggregati<strong>on</strong>s occur, and what mechanisms<br />

c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> herding. Most research to date has focused <strong>on</strong> populati<strong>on</strong>level<br />

herding dynamics, and evidence exists for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> bottom-up c<strong>on</strong>trol, wherein<br />

herds form as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> patchy resource distributi<strong>on</strong>, and top-down c<strong>on</strong>trol, in<br />

which predator avoidance c<strong>on</strong>trols aggregati<strong>on</strong> dynamics. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study we used<br />

an individual-based model (IBM) to test whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er populati<strong>on</strong>-level herding patterns<br />

emerge from individual-level movement decisi<strong>on</strong>s, and to examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bottom-up mechanisms <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is emergent phenomen<strong>on</strong>. We used African buffalo<br />

(Syncerus caffer) in Kruger Nati<strong>on</strong>al Park, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa as our focal populati<strong>on</strong>,<br />

and simulated individual movement based <strong>on</strong> rules in which each buffalo attempts<br />

to meet its daily resource requirements. Our model did not incorporate bir<str<strong>on</strong>g>th</str<strong>on</strong>g> or<br />

dea<str<strong>on</strong>g>th</str<strong>on</strong>g> processes but focused solely <strong>on</strong> spatial dynamics. To validate our model we<br />

compared herd size distributi<strong>on</strong> observed in our IBM to herd size distributi<strong>on</strong>s observed<br />

in Kruger Nati<strong>on</strong>al Park between 1985 and 2001. Using IBM we found <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

herding behavior was an emergent property. We were able to emulate empirical<br />

herd size distributi<strong>on</strong>s when resources were available at low levels in large parts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e study area but abundant in small scattered areas. Our study dem<strong>on</strong>strates<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at empirically-based patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> herding behavior can emerge from bottom-up<br />

mechanisms al<strong>on</strong>e. Our c<strong>on</strong>tinued research will attempt to elucidate whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er predator<br />

avoidance behavior can produce similar empirically-validated herding patterns<br />

and how a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> top-down and bottom-up mechanisms might change<br />

populati<strong>on</strong>-level herding dynamics.<br />

413


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Friday, July 1, 14:30<br />

Erwan Hingant<br />

Institut Camille Jordan, Ly<strong>on</strong>, France.<br />

e-mail: hingant@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.univ-ly<strong>on</strong>1.fr<br />

Pascaline F<strong>on</strong>tes<br />

Centre CECEMA, M<strong>on</strong>tpellier, France.<br />

Teresa Alvarez-Martinez<br />

Institut Fédératif de Biologie de M<strong>on</strong>tpellier, M<strong>on</strong>tpellier, France.<br />

Jacques-Damien Arnaud<br />

Institut Fédératif de Biologie de M<strong>on</strong>tpellier, M<strong>on</strong>tpellier, France.<br />

Jean-Pierre Liautard<br />

Centre de Recherche sur les Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogènes et Biologie pour la Santé,<br />

M<strong>on</strong>tpellier, France<br />

Laurent Pujo-Menjouet<br />

Institut Camille Jordan, Ly<strong>on</strong>, France.<br />

An <strong>on</strong>-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way step explains <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetic <str<strong>on</strong>g>of</str<strong>on</strong>g> pri<strong>on</strong> amyloid<br />

formati<strong>on</strong><br />

The pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenic process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissible sp<strong>on</strong>giform encephalopa<str<strong>on</strong>g>th</str<strong>on</strong>g>ies diseases,<br />

is typically associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>formati<strong>on</strong>al c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called pri<strong>on</strong><br />

protein (PrP). The protein-<strong>on</strong>ly model asserts <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e misfolded is<str<strong>on</strong>g>of</str<strong>on</strong>g>orm represents<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e infectious pri<strong>on</strong> agent, self-propagating by binding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal PrP<br />

and inducing its c<strong>on</strong>versi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e abnormal form [6]. This scenario was quantitatively<br />

described as a nucleati<strong>on</strong>-dependent amyloid polymerizati<strong>on</strong> [4]. However,<br />

we obtained experimental results inc<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>eory. Indeed al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> polymerizati<strong>on</strong> resemble a simple nucleus-dependent fibrillogenesis, nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e initial c<strong>on</strong>centrati<strong>on</strong> dependence nor <str<strong>on</strong>g>of</str<strong>on</strong>g>f-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis fit completely<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental results when submitted to <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical models [1], comparable<br />

discrepancies were obtained by o<str<strong>on</strong>g>th</str<strong>on</strong>g>er [2,3,4,5]. We <str<strong>on</strong>g>th</str<strong>on</strong>g>us hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esise <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an <strong>on</strong>-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way before nucleati<strong>on</strong> associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a c<strong>on</strong>formati<strong>on</strong>al change <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

generates intermediate c<strong>on</strong>formati<strong>on</strong>s compatible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> nucleati<strong>on</strong> and polymerizati<strong>on</strong>.<br />

Using electr<strong>on</strong> microscopy analysis, we observed odd-structures <str<strong>on</strong>g>th</str<strong>on</strong>g>at behaved<br />

as precursor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e amyloid formati<strong>on</strong>. We have developed a quantitative model<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an explicit descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microscopic processes <str<strong>on</strong>g>th</str<strong>on</strong>g>at takes into account our<br />

observati<strong>on</strong>s. Then, we c<strong>on</strong>fr<strong>on</strong>ted, under several c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model predicti<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data. It appears <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are in a good agreement. Several<br />

c<strong>on</strong>clusi<strong>on</strong>s can be drawn from <str<strong>on</strong>g>th</str<strong>on</strong>g>is model <str<strong>on</strong>g>th</str<strong>on</strong>g>at better explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleati<strong>on</strong> kinetic<br />

barrier and pri<strong>on</strong> misfolding. We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in <str<strong>on</strong>g>th</str<strong>on</strong>g>e light<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e in vivo phenomen<strong>on</strong>.<br />

References.<br />

[1] Alvarez-Martinez, M. T., et al., Dynamic <str<strong>on</strong>g>of</str<strong>on</strong>g> polymerizati<strong>on</strong> shed light <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

lead to multiple amyloid structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pri<strong>on</strong> protein. Submit (2010).<br />

[2] Baskakov, I. V. & Bochora, 0. V., In vitro c<strong>on</strong>verti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mammalian pri<strong>on</strong> protein into amyloid<br />

fibrils displays unusual features. Biochemistry 44, 2339–2348 (2005).<br />

[3] Collins, S. R., Douglass, A., Vae, R. D. & Weissmann, J. S., Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> pri<strong>on</strong> propagati<strong>on</strong>:<br />

Amyloid grow<str<strong>on</strong>g>th</str<strong>on</strong>g> occurs by m<strong>on</strong>omer additi<strong>on</strong>. PLOS Biol. 2, e321 (2004).<br />

414


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[4] Come, J. H., Fraser, P. E. & Landsbury, P. T. A kinetic model for amyloid formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pri<strong>on</strong> diseases: Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> seeding. Proc. Natl. Acad. Sci. U S A 90, 5959–5963 (1993).<br />

[5] Masel, J., Jansen, V. A. A. & Nowak, M. A., Quantifying <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetic parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> pri<strong>on</strong><br />

replicati<strong>on</strong>. Biophys. Chem. 77, 139–152 (1999).<br />

[6] Prusiner, S. B., Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144<br />

(1982).<br />

415


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Semigroups <str<strong>on</strong>g>of</str<strong>on</strong>g> Operators in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology II; Saturday, July 2, 11:00<br />

, Peter<br />

József Z. Farkas<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing Science and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stirling, Stirling, FK9 4LA, United Kingdom<br />

Peter Hinow<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>sin - Milwaukee,<br />

P.O. Box 413, Milwaukee, WI 53201, USA<br />

e-mail: hinow@uwm.edu<br />

Structured and unstructured c<strong>on</strong>tinuous models for<br />

Wolbachia infecti<strong>on</strong>s<br />

Wolbachia is a maternally transmitted bacterium <str<strong>on</strong>g>th</str<strong>on</strong>g>at lives in symbiosis wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

many ar<str<strong>on</strong>g>th</str<strong>on</strong>g>ropod species. We introduce and investigate a series <str<strong>on</strong>g>of</str<strong>on</strong>g> models for an infecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a diplodiploid host species by Wolbachia. The c<strong>on</strong>tinuous models are characterized<br />

by partial vertical transmissi<strong>on</strong>, cytoplasmic incompatibility and fitness<br />

costs associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong>. A particular aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> interest is competiti<strong>on</strong>s<br />

between mutually incompatible strains. We fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er introduce an age-structured<br />

model <str<strong>on</strong>g>th</str<strong>on</strong>g>at takes into account different fertility and mortality rates at different<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e life cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e individuals. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>ly a few parameters, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ordinary<br />

differential equati<strong>on</strong> models exhibit already interesting dynamics and can be used<br />

to predict criteria under which a strain <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria is able to invade a populati<strong>on</strong>.<br />

Interestingly, but not surprisingly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e age-structured model shows significant differences<br />

c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence and stability <str<strong>on</strong>g>of</str<strong>on</strong>g> equilibrium soluti<strong>on</strong>s compared<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e unstructured model.<br />

Keywords: Wolbachia, endosymbiosis, cytoplasmic incompatibility<br />

416


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an E. Hiorns<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

e-mail: pmxjh1@nottingham.ac.uk<br />

B.S. Brook, I. Hall, O.E. Jensen<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

Medical Physiology; Tuesday, June 28, 11:00<br />

A biomechanical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e as<str<strong>on</strong>g>th</str<strong>on</strong>g>matic airway<br />

When as<str<strong>on</strong>g>th</str<strong>on</strong>g>matics come in c<strong>on</strong>tact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ag<strong>on</strong>ists (e.g. cold air, chemicals or dust),<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> muscle in <str<strong>on</strong>g>th</str<strong>on</strong>g>e walls <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir lung airways c<strong>on</strong>tracts, causing wheezing<br />

and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er brea<str<strong>on</strong>g>th</str<strong>on</strong>g>ing difficulties. Over l<strong>on</strong>g periods <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is also substantial <str<strong>on</strong>g>th</str<strong>on</strong>g>ickening<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e muscular airway wall. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling has significant potential<br />

to <str<strong>on</strong>g>of</str<strong>on</strong>g>fer insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways <str<strong>on</strong>g>th</str<strong>on</strong>g>at initiate<br />

smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> muscle c<strong>on</strong>tracti<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cross-bridges wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in smoo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

muscle <str<strong>on</strong>g>th</str<strong>on</strong>g>at leads to c<strong>on</strong>tracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e airway and surrounding tissue, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

l<strong>on</strong>ger-term impact <str<strong>on</strong>g>of</str<strong>on</strong>g> wall remodelling <strong>on</strong> airway functi<strong>on</strong>. Here we address some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem by modelling an airway as a two-layer<br />

annulus in plane strain. The inner layer, representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e airway wall, is modelled<br />

as a n<strong>on</strong>linear incompressible fibre-reinforced material. The outer layer, representing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding parenchyma, is modelled as a linear compressible viscoelastic<br />

material. Airway deformati<strong>on</strong>s are induced ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er by imposing external stresses or<br />

via active forces generated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e inner muscular layer. When passively inflated,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e airway wall exhibits strain-stiffening and creep. The model reveals differences in<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> deformati<strong>on</strong> depending <strong>on</strong> whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er inflati<strong>on</strong> is driven by stresses <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

inner or outer boundary (reflecting differences between artificial and natural ventilati<strong>on</strong>).<br />

The model also shows significant stress gradients across <str<strong>on</strong>g>th</str<strong>on</strong>g>ickened airway<br />

walls. Initial results coupling wall and muscle mechanics will also be discussed.<br />

417


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bar<str<strong>on</strong>g>th</str<strong>on</strong>g>olomäus Hirt<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

e-mail: pmxbvh@nottingham.ac.uk<br />

Bioinformatics and System Biology; Wednesday, June 29, 08:30<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical investigati<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-cancer<br />

compound RHPS4 <strong>on</strong> cell-cycle dynamics<br />

The pentacyclic acridinium salt RHPS4 displays anti-tumour properties in vitro<br />

as well as in vivo and is potentially cell-cycle specific. We have collected experimental<br />

data and formulated a compartmental model using ordinary differential<br />

equati<strong>on</strong>s to investigate how <str<strong>on</strong>g>th</str<strong>on</strong>g>e compound affects cells in each stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell<br />

cycle. The eukaryotic cell cycle primarily c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> five phases, namely a resting<br />

state, G0, and four cycling phases: G1, S, G2 and M phase wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cells progressing<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>is order and <str<strong>on</strong>g>th</str<strong>on</strong>g>en dividing into two cells back in G1. Understanding how a<br />

drug affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle could give insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug’s mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong><br />

and may assist research into potential treatment strategies.<br />

We treated colorectal cancer cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree different c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

drug and fitted simulati<strong>on</strong>s from our models to experimental observati<strong>on</strong>s. We<br />

found <str<strong>on</strong>g>th</str<strong>on</strong>g>at RHPS4 caused a c<strong>on</strong>centrati<strong>on</strong>-dependent, marked cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g> in treated<br />

cells, which is best modelled by allowing rate parameters in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle to be<br />

time-dependent functi<strong>on</strong>s. Our compartmental models fit data from c<strong>on</strong>trol cells<br />

and cells treated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> lower c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> RHPS4 particularly well. We have<br />

also shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is “identifiable", meaning <str<strong>on</strong>g>th</str<strong>on</strong>g>at, at least in principle,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter values can be determined from observable quantities. Our fitting<br />

procedure generates informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at at low c<strong>on</strong>centrati<strong>on</strong>s RHPS4 primarily affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells’ behaviour<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e G2/M phase, and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug has a delayed effect wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e delay decreasing<br />

at larger doses. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug diffuses into <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed delayed effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e compound is unexpected and is a novel finding <str<strong>on</strong>g>of</str<strong>on</strong>g> our research into <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

compound. We propose <str<strong>on</strong>g>th</str<strong>on</strong>g>at sec<strong>on</strong>dary effects lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observed<br />

cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g> and <str<strong>on</strong>g>th</str<strong>on</strong>g>at changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-coding DNA<br />

sequences at chromosome ends, called telomeres, might be a precursor <str<strong>on</strong>g>of</str<strong>on</strong>g> delayed<br />

cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

418


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> liver: bridging molecular systems biology to<br />

virtual physiological human scale; Wednesday, June 29, 11:00<br />

Stefan Hoehme<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leipzig, Germany<br />

e-mail: hoehme@uni-leipzig.de<br />

Dirk Drasdo<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leipzig, INRIA Paris<br />

Jan Hengstler<br />

IfADo Dortmund<br />

Regenerati<strong>on</strong> after partial hepatectomy: from cell to organ<br />

scale<br />

The liver is a vital organ wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s. It plays a key role in<br />

detoxificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood and is essential for most metabolic functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e body.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e outstanding features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver is its capacity to regenerate a loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

large parts <str<strong>on</strong>g>of</str<strong>on</strong>g> its mass wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in days. This rapid regenerati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> utmost importance<br />

for patient survival for example after partial hepatectomy, a process where parts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver are surgically removed for example during liver transplantati<strong>on</strong> or <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> liver cancer. In liver, functi<strong>on</strong> and architecture are tightly coupled.<br />

Therefore, a deep understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> liver regenerati<strong>on</strong> requires an understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> how functi<strong>on</strong>al comp<strong>on</strong>ents like hepatocytes or blood vessels and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir spatial<br />

organizati<strong>on</strong> toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e regenerati<strong>on</strong> process. In order to study regenerati<strong>on</strong><br />

after partial hepatectomy, we advanced <str<strong>on</strong>g>th</str<strong>on</strong>g>e single-cell based spatial-temporal model<br />

in 3D established in [1]. The model is c<strong>on</strong>structed based <strong>on</strong> experimental data, in<br />

particular c<strong>on</strong>focal laser scans and whole slide scans, <str<strong>on</strong>g>th</str<strong>on</strong>g>at were quantified by a novel<br />

image processing and analysis chain. It now spans from cellular scale up to organ<br />

scale.<br />

The talk introduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e model al<strong>on</strong>g wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods developed to c<strong>on</strong>struct<br />

it and presents first results obtained by model simulati<strong>on</strong>s.<br />

References.<br />

[1] Hoehme, S., Brulport, M., Bauer, A., Bedawy, E., Schormann, W., Gebhardt, R., Zellmer,<br />

S., Schwarz, M., Bockamp, E., Timmel, T., G. Hengstler, J.G., and Drasdo, D. (2010). Predicti<strong>on</strong><br />

and validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell alignment al<strong>on</strong>g microvessels as order principle to restore tissue<br />

architecture in liver regenerati<strong>on</strong>. Proc. Natl. Acad. Sci. (USA), 107(23), 10371-10376.<br />

419


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Nadine Hohmann<br />

Centre for Informati<strong>on</strong> Services and High Performance Computing,<br />

TU Dresden<br />

e-mail: nadine.hohmann@tu-dresden.de<br />

Anja Voß-Böhme<br />

Centre for Informati<strong>on</strong> Services and High Performance Computing,<br />

TU Dresden<br />

Andreas Deutsch<br />

Centre for Informati<strong>on</strong> Services and High Performance Computing,<br />

TU Dresden<br />

Mechanisms for liver size regulati<strong>on</strong><br />

The liver is a multi-functi<strong>on</strong>al organ <str<strong>on</strong>g>th</str<strong>on</strong>g>at participates in major physiological processes<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>at possesses a remarkable regenerati<strong>on</strong> capacity. After loss <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al<br />

liver mass <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver regrows to its original, individual-dependent size. A<br />

transplanted liver adjusts its size to <str<strong>on</strong>g>th</str<strong>on</strong>g>e host organism by increasing in size when<br />

small-for-size or decreasing in size when large-for-size. Yet, how does <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver<br />

"know" when it has achieved its correct size?<br />

The mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> organ size c<strong>on</strong>trol are still not well understood. Intracellular<br />

signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trol cell size regulati<strong>on</strong>, cell proliferati<strong>on</strong> and apoptosis<br />

have already been studied in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature. However, organ size c<strong>on</strong>trol is <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

collective result <str<strong>on</strong>g>of</str<strong>on</strong>g> decentralized, individual cell decisi<strong>on</strong>s. It is proposed in several<br />

works <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is collective behavior might be guided by n<strong>on</strong>local interacti<strong>on</strong>s mediated<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough morphogen gradients. Here, we pose <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong>, whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er organ size<br />

c<strong>on</strong>trol can also be accomplished by a mechanism solely based <strong>on</strong> local intercellular<br />

interacti<strong>on</strong>s.<br />

Based <strong>on</strong> a careful review <str<strong>on</strong>g>of</str<strong>on</strong>g> currently debated mechanisms and recent experiments<br />

for organ size regulati<strong>on</strong> we will develop and analyze several model prototypes.<br />

We will focus <strong>on</strong> an Interacting Cell System Model to study especially<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> local intercellular interacti<strong>on</strong>s as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

organ-intrinsic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors and organ-extrinsic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> regulators. The study is<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Virtual Liver project funded by <str<strong>on</strong>g>th</str<strong>on</strong>g>e German BMBF.<br />

420


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Symmetry Breaking and Cellular Polarizati<strong>on</strong> in Motile Cells<br />

William Holmes<br />

e-mail: wrholmes@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ubc.ca<br />

Chemotaxis is <str<strong>on</strong>g>th</str<strong>on</strong>g>e process by which cells undergo directed moti<strong>on</strong> toward an external<br />

signal. In Eukaryotic cells, a precurser to such moti<strong>on</strong> is a symmetry breaking<br />

event where proteins resp<strong>on</strong>sible for cytoskeletal remodelling and motility self organize<br />

to form a fr<strong>on</strong>t and back. A model developed in collaborati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an experimental<br />

group <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese regulatory proteins and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir associated kinetics is presented.<br />

It is shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is model accounts for observed characteristics not found in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

models and provides new insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiologically resp<strong>on</strong>sible processes.<br />

Novel psuedo-analytic me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for analysing such models will be briefly discussed<br />

and c<strong>on</strong>necti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental observati<strong>on</strong>s will be highlighted.<br />

421


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in computati<strong>on</strong>al neuroscience II; Wednesday, June 29,<br />

17:00<br />

Klaus Kähler Holst<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biostatistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen<br />

e-mail: k.k.holst@biostat.ku.dk<br />

A Latent Variable Model for brain serot<strong>on</strong>in levels as<br />

measured by cerebral serot<strong>on</strong>in transporter and 5-HT2A<br />

receptor binding in vivo<br />

Today, it is not possible to n<strong>on</strong>-invasively measure <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

serot<strong>on</strong>in (5-HT) in vivo. However, indirect measurements can be obtained by<br />

positr<strong>on</strong> emissi<strong>on</strong> tomography (PET) techniques. A n<strong>on</strong>-linear structural equati<strong>on</strong><br />

model is proposed for describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e associati<strong>on</strong> between 5-HT2A receptor binding<br />

and serot<strong>on</strong>in (5-HT) transporter binding as measured by PET imaging. The<br />

approach is based <strong>on</strong> a biological model where <str<strong>on</strong>g>th</str<strong>on</strong>g>e 5-HT2A receptor and serot<strong>on</strong>in<br />

transporter measurements are expressed n<strong>on</strong>-linearly by a comm<strong>on</strong> regulator, e.g.<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e raphe serot<strong>on</strong>ergic output. The proposed model makes it possible to study<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e associati<strong>on</strong> between latent brain 5-HT levels and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er end-points, for instance<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> mood disorders.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for obtaining approximate maximum likelihood estimates are discussed<br />

and new model diagnostic me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods based <strong>on</strong> cumulative residuals are presented.<br />

422


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>luids, Solute Transport, and Hemodynamics; Wednesday, June 29, 11:00<br />

Niels-Henrik Holstein-Ra<str<strong>on</strong>g>th</str<strong>on</strong>g>lou<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomedical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Denmark<br />

e-mail: nhhr@sund.ku.dk<br />

Olga Sosnovtseva<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomedical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Denmark<br />

e-mail: olga@sund.ku.dk<br />

D<strong>on</strong>ald J. Marsh<br />

Brown University, Providence, RI, USA<br />

e-mail: marsh@ash.biomed.brown.edu<br />

Synchr<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nephr<strong>on</strong>s in vascular networks<br />

Tubuloglomerular feedback (TGF) has an important role in autoregulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> renal<br />

blood flow and glomerular filtrati<strong>on</strong> rate (GFR). Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

signal transmissi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback loop, <str<strong>on</strong>g>th</str<strong>on</strong>g>e TGF undergoes self sustained oscillati<strong>on</strong>s<br />

in single nephr<strong>on</strong> blood flow, GFR and tubular pressure and flow. Nephr<strong>on</strong>s<br />

interact by exchanging electrical signals c<strong>on</strong>ducted electrot<strong>on</strong>ically <str<strong>on</strong>g>th</str<strong>on</strong>g>rough cells <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e vascular wall, leading to synchr<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e TGF mediated oscillati<strong>on</strong>s. To<br />

study <str<strong>on</strong>g>th</str<strong>on</strong>g>e extent <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong> we have used laser speckle c<strong>on</strong>trast imaging<br />

to measure <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood flow dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 – 100 nephr<strong>on</strong>s simultaneously <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

renal surface <str<strong>on</strong>g>of</str<strong>on</strong>g> anes<str<strong>on</strong>g>th</str<strong>on</strong>g>etized rats. Synchr<strong>on</strong>ized TGF oscillati<strong>on</strong>s were detected in<br />

pairs or triplets <str<strong>on</strong>g>of</str<strong>on</strong>g> nephr<strong>on</strong>s. The amplitude and <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillati<strong>on</strong>s<br />

changed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> time, as did <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong>. Synchr<strong>on</strong>izati<strong>on</strong> may<br />

take place am<strong>on</strong>g nephr<strong>on</strong>s not immediately adjacent <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e kidney.<br />

Nephr<strong>on</strong>s are organized in a vascular network, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>em<br />

takes place across <str<strong>on</strong>g>th</str<strong>on</strong>g>e network. To investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e significance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network structure,<br />

we modeled two alternative network c<strong>on</strong>figurati<strong>on</strong>s: a linear serial network,<br />

and a branching fractal structure. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough synchr<strong>on</strong>izati<strong>on</strong> am<strong>on</strong>g nephr<strong>on</strong>s was<br />

observed in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>figurati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e tendency was for in phase synchr<strong>on</strong>izati<strong>on</strong><br />

am<strong>on</strong>g nephr<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear, serial network; whereas more complex in- and out<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> phase patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong> was observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e branching model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

vascular network.<br />

423


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> liver: bridging molecular systems biology to<br />

virtual physiological human scale; Wednesday, June 29, 11:00<br />

Hermann-Georg Holzhuetter<br />

Charité - Universitaetsmedizin Berlin, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry<br />

e-mail: hermann-georg.holzhuetter@charite.de<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> liver metabolism — do we need a<br />

multi-scale approach?<br />

The liver is <str<strong>on</strong>g>th</str<strong>on</strong>g>e central metabolic organ <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human organism au<str<strong>on</strong>g>th</str<strong>on</strong>g>oritatively<br />

involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e detoxificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> xenobiotics (drugs), <str<strong>on</strong>g>th</str<strong>on</strong>g>e homeostasis <str<strong>on</strong>g>of</str<strong>on</strong>g> numerous<br />

blood compounds and producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-inflammatory agents. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

metabolic functi<strong>on</strong>s are accomplished by hepatocytes comprising about two <str<strong>on</strong>g>th</str<strong>on</strong>g>irds<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> liver cells. Therefore, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> liver metabolism hi<str<strong>on</strong>g>th</str<strong>on</strong>g>erto has<br />

widely focused <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e single hepatocytes. However, hepatocytes arranged al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

same supporting vessel have different access to oxygen, nutrients and horm<strong>on</strong>es in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e blood and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore differ in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir functi<strong>on</strong>al capacities. Irregularities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vascular<br />

tree and regi<strong>on</strong>al partial occlusi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> blood vessels (e.g. caused by swollen<br />

cells due to lipid accumulati<strong>on</strong>) may entail <str<strong>on</strong>g>th</str<strong>on</strong>g>at wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e organ normoxic and<br />

partly ischemic regi<strong>on</strong>s coexist. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular processes underlying<br />

complex physiological liver functi<strong>on</strong>s proceed at different time scales: Sec<strong>on</strong>ds for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>al initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glycogen degradati<strong>on</strong>, some weeks for liver regenerati<strong>on</strong><br />

after partial hepatectomy and several m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g>s or even years for <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a n<strong>on</strong>-alcoholic fatty liver. Finally, <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic state <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatocytes is affected<br />

by cellular c<strong>on</strong>tacts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er and signals received from o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hepatic cells,<br />

e.g. endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells or macrophages. These are aspects <str<strong>on</strong>g>th</str<strong>on</strong>g>at necessitate to study<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> a multi-scale model <str<strong>on</strong>g>th</str<strong>on</strong>g>at covers different<br />

spatial and temporal scales. This talk outlines <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> such a liver<br />

model and presents some first results.<br />

424


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part I;<br />

Tuesday, June 28, 11:00<br />

Mary Ann Horn<br />

Program in Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics & Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Nati<strong>on</strong>al Science Foundati<strong>on</strong>, Arlingt<strong>on</strong>, USA<br />

e-mail: mhorn@nsf.gov<br />

Hannah L.<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Portland, and H. Alex Brown and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Brown Laboratory<br />

at Vanderbilt University, Nashville, USA<br />

Using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling to understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diacylglycerol (DAG) as a sec<strong>on</strong>d messenger<br />

Diacylgylcerol (DAG) plays a key role in cellular signaling as a sec<strong>on</strong>d messenger.<br />

In particular, it regulates a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular processes and <str<strong>on</strong>g>th</str<strong>on</strong>g>e breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way <str<strong>on</strong>g>th</str<strong>on</strong>g>at involves DAG c<strong>on</strong>tributes to <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> diseases, including cancer. We present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e G-protein<br />

signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way in RAW 264.7 macrophages downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> P2Y6 activati<strong>on</strong> by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ubiquitous signaling nucleotide uridine 5’-diphosphate. Our primary goal is<br />

to better understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> diacylglycerol in <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

underlying biological dynamics <str<strong>on</strong>g>th</str<strong>on</strong>g>at cannot always be easily measured experimentally.<br />

The model is based <strong>on</strong> time-course measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> P2Y6 surface receptors,<br />

inositol trisphosphate, cytosolic calcium, and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a particular focus <strong>on</strong> differential<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple species <str<strong>on</strong>g>of</str<strong>on</strong>g> diacylglycerol. When using <str<strong>on</strong>g>th</str<strong>on</strong>g>e can<strong>on</strong>ical representati<strong>on</strong>,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model predicted <str<strong>on</strong>g>th</str<strong>on</strong>g>at key interacti<strong>on</strong>s were missing from <str<strong>on</strong>g>th</str<strong>on</strong>g>e current<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way structure. Indeed, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at to accurately depict experimental<br />

observati<strong>on</strong>s, an additi<strong>on</strong>al branch to <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way was needed,<br />

whereby an intracellular pool <str<strong>on</strong>g>of</str<strong>on</strong>g> diacylglycerol is immediately phosphorylated up<strong>on</strong><br />

stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an extracellular receptor for uridine 5’-diphosphate and subsequently<br />

used to aid replenishment <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphatidylinositol. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivity analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model parameters, key predicti<strong>on</strong>s can be made regarding which <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese parameters<br />

are <str<strong>on</strong>g>th</str<strong>on</strong>g>e most sensitive to perturbati<strong>on</strong>s and are <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore most resp<strong>on</strong>sible<br />

for output uncertainty.<br />

425


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent developments in <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> Lotka-Volterra and Kolmogorov<br />

systems; Saturday, July 2, 14:30<br />

Zhanyuan Hou<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing, L<strong>on</strong>d<strong>on</strong> Metropolitan University, L<strong>on</strong>d<strong>on</strong>, UK<br />

e-mail: z.hou@l<strong>on</strong>d<strong>on</strong>met.ac.uk<br />

Stephen Baigent<br />

Demartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, UCL<br />

Heteroclinic limit cycles in Lotka-Volterra systems<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we are c<strong>on</strong>cerned wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e global, ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an local, attracti<strong>on</strong> (repulsi<strong>on</strong>)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a heteroclinic limit cycle in competitive Lotka-Volterra systems. C<strong>on</strong>diti<strong>on</strong>s<br />

will be explored for omiga (alpha) limit sets to be a single heteroclinic cycle for almost<br />

all interior initial points in <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>negative c<strong>on</strong>e.<br />

426


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemic models: Networks and stochasticity I; Wednesday, June 29, 14:30<br />

Thomas House<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warwick<br />

e-mail: T.A.House@warwick.ac.uk<br />

István Kiss<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex<br />

e-mail: I.Z.Kiss@sussex.ac.uk<br />

Overview <str<strong>on</strong>g>of</str<strong>on</strong>g> Networks and Stochasticity in Epidemic Models<br />

Two areas <str<strong>on</strong>g>of</str<strong>on</strong>g> much recent work in modelling epidemics are c<strong>on</strong>tact networks<br />

and populati<strong>on</strong> stochasticity. These c<strong>on</strong>cepts are closely related, since <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a small, finite neighbourhood <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tacts around each individual (or simple demographic<br />

stochasticity) make chance events important at <str<strong>on</strong>g>th</str<strong>on</strong>g>e local level, which<br />

can <str<strong>on</strong>g>th</str<strong>on</strong>g>en scale up to significant populati<strong>on</strong>-level effects.<br />

This talk will introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> network structure and stochasticity, and<br />

by focusing <strong>on</strong> network models, will provide an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> different ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical,<br />

computati<strong>on</strong>al and empirical tools used to address <str<strong>on</strong>g>th</str<strong>on</strong>g>ese issues. In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relati<strong>on</strong>ship between exact models, approximati<strong>on</strong>s based <strong>on</strong> heuristic arguments,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>te Carlo simulati<strong>on</strong> will be discussed.<br />

427


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis II; Wednesday, June<br />

29, 11:00<br />

N. André<br />

Pediatric <strong>on</strong>cology, La Tim<strong>on</strong>e hospital. Marseille, France.<br />

e-mail: nicolas.andre@ap-hm.fr<br />

D. Barbolosi<br />

Laboratoire de Toxicocinétique et Pharmacocinétique. Marseille,<br />

France.<br />

e-mail: dominique.barbolosi@univ-cezanne.fr<br />

A. Benabdallah<br />

LATP , Université de Provence Marseille, France.<br />

e-mail: assia@cmi.univ-mrs.fr<br />

S. Benzekry<br />

LATP & Laboratoire de Toxicocinétique et Pharmacocinétique.<br />

Marseille, France.<br />

e-mail: benzekry@phare.normalesup.org<br />

F. Hubert<br />

LATP , Université de Provence, Marseille, France.<br />

e-mail: fhubert@cmi.univ-mrs.fr<br />

A model for anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposal by J. Folkman in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 70’s to use tumoral neo-angiogenesis<br />

as a <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic target, important efforts lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> various antiangiogenic<br />

drugs now used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e clinic. Though, <str<strong>on</strong>g>th</str<strong>on</strong>g>e practical results obtained by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese so-called "targeted <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies" are quite poor up to now and anti-angiogenic<br />

drugs are far from replacing <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical, very toxic, chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapies. In some cases,<br />

angiogenic drugs can even exhibit paroxystic effects such as metastatic accelerati<strong>on</strong><br />

[3]. It seems <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>of</str<strong>on</strong>g> administering <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug, its scheduling is <str<strong>on</strong>g>of</str<strong>on</strong>g> fundamental<br />

importance and determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e best schedules for anti-angiogenic drugs al<strong>on</strong>e or<br />

in combinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cytotoxic drugs is a clinical open questi<strong>on</strong>.<br />

In order to give insights <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese questi<strong>on</strong>s, we developed <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>of</str<strong>on</strong>g> [2] and<br />

included a module to incorporate <str<strong>on</strong>g>th</str<strong>on</strong>g>e metastases [1]. We will present interesting<br />

simulati<strong>on</strong>s studying and optimizing efficient temporal administrati<strong>on</strong> protocols,<br />

and describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e paradoxal effect observed in [3].<br />

In particular, we can give answers in an emerging area <str<strong>on</strong>g>of</str<strong>on</strong>g> clinical <strong>on</strong>cology named<br />

metr<strong>on</strong>omic chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy (or anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy) [4]. It c<strong>on</strong>sists in delivering<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy at doses below <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum tolerated doses, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a frequent<br />

schedule and is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at such a schedule would have an antiangiogenic<br />

effect.<br />

References.<br />

[1] Benzekry, S. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a model for anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in<br />

metastatic cancers, submitted.<br />

[2] Hahnfeldt, P. and Panigraphy, D. and Folkman, J. and Hlatky, L., Tumor development under<br />

angiogenic signaling : a dynamical <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, treatment, resp<strong>on</strong>se and postvascular<br />

dormancy, Cancer Research., 59, 4770–4775, 1999.<br />

428


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] J. ML Ebos, C. R. Lee, W. Cruz-Munoz, G. A. Bjarnas<strong>on</strong>, J. G. Christensen and R. S.<br />

Kerbel, Accelerated metastasis after short-term treatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a potent inhibitor <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor<br />

angiogenesis. Cancer Cell 15 (2009) 232-239.<br />

[4] Kerbel RS, Kamen BA. The anti-angiogenic basis <str<strong>on</strong>g>of</str<strong>on</strong>g> metr<strong>on</strong>omic chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. Nat. Rev.<br />

Cancer 4 (2004) 423-436.<br />

429


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

From <strong>on</strong>e to many: Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective, emergent behaviors<br />

in biology -I; Tuesday, June 28, 11:00<br />

C. An<str<strong>on</strong>g>th</str<strong>on</strong>g><strong>on</strong>y Hunt<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioengineering and Therapeutic Sciences, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> California, San Francisco<br />

e-mail: a.hunt@ucsf.edu<br />

Shahab Sheikh-Bahaei<br />

Program in Bioengineering , University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, San Francisco<br />

Emergent patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatic z<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> xenobiotic<br />

clearance and hepatotoxicity: a plausible role for cell<br />

learning<br />

Hepatic z<strong>on</strong>ati<strong>on</strong> is c<strong>on</strong>spicuous periportal (afferent) to perivenous (efferent) attribute<br />

gradients wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in lobules. Z<strong>on</strong>al differences occur in <str<strong>on</strong>g>th</str<strong>on</strong>g>e clearance <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> endogenous compounds and xenobiotics, and are evident for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> normal<br />

hepatic functi<strong>on</strong>s. However, no c<strong>on</strong>crete, causal, mechanistic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory is available to<br />

explain how, for example, different hepatic z<strong>on</strong>ati<strong>on</strong> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> P450 isozyme levels<br />

and hepatotoxicity emerge following dosing wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different compounds. We used <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> modeling and simulati<strong>on</strong> to discover, explore, and experimentally<br />

challenge c<strong>on</strong>crete mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at show how and why biomimetic z<strong>on</strong>ati<strong>on</strong><br />

patterns emerge and change wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in agent-based analogues. Syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods enable<br />

teasing apart complex systems in c<strong>on</strong>trast to inductive me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, which target<br />

predicti<strong>on</strong>. Following an iterative Refinement Protocol enabled c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> real<br />

(not c<strong>on</strong>ceptual), strictly defined, biomimetic mechanisms while also accounting for<br />

c<strong>on</strong>siderable uncertainty. Even <str<strong>on</strong>g>th</str<strong>on</strong>g>ough abstract, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir spatial<br />

c<strong>on</strong>text are flexible and sufficiently c<strong>on</strong>crete to instantiate mechanistic hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses<br />

and test <str<strong>on</strong>g>th</str<strong>on</strong>g>eir plausibility experimentally. Our working hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis was <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ose<br />

mechanisms have counterparts in rats. Mobile objects map to compounds. One<br />

analogue is comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> 460 identical, quasi-aut<strong>on</strong>omous functi<strong>on</strong>al units called sinusoidal<br />

segments (SSs). SSs detect and resp<strong>on</strong>d to compound-generated resp<strong>on</strong>se<br />

signals and <str<strong>on</strong>g>th</str<strong>on</strong>g>e local level <str<strong>on</strong>g>of</str<strong>on</strong>g> an endogenous gradient. Each SS used a learning algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m<br />

to adapt to new informati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e objective <str<strong>on</strong>g>of</str<strong>on</strong>g> improving efficiency. Up<strong>on</strong><br />

compound exposure, analogues developed a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> patterns <str<strong>on</strong>g>th</str<strong>on</strong>g>at were strikingly<br />

similar to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose reported in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature. A degree <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative validati<strong>on</strong> was<br />

achieved against data <strong>on</strong> hepatic z<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CYP1A2 mRNA expressi<strong>on</strong> caused by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree different doses <str<strong>on</strong>g>of</str<strong>on</strong>g> TCDD (2,3,7,8-tetracholorodibenzo-p-diox<strong>on</strong>e).<br />

430


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> liver: bridging molecular systems biology to<br />

virtual physiological human scale; Wednesday, June 29, 11:00<br />

Peter Hunter<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Auckland, New Zealand<br />

e-mail: p.hunter@auckland.ac.nz<br />

Modelling infrastructure for <str<strong>on</strong>g>th</str<strong>on</strong>g>e VPH/Physiome project<br />

This talk will describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e model and data encoding standards and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir associated<br />

databases and tools <str<strong>on</strong>g>th</str<strong>on</strong>g>at are being developed as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e VPH/Physiome project.<br />

431


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Biological Systems; Tuesday, June 28, 17:00<br />

Paul Hurtado<br />

Center for Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Cornell University<br />

e-mail: ph62@cornell.edu<br />

In-Host Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Mycoplasma Infecti<strong>on</strong>s: C<strong>on</strong>junctivitis<br />

in Wild Passerine Birds<br />

The host-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen interacti<strong>on</strong> is at <str<strong>on</strong>g>th</str<strong>on</strong>g>e core <str<strong>on</strong>g>of</str<strong>on</strong>g> every infectious disease system,<br />

and provides an important foundati<strong>on</strong> from which to study infectious disease at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e individual, populati<strong>on</strong> and community levels. This work uses tools from applied<br />

dynamical systems and bifurcati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eory to investigate how different aspects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e host immune resp<strong>on</strong>se affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a localized bacterial infecti<strong>on</strong><br />

caused by small, persistent bacteria known as mycoplasmas. The goal is to<br />

better understand observed variati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in and between host species in <str<strong>on</strong>g>th</str<strong>on</strong>g>e motivating<br />

biological system: infectious c<strong>on</strong>junctivitis in <str<strong>on</strong>g>th</str<strong>on</strong>g>e house finch (Carpodacus<br />

mexicanus) and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er passerine birds caused by <str<strong>on</strong>g>th</str<strong>on</strong>g>e novel pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen Mycoplasma<br />

gallisepticum.<br />

432


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Genetics; Wednesday, June 29, 14:30<br />

Thiemo Hustedt<br />

Universität Bielefeld, Technische Fakultät, Bielefeld<br />

e-mail: <str<strong>on</strong>g>th</str<strong>on</strong>g>ustedt@techfak.uni-bielefeld.de<br />

Moment closure in a Moran model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> recombinati<strong>on</strong><br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> genetics is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten well understood in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e limit <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite populati<strong>on</strong> size where a law <str<strong>on</strong>g>of</str<strong>on</strong>g> large numbers leads to a deterministic<br />

descripti<strong>on</strong>. Great challenges arise in models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> finite populati<strong>on</strong>s<br />

and interacting individuals. In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese n<strong>on</strong>linear models even <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expectati<strong>on</strong><br />

is difficult. Its dynamics does, usually, not <strong>on</strong>ly depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e current<br />

expectati<strong>on</strong> but <strong>on</strong> higher moments, and <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no moment closure.<br />

In my talk, I will present an excepti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>is rule. I will c<strong>on</strong>sider a c<strong>on</strong>tinuoustime<br />

Moran model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> arbitrary recombinati<strong>on</strong> and mutati<strong>on</strong>, but wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out resampling<br />

(i.e., genetic drift). In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case <str<strong>on</strong>g>th</str<strong>on</strong>g>e expectati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> products <str<strong>on</strong>g>of</str<strong>on</strong>g> marginal processes<br />

defined via partiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sites form a closed hierarchy, which is exhaustively<br />

described by a finite system <str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s. One <str<strong>on</strong>g>th</str<strong>on</strong>g>us has <str<strong>on</strong>g>th</str<strong>on</strong>g>e excepti<strong>on</strong>al<br />

situati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moment closure in a n<strong>on</strong>linear system. Surprisingly, <str<strong>on</strong>g>th</str<strong>on</strong>g>is property is<br />

lost when resampling is included.<br />

References.<br />

[1] E. Baake, and T. Hustedt, Moment closure in a Moran model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> recombinati<strong>on</strong>, submitted.<br />

433


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulati<strong>on</strong>; Tuesday, June 28, 11:00<br />

Dagmar Iber<br />

ETH Zurich<br />

e-mail: dagmar.iber@bsse.e<str<strong>on</strong>g>th</str<strong>on</strong>g>z.ch<br />

From Gene Networks to Tissue Engineering: Computati<strong>on</strong>al<br />

Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Pattern Formati<strong>on</strong><br />

Limb bud development has l<strong>on</strong>g served as a paradigm <str<strong>on</strong>g>of</str<strong>on</strong>g> organogenesis and pattern<br />

formati<strong>on</strong>. Decades <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic and biochemical studies provide us wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a weal<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

informati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular circuits <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trol cell expansi<strong>on</strong> and positi<strong>on</strong>dependent<br />

cell differentiati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing limb bud. In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> much detailed<br />

biological knowledge and much <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical work a detailed mechanistic understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> how <str<strong>on</strong>g>th</str<strong>on</strong>g>e genes and regulatory circuits interact to c<strong>on</strong>trol limb organogenesis<br />

is still lacking. In collaborati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Zeller group at <str<strong>on</strong>g>th</str<strong>on</strong>g>e Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Biomedicine <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e University <str<strong>on</strong>g>of</str<strong>on</strong>g> Basel we are developing detailed computati<strong>on</strong>al<br />

models for limb development in mice. By combining ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

experimentati<strong>on</strong> we seek to understand how key processes at <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic level<br />

interact to give rise to patterning at <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic level.<br />

The signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways (Fgf, Shh, Bmp, Gremlin) <str<strong>on</strong>g>th</str<strong>on</strong>g>at regulate limb bud development<br />

are strikingly similar to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>th</str<strong>on</strong>g>at regulate lung morphogenesis. Based<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model for limb development we have also developed a mechanistic model for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory network <str<strong>on</strong>g>th</str<strong>on</strong>g>at governs lung branching. The branching <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e br<strong>on</strong>chi<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lungs is highly stereotyped and results from a highly regulated process <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

restricts <str<strong>on</strong>g>th</str<strong>on</strong>g>e types and sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> branching modes.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g run we seek to use our mechanistic insights in <str<strong>on</strong>g>th</str<strong>on</strong>g>e engineering <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tissue and b<strong>on</strong>e.<br />

434


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Satomi Iino, Masanori Kohda, Satoshi Takahashi<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Humanities and Sciences, Nara Women’s University,<br />

Nara, Japan<br />

e-mail: sato0504@ics.nara-wu.ac.jp<br />

Masanori Kohda<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Osaka City University, Osaka, Japan<br />

e-mail: maskohda@sci.osaka-cu.ac.jp<br />

Satoshi Takahashi<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Humanities and Sciences, Nara Women’s University,<br />

Nara, Japan<br />

e-mail: takahasi@lisboa.ics.nara-wu.ac.jp<br />

Model <str<strong>on</strong>g>of</str<strong>on</strong>g> coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> fish by mating territory<br />

The feeding territories <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree species (P. polyod<strong>on</strong>, P. trewavasae, P. famula )<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> genus Petrochromis in Lake Tanganyika in Africa are distributed in a mosaic<br />

pattern. The feeding territories rarely overlap wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>specific<br />

and c<strong>on</strong>generic individuals invading in <str<strong>on</strong>g>th</str<strong>on</strong>g>e feeding territory are driven out as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey<br />

competes food resource. Males <str<strong>on</strong>g>of</str<strong>on</strong>g> P. polyod<strong>on</strong>, P. trewavasae, P. famula have<br />

feeding territory <str<strong>on</strong>g>th</str<strong>on</strong>g>at is 1 m apart from <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>specific males. Their distances<br />

are caused by mating territory where c<strong>on</strong>specific males are driven out.<br />

To examine if <str<strong>on</strong>g>th</str<strong>on</strong>g>e mating territory promote <str<strong>on</strong>g>th</str<strong>on</strong>g>e species coexistence we c<strong>on</strong>struted<br />

total leng<str<strong>on</strong>g>th</str<strong>on</strong>g> dependent rank model. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e territory arranged in<br />

c<strong>on</strong>tinuous space and feeding territory radius is decided from its species and total<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g>. If territory overlap, smaller individual shift its territory for <strong>on</strong>ce, so <str<strong>on</strong>g>th</str<strong>on</strong>g>at its<br />

territory does not overlap. Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> each species<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> species mating territory to <str<strong>on</strong>g>th</str<strong>on</strong>g>e radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e male <str<strong>on</strong>g>of</str<strong>on</strong>g> P. polyod<strong>on</strong>,<br />

P. trewavasae, P. famula are examined. Moreover, <strong>on</strong>e fictitious species is added,<br />

to examined whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er coexistence species number is limited. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e total leng<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

dependent rank model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mating territory does not promote <str<strong>on</strong>g>th</str<strong>on</strong>g>e coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

species.<br />

We c<strong>on</strong>structed ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er model where <str<strong>on</strong>g>th</str<strong>on</strong>g>e time c<strong>on</strong>cept is introduced. It deals<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e dea<str<strong>on</strong>g>th</str<strong>on</strong>g>, and breeding. When two territories overlap, <str<strong>on</strong>g>th</str<strong>on</strong>g>e overlapped<br />

regi<strong>on</strong> is divided by <str<strong>on</strong>g>th</str<strong>on</strong>g>e line <str<strong>on</strong>g>of</str<strong>on</strong>g> equal influemce. We caluculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

difference between <str<strong>on</strong>g>th</str<strong>on</strong>g>e feeding territory radius and <str<strong>on</strong>g>th</str<strong>on</strong>g>e distance from <str<strong>on</strong>g>th</str<strong>on</strong>g>e center. For<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mating territory <str<strong>on</strong>g>of</str<strong>on</strong>g> intermediate radius promotes <str<strong>on</strong>g>th</str<strong>on</strong>g>e coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

species.<br />

435


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Macromolecules and Molecular Aggregates;<br />

Saturday, July 2, 14:30<br />

Giuliana Indelicato<br />

York Centre for Complex Systems Analysis - The University <str<strong>on</strong>g>of</str<strong>on</strong>g> York<br />

- UK<br />

e-mail: giuliana.indelicato@york.ac.uk<br />

The dynamic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> viral capsids under structural<br />

transiti<strong>on</strong>s important for infecti<strong>on</strong><br />

We present a general me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigati<strong>on</strong> and predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> likely transiti<strong>on</strong><br />

mechanisms for capsids <str<strong>on</strong>g>of</str<strong>on</strong>g> icosahedral viruses. C<strong>on</strong>cepts from <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al (3D) quasicrystals, and from <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> structural phase<br />

transformati<strong>on</strong>s in 3D crystalline solids, are combined to give a framework for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese structural transformati<strong>on</strong>s. Applicati<strong>on</strong>s to a number <str<strong>on</strong>g>of</str<strong>on</strong>g> viruses will<br />

be discussed.<br />

436


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 14:30<br />

Jaime Iranzo<br />

Centro de Astrobiología (INTA-CSIC), Madrid, Spain<br />

e-mail: iranzosj@cab.inta-csic.es<br />

Celia Perales<br />

Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Madrid,<br />

Spain<br />

e-mail: cperales@cbm.uam.es<br />

Esteban Domingo<br />

Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Madrid,<br />

Spain<br />

e-mail: edomingo@cbm.uam.es<br />

Susanna C. Manrubia<br />

Centro de Astrobiología (INTA-CSIC), Madrid, Spain<br />

e-mail: scmanrubia@cab.inta-csic.es<br />

Tempo and mode <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibitor-mutagen <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies: a<br />

multidisciplinary approach<br />

The c<strong>on</strong>tinuous emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> drug-resistant viruses is a major obstacle for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

successful treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> viral infecti<strong>on</strong>s, and is steadily spurring <str<strong>on</strong>g>th</str<strong>on</strong>g>e design <str<strong>on</strong>g>of</str<strong>on</strong>g> new<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic strategies [1]. Corresp<strong>on</strong>dingly, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a pressing need to understand<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical effect <str<strong>on</strong>g>of</str<strong>on</strong>g> antiviral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies <strong>on</strong> complex, diverse and fast mutating<br />

viral populati<strong>on</strong>s. Indeed, <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> viral populati<strong>on</strong>s is at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> some recently suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic strategies, such as le<str<strong>on</strong>g>th</str<strong>on</strong>g>al mutagenesis<br />

and le<str<strong>on</strong>g>th</str<strong>on</strong>g>al defecti<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>at use mutagenic agents to induce viral extincti<strong>on</strong> [2,3].<br />

Despite bo<str<strong>on</strong>g>th</str<strong>on</strong>g> procedures have proved to be effective in vitro, <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> high doses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mutagen in vivo could involve severe side effects. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, low doses<br />

allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus to get adapted <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e rapid appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance mutants.<br />

Hence, research <strong>on</strong> combinati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies arises as a step towards reducing doses<br />

while keeping low <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus becomes resistant to <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug<br />

cocktail.<br />

Here we discuss combinati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies involving two dissimilar drugs: <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutagen<br />

ribavirin, and an inhibitor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral replicati<strong>on</strong>, guanidine. These drugs<br />

were used in vitro to analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir sequential versus simultaneous<br />

administrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>s by foot-and-mou<str<strong>on</strong>g>th</str<strong>on</strong>g> disease virus [4].<br />

C<strong>on</strong>trary to <str<strong>on</strong>g>th</str<strong>on</strong>g>e well known case when two inhibitors are used, it was found <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

sequential administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inhibitor followed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutagen is more effective<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>an simultaneous treatment. In order to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e reas<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>is behavior we<br />

designed a simple computati<strong>on</strong>al model representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

viral populati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e two drugs. It shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-edged role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutagen,<br />

reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e viable <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus but also favouring <str<strong>on</strong>g>th</str<strong>on</strong>g>e appearance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resistant mutants, causes an interacti<strong>on</strong> between inhibitor and mutagen <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficience <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. In agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical predicti<strong>on</strong>s,<br />

laboratory experiments c<strong>on</strong>firm in particular cases <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e suitability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

simultaneous or sequential administrati<strong>on</strong> depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e administered dose. The<br />

model predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamic resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral populati<strong>on</strong> for any dose combinati<strong>on</strong><br />

and, in particular, determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibitor and mutagen required<br />

437


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

to minimise <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> resistant mutants. Knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relevant model parameters is obtainable by means <str<strong>on</strong>g>of</str<strong>on</strong>g> few, simple experiments, such<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at our predicti<strong>on</strong>s could be extended to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er viral systems.<br />

References.<br />

[1] E. Domingo, A. Grande-Pérez & V. Martín, Future prospects for <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> rapidly<br />

evolving viral pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens: insights from evoluti<strong>on</strong>ary biology Expert Opin. Biol. Ther. 8 1455–<br />

1460 (2008).<br />

[2] M. Eigen, Error catastrophe and antiviral strategy Proc. Natl. Acad. Sci. USA 99 13374–13376<br />

(2002).<br />

[3] A. Grande-Pérez, E. Lázaro, P. Lowenstein, E. Domingo & S. C. Manrubia, Suppresi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

viral infectivity <str<strong>on</strong>g>th</str<strong>on</strong>g>rough le<str<strong>on</strong>g>th</str<strong>on</strong>g>al defecti<strong>on</strong> Proc. Natl. Acad. Sci. USA 102 4448–4452 (2005).<br />

[4] C. Perales, R. Agudo, H. Tejero, S. C. Manrubia & E. Domingo, Potential benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> sequential<br />

inhibitor-mutagen treatments <str<strong>on</strong>g>of</str<strong>on</strong>g> RNA virus infecti<strong>on</strong>s PLoS Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>. 5 e1000658 (2009).<br />

438


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Shingo Iwami<br />

Japan Science and Technology Agency<br />

e-mail: siwami@ms.u-tokyo.ac.jp<br />

Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>erine Beauchemin<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Ryers<strong>on</strong> University<br />

Tetsuko Tada<br />

Institute for Virus Research, Kyoto University<br />

Tatsuhiko Igarashi<br />

Institute for Virus Research, Kyoto University<br />

Tomoyuki Miura<br />

Institute for Virus Research, Kyoto University<br />

Immunology; Wednesday, June 29, 14:30<br />

Quantificati<strong>on</strong> system <str<strong>on</strong>g>of</str<strong>on</strong>g> viral dynamics in vitro - <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> SHIV <strong>on</strong> HSC-F -<br />

What we want to obtain and analyze are quantitative time-course experimental<br />

data but not qualitative snap-shot experimental data for <str<strong>on</strong>g>th</str<strong>on</strong>g>e purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> getting<br />

dynamical informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viral infecti<strong>on</strong> such as half-life <str<strong>on</strong>g>of</str<strong>on</strong>g> infected cells, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

viri<strong>on</strong>s, burst-size <str<strong>on</strong>g>of</str<strong>on</strong>g> virus, basic reproductive number <str<strong>on</strong>g>of</str<strong>on</strong>g> infected cell and so <strong>on</strong>.<br />

Today, I am going to show our recent studies about "Quantificati<strong>on</strong> system <str<strong>on</strong>g>of</str<strong>on</strong>g> viral<br />

dynamics in vitro", in which we can quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e above dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> SHIV <strong>on</strong> HSC-F<br />

cell line.<br />

439


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling I; Tuesday, June 28, 17:00<br />

Marta Iwanaszko<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Poland<br />

e-mail: marta.iwanaszko@polsl.pl<br />

The dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NF-B dependent genes:<br />

Statistics and evoluti<strong>on</strong>ary c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol sequences<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e promoter and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 3 UTR<br />

Background: NF-B family plays a prominent role in innate (early) immune resp<strong>on</strong>se<br />

and has impact <strong>on</strong> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er processes such as cell cycle activati<strong>on</strong> or cell apoptosis.<br />

Up<strong>on</strong> stimulati<strong>on</strong> by pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens such as viral RNA a kinase cascade is activated,<br />

which eventually strips <str<strong>on</strong>g>th</str<strong>on</strong>g>e NF-B <str<strong>on</strong>g>of</str<strong>on</strong>g> its inhibitor IB molecule and allows it to<br />

translocate into <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleus. Once in <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleus, it activates transcripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

approximately 90 genes, some <str<strong>on</strong>g>of</str<strong>on</strong>g> which trigger fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se.<br />

NF-B-dependent genes can be categorized, based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e timing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

activati<strong>on</strong> counted from NF-B translocati<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleus, as Early, Middle and<br />

Late genes. It is not obvious what mechanism is resp<strong>on</strong>sible for segregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

genes timing <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong>al resp<strong>on</strong>se. Results: It is likely <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e differences<br />

in timing are reflected in differences in <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> promoter regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> genes<br />

in different categories. Specifically, <str<strong>on</strong>g>th</str<strong>on</strong>g>is might c<strong>on</strong>cern differences in number and<br />

type <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> factor binding motifs, required for NF-B itself as well as for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e putative c<str<strong>on</strong>g>of</str<strong>on</strong>g>actors. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach we analyzed if genes assignment to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Early, Middle or Late group based <strong>on</strong> expressi<strong>on</strong> pattern, is c<strong>on</strong>nected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> special<br />

features in promoter structure. This c<strong>on</strong>necti<strong>on</strong> may be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms<br />

underlying <str<strong>on</strong>g>th</str<strong>on</strong>g>e different patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> c<strong>on</strong>trol. This issue is best c<strong>on</strong>sidered<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary framework, first, since functi<strong>on</strong>al binding sites are likely<br />

to be c<strong>on</strong>served in evoluti<strong>on</strong> and sec<strong>on</strong>d, since <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary change<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> promoter regi<strong>on</strong>s are not very well-known and are <str<strong>on</strong>g>of</str<strong>on</strong>g> serious interest. Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

c<strong>on</strong>trol sequences are AU - rich elements (ARE) located in 3UTR. AREs target<br />

mRNA for rapid degradati<strong>on</strong> and inflict mRNA instability. Latest studies show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at genes transcribed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> unstable mRNA have different transcripti<strong>on</strong> dynamic.<br />

We have found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are significant differences between <str<strong>on</strong>g>th</str<strong>on</strong>g>e Early and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Late<br />

genes promoter and 3UTR regi<strong>on</strong>s and many similarities are observed am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Early genes even between distant species, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e Late genes promoter regi<strong>on</strong>s are<br />

much more diversified. C<strong>on</strong>clusi<strong>on</strong>s: Wider phylogenetic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> NF-B dependent<br />

genes provides insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> cross species similarity found in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Early genes, opposed to many differences in promoter structure <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be found<br />

am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e Late genes. This suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at activati<strong>on</strong> and expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Late<br />

genes is much more species specific <str<strong>on</strong>g>th</str<strong>on</strong>g>an in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Early genes. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e promoter<br />

structure and ARE c<strong>on</strong>tent Middle genes can be divided into two subgroups: Early<br />

like and Late like.<br />

440


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 11:00<br />

Sara Jabbari<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, UK<br />

e-mail: sara.jabbari@nottingham.ac.uk<br />

Systems biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Clostridium acetobutylicum<br />

A renewed interest in <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels has emerged in recent years,<br />

principally due to dwindling crude oil reserves and c<strong>on</strong>cerns over <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>mental<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuels. Bacterial fermentati<strong>on</strong> is a possible soluti<strong>on</strong> to questi<strong>on</strong>s over<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e source <str<strong>on</strong>g>of</str<strong>on</strong>g> future bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uels.<br />

Clostridium acetobutylicum is an anaerobic, n<strong>on</strong>-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenic, Gram-positive<br />

bacterium capable <str<strong>on</strong>g>of</str<strong>on</strong>g> producing <str<strong>on</strong>g>th</str<strong>on</strong>g>e solvents acet<strong>on</strong>e, butanol and e<str<strong>on</strong>g>th</str<strong>on</strong>g>anol. Though<br />

each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese can be used as a bi<str<strong>on</strong>g>of</str<strong>on</strong>g>uel, <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> butanol make it <str<strong>on</strong>g>th</str<strong>on</strong>g>e most<br />

promising energy source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree. For butanol producti<strong>on</strong> by C. acetobutylicum<br />

to be exploited <strong>on</strong> an industrial scale, however, genetically-engineered strains must<br />

be designed which can produce butanol at much higher levels <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ose achieved<br />

by wild-type strains.<br />

The SysMO and SysMO2 programmes COSMIC (Clostridium acetobutylicum<br />

Systems Microbiology) were established to apply a systems approach to understanding<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e complex mechanisms behind solvent producti<strong>on</strong> by C. acetobutylicum and to<br />

establish <str<strong>on</strong>g>th</str<strong>on</strong>g>is bacterium as <str<strong>on</strong>g>th</str<strong>on</strong>g>e paradigm for clostridial systems biology. An iterative<br />

approach is adopted whereby experimental work is designed to complement ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> solventogenesis which in turn generate experimentally-testable<br />

hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses. Notably, <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene regulati<strong>on</strong> networks governing solvent producti<strong>on</strong><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>nected process <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong> are modelled and parametrised according<br />

to experimental data. Systematic in silico alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> for each<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e networks enables identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose genes most crucial for<br />

butanol producti<strong>on</strong> and will elucidate <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal genetic engineering strategies for<br />

maximising butanol yield.<br />

441


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Jędrzej Jabłoński<br />

Uniwersytet Warszawski; Wydział Matematyki, Informatyki i Mechaniki<br />

e-mail: jjabłoński@mimuw.edu.pl<br />

Size-structured populati<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> disc<strong>on</strong>tinuous grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate<br />

Modelling size-structured populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copepods demands allowing grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate to<br />

be disc<strong>on</strong>tinuous. This is <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e moulting process, which ocures<br />

rapidly after a l<strong>on</strong>g period <str<strong>on</strong>g>of</str<strong>on</strong>g> stagnati<strong>on</strong>. Introducing size structure simplifies modelling<br />

predator-dependent mortality. This leads to McKendrick equati<strong>on</strong> system<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>local bir<str<strong>on</strong>g>th</str<strong>on</strong>g> rate and mortality and disc<strong>on</strong>tinuous grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate. It can be<br />

shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exists a soluti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem and c<strong>on</strong>tinuity <str<strong>on</strong>g>of</str<strong>on</strong>g> it (in weak*<br />

topology wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to time) can be proven. Moreover a stable numerical scheme<br />

which is weakly c<strong>on</strong>vergent is presented.<br />

442


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Systems Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Development; Saturday, July 2, 14:30<br />

Johannes Jaeger<br />

EMBL/CRG Research Unit in Systems Biology, Centre de Regulació<br />

Genòmica (CRG), Barcel<strong>on</strong>a, Spain<br />

e-mail: yogi.jaeger@crg.es<br />

Reverse-Engineering <str<strong>on</strong>g>th</str<strong>on</strong>g>e Evoluti<strong>on</strong>ary and Developmental<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gap Gene Network<br />

Evoluti<strong>on</strong>ary developmental biology tries to close <str<strong>on</strong>g>th</str<strong>on</strong>g>e gap between molecular evoluti<strong>on</strong><br />

and phenotypic change. This requires a quantitative systems-level understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene networks underlying development across multiple levels from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular to <str<strong>on</strong>g>th</str<strong>on</strong>g>e organismic. Obtaining such an understanding is challenging<br />

due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e large number <str<strong>on</strong>g>of</str<strong>on</strong>g> factors involved. We depend <strong>on</strong> computati<strong>on</strong>al models<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>is task. I present a reverse-engineering approach, where gene regulatory<br />

interacti<strong>on</strong>s are inferred from quantitative expressi<strong>on</strong> data, using data-driven ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

models (called gene circuits). Gene circuit models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gap gene network<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Drosophila reproduce observed gene expressi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high precisi<strong>on</strong> and temporal<br />

resoluti<strong>on</strong> and reveal a dynamic mechanism for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>al informati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough shifts <str<strong>on</strong>g>of</str<strong>on</strong>g> gap gene expressi<strong>on</strong> domains. We are extending <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach to<br />

a comparative study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gap gene network between different species <str<strong>on</strong>g>of</str<strong>on</strong>g> dipterans<br />

(flies, midges and mosquitoes). I present preliminary results <strong>on</strong> data quantificati<strong>on</strong><br />

and modeling for gap genes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e scuttle fly Megaselia abdita, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e mo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

midge Clogmia albipunctata. Our approach yields predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> how changes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gene regulatory feedback affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e timing and positi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> expressi<strong>on</strong> domains.<br />

These predicti<strong>on</strong>s will be tested experimentally using RNA interference in all <str<strong>on</strong>g>th</str<strong>on</strong>g>ree<br />

species. No such quantitative systems-level analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an evolving gene regulatory<br />

network has been achieved to date.<br />

443


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Saturday, July 2, 11:00<br />

Mehrdad Jafari-Mamaghani<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences & Nutriti<strong>on</strong>, Karolinska Institutet<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Stockholm University<br />

e-mail: mjm@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

Staffan Strömblad<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences & Nutriti<strong>on</strong>, Karolinska Institutet<br />

e-mail: Staffan.Stromblad@ki.se<br />

John Lock<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences & Nutriti<strong>on</strong>, Karolinska Institutet<br />

e-mail: John.Lock@ki.se<br />

Joanna Tyrcha<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Stockholm University<br />

e-mail: joanna@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

Olivia Erikss<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Stockholm University<br />

e-mail: olivia@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

Employing Statistics in Systems Microscopy<br />

As <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis is fundamental in <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> breast cancer, it is<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> paramount significance to study cell adhesi<strong>on</strong> and cell migrati<strong>on</strong>, mechanisms<br />

tightly related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e machinery <str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis, in closer details. Yet, cell adhesi<strong>on</strong><br />

and cell migrati<strong>on</strong> result from a series <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic procedures in space <strong>on</strong> a subcellular<br />

level, namely <str<strong>on</strong>g>th</str<strong>on</strong>g>e organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-matrix adhesi<strong>on</strong> complexes (CMACs)<br />

[1].<br />

Using techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> high-<str<strong>on</strong>g>th</str<strong>on</strong>g>roughput microscopy and post-acquisiti<strong>on</strong> image quantificati<strong>on</strong>,<br />

large sets <str<strong>on</strong>g>of</str<strong>on</strong>g> data representing cell and CMAC properties are made available<br />

for statistical analysis. Such analysis is an essential comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> what is<br />

now termed as Systems Microscopy: systems biology analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> living cells using<br />

a coaliti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> automated microscopy, image quantificati<strong>on</strong>, data mining and statistical<br />

analysis [2].<br />

The nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical analysis in Systems Microscopy includes unsupervised<br />

as well as supervised statistical learning. The unsupervised learning approaches are<br />

employed for purposes such as visualizati<strong>on</strong> using dimensi<strong>on</strong> reducti<strong>on</strong>, and detecti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sub-populti<strong>on</strong>s using mixture models. The focus <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e supervised learning<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>odologies is <strong>on</strong> between-populati<strong>on</strong> tests, spatial point pattern analysis, and<br />

predictive modeling using various techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> classificati<strong>on</strong>. Naturally, given <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e self-organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> living cells is a spatio-temporal process, all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aforementi<strong>on</strong>ed<br />

statistical procedures are intended to interrogate static as well as dynamic<br />

(time-series) data.<br />

Thus, by employing <str<strong>on</strong>g>th</str<strong>on</strong>g>e necessary data and various statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>odologies, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

processes <str<strong>on</strong>g>of</str<strong>on</strong>g> cell adhesi<strong>on</strong> and cell migrati<strong>on</strong> may receive fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er eluciati<strong>on</strong> and<br />

potentially advance our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying causes as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is to give a brief descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e employed me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical analysis.<br />

444


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] John G. Lock, Bernhard Wehrle-Haller and Staffan Strömblad, Cell–matrix adhesi<strong>on</strong> complexes:<br />

Master c<strong>on</strong>trol machinery <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> Seminars in Cancer Biology, Volume 18,<br />

Issue 1, February 2008, Pages 65-76.<br />

[2] John G. Lock and Staffan Strömblad, Systems microscopy: An emerging strategy for <str<strong>on</strong>g>th</str<strong>on</strong>g>e life<br />

sciences Experimental Cell Research, Volume 316, Issue 8, 1 May 2010, Pages 1438-1444.<br />

445


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Peter Jagers<br />

Chalmers and U. <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: jagers@chalmers.se<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 17:00<br />

Finite Populati<strong>on</strong>s Regulated by a Carrying Capacity<br />

A populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> independently reproducing individuals in a stable envir<strong>on</strong>ment will<br />

die out, if reproducti<strong>on</strong> is critical or subcritical. If it is supercritical, <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

may escape extincti<strong>on</strong>. But <str<strong>on</strong>g>th</str<strong>on</strong>g>en it must grow exp<strong>on</strong>entially bey<strong>on</strong>d all limits,<br />

which is <str<strong>on</strong>g>of</str<strong>on</strong>g> course a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical artifact, unrealisabkle in a finite world. But<br />

what happens in reality, where <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a bound to grow<str<strong>on</strong>g>th</str<strong>on</strong>g>? A carrying capacity<br />

such <str<strong>on</strong>g>th</str<strong>on</strong>g>at individuals reproduce in a supercritical manner while populati<strong>on</strong> size<br />

is below it, reproducti<strong>on</strong> however turning subcritical as so<strong>on</strong> as <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> is<br />

larger <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e habitat carrying capacity?<br />

These questi<strong>on</strong>s are answered in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> general branching processes, i.e. populati<strong>on</strong>s<br />

where individuals have arbitrarily distributed life-spans and may give bir<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

according to an arbitrary pattern, and individual reproductive behaviour is influenced<br />

by populati<strong>on</strong> size in <str<strong>on</strong>g>th</str<strong>on</strong>g>e manner described.<br />

References.<br />

[1] Jagers, P. and Harding, K., Viability <str<strong>on</strong>g>of</str<strong>on</strong>g> small populati<strong>on</strong>s experiencing recurring catastrophes.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Pop. Studies 16 177–188 (2009).<br />

[2] Klebaner, F. C., Sagitov, S., Vatutin, V., Haccou, P., and Jagers, P., Stochasticity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

adaptive dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>e bare b<strong>on</strong>es. J. Biol. Dyn. 5 147–162 (2011).<br />

[3] Jagers, P. and Klebaner, F. Populati<strong>on</strong> size dependent, age structured branching processes<br />

linger around <str<strong>on</strong>g>th</str<strong>on</strong>g>eir carrying capacity. J. Appl. Prob. 48A, to appear (2011).<br />

446


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 14:30<br />

Nick Jagiella<br />

INRIA Rocquencourt, Paris, France<br />

e-mail: nick.jagiella@inria.fr<br />

Benedikt Müller 1 , Irene Vign<strong>on</strong>-Clementel 2 , Margareta Müller 1 , Dirk<br />

Drasdo 2<br />

1 DKFZ, Heidelberg, Germany, 2 INRIA Rocquencourt, Paris, France<br />

From Data Analysis to Model Parameterizati<strong>on</strong> &<br />

Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Therapy<br />

In order to establish a predictive model for in-vivo tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy a<br />

multi-scale model has to be set-up and calibrated individually in a stepwise process<br />

to a targeted cell type. As a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> principle we will present <str<strong>on</strong>g>th</str<strong>on</strong>g>e process chain<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> model c<strong>on</strong>structi<strong>on</strong> and parameterizati<strong>on</strong> from different data sources for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

EMT6/Ro and <str<strong>on</strong>g>th</str<strong>on</strong>g>e SK-MES-1 cell line.<br />

In a first step <str<strong>on</strong>g>th</str<strong>on</strong>g>e model has been built up and validated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> EMT6/Ro mouse<br />

mammary carcinoma multi-cellular cell spheroid data from literature. For <str<strong>on</strong>g>th</str<strong>on</strong>g>is cell<br />

line it predicted <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> kinetics to be c<strong>on</strong>trolled by spatial restrains over a wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen and glucose medium c<strong>on</strong>centrati<strong>on</strong>s. Only if bo<str<strong>on</strong>g>th</str<strong>on</strong>g>, oxygen and<br />

glucose are very limiting saturati<strong>on</strong> was observed which <str<strong>on</strong>g>th</str<strong>on</strong>g>e model could explain<br />

by cells switching from aerobic to anaerobic glycolysis.<br />

In a sec<strong>on</strong>de step <str<strong>on</strong>g>th</str<strong>on</strong>g>e model was adapted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e SK-MES-1 cell line. The<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> kinetics was calibrated quantitatively in comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> curves<br />

and qualitatively by image analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> spheroid cryosecti<strong>on</strong>s stained for apoptosis<br />

and proliferati<strong>on</strong>.<br />

447


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Harsh Jain<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, Ohio State University<br />

e-mail: hjain@mbi.osu.edu<br />

Helen Byrne<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

Nicanor Moldovan<br />

Biomedical Engineering, Ohio State University<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Novel Implantable Oxygen<br />

Sensor<br />

N<strong>on</strong>-vascularized tissue engineering c<strong>on</strong>structs and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er solid implants wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biomedical<br />

applicati<strong>on</strong>s, such as encapsulated live cells or glucose sensors, need oxygen (O2)<br />

for proper functi<strong>on</strong>ing. To better understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e availability <str<strong>on</strong>g>of</str<strong>on</strong>g> O2 to implants, a<br />

novel sensor has been developed by researchers at <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ohio State University, <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

can n<strong>on</strong>-invasively record, after implantati<strong>on</strong> in mice, <str<strong>on</strong>g>th</str<strong>on</strong>g>e signal provided by local<br />

pO2. This has subsequently been used to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> neovascularizati<strong>on</strong><br />

and foreign body reacti<strong>on</strong> in resp<strong>on</strong>se to an implanted device. Briefly, b<strong>on</strong>e marrow<br />

progenitor cells embedded in a Matrigel plug were implanted next to <str<strong>on</strong>g>th</str<strong>on</strong>g>e sensor, or<br />

gel al<strong>on</strong>e used as c<strong>on</strong>trol, and weekly O2 readings noted. In order to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

readings, we have developed a partial differential equati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental<br />

system. The model anticipates <str<strong>on</strong>g>th</str<strong>on</strong>g>at pO2 in implant follows a parabolic pattern,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e descending side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e curve being indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se to normalizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic demands <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue which requires a lower pO2. The model is sensitive<br />

to angiogenic stimulati<strong>on</strong>, predicting a rapid raise in pO2 and a slower reducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signal. These results can <str<strong>on</strong>g>th</str<strong>on</strong>g>us be used to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e various stages <str<strong>on</strong>g>of</str<strong>on</strong>g> foreign<br />

body reacti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at occurs in resp<strong>on</strong>se to <str<strong>on</strong>g>th</str<strong>on</strong>g>e implants, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect stem-cell<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy has <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is. A 2D illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is is also simulated.<br />

448


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bridging <str<strong>on</strong>g>th</str<strong>on</strong>g>e Divide: Cancer Models in Clinical Practice; Thursday, June 30,<br />

11:30<br />

Harsh Jain<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, Ohio State University<br />

e-mail: hjain@mbi.osu.edu<br />

Avner Friedman<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, Ohio State University<br />

Steven Clint<strong>on</strong><br />

Comprehensive Cancer Center, Ohio State University<br />

Arvinder Bhinder<br />

Comprehensive Cancer Center, Ohio State University<br />

The Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Androgen Ablati<strong>on</strong> <strong>on</strong> Mutati<strong>on</strong> Acquisiti<strong>on</strong><br />

in Prostate Cancer<br />

Prostate cancer (CaP) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d most comm<strong>on</strong> cancer in American men. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e majority <str<strong>on</strong>g>of</str<strong>on</strong>g> patients diagnosed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> CaP are cured wi<str<strong>on</strong>g>th</str<strong>on</strong>g> primary treatment,<br />

it remains <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d lead cause behind <strong>on</strong>ly lung cancer, <str<strong>on</strong>g>of</str<strong>on</strong>g> male cancerrelated<br />

dea<str<strong>on</strong>g>th</str<strong>on</strong>g>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e western world. A few features set it apart from o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cancers;<br />

it develops slowly over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> years; CaP cells are dependent <strong>on</strong> male sex horm<strong>on</strong>es<br />

for grow<str<strong>on</strong>g>th</str<strong>on</strong>g>; treatment in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous androgen ablati<strong>on</strong> fails due<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> castrate-resistant CaP cells. Therefore, it has been proposed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at intermittent androgen ablati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy might be a better strategy for treating<br />

CaP. I present a model <str<strong>on</strong>g>of</str<strong>on</strong>g> prostate grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in humans, which can simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CaP, as well as explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance in resp<strong>on</strong>se to <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. Our<br />

model shall incorporate a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> cell types such as heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y and CaP cells, as<br />

well as detailed biochemical pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways crucial to <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cells. Fits to<br />

individual patient data will also be presented. By being able to distinguish between<br />

various drug acti<strong>on</strong>s, and being fitted to individual patient data, we hope to develop<br />

a truly prescriptive tool to aid physicians in treatment choices for CaP patients.<br />

449


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Roman Jaksik<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: roman.jaksik@polsl.pl<br />

Michał Marczyk<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Joanna Polańska<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

MicroImage as a tool for microarray image artifacts<br />

correcti<strong>on</strong><br />

Olig<strong>on</strong>ucleotide single color microarrays are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most popular platforms<br />

used to characterize transcripti<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile changes induced by various chemical or<br />

physical factors. This me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is based <strong>on</strong> hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ousands unique 25-mer<br />

olig<strong>on</strong>ucleotide probes grouped into gene specific sets. Single probes attach labeled<br />

transcripts <str<strong>on</strong>g>of</str<strong>on</strong>g> specific genes which quantity is proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluorescence intensity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e probe, accessed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a laser scanner. Microarray surface images obtained<br />

in such experiment <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>tain artifacts <str<strong>on</strong>g>of</str<strong>on</strong>g> various shape and size caused by ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

defects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e manufacturing process or impurities wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in target genomic material.<br />

Data processing me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g>ten fail to exclude outlying signal values resulting from<br />

such defects which leads to artificially increased variati<strong>on</strong> between replicate experiments,<br />

decreasing statistical significance <str<strong>on</strong>g>of</str<strong>on</strong>g> inter sample studies, or to reduced<br />

accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> sample classificati<strong>on</strong> if <str<strong>on</strong>g>th</str<strong>on</strong>g>e experiment aims to search for factor induced<br />

genetic resp<strong>on</strong>se signature.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we present different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> artifacts and propose a novel detecti<strong>on</strong><br />

and correcti<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od based <strong>on</strong> signal intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er, unaffected replicate<br />

probes. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od was implemented as a standal<strong>on</strong>e windows applicati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a very easy to use graphical interface allowing to process hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> microarray<br />

images wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in few minutes and visualize <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <strong>on</strong> various complexity steps.<br />

The usefulness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is me<str<strong>on</strong>g>th</str<strong>on</strong>g>od was evaluated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> breast cancer microarray<br />

dataset, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> marked patients radiosensitivity and technical replicate data<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> simulated artificial noise objects.<br />

Using comm<strong>on</strong> statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods inter-group correlati<strong>on</strong>, inter-gene variance<br />

and discriminative gene analysis were performed. The overall impact <str<strong>on</strong>g>of</str<strong>on</strong>g> artifacts<br />

processing <strong>on</strong> sample classificati<strong>on</strong> accuracy was also evaluated. The results show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at image artifacts correcti<strong>on</strong> increases dataset integrity, proving <str<strong>on</strong>g>th</str<strong>on</strong>g>at it is possible<br />

to separate image defects from inter sample variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> biological origin and<br />

specific features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microarray chip achieving higher quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e analyzed<br />

data.<br />

ACKNOWLEDGMENT:<br />

The au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors would like to <str<strong>on</strong>g>th</str<strong>on</strong>g>ank <str<strong>on</strong>g>th</str<strong>on</strong>g>e teams <str<strong>on</strong>g>of</str<strong>on</strong>g> Peter O’Neill from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Medical<br />

Research Council Radiati<strong>on</strong> & Genome Stability Unit in Harwell, Michael B<strong>on</strong>in<br />

from University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tuebingen, Micheline Giphart-Gassler from Leiden University<br />

Medical Center and John Yarnold from The Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer Research in Sutt<strong>on</strong><br />

for useful comments and for providing <str<strong>on</strong>g>th</str<strong>on</strong>g>e microarray data.<br />

450


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

This work was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Program FP6 - 036452, GENEPIlowRT<br />

and Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Higher Educati<strong>on</strong> grant no N N519 647840.<br />

451


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>negative Rad<strong>on</strong> measure spaces wi<str<strong>on</strong>g>th</str<strong>on</strong>g> metric structure<br />

to populati<strong>on</strong> dynamic models; Wednesday, June 29, 17:00<br />

Grzegorz Jamróz<br />

Uniwersytet Warszawski<br />

e-mail: jamroz@mimuw.edu.pl<br />

Measure-transmissi<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s - a powerful tool in<br />

modeling bimodal dynamics<br />

Differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells may be subject to two paradigms. Ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er a cell is in a<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> inevitable alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its characteristics or <str<strong>on</strong>g>th</str<strong>on</strong>g>e state is quasi-stati<strong>on</strong>ary,<br />

meaning <str<strong>on</strong>g>th</str<strong>on</strong>g>at for a certain period <str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>th</str<strong>on</strong>g>e biochemical characteristics remain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

same. A cell in <str<strong>on</strong>g>th</str<strong>on</strong>g>e former, transient state usually originated in and heads towards<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e latter, reaching it in a finite time. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, a cell in a quasi-stati<strong>on</strong>ary<br />

state may stay <str<strong>on</strong>g>th</str<strong>on</strong>g>ere arbitrarily l<strong>on</strong>g and is typically capable <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> self-renewal<br />

(by divisi<strong>on</strong>) and differentiati<strong>on</strong> (wi<str<strong>on</strong>g>th</str<strong>on</strong>g> or wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out divisi<strong>on</strong>). Incidentally, all <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

scenarios may coincide in a single system, as e.g. in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> neurogenesis, and<br />

lead to interesting bimodal dynamics. These two types <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics can be modeled<br />

by transport equati<strong>on</strong>s or (a system <str<strong>on</strong>g>of</str<strong>on</strong>g>) ordinary differential equati<strong>on</strong>s, respectively.<br />

N<strong>on</strong>e<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, <str<strong>on</strong>g>th</str<strong>on</strong>g>e two approaches can be unified in a purely c<strong>on</strong>tinuous setting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

measure-valued soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> additi<strong>on</strong>al transmissi<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e simplest case, <str<strong>on</strong>g>th</str<strong>on</strong>g>is leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e following problem ([1]):<br />

∂tµ(t) + ∂x(g(v(t)1x=xi (x)µ(t)) = p(v(t), x)µ(t),<br />

g(v(t)) dµ(t)<br />

<br />

(x+<br />

dL1 i ) = ci(v(t)) dµ(t), i = 0, . . . , N,<br />

µ(0) = µ0,<br />

<br />

v(t) =<br />

{xN }<br />

{xi}<br />

dµ(t).<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk, we present <str<strong>on</strong>g>th</str<strong>on</strong>g>is new setting and discuss how it allows to capture in<br />

an elegant way a weal<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> effects, promising interesting applicati<strong>on</strong>s well bey<strong>on</strong>d<br />

its original motivati<strong>on</strong>.<br />

References.<br />

[1] Piotr Gwiazda, Grzegorz Jamróz, Anna Marciniak-Czochra, Models <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete and c<strong>on</strong>tinuous<br />

cell differentiati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> transport equati<strong>on</strong>. Submitted.<br />

452


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Saturday, July 2, 14:30<br />

Joanna Jaroszewska<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics, and Mechanics; University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Warsaw<br />

e-mail: jar@mimuw.edu.pl<br />

Chaotic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> some partial differential equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a random delay describing cellular replicati<strong>on</strong><br />

We study some model <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell populati<strong>on</strong>, which is based <strong>on</strong> a model proposed<br />

by Mackey and Rudnicki in [1]. Our model is described by a partial differential<br />

equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a transport-type wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a random delay. We c<strong>on</strong>sider a random dynamical<br />

system generated by <str<strong>on</strong>g>th</str<strong>on</strong>g>is equati<strong>on</strong> and describe its chaotic behaviour.<br />

References.<br />

[1] M. C. Mackey and R. Rudnicki, Global stability in a delayed partial differential equati<strong>on</strong><br />

describing cellular replicati<strong>on</strong>, J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol., 33, 89–109.<br />

453


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling II; Wednesday, June 29,<br />

14:30<br />

Joanna Jaruszewicz<br />

IPPT PAN<br />

e-mail: jjarusz@ippt.gov.pl<br />

Pawel Zuk<br />

IPPT PAN<br />

Tomasz Lipniacki<br />

IPPT PAN<br />

Type <str<strong>on</strong>g>of</str<strong>on</strong>g> noise defines <str<strong>on</strong>g>th</str<strong>on</strong>g>e most stable attractor in bistable<br />

gene expressi<strong>on</strong> model<br />

We c<strong>on</strong>sider simplified stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>linear positive<br />

feedback. It is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene may be in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two states: active<br />

or inactive. Protein molecules are produced directly from <str<strong>on</strong>g>th</str<strong>on</strong>g>e active gene. We focus<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e case in which in <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic approximati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system has two stable<br />

steady state soluti<strong>on</strong>s. Two types <str<strong>on</strong>g>of</str<strong>on</strong>g> noise are c<strong>on</strong>sidered; transcripti<strong>on</strong>al (characteristic<br />

for bacteria) - due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> protein molecules, and gene<br />

switching noise (important in Eukaryotes) - due to gene activati<strong>on</strong> and inactivati<strong>on</strong><br />

transiti<strong>on</strong>s. We explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>dence between <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic system and its<br />

deterministic approximati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit <str<strong>on</strong>g>of</str<strong>on</strong>g> low noise. Analytical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

approximati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic system, each wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> noise included,<br />

showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at when noise decreases to zero (I) <str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary probability density<br />

(SPD) c<strong>on</strong>verges to Dirac delta in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two stable steady states, (II) in a broad<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>e SPD <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system wi<str<strong>on</strong>g>th</str<strong>on</strong>g> transcripti<strong>on</strong>al noise c<strong>on</strong>verges to<br />

Dirac delta in a different steady state <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e SPD <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system wi<str<strong>on</strong>g>th</str<strong>on</strong>g> gene switching<br />

noise. This suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transcripti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene-switching<br />

noise dictates in which state <str<strong>on</strong>g>th</str<strong>on</strong>g>e SPD c<strong>on</strong>centrates. We verified <str<strong>on</strong>g>th</str<strong>on</strong>g>is hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis by<br />

M<strong>on</strong>te Carlo simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact model. This finding has <str<strong>on</strong>g>th</str<strong>on</strong>g>e following <str<strong>on</strong>g>th</str<strong>on</strong>g>ermodynamic<br />

interpretati<strong>on</strong>. The n<strong>on</strong> interacting molecules diffusing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e uniform<br />

temperature field settle in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lowest potential well as temperature tends to zero.<br />

However when <str<strong>on</strong>g>th</str<strong>on</strong>g>e temperature field is not uniform temperature pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile dictates in<br />

which well molecules c<strong>on</strong>centrate. Apparently, <str<strong>on</strong>g>th</str<strong>on</strong>g>e two types <str<strong>on</strong>g>of</str<strong>on</strong>g> noise specific for<br />

gene expressi<strong>on</strong> are c<strong>on</strong>nected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two different temperature fields and <str<strong>on</strong>g>th</str<strong>on</strong>g>us favors<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e different attractors.<br />

Our study dem<strong>on</strong>strates <str<strong>on</strong>g>th</str<strong>on</strong>g>at in systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying bistability, like genetic<br />

switches, <str<strong>on</strong>g>th</str<strong>on</strong>g>e noise characteristic c<strong>on</strong>trols in which <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epigenetic attractors<br />

cell populati<strong>on</strong> will settle.<br />

454


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fractals and Complexity I; Wednesday, June 29, 14:30<br />

Herbert Jelinek<br />

Charles Sturt University<br />

e-mail: hjelinek@csu.edu.au<br />

Audrey Karperien<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Community Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Charles Sturt University<br />

Nebojsa Milosevic<br />

Biophysics Department, Belgrade University<br />

Lacunarity analysis and classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microglia in<br />

neuroscience<br />

Fractal analysis in <str<strong>on</strong>g>th</str<strong>on</strong>g>e neurosciences has advanced over <str<strong>on</strong>g>th</str<strong>on</strong>g>e last twenty years<br />

to include measures such as lacunarity. Lacunarity assesses heterogeneity or translati<strong>on</strong>al<br />

and rotati<strong>on</strong>al invariance in an image. In general, measures <str<strong>on</strong>g>of</str<strong>on</strong>g> lacunarity<br />

corresp<strong>on</strong>d to visual impressi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> uniformity, where low lacunarity c<strong>on</strong>venti<strong>on</strong>ally<br />

implies homogeneity and high lacunarity heterogeneity. It is now necessary to<br />

review some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e new permutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is analysis technique and what it can<br />

tell <str<strong>on</strong>g>th</str<strong>on</strong>g>e neuroscientist. This paper outlines me<str<strong>on</strong>g>th</str<strong>on</strong>g>odological c<strong>on</strong>siderati<strong>on</strong>s associated<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree different types <str<strong>on</strong>g>of</str<strong>on</strong>g> lacunarity analysis applied to <str<strong>on</strong>g>th</str<strong>on</strong>g>e classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microglial cells.<br />

455


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

W<strong>on</strong>ju Je<strong>on</strong><br />

Nati<strong>on</strong>al Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences<br />

e-mail: wje<strong>on</strong>@nims.re.kr<br />

Sang-Hee Lee<br />

Nati<strong>on</strong>al Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences<br />

Ecosystems Dynamics; Tuesday, June 28, 11:00<br />

Exploring Algal Blooms <str<strong>on</strong>g>th</str<strong>on</strong>g>rough Plankt<strong>on</strong>s Interacti<strong>on</strong>s<br />

Using Trophic Model<br />

We developed two-level trophic model to systematically understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e algal blooming<br />

in aquatic systems. The model combined two ecological processes: <strong>on</strong>e is <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

predator (zooplankt<strong>on</strong>)-prey (phytoplankt<strong>on</strong>) interacti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er is <str<strong>on</strong>g>th</str<strong>on</strong>g>e advecti<strong>on</strong><br />

and diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid. By using <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, we computati<strong>on</strong>ally revealed<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>e combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological and envir<strong>on</strong>mental factors causes <str<strong>on</strong>g>th</str<strong>on</strong>g>e algal bloom<br />

in relati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e turbulent mixing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e plankt<strong>on</strong>s. We showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e turbulent<br />

mixing is likely to str<strong>on</strong>gly affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e blooming <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface<br />

plankt<strong>on</strong>. In additi<strong>on</strong>, we briefly discussed <str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong> strategy between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

plankt<strong>on</strong>s to increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir survival in c<strong>on</strong>necti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e blooming.<br />

456


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

From <strong>on</strong>e to many: Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective, emergent behaviors<br />

in biology -II; Tuesday, June 28, 14:30<br />

Yi Jiang<br />

Los Alamos Nati<strong>on</strong>al Laboratory<br />

e-mail: jiang@lanl.gov<br />

Yilin Wu<br />

Harvard<br />

Mark Alber<br />

Notre Dame<br />

Dale Kaiser<br />

Stanford<br />

Bacterial behavioral principles: Learning from Myxobacteria<br />

Many bacteria are able to spread rapidly over surfaces by <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> swarming.<br />

Bacterial swarms are model systems for <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> multicellularity and biological<br />

self-organizati<strong>on</strong>. Swarming bacteria have rod-shaped cells, and are observed to<br />

move smoo<str<strong>on</strong>g>th</str<strong>on</strong>g>ly even when <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are packed toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er at high density. Why d<strong>on</strong>t<br />

swarming cells interfere wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers movements? Using a cell-based biomechanical<br />

model, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at periodic reversals <str<strong>on</strong>g>of</str<strong>on</strong>g> moving directi<strong>on</strong> in populati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rod-shaped bacteria can lead to extensive ordering <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, <str<strong>on</strong>g>th</str<strong>on</strong>g>us enabling <str<strong>on</strong>g>th</str<strong>on</strong>g>em<br />

to effectively resolve traffic jams formed during swarming. We also show <str<strong>on</strong>g>th</str<strong>on</strong>g>at an<br />

optimal reversal period and an optimal cell leng<str<strong>on</strong>g>th</str<strong>on</strong>g> exist for producing such order.<br />

The optimal reversal period and <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal cell leng<str<strong>on</strong>g>th</str<strong>on</strong>g> are c<strong>on</strong>nected by a simple<br />

relati<strong>on</strong>. We suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at basic behavioral principles exist for bacterial swarming<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at are independent <str<strong>on</strong>g>of</str<strong>on</strong>g> detailed motility mechanisms.<br />

457


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> and cortical actin at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular level;<br />

Saturday, July 2, 08:30<br />

Jean-François Joanny<br />

Physico-Chimie Curie Institut Curie<br />

e-mail: jean-francois.joanny@curie.fr<br />

Cortical actin and cell instabilities<br />

Cortical actin and cell instabilities. JF Joanny, J. Prost, G. Salbreux<br />

We present a review <str<strong>on</strong>g>of</str<strong>on</strong>g> our work <strong>on</strong> cortical actin and <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e instabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> cells<br />

induced by cortical actin. We first show how we can apply our active gel <str<strong>on</strong>g>th</str<strong>on</strong>g>eory<br />

to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti-myosin cortex in a cell. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cortical actin layer. The results are applied to <str<strong>on</strong>g>th</str<strong>on</strong>g>ree problems: <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> belbs to discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimetns <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e group <str<strong>on</strong>g>of</str<strong>on</strong>g> E. Paluch in Dresden<br />

where <str<strong>on</strong>g>th</str<strong>on</strong>g>e blebs are induced by photoablati<strong>on</strong>; oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> adhering cells to<br />

discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e group <str<strong>on</strong>g>of</str<strong>on</strong>g> P. Pullarkat in Bangalore; and <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tractile rings. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is last case, we discuss bo<str<strong>on</strong>g>th</str<strong>on</strong>g> wound healing formati<strong>on</strong> in<br />

a xenopus embryo and <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>tractile ring during cytokinesis<br />

458


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

H.C. Johns<strong>on</strong>*<br />

L<strong>on</strong>d<strong>on</strong> School <str<strong>on</strong>g>of</str<strong>on</strong>g> Hygiene and Tropical Medicine<br />

e-mail: Helen.Johns<strong>on</strong>@lshtm.ac.uk<br />

W.J. Edmunds<br />

L<strong>on</strong>d<strong>on</strong> School <str<strong>on</strong>g>of</str<strong>on</strong>g> Hygiene and Tropical Medicine<br />

e-mail: John.Edmunds@lshtm.ac.uk<br />

R.G. White<br />

L<strong>on</strong>d<strong>on</strong> School <str<strong>on</strong>g>of</str<strong>on</strong>g> Hygiene and Tropical Medicine<br />

e-mail: Richard.White@lshtm.ac.uk<br />

Epidemics; Saturday, July 2, 08:30<br />

Novel ABC - Bayesian Emulati<strong>on</strong> Hybrid Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m For<br />

Complex Model Calibrati<strong>on</strong>: The First Waves<br />

Introducti<strong>on</strong>. The complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical systems underlying epidemics<br />

has led to <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale stochastic models for predicti<strong>on</strong> purposes. However,<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for robustly calibrating and analysing <str<strong>on</strong>g>th</str<strong>on</strong>g>ese simulators can be prohibitively<br />

inefficient. We propose an algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for fitting complex models <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporates<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> Approximate Bayesian Computati<strong>on</strong> (ABC) and Bayesian Emulati<strong>on</strong>.<br />

ABC enables inference about model parameters wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out <str<strong>on</strong>g>th</str<strong>on</strong>g>e need for calculating<br />

a likelihood functi<strong>on</strong>, by generating approximati<strong>on</strong>s from repeated model<br />

runs. However, each complex model run might take hours. Emulati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are<br />

being developed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e fields <str<strong>on</strong>g>of</str<strong>on</strong>g> cosmology, oceanography and meteorological modelling.<br />

The complex model functi<strong>on</strong> is summarised as an ‘emulator’: a stochastic<br />

functi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e global behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex model functi<strong>on</strong> as a<br />

linear regressi<strong>on</strong> model and local deviati<strong>on</strong>s from <str<strong>on</strong>g>th</str<strong>on</strong>g>is behaviour as Gaussian processes.<br />

The emulator <str<strong>on</strong>g>th</str<strong>on</strong>g>en becomes a cheap proxy for <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex model, allowing<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> calibrati<strong>on</strong> and probabilistic sensitivity analysis to be c<strong>on</strong>ducted in a fracti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al time.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. We report <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an emulati<strong>on</strong>-based calibrati<strong>on</strong><br />

algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m to an individual-based stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> STI transmissi<strong>on</strong> in Uganda.<br />

Starting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> uninformative priors for 19 behavioural and biological input parameters,<br />

we ‘trained’ an emulator wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 200 sampled parameter sets and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir corresp<strong>on</strong>ding<br />

complex model output (point estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV prevalence). Sampling a<br />

fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er 10,000 parameter sets from <str<strong>on</strong>g>th</str<strong>on</strong>g>e priors, we used <str<strong>on</strong>g>th</str<strong>on</strong>g>e emulator to make output<br />

predicti<strong>on</strong>s over a large area <str<strong>on</strong>g>of</str<strong>on</strong>g> input parameter space. Weighting each parameter<br />

set according to goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> fit to observed data, we identified promising areas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameter space to evaluate using <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex model. A more accurate emulator<br />

was <str<strong>on</strong>g>th</str<strong>on</strong>g>en trained, incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>is additi<strong>on</strong>al complex model output. This process<br />

was repeated in ‘waves’ as per sequential ABC me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods.<br />

Results. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> emulators allowed an evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter<br />

space due to increased computati<strong>on</strong>al efficiency. Processing time for <strong>on</strong>e<br />

prevalence point estimate was reduced from over 15 minutes <strong>on</strong> an HPC cluster to<br />

less <str<strong>on</strong>g>th</str<strong>on</strong>g>an 0.1 sec<strong>on</strong>d <strong>on</strong> a PC. Even <str<strong>on</strong>g>th</str<strong>on</strong>g>e first two waves <str<strong>on</strong>g>of</str<strong>on</strong>g> such an algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m provided<br />

helpful insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e most influential parameters and identified promising<br />

regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter space.<br />

459


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

C<strong>on</strong>clusi<strong>on</strong>s. The development <str<strong>on</strong>g>of</str<strong>on</strong>g> an ABC - Bayesian Emulati<strong>on</strong> hybrid approach<br />

to complex model calibrati<strong>on</strong> is promising, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> emulators <str<strong>on</strong>g>of</str<strong>on</strong>g>fering large<br />

advantages in computati<strong>on</strong>al efficiency. However, fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er research is needed regarding<br />

weighting, tolerance levels and covariance.<br />

460


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell and Tissue Biophysics; Saturday, July 2, 11:00<br />

Z<str<strong>on</strong>g>of</str<strong>on</strong>g>ia J<strong>on</strong>es<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, Nottingham, NG7<br />

2RD, UK<br />

e-mail: pmxzj1@nottingham.ac.uk<br />

Helfrich Energy Model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Phagocytosis <str<strong>on</strong>g>of</str<strong>on</strong>g> a Fibre<br />

CNTs are a form <str<strong>on</strong>g>of</str<strong>on</strong>g> High Aspect Ratio Nanoparticles (HARN). Their radius is<br />

typically <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly a few nanometres (10 −9 ) while <str<strong>on</strong>g>th</str<strong>on</strong>g>eir leng<str<strong>on</strong>g>th</str<strong>on</strong>g> can be <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e micr<strong>on</strong><br />

scale (10 −6 ). Their shape has been found to make <str<strong>on</strong>g>th</str<strong>on</strong>g>eir removal from <str<strong>on</strong>g>th</str<strong>on</strong>g>e lung<br />

surface <strong>on</strong> inhalati<strong>on</strong> by macrophages especially difficult. This is widely regarded<br />

as a key mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> toxicity [1] [2]. Frustrated phagocytosis leads to scarring<br />

and granuloma formati<strong>on</strong> which impairs <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lung.<br />

Following <str<strong>on</strong>g>th</str<strong>on</strong>g>e precendent set by Helfrich and Deuling [3] [4], <str<strong>on</strong>g>th</str<strong>on</strong>g>e free energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a cell membrane is taken to be given by<br />

<br />

<br />

F = ∆p + λ + (mean curvature − c0)<br />

V<br />

<br />

S<br />

<br />

S<br />

Volume Energy Surface Energy<br />

2<br />

<br />

Helfrich Energy<br />

The Helfrich energy was introduced in [3] to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e energy associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a<br />

cell membrane <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular shape. It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten referred to as <str<strong>on</strong>g>th</str<strong>on</strong>g>e bending energy.<br />

The sp<strong>on</strong>taneous curvature c0 takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e natural curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell<br />

membrane due to proteins in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lipid bilayer and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong>.<br />

For a given set <str<strong>on</strong>g>of</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane is<br />

found by solving <str<strong>on</strong>g>th</str<strong>on</strong>g>e associated Euler-Lagrange equati<strong>on</strong>s. The topology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

surface is restricted to <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> a surface <str<strong>on</strong>g>of</str<strong>on</strong>g> rotati<strong>on</strong> around an axis which is taken<br />

to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e axis <str<strong>on</strong>g>of</str<strong>on</strong>g> a fibre. Due to singularities in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese Euler-Lagrange equati<strong>on</strong>s,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e problem is a boundary value problem ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an an initial value problem.<br />

The soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is energy minimisati<strong>on</strong> problem in [4] corresp<strong>on</strong>d to soluti<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit <str<strong>on</strong>g>of</str<strong>on</strong>g> a vanishing radius <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell <strong>on</strong> a fibre problem. Boundary c<strong>on</strong>diti<strong>on</strong>s<br />

specific to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell <strong>on</strong> a fibre problem are introduced. These boundary c<strong>on</strong>diti<strong>on</strong>s<br />

can be chosen to ensure <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first variati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e free<br />

energy are set to zero. They can also be chosen to fix <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tact angle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell<br />

membrane wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fibre surface.<br />

It is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> a lipid membrane which has successfully engulfed<br />

a particle will be energetically stable, in order to c<strong>on</strong>serve <str<strong>on</strong>g>th</str<strong>on</strong>g>e limited resources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a macrophage. This does not take into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e energy required to remodel<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell to reach <str<strong>on</strong>g>th</str<strong>on</strong>g>is shape. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e bending energy<br />

associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cell membranes <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing leng<str<strong>on</strong>g>th</str<strong>on</strong>g> can be used to suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> energy required in <str<strong>on</strong>g>th</str<strong>on</strong>g>is dynamical process.<br />

References.<br />

[1] G. Oberdörster, V. St<strong>on</strong>e and K. D<strong>on</strong>alds<strong>on</strong>, Toxicology <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoparticles: A historical perspective<br />

Nanotoxicology 1 2–25, 2007.<br />

[2] K. D<strong>on</strong>alds<strong>on</strong> et al, Carb<strong>on</strong> nanotubes: A review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir properties in relati<strong>on</strong> to pulm<strong>on</strong>ary<br />

toxicology and workplace safety Toxicological Sciences 92 5–22,2006.<br />

[3] W. Helfrich, Elastic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid bilayers: Theory and possible experiments, 28 Z. Naturforsch<br />

693–703, 1973.<br />

461


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[4] H.J. Deuling and W. Helfrich, The curvature elasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid membranes: A catalogue <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vesicle shapes J. Phys. France 37 1335-1345, 1976<br />

462


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Undergraduate Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Educati<strong>on</strong> Bey<strong>on</strong>d BIO 2010 (Part I);<br />

Wednesday, June 29, 14:30<br />

Winfried Just<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Ohio University<br />

A<str<strong>on</strong>g>th</str<strong>on</strong>g>ens, OH 45701, USA<br />

e-mail: ma<str<strong>on</strong>g>th</str<strong>on</strong>g>just@gmail.com<br />

Discrete vs. indiscrete models <str<strong>on</strong>g>of</str<strong>on</strong>g> network dynamics<br />

A key step in modeling biological network dynamics is <str<strong>on</strong>g>th</str<strong>on</strong>g>e decisi<strong>on</strong> whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er to<br />

use a stochastic process, a system <str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s, or a discrete dynamical<br />

system. This step in <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling process poses bo<str<strong>on</strong>g>th</str<strong>on</strong>g> special challenges and special<br />

opportunities for undergraduate teaching. The challenge is <str<strong>on</strong>g>th</str<strong>on</strong>g>at performing <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

step requires familiarity wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different areas <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, which<br />

cannot be taken for granted in undergraduate teaching. Moreover, undergraduates<br />

tend to view ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics as neatly compartmentalized into subdisciplines, each<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir own set <str<strong>on</strong>g>of</str<strong>on</strong>g> standard word problems. The opportunity is for leading students<br />

bey<strong>on</strong>d <str<strong>on</strong>g>th</str<strong>on</strong>g>is view and giving <str<strong>on</strong>g>th</str<strong>on</strong>g>em a taste <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>a fide ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling<br />

where <str<strong>on</strong>g>th</str<strong>on</strong>g>e tools need to be chosen depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system and available computati<strong>on</strong>al<br />

resources. Moreover, <strong>on</strong>e can introduce quite sophisticated ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

c<strong>on</strong>cepts from a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e way.<br />

This presentati<strong>on</strong> will illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach based <strong>on</strong> ODE<br />

and discrete models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> finite state spaces for certain networks. We will investigate<br />

c<strong>on</strong>diti<strong>on</strong>s under which <str<strong>on</strong>g>th</str<strong>on</strong>g>e coarse-graining via discrete models is a valid<br />

modeling approach and give examples <str<strong>on</strong>g>of</str<strong>on</strong>g> open problems <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be explored as<br />

undergraduate research projects.<br />

463


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Winfried Just<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Ohio University<br />

A<str<strong>on</strong>g>th</str<strong>on</strong>g>ens, OH 45701, USA<br />

e-mail: ma<str<strong>on</strong>g>th</str<strong>on</strong>g>just@gmail.com<br />

Benjamin Elbert<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Ohio University<br />

A<str<strong>on</strong>g>th</str<strong>on</strong>g>ens, OH 45701, USA<br />

e-mail: be173805@ohio.edu<br />

Mas<strong>on</strong> Korb<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Ohio University<br />

A<str<strong>on</strong>g>th</str<strong>on</strong>g>ens, OH 45701, USA<br />

e-mail: mk367807@ohio.edu<br />

Bismark Oduro<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Ohio University<br />

A<str<strong>on</strong>g>th</str<strong>on</strong>g>ens, OH 45701, USA<br />

e-mail: bo613809@ohio.edu<br />

Todd R. Young<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Ohio University<br />

A<str<strong>on</strong>g>th</str<strong>on</strong>g>ens, OH 45701, USA<br />

e-mail: youngt@ohio.edu<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Boolean dynamics vs. ODE dynamics<br />

The corresp<strong>on</strong>dence between systems <str<strong>on</strong>g>of</str<strong>on</strong>g> piecewise linear ODE’s and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir Boolean<br />

idealizati<strong>on</strong>s has been extensively studied by Le<strong>on</strong> Glass and his collaborators.<br />

These types <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical systems have been proposed as frameworks for studying<br />

biological processes such as gene regulati<strong>on</strong>.<br />

We c<strong>on</strong>sider a different class <str<strong>on</strong>g>of</str<strong>on</strong>g> ODE systems <str<strong>on</strong>g>th</str<strong>on</strong>g>at naturally admit Boolean<br />

idealizati<strong>on</strong>s. The ODEs in <str<strong>on</strong>g>th</str<strong>on</strong>g>is class have Lipschitz-c<strong>on</strong>tinuous right-hand sides,<br />

and our class is ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er broad. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e variables can be grouped into<br />

agents <str<strong>on</strong>g>of</str<strong>on</strong>g> sorts, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> individual agents having a certain bifurcati<strong>on</strong> structure and<br />

inputs from o<str<strong>on</strong>g>th</str<strong>on</strong>g>er agents acting as changing bifurcati<strong>on</strong> parameters.<br />

This talk will present bo<str<strong>on</strong>g>th</str<strong>on</strong>g> simulati<strong>on</strong>s and analytical results <str<strong>on</strong>g>th</str<strong>on</strong>g>at show how<br />

structural properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e systems influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sistency between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ODE dynamics and its Boolean idealizati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> synchr<strong>on</strong>ous or asynchr<strong>on</strong>ous<br />

updating. In particular, we explore to what extent features <str<strong>on</strong>g>of</str<strong>on</strong>g> chaotic dynamics<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Boolean idealizati<strong>on</strong> corresp<strong>on</strong>d to <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> chaos in <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying<br />

ODE system.<br />

464


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Heart rate dynamics: models and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity (part I);<br />

Wednesday, June 29, 14:30<br />

Agnieszka Kaczkowska<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Gdańsk University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Technology, Poland<br />

e-mail: kaczkowska.agnieszka@gmail.com<br />

Grzegorz Graff<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Gdańsk University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Technology, Poland<br />

e-mail: graff@mif.pg.gda.pl<br />

Beata Graff<br />

Hypertensi<strong>on</strong> Unit, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Hypertensi<strong>on</strong> and Diabetology,<br />

Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Gdańsk, Poland<br />

e-mail: bgraff@gumed.edu.pl<br />

Entropy-based measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

heart rate variability: a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical approach<br />

Recently, in a study <str<strong>on</strong>g>of</str<strong>on</strong>g> heart rate variability and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er physiological data, growing<br />

attenti<strong>on</strong> has been paid to entropy-based complexity measures, am<strong>on</strong>g which<br />

are Approximate Entropy, Sample Entropy, Fuzzy Entropy, local entropies and<br />

some o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir definiti<strong>on</strong>s will be presented wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e stress <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problems <str<strong>on</strong>g>of</str<strong>on</strong>g> vulnerability to noise, loss <str<strong>on</strong>g>of</str<strong>on</strong>g> data, relative c<strong>on</strong>sistency,<br />

dependence <strong>on</strong> sample leng<str<strong>on</strong>g>th</str<strong>on</strong>g> and sensitivity to <str<strong>on</strong>g>th</str<strong>on</strong>g>e input parameters. The<br />

usefulness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e above me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to distinguish time series wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

irregularity and unpredictability will be discussed and tested <strong>on</strong> various kinds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stochastic, n<strong>on</strong>linear and physiological data.<br />

465


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Tuesday, June 28, 14:30<br />

Maik Kschischo<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences Koblenz, RheinAhrCampus, Remagen,<br />

Germany, D-53424<br />

e-mail: kschischo@rheinahrcampus.de<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ias Kahm<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences Koblenz, RheinAhrCampus, Remagen,<br />

Germany, D-53424<br />

e-mail: kahm@rheinahrcampus.de<br />

Clara Navarrete<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enborg, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell- and Molecular Biology,<br />

Medicinaregatan 9C, Box 462 SE 405 30, Sweden<br />

e-mail: b92naroc@uco.es<br />

José Ramos<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cordoba, Avenida Menendes Pidal, 14071 Cordoba, Spain<br />

e-mail: mi1raruj@uco.es<br />

Actuators <str<strong>on</strong>g>of</str<strong>on</strong>g> yeast potassium homeostasis<br />

Potassium is <str<strong>on</strong>g>th</str<strong>on</strong>g>e most abundant cati<strong>on</strong> in living cells and is involved in a variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> essential cellular processes including translati<strong>on</strong>, endocytosis and even cell<br />

cycle regulati<strong>on</strong>. Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> external and internal K + c<strong>on</strong>centrati<strong>on</strong>s change <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

membrane potential required for <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules across <str<strong>on</strong>g>th</str<strong>on</strong>g>e plasma membrane,<br />

affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e pH and osmolarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytosol and induce changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell<br />

volume [1]. Metabolic decarboxylati<strong>on</strong> processes release CO2, which affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pH, <str<strong>on</strong>g>th</str<strong>on</strong>g>e bicarb<strong>on</strong>ate c<strong>on</strong>centrati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e prot<strong>on</strong> buffer capacity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e potassium<br />

transport [2].<br />

To gain a deeper understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex interplay between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese variables<br />

we developed an ordinary differential equati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> potassium c<strong>on</strong>trol in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e yeast Saccharomyces cerevisiae. The basic model covers <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ermodynamic<br />

c<strong>on</strong>straints <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e major potassium transport systems and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

prot<strong>on</strong> ATPase Pma1. Regulati<strong>on</strong> mechanisms where <strong>on</strong>ly partly included as many<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em are ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er unknown or not sufficiently characterized. This basic model<br />

qualitatively reproduces known aspects such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e hyperpolarisati<strong>on</strong> in trk1,2∆<br />

mutants and potassium starved cells, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e potassium uptake energized by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Pma1 driven prot<strong>on</strong> extrusi<strong>on</strong>.<br />

To make quantitative predicti<strong>on</strong>s we calibrated <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to potassium starvati<strong>on</strong><br />

experiments given in [3]. For cells grown in a medium wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high K + and shifted<br />

to K + free medium, a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular K + c<strong>on</strong>tent and cell volume was<br />

measured. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e external potassium drop occurs in minutes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e internal K +<br />

is slowly reduced during several hours.<br />

The regulatory c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e various transport systems under potassium starvati<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s is not well understood. To identify potential c<strong>on</strong>trol mechanisms<br />

and points <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s we regarded <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental time course K +<br />

data (t) as a<br />

signal which has to be tracked by <str<strong>on</strong>g>th</str<strong>on</strong>g>e model K +<br />

sim (t). More precisely, we determined<br />

a time dependent input functi<strong>on</strong> p(t) <str<strong>on</strong>g>th</str<strong>on</strong>g>at solves <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimizati<strong>on</strong> problem<br />

(1)<br />

466<br />

|| K +<br />

sim (p(t), θ, t) − K+<br />

data (t) || = Min .


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Each transport protein or any o<str<strong>on</strong>g>th</str<strong>on</strong>g>er comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model for which such an<br />

input functi<strong>on</strong> exists was regarded as a potential actuator for potassium c<strong>on</strong>trol.<br />

We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e (i) <str<strong>on</strong>g>th</str<strong>on</strong>g>e prot<strong>on</strong> pump Pma1 and <str<strong>on</strong>g>th</str<strong>on</strong>g>e (ii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e CO2 system are <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most likely actuators <str<strong>on</strong>g>of</str<strong>on</strong>g> potassium homeostasis. In additi<strong>on</strong>, we found evidence <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

yeast cells sense external potassium ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an internal potassium, what is also<br />

supported experimentally. To dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> our predicti<strong>on</strong>s we<br />

successfully designed a modified PI-c<strong>on</strong>troller which reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental<br />

time courses <str<strong>on</strong>g>of</str<strong>on</strong>g> internal potassium. This PI c<strong>on</strong>troller mimics <str<strong>on</strong>g>th</str<strong>on</strong>g>e unknown details <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

signalling and gene expressi<strong>on</strong> changes required for <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> homeostasis.<br />

In summary, we present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model which provides testable predicti<strong>on</strong>s<br />

about unknown regulatory mechanisms necessary for homeostatic c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

potassium in S. cerevisiae. We also believe <str<strong>on</strong>g>th</str<strong>on</strong>g>at our tracking approach to ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

modeling has general applicability. It is a versatile strategy to detect<br />

unmodeled dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir points <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>.<br />

References.<br />

[1] J. Ariño, J. Ramos, H. Sychrová, Alkali metal cati<strong>on</strong> transport and homeostasis in yeasts<br />

FEMS Yeast Research 74 95–120.<br />

[2] R. Lopéz, E. Enríquez, A. Peña, Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> weak acids <strong>on</strong> cati<strong>on</strong> accumulati<strong>on</strong>, ∆pH and ∆ψ<br />

in yeast YEAST, 15 553–562.<br />

[3] C. Navarrete et al., Lack <str<strong>on</strong>g>of</str<strong>on</strong>g> main K + uptake systems in Saccharomyces cerevisiae cells affects<br />

yeast performance in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> potassium-sufficient and potassium-limiting c<strong>on</strong>diti<strong>on</strong> FEMS Yeast<br />

Research 10 508–517.<br />

467


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Yannis Kalaidzidis<br />

MPI-CBG<br />

e-mail: kalaidzi@mpi-cbg.de<br />

Claudio Collinet<br />

MPI-CBG<br />

Akhila Chandrashaker<br />

MPI-CBG<br />

Thierry Galvez<br />

MPI-CBG<br />

Rachel Meyers<br />

Alnylam Pharm. Inc.<br />

Marino Zerial<br />

MPI-CBG<br />

Bioimaging; Tuesday, June 28, 11:00<br />

Quantitative Multiparametric Image Analysis for Estimati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> siRNA Induced Off-target Effect<br />

Small Interfering RNA (siRNA) and automated high-<str<strong>on</strong>g>th</str<strong>on</strong>g>roughput high-resoluti<strong>on</strong><br />

microscopy provides technological platform for systematic genome-wide survey <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

individual gene knockdown phenotype. Quantitative multi-parametric descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> knockdown phenotype can be used for gene functi<strong>on</strong>s elucidati<strong>on</strong> and establishing<br />

mechanistic models <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular processes in which genes participate. However,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e large degree <str<strong>on</strong>g>of</str<strong>on</strong>g> morphological variati<strong>on</strong> between cells in repetiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> biological<br />

experiment as well as variati<strong>on</strong> between phenotypes <str<strong>on</strong>g>of</str<strong>on</strong>g> different siRNAs, which are<br />

targeting <str<strong>on</strong>g>th</str<strong>on</strong>g>e same gene, represents a major challenge to <str<strong>on</strong>g>th</str<strong>on</strong>g>e reliable identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gene silencing phenotypes. We have developed a system for <str<strong>on</strong>g>th</str<strong>on</strong>g>e high c<strong>on</strong>tent<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> automatically acquired high-resoluti<strong>on</strong> images, which describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e endosomal<br />

organelles in quantitative terms (gene silencing pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile) (Collinet et al, Nature<br />

2010). The stability <str<strong>on</strong>g>of</str<strong>on</strong>g> individual parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles between<br />

different imaging sessi<strong>on</strong>s and experimental replicates were tested. The analysis<br />

showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at different parameters reveal a wide variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stabilities which dependent<br />

<strong>on</strong> biological variability, typical automatic imaging problems and parameter<br />

calculati<strong>on</strong> details. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-parametric phenotype pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles produced by<br />

independent siRNAs, which are targeting <str<strong>on</strong>g>th</str<strong>on</strong>g>e same gene, reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f-target effect, its dependence <strong>on</strong> siRNA c<strong>on</strong>centrati<strong>on</strong> and chemical modificati<strong>on</strong>.<br />

The estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> independent siRNAs which are required<br />

to infer <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene knockdown phenotype wi<str<strong>on</strong>g>th</str<strong>on</strong>g> given c<strong>on</strong>fidence was d<strong>on</strong>e. Quantitative<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>f-target effect gives an objective feedback for no <str<strong>on</strong>g>of</str<strong>on</strong>g>f-target<br />

siRNA selecti<strong>on</strong>, for <str<strong>on</strong>g>th</str<strong>on</strong>g>e new generati<strong>on</strong> siRNA development and could provide<br />

insight for deeper understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> siRNA-mediated gene silencing mechanism.<br />

468


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Structure and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Reacti<strong>on</strong> Networks II; Tuesday, June<br />

28, 17:00<br />

Hiroko Kamei<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee, U.K.<br />

e-mail: hiroko@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> networks for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir synchr<strong>on</strong>ous dynamics<br />

Small subnetworks, such as network motifs, and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir modularity have been c<strong>on</strong>sidered<br />

to play an important role in large complex networks. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>text, a major<br />

topic is <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between network structures and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir corresp<strong>on</strong>ding dynamics.<br />

We c<strong>on</strong>sider <strong>on</strong>e form dynamics, synchr<strong>on</strong>y-breaking in a network. This can<br />

be interpreted as speciati<strong>on</strong>, differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, or clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong><br />

patterns. For any network we c<strong>on</strong>struct a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical structure, a lattice, which<br />

results from <str<strong>on</strong>g>th</str<strong>on</strong>g>e eigenvalues and eigenvectors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network’s adjacency matrix.<br />

Many networks have <str<strong>on</strong>g>th</str<strong>on</strong>g>e same lattice, allowing a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> networks to be<br />

classified into a smaller number <str<strong>on</strong>g>of</str<strong>on</strong>g> lattice structures. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, by looking at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e lattice structure we can identify networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> similar synchr<strong>on</strong>ous dynamics.<br />

References.<br />

[1] C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lattices <str<strong>on</strong>g>of</str<strong>on</strong>g> balanced equivalence relati<strong>on</strong>s for regular homogeneous networks<br />

using lattice generators and lattice indices, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19<br />

(2009)<br />

[2] The existence and classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>y-breaking bifurcati<strong>on</strong>s in regular homogeneous<br />

networks using lattice structures, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 19 (2009)<br />

469


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanical regulati<strong>on</strong> in b<strong>on</strong>e tissue (Sessi<strong>on</strong><br />

II); Wednesday, June 29, 11:00<br />

Yoshitaka Kameo<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering and Science, Graduate School<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, Kyoto University<br />

e-mail: y.kameo@t02.mbox.media.kyoto-u.ac.jp<br />

Taiji Adachi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomechanics, Research Center for Nano Medical Engineering,<br />

Institute for Fr<strong>on</strong>tier Medical Sciences, Kyoto University<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> trabecular b<strong>on</strong>e remodeling<br />

induced by osteocytic resp<strong>on</strong>se to interstitial fluid flow<br />

B<strong>on</strong>e is a load-bearing tissue <str<strong>on</strong>g>th</str<strong>on</strong>g>at can adapt its internal structure and outer shape<br />

by remodeling to a changing mechanical envir<strong>on</strong>ment. The morphological changes<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e trabecular microstructure are realized by <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoclastic b<strong>on</strong>e<br />

resorpti<strong>on</strong> and osteoblastic b<strong>on</strong>e formati<strong>on</strong>. It is widely believed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic<br />

activities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese executive cells are regulated by a mechanosensory system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> osteocytes buried in <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular b<strong>on</strong>e matrix, forming a <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al<br />

intercellular network <str<strong>on</strong>g>th</str<strong>on</strong>g>rough cellular processes in lacuno-canalicular porosity [1].<br />

The small space surrounding <str<strong>on</strong>g>th</str<strong>on</strong>g>e osteocytes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e porosity is filled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> interstitial<br />

fluid. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e is subjected to dynamic loading, b<strong>on</strong>e matrix deformati<strong>on</strong><br />

induces an interstitial fluid flow [2]. The fluid flow in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lacuno-canalicular porosity<br />

seems to mechanically activate <str<strong>on</strong>g>th</str<strong>on</strong>g>e osteocytes and serve as <str<strong>on</strong>g>th</str<strong>on</strong>g>e prime mover<br />

for b<strong>on</strong>e remodeling, as well as transport cell signaling molecules [3]. To understand<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e functi<strong>on</strong>al adaptati<strong>on</strong>, it will be useful to propose<br />

a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical framework <str<strong>on</strong>g>of</str<strong>on</strong>g> trabecular b<strong>on</strong>e remodeling <str<strong>on</strong>g>th</str<strong>on</strong>g>at interc<strong>on</strong>nects <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic<br />

cellular activities to <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic morphological changes <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mechanical hierarchy. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, first, we c<strong>on</strong>structed a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for<br />

trabecular b<strong>on</strong>e remodeling, taking cellular mechanosensing and intercellular communicati<strong>on</strong><br />

into c<strong>on</strong>siderati<strong>on</strong> [4]. This model assumes <str<strong>on</strong>g>th</str<strong>on</strong>g>at osteocytes resp<strong>on</strong>d to<br />

fluid-induced shear stress and deliver <str<strong>on</strong>g>th</str<strong>on</strong>g>eir mechanical signals to <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface cells by<br />

intercellular communicati<strong>on</strong>. The mechanical behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a trabecula wi<str<strong>on</strong>g>th</str<strong>on</strong>g> lacunocanalicular<br />

porosity is modeled as a poroelastic material to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e interstitial<br />

fluid flow under mechanical loading. Sec<strong>on</strong>d, <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model, we simulated morphological changes in a single trabecula under<br />

cyclic uniaxial loading wi<str<strong>on</strong>g>th</str<strong>on</strong>g> various frequencies, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>ought to be a significant<br />

mechanical factor in b<strong>on</strong>e remodeling. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> show <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

trabecula reoriented to <str<strong>on</strong>g>th</str<strong>on</strong>g>e loading directi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e progress <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e remodeling.<br />

As <str<strong>on</strong>g>th</str<strong>on</strong>g>e imposed loading frequency increased, <str<strong>on</strong>g>th</str<strong>on</strong>g>e diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trabecula in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

equilibrium state was enlarged by remodeling. Finally, we c<strong>on</strong>ducted a remodeling<br />

simulati<strong>on</strong> for a cancellous b<strong>on</strong>e cube under m<strong>on</strong>ot<strong>on</strong>ously increasing compressive<br />

loading, where all <str<strong>on</strong>g>th</str<strong>on</strong>g>e trabeculae are randomly-oriented in <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial geometry.<br />

As a result, <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> trabecular c<strong>on</strong>nectivity was gradually decreased and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

trabeculae in cancellous b<strong>on</strong>e aligned al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e loading directi<strong>on</strong>. These results<br />

indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at our remodeling simulati<strong>on</strong> model can successfully express <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic<br />

changes in trabecular morphology from <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic cellular activities.<br />

470


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] Burger, E.H., Klein-Nulend, J., 1999. Mechanotransducti<strong>on</strong> in b<strong>on</strong>e - Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lacunocanalicular<br />

network. FASEB J. 13, S101-S112.<br />

[2] Cowin, S.C., 1999. B<strong>on</strong>e poroelasticity. J. Biomech. 32, 217-238.<br />

[3] Weinbaum, S., Cowin, S.C., Zeng, Y., 1994. A model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> osteocytes by<br />

mechanical loading-induced b<strong>on</strong>e fluid shear stresses. J. Biomech. 27, 339-360.<br />

[4] Adachi, T., Kameo, Y., Hojo, M., 2010. Trabecular b<strong>on</strong>e remodeling simulati<strong>on</strong> c<strong>on</strong>sidering<br />

osteocytic resp<strong>on</strong>se to fluid-induced shear stress. Phil. Trans. R. Soc. A 368, 2669-2682.<br />

471


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Atsushi Kamimura<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Industrial Science, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

e-mail: kamimura@sat.t.u-tokyo.ac.jp<br />

Tetsuya J. Kobayashi<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Industrial Science, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

PRESTO, Japan Science and technilogy Agency<br />

Trade<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> Transmissi<strong>on</strong> and Decoding wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Intracellular Kinetics<br />

A variety <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular processes functi<strong>on</strong>s reliably by intracellular reacti<strong>on</strong>s even<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ough substantial noise is inevitable. In particular, detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant informati<strong>on</strong><br />

from envir<strong>on</strong>ment is crucial for <str<strong>on</strong>g>th</str<strong>on</strong>g>e fate <str<strong>on</strong>g>of</str<strong>on</strong>g> cells.<br />

From <str<strong>on</strong>g>th</str<strong>on</strong>g>e viewpoint <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eory, such informati<strong>on</strong> processing is composed<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree parts: encoding, transmissi<strong>on</strong> and decoding. Here, for a simple setup<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical reacti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e roles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree parts can be played<br />

by envir<strong>on</strong>ment, receptors <strong>on</strong> membranes, and intracellular reacti<strong>on</strong>s, respectively.<br />

In engineering, much efforts have been generally made to reduce noise in encoding<br />

and transmissi<strong>on</strong> parts. By c<strong>on</strong>trast, decoding may also play equally important<br />

role in biological systems, which is suggested by <str<strong>on</strong>g>th</str<strong>on</strong>g>e substantial noise in microscopic<br />

cellular systems.<br />

While decoding is to extract as much informati<strong>on</strong> as possible from <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmitted<br />

signals, such processing, in reality, should be implemented in <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemical reacti<strong>on</strong>s.<br />

For example, kinetics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> dual positive feedback structure can implement a<br />

dynamic Bayesian inference, which gives <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical limit for <str<strong>on</strong>g>th</str<strong>on</strong>g>e decoding[1][2].<br />

However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> decoding would be limited by physical c<strong>on</strong>straints such<br />

as amount <str<strong>on</strong>g>of</str<strong>on</strong>g> available energetic cost. We still lack a general framework to quantify<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> and decoding work.<br />

Here, we c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem by calculating mutual informati<strong>on</strong> am<strong>on</strong>g encoding,<br />

transmissi<strong>on</strong>, and decoding parts <str<strong>on</strong>g>of</str<strong>on</strong>g> simple models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> several intracellular<br />

reacti<strong>on</strong>s. By <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantificati<strong>on</strong>, we clarify <str<strong>on</strong>g>th</str<strong>on</strong>g>e trade<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> and<br />

decoding. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> part carries a large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong>, decoding<br />

need not necessarily work effectively, since it is clear from <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmitted<br />

informati<strong>on</strong> to detect <str<strong>on</strong>g>th</str<strong>on</strong>g>e state <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>ment. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, decoding by<br />

intracellular reacti<strong>on</strong>s becomes essential to obtain informati<strong>on</strong> when detecting from<br />

transmitted informati<strong>on</strong> is not straightforward.<br />

References.<br />

[1] T. J. Kobayashi, Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynamic Bayesian Decisi<strong>on</strong> Making by Intracellular Kinetics,<br />

Phys. Rev. Lett. 104 228104(2010).<br />

[2] T. J. Kobayashi and A. Kamimura, Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Intracellular Informati<strong>on</strong> Decoding, submitted<br />

Physical Biology (2011).<br />

472


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemic models: Networks and stochasticity II; Thursday, June 30, 11:30<br />

Christel Kamp<br />

Paul-Ehrlich-Institut<br />

e-mail: christel.kamp@pei.de<br />

Following epidemic spread: how epidemics travel and trim<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir network <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious c<strong>on</strong>tacts<br />

Epidemics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases are ubiquitous, however, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir patterns vary depending<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> disease and <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> network established by infectious<br />

c<strong>on</strong>tacts. Therefore, strategies to maintain public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> cannot be applied<br />

uniformly but have to be adjusted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e specific epidemic scenario. Network models<br />

have proven to be a helpful tool to infer time scales <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemic expansi<strong>on</strong> and<br />

prevalence from <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure and dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying transmissi<strong>on</strong> network.<br />

We extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical framework to also quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e reverse<br />

effect: epidemics impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e way c<strong>on</strong>tacts are made am<strong>on</strong>g susceptible and infected<br />

hosts. A set <str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential equati<strong>on</strong>s links <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure and dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> network to <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic process. It allows to study epidemics<br />

<strong>on</strong> dynamic transmissi<strong>on</strong> networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> arbitrary degree distributi<strong>on</strong>s and under<br />

demographic change [1,2]. The framework will be used in epidemic case studies<br />

including multi-staged HIV epidemics. These studies show how epidemics do not<br />

<strong>on</strong>ly travel but also trim <str<strong>on</strong>g>th</str<strong>on</strong>g>eir transmissi<strong>on</strong> networks and allow for an explorati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interventi<strong>on</strong> strategies.<br />

References.<br />

[1] C. Kamp Untangling <str<strong>on</strong>g>th</str<strong>on</strong>g>e Interplay between Epidemic Spread and Transmissi<strong>on</strong> Network Dynamics<br />

PLoS Comput Biol 6(11): e1000984.<br />

[2] C. Kamp Demographic and behavioural change during epidemics Proc Comp Sci 1: 2247–2253.<br />

473


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling physiological systems: model validati<strong>on</strong> and experimental design<br />

issues; Wednesday, June 29, 11:00<br />

Franz Kappel<br />

Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Scientific Computing<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Graz<br />

e-mail: franz.kappel@uni-graz.at<br />

H. T. Banks<br />

Center for Research in Scientific Computati<strong>on</strong><br />

Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina State University<br />

e-mail: htbanks@ncsu.edu<br />

M. Munir<br />

Abbottabad, Pakistan<br />

e-mail: muhammad m2k4@yahoo.com<br />

Parameter selecti<strong>on</strong> in multi-output systems<br />

We present me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for a priori selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters to be estimated in inverse<br />

problem formulati<strong>on</strong>s for models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple measurable outputs. Since in many<br />

modeling processes we have to deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> dynamical systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> numerous state<br />

variables and an even larger number <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, but wi<str<strong>on</strong>g>th</str<strong>on</strong>g> limited availability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

data, we cannot expect to estimate all parameters wi<str<strong>on</strong>g>th</str<strong>on</strong>g> sufficient accuracy. Therefore<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e type indicated above are becoming increasingly important. In<br />

situati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple measurable outputs we are also interested to know if <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

possibility to measure additi<strong>on</strong>al outputs would improve parameter estimates. Such<br />

questi<strong>on</strong>s become important if <str<strong>on</strong>g>th</str<strong>on</strong>g>ese additi<strong>on</strong>al measurements involve high costs,<br />

for instance. We illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e results for a model for insulin-glucose dynamics [2]<br />

and a model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiovascular system to an ergometric workload<br />

[1].<br />

References.<br />

[1] F. Kappel and R. O. Peer, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for fundamental regulati<strong>on</strong> processes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cardiovascular system, J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biology 31 (1993), 611 – 631.<br />

[2] M. Munir, Generalized Sensitivity Functi<strong>on</strong>s in Physiological Modelling, PhD-Thesis, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Graz, April 2010.<br />

474


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Game <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical modelling and optimizati<strong>on</strong> in evoluti<strong>on</strong> and ecology II;<br />

Tuesday, June 28, 14:30<br />

Irina Kareva<br />

Ariz<strong>on</strong>a State University<br />

e-mail: ikareva@asu.edu<br />

Faina Berezovskaya<br />

Howard University, Washingt<strong>on</strong>, DC<br />

Georgy Karev<br />

Nati<strong>on</strong>al Institutes <str<strong>on</strong>g>of</str<strong>on</strong>g> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Be<str<strong>on</strong>g>th</str<strong>on</strong>g>esda, MD<br />

Mixed Strategies, Evoluti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Tragedy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Comm<strong>on</strong>s in Heterogeneous Populati<strong>on</strong>s<br />

The questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sustainability and preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tragedy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e comm<strong>on</strong>s, also<br />

known as evoluti<strong>on</strong>ary suicide, which occurs when extremely efficient c<strong>on</strong>sumers<br />

exhaust <str<strong>on</strong>g>th</str<strong>on</strong>g>e comm<strong>on</strong> resource and eventually harm <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves, is becoming <str<strong>on</strong>g>of</str<strong>on</strong>g> vital<br />

importance in <str<strong>on</strong>g>th</str<strong>on</strong>g>e modern world. In order to investigate it we c<strong>on</strong>sider a situati<strong>on</strong>,<br />

when c<strong>on</strong>sumers can choose different strategies for resource c<strong>on</strong>sumpti<strong>on</strong> in different<br />

proporti<strong>on</strong>, investing primarily in c<strong>on</strong>sumpti<strong>on</strong> or in sustaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e resource.<br />

This is modeled by an infinitely-dimensi<strong>on</strong>al system <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>en reduced<br />

to a finitely-dimensi<strong>on</strong>al system using parameter distributi<strong>on</strong>. The populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>sumers is <str<strong>on</strong>g>th</str<strong>on</strong>g>en allowed to evolve over time, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different strategies are tracked <str<strong>on</strong>g>th</str<strong>on</strong>g>rough changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a strategy. We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at under different<br />

parameter values different strategies predominate, leading to ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er sustained interacti<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resources, or to populati<strong>on</strong> extincti<strong>on</strong>, which occurs after a series<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transiti<strong>on</strong>al regimes.<br />

475


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 08:30<br />

Arseny S. Karkach<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: arseny@mail.ru<br />

Alexei A. Romanyukha<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: eburg@inm.ras.ru<br />

Adaptive trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between reproducti<strong>on</strong> and survival in<br />

Mediterranean fruit flies induced by changing dietary<br />

c<strong>on</strong>diti<strong>on</strong>s<br />

The c<strong>on</strong>cepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> provides an important insight <strong>on</strong><br />

c<strong>on</strong>necti<strong>on</strong> between fertility and life span in living organisms. Despite substantial<br />

progress in understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>necti<strong>on</strong> many important features <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilityl<strong>on</strong>gevity<br />

trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f are masked by c<strong>on</strong>founding factors, and remain poorly understood.<br />

We performed reanalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> data from experimental study <str<strong>on</strong>g>of</str<strong>on</strong>g> fertility and<br />

l<strong>on</strong>gevity resp<strong>on</strong>se to different diets in females <str<strong>on</strong>g>of</str<strong>on</strong>g> Mediterranean fruit fly C. capitata<br />

[1, 2]. A negative dependence between average fertility and l<strong>on</strong>gevity was observed<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g lived part <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental cohorts as <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diet<br />

changed. In order to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed phenomen<strong>on</strong> we suggest a mechanistic<br />

resource allocati<strong>on</strong> model. The model is fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resource allocati<strong>on</strong><br />

model proposed in [3]. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a fertility-l<strong>on</strong>gevity trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f suggests<br />

a possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> some resource used bo<str<strong>on</strong>g>th</str<strong>on</strong>g> by reproducti<strong>on</strong> and somatic<br />

maintenance in a fly. The trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f may be a manifestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic machinery,<br />

processes and genetically determined laws <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol which define balance between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e processes <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> and regenerati<strong>on</strong>. We propose and discuss a principle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic resource allocati<strong>on</strong> which explains fertility-l<strong>on</strong>gevity data for <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g-,<br />

intermediate- and short-lived flies. Adaptive allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er resources<br />

allows flies to tailor <str<strong>on</strong>g>th</str<strong>on</strong>g>eir life history parameters to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment. Due to<br />

limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological adaptati<strong>on</strong> a significant share <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> may<br />

be genetically “preadapted” to different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>us c<strong>on</strong>tributing<br />

to populati<strong>on</strong> stability and heterogeneity. This may be observed even in relatively<br />

homogeneous populati<strong>on</strong>s, such as experimental fly cohorts.<br />

References.<br />

[1] J.R.Carey, P.Liedo, L.Harshman, X.Liu, H.-G.Muller, L.Partridge, J.-L.Wang. Food pulses<br />

increase l<strong>on</strong>gevity and induce cyclical egg producti<strong>on</strong> in Mediterranean fruit flies, Functi<strong>on</strong>al<br />

Ecology 16 313–325 2002.<br />

[2] J.R.Carey, P.Liedo, H.-G.Muller, J.-L.Wang, J.W.Vaupel. Dual Modes <str<strong>on</strong>g>of</str<strong>on</strong>g> Aging in Mediterranean<br />

Fruit Fly Females, Science, 281 996–998 1998.<br />

[3] A.A.Romanyukha, J.R.Carey, A.S.Karkach, A.I.Yashin. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> diet switching <strong>on</strong> resource<br />

allocati<strong>on</strong> to reproducti<strong>on</strong> and l<strong>on</strong>gevity in Mediterranean fruitflies, Proc. R. Soc. L<strong>on</strong>d.<br />

B. 271 1319–1324 2004.<br />

476


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ilmari Kar<strong>on</strong>en<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: ilmari.kar<strong>on</strong>en@helsinki.fi<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 11:00<br />

Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polymorphism <strong>on</strong> a heterogeneous landscape<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial heterogeneity and habitat boundaries <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

multiple competing strains has been <str<strong>on</strong>g>of</str<strong>on</strong>g> recent interest as a novel mechanism for<br />

maintaining diversity above <str<strong>on</strong>g>th</str<strong>on</strong>g>e level predicted by <str<strong>on</strong>g>th</str<strong>on</strong>g>e competitive exclusi<strong>on</strong> principle.<br />

Given <str<strong>on</strong>g>th</str<strong>on</strong>g>at limited dispersal in heterogeneous landscapes can indeed enable<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e stable coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> more competitors <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are resources, a natural next<br />

step is to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence and stability <str<strong>on</strong>g>of</str<strong>on</strong>g> such diversity under evoluti<strong>on</strong>.<br />

I present some results from individual-based simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> evolving populati<strong>on</strong>s<br />

<strong>on</strong> a heterogeneous lattice landscape, and c<strong>on</strong>trast <str<strong>on</strong>g>th</str<strong>on</strong>g>ese wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some semi-analytical<br />

approximati<strong>on</strong>s, showing <str<strong>on</strong>g>th</str<strong>on</strong>g>at evoluti<strong>on</strong> in such systems can indeed lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> polymorphism and stabilize it against local extincti<strong>on</strong> due to demographic<br />

stochasticity.<br />

477


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

III; Tuesday, June 28, 17:00<br />

Khalid Kassara<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science,<br />

University Hassan II Casablanca, Morocco<br />

e-mail: kassarak@ams.org<br />

Amine Moustafid<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science,<br />

University Hassan II Casablanca, Morocco<br />

e-mail: moustafid_amine@yahoo.fr<br />

A c<strong>on</strong>trol approach for ODE cancer models<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we investigate cancer by using a c<strong>on</strong>trol approach based <strong>on</strong> setvalued<br />

analysis and viability <str<strong>on</strong>g>th</str<strong>on</strong>g>eory, given a class <str<strong>on</strong>g>of</str<strong>on</strong>g> ODE tumor dynamics. We<br />

show how adequate selecti<strong>on</strong> procedures can lead to feedback protocols wi<str<strong>on</strong>g>th</str<strong>on</strong>g> which<br />

cancer cells are eradicated. In c<strong>on</strong>trast to <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal c<strong>on</strong>trol approach, our setvalued<br />

framework allows <str<strong>on</strong>g>of</str<strong>on</strong>g> highlighting <str<strong>on</strong>g>th</str<strong>on</strong>g>e well known c<strong>on</strong>necti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

initial cancer stage and its curability, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimality and smoo<str<strong>on</strong>g>th</str<strong>on</strong>g>ness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a protocol and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e patient quality <str<strong>on</strong>g>of</str<strong>on</strong>g> life. Examples from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

literature are studied in order to illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e approach.<br />

References.<br />

[1] De Pillis, L. G., Gu, W., Fister, K. R., Head, T., Maples, K., Murugan, A., Neal, T., Yoshida,<br />

K., Chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy for tumors: an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics and a study <str<strong>on</strong>g>of</str<strong>on</strong>g> quadratic and linear<br />

optimal c<strong>on</strong>trols, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci. 209(1), 292-315.<br />

[2] Hahndfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L., Tumor development under angiogenic<br />

signaling: a dynamical <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, treatment resp<strong>on</strong>se, and postvascular<br />

dormancy, Cancer Res. 59(1999), 4770-4775.<br />

[3] K. Kassara, A Unified Set-valued Approach to C<strong>on</strong>trol Immuno<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, SIAM Journal <strong>on</strong><br />

C<strong>on</strong>trol and Optimizati<strong>on</strong>, 48(2009) 909-924.<br />

[4] K. Kassara, A. Moustafid, Feedback Protocol Laws for Immuno<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics, 7(2008), 2120033.<br />

[5] K. Kassara, A. Moustafid, Angiogenesis inhibiti<strong>on</strong> and tumor-immune interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy by a c<strong>on</strong>trol set-valued me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences, to appear.<br />

478


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Joanna Kawka<br />

Bioquant, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Heidelberg, Heidelberg Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

and Humanities<br />

e-mail: joanna.kawka@bioquant.uni-heidelberg.de<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> β-catenin signaling in Medulloblastoma<br />

Medulloblastoma is a brain tumor <str<strong>on</strong>g>th</str<strong>on</strong>g>at mainly affects children and is caused by several<br />

mutati<strong>on</strong>s. Our research is devoted to understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>osomy<br />

and trisomy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e 6 chromosome. Each perturbati<strong>on</strong> is characterized by extremely<br />

different prognosis. Trisomy is found to have a very bad prognosis and m<strong>on</strong>osomy<br />

surprisingly good after medical treatment. 6q loss and 6q gain are related wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

difference in expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cMyc, SGK1, which are target genes <str<strong>on</strong>g>of</str<strong>on</strong>g> β-catenin signaling<br />

in mutated cells. Our observati<strong>on</strong>s suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at disrupti<strong>on</strong> in chromosome<br />

balance str<strong>on</strong>gly affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e menti<strong>on</strong>ed signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism<br />

is still not explained. We can <strong>on</strong>ly see c<strong>on</strong>sequences which result in different mRNA<br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> cMyc and SGK1. It is also not well understood how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese differences influence<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e prognosis. Thus investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> particular interacti<strong>on</strong>s between proteins<br />

is so interesting. We propose an ODE model describing complicated dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chosen genes, c<strong>on</strong>cerning transcripti<strong>on</strong>, translati<strong>on</strong> as well as transport between<br />

cytoplasm and nucleus. We calibrate models based <strong>on</strong> clinical data for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> medulloblastoma. Simulati<strong>on</strong>s lead to a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process. In<br />

particularly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>e important role <str<strong>on</strong>g>of</str<strong>on</strong>g> SGK1 gene in <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>on</strong>cogene cMyc producti<strong>on</strong> leading to cancer relapse.<br />

479


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Toshiya Kazama<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Life Sciences, Hiroshima University<br />

e-mail: toshiya-kazama@hiroshima-u.ac.jp<br />

Takuya Okuno<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Life Sciences, Hiroshima University<br />

Kentaro Ito<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Life Sciences, Hiroshima University<br />

Toshiyuki Nakagaki<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex and Intelligent Systems, Future University<br />

Hakodate<br />

Ryo Kobayashi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Life Sciences, Hiroshima University<br />

A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e mode transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> locomoti<strong>on</strong><br />

in Amoeba proteus<br />

In amoeba locomoti<strong>on</strong>, pseudopods extend toward <str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> [1]. Recently,<br />

we found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e pseudopod <str<strong>on</strong>g>of</str<strong>on</strong>g> Amoeba proteus shows <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic<br />

extensi<strong>on</strong> modes depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tail speed <str<strong>on</strong>g>of</str<strong>on</strong>g> amoeba. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e tail speed is<br />

high, <str<strong>on</strong>g>th</str<strong>on</strong>g>e pseudopod extends at almost c<strong>on</strong>stant speed (Smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> mode.) On <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e tail speed is low, <str<strong>on</strong>g>th</str<strong>on</strong>g>e pseudopod extends and stopps alternately<br />

(Oscillatory mode.) Namely, <str<strong>on</strong>g>th</str<strong>on</strong>g>e extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pseudopod shows <str<strong>on</strong>g>th</str<strong>on</strong>g>e mode<br />

transiti<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> mode to <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillatory mode as <str<strong>on</strong>g>th</str<strong>on</strong>g>e tail speed decreases.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>venti<strong>on</strong>al understanding, <str<strong>on</strong>g>th</str<strong>on</strong>g>e tail c<strong>on</strong>tracti<strong>on</strong> was c<strong>on</strong>sidered to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

origin <str<strong>on</strong>g>of</str<strong>on</strong>g> motile force <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e locomoti<strong>on</strong> in Amoeba proteus [2]. Our finding suggests<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tail c<strong>on</strong>tracti<strong>on</strong> also c<strong>on</strong>tributes <str<strong>on</strong>g>th</str<strong>on</strong>g>e pseudopodial extensi<strong>on</strong> patterns which<br />

exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>e mode transiti<strong>on</strong>.<br />

To understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism, we c<strong>on</strong>struct a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model. In our<br />

model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e amoeba is described as an elastic tube in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e protoplasmic sol is<br />

c<strong>on</strong>fined. The locomoti<strong>on</strong> is driven by <str<strong>on</strong>g>th</str<strong>on</strong>g>e tail c<strong>on</strong>tracti<strong>on</strong>. The head is extended<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e inner pressure, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e head is c<strong>on</strong>trolled by <str<strong>on</strong>g>th</str<strong>on</strong>g>e s<str<strong>on</strong>g>of</str<strong>on</strong>g>tness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e head. Our model successfully represented <str<strong>on</strong>g>th</str<strong>on</strong>g>e mode transiti<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e smoo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

mode to <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillatory mode as <str<strong>on</strong>g>th</str<strong>on</strong>g>e tail speed decreases.<br />

References.<br />

[1] McNeill, A. R., Exploring biomechanics: Animals in moti<strong>on</strong> W.H.Freeman and Company,<br />

New York, 1992.<br />

[2] S<strong>on</strong>obe, S., and Nishihara, E. Cell biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Amoeba proteus. Jpn J Protozool, 37 159–167,<br />

2003.<br />

480


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling V; Saturday, July 2, 11:00<br />

Bogdan Kazmierczak<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research, Polish Academy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: bkazmier@ippt.gov.pl<br />

(1)<br />

Buffered calcium waves wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mechano-chemical effects<br />

We analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e following system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s:<br />

∂c<br />

∂t<br />

∂2<br />

= D c + g(c) +<br />

∂x2 n<br />

Gi(c, vi) + R(c, θ, J1, J2)<br />

∂vi ∂<br />

= Di<br />

∂t 2<br />

∂x2 vi − Gi(c, vi), i = 1, . . . , n,<br />

(2)<br />

<br />

E<br />

0 = ∇ · ε +<br />

1 + ν<br />

ν<br />

1 − 2ν θI<br />

<br />

<br />

∂ε ∂θ<br />

+ µ1 + µ2 I + τ(c)I − ϑu.<br />

∂t ∂t<br />

i=1<br />

where c denotes <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free cytosolic calcium i<strong>on</strong>s, vi <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e i-<str<strong>on</strong>g>th</str<strong>on</strong>g> buffer, ε <str<strong>on</strong>g>th</str<strong>on</strong>g>e strain tensor, u displacement field, τ active c<strong>on</strong>centrati<strong>on</strong><br />

stress resulting from <str<strong>on</strong>g>th</str<strong>on</strong>g>e actomyosin tracti<strong>on</strong> τ(c). We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio<br />

(µ1 + µ2)/E is sufficiently small. We prove <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> travelling waves to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e above system, analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> viscosity <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wave and<br />

give <str<strong>on</strong>g>th</str<strong>on</strong>g>e explicit formulae for some specific soluti<strong>on</strong>s. We c<strong>on</strong>fine ourselves to <str<strong>on</strong>g>th</str<strong>on</strong>g>ree<br />

geometrical cases: bulk medium (large in every directi<strong>on</strong>), infinite plane layer <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sufficiently small wid<str<strong>on</strong>g>th</str<strong>on</strong>g> and l<strong>on</strong>g cylinder <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficiently small radius.<br />

This study was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Polish Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Higher Educati<strong>on</strong><br />

grant N N 201548738 and Foundati<strong>on</strong> for Polish Science grant TEAM/2009-<br />

3/6.<br />

481


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Macromolecules and Molecular Aggregates;<br />

Saturday, July 2, 14:30<br />

T. Keef<br />

e-mail: tk506@york.ac.uk<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> York<br />

D. Sal<str<strong>on</strong>g>th</str<strong>on</strong>g>ouse<br />

e-mail: dgs504@york.ac.uk<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> York<br />

R. Twarock<br />

e-mail: rt507@york.ac.uk<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> York, York YO10 5DD, U.K.<br />

Penrose-like tilings as geometric c<strong>on</strong>straints <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

structures <str<strong>on</strong>g>of</str<strong>on</strong>g> protein assemblies.<br />

N<strong>on</strong>-crystallographic symmetry is comm<strong>on</strong> in protein assemblies, from icosahedral<br />

symmetry in viral capsids to five-fold and seven-fold axial symmetry in<br />

C-reactive proteins and chaper<strong>on</strong>in molecules, respectively. We have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e overall organisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such structures can be predicted using affine extensi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-crystallographic symmetry. In particular, important insights can be gained<br />

not <strong>on</strong>ly into <str<strong>on</strong>g>th</str<strong>on</strong>g>e outer surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese clusters, but also in how symmetry is correlated<br />

at different radial levels. For example, in applicati<strong>on</strong>s to viruses, <str<strong>on</strong>g>th</str<strong>on</strong>g>is has<br />

led to <str<strong>on</strong>g>th</str<strong>on</strong>g>e discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> a molecular scaling principle between different viral comp<strong>on</strong>ents.<br />

Here I will show <str<strong>on</strong>g>th</str<strong>on</strong>g>at Penrose-like n<strong>on</strong>-crystallographic tilings derived from<br />

higher dimensi<strong>on</strong>al lattices can be used to provide bounding boxes for proteins in<br />

n<strong>on</strong>-crystallographic assemblies.<br />

482


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Moving Organisms: From Individuals to Populati<strong>on</strong>s; Wednesday, June 29, 17:00<br />

Jan Kelkel<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stuttgart<br />

e-mail: Jan.Kelkel@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik.uni-stuttgart.de<br />

Integrin mediated Cell Migrati<strong>on</strong>: Multiscale Models,<br />

Analysis and Numerics<br />

Invasi<strong>on</strong> is a key property <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells, whereby <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding<br />

tissue bo<str<strong>on</strong>g>th</str<strong>on</strong>g> enables <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells to move al<strong>on</strong>g tissue fibers and stimulates <str<strong>on</strong>g>th</str<strong>on</strong>g>e producti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> proteolytic enzymes <str<strong>on</strong>g>th</str<strong>on</strong>g>at destroy <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue network, <str<strong>on</strong>g>th</str<strong>on</strong>g>us enhancing cell<br />

migrati<strong>on</strong>. The product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue degradati<strong>on</strong> is seen as a chemotactic signal<br />

influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e movement directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells.<br />

Existing models for <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment but do not account for biochemical processes<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell or <strong>on</strong> its surface. This processes are however very important, since <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> receptors <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell surface and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> structure are decisive<br />

in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proteolytic enzymes.<br />

We present a model incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>is subcellular mechanisms in a kinetic<br />

equati<strong>on</strong> for cell movement, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>en supplemented by a reacti<strong>on</strong>-diffusi<strong>on</strong><br />

equati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemoattractant al<strong>on</strong>g wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an integro-differential equati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

tissue fibers. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en address <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existence and uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>is str<strong>on</strong>gly coupled system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s.<br />

This str<strong>on</strong>gly coupled and high dimensi<strong>on</strong>al model presents a real challenge<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e design <str<strong>on</strong>g>of</str<strong>on</strong>g> a suitable simulati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology. Selected simulati<strong>on</strong> results<br />

illustrate important phenomena <str<strong>on</strong>g>th</str<strong>on</strong>g>at arise in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

483


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

David Kelly<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bristol<br />

e-mail: dk3531@bristol.ac.uk<br />

Karoline Wiesner<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bristol<br />

Mark Dillilngham<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bristol<br />

Andrew Huds<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leicester<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to model (and quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g>)<br />

bio-molecular c<strong>on</strong>formati<strong>on</strong>al dynamics<br />

We present me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for inferring hidden Markov models from c<strong>on</strong>tinuous data clustered<br />

around discrete values wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out <str<strong>on</strong>g>th</str<strong>on</strong>g>e necessity <str<strong>on</strong>g>of</str<strong>on</strong>g> assuming a model architecture<br />

and as such are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> inferring <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> degenerate states (states wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e same distributi<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e observable variable but different transiti<strong>on</strong> probabilities).<br />

The models inferred in <str<strong>on</strong>g>th</str<strong>on</strong>g>is way are provably optimal and minimal statistical<br />

predictors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data. Additi<strong>on</strong>ally, informati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic measures applied to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

inferred model quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data.<br />

The me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods have been dem<strong>on</strong>strated <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>formati<strong>on</strong>al dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Holliday<br />

(4 way DNA) juncti<strong>on</strong>s (under review - http://arxiv.org/abs/1011.2969) as<br />

investigated by fluorescence res<strong>on</strong>ance energy transfer spectroscopy. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are applicable to any data meeting certain criteria and as such may be<br />

applicable to many dynamical systems.<br />

484


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Harald Kempf<br />

Frankfurt Institute for Advanced Studies, Frankfurt, Germany<br />

e-mail: kempf@fias.uni-frankfurt.de<br />

Michael Meyer-Hermann<br />

Helmholtz Centre for Infecti<strong>on</strong> Research, Braunschweig, Germany<br />

e-mail: michael.meyer-hermann@helmholtz-hzi.de<br />

Optimising chemo- and radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic treatment protocols<br />

using synergy and tumour synchr<strong>on</strong>isati<strong>on</strong><br />

We present an agent-based approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>e modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

tumour spheroids under <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> combined chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and radiati<strong>on</strong> treatment.<br />

Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in our agent-based approach cells are represented as instances <str<strong>on</strong>g>of</str<strong>on</strong>g> a C++<br />

cell-class which advance <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a realistic cell cycle in resp<strong>on</strong>se to external and<br />

internal stimuli such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients and <str<strong>on</strong>g>th</str<strong>on</strong>g>e pressure up<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cell by neighbouring cells. The model makes use <str<strong>on</strong>g>of</str<strong>on</strong>g> a dynamic Delaunay triangulati<strong>on</strong><br />

in order to derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell neighbourhood topology while its dual, a Vor<strong>on</strong>oi<br />

tessellati<strong>on</strong>, is employed in order to calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tact surfaces between adjacent<br />

cells. Our model employs <str<strong>on</strong>g>th</str<strong>on</strong>g>e well-known linear quadratic model for irradiati<strong>on</strong><br />

damage in combinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a stochastic model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell’s dynamic reacti<strong>on</strong> to<br />

damage.<br />

We can study <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour spheroids up to a volume <str<strong>on</strong>g>of</str<strong>on</strong>g> about 1mm 3<br />

which show a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity and can <str<strong>on</strong>g>th</str<strong>on</strong>g>us be used as a model system<br />

for larger amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour tissue as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey possess all properties which are present<br />

in large-scale tumours (hypoxic regi<strong>on</strong>s, necrosis, c<strong>on</strong>centrati<strong>on</strong> gradients). As a<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> irradiati<strong>on</strong> treatment a dynamic reacti<strong>on</strong> is triggered in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour system<br />

which can be studied in detail. Reoxygenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour volume and a<br />

decrease in pressure due to cell necrosis lead to excessive regrow<str<strong>on</strong>g>th</str<strong>on</strong>g> after irradiati<strong>on</strong><br />

as previously quiescent cells are reactivated. A distinct resynchr<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell<br />

cycle is observed which can be exploited wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in fracti<strong>on</strong>ated irradiati<strong>on</strong> treatment<br />

or <str<strong>on</strong>g>th</str<strong>on</strong>g>e timed delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs.<br />

Using measured survival curves for single cell cycle phases we can show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour killing will str<strong>on</strong>gly depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e activati<strong>on</strong> status <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

tumour. A radiati<strong>on</strong>- or drug-induced synchr<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle can be<br />

exploited to target <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour in an optimal state where <str<strong>on</strong>g>th</str<strong>on</strong>g>e sensitivity to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

planed treatment is maximal. Thus we can calculate treatment protocols which<br />

will result in a greatly enhanced amount <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour killing for <str<strong>on</strong>g>th</str<strong>on</strong>g>e same dose <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

radiati<strong>on</strong> or drug.<br />

Combining medicati<strong>on</strong> and radiati<strong>on</strong> treatment in our simulati<strong>on</strong> we can show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour can be optimally prepared to increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e radiosensitivity during<br />

following treatments. Vice versa <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are optimal points to employ chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

after irradiati<strong>on</strong> sessi<strong>on</strong>s.<br />

References.<br />

485


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] H. Kempf and M. Bleicher and M. Meyer-Hermann, Spatio-temporal cell dynamics in tumour<br />

spheroid irradiati<strong>on</strong> <str<strong>on</strong>g>European</str<strong>on</strong>g> Physical Journal D 60 177–193 (2010).<br />

[2] G. Schaller and M. Meyer-Hermann, Multicellular Tumor Spheroid in an <str<strong>on</strong>g>of</str<strong>on</strong>g>f-lattice<br />

Vor<strong>on</strong>oi/Delaunay cell model Physical Review E 71 51910–16 (2005).<br />

486


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Macromolecules and Molecular Aggregates;<br />

Saturday, July 2, 14:30<br />

Richard Kerner<br />

University Pierre et Marie Curie (Paris-VI), Paris, France<br />

e-mail: richard.kerner@upmc.fr<br />

Discrete groups and internal symmetries <str<strong>on</strong>g>of</str<strong>on</strong>g> icosahedral<br />

capsids.<br />

The Caspar-Klug classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> icosahedral capsids [1] takes into account <strong>on</strong>ly<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir size, given by <str<strong>on</strong>g>th</str<strong>on</strong>g>e triangular number T = p + pq + q. It can also note <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

difference between chiral and n<strong>on</strong>-chiral capsids. But it does not take into account<br />

more subtle differences resulting from <str<strong>on</strong>g>th</str<strong>on</strong>g>e differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coat proteins serving as<br />

elementary blocks from which capsids are assembled by agglomerati<strong>on</strong>. [2], [3]. We<br />

develop fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> icosahedral capsids introduced a few years ago<br />

[4], [5], using <str<strong>on</strong>g>th</str<strong>on</strong>g>e symmetry group acti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e elementary triangles<br />

We analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coat proteins forming an icosahedral viral<br />

capsid wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a given triangular number T. A typical icosahedral capsid can be subdivided<br />

into twelve pentag<strong>on</strong>s and 10(T-1) hexag<strong>on</strong>s, which can be realized ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

as genuine hexamers, or as a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dimers or trimers.We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pentamers, which are found in twelve vertices <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e capsid, display five identical<br />

sides. This is usually <str<strong>on</strong>g>th</str<strong>on</strong>g>e case, except for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Papovaviridae family in which all pentamers<br />

are maximally differentiated, displaying five different sides (abcde) instead<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> five identical <strong>on</strong>es (aaaaa).<br />

Hexamers can display various degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> differentiati<strong>on</strong>. The symmetry imposes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>eir sides can be ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>of</str<strong>on</strong>g> two types, or <str<strong>on</strong>g>th</str<strong>on</strong>g>ree types, or six different<br />

types: (ababab), (abcabc) or (abcdef), respectively, because 6 is divisible by 2, 3<br />

and 6. These cases have been discussed in our previous work, and enabled us to<br />

introduce four internal symmetry classes in capsid viruses, according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence<br />

or absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aforementi<strong>on</strong>ed hexamer types. The full informati<strong>on</strong> about<br />

a given icosahedral capsid structure can be read from <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e twenty identical<br />

triangular faces. The first hexamer type, (ababab) is fouund <strong>on</strong>ly in triangles’s<br />

centers, because <str<strong>on</strong>g>of</str<strong>on</strong>g> its <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-fold symmetry; <str<strong>on</strong>g>th</str<strong>on</strong>g>e type (abcabc) can be found at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

edges <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e triangular face, and maximally differentiated hexamers (abcdef) can<br />

be found in any positi<strong>on</strong>.<br />

However, a more subtle analysis can be made if o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hexamer types are taken<br />

into account. The partiti<strong>on</strong> into 2, 3 or 6 different sides must be maintained,<br />

but <str<strong>on</strong>g>th</str<strong>on</strong>g>e two (ab) and <str<strong>on</strong>g>th</str<strong>on</strong>g>ree (abc) proteins can be placed differently in a hexamer,<br />

e.g. like (aaabbb) instead <str<strong>on</strong>g>of</str<strong>on</strong>g> (ababab), or (aabbab); <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree different proteins<br />

(abc) can be displayed as (abccba) instead <str<strong>on</strong>g>of</str<strong>on</strong>g> (abcabc), generating even instead<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chiral symmetry around <str<strong>on</strong>g>th</str<strong>on</strong>g>e edge. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese new c<strong>on</strong>figurati<strong>on</strong>s included, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> icosahedral capsids becomes more complete.<br />

We also show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e capsids agglomerate in a way <str<strong>on</strong>g>th</str<strong>on</strong>g>at always minimizes <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> different proteins needed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong>. This is being illustrated <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e examples provided by <str<strong>on</strong>g>th</str<strong>on</strong>g>e herpesvirus (T=16) and human adenovirus (T=25).<br />

Our classificati<strong>on</strong> gives some extra hints c<strong>on</strong>cerning genetic proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> viruses<br />

displaying similar classes <str<strong>on</strong>g>of</str<strong>on</strong>g> capsid symmetries.<br />

487


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] Caspar, D.L.D., Klug A., 1962, Symp. Quant. Biol. bf 27, 1.<br />

[2] Zlotnick, A. 1994, J. Mol. Biology bf 241, pp. 59-67<br />

[3] R. Kerner, Models <str<strong>on</strong>g>of</str<strong>on</strong>g> agglomerati<strong>on</strong> and glass transiti<strong>on</strong>, Imperial College Press, (2007)<br />

[4] R. Kerner, it Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Medicine, Vol. 6 (2), p.95-97 (2005)<br />

[5] R. Kerner, it Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Medicine, Vol. 9 (3,4), p.175-181 (2008)<br />

488


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Helen Kettle<br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics Scotland<br />

e-mail: helen@bioss.ac.uk<br />

Petra Louis<br />

Rowett Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Nutriti<strong>on</strong> and Heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Harry Flint<br />

Rowett Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Nutriti<strong>on</strong> and Heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Ruairi D<strong>on</strong>nelly<br />

Heriot Watt University<br />

Grietje Holtrop<br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics Scotland<br />

Glenn Mari<strong>on</strong><br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics Scotland<br />

Ecosystems Dynamics; Tuesday, June 28, 14:30<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e Emergent Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Microbial<br />

Communities in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Human Col<strong>on</strong><br />

Modelling microbial ecosystem dynamics in <str<strong>on</strong>g>th</str<strong>on</strong>g>e human col<strong>on</strong> is challenging due to<br />

large variati<strong>on</strong>s between individuals and limited amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> data. In an attempt to<br />

overcome <str<strong>on</strong>g>th</str<strong>on</strong>g>ese issues we take a complex adaptive systems (CAS) approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

problem. Thus a model is developed in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant bacterial strains are not<br />

defined a priori but are allowed to ’emerge’ from a stochastically generated bacterial<br />

populati<strong>on</strong>. To do <str<strong>on</strong>g>th</str<strong>on</strong>g>is we begin by assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at every bacterial strain falls into<br />

<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> ten bacterial functi<strong>on</strong>al groups (BFGs) which are distinguished by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir preferred pH ranges. The metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways form<br />

a network which determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e dietary substrates each BFG grows <strong>on</strong> and which<br />

metabolites it may c<strong>on</strong>sume or produce. The parameters c<strong>on</strong>trolling <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact rates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transfer al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>ese pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e preferred pH ranges are <str<strong>on</strong>g>th</str<strong>on</strong>g>en generated<br />

stochastically, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in appropriate limits, for a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 300 bacterial strains.<br />

The rates <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> each strain, resource and metabolite are computed<br />

by solving a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s. Due to competiti<strong>on</strong> for<br />

resources, and interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic network, some strains will flourish<br />

and some will disappear, such <str<strong>on</strong>g>th</str<strong>on</strong>g>at over time a viable community for <str<strong>on</strong>g>th</str<strong>on</strong>g>e given<br />

envir<strong>on</strong>ment emerges. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s governing <str<strong>on</strong>g>th</str<strong>on</strong>g>e model are described<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e model results are compared to data from a fermentor study which examines<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> pH <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microbial community. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en dem<strong>on</strong>strate how <str<strong>on</strong>g>th</str<strong>on</strong>g>is CAS<br />

modelling approach allows <str<strong>on</strong>g>th</str<strong>on</strong>g>e system to adapt to its envir<strong>on</strong>ment <str<strong>on</strong>g>th</str<strong>on</strong>g>rough species<br />

successi<strong>on</strong> and investigate different mechanisms for avoiding competitive exclusi<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e BFGs.<br />

489


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evgeniy Khain<br />

Oakland University<br />

e-mail: khain@oakland.edu<br />

Y. T. Lin<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan<br />

L. M. Sander<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 08:30<br />

Role <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong>s in fr<strong>on</strong>t propagati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e insect outbreak<br />

model<br />

Propagating fr<strong>on</strong>ts arising from bistable reacti<strong>on</strong> diffusi<strong>on</strong> equati<strong>on</strong>s are a purely<br />

deterministic effect. Stochastic reacti<strong>on</strong> diffusi<strong>on</strong> processes also show fr<strong>on</strong>t propagati<strong>on</strong><br />

which coincides wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic effect in <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit <str<strong>on</strong>g>of</str<strong>on</strong>g> small fluctuati<strong>on</strong>s<br />

(usually, large populati<strong>on</strong>s). However, for larger fluctuati<strong>on</strong>s propagati<strong>on</strong> can be<br />

affected. We give an example, based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e classic spruce-budworm model, where<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wave propagati<strong>on</strong>, i.e., <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative stability <str<strong>on</strong>g>of</str<strong>on</strong>g> two phases, can be<br />

reversed by fluctuati<strong>on</strong>s.<br />

490


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

C<strong>on</strong>necting microscale and macroscale models <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular migrati<strong>on</strong>;<br />

Tuesday, June 28, 17:00<br />

Evgeniy Khain<br />

Oakland University<br />

e-mail: khain@oakland.edu<br />

Le<strong>on</strong>ard Sander<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan<br />

Fr<strong>on</strong>ts <str<strong>on</strong>g>of</str<strong>on</strong>g> cells invading a wound: from discrete stochastic<br />

approach to c<strong>on</strong>tinuum descripti<strong>on</strong><br />

We present a stochastic model <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes fr<strong>on</strong>ts <str<strong>on</strong>g>of</str<strong>on</strong>g> cells invading a wound. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model, cells can migrate, proliferate, and experience cell-cell adhesi<strong>on</strong>. We find<br />

several qualitatively different regimes <str<strong>on</strong>g>of</str<strong>on</strong>g> fr<strong>on</strong>t moti<strong>on</strong> and analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e transiti<strong>on</strong>s<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>em. Above a critical value <str<strong>on</strong>g>of</str<strong>on</strong>g> adhesi<strong>on</strong> and for small proliferati<strong>on</strong>, large<br />

isolated clusters are formed ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t. This is mapped <strong>on</strong>to <str<strong>on</strong>g>th</str<strong>on</strong>g>e well-known<br />

ferromagnetic phase transiti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ising model. The results are compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

experiments, and possible directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> future work are proposed. We also focus <strong>on</strong> a<br />

c<strong>on</strong>tinuum descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong> by means <str<strong>on</strong>g>of</str<strong>on</strong>g> a generalized Cahn-Hilliard<br />

equati<strong>on</strong> (GCH) wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a proliferati<strong>on</strong> term. As in <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete model, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are two<br />

interesting regimes. For subcritical adhesi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are propagating "pulled" fr<strong>on</strong>ts,<br />

similarly to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> Fisher-Kolmogorov equati<strong>on</strong>. The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> fr<strong>on</strong>t velocity<br />

selecti<strong>on</strong> is examined, and our <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical predicti<strong>on</strong>s are in a good agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a numerical soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e GCH equati<strong>on</strong>. For supercritical adhesi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a<br />

n<strong>on</strong>trivial transient behavior, where density pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile exhibits a sec<strong>on</strong>dary peak. The<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuum and discrete models are in a good agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e different regimes we analyzed.<br />

491


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Afifa Iftikhar, Mudassar Imran, Adnan Khan<br />

Lahore University <str<strong>on</strong>g>of</str<strong>on</strong>g> Management Sciences, Lahore, Pakistan<br />

A Stochastic Model for Calcium Regulati<strong>on</strong> in Spines<br />

The study <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium signals in dendritic spines is <str<strong>on</strong>g>of</str<strong>on</strong>g> great interest, as <str<strong>on</strong>g>th</str<strong>on</strong>g>ese by ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

acti<strong>on</strong> potential or by synaptic activity play a crucial role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e synaptic plasticity<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in an individual spine. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e small size <str<strong>on</strong>g>of</str<strong>on</strong>g> spine and <str<strong>on</strong>g>th</str<strong>on</strong>g>e indicators<br />

comm<strong>on</strong>ly used to measure spine calcium activity, calcium functi<strong>on</strong> can be severely<br />

disrupted. Therefore, it is very difficult to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact relati<strong>on</strong>ship between<br />

spine geometry and spine calcium dynamics. Recently, it has been suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e medium range <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium which induces l<strong>on</strong>g term potentiati<strong>on</strong> leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

structural stability stage <str<strong>on</strong>g>of</str<strong>on</strong>g> spines, while very low or very high amount <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium<br />

leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g term depressi<strong>on</strong> stage which results in shortening and eventually<br />

pruning <str<strong>on</strong>g>of</str<strong>on</strong>g> spines. We discuss a stochastic model to examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at govern its regulati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e spine morphology.<br />

492


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Saturday, July 2, 08:30<br />

Amjad Khan<br />

Nati<strong>on</strong>al University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences and Technology (NUST), School <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Civil and envir<strong>on</strong>mental Engineering (SCEE), NUST Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil<br />

Engineering (NICE), Sector H-12, Islamabad, Pakistan.<br />

e-mail: za ¯ amjad@yahoo.com<br />

Rahmat Ali Khan<br />

Centre for Advanced Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Physics, Nati<strong>on</strong>al University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences and Technology(NUST), Sector H-12, Islamabad, Pakistan<br />

e-mail: rahmat ¯ alipk@yahoo.com<br />

Takenori Takada<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Ear<str<strong>on</strong>g>th</str<strong>on</strong>g> Science, Hokkaido University,<br />

Kita-ku, Sapporo 060-0810, Japan.<br />

e-mail: takada@ees.hokudai.ac.jp<br />

Homotopy perturbati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for traveling wave soluti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> system <str<strong>on</strong>g>of</str<strong>on</strong>g> biological reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, we apply a technique which is called homotopy perturbati<strong>on</strong><br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od (HPM) for obtaining analytical approximate traveling wave soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> biological reacti<strong>on</strong> diffusi<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e type<br />

(1)<br />

St = εSxx − νSx − f(S)P,<br />

Pt = Pxx − νPx + [f(S) − K]P.<br />

Biological reacti<strong>on</strong> diffusi<strong>on</strong> equati<strong>on</strong>s are used as ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for several<br />

problems in biology and chemistry. For example (1) was used as a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model for microbial grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and competiti<strong>on</strong> in a flow reactor. The <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reacti<strong>on</strong>-diffusi<strong>on</strong> waves started in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 1930s, initial works was carried out in populati<strong>on</strong><br />

dynamics, combusti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and chemical kinetics. Nowadays, it is a well<br />

developed area <str<strong>on</strong>g>of</str<strong>on</strong>g> research. This includes qualitative properties <str<strong>on</strong>g>of</str<strong>on</strong>g> traveling waves<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e scalar reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong> and for system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s, complex n<strong>on</strong>linear<br />

dynamics, numerous applicati<strong>on</strong>s in physics, chemistry, biology and medicine.<br />

Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> traveling waves reflects <str<strong>on</strong>g>th</str<strong>on</strong>g>e important phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> wave propagati<strong>on</strong><br />

and has extensively studied by many au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors. The homotopy perturbati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

(HPM) proposed by Ji-Huan He in 1998 is a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for finding approximate soluti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-linear differential and integral equati<strong>on</strong>s. This me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is popular<br />

am<strong>on</strong>gst n<strong>on</strong>-ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematician and engineers because HPM decomposes a complex<br />

problem under study to a series <str<strong>on</strong>g>of</str<strong>on</strong>g> simple problems <str<strong>on</strong>g>th</str<strong>on</strong>g>at are easy to be solved. The<br />

results obtained reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e homotopy perturbati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is effective and<br />

simple. Some plots are presented to c<strong>on</strong>firm <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical results.<br />

493


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Nino Khatiashvili<br />

Iv. Javakhishvili Tbilisi State University<br />

e-mail: ninakhat@yahoo.com<br />

Christina Pirumova<br />

Iv. Javakhishvili Tbilisi State University<br />

e-mail: chr4mk@gmail.com<br />

Vladimer Akhobadze<br />

Iv. Javakhishvili Tbilisi State University<br />

e-mail: vakhobadze@gmail.com<br />

Cancer; Wednesday, June 29, 08:30<br />

The n<strong>on</strong>-linear ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different forms<br />

The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is c<strong>on</strong>structed taking into <str<strong>on</strong>g>th</str<strong>on</strong>g>e account<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normal and tumor cells for <str<strong>on</strong>g>th</str<strong>on</strong>g>e nutrients supply and new vessels<br />

formati<strong>on</strong> under oxygenal stress. The character <str<strong>on</strong>g>of</str<strong>on</strong>g> different geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is c<strong>on</strong>sidered (such as cylindrical and spherical). The system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-linear<br />

differential equati<strong>on</strong>s is obtained<br />

dx<br />

2<br />

= g1x 3 − ν1y,<br />

dt<br />

dy<br />

dt = g2y α − ν2y,<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial c<strong>on</strong>diti<strong>on</strong>s<br />

x(0) = x0, y(0) = y0,<br />

where x(t) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e volume <str<strong>on</strong>g>of</str<strong>on</strong>g> normal cells, y(t)- is <str<strong>on</strong>g>th</str<strong>on</strong>g>e volume <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells, which<br />

depends <strong>on</strong> time t, a and b are <str<strong>on</strong>g>th</str<strong>on</strong>g>e nutrients c<strong>on</strong>sumpti<strong>on</strong> rates, g1, g2 are <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> x(t) and y(t) c<strong>on</strong>sequently, ν1 and ν2 reflects a necrotic factors,<br />

α is a geometric characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor volume.<br />

The system is investigated numerically, computer simulati<strong>on</strong>s are given.<br />

The designated project has been fulfilled by financial support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Georgia<br />

Rustaveli Foundati<strong>on</strong> (Grant #GNSF/ST08/3-395). Any idea in <str<strong>on</strong>g>th</str<strong>on</strong>g>is publicati<strong>on</strong><br />

is possessed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e au<str<strong>on</strong>g>th</str<strong>on</strong>g>or and may not represent <str<strong>on</strong>g>th</str<strong>on</strong>g>e opini<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Foundati<strong>on</strong><br />

itself.<br />

494


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanical regulati<strong>on</strong> in b<strong>on</strong>e tissue (Sessi<strong>on</strong><br />

II); Wednesday, June 29, 11:00<br />

Hanifeh Khayyeri<br />

Trinity Centre for Bioengineering, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, Trinity<br />

College Dublin, Dublin, Ireland<br />

e-mail: khayyerh@tcd.ie<br />

Patrick J. Prendergast<br />

Trinity Centre for Bioengineering, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, Trinity<br />

College Dublin, Dublin, Ireland<br />

e-mail: pprender@tcd.ie<br />

Evoluti<strong>on</strong>ary simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mechano-regulated endoch<strong>on</strong>dral healing process<br />

The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> tissues to adapt to <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical envir<strong>on</strong>ment is a remarkable<br />

feature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e skelet<strong>on</strong>. Several mechano-regulati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eories have been proposed<br />

for describing how <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical envir<strong>on</strong>ment modulates mesenchymal stem cell<br />

differentiati<strong>on</strong> into b<strong>on</strong>e, cartilage and fibrous tissue. Despite <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological complexity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese <str<strong>on</strong>g>th</str<strong>on</strong>g>eories have <str<strong>on</strong>g>of</str<strong>on</strong>g>ten been able to predict osseous healing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough bo<str<strong>on</strong>g>th</str<strong>on</strong>g> membraneous and ch<strong>on</strong>dral healing, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> reas<strong>on</strong>able success [1,2].<br />

It is intriguing to w<strong>on</strong>der about <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese healing processes, in<br />

particular <str<strong>on</strong>g>th</str<strong>on</strong>g>e endoch<strong>on</strong>dral ossificati<strong>on</strong> process, in evoluti<strong>on</strong> and whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mechano-regulati<strong>on</strong> has been involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> new healing processes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough natural selecti<strong>on</strong>. Early vertebrates, like cartilaginous fishes, could<br />

modulate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir tissues to <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical envir<strong>on</strong>ment and it is likely <str<strong>on</strong>g>th</str<strong>on</strong>g>at evoluti<strong>on</strong><br />

worked wi<str<strong>on</strong>g>th</str<strong>on</strong>g> adapting <str<strong>on</strong>g>th</str<strong>on</strong>g>e skeletal tissues to <str<strong>on</strong>g>th</str<strong>on</strong>g>e local c<strong>on</strong>diti<strong>on</strong>s ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

involving major changes in cells or tissue types [3].<br />

This study shows how <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechano-regulated endoch<strong>on</strong>dral ossificati<strong>on</strong> process<br />

could have emerged in evoluti<strong>on</strong> by being favoured in natural selecti<strong>on</strong>. The<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a mechano-regulated tissue differentiati<strong>on</strong> model [4] and a genetic<br />

algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for simulating evoluti<strong>on</strong>ary change [5], used in <str<strong>on</strong>g>th</str<strong>on</strong>g>is investigati<strong>on</strong>, was<br />

fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er able to capture inter-populati<strong>on</strong> variability in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechano-regulated resp<strong>on</strong>se<br />

and arrived at results <str<strong>on</strong>g>th</str<strong>on</strong>g>at are in agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mechano-regulated differentiati<strong>on</strong> and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e [6,7].<br />

References.<br />

[1] H. Isakss<strong>on</strong> et al., 2006 Corroborati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanoregulatory algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms for tissue differentiati<strong>on</strong><br />

during fracture healing: Comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> in vivo results J. Or<str<strong>on</strong>g>th</str<strong>on</strong>g>op Res. 24 898–907.<br />

[2] H. Khayyeri et al., 2009,Corroborati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanobiological simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue differentiati<strong>on</strong><br />

in an in vivo b<strong>on</strong>e chamber using a lattice-modeling approach J. Or<str<strong>on</strong>g>th</str<strong>on</strong>g>op Res. 27<br />

1659–1666.<br />

[3] B. K. Hall, 2005, B<strong>on</strong>es and cartilage: developmental and evoluti<strong>on</strong>ary skeletal biology San<br />

Diego, Elsevier Academic Press.<br />

[4] P. J. Prendergast et al., 1997, Biophysical stimuli <strong>on</strong> cells during tissue differentiati<strong>on</strong> at<br />

implant interfaces J. Biomech. 30 539–548.<br />

[5] N. Nowlan and P. J. Prendergast, 2005, Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanoregulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> will<br />

lead to n<strong>on</strong>-optimal b<strong>on</strong>e phenotypes J. Theor. Biol. 235 408–418.<br />

[6] E. F. Morgan et al., 2010, Correlati<strong>on</strong>s between local strains and tissue phenotypes in an<br />

experimental model <str<strong>on</strong>g>of</str<strong>on</strong>g> skeletal healing] J. Biomech. 43 2418–2424.<br />

[7] U. Meyer et al., 2001, Tissue differentiati<strong>on</strong> and cytokine syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis during strain-related b<strong>on</strong>e<br />

formati<strong>on</strong> in distracti<strong>on</strong> osteogenesis Br. J. Oral Maxill<str<strong>on</strong>g>of</str<strong>on</strong>g>ac. Surg. 39 22–29.<br />

495


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Eunjung Kim<br />

e-mail: Eunjung.Kim@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

David Basanta<br />

e-mail: david@basanta.org.es<br />

Keiran S. Smalley<br />

e-mail: Keiran.Smalley@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

Alexander R. A. Anders<strong>on</strong><br />

e-mail: Alexander.Anders<strong>on</strong>@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

Integrated Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology,<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center,<br />

12902 Magnolia Dr., Tampa, FL 33612.<br />

Cancer; Wednesday, June 29, 08:30<br />

Getting old and misbehaving:<br />

Can stromal aging drive melanoma initiati<strong>on</strong>?<br />

We have implemented a hybrid cellular automata model <str<strong>on</strong>g>of</str<strong>on</strong>g> skin <str<strong>on</strong>g>th</str<strong>on</strong>g>at focuses<br />

<strong>on</strong> key variables implicated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> normal homeostatic skin functi<strong>on</strong><br />

and its disrupti<strong>on</strong> in melanoma initiati<strong>on</strong> and progressi<strong>on</strong>. The model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> discrete cellular species such as melanocytes, transformed melanocytes, keratinocytes,<br />

and fibroblasts, and c<strong>on</strong>tinuous microenvir<strong>on</strong>mental variables such as<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors and extracellular matrix. The behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete cell<br />

species is defined using life cycle flowcharts. Based <strong>on</strong> experimental observati<strong>on</strong>s,<br />

we know <str<strong>on</strong>g>th</str<strong>on</strong>g>at when fibroblasts age <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can become senescent and start producing<br />

factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at may disrupt <str<strong>on</strong>g>th</str<strong>on</strong>g>e very homeostasis <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey should maintain. We incorporate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese phenotypic changes as fibroblasts age and use our model to examine<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese changes affect skin functi<strong>on</strong>.<br />

Specifically, we examined <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> disrupting interacti<strong>on</strong>s between melanocytes,<br />

keratinocytes, fibroblasts and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir microenvir<strong>on</strong>ment and <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> aged fibroblasts<br />

in driving melanoma initiati<strong>on</strong>. Model simulati<strong>on</strong>s provide a series <str<strong>on</strong>g>of</str<strong>on</strong>g> virtual<br />

skin pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies <str<strong>on</strong>g>th</str<strong>on</strong>g>at readily recapitulate a spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> true aberrant clinical<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies. Direct comparis<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies allowed us to find <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

critical perturbati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at drive melanoma initiati<strong>on</strong> and progressi<strong>on</strong>. We also utilize<br />

an in vitro 3D organotypic skin model to fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er investigate some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

predicti<strong>on</strong>s.<br />

496


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: from physical tools to<br />

applicati<strong>on</strong>s in cancer modeling I; Saturday, July 2, 08:30<br />

Yangjin Kim<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan<br />

e-mail: yangjink@umd.umich.edu<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment in an early development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> breast cancer: a hybrid (multiscale) model.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and computati<strong>on</strong>al analysis are essential for understanding<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex gene networks <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trol normal development<br />

and homeostasis, and can help to understand how circumventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trol<br />

leads to abnormal outcomes such as cancer. Tumor microenvir<strong>on</strong>ment (TME) is<br />

comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> various signaling molecules, cell types and <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix.<br />

We investigate how <str<strong>on</strong>g>th</str<strong>on</strong>g>e local biochemical and mechanical microenvir<strong>on</strong>ment can affect<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potentially-cancerous cells in an early development <str<strong>on</strong>g>of</str<strong>on</strong>g> breast<br />

cancer. The model deals wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment<br />

<strong>on</strong> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, and we report results from a multi-scale model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways and <str<strong>on</strong>g>th</str<strong>on</strong>g>e TME. The results emphasize <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e TME and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir effect <strong>on</strong> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, and show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

tumor progressi<strong>on</strong> is not solely determined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a cl<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> mutated<br />

immortal cells, but ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>at it is communityc<strong>on</strong>trolled.<br />

497


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanical Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Movement and Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cells and Tissues I;<br />

Wednesday, June 29, 14:30<br />

Yangjin Kim<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan<br />

e-mail: yangjink@umd.umich.edu<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment in tumor invasi<strong>on</strong>: a<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

Glioma cells tend to migrate from <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary tumor into <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissue.<br />

We develop a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model which includes <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> adhesi<strong>on</strong> and mechanical<br />

interacti<strong>on</strong> between glioma cells and collagen network. Simulati<strong>on</strong> results show<br />

cell migrati<strong>on</strong> behavior <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix using informati<strong>on</strong> from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e complex fibrous structure. We also take into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular signals<br />

at each cell site for <str<strong>on</strong>g>th</str<strong>on</strong>g>is cell migrati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e ECM. We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e detailed<br />

mechanical interacti<strong>on</strong>s between cells and between a cell and <str<strong>on</strong>g>th</str<strong>on</strong>g>e collagen fibers in<br />

additi<strong>on</strong> to reacti<strong>on</strong>-diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules.<br />

498


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling physiological systems: model validati<strong>on</strong> and experimental design<br />

issues; Wednesday, June 29, 11:00<br />

Julian King<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna and<br />

Brea<str<strong>on</strong>g>th</str<strong>on</strong>g> Research Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

Nordbergstr. 15, A-1090 Wien, Austria<br />

e-mail: julian.king@oeaw.ac.at<br />

Karl Unterk<str<strong>on</strong>g>of</str<strong>on</strong>g>ler<br />

Vorarlberg University <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences and<br />

Brea<str<strong>on</strong>g>th</str<strong>on</strong>g> Research Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

Hochschulstr. 1, A-6850 Dornbirn, Austria<br />

e-mail: karl.unterk<str<strong>on</strong>g>of</str<strong>on</strong>g>ler@fhv.at<br />

Helin Koç<br />

Vorarlberg University <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences<br />

Hochschulstr. 1, A-6850 Dornbirn, Austria<br />

e-mail: helin.koc@fhv.at<br />

Gerald Teschl<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna<br />

Nordbergstr. 15, A-1090 Wien, Austria<br />

e-mail: gerald.teschl@univie.ac.at<br />

Susanne Teschl<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Sciences Technikum Wien<br />

Höchstädtplatz 5, A-1200 Wien, Austria<br />

e-mail: susanne.teschl@esi.ac.at<br />

Ant<strong>on</strong> Amann<br />

Univ.-Clinic for Anes<str<strong>on</strong>g>th</str<strong>on</strong>g>esia <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Innsbruck Medical University and<br />

Brea<str<strong>on</strong>g>th</str<strong>on</strong>g> Research Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Austrian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

Anichstr. 35, A-6020 Innsbruck, Austria<br />

e-mail: ant<strong>on</strong>.amann@i-med.ac.at<br />

Physiological modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> trace gas exhalati<strong>on</strong> kinetics:<br />

a n<strong>on</strong>-invasive window to <str<strong>on</strong>g>th</str<strong>on</strong>g>e body<br />

Exhaled brea<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>tains a ple<str<strong>on</strong>g>th</str<strong>on</strong>g>ora <str<strong>on</strong>g>of</str<strong>on</strong>g> volatile organic compounds (VOCs),<br />

resulting from normal metabolic activity as well as from specific pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ological disorders.<br />

These trace gases can be detected and quantified at c<strong>on</strong>centrati<strong>on</strong>s down<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e parts-per-billi<strong>on</strong> (ppb) level and hold great promise for medical diagnosis,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic m<strong>on</strong>itoring, and general assessments <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological functi<strong>on</strong>. In particular,<br />

exhaled brea<str<strong>on</strong>g>th</str<strong>on</strong>g> can nowadays be measured <strong>on</strong>-line, <str<strong>on</strong>g>th</str<strong>on</strong>g>us rendering VOC<br />

analysis as an optimal choice for gaining c<strong>on</strong>tinuous and n<strong>on</strong>-invasive informati<strong>on</strong><br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e current metabolic and physiological state <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual.<br />

The success <str<strong>on</strong>g>of</str<strong>on</strong>g> using brea<str<strong>on</strong>g>th</str<strong>on</strong>g> VOC c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for estimating endogenous<br />

processes will mainly hinge <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e availability <str<strong>on</strong>g>of</str<strong>on</strong>g> valid mechanistic descripti<strong>on</strong>s<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e observable exhalati<strong>on</strong> kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e compound under scrutiny. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

c<strong>on</strong>text, we focus <strong>on</strong> real-time measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> VOCs during distinct physiological<br />

states, e.g., rest, exercise, and sleep [1,2].<br />

499


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

An experimental setup for correlating brea<str<strong>on</strong>g>th</str<strong>on</strong>g>-by-brea<str<strong>on</strong>g>th</str<strong>on</strong>g> analyses using prot<strong>on</strong><br />

transfer reacti<strong>on</strong> mass spectrometry (PTR-MS) wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> major hemodynamic<br />

and respiratory variables will be presented. Building <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomenological<br />

findings from studies <str<strong>on</strong>g>of</str<strong>on</strong>g> normal volunteers, a novel compartmental modeling<br />

framework capturing <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological flow <str<strong>on</strong>g>of</str<strong>on</strong>g> two prototypic VOCs, isoprene and<br />

acet<strong>on</strong>e, is developed and validated [3,4].<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, several powerful c<strong>on</strong>cepts for system and parameter identificati<strong>on</strong><br />

will be outlined, including qualitative system analysis, a priori identifiability, and<br />

numerical schemes based <strong>on</strong> multiple shooting.<br />

The results discussed are intended as a first step towards employing brea<str<strong>on</strong>g>th</str<strong>on</strong>g> gas<br />

analysis as a tool for examining exhalati<strong>on</strong>, storage, transport, and biotransformati<strong>on</strong><br />

processes associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> volatile organic compounds in vivo.<br />

References.<br />

[1] J. King, A. Kupfer<str<strong>on</strong>g>th</str<strong>on</strong>g>aler, K. Unterk<str<strong>on</strong>g>of</str<strong>on</strong>g>ler, H. Koc, S. Teschl, G. Teschl, W. Miekisch, J. Schubert,<br />

H. Hinterhuber, and A. Amann. Isoprene and acet<strong>on</strong>e c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles during<br />

exercise <strong>on</strong> an ergometer. J. Brea<str<strong>on</strong>g>th</str<strong>on</strong>g> Res. 3 027006 (16pp).<br />

[2] J. King, P. Mochalski, A. Kupfer<str<strong>on</strong>g>th</str<strong>on</strong>g>aler, K. Unterk<str<strong>on</strong>g>of</str<strong>on</strong>g>ler, H. Koc, W. Filipiak, S. Teschl, H. Hinterhuber,<br />

and A. Amann. Dynamic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> volatile organic compounds in exhaled brea<str<strong>on</strong>g>th</str<strong>on</strong>g> as<br />

determined by a coupled PTR-MS/GC-MS study. Physiol. Meas. 31 1169–1184.<br />

[3] J. King, H. Koc, K. Unterk<str<strong>on</strong>g>of</str<strong>on</strong>g>ler, P. Mochalski, A. Kupfer<str<strong>on</strong>g>th</str<strong>on</strong>g>aler, G. Teschl, S. Teschl, H. Hinterhuber,<br />

and A. Amann. Physiological modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> isoprene dynamics in exhaled brea<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

J. Theor. Biol. 267 626–637.<br />

[4] J. King, K. Unterk<str<strong>on</strong>g>of</str<strong>on</strong>g>ler, G. Teschl, S. Teschl, H. Koc, H. Hinterhuber, and A. Amann. A<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for brea<str<strong>on</strong>g>th</str<strong>on</strong>g> gas analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> volatile organic compounds wi<str<strong>on</strong>g>th</str<strong>on</strong>g> special emphasis<br />

<strong>on</strong> acet<strong>on</strong>e. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. DOI 10.1007/s00285-010-0398-9.<br />

500


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecology and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases; Friday, July 1, 14:30<br />

Eva Kisdi<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: eva.kisdi@helsinki.fi<br />

Barbara Boldin<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Primorska<br />

The curse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pharaoh hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis revisited: Evoluti<strong>on</strong>ary<br />

coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> parasite strains<br />

Several pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens produce free-living stages <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong> to spread from<br />

<strong>on</strong>e host to <str<strong>on</strong>g>th</str<strong>on</strong>g>e next indirectly, via an outside envir<strong>on</strong>ment. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproductive<br />

success <str<strong>on</strong>g>of</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens wi<str<strong>on</strong>g>th</str<strong>on</strong>g> l<strong>on</strong>g-lived spores depends less <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e host’s survival,<br />

it has been hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esized <str<strong>on</strong>g>th</str<strong>on</strong>g>at such pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens can afford to exploit <str<strong>on</strong>g>th</str<strong>on</strong>g>eir hosts<br />

more recklessly and <str<strong>on</strong>g>th</str<strong>on</strong>g>us evolve higher virulence. We revisit <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called ‘curse<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pharaoh’ hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis and study <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> virulence in pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

can transmit directly as well as indirectly, via free-living stages. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e two transmissi<strong>on</strong> routes introduce two envir<strong>on</strong>mental feedback variables, which<br />

allows for coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> two parasite strains <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two specializes to some<br />

extent <strong>on</strong> direct transmissi<strong>on</strong>, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er makes better use <str<strong>on</strong>g>of</str<strong>on</strong>g> indirect route<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong>. We give general c<strong>on</strong>diti<strong>on</strong>s for coexistence in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> incidence<br />

in host-to-host and host-propagule-host transmissi<strong>on</strong>, and discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s<br />

for evoluti<strong>on</strong>ary branching leading to coexisting strains in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f functi<strong>on</strong>s.<br />

501


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Informati<strong>on</strong>, human behaviour and disease; Saturday, July 2, 11:00<br />

Istvan Kiss<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Physical Sciences, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex, UK<br />

e-mail: i.z.kiss@sussex.ac.uk<br />

Vasilis Hatzopoulos<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex, UK<br />

Michael Taylor<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex, UK<br />

Peter L. Sim<strong>on</strong><br />

Eotvos Lorand University, Hungary<br />

Multiple sources and routes <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> transmissi<strong>on</strong>:<br />

implicati<strong>on</strong>s for epidemic dynamics<br />

In a recent paper [1], we proposed and analyzed a compartmental ODE-based model<br />

describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> an infectious disease where <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen<br />

also triggers <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, we extend<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is previous work by presenting results based <strong>on</strong> pairwise and simulati<strong>on</strong> models<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at are better suited for capturing <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> c<strong>on</strong>tact structure at a local level.<br />

We use <str<strong>on</strong>g>th</str<strong>on</strong>g>e pairwise model to examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential <str<strong>on</strong>g>of</str<strong>on</strong>g> different informati<strong>on</strong> generating<br />

mechanisms and routes <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> transmissi<strong>on</strong> to stop disease spread<br />

or to minimize <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic. The individual-based simulati<strong>on</strong> is used<br />

to better differentiate between <str<strong>on</strong>g>th</str<strong>on</strong>g>e networks <str<strong>on</strong>g>of</str<strong>on</strong>g> disease and informati<strong>on</strong> transmissi<strong>on</strong><br />

and to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> different basic network topologies and network<br />

overlap <strong>on</strong> epidemic dynamics. The paper c<strong>on</strong>cludes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an individual-based semianalytic<br />

calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> R0 at <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-trivial disease free equilibrium.<br />

References.<br />

[1] I.Z. Kiss, J. Cassell, M. Recker, and P.L. Sim<strong>on</strong>. (2010) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> transmissi<strong>on</strong><br />

<strong>on</strong> epidemic outbreaks. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci. 225, 1-10.<br />

502


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Agnieszka Kitlas<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Informatics, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Białystok, Sosnowa 64, 15-887 Białystok, Poland<br />

e-mail: akitlas@ii.uwb.edu.pl<br />

Edward Oczeretko<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering, Białystok University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

Wiejska 45C, 15-351 Białystok, Poland<br />

e-mail: e.oczeretko@pb.edu.pl<br />

Tadeusz Laudański<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Perinatology, M. Skłodowskiej-Curie 24A, 15-276 Białystok,<br />

Poland<br />

e-mail: laudan@umwb.edu.pl<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e uterine c<strong>on</strong>tractility: wavelet<br />

cross-correlati<strong>on</strong> functi<strong>on</strong> and wavelet coherence measure<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> uterine c<strong>on</strong>tracti<strong>on</strong> activity is an important element in physiological<br />

menstrual cycle and diagnostics <str<strong>on</strong>g>of</str<strong>on</strong>g> labor. Changes in synchr<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

simultaneously recorded uterine c<strong>on</strong>tractility signals accompany various kinds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gynecology disorders and obstetric pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies, e.g. endometriosis, fibromyomas,<br />

preterm bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and tumors. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study is to analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>ese signals<br />

using wavelet cross-correlati<strong>on</strong> functi<strong>on</strong> and wavelet coherence measure.<br />

Sp<strong>on</strong>taneous uterine c<strong>on</strong>tracti<strong>on</strong>s were recorded directly by a dual micro-tip<br />

ca<str<strong>on</strong>g>th</str<strong>on</strong>g>eter (Millar Instruments, Inc.). The device c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> two ultra-miniature<br />

pressure sensors. The distance between <str<strong>on</strong>g>th</str<strong>on</strong>g>e sensors was 30mm (<strong>on</strong>e sensor was<br />

placed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e fundus and <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cervix). The sensors produced electrical<br />

signals, which varied in direct proporti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> measured pressure.<br />

We have analyzed <str<strong>on</strong>g>th</str<strong>on</strong>g>e signals obtained during examinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> women suffering<br />

from primary dysmenorrhea (28 examinati<strong>on</strong>s), endometriosis (11 examinati<strong>on</strong>s),<br />

uterine myomas (9 examinati<strong>on</strong>s), and 1 examinati<strong>on</strong> from heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y woman. The<br />

Bioe<str<strong>on</strong>g>th</str<strong>on</strong>g>ics Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Białystok approved <str<strong>on</strong>g>th</str<strong>on</strong>g>e study. This<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is invasive <str<strong>on</strong>g>th</str<strong>on</strong>g>us <str<strong>on</strong>g>th</str<strong>on</strong>g>ere was no c<strong>on</strong>trol group.<br />

Wavelet cross-correlati<strong>on</strong> functi<strong>on</strong> describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependency <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

two signals <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e shift between <str<strong>on</strong>g>th</str<strong>on</strong>g>em. Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum or minimum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is functi<strong>on</strong> informs us about <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative time delay <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese signals. Signals<br />

are c<strong>on</strong>sidered similar if <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum is close to 1 or minimum is close to −1<br />

(inverted signal). We have used multiresoluti<strong>on</strong> analysis from wavelet analysis to<br />

create wavelet cross-correlati<strong>on</strong> functi<strong>on</strong>. We have chosen suitable frequency level,<br />

where energy is transferred, as <str<strong>on</strong>g>th</str<strong>on</strong>g>e base for computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wavelet cross-correlati<strong>on</strong><br />

functi<strong>on</strong>. Wavelet coherence measure was calculated by multiresoluti<strong>on</strong> wavelet<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e uterine c<strong>on</strong>tracti<strong>on</strong> signals and a coherence analysis by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Welch me<str<strong>on</strong>g>th</str<strong>on</strong>g>od in selected frequency band c<strong>on</strong>taining <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant frequency. By<br />

computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wavelet coherence functi<strong>on</strong> we have obtained <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> what<br />

are <str<strong>on</strong>g>th</str<strong>on</strong>g>e comm<strong>on</strong> frequencies and when <str<strong>on</strong>g>th</str<strong>on</strong>g>ey appear. We were also able to estimate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e similarity <str<strong>on</strong>g>of</str<strong>on</strong>g> two signals.<br />

Negative shifts computed by means <str<strong>on</strong>g>of</str<strong>on</strong>g> wavelet cross-correlati<strong>on</strong> functi<strong>on</strong> indicate<br />

improper propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tracti<strong>on</strong>s (wr<strong>on</strong>g directi<strong>on</strong>) in unheal<str<strong>on</strong>g>th</str<strong>on</strong>g>y women.<br />

503


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Using graphs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese functi<strong>on</strong>s <strong>on</strong>e can distinguish visually <str<strong>on</strong>g>th</str<strong>on</strong>g>e signals obtained<br />

from heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y woman from signals obtained from unheal<str<strong>on</strong>g>th</str<strong>on</strong>g>y women. Comm<strong>on</strong> frequency<br />

for signals from uterine fundus and uterine cervix computed by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wavelet coherence functi<strong>on</strong> is about 0.05Hz. The lowest similarity (synchr<strong>on</strong>izati<strong>on</strong>)<br />

between signals from uterine fundus and uterine cervix has been observed for<br />

signals from women suffering from primary dysmenorrhea.<br />

We c<strong>on</strong>cluded <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods may be useful tools in analyzing synchr<strong>on</strong>izati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two simultaneously recorded uterine c<strong>on</strong>tracti<strong>on</strong> signals.<br />

References.<br />

[1] A. Kitlas, E. Oczeretko, J. Świątecka, M. Borowska, T. Laudański, Uterine c<strong>on</strong>tracti<strong>on</strong> signals<br />

— applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear synchr<strong>on</strong>izati<strong>on</strong> measures <str<strong>on</strong>g>European</str<strong>on</strong>g> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Obstetrics &<br />

Gynecology and Reproductive Biology 144S 2009 S61–S64.<br />

[2] J. P. Lachaux, A. Lutz, D. Rudrauf, D. Cosmelli, M. le van Quyen, J. Martinerie, F. Varela,<br />

Estimating <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-course <str<strong>on</strong>g>of</str<strong>on</strong>g> coherence between single-trial brain signals: an introducti<strong>on</strong> to<br />

wavelet coherence Neurophysiologie Clinique (Clinical Neurophysiology) 32 2002 157–174.<br />

[3] S. Gigola, C. E. D’Attellis, S. Kochen, Wavelet coherence in EEG signals Clinical Neurophysiology<br />

119 2008 e142–e143.<br />

[4] Y. Mizuno-Matsumoto, G. K. Motamedi, W. R. S. Webber, R. Ishii, S. Ukai, T. Kaishima, K.<br />

Shinosaki, R. P. Lesser, Wavelet-cross correlati<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> electrocorticography recordings<br />

from epilepsyInternati<strong>on</strong>al C<strong>on</strong>gress Series 1278 2005 411–414.<br />

[5] Y. Mizuno-Matsumoto, K. Okazaki, A. Kato, T. Yoshimine, Y. Sato, S. Tamura, T. Hayakawa,<br />

Visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epileptogenic phenomena using cross-correlati<strong>on</strong> analysis: localizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epileptic foci and propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epileptiform discharges IEEE Transacti<strong>on</strong>s <strong>on</strong> Biomedical<br />

Engineering 46(3) 1999 271–279.<br />

[6] G. de Michele, S. Sello, M. C. Carb<strong>on</strong>cini, B. Rossi, S. K. Strambi, Cross-correlati<strong>on</strong> timefrequency<br />

analysis for multiple EMG signals in Parkins<strong>on</strong>’s disease: a wavelet approach Medical<br />

Engineering & Physics 25 2003 361–369.<br />

[7] E. Oczeretko, J. Świątecka, A. Kitlas, T. Laudański and P. Pierzyński, Visualizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e uterine c<strong>on</strong>tracti<strong>on</strong> signals: Running cross-correlati<strong>on</strong> and wavelet running<br />

cross-correlati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods Medical Engineering & Physics 28 2006 75–81.<br />

504


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemic models: Networks and stochasticity II; Thursday, June 30, 11:30<br />

Adam Kleczkowski<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling, Stirling FK9 4LA,<br />

United Kingdom<br />

e-mail: ak@cs.stir.ac.uk<br />

Savi Maharaj<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling, Stirling FK9 4LA,<br />

United Kingdom<br />

e-mail: savi@cs.stir.ac.uk<br />

C<strong>on</strong>trolling epidemic spread by resp<strong>on</strong>ding to risk: Do it<br />

well or not at all<br />

Disease outbreaks change people behaviour. This change can be used to c<strong>on</strong>trol<br />

epidemics but it comes at a cost. We describe results from using simulati<strong>on</strong> to<br />

study <str<strong>on</strong>g>th</str<strong>on</strong>g>e costs and benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> using social distancing as a form <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol. Our<br />

model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a standard SIR model superimposed <strong>on</strong> a simple spatial network.<br />

Disease spread is c<strong>on</strong>trolled by allowing susceptible individuals to temporarily reduce<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir social c<strong>on</strong>tacts in resp<strong>on</strong>se to <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir local<br />

neighbourhood. We ascribe an ec<strong>on</strong>omic cost to <str<strong>on</strong>g>th</str<strong>on</strong>g>e loss <str<strong>on</strong>g>of</str<strong>on</strong>g> social c<strong>on</strong>tacts, and<br />

weigh <str<strong>on</strong>g>th</str<strong>on</strong>g>is against <str<strong>on</strong>g>th</str<strong>on</strong>g>e ec<strong>on</strong>omic benefit gained by reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e attack rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

epidemic. Our first result is <str<strong>on</strong>g>th</str<strong>on</strong>g>at, depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic<br />

and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative ec<strong>on</strong>omic importance <str<strong>on</strong>g>of</str<strong>on</strong>g> making c<strong>on</strong>tacts versus avoiding infecti<strong>on</strong>,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal c<strong>on</strong>trol is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two extremes: ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er to panic, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is, to adopt<br />

a highly cautious c<strong>on</strong>trol, <str<strong>on</strong>g>th</str<strong>on</strong>g>ereby suppressing <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic quickly by drastically<br />

reducing c<strong>on</strong>tacts as so<strong>on</strong> as disease is detected; or else to relax by forgoing c<strong>on</strong>trol<br />

and allowing <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic to run its course. The worst outcome arises when c<strong>on</strong>trol<br />

is attempted, but not cautiously enough to cause <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic to be suppressed.<br />

Our sec<strong>on</strong>d result comes from comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e neighbourhood <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

individuals are aware to <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e neighbourhood wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in which transmissi<strong>on</strong> can<br />

occur. We see <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trol works best when <str<strong>on</strong>g>th</str<strong>on</strong>g>ese sizes match, and <str<strong>on</strong>g>th</str<strong>on</strong>g>at it is particularly<br />

ineffective when <str<strong>on</strong>g>th</str<strong>on</strong>g>e awareness neighbourhood is smaller <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong><br />

neighbourhood. These results have implicati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e design <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol strategies<br />

using social distancing. An important message is <str<strong>on</strong>g>th</str<strong>on</strong>g>at a weak c<strong>on</strong>trol, or <strong>on</strong>e based<br />

up<strong>on</strong> inaccurate knowledge, may give a worse outcome <str<strong>on</strong>g>th</str<strong>on</strong>g>an doing no<str<strong>on</strong>g>th</str<strong>on</strong>g>ing.<br />

References.<br />

[1] A. Au<str<strong>on</strong>g>th</str<strong>on</strong>g>or, Title <str<strong>on</strong>g>of</str<strong>on</strong>g> paper Journal Name 1 1–10.<br />

505


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 11:00<br />

Sabrina Kleessen<br />

Max Planck Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Plant Physiology, Potsdam, Germany<br />

e-mail: kleessen@mpimp-golm.mpg.de<br />

Zoran Nikoloski<br />

Max Planck Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Plant Physiology and Institute<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry and Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Potsdam, Potsdam, Germany<br />

e-mail: nikoloski@mpimp-golm.mpg.de<br />

Dynamic regulatory <strong>on</strong>/<str<strong>on</strong>g>of</str<strong>on</strong>g>f minimizati<strong>on</strong> infers key<br />

regulators <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin cycle under internal temporal<br />

perturbati<strong>on</strong>s<br />

Flux balance analysis (FBA) toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its dynamic extensi<strong>on</strong>, DFBA, have<br />

proven instrumental for analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic networks. Under <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> minimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic adjustment, DFBA has recently been employed<br />

to analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e transiti<strong>on</strong> between metabolic states at systemic level. Here we<br />

propose a suite <str<strong>on</strong>g>of</str<strong>on</strong>g> novel me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> perturbed metabolic<br />

networks and quantifying <str<strong>on</strong>g>th</str<strong>on</strong>g>eir robustness wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> kinetic parameters.<br />

Following <str<strong>on</strong>g>th</str<strong>on</strong>g>e biochemically meaningful premise <str<strong>on</strong>g>th</str<strong>on</strong>g>at metabolite c<strong>on</strong>centrati<strong>on</strong>s exhibit<br />

smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> temporal changes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods rely <strong>on</strong> minimizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e significant<br />

fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-resolved metabolic<br />

state characterized by bo<str<strong>on</strong>g>th</str<strong>on</strong>g> fluxes and c<strong>on</strong>centrati<strong>on</strong>s. On a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin<br />

cycle, we dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e principle <str<strong>on</strong>g>of</str<strong>on</strong>g> regulatory <strong>on</strong>/<str<strong>on</strong>g>of</str<strong>on</strong>g>f minimizati<strong>on</strong> (ROOM)<br />

coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> DFBA can accurately predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e changes in metabolic states. Our<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods outperform <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing DFBA-based modeling alternatives, and help in<br />

revealing <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms for maintaining robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic processes in metabolic<br />

networks over time.<br />

506


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanical regulati<strong>on</strong> in b<strong>on</strong>e tissue (Sessi<strong>on</strong><br />

II); Wednesday, June 29, 11:00<br />

Václav Klika<br />

FNSPE, Czech Technical University in Prague and Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermomechanics,<br />

AS CR<br />

e-mail: klika@it.cas.cz<br />

František Maršík<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermomechanics, AS CR<br />

e-mail: marsik@it.cas.cz<br />

Tissue adaptati<strong>on</strong> driven by chemo-mechanical coupling wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

applicati<strong>on</strong> to b<strong>on</strong>e<br />

Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e current knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e remodelling process, a biochemical<br />

model is proposed which describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e essential interacti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at governs <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole<br />

b<strong>on</strong>e remodelling process. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er, <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical stimulati<strong>on</strong> <strong>on</strong> b<strong>on</strong>e<br />

tissue is well known. C<strong>on</strong>siderati<strong>on</strong>s from n<strong>on</strong>-equilibrium <str<strong>on</strong>g>th</str<strong>on</strong>g>ermodynamics are<br />

used to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>is effect and moreover to stress <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic<br />

character <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e loading. Particularly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> what c<strong>on</strong>stitutes a mechanical<br />

stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical reacti<strong>on</strong>s in general will be addressed and fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er to<br />

compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two possible mechanical stimulati<strong>on</strong>s: shear rate<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> volume variati<strong>on</strong>. C<strong>on</strong>sequently, a modified form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Law <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Mass Acti<strong>on</strong> is derived which includes also <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechano-chemical coupling and<br />

not <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e affinity <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e difference in chemical potentials.<br />

This ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er different approach from <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical <strong>on</strong>es can predict b<strong>on</strong>e density<br />

distributi<strong>on</strong> as will be shown <strong>on</strong> some examples including <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> stem inserti<strong>on</strong><br />

or osteoporosis.<br />

Acknowledgement. This research has been supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Czech Science<br />

Foundati<strong>on</strong> project no. 106/08/0557.<br />

References.<br />

[1] Klika, V., Maršík, F., 2009. Coupling effect between mechanical loading and chemical reacti<strong>on</strong>s.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry B 113, 14689–14697.<br />

[2] Klika, V., 2010. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Possible Mechanical Stimuli <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Biochemical Reacti<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry B 114(32), 10567—10572.<br />

[3] Klika, V., Maršík, F., 2010. A Thermodynamic Model <str<strong>on</strong>g>of</str<strong>on</strong>g> B<strong>on</strong>e Remodelling: The Influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Dynamic Loading Toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Biochemical C<strong>on</strong>trol. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Musculoskeletal and Neur<strong>on</strong>al<br />

Interacti<strong>on</strong>s 10(3), 210–220.<br />

507


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fractals and Complexity II; Wednesday, June 29, 17:00<br />

Wlodzimierz Kl<strong>on</strong>owski<br />

Nalecz Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biocybernetics and Biomedica Engineering, Polish<br />

Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences Warsaw, POLAND<br />

e-mail: wkl<strong>on</strong>@ibib.waw.pl<br />

Michal Pierzchalski<br />

Nalecz Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biocybernetics and Biomedica Engineering, Polish<br />

Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences Warsaw, POLAND<br />

Pawel Stepien<br />

Nalecz Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biocybernetics and Biomedica Engineering, Polish<br />

Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences Warsaw, POLAND<br />

Robert Stepien<br />

Nalecz Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biocybernetics and Biomedica Engineering, Polish<br />

Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences Warsaw, POLAND<br />

Applying Fractal Dimensi<strong>on</strong> in Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosignals and <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Medical Images<br />

We present applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fractal analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> EEG and HRV signals, as well as <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

medical images, for supporting medical diagnosis and for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chemical and physical agents <strong>on</strong> living systems. We will show examples <str<strong>on</strong>g>of</str<strong>on</strong>g> stress assessment,<br />

sleep analysis, measuring <str<strong>on</strong>g>th</str<strong>on</strong>g>e dep<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> anes<str<strong>on</strong>g>th</str<strong>on</strong>g>esia, classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors<br />

based <strong>on</strong> Higuchis fractal dimensi<strong>on</strong>.<br />

508


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Sandra Klu<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Bielefeld University<br />

e-mail: sandra.klu<str<strong>on</strong>g>th</str<strong>on</strong>g>@uni-bielefeld.de<br />

Populati<strong>on</strong> Genetics; Wednesday, June 29, 17:00<br />

The stati<strong>on</strong>ary distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestral types in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Moran model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mutati<strong>on</strong> and selecti<strong>on</strong><br />

We c<strong>on</strong>sider a stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> genetics, namely, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Moran model<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mutati<strong>on</strong> and selecti<strong>on</strong>. We use it to trace back <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestral lines <str<strong>on</strong>g>of</str<strong>on</strong>g> single<br />

individuals, and are interested in <str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding<br />

ancestral types. Two approaches to <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem are already available: The <strong>on</strong>e by<br />

Fearnhead (2002), which is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestral selecti<strong>on</strong> graph (Kr<strong>on</strong>e/Neuhauser<br />

1997), and <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e by Taylor (2007), which relies <strong>on</strong> a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e full populati<strong>on</strong><br />

backward in time by means <str<strong>on</strong>g>of</str<strong>on</strong>g> a diffusi<strong>on</strong> equati<strong>on</strong>.<br />

In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> approaches, <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting expressi<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary distributi<strong>on</strong> does<br />

not have an obvious interpretati<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e graphical representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

model (i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e representati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at makes individual lineages and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong>s<br />

explicit). In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>tributi<strong>on</strong> (which is joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Ellen Baake), we use <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

graphical representati<strong>on</strong> to derive equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e fixati<strong>on</strong> probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all ‘fit’ individuals (regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring’s type). In <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong><br />

limit, <str<strong>on</strong>g>th</str<strong>on</strong>g>is yields Taylor’s differential equati<strong>on</strong> - but now wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a plausible interpretati<strong>on</strong><br />

attached to it. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>is also points <str<strong>on</strong>g>th</str<strong>on</strong>g>e way towards a better<br />

understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficients <str<strong>on</strong>g>th</str<strong>on</strong>g>at define <str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary distributi<strong>on</strong>.<br />

509


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Signals I; Saturday, July 2, 08:30<br />

Markus P. Knappitsch<br />

Theoretical Biology Group<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> B<strong>on</strong>n<br />

Kirschallee 1-3<br />

53115 B<strong>on</strong>n<br />

e-mail: markus.knappitsch@gmx.net<br />

Dynamic Informati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Signs<br />

The communicati<strong>on</strong> between cooperating and adversary organisms is central to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> biological ecosystems. Comm<strong>on</strong>ly, <str<strong>on</strong>g>th</str<strong>on</strong>g>is communicati<strong>on</strong> is formalized<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> Claude E. Shann<strong>on</strong>’s Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Communicati<strong>on</strong> [4].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>eory, informati<strong>on</strong> is represented as a measurable quantity arising from<br />

statistics <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying vocabulary. There have been several works addressing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Shann<strong>on</strong> informati<strong>on</strong> to biological systems [1,3,5].<br />

Here, I argue <str<strong>on</strong>g>th</str<strong>on</strong>g>at Shann<strong>on</strong> informati<strong>on</strong> encompasses significant shortcomings,<br />

which limit <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicability to communicati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e life sciences. Since Shann<strong>on</strong><br />

informati<strong>on</strong> is a purely statistical quantity, it treats <strong>on</strong>ly syntactic aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

communicati<strong>on</strong> process. In c<strong>on</strong>trast, <str<strong>on</strong>g>th</str<strong>on</strong>g>e levels <str<strong>on</strong>g>of</str<strong>on</strong>g> semantics, pragmatics, and dynamics<br />

[1] are not under c<strong>on</strong>siderati<strong>on</strong>. Clearly, a message has always an impact<br />

<strong>on</strong> living systems, because it leads to a certain adaptive resp<strong>on</strong>se. Yet <str<strong>on</strong>g>th</str<strong>on</strong>g>is active<br />

resp<strong>on</strong>se is part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pragmatic-dynamic level and integral part <str<strong>on</strong>g>of</str<strong>on</strong>g> biological<br />

communicati<strong>on</strong>.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, I present an alternative c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> [2]. The so-called<br />

Dynamic Informati<strong>on</strong> rates incoming signals wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a relative importance depending<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e internal state <str<strong>on</strong>g>of</str<strong>on</strong>g> an agent [1,2]. The bigger <str<strong>on</strong>g>th</str<strong>on</strong>g>e induced change in <str<strong>on</strong>g>th</str<strong>on</strong>g>e agent’s<br />

behavior, <str<strong>on</strong>g>th</str<strong>on</strong>g>e bigger are relative importance and <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting dynamic informati<strong>on</strong>.<br />

First, I introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical framework modeling elementary biological<br />

communicati<strong>on</strong> by means <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> input and output. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

approach, agents are represented by n<strong>on</strong>linear coupled systems <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs wi<str<strong>on</strong>g>th</str<strong>on</strong>g> input<br />

terms. Next, <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic informati<strong>on</strong> is developed as a bridge between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical systems and Shann<strong>on</strong>s’s <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> communicati<strong>on</strong>. Finally,<br />

I apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e developed framework to task allocati<strong>on</strong> in ant col<strong>on</strong>ies.<br />

References.<br />

[1] Hermann Haken. Informati<strong>on</strong> and Self-Organisati<strong>on</strong>. Springer, Berlin, 2006<br />

[2] Markus P. Knappitsch, K<strong>on</strong>strukti<strong>on</strong> und Simulati<strong>on</strong> eines ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematischen Rahmenmodells<br />

biologischer Kommunikati<strong>on</strong> mittels dynamischer Systeme, B<strong>on</strong>ner Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematische Schriften,<br />

402, 1-126<br />

[3] Drew Rendall, M. J. Owren, M. J.Ryan. What do animal signs mean?, Animal Behaviour, 78,<br />

233-240<br />

[4] Claude E. Shann<strong>on</strong>, A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Communicati<strong>on</strong>, Bell System Technical Journal,<br />

27, 379-423<br />

[5] Robert M. Seyfar<str<strong>on</strong>g>th</str<strong>on</strong>g>, Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y L. Cheney, Thore Bergman, Julia Fischer, Klaus Zuberbühler,<br />

Kurt Hammerschmidt. The central importance <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> in studies <str<strong>on</strong>g>of</str<strong>on</strong>g> animal communicati<strong>on</strong>,<br />

Animal Behaviour, 80, 3-8<br />

510


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Friday, July 1, 14:30<br />

Michael Knudsen<br />

Bioinformatics Research Centre, Aarhus University, Denmark<br />

e-mail: micknudsen@gmail.com<br />

Elisenda Feliu<br />

Bioinformatics Research Centre, Aarhus University, Denmark<br />

e-mail: efeliu@birc.au.dk<br />

Carsten Wiuf<br />

Bioinformatics Research Centre, Aarhus University, Denmark<br />

e-mail: wiuf@birc.au.dk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Phosphorelay Dynamics<br />

Phosphorylati<strong>on</strong> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most prevalent forms <str<strong>on</strong>g>of</str<strong>on</strong>g> post-translati<strong>on</strong>al modificati<strong>on</strong>s<br />

by which signals are transmitted in living cells. A type <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way<br />

prevalent in bacteria is <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-comp<strong>on</strong>ent system (TCS), in which a signal is transferred<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough a series <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphate group transfers moving <str<strong>on</strong>g>th</str<strong>on</strong>g>e phosphate group<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e sensor domain <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e protein to <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulator domain <str<strong>on</strong>g>of</str<strong>on</strong>g> ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er protein.<br />

Similar pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways involving more <str<strong>on</strong>g>th</str<strong>on</strong>g>an two proteins exist, and toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> TCSs<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese are known as phosphorelays.<br />

We present a rigorous ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorelays assuming <strong>on</strong>ly<br />

mass-acti<strong>on</strong> kinetics. By combining an algebraic approach, previously applied to<br />

linear signaling cascades [1], wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eory for m<strong>on</strong>ot<strong>on</strong>e systems, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at phosphorelays<br />

c<strong>on</strong>verge to unique stable steady states given initial total substrate c<strong>on</strong>centrati<strong>on</strong>s.<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> relies <strong>on</strong> graph <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e species-reacti<strong>on</strong><br />

Petri net (SR-net) and an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phosphorelay system in reacti<strong>on</strong> coordinates.<br />

Using reacti<strong>on</strong> coordinates, <str<strong>on</strong>g>th</str<strong>on</strong>g>e system exhibits a special kind <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ot<strong>on</strong>icity<br />

(<str<strong>on</strong>g>th</str<strong>on</strong>g>e system is cooperative).<br />

For <str<strong>on</strong>g>th</str<strong>on</strong>g>e TCS, algebraic manipulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady state equati<strong>on</strong> lead to fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e system dynamics, for example in relati<strong>on</strong> to stimulus-resp<strong>on</strong>se<br />

curves. We obtain a polynomial equati<strong>on</strong> relating stimulus and resp<strong>on</strong>se, <strong>on</strong>ly depending<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate c<strong>on</strong>stants and <str<strong>on</strong>g>th</str<strong>on</strong>g>e total substrate c<strong>on</strong>centrati<strong>on</strong>s. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

relati<strong>on</strong>ship we are able to investigate, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out restoring to simulati<strong>on</strong> or fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

approximati<strong>on</strong>, how <str<strong>on</strong>g>th</str<strong>on</strong>g>e stimulus depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number phosphorylati<strong>on</strong> sites <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each protein.<br />

Algebraic approaches to phosphorylati<strong>on</strong> networks have been <str<strong>on</strong>g>th</str<strong>on</strong>g>e topic <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

recent publicati<strong>on</strong>s, see [1,2] and references <str<strong>on</strong>g>th</str<strong>on</strong>g>erein, and we believe <str<strong>on</strong>g>th</str<strong>on</strong>g>at such approaches<br />

will be helpful for understanding many different types <str<strong>on</strong>g>of</str<strong>on</strong>g> systems.<br />

References.<br />

[1] E. Feliu, M. Knudsen, L.N. Andersen, C. Wiuf: An Algebraic Approach to Signaling Cascades<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n Layers, arXiv:1008.0431 (2010).<br />

[2] E. Feliu, L.N. Andersen, M. Knudsen, C. Wiuf: A General Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Framework Suitable<br />

for Studying Signaling Cascades, arXiv:1008.0427 (2010).<br />

511


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in computati<strong>on</strong>al neuroscience II; Wednesday, June 29,<br />

17:00<br />

Ryota Kobayashi<br />

Ristumeikan University<br />

e-mail: kobayashi@cns.ci.ritsumei.ac.jp<br />

Yasuhiro Tsubo<br />

RIKEN Brain Science Institute<br />

e-mail: tsubo@brain.riken.jp<br />

Shigeru Shinomoto<br />

Kyoto University<br />

e-mail: shinomoto@scphys.kyoto-u.ac.jp<br />

Made-to-Order spiking neur<strong>on</strong> model for a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> cortical<br />

neur<strong>on</strong>s<br />

Informati<strong>on</strong> is transmitted wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e brain <str<strong>on</strong>g>th</str<strong>on</strong>g>rough various types <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>s<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at resp<strong>on</strong>d differently to <str<strong>on</strong>g>th</str<strong>on</strong>g>e same input. The Hodgkin−Huxley model has been<br />

revised by including i<strong>on</strong>ic channels <str<strong>on</strong>g>th</str<strong>on</strong>g>at account for typical neur<strong>on</strong>al firing phenomena.<br />

However, estimating parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Hodgkin−Huxley models from<br />

experimental data is a notoriously difficult. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al costs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models are high, which hinders performing a simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> massively interc<strong>on</strong>nected<br />

neural networks.<br />

Here we introduce a computati<strong>on</strong>ally fast spiking neur<strong>on</strong> model [1] <str<strong>on</strong>g>th</str<strong>on</strong>g>at is capable<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> accurately predicting a rich variety <str<strong>on</strong>g>of</str<strong>on</strong>g> spike resp<strong>on</strong>ses. We also developed<br />

a procedure for optimizing model parameters. The key features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e new model<br />

are a n<strong>on</strong>-resetting leaky integrator and an adaptive <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold equipped wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fast<br />

(10 ms) and slow (200 ms) time c<strong>on</strong>stants. The model can be easily tailored to various<br />

cortical neur<strong>on</strong>s, including regular-spiking, intrinsic-bursting, and fast-spiking<br />

neur<strong>on</strong>s, by simply adjusting <str<strong>on</strong>g>th</str<strong>on</strong>g>ree parameters. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e high flexibility and low<br />

computati<strong>on</strong>al cost would help to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e real brain reliably and examine how<br />

network properties may be influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributed characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ent<br />

neur<strong>on</strong>s.<br />

References.<br />

[1] R. Kobayashi, Y. Tsubo, S. Shinomoto, Made-to-order spiking neur<strong>on</strong> model equipped wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a<br />

multi-timescale adaptive <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold. Fr<strong>on</strong>t. Comput. Neurosci. 3 9.<br />

512


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Tuesday, June 28, 17:00<br />

Tetsuya J. Kobayashi<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Industrial Science, <str<strong>on</strong>g>th</str<strong>on</strong>g>e University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo.<br />

e-mail: tetsuya@mail.crmind.net<br />

Noise-Induced Symmetry-Breaking Underlies Reliable and<br />

Flexible Cellular Decisi<strong>on</strong>-Making<br />

All-or-n<strong>on</strong>e decisi<strong>on</strong>-making by a cell such as differentiati<strong>on</strong> and apoptosis is tightly<br />

linked to symmetry-breaking in intracellular networks. The underlying mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such symmetry-breaking has been c<strong>on</strong>sidered to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic bifurcati<strong>on</strong><br />

generated by positive feedback loops. By c<strong>on</strong>trolling <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcati<strong>on</strong><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcated attractors by external inputs, it can also implement<br />

various cellular functi<strong>on</strong>s such as hysteresis, irreversibility, and historydependent<br />

memory. Waddingt<strong>on</strong> expressed its importance for development in a<br />

metaphor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e famous epigenetic landscape, in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e fate <str<strong>on</strong>g>of</str<strong>on</strong>g> each cell is<br />

gradually determined in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>e landscape <str<strong>on</strong>g>of</str<strong>on</strong>g> potential whose complexity increases<br />

during development. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic bifurcati<strong>on</strong> has already been accepted<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimentally observed symmetry-breaking, it<br />

has rarely been proven experimentally because <str<strong>on</strong>g>th</str<strong>on</strong>g>e bistability is <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic<br />

c<strong>on</strong>cept and we cannot completely eliminate noise from biological systems. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e bistable attractor lacks <str<strong>on</strong>g>th</str<strong>on</strong>g>e property to flexibly produce <str<strong>on</strong>g>th</str<strong>on</strong>g>e distinctive<br />

outputs according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e subtle external guidance signal. This indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

bistable attractor is not <str<strong>on</strong>g>th</str<strong>on</strong>g>e best dynamical behavior to implement <str<strong>on</strong>g>th</str<strong>on</strong>g>e flexible<br />

decisi<strong>on</strong>-making while it is better to reinforce and memorize <str<strong>on</strong>g>th</str<strong>on</strong>g>e determined decisi<strong>on</strong>.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, I reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>at a noise-induced symmetry-breaking, ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> symmetry-breaking in a noisy system, can also produce <str<strong>on</strong>g>th</str<strong>on</strong>g>e distinctive outputs<br />

required for cellular decisi<strong>on</strong>-making. Such noise-induced property is shown<br />

to have <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> to flexibly resp<strong>on</strong>d to <str<strong>on</strong>g>th</str<strong>on</strong>g>e external guidance signal even wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

substantial noise in <str<strong>on</strong>g>th</str<strong>on</strong>g>e signal. The underlying logic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is flexibility is revealed to<br />

be <str<strong>on</strong>g>th</str<strong>on</strong>g>e Bayesian informati<strong>on</strong> decoding <str<strong>on</strong>g>th</str<strong>on</strong>g>at optimally extracts <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e noisy signal. The biological validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e noise-induced symmetry-breaking<br />

and Bayesian informati<strong>on</strong> decoding will be dem<strong>on</strong>strated by using various cellular<br />

phenomena such as signal transducti<strong>on</strong>, immune-resp<strong>on</strong>se and polarity formati<strong>on</strong>.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, I propose an experimental procedure to discriminate <str<strong>on</strong>g>th</str<strong>on</strong>g>e noiseinduced<br />

symmetry-breaking from <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic bifurcati<strong>on</strong> by using single-cell<br />

time-lapse measurement. This result will serve to experimentally investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

noise-induced symmetry-breaking and <str<strong>on</strong>g>th</str<strong>on</strong>g>e related Bayesian informati<strong>on</strong> processing<br />

by a cell.<br />

References.<br />

[1] T.J. Kobayashi, Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynamic Bayesian Decisi<strong>on</strong> Making by Intracellular Kinetics<br />

Physical Review Letters 104, 228104, 2010.<br />

[2] T.J. Kobayashi & A. Kamimura, Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Intracellular Informati<strong>on</strong> Decoding submitted,<br />

2011.<br />

513


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

B and T cell immune resp<strong>on</strong>ses; Wednesday, June 29, 11:00<br />

Marek Kochańczyk<br />

Jagiell<strong>on</strong>ian University, Krakow, Poland<br />

e-mail: marek.kochanczyk@uj.edu.pl<br />

Tomasz Lipniacki<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research, Warsaw, Poland<br />

e-mail: tlipnia@ippt.gov.pl<br />

A spatially extended model <str<strong>on</strong>g>of</str<strong>on</strong>g> B cell<br />

receptor cluster signaling<br />

The process <str<strong>on</strong>g>of</str<strong>on</strong>g> B cell activati<strong>on</strong> is initiated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> B cell receptors<br />

(BCR) up<strong>on</strong> specific engagement and cross-linking wi<str<strong>on</strong>g>th</str<strong>on</strong>g> antigens (Ag). A BCR-Ag<br />

microcluster must comprise a minimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> receptors (∼ 10-20) in order to<br />

create an immun<strong>on</strong> – <str<strong>on</strong>g>th</str<strong>on</strong>g>e smallest signaling unit capable <str<strong>on</strong>g>of</str<strong>on</strong>g> triggering intracellular<br />

signaling leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> immunogenic resp<strong>on</strong>se.<br />

We have approached <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> early signaling events wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

a two-dimensi<strong>on</strong>al cellular automat<strong>on</strong> in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e plane representing a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e B cell membrane is discretized using <str<strong>on</strong>g>th</str<strong>on</strong>g>e hexag<strong>on</strong>al tiling. Transmembrane<br />

molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> BCR and membrane-te<str<strong>on</strong>g>th</str<strong>on</strong>g>ered Src-family kinases (represented in our<br />

study by single kinase Lyn) diffuse over <str<strong>on</strong>g>th</str<strong>on</strong>g>e tiles while Ag ligands are placed in<br />

trig<strong>on</strong>al cells <str<strong>on</strong>g>of</str<strong>on</strong>g> a dual lattice. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e Y-shaped extracellular part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e BCR (mIg) can bind up to two Ag, <str<strong>on</strong>g>th</str<strong>on</strong>g>at may have higher valency. Movements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ag-bound BCR are limited: singly linked BCR can move <strong>on</strong>ly to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at are adjacent to Ag, and BCR is immobilized when bound twice. Lyn may<br />

bind to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoplasmic part <str<strong>on</strong>g>of</str<strong>on</strong>g> BCR ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er by its unique domain (week binding)<br />

or by SH2 domain (str<strong>on</strong>g binding to phosphorylated BCR), resulting in <str<strong>on</strong>g>th</str<strong>on</strong>g>e creati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> complexes <str<strong>on</strong>g>th</str<strong>on</strong>g>at by c<strong>on</strong>venti<strong>on</strong> occupy a single hexag<strong>on</strong>al cell <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e plane.<br />

Associated Lyn can phosphorylate <str<strong>on</strong>g>th</str<strong>on</strong>g>e neighboring BCR or Lyn. Every binding<br />

reacti<strong>on</strong> is reversible and molecules undergo sp<strong>on</strong>taneous dephosphorylati<strong>on</strong>. The<br />

process is coded in s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware in <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>th</str<strong>on</strong>g>at ensures <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact state-to-state dynamics:<br />

reacti<strong>on</strong> and diffusi<strong>on</strong> events are selected from <str<strong>on</strong>g>th</str<strong>on</strong>g>e catalog <str<strong>on</strong>g>of</str<strong>on</strong>g> possible events<br />

and are fired at random wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir propensities proporti<strong>on</strong>al to corresp<strong>on</strong>ding rate<br />

c<strong>on</strong>stants.<br />

We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at when <str<strong>on</strong>g>th</str<strong>on</strong>g>e receptors are freely moving over <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface (in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

absence <str<strong>on</strong>g>of</str<strong>on</strong>g> ligands) <str<strong>on</strong>g>th</str<strong>on</strong>g>e system exhibits <strong>on</strong>ly small basal activity – characteristic for<br />

unstimulated cells. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> ligands BCR form clusters which enhance<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e effective interacti<strong>on</strong> rate and triggers kinase activity. Trivalent ligands are<br />

much more effective <str<strong>on</strong>g>th</str<strong>on</strong>g>an bivalent <strong>on</strong>es in building dense, signaling-efficient, BCR<br />

clusters. Due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e positive feedback in mutual receptor and kinase activati<strong>on</strong><br />

(phosphorylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> receptor stabilizes kinase binding and autophosphorylati<strong>on</strong>)<br />

clusters exhibit switch-like activati<strong>on</strong>. The cluster inactivati<strong>on</strong> propensity decreases<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cluster, and clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> ten or more receptors activate<br />

virtually persistently.<br />

514


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

This study was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Polish Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Higher Educati<strong>on</strong><br />

grant N N501 132936 and Foundati<strong>on</strong> for Polish Science grant TEAM/2009-<br />

3/6.<br />

515


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling II; Wednesday, June 29,<br />

14:30<br />

Pawel Kocieniewski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research - Polish Academy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw<br />

e-mail: pkocien@ippt.gov.pl<br />

Tomasz Lipniacki<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research - Polish Academy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw<br />

e-mail: tlipnia@ippt.gov.pl<br />

Dimerizati<strong>on</strong> Effects in MAPK cascade<br />

The MAPK (Mitogen-Activated Protein Kinase) cascades are am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important<br />

signal transducti<strong>on</strong> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways in eukaryotic cells. The core <str<strong>on</strong>g>of</str<strong>on</strong>g> a MAPK<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way comprises a series <str<strong>on</strong>g>of</str<strong>on</strong>g> sequentially activated kinases, generically referred to<br />

as MAP3Ks, MAP2Ks, and MAPKs. Of particular importance are Raf/MEK/ERK<br />

and MEKK/MEK/JNK cascades due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir role in stress resp<strong>on</strong>se, proliferati<strong>on</strong>,<br />

differentiati<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer. C<strong>on</strong>sequently, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways have<br />

been extensively modeled. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e models developed so far ignore homo- and<br />

heterodimerizati<strong>on</strong> events occurring between kinases wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in each tier <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cascade.<br />

The significance <str<strong>on</strong>g>of</str<strong>on</strong>g> dimerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Raf and MEK proteins is especially well documented.<br />

In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e dimerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RAF proteins appears critical for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

activati<strong>on</strong> - its dysregulati<strong>on</strong> due to mutati<strong>on</strong>s or experimental chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic<br />

inhibitors can lead to <strong>on</strong>cogenesis [1] or paradoxical activati<strong>on</strong> [2], respectively. The<br />

dimerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MEK1 and MEK2, <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, introduces a novel regulatory<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolling <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way’s output via feedback phosphorylati<strong>on</strong><br />

by ERK [3]. Lastly, <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-member scaffold proteins such as KSR, which assemble<br />

signalling complexes, have <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves been shown to dimerize [4], potentially<br />

providing a platform for dimerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er MAPK comp<strong>on</strong>ents. We have incorporated<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese effects to produce more realistic models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e MAPK cascade as<br />

well as to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>eir possible role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way’s regulati<strong>on</strong> and dynamics.<br />

References.<br />

[1] P.T. Wan, M.J. Garnett, S.M. Roe, S. Lee, D. Niculescu-Duvaz, V.M. Good, C.M. J<strong>on</strong>es,<br />

C.J. Marshall, C.J. Springer, D. Barford, R. Marais; Cancer Genome Project, Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RAF-ERK signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way by <strong>on</strong>cogenic mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> B-RAF Cell. 116<br />

855–67.<br />

[2] P.I. Poulikakos, C. Zhang, G. Bollag, K.M. Shokat, N. Rosen, RAF inhibitors transactivate<br />

RAF dimers and ERK signalling in cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> wild-type BRAF Nature 464 427–430.<br />

[3] F. Catalanotti, G. Reyes, V. Jesenberger, G. Galabova-Kovacs, R. de Matos Simoes, O. Carugo,<br />

M. Baccarini, A Mek1-Mek2 heterodimer determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g> and durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Erk<br />

signal Nat Struct Mol Biol. 16 294–303.<br />

[4] C. Chen, R.E. Lewis, M.A. White, IMP modulates KSR1-dependent multivalent complex formati<strong>on</strong><br />

to specify ERK1/2 pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way activati<strong>on</strong> and resp<strong>on</strong>se <str<strong>on</strong>g>th</str<strong>on</strong>g>resholds J Biol Chem. 283<br />

12789–96.<br />

516


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Friday, July 1, 14:30<br />

M. Koetzing 1 , C. Kaleta 1 , S. Schuster 1<br />

1 Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics, Friedrich Schiller University Jena, Ernst-<br />

Abbe-Platz 2, D-07743 Jena, Germany<br />

e-mail: {martin.koetzing, christoph.kaleta, stefan.schu}@uni-jena.de<br />

M. Bartl 2<br />

2 Simulati<strong>on</strong> and Optimal Processes Group, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science<br />

and Automati<strong>on</strong>, Ilmenau University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Max-Planck-<br />

Ring 14, D-98693 Ilmenau, Germany<br />

Dynamic Optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nitrogen Assimilati<strong>on</strong> in<br />

Chlamydom<strong>on</strong>as reinhardtii<br />

Optimizati<strong>on</strong> approaches are a useful tool to study principles behind dynamics<br />

observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways [1]. While earlier studies c<strong>on</strong>sidered<br />

mostly steady-state systems [1, 2], <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamic regulati<strong>on</strong>, or just-in-time<br />

activati<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways has attracted increasing attenti<strong>on</strong> [3, 4] and was<br />

experimentally observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e amino acid biosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> Escherichia coli [4]. Using<br />

dynamic optimizati<strong>on</strong> by solving a n<strong>on</strong>linear, dynamic optimal c<strong>on</strong>trol problem<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e quasi-sequential approach [5], we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nitrogen<br />

assimilati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e nitrogen metabolism [6] by <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian clock [7] <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e green<br />

algae Chlamydom<strong>on</strong>as reinhardtii. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> our analysis is to identify which enzymes<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a drastically simplified model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> C. reinhardtii need<br />

to be subjected to circadian c<strong>on</strong>trol in order to adapt <str<strong>on</strong>g>th</str<strong>on</strong>g>e organism to day-night<br />

rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological and envir<strong>on</strong>mental c<strong>on</strong>straints <str<strong>on</strong>g>th</str<strong>on</strong>g>at imply <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

necessity <str<strong>on</strong>g>of</str<strong>on</strong>g> circadian regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different enzymes are investigated. Important<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> such a model are appropriate kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> participating reacti<strong>on</strong>s as<br />

well as c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes and metabolites. We developed such a model<br />

focusing <strong>on</strong> nitrogen metabolism including assimilati<strong>on</strong>, transport and processing<br />

in C. reinhardtii. This model was analyzed under different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s<br />

and provides first insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e cause <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolite and<br />

enzymes c<strong>on</strong>centrati<strong>on</strong>s observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> a day.<br />

References.<br />

[1] Heinrich et al., Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymic reacti<strong>on</strong> systems using optimizati<strong>on</strong> principles.<br />

Eur J Biochem 201 1–21. 1991.<br />

[2] Heinrich R. and Schuster S., The Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cellular Systems New York: Chapman & Hall<br />

1996<br />

[3] Klipp et al., Predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temporal gene expressi<strong>on</strong>. Metabolic opimizati<strong>on</strong> by re-distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme activities. Eur J Biochem 269 5406–5413. 2002.<br />

[4] Zaslaver et al., Just-in-time transcripti<strong>on</strong> program in metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. Nat Genet 36 486–<br />

491. 2004.<br />

[5] H<strong>on</strong>g et al., A quasi-sequential approach to large-scale dynamic optimizati<strong>on</strong> problems AIChE<br />

Journal 52 255–268. 2006.<br />

[6] Fernandez E. and Galvan A., Inorganic nitrogen assimilati<strong>on</strong> in Chlamydom<strong>on</strong>as. J Exp Bot<br />

58 2279–2287. 2007.<br />

[7] Mittag et al., The circadian clock in Chlamydom<strong>on</strong>as reinhardtii. What is it for? What is it<br />

similar to? Plant Physiol 137 399–409, 2005.<br />

517


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Systems Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Development; Saturday, July 2, 14:30<br />

Alvaro Köhn-Luque<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and IMI<br />

Universidad Complutense de Madrid (Spain)<br />

e-mail: alvarokohn@mat.ucm.es<br />

Paracrine vs Autocrine Regulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Early Vascular Patterning<br />

During embry<strong>on</strong>ic vasculogenesis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e earliest mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> blood vessel morphogenesis,<br />

isolated vascular cell progenitors called angioblasts assemble into a characteristic<br />

network-like pattern. So far, however, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms underlying <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

coalescence and patterning <str<strong>on</strong>g>of</str<strong>on</strong>g> angioblasts remain unclear.<br />

We c<strong>on</strong>sider a hybrid cell-based approach similar to <str<strong>on</strong>g>th</str<strong>on</strong>g>at used for a similar in<br />

vitro process [1,2]. However, c<strong>on</strong>trary to previous ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>th</str<strong>on</strong>g>at assume<br />

chemotaxis towards an autocrine signal [1,2,3,4], we favour an alternative<br />

mechanism based <strong>on</strong> matrix-binding <str<strong>on</strong>g>of</str<strong>on</strong>g> paracrine signals. Detailed morphometric<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> simulated vascular networks and c<strong>on</strong>focal microscopy images obtained<br />

from in vivo quail embryos reveals our model can reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e vascular patterns<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high accuracy.<br />

The work to be reported has been made in collaborati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> W. de Back, J. Starruß<br />

and A. Deutsch (Center for High Performance Computing, Technische Universität<br />

Dresden), M. A. Herrero (Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and IMI, Universidad<br />

Complutense de Madrid) and A. Mattiotti and J. M. Pérez-Pomares (Laboratory<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiovascular Development and Angiogenesis, Universidad de Málaga).<br />

References.<br />

[1] Merks RMH, Brodsky SV, Goligorksy MS, Newman SA and Glazier JA (2006) , Cell el<strong>on</strong>gati<strong>on</strong><br />

is key to in silico replicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro vasculogenesis and subsequent remodeling, Dev Biol<br />

289: 44-54.<br />

[2] Merks RMH, Perryn ED, Shirinifard A and Glazier JA (2008), C<strong>on</strong>tact-Inhibited Chemotaxis<br />

in De Novo and Sprouting Blood-Vessel Grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, PLoS Comput Biol 4(9): e1000163.<br />

[3] Serini G, Ambrosi D, Giraudo E, Gamba A, Preziosi L and Bussollino F (2003), Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular network assembly, EMBO J 22: 1771-1779.<br />

[4] Gamba A, Ambrosi D, C<strong>on</strong>iglio A, de Candia A, Di Talia et al (2003), Percolati<strong>on</strong>, Morphogenesis,<br />

and Burgers Dynamics in Blood Vessels Formati<strong>on</strong>, Phys Rev Lett 90, 11810:<br />

1-4.<br />

518


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Undergraduate Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Educati<strong>on</strong> Bey<strong>on</strong>d BIO 2010 (Part II);<br />

Saturday, July 2, 08:30<br />

Semen Koksal<br />

Florida Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: skoksal@fit.edu<br />

David Carroll<br />

Florida Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Robert van Woesik<br />

Florida Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Richard Sinden<br />

Florida Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Eugene Dshalalow<br />

Flroida Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Establishing an Undergraduate Program and Major in<br />

BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

To provide increased opportunity for students interested in <str<strong>on</strong>g>th</str<strong>on</strong>g>e intersecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology,<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science, an interdisciplinary degree-granting<br />

program in BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics was established at <str<strong>on</strong>g>th</str<strong>on</strong>g>e Florida Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

(FIT). This new major encompasses a program <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes a significant undergraduate<br />

research comp<strong>on</strong>ent. The research students are supported by an NSF<br />

grant, UBM. Our emerging UBM program has already had a str<strong>on</strong>g impact <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e FIT campus, helping to create an atmosphere <str<strong>on</strong>g>of</str<strong>on</strong>g> excitement in undergraduates<br />

interested in exploring a new field and gaining novel research experience.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, <str<strong>on</strong>g>th</str<strong>on</strong>g>e positive aspects as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e difficulties in establishing <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

program at <str<strong>on</strong>g>th</str<strong>on</strong>g>e departmental and instituti<strong>on</strong>al level will be discussed. Sample <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

projects and <str<strong>on</strong>g>th</str<strong>on</strong>g>e newly established <str<strong>on</strong>g>th</str<strong>on</strong>g>ree bioma<str<strong>on</strong>g>th</str<strong>on</strong>g> courses will be presented.<br />

519


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Wednesday, June 29, 11:00<br />

Mikhail Kolev<br />

Warmia and Mazury University <str<strong>on</strong>g>of</str<strong>on</strong>g> Olsztyn, Poland<br />

e-mail: kolev@matman.uwm.edu.pl<br />

Barbara Zubik-Kowal<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Boise State University, USA<br />

e-mail: zubik@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.boisestate.edu<br />

Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor invasi<strong>on</strong><br />

We present a new algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model proposed by Chaplain and colleagues [1-3] describing tumor invasi<strong>on</strong> and<br />

metastasis. The model takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells to produce and<br />

secrete matrix degradative enzymes, which allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extracellular<br />

matrix, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells due to diffusi<strong>on</strong> and haptotactic migrati<strong>on</strong>.<br />

For <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cells and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissue, we apply numerical approximati<strong>on</strong>s, which are spectrally<br />

accurate and based <strong>on</strong> small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> grid-points. Our numerical experiments<br />

illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e metastatic ability <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells.<br />

References.<br />

[1] M.A.J. Chaplain and A.R.A. Anders<strong>on</strong>, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue invasi<strong>on</strong>, in Cancer<br />

modelling and simulati<strong>on</strong>, L. Preziosi, ed., Chapman & Hall/CRC, Boca Rat<strong>on</strong>, FL, 269–297,<br />

2003.<br />

[2] M.A.J. Chaplain, G. Lolas, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cell invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue: The<br />

role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e urokinase plasminogen activati<strong>on</strong> system Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Models Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods Appl. Sci. 15<br />

1685–1734, 2005.<br />

[3] M.A.J. Chaplain, G. Lolas, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue: dynamic<br />

heterogeneity Netw. Heterog. Media 1 399–439, 2006.<br />

520


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Genetics and Genomics; Wednesday, June 29, 08:30<br />

Richard Kollár<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

Physics and Informatics, Comenius University, Bratislava, Slovakia<br />

e-mail: kollar@fmph.uniba.sk<br />

Ľubomír Tomáška<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences, Comenius University,<br />

Bratislava, Slovakia<br />

Jozef Nosek<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences, Comenius<br />

University, Bratislava, Slovakia<br />

Katarína Boová<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, Comenius University,<br />

Bratislava, Slovakia<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> biophysical mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> telomere<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> maintenance in mitoch<strong>on</strong>drial DNA <str<strong>on</strong>g>of</str<strong>on</strong>g> C. parapsilosis<br />

The terminal structures <str<strong>on</strong>g>of</str<strong>on</strong>g> linear mitoch<strong>on</strong>drial DNA (mitoch<strong>on</strong>drial telomeres)<br />

in C. parapsilosis c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> repetitive l<strong>on</strong>g tandem units. Besides <str<strong>on</strong>g>th</str<strong>on</strong>g>ese linear<br />

telomeres o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cyclic c<strong>on</strong>figurati<strong>on</strong>s as telomeric circles and telomeric loops were<br />

experimentally observed and are suspected to play an important role in telomere<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> maintenance. We c<strong>on</strong>struct a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at captures biophysical<br />

interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> various telomeric structures <strong>on</strong> a short time scale and <str<strong>on</strong>g>th</str<strong>on</strong>g>at is able<br />

to reproduce experimental measurements in C. parapsilosis. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

opens up a couple <str<strong>on</strong>g>of</str<strong>on</strong>g> interesting open ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical problems in quasi-steady state<br />

approximati<strong>on</strong> and discrete coagulati<strong>on</strong>-fragmentati<strong>on</strong> dynamical systems. This is<br />

a joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> . Tomáška, J. Nosek and K. Boová.<br />

521


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Andrey V. Kolobov<br />

P. N. Lebedev Physical Institute, Moscow, Russia<br />

e-mail: kolobov@lpi.ru<br />

Vladimir V. Gubernov<br />

P. N. Lebedev Physical Institute, Moscow, Russia<br />

e-mail: gubernov@lpi.ru<br />

Andrey A. Polezhaev<br />

P. N. Lebedev Physical Institute, Moscow, Russia<br />

e-mail: apol@lpi.ru<br />

Cancer; Friday, July 1, 14:30<br />

Speed selecti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>of</str<strong>on</strong>g> infiltrative tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> account <str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong>-proliferati<strong>on</strong> dichotomy<br />

A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> infiltrative tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> taking into account transiti<strong>on</strong>s<br />

between two possible states <str<strong>on</strong>g>of</str<strong>on</strong>g> malignant cells: proliferating and migrating, is<br />

developed. These transiti<strong>on</strong>s are c<strong>on</strong>sidered to depend <strong>on</strong> oxygen level in a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold<br />

manner: high oxygen c<strong>on</strong>centrati<strong>on</strong> allows cell proliferati<strong>on</strong>, while c<strong>on</strong>centrati<strong>on</strong><br />

below a certain critical value induces cell migrati<strong>on</strong>. Whenever a moving cell<br />

reaches <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high oxygen level it recruits into proliferati<strong>on</strong>, o<str<strong>on</strong>g>th</str<strong>on</strong>g>erwise<br />

it necrotizes.<br />

It is dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at model soluti<strong>on</strong> for localized initial tumour cell distributi<strong>on</strong><br />

tends to autowave soluti<strong>on</strong>. We investigate mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> autowave speed<br />

selecti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> migrati<strong>on</strong>-proliferati<strong>on</strong> dichotomy and compare results<br />

obtained wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>at for Kolmogorov-Petrovskii-Piskunov and Fisher (KPP-F) equati<strong>on</strong>s.<br />

It is known <str<strong>on</strong>g>th</str<strong>on</strong>g>at in KPP-F equati<strong>on</strong>s speed is defined by asymptotics at<br />

leading edge <str<strong>on</strong>g>of</str<strong>on</strong>g> autowave (pulled regime). It is dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

c<strong>on</strong>sidered autowave speed is determined by falling edge (pushed regime). The dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumour spreading rate <strong>on</strong> model parameters is obtained. It is shown<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e spreading rate depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e oxygen level in tissue in a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold manner.<br />

This work was supported by grants No. 10-01-00289 and 11-01-00392 from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Russian Foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Basic Research.<br />

522


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling IV; Saturday, July 2, 08:30<br />

Michał Komorowski<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Biosciences, Imperial College L<strong>on</strong>d<strong>on</strong><br />

e-mail: M.Komorowski@imperial.ac.uk<br />

Quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> noise in signalling systems - importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>trolled signal degradati<strong>on</strong><br />

The phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> stochasticity in biochemical processes has been intriguing life<br />

scientists for <str<strong>on</strong>g>th</str<strong>on</strong>g>e last few decades. Studies revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at living cells take advantage<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stochasticity in some cases and counterbalance stochastic effects in o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers. The<br />

intrinsic source <str<strong>on</strong>g>of</str<strong>on</strong>g> stochasticity in biomolecular systems has been identified wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

random timings <str<strong>on</strong>g>of</str<strong>on</strong>g> individual reacti<strong>on</strong>s, which in a cumulative effect lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

variability in outputs <str<strong>on</strong>g>of</str<strong>on</strong>g> such systems. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e presentati<strong>on</strong> I will dem<strong>on</strong>strate how<br />

stochasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> individual reacti<strong>on</strong>s c<strong>on</strong>tributes to <str<strong>on</strong>g>th</str<strong>on</strong>g>e variability <str<strong>on</strong>g>of</str<strong>on</strong>g> system’s output;<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>at some reacti<strong>on</strong>s have dramatically different effect <strong>on</strong> noise <str<strong>on</strong>g>th</str<strong>on</strong>g>at o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers.<br />

Surprisingly, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e class <str<strong>on</strong>g>of</str<strong>on</strong>g> open c<strong>on</strong>versi<strong>on</strong> systems, <str<strong>on</strong>g>th</str<strong>on</strong>g>at serve as an approximati<strong>on</strong><br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> signal transducti<strong>on</strong>, degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an output c<strong>on</strong>tributes half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

total noise. We also dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> degradati<strong>on</strong> in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er relevant<br />

systems and propose a degradati<strong>on</strong> feedback c<strong>on</strong>trol mechanism <str<strong>on</strong>g>th</str<strong>on</strong>g>at have capability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> effective noise suppressi<strong>on</strong>. Our me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology c<strong>on</strong>stitutes novel, intuitive and<br />

simple framework to investigate stochastic effects in biochemical networks allowing<br />

for unprecedented insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e origins <str<strong>on</strong>g>of</str<strong>on</strong>g> stochasticity.<br />

523


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ryusuke K<strong>on</strong><br />

e-mail: ryusuke.k<strong>on</strong>@gmail.com<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Permanence induced by life-cycle res<strong>on</strong>ances:<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e periodical cicada problem<br />

Periodical cicadas (Magicicada spp.) are known for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir unusually l<strong>on</strong>g life<br />

cycle for insects and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir prime periodicity <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er 13 or 17 years. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

explanati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e prime periodicity is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e prime periods are selected to<br />

prevent cicadas from res<strong>on</strong>ating wi<str<strong>on</strong>g>th</str<strong>on</strong>g> predators wi<str<strong>on</strong>g>th</str<strong>on</strong>g> submultiple periods (e.g., see<br />

[1,2]). Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is idea, Webb [3] c<strong>on</strong>structed ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models and gave a<br />

numerical example <str<strong>on</strong>g>th</str<strong>on</strong>g>at periodically oscillating predators wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 2- or 3-year period<br />

eliminate n<strong>on</strong>prime number periodical cicadas. However, in Webb’s model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong><br />

between well-timed cicada-cohorts and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir predators is ignored. In our<br />

study, we c<strong>on</strong>struct an age-structured model for dynamically interacting predator<br />

and prey populati<strong>on</strong>s and c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e predator-res<strong>on</strong>ance hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis.<br />

Our main result shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at preys are not necessarily eliminated by predators<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> submultiple periods since invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> preys is always facilitated by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir welltimed<br />

cohorts. It is also shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at synchr<strong>on</strong>ized life-cycles between predator and<br />

prey populati<strong>on</strong>s can produce a permanent system, in which no cohorts are missing<br />

in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong>s. This c<strong>on</strong>trasts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>th</str<strong>on</strong>g>at systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> asynchr<strong>on</strong>ous<br />

life-cycles cannot be permanent. These results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at res<strong>on</strong>ances wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

predators are not always deleterious to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir preys.<br />

References.<br />

[1] M. Lloyd and H. S. Dybas: The periodical cicada problem. II. evoluti<strong>on</strong>, Evoluti<strong>on</strong>, (1966),<br />

20, pp.466–505.<br />

[2] S. J. Gould: Ever Since Darwin: Reflecti<strong>on</strong>s in Natural History, Nort<strong>on</strong>, New York, 1977.<br />

[3] G. F. Webb: The prime number periodical cicada problem, Discrete C<strong>on</strong>tin. Dyn. Syst. Ser.<br />

B, (2001), 1, pp.387–399.<br />

524


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Turing !! Turing?? <strong>on</strong> morphogenesis via experimental and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

approaches; Wednesday, June 29, 17:00<br />

Shigeru K<strong>on</strong>do<br />

Osaka University<br />

e-mail: shigeruk<strong>on</strong>do@gmail.com<br />

How experiment and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics can cooperate in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> real biological systems?<br />

It was 60 years ago <str<strong>on</strong>g>th</str<strong>on</strong>g>at Turing presented his outstanding idea about <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological<br />

pattern formati<strong>on</strong>. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>en, many <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical studies have been suggesting <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

RD mechanism could be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e principles <str<strong>on</strong>g>of</str<strong>on</strong>g> biological morphogenesis. Such<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical studies seem to be enough for <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematicians to believe <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological<br />

relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory. However, majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e developmental biologists still<br />

feel <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea <str<strong>on</strong>g>of</str<strong>on</strong>g> RD is not so much related to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir study in spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e several<br />

empirical evidences.<br />

We guess <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem comes from <str<strong>on</strong>g>th</str<strong>on</strong>g>e gap <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity between <str<strong>on</strong>g>th</str<strong>on</strong>g>e simple<br />

differential equati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex real biological phenomena. Through <str<strong>on</strong>g>th</str<strong>on</strong>g>e 15<br />

years <str<strong>on</strong>g>of</str<strong>on</strong>g> experiment <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pigmentati<strong>on</strong> stripe <str<strong>on</strong>g>of</str<strong>on</strong>g> fish skin, we recently found <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

many kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular events, migrati<strong>on</strong>, differentiati<strong>on</strong>, dendrite el<strong>on</strong>gati<strong>on</strong>, and<br />

gap juncti<strong>on</strong>s, are involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pigment pattern formati<strong>on</strong>. The whole system is<br />

not similar to any <str<strong>on</strong>g>of</str<strong>on</strong>g> simple model proposed before. After presenting our newest<br />

data, I would like to discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible way for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cooperati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical and experimental sides.<br />

525


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent advances in infectious disease modelling II; Saturday, July 2, 14:30<br />

Bernhard K<strong>on</strong>rad<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia<br />

e-mail: k<strong>on</strong>radbe@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ubc.ca<br />

Jessica M. C<strong>on</strong>way<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia<br />

Alejandra Herrera<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia<br />

Daniel Coombs<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia<br />

Stochastic model-based predicti<strong>on</strong>s <strong>on</strong> post-exposure<br />

prophylaxis strategies for preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV infecti<strong>on</strong><br />

Antiretroviral treatment (ART) leads to a much lower viral load in HIV patients<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>us improves quality and leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> life. When used as a post-exposure prophylaxis<br />

(PEP) shortly after exposure to HIV, ARTs are also known to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

risk <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>. However, many aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e very early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV infecti<strong>on</strong><br />

remain poorly understood because <str<strong>on</strong>g>th</str<strong>on</strong>g>e associated low viral loads are difficult to<br />

measure clinically. We present a c<strong>on</strong>tinuous-time branching process model <str<strong>on</strong>g>of</str<strong>on</strong>g> early<br />

HIV infecti<strong>on</strong> in order to capture dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e small number <str<strong>on</strong>g>of</str<strong>on</strong>g> virus particles.<br />

Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e related Chapman-Kolmogorov differential equati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e associated<br />

probability generating functi<strong>on</strong> we derive an expressi<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus extincti<strong>on</strong><br />

probability which we solve numerically. This allows us to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different PEP strategies, c<strong>on</strong>sidering initiati<strong>on</strong> time, durati<strong>on</strong>, and multi-drug regimens.<br />

We also evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent drug resistance in <str<strong>on</strong>g>th</str<strong>on</strong>g>e event <str<strong>on</strong>g>of</str<strong>on</strong>g> PEP<br />

failure and <str<strong>on</strong>g>th</str<strong>on</strong>g>en discuss how our results can be used to guide public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> decisi<strong>on</strong>s<br />

<strong>on</strong> optimal PEP strategies.<br />

526


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Plants, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and transport processes I; Tuesday, June 28, 11:00<br />

Wilfried K<strong>on</strong>rad<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tübingen, Institute for Geosciences, Sigwartstrasse 10,<br />

D-72070 Tübingen<br />

e-mail: wilfried.k<strong>on</strong>rad@uni-tuebingen.de<br />

Anita Ro<str<strong>on</strong>g>th</str<strong>on</strong>g>-Nebelsick<br />

State Museum <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural History Stuttgart, Rosenstein 1, D-70191<br />

Stuttgart<br />

e-mail: anita.ro<str<strong>on</strong>g>th</str<strong>on</strong>g>nebelsick@smns-bw.de<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> plant water transport derived from applying an<br />

optimisati<strong>on</strong> scheme to Soil-Plant-Atmosphere-C<strong>on</strong>tinuum<br />

In Central Europe, plant transpirati<strong>on</strong> injects more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 40% <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong><br />

back into <str<strong>on</strong>g>th</str<strong>on</strong>g>e atmosphere. Thus, plants play an important role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e exchange <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

water between soil and atmosphere.<br />

Plants can actively open and close <str<strong>on</strong>g>th</str<strong>on</strong>g>eir leaf openings (“stomata”), gateways<br />

for incoming carb<strong>on</strong> dioxide molecules to be processed by photosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis as well<br />

as for outgoing water vapour. Since bo<str<strong>on</strong>g>th</str<strong>on</strong>g> gas species use <str<strong>on</strong>g>th</str<strong>on</strong>g>e same pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

majority <str<strong>on</strong>g>of</str<strong>on</strong>g> terrestrial plants has to compromise between <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>flicting tasks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

(i) minimising transpirati<strong>on</strong> (in order to avoid water stress and wilting) and (ii)<br />

maximising assimilati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrates (which c<strong>on</strong>stitute bo<str<strong>on</strong>g>th</str<strong>on</strong>g> building material<br />

and energy source <str<strong>on</strong>g>of</str<strong>on</strong>g> plants).<br />

Plants deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>flict by regulating leaf gas exchange (via stomatal<br />

aperture) according to soil moisture and <str<strong>on</strong>g>th</str<strong>on</strong>g>e diurnal cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature, insolati<strong>on</strong><br />

and relative humidity. The (physiological) details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is regulati<strong>on</strong> mechanism<br />

are largely unknown. N<strong>on</strong>e<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, it is possible, to emulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e actual plant gas<br />

exchange by a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical optimisati<strong>on</strong> scheme ([1], [2], [3]): Optimum stomatal<br />

c<strong>on</strong>ductance as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time is determined by requiring <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e assimilates<br />

assembled during <strong>on</strong>e day accumulate to a maximum, being subject to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>straint<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water transpired during <str<strong>on</strong>g>th</str<strong>on</strong>g>is time span equals a given<br />

amount. The diurnal variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature, insolati<strong>on</strong> and relative humidity<br />

have to be prescribed.<br />

The calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> subject to c<strong>on</strong>straints introduces a Lagrangian multiplier<br />

whose value cannot be determined in <str<strong>on</strong>g>th</str<strong>on</strong>g>e usual way, due to an intractable<br />

integral. Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuity equati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e water current <str<strong>on</strong>g>th</str<strong>on</strong>g>rough soil,<br />

plant roots and xylem allows, however, to express <str<strong>on</strong>g>th</str<strong>on</strong>g>e Lagrangian multiplier in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> soil properties, tree anatomy and tree physiologic restricti<strong>on</strong>s.<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model encompass <str<strong>on</strong>g>th</str<strong>on</strong>g>e rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> palaeo-envir<strong>on</strong>ment<br />

from fossilised plant leaves and <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> changing atmospheric<br />

CO2-level <strong>on</strong> climate ([4]). Redistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> between soil<br />

(run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f and ground water) and atmosphere (transpirati<strong>on</strong>) due to modified stomatal<br />

acti<strong>on</strong> caused by changing atmospheric CO2-c<strong>on</strong>tent can also be assessed.<br />

References.<br />

[1] Cowan, I.R., 1977. Stomatal behaviour and envir<strong>on</strong>ment. Adv. Bot. Res. 4, 117–228.<br />

527


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] Mäkelä , A., Berninger, F., Hari, P., 1996. Optimal c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> gas exchange during drought:<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical analysis. Ann. Bot. 77, 461–467.<br />

[3] W. K<strong>on</strong>rad, A. Ro<str<strong>on</strong>g>th</str<strong>on</strong>g>-Nebelsick and M. Grein, 2008. Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> stomatal density resp<strong>on</strong>se to<br />

atmospheric CO2 explained by a model. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 253, 638–658.<br />

[4] Hugo Jan de Boer, Emmy I. Lammertsma, Friederike Wagner-Cremer, David L. Dilcher, Martin<br />

J. Wassen and Stefan C. Dekker, 2011. Climate forcing due to optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximal<br />

leaf c<strong>on</strong>ductance in subtropical vegetati<strong>on</strong> under rising CO2. PNAS Early Editi<strong>on</strong>,<br />

www.pnas.org/cgi/doi/10.1073/pnas.1100555108<br />

528


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Lubomir Kostal<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology, AS CR, v.v.i., Videnska 1083, Praha 4, Czech<br />

Republic<br />

e-mail: kostal@biomed.cas.cz<br />

Petr Lansky<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology, AS CR, v.v.i., Videnska 1083, Praha 4, Czech<br />

Republic<br />

e-mail: lansky@biomed.cas.cz<br />

Ondrej Pokora<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology, AS CR, v.v.i., Videnska 1083, Praha 4, Czech<br />

Republic<br />

e-mail: pokora@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.muni.cz<br />

Entropy and Fisher informati<strong>on</strong> based measures <str<strong>on</strong>g>of</str<strong>on</strong>g> statistical<br />

dispersi<strong>on</strong><br />

We propose and discuss two informati<strong>on</strong>-based measures <str<strong>on</strong>g>of</str<strong>on</strong>g> statistical dispersi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> timing precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>al firing: <str<strong>on</strong>g>th</str<strong>on</strong>g>e entropy-based dispersi<strong>on</strong> and Fisher<br />

informati<strong>on</strong>-based dispersi<strong>on</strong>, and compare <str<strong>on</strong>g>th</str<strong>on</strong>g>em wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard deviati<strong>on</strong>. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e standard deviati<strong>on</strong> is used routinely, we show, <str<strong>on</strong>g>th</str<strong>on</strong>g>at it is not well suited<br />

to quantify some aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten expected intuitively, such as<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> randomness. The proposed dispersi<strong>on</strong> measures are not entirely independent,<br />

al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough each describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing regularity from a different point <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

view. We discuss relati<strong>on</strong>ships between <str<strong>on</strong>g>th</str<strong>on</strong>g>e measures and describe <str<strong>on</strong>g>th</str<strong>on</strong>g>eir extremal<br />

values. We also apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to real experimental data from sp<strong>on</strong>taneously<br />

active olfactory neur<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> rats. Our results and c<strong>on</strong>clusi<strong>on</strong>s are applicable to a<br />

wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> situati<strong>on</strong>s where <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>tinuous positive random<br />

variable is <str<strong>on</strong>g>of</str<strong>on</strong>g> interest.<br />

References.<br />

[1] L. Kostal, P. Lansky, J-P. Rospars (2007) Review: Neur<strong>on</strong>al coding and spiking randomness<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Neuroscience 26 2693–2701<br />

[2] L. Kostal, P. Marsalek (2010) Neur<strong>on</strong>al jitter: can we measure <str<strong>on</strong>g>th</str<strong>on</strong>g>e spike timing dispersi<strong>on</strong><br />

differently? Chinese Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology 53 454–464<br />

529


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Tanya Kostova Vassilevska<br />

Nati<strong>on</strong>al Science Foundati<strong>on</strong><br />

e-mail: tvassile@nsf.gov<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 08:30<br />

A model <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular virus replicati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> implicati<strong>on</strong>s<br />

for virus evoluti<strong>on</strong><br />

Viruses are <str<strong>on</strong>g>th</str<strong>on</strong>g>e simplest living organisms. In order to survive, a virus has to successfully<br />

invade a host cell, overcome cellular degradati<strong>on</strong> mechanisms, produce progeny<br />

and export it to infect o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cells; eventually evade immune resp<strong>on</strong>se and jump to<br />

a new host to start <str<strong>on</strong>g>th</str<strong>on</strong>g>e cycle again. The first challenge to virus survival is successful<br />

reproducti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e host cell. For RNA viruses, such reproducti<strong>on</strong> includes<br />

a balance between several competing processes: producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> RNA-derived RNA<br />

polymerase (RdRp), producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viral protein, RNA replicati<strong>on</strong> by <str<strong>on</strong>g>th</str<strong>on</strong>g>e RdRp,<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viri<strong>on</strong>s by combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genomic RNA and structural viral protein<br />

and degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese products. Here we design a model representing <str<strong>on</strong>g>th</str<strong>on</strong>g>ese processes<br />

for positive-sense single stranded viruses (such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e family <str<strong>on</strong>g>of</str<strong>on</strong>g> Picorna or<br />

Flavi viruses) as a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs derived from stoichiometric enzyme-substrate<br />

reacti<strong>on</strong>s and explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. The possible regimes<br />

are (1) virus extincti<strong>on</strong>, (2) stable steady state and (3) a regime where RNA and<br />

RdRp are produced in excess (tend to infinity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model) while <str<strong>on</strong>g>th</str<strong>on</strong>g>e structural<br />

protein is fully utilized (c<strong>on</strong>verges to 0). If <str<strong>on</strong>g>th</str<strong>on</strong>g>e net producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viri<strong>on</strong>s is a measure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> virus fitness (such a claim is supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e view <str<strong>on</strong>g>th</str<strong>on</strong>g>at larger virus populati<strong>on</strong>s<br />

can maintain higher diversity and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore be more adaptable), <str<strong>on</strong>g>th</str<strong>on</strong>g>en we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

viruses <str<strong>on</strong>g>th</str<strong>on</strong>g>at have evolved to utilize scenario (3) have higher fitness <str<strong>on</strong>g>th</str<strong>on</strong>g>an viruses<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at establish equilibrium progeny producti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell.<br />

530


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioimaging; Tuesday, June 28, 11:00<br />

Il<strong>on</strong>a Anna Kowalik-Urbaniak<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Waterloo, Waterloo, Ontario, Canada N2L 3G1<br />

e-mail: iakowali@uwaterloo.ca<br />

Edward R. Vrscay<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Waterloo, Waterloo, Ontario, Canada N2L 3G1<br />

e-mail: ervrscay@uwaterloo.ca<br />

Zhou Wang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Electrical and Computer Engineering, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Waterloo, Waterloo, Ontario, Canada N2L<br />

3G1<br />

e-mail: zhouwang@ieee.org<br />

David K<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Diagnostic Imaging, Hamilt<strong>on</strong> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Sciences, Department<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Radiology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Sciences, McMaster University,<br />

Hamilt<strong>on</strong>, Ontario, Canada L8S4L8<br />

e-mail: k<str<strong>on</strong>g>of</str<strong>on</strong>g>f@hhsc.ca<br />

Objective quality assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> JPEG- and JPEG2000compressed<br />

CT neuro images<br />

We have employed various objective image fidelity measures to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> JPEG- and JPEG2000-compressed CT neuro images. Lossy compressi<strong>on</strong><br />

degrades image quality. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e compressi<strong>on</strong> ratio is increased, JPEG produces<br />

blocking and ringing artifacts whereas JPEG2000 introduces blurring and ringing<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e rec<strong>on</strong>structed images. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough subjective me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to evaluate quality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

compressed medical images are complicated and difficult to c<strong>on</strong>duct, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most accepted way for measuring diagnosis reliability. In order to overcome <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

problems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> subjective quality assessment and to automate <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> assessing<br />

degradati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a need for reliable objective quality assessment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

medical images. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no generally accepted objective quality measure<br />

for medical images, Mean Squared Error (MSE) is widely used. It is, however, well<br />

known <str<strong>on</strong>g>th</str<strong>on</strong>g>at MSE does not corresp<strong>on</strong>d well wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human visual system (HVS).<br />

We are <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore led to <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong>, “Which quality measures should be used <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

best corresp<strong>on</strong>d to visual and diagnostic quality?”<br />

The HVS is highly sensitive to structural informati<strong>on</strong> and distorti<strong>on</strong>s (e.g.<br />

JPEG blockiness, “salt-and-pepper” noise, ringing effect, blurring). The structural<br />

similarity (SSIM) index, introduced by Wang and Bovik [2], assumes <str<strong>on</strong>g>th</str<strong>on</strong>g>at images<br />

are highly structured and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exist str<strong>on</strong>g neighbouring dependencies am<strong>on</strong>g<br />

pixels. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese features are completely ignored by <str<strong>on</strong>g>th</str<strong>on</strong>g>e MSE.<br />

We also introduce ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er approach to measure <str<strong>on</strong>g>th</str<strong>on</strong>g>e quality <str<strong>on</strong>g>of</str<strong>on</strong>g> compressed CT<br />

images, <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called “Weberized L 2 ” me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. It is a weighted versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e MSE<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporates <str<strong>on</strong>g>th</str<strong>on</strong>g>e Weber model <str<strong>on</strong>g>of</str<strong>on</strong>g> percepti<strong>on</strong>.<br />

We analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e quality maps <str<strong>on</strong>g>of</str<strong>on</strong>g> compressed images associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e L 1 , L 2 ,<br />

Weberized L 2 and SSIM measures. Our investigati<strong>on</strong> supports <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>clusi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an extensive subjective quality evaluati<strong>on</strong> study c<strong>on</strong>ducted by radiologists in K<str<strong>on</strong>g>of</str<strong>on</strong>g>f<br />

531


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

et al. [1] . The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> edge artifacts introduced by JPEG2000 compressi<strong>on</strong><br />

is revealed <strong>on</strong>ly by <str<strong>on</strong>g>th</str<strong>on</strong>g>e SSIM quality map and may explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> K<str<strong>on</strong>g>of</str<strong>on</strong>g>f et<br />

al.. In c<strong>on</strong>clusi<strong>on</strong>, our study suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e SSIM measure and <str<strong>on</strong>g>th</str<strong>on</strong>g>e SSIM quality<br />

map provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e most promising approach to predict subjective quality assessment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> compressed brain CT images.<br />

References.<br />

[1] D. K<str<strong>on</strong>g>of</str<strong>on</strong>g>f, P. Bak and P. Brownrigg, D. Hosseinzadeh, A. Khademi, A. Kiss, L. Lepanto, T.<br />

Michalak, H. Shulman and A. Volkening. Pan-Canadian evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> irreversible compressi<strong>on</strong><br />

ratios ("Lossy Compressi<strong>on</strong>") for development <str<strong>on</strong>g>of</str<strong>on</strong>g> nati<strong>on</strong>al guidelines J Digit Imaging. 2009<br />

Dec;22, 6, pp. 569-78. Oct 2008.<br />

[2] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Sim<strong>on</strong>celli, Image quality assessment: From<br />

error visibility to structural similarity. IEEE Transacti<strong>on</strong>s <strong>on</strong> Image Processing, 13, no. 4, pp.<br />

600-612, Apr. 2004.<br />

532


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Signals I; Saturday, July 2, 08:30<br />

T. Kozubowski<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nevada, Reno<br />

e-mail: tkozubow@unr.edu<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Podgorski<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Statistics, Lund University,<br />

Sweden<br />

Skew Laplace Distributi<strong>on</strong>s: Theory and Some Applicati<strong>on</strong>s<br />

in Biology<br />

Skew Laplace distributi<strong>on</strong>s, which naturally arise in c<strong>on</strong>necti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> random summati<strong>on</strong><br />

and quantile regressi<strong>on</strong> settings, <str<strong>on</strong>g>of</str<strong>on</strong>g>fer an attractive and flexible alternative<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal (Gaussian) distributi<strong>on</strong> in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> settings where <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> symmetry and short tail are too restrictive. In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>is model has<br />

been recently found useful for gene selecti<strong>on</strong> and classificati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> microarray data sets. In ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er applicati<strong>on</strong>, it was observed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e Laplace<br />

distributi<strong>on</strong> adequately represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial cells. We shall<br />

present fundamental properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, which give insight into its applicability<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese areas, and discuss its extensi<strong>on</strong>s to multivariate models, time series,<br />

and stochastic processes.<br />

533


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Models in Spatial Ecology; Tuesday, June 28, 17:00<br />

Roberto Kraenkel<br />

Institute for Theoretical Physics, São Paulo State University, Brazil<br />

e-mail: kraenkel@ift.unesp.br<br />

Diffusi<strong>on</strong> in fragmented landscapes: habitat split<br />

This talk gives an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> some recent results c<strong>on</strong>cerning stage-structured<br />

species in fragmented habitats. It focus <strong>on</strong> amphibians, which need two distinct<br />

habitats in different life stages. We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e particular case where <str<strong>on</strong>g>th</str<strong>on</strong>g>e habitat<br />

is split: <str<strong>on</strong>g>th</str<strong>on</strong>g>e terrestrial habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adults is separated from <str<strong>on</strong>g>th</str<strong>on</strong>g>e aquatic habitat<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e larvae. A central questi<strong>on</strong> is how <str<strong>on</strong>g>th</str<strong>on</strong>g>e distance between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two required<br />

habitats affects populati<strong>on</strong> size and persistence in isolated fragment. We find a c<strong>on</strong>diti<strong>on</strong><br />

for persistence in a simple model based <strong>on</strong> diffusi<strong>on</strong> equati<strong>on</strong>s supplemented<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> boundary c<strong>on</strong>diti<strong>on</strong>s encompassing populati<strong>on</strong> regulati<strong>on</strong>. The habitat split<br />

model improves our understanding about spatially structured populati<strong>on</strong>s and has<br />

relevant implicati<strong>on</strong>s for landscape design for amphibian c<strong>on</strong>servati<strong>on</strong>.<br />

534


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics <str<strong>on</strong>g>of</str<strong>on</strong>g> Neglected Tropical Diseases; Wednesday, June 29, 11:00<br />

Roberto Kraenkel<br />

Institute for Theoretical Physics, São Paulo State University, Brazil<br />

e-mail: kraenkel@ift.unesp.br<br />

R. M. Coutinho<br />

Institute for Theoretical Physics, São Paulo State University, Brazil<br />

G. Z. Laporta<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> São Paulo, Brazil<br />

P. I. Prado<br />

Ecology Dept., Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> São Paulo,<br />

Brazil<br />

A model for malaria wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ecological comp<strong>on</strong>ents<br />

We present a model for malaria epidemics which takes into account, besides humans<br />

and anopheles mosquitoes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er mosquitoes species which are not<br />

vectors for plasmodium but which create a competiti<strong>on</strong> effect <str<strong>on</strong>g>th</str<strong>on</strong>g>at can reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

basic reproductive number. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er, we c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er species<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at can provide blood meals for mosquitoes but are immune to malaria, creating a<br />

diluti<strong>on</strong> effect. These effects are meant to model observed situati<strong>on</strong>s in which almost<br />

no malaria cases are observed, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e anopheles mosquito is abundant.<br />

535


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Neurosciences; Wednesday, June 29, 08:30<br />

K.G. Kravchuk and A.K. Vidybida<br />

Bogolyubov Institute for Theoretical Physics,<br />

Metrololgichna str., 14-B, 03680 Kyiv, Ukraine<br />

e-mail: kgkravchuk@bitp.kiev.ua and vidybida@bitp.kiev.ua<br />

Delayed feedback results in n<strong>on</strong>-markovian statistics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>al firing<br />

The output inter-spike intervals (ISI) statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> a single neur<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> delayed<br />

feedback is c<strong>on</strong>sidered. The c<strong>on</strong>structi<strong>on</strong> is driven externally wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Poiss<strong>on</strong> stream<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> excitatory impulses. Via <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback line, neur<strong>on</strong>’s output impulses are fed<br />

back to its input wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a fixed time delay. We c<strong>on</strong>sider cases <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> excitatory and<br />

inhibitory neur<strong>on</strong>. Namely, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e first case, <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong> receives excitatory impulses<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e driving Poiss<strong>on</strong> stream and from its own output stream <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

feedback line. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d case, apart from <str<strong>on</strong>g>th</str<strong>on</strong>g>e external Poiss<strong>on</strong> excitati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

delayed self-inhibiti<strong>on</strong> is present. For analytical derivati<strong>on</strong>, we take binding neur<strong>on</strong><br />

(BN) model [1].<br />

delayed feedback<br />

input stream<br />

✲<br />

✲<br />

Σ ≤ N0<br />

τ – memory ✲<br />

output stream<br />

<br />

t – ISI durati<strong>on</strong><br />

We obtain exact analytical expressi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e single-ISI c<strong>on</strong>diti<strong>on</strong>al probability<br />

density P (t2 | t1), which gives <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability to obtain an output ISI <str<strong>on</strong>g>of</str<strong>on</strong>g> durati<strong>on</strong><br />

t2 provided <str<strong>on</strong>g>th</str<strong>on</strong>g>e previous ISI durati<strong>on</strong> was t1, and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e double-ISI c<strong>on</strong>diti<strong>on</strong>al<br />

probability density P (t2 | t1, t0).<br />

It turns out, <str<strong>on</strong>g>th</str<strong>on</strong>g>at P (t2 | t1) does not reduce to <str<strong>on</strong>g>th</str<strong>on</strong>g>e output ISI probability density<br />

P (t2), found before. This means, <str<strong>on</strong>g>th</str<strong>on</strong>g>at firing statistics is n<strong>on</strong>-renewal <strong>on</strong>e even in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

simplest possible neur<strong>on</strong>al network. Moreover, we prove exactly, <str<strong>on</strong>g>th</str<strong>on</strong>g>at P (t2 | t1, t0)<br />

cannot be reduced to P (t2 | t1), <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <strong>on</strong> t0 cannot be eliminated. This<br />

exactly means <str<strong>on</strong>g>th</str<strong>on</strong>g>at ISIs stream does not possess Markov property.<br />

Also, we introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>al probability density P (tn+1 | tn, . . . , t1, t0). It<br />

is proven exactly, <str<strong>on</strong>g>th</str<strong>on</strong>g>at P (tn+1 | tn, . . . , t1, t0) does not reduce to P (tn+1 | tn, . . . , t1)<br />

for any n ≥ 0. This means <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e output ISIs stream cannot be represented as<br />

Markov chain <str<strong>on</strong>g>of</str<strong>on</strong>g> any finite order.<br />

We c<strong>on</strong>clude, <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e delayed feedback presence causes n<strong>on</strong>-markovian behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>al firing statistics for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> excitatory and inhibitory neur<strong>on</strong>s. We<br />

suggest, <str<strong>on</strong>g>th</str<strong>on</strong>g>at interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental records <str<strong>on</strong>g>of</str<strong>on</strong>g> spiking activity should take<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is fact into account.<br />

References.<br />

[1] A.K. Vidybida, Neur<strong>on</strong> as time coherence discriminator. Biol. Cybern. 74 539–544 (1996).<br />

[2] K.G. Kravchuk, A.K. Vidybida, Delayed feedback causes n<strong>on</strong>-Markovian behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>al<br />

firing statistics. arXiv:1012.6019v2.<br />

536<br />


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Computati<strong>on</strong>al toxicology and pharmacology - in silico drug activity and<br />

safety assessment; Saturday, July 2, 11:00<br />

Axel Krinner, Markus Scholz<br />

IMISE, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leipzig<br />

e-mail: krinner@izbi.uni-leipzig.de<br />

Ingo Roeder<br />

IMB, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: ingo.roeder@tu-dresden.de<br />

Combining two model paradigms: How an agent-based<br />

hematopoietic stem cell model couples to an ordinary<br />

differential equati<strong>on</strong>s model <str<strong>on</strong>g>of</str<strong>on</strong>g> mature granulopoiesis and<br />

chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

To model <str<strong>on</strong>g>th</str<strong>on</strong>g>e organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hematopoietic stem cells Roeder et al. have introduced<br />

an agent-based model which succeeded well in explaining several experimental<br />

data <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>al competiti<strong>on</strong> and stem cell dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> clinically relevant<br />

applicati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e field <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic myeloid leukemia [1]. The model assumes two<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g>-envir<strong>on</strong>ments and regulates stem cell activity by an intrinsic feedback <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

c<strong>on</strong>trols <str<strong>on</strong>g>th</str<strong>on</strong>g>e transiti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese envir<strong>on</strong>ments.<br />

In order to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor applicati<strong>on</strong>s<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> mature granulocytes, a compartment-based ordinary differential<br />

equati<strong>on</strong>s (ODE) model <str<strong>on</strong>g>of</str<strong>on</strong>g> granulopoiesis has been introduced by Scholz et al. [2].<br />

Here <str<strong>on</strong>g>th</str<strong>on</strong>g>e stem cell compartment is represented in a very simplified fashi<strong>on</strong>.<br />

To overcome <str<strong>on</strong>g>th</str<strong>on</strong>g>is simplificati<strong>on</strong> and to take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e established model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hematopoietic stem cells we replaced <str<strong>on</strong>g>th</str<strong>on</strong>g>e ODE stem cell compartment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a difference<br />

equati<strong>on</strong> formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e agent-based stem cell model [3]. Two feedback<br />

mechanisms for stem cell activati<strong>on</strong> were introduced for replacing <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> self-renewal probability and proliferative fracti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e stem cell compartments<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ODE model. Stem cell activati<strong>on</strong> was implemented firstly by increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> exiting quiescent states and sec<strong>on</strong>dly by a general accelerati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

stem cell compartment.<br />

The resulting hybrid model was capable <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy regime <str<strong>on</strong>g>of</str<strong>on</strong>g> Chop21. Interestingly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feedback<br />

mechanisms for stem cell activati<strong>on</strong> showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e best agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e regenerati<strong>on</strong><br />

resp<strong>on</strong>se in <str<strong>on</strong>g>th</str<strong>on</strong>g>e clinical trials was achieved for <str<strong>on</strong>g>th</str<strong>on</strong>g>e intrinsic regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e agent-based model wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out additi<strong>on</strong>al activati<strong>on</strong>.<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e combined model, we aim to improve <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hematopoietic system in <str<strong>on</strong>g>th</str<strong>on</strong>g>e future. In particular we<br />

expect fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> hematopoietic stem cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> a toxicity induced leukopoenia wi<str<strong>on</strong>g>th</str<strong>on</strong>g> subsequent regenerati<strong>on</strong><br />

References.<br />

[1] I. Roeder and M. Horn and I. Glauche and A. Hochhaus and M.C. Mueller and M. Loeffler,<br />

Dynamic modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> imatinib-treated chr<strong>on</strong>ic myeloid leukemia: functi<strong>on</strong>al insights and<br />

clinical implicati<strong>on</strong>s. Nat Med 12 1181–1184.<br />

[2] M. Scholz and C. Engel and M. Loeffler, Modeling human granulopoiesis under polychemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> G-CSF support J Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biol 50 397–439.<br />

537


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] P.S. Kim, P.P. Lee and D. Levy, Modeling imatinib-treated chr<strong>on</strong>ic myelogenous leukemia:<br />

reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> agent-based models Bull Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biol 70 728–744.<br />

538


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

J. Krishnan<br />

Imperial College L<strong>on</strong>d<strong>on</strong><br />

e-mail: krishnan@icex.imperial.ac.uk<br />

Aiman Alam-Nazki<br />

Imperial College L<strong>on</strong>d<strong>on</strong><br />

Cellular Systems Biology; Saturday, July 2, 11:00<br />

Modelling and elucidating design principles underlying<br />

attractive and repulsive gradient sensing<br />

Many cells, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> prokaryote and eukaryote exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>e feature <str<strong>on</strong>g>of</str<strong>on</strong>g> chemotaxis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

directed moti<strong>on</strong> in resp<strong>on</strong>se to gradients <str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

cells exhibit bo<str<strong>on</strong>g>th</str<strong>on</strong>g> attractive and repulsive gradient sensing to ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e same or<br />

different chemicals. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, I will discuss two aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem.<br />

The first is <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanistic modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> a network postulated to describe<br />

chemorepulsi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model system Dictyostelium. The signalling network is complex<br />

since it is str<strong>on</strong>gly n<strong>on</strong>-linear incorporating a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feedforward and<br />

feedback loops wi<str<strong>on</strong>g>th</str<strong>on</strong>g> spatial signalling. A systematic mechanistic modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

work describes whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er and under which c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network can exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

desired behaviour and makes clearcut predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e important features in <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

regard, resulting in very n<strong>on</strong>-trivial c<strong>on</strong>clusi<strong>on</strong>s.<br />

The sec<strong>on</strong>d aspect which I will discuss is how <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell signalling networks may<br />

be organized to give rise to bo<str<strong>on</strong>g>th</str<strong>on</strong>g> attractive and repulsive gradient sensing in a given<br />

cell, and how <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting behaviour depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e qualitative aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> signal<br />

transducti<strong>on</strong> (eg. adaptati<strong>on</strong>, sp<strong>on</strong>taneous polarizati<strong>on</strong>). Here a framework using<br />

qualitatively simplified models will be used to distill transparent insights. The<br />

relevance to individual systems will also be discussed.<br />

539


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Game <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical modelling and optimizati<strong>on</strong> in evoluti<strong>on</strong> and ecology II;<br />

Tuesday, June 28, 14:30<br />

Vlastimil Krivan<br />

Biology center AS CR and University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Bohemia, Ceske Budejovice,<br />

Czech Republic<br />

e-mail: vlastimil.krivan@gmail.com<br />

Ross Cressman<br />

Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Wilfrid Laurier Univ., Waterloo, Ontario, N2L<br />

3C5, Canada<br />

On evoluti<strong>on</strong>ary stability in some populati<strong>on</strong> games<br />

The classical models <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> dynamics (e.g., <str<strong>on</strong>g>th</str<strong>on</strong>g>e Lotka-Volterra predator-prey<br />

model) assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at interacti<strong>on</strong> streng<str<strong>on</strong>g>th</str<strong>on</strong>g> is fixed and independent <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong><br />

densities. However, empirical evidence suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> prey and/or predators<br />

change <str<strong>on</strong>g>th</str<strong>on</strong>g>eir behavior wi<str<strong>on</strong>g>th</str<strong>on</strong>g> changes in populati<strong>on</strong> numbers. For example, an increase<br />

in predator numbers <str<strong>on</strong>g>of</str<strong>on</strong>g>ten decreases prey activity. Such plasticity in animal<br />

behavior leads to variable interacti<strong>on</strong> streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>at can str<strong>on</strong>gly influence populati<strong>on</strong><br />

dynamics. As predators and prey <str<strong>on</strong>g>of</str<strong>on</strong>g>ten play avoidance game (i.e., prey try<br />

to avoid predators while predators try to find prey), to solve <str<strong>on</strong>g>th</str<strong>on</strong>g>is game me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>arily game <str<strong>on</strong>g>th</str<strong>on</strong>g>eory are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used. In particular, it is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

optimal soluti<strong>on</strong> to such a game corresp<strong>on</strong>ds to <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>arily stable strategy.<br />

By definiti<strong>on</strong>, such a strategy cannot be invaded by rare mutants, and from <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

respect it is <str<strong>on</strong>g>th</str<strong>on</strong>g>e ultimate outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical <str<strong>on</strong>g>th</str<strong>on</strong>g>eory does<br />

not c<strong>on</strong>sider changes in populati<strong>on</strong> numbers and in such a dynamic setting it is not<br />

a priori clear, if evoluti<strong>on</strong>arily stable strategies can be invaded by rare behavioral<br />

mutants when populati<strong>on</strong> dynamics are c<strong>on</strong>sidered. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we will show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is can happen, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough behavioral mutants cannot replace residents. However,<br />

a polymorphism can arise. Whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>is happens or not, depends <strong>on</strong> particular<br />

dynamics and food web topology.<br />

540


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Pawel Krupinski<br />

Computati<strong>on</strong>al Biology and Biological Physics Group, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Physics, Lund University, S-221 00 Lund, Sweden<br />

e-mail: pawel@<str<strong>on</strong>g>th</str<strong>on</strong>g>ep.lu.se<br />

Marcus Heisler<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> Molecular Biology Laboratory, Meyerh<str<strong>on</strong>g>of</str<strong>on</strong>g>strasse 1, D-69117<br />

Heidelberg, Germany<br />

e-mail: heisler@embl.de<br />

Olivier Hamant<br />

INRA, CNRS, ENS, Universite de Ly<strong>on</strong>, 46 Allee d Italie, 69364 Ly<strong>on</strong><br />

Cedex 07, France<br />

e-mail: Olivier.Hamant@ens-ly<strong>on</strong>.fr<br />

Magalie Uyttewaal<br />

INRA, CNRS, ENS, Universite de Ly<strong>on</strong>, 46 Allee d Italie, 69364 Ly<strong>on</strong><br />

Cedex 07, France<br />

e-mail: magalie.uyttewaal@ens-ly<strong>on</strong>.fr<br />

Arezki Boudaoud<br />

INRA, CNRS, ENS, Universite de Ly<strong>on</strong>, 46 Allee d Italie, 69364 Ly<strong>on</strong><br />

Cedex 07, France<br />

e-mail: arezki.boudaoud@ens-ly<strong>on</strong>.fr<br />

Carolyn Ohno<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> Molecular Biology Laboratory, Meyerh<str<strong>on</strong>g>of</str<strong>on</strong>g>strasse 1, D-69117<br />

Heidelberg, Germany<br />

e-mail: carolyn.ohno@embl.de<br />

Henrik J<strong>on</strong>ss<strong>on</strong><br />

Computati<strong>on</strong>al Biology and Biological Physics Group, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Physics, Lund University, S-221 00 Lund, Sweden<br />

e-mail: henrik@<str<strong>on</strong>g>th</str<strong>on</strong>g>ep.lu.se<br />

Jan Traas<br />

INRA, CNRS, ENS, Universite de Ly<strong>on</strong>, 46 Allee d Italie, 69364 Ly<strong>on</strong><br />

Cedex 07, France<br />

e-mail: Jan.Traas@ens-ly<strong>on</strong>.fr<br />

Elliot Meyerowitz<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, California Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Pasadena,<br />

California 91125, USA<br />

e-mail: meyerow@caltech.edu<br />

Interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical and biochemical signals in plant<br />

morphogenesis<br />

The Shoot Apical Meristems (SAM) initiate grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> new aerial plant organs like<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e leaves and flowers. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e new primordia <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e meristem<br />

involves complicated mechanical and biochemical interacti<strong>on</strong>s, yet meristem is<br />

able to achieve amazing regularity in repeating <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> outgrow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

new leaves and flowers for <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e plant. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>th</str<strong>on</strong>g>is requires a precise regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount and directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

541


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

cellular grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. The former is influenced by polarized transport <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e plant horm<strong>on</strong>e<br />

auxin, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter is related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microtubule array.<br />

By using <str<strong>on</strong>g>th</str<strong>on</strong>g>e combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments and modeling we have provided evidence<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at microtubules resp<strong>on</strong>d to mechanical stress and c<strong>on</strong>tribute to a feedback loop<br />

encompassing physical forces, microtubule orientati<strong>on</strong>, mechanical anisotropy and<br />

morphogenesis [1]. We have shown also <str<strong>on</strong>g>th</str<strong>on</strong>g>at auxin transport regulati<strong>on</strong> by PIN1<br />

can be explained by <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism which uses <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical stresses in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell<br />

walls to c<strong>on</strong>vey informati<strong>on</strong> about auxin c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e neighboring cells. We<br />

presented a model <str<strong>on</strong>g>of</str<strong>on</strong>g> such interacti<strong>on</strong>s which is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> creating phyllotactic<br />

patterns and is c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental results <str<strong>on</strong>g>of</str<strong>on</strong>g> cell ablati<strong>on</strong>s [2]. These results<br />

suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical signals are not <strong>on</strong>ly passively influenced by auxin<br />

patterning, but also actively direct transport <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin using mechanical stress as a<br />

comm<strong>on</strong> regulator <str<strong>on</strong>g>of</str<strong>on</strong>g> PIN1 localizati<strong>on</strong> and mechanical anisotropy c<strong>on</strong>tributing to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phyllotactic patterns.<br />

References.<br />

[1] O. Hamant, M. Heisler, H. Jönss<strong>on</strong>, P. Krupinski, M. Uyttewaal, P. Bokov, F. Cors<strong>on</strong>, P.<br />

Sahlin, A. Boudaoud, E. M. Meyerowitz, Y. Couder, and J. Traas, Developmental patterning<br />

by mechanical signals in Arabidopsis Science 322, 1650–1655 (2008)<br />

[2] M. Heisler, O. Hamant, P. Krupinski, M. Uyttewaal, C. Ohno, H. Jönss<strong>on</strong>, J. Traas, E.<br />

Meyerowitz, Alignment between PIN1 Polarity and Microtubule Orientati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Shoot Apical<br />

Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport PLoS<br />

Biology 8(10) :e1000516 (2010)<br />

542


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Pawel Krupinski<br />

Computati<strong>on</strong>al Biology and Biological Physics Group, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Physics, Lund University, S-221 00 Lund, Sweden<br />

e-mail: pawel@<str<strong>on</strong>g>th</str<strong>on</strong>g>ep.lu.se<br />

Vijay Chickarmane<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, California Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Pasadena,<br />

California 91125, USA<br />

e-mail: vchickar@caltech.edu<br />

Carsten Peters<strong>on</strong><br />

Computati<strong>on</strong>al Biology and Biological Physics Group, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Physics, Lund University, S-221 00 Lund, Sweden<br />

e-mail: carsten@<str<strong>on</strong>g>th</str<strong>on</strong>g>ep.lu.se<br />

Molecular and mechanical interacti<strong>on</strong>s in early mammalian<br />

embryo<br />

Mammalian embryogenesis is a dynamic process involving gene expressi<strong>on</strong> and mechanical<br />

forces between proliferating cells. Despite a weal<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> research and identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e key genes c<strong>on</strong>tributing to <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e early embryo,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e precise nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese interacti<strong>on</strong>s is still elusive. We have developed a computati<strong>on</strong>al<br />

modeling framework by which we can analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> embryo<br />

development and differentiati<strong>on</strong> to specific tissues during its first 4.5 days [1]. We<br />

combine mechanical and biochemical interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells to investigate<br />

how different mechanism c<strong>on</strong>tribute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e specificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trophectoderm, primitive<br />

endoderm and alignment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo axes. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trophectoderm<br />

formati<strong>on</strong> we compare robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> two models by which <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic pattern<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cdx2 and Oct4 transcripti<strong>on</strong> factors forms: gene expressi<strong>on</strong> is influenced by<br />

positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell or bo<str<strong>on</strong>g>th</str<strong>on</strong>g> expressi<strong>on</strong> and positi<strong>on</strong> are regulated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

symmetric/asymmetric divisi<strong>on</strong>s depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Cdx2 levels. During endoderm<br />

formati<strong>on</strong> we examine influence <str<strong>on</strong>g>of</str<strong>on</strong>g> differential adhesi<strong>on</strong>, geometrical c<strong>on</strong>straints and<br />

stochastic active movement <str<strong>on</strong>g>of</str<strong>on</strong>g> cells <strong>on</strong> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> endoderm layer specificati<strong>on</strong>.<br />

We dem<strong>on</strong>strate how purely mechanical factors can be resp<strong>on</strong>sible for alignment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e animal-vegetal and embry<strong>on</strong>ic-abembry<strong>on</strong>ic axes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo. This work<br />

by combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell-based spatial mechanical simulati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a genetic network<br />

approach hints <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two domains may be inseparably linked and <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

taking <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong>s into account can be necessary for explaining mammalian<br />

embryogenesis.<br />

References.<br />

[1] P. Krupinski, V. Chickarmane and C. Peters<strong>on</strong>, Simulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e mammalian blastocyst - molecular<br />

and mechanical interacti<strong>on</strong>s pattern <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo to appear in PloS Comp. Biology<br />

543


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

IV; Wednesday, June 29, 08:30<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Bartoszek<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Chalmers University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Sweden<br />

e-mail: krzbar@chalmers.se<br />

Michał Krzemiński<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences 00-956 Warszawa,<br />

Poland<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Probability Theory and Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Technical Physics Gdańsk University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

80-233 Gdańsk, Poland<br />

e-mail: mkrzeminski@mif.pg.gda.pl<br />

Markov model <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer development – survival time<br />

predicti<strong>on</strong><br />

We will present a newly developed [1] Markov model <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer development. This<br />

is a compartmental model which allows <strong>on</strong>e to separately c<strong>on</strong>sider different stages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease’s progress. The model assumes <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waiting times<br />

between stages is exp<strong>on</strong>ential wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate depending linearly <strong>on</strong> an arbitrary number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> predictors. We apply <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to a breast cancer data set <str<strong>on</strong>g>of</str<strong>on</strong>g> women from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Pomerania regi<strong>on</strong> (1987–1992) [2]. We use <str<strong>on</strong>g>th</str<strong>on</strong>g>e medical data in c<strong>on</strong>juncti<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a modified Bloom grading system to assign patients to different states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Markov chain and explore what clinical predictors (which include am<strong>on</strong>gst o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers<br />

age, tumour size, number <str<strong>on</strong>g>of</str<strong>on</strong>g> infected nodes, presence <str<strong>on</strong>g>of</str<strong>on</strong>g> estrogen and proestrogen<br />

receptors) best describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e state dependent transiti<strong>on</strong> probabilities and whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ey have detrimental effects via a regressi<strong>on</strong> analysis. We also explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> survival time predicti<strong>on</strong> under <str<strong>on</strong>g>th</str<strong>on</strong>g>is Markov model <str<strong>on</strong>g>of</str<strong>on</strong>g> disease and c<strong>on</strong>sider<br />

extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exp<strong>on</strong>entially distributed waiting times.<br />

References.<br />

[1] D. Faissol et. al. Bias in Markov models <str<strong>on</strong>g>of</str<strong>on</strong>g> disease Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences 220 143–156.<br />

[2] J. Skokowski Wartości rokownicze wybranych czynników klinicznych i patomorfologicznych w<br />

raku piersi PhD <str<strong>on</strong>g>th</str<strong>on</strong>g>esis Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Gdańsk 2001.<br />

544


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Computati<strong>on</strong>al toxicology and pharmacology - in silico drug activity and<br />

safety assessment; Saturday, July 2, 11:00<br />

Wojciech Krzyzanski<br />

University at Buffalo, Buffalo, New York, USA.<br />

e-mail: wk@buffalo.edu<br />

Hematopoietic cell populati<strong>on</strong>s as <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic targets<br />

Pharmacodynamics is a rapidly growing field wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a focus <strong>on</strong> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> drug effects. A very important class <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic/toxic effects is hematological<br />

cell populati<strong>on</strong>s, dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> which have been a well investigated subject <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

physiologically structured populati<strong>on</strong> models. However, <strong>on</strong>ly recently such models<br />

have incorporated drug effects <strong>on</strong> cell populati<strong>on</strong>s.<br />

This talk will introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e pharmacodynamic models <str<strong>on</strong>g>of</str<strong>on</strong>g> drug effects <strong>on</strong> hematopoietic<br />

cell populati<strong>on</strong>s. It will also make a link to physiologically structured populati<strong>on</strong><br />

models <str<strong>on</strong>g>th</str<strong>on</strong>g>rough such structures as cell age and fluorescent label. The roles<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> physiological structures in describing <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> various drugs will be<br />

emphasized.<br />

545


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

V; Wednesday, June 29, 11:00<br />

Akisato Kubo<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Sciences, Fujita Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Unicersity,<br />

Toyoake, Aichi 470-1192, Japan<br />

e-mail: akikubo@fujita-hu.ac.jp<br />

Existence and Asymptotic Behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> Soluti<strong>on</strong>s to<br />

N<strong>on</strong>linear Evoluti<strong>on</strong> Equati<strong>on</strong>s Arising in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e global existence in time and asymptotic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear evoluti<strong>on</strong> equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> str<strong>on</strong>g dissipati<strong>on</strong>. Applying<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e above result to some models <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biology and medicine, we discuss<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em.<br />

For <str<strong>on</strong>g>th</str<strong>on</strong>g>is purpose we first show <str<strong>on</strong>g>th</str<strong>on</strong>g>e solvability and <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

soluti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e intial boundary value problem <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> linear evoluti<strong>on</strong> equati<strong>on</strong>s:<br />

⎧<br />

utt = D∇2ut + ∇ · (χ(ut, e−u )e−u∇u) in Ω × (0, T ) (1.1)<br />

⎪⎨<br />

(NE)<br />

⎪⎩<br />

∂<br />

∂ν u | ∂Ω = 0 <strong>on</strong> ∂Ω × (0, T ) (1.2)<br />

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω (1.3)<br />

where Ω is a bounded domain in Rn and ∂Ω is a smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> Ω and ν is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e outer unit normal vector and we denote<br />

∂ ∂<br />

= ∂t, = ∂xi, i = 1 · ··, n, ∇u = grad<br />

∂t ∂x<br />

xu = (∂x1u, · · ·, ∂xnu)<br />

i<br />

∇ 2 u = ∇ · ∇u = ∆u = ∂ 2 x1 u + · · · + ∂2 xn u.<br />

(1.1) includes <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>linear evoluti<strong>on</strong> equati<strong>on</strong>s c<strong>on</strong>sidered in [4]-[6] to show <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

global existence in time and <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models. We improve our ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical approach and obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (NE), which is in general form <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e obtained in <str<strong>on</strong>g>th</str<strong>on</strong>g>em. Next we apply<br />

our result to ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, tumour induced angiogenesis<br />

and tumour invasi<strong>on</strong>, proposed by Chaplain and Anders<strong>on</strong>(see [1]-[3]).<br />

References.<br />

[1] Anders<strong>on</strong> and Chaplain, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for capillary network formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cell proliferati<strong>on</strong> Appl. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Lett., 11(3), 1998, 109–114.<br />

[2] Anders<strong>on</strong> and Chaplain, C<strong>on</strong>tinuous and discrete ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour-induced<br />

angiogenesis Bull. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol., 60, 1998, 857–899.<br />

[3] Anders<strong>on</strong>, Chaplain et al., Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour invasi<strong>on</strong> and metastasis J.<br />

Theor. Med., 2, 2000, 129–154.<br />

[4] Kubo and Suzuki, Asymptotic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> to a parabolic ODE system modeling<br />

tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> Differential and Integral Equati<strong>on</strong>s, 17(7-8), 2004, 721–736.<br />

[5] Kubo and Suzuki and Hoshino, Asymptotic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> to a parabolic ODE system<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Sci. Appl., 22, 2005, 121–135.<br />

[6] Kubo and Suzuki, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour angiogenesis, J. Comp. Appl. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>., 204,<br />

2007, 48–55.<br />

546


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious agents;<br />

Tuesday, June 28, 17:00<br />

Adam Kucharski<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

e-mail: A.Kucharski@damtp<br />

Julia Gog<br />

DAMTP, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

e-mail: jrg20@cam.ac.uk<br />

Strain dynamics and influenza drift<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most exciting current areas in infectious disease modelling is in bringing<br />

toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic and evoluti<strong>on</strong>ary dynamics. Influenza drift is perhaps <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most striking example <str<strong>on</strong>g>of</str<strong>on</strong>g> where <str<strong>on</strong>g>th</str<strong>on</strong>g>e two processes must be c<strong>on</strong>sidered toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er:<br />

epidemics give rise to new strains, which in turn permit new epidemics.<br />

We will begin wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a general introducti<strong>on</strong> to models <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple strains, and<br />

some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir challenges, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> technical and in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> capturing observed biological<br />

phenomena. In most populati<strong>on</strong>-based models <str<strong>on</strong>g>of</str<strong>on</strong>g> strain dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> variables grows exp<strong>on</strong>entially wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> strains. We present two items<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our recent work, each <str<strong>on</strong>g>of</str<strong>on</strong>g> which avoids <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem in <strong>on</strong>e way or ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er:<br />

1) The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary c<strong>on</strong>straints <strong>on</strong> influenza drift: standard drift<br />

models assume influenza is free to mutate to escape host immunity. In practice,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere may be some functi<strong>on</strong>al cost associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese mutati<strong>on</strong>s, and <str<strong>on</strong>g>th</str<strong>on</strong>g>is can<br />

be incorporated into a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model. In c<strong>on</strong>trast to unc<strong>on</strong>strained drift<br />

models, <str<strong>on</strong>g>th</str<strong>on</strong>g>is system is bistable, exhibiting bo<str<strong>on</strong>g>th</str<strong>on</strong>g> drift-like patterns and single strain<br />

dynamics for <str<strong>on</strong>g>th</str<strong>on</strong>g>e same parameter values. This raises some important questi<strong>on</strong>s for<br />

vaccinati<strong>on</strong> strategies.<br />

2) Age-structure and immune history: al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough relatively simple assumpti<strong>on</strong>s<br />

about <str<strong>on</strong>g>th</str<strong>on</strong>g>e acquisiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> immunity capture well <str<strong>on</strong>g>th</str<strong>on</strong>g>e general dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza<br />

drift, recent outbreaks have highlighted <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sidering <str<strong>on</strong>g>th</str<strong>on</strong>g>e details<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> precisely how immunity is acquired by an individual over <str<strong>on</strong>g>th</str<strong>on</strong>g>eir lifetime. In<br />

particular, strains <str<strong>on</strong>g>th</str<strong>on</strong>g>at infect us when we are young may be disproporti<strong>on</strong>ately<br />

important (e.g. <str<strong>on</strong>g>th</str<strong>on</strong>g>rough original antigenic sin), and <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se may be<br />

weakened in <str<strong>on</strong>g>th</str<strong>on</strong>g>e elderly.<br />

547


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Wednesday, June 29, 17:00<br />

Michael Kücken<br />

Max-Planck-Institute for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Systems<br />

e-mail: kuecken@pks.mpg.de<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical stress and Merkel cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fingerprints<br />

In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e great importance <str<strong>on</strong>g>of</str<strong>on</strong>g> fingerpint patterns in forensics and biometrics<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere is still no generally accepted <str<strong>on</strong>g>th</str<strong>on</strong>g>eory how fingerprint patterns are formed in<br />

utero. Substantial evidence exists <str<strong>on</strong>g>th</str<strong>on</strong>g>at mechanical forces are decisive for determining<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ridges [1]. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er, it is well-supported <str<strong>on</strong>g>th</str<strong>on</strong>g>at a certain skin<br />

cell, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Merkel cell, is <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary pattern forming agent [2]. However, until now<br />

no c<strong>on</strong>necti<strong>on</strong> has been established between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese findings.<br />

In my talk I will present a model <str<strong>on</strong>g>th</str<strong>on</strong>g>at links stress distributi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing<br />

embry<strong>on</strong>al skin to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Merkel cell. This model is an agent-based model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Merkel cells as agents <str<strong>on</strong>g>th</str<strong>on</strong>g>at are interacting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. As an outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

model I will explain what factors in fingerprint formati<strong>on</strong> are genetically c<strong>on</strong>trolled<br />

and why indeed every fingerprint — even <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> identical twins — is unique.<br />

References.<br />

[1] M. Kücken and A.C. Newell, A model for fingerprint formati<strong>on</strong>, Europhys Lett, 68, 141–146<br />

[2] D.-K. Kim and K.A. Holbrook, The appearance, density and sistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Merkel cells in<br />

human embry<strong>on</strong>ic and fetal skin: <str<strong>on</strong>g>th</str<strong>on</strong>g>eir relati<strong>on</strong> to sweat gland and hair follicle development,<br />

J Invest Dermat, 104, 411–416<br />

548


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Peter Kühl<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Basle, Switzerland<br />

e-mail: Peter-W.Kuehl@unibas.ch<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Stochastic time-time interacti<strong>on</strong>s in biocatalytic and<br />

signalling systems<br />

This c<strong>on</strong>tributi<strong>on</strong> deals in general terms wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> time points<br />

(P’s, durati<strong>on</strong>less events) and time intervals (I’s, eventless or eventful durati<strong>on</strong>s).<br />

P’s are visualized as <str<strong>on</strong>g>th</str<strong>on</strong>g>e heads or feet <str<strong>on</strong>g>of</str<strong>on</strong>g> time arrows (hitting or leaving an I). I’s are<br />

represented as simple linear segments <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e time axis or as 1-dimensi<strong>on</strong>al parts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> more sophisticated geometries (time loops, composite time strings, time nets,<br />

zeitgestalten). The leng<str<strong>on</strong>g>th</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> I’s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e placements <str<strong>on</strong>g>of</str<strong>on</strong>g> P’s wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in I’s are assumed<br />

to be describable by probability distributi<strong>on</strong>s (possessing positive, negative or no<br />

memory). Physical carriers <str<strong>on</strong>g>of</str<strong>on</strong>g> I’s are macromolecules, metabol<strong>on</strong>s, "signal<strong>on</strong>s" or<br />

whole cells. Physical examples <str<strong>on</strong>g>of</str<strong>on</strong>g> P’s are ligand arrivals at (or departures from)<br />

specific sites <strong>on</strong> macromolecules and - at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular level - nerve pulse arrivals at<br />

synapses. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> P-I interacti<strong>on</strong>s we apply matrix-analytic<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods as used in Queueing Theory (cf. Kühl PW and Jobmann M (2006) J Rec<br />

Signal Transd 26, 1-34).<br />

Analogously to light-matter interacti<strong>on</strong>s, we distinguish <str<strong>on</strong>g>th</str<strong>on</strong>g>ree major ways how a<br />

P may interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an I: (i) reflecti<strong>on</strong>, (ii) absorpti<strong>on</strong> and (iii) emissi<strong>on</strong>. Depending<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> timing-sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macromolecular or (sub)cellular structures<br />

and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong>al shape <str<strong>on</strong>g>of</str<strong>on</strong>g> P’s and I’s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system<br />

may be optimal, suboptimal or pessimal. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e time patterns created<br />

by P’s and I’s may form - analogously to zeitgestalten in speech and music - a<br />

delicate mean <str<strong>on</strong>g>of</str<strong>on</strong>g> intra- and intercellular communicati<strong>on</strong> and informati<strong>on</strong> transfer.<br />

The above-described P-I interacti<strong>on</strong>s bel<strong>on</strong>g to <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> timing sensu latissimo,<br />

termed by us TIMETICS (Kühl PW (2007) FEBS J 274 (Suppl 1) 247);<br />

c<strong>on</strong>trary to kinetics, not rates but times and time patterns are <str<strong>on</strong>g>of</str<strong>on</strong>g> primary c<strong>on</strong>cern.<br />

TIMETICS (which also includes temporal logic and memory-based phenomena) is<br />

a vast field wi<str<strong>on</strong>g>th</str<strong>on</strong>g> applicati<strong>on</strong>s in biological as well as n<strong>on</strong>biological sciences.<br />

549


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell migrati<strong>on</strong> during development: modelling and experiment; Saturday,<br />

July 2, 08:30<br />

Paul Kulesa<br />

Stowers Institute for Medical Research<br />

e-mail: pmk@stowers.org<br />

Rebecca McLennan<br />

Stowers Institute for Medical Research<br />

e-mail: rem@stowers.org<br />

Louise Dys<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: louise.dys<strong>on</strong>@balliol.ox.ac.uk<br />

Kate Pra<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

Stowers Institute for Medical Research<br />

e-mail: kjp@stowers.org<br />

Ru<str<strong>on</strong>g>th</str<strong>on</strong>g> Baker<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: ru<str<strong>on</strong>g>th</str<strong>on</strong>g>.baker@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Philip Maini<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: maini@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Experimental analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> neural crest migrati<strong>on</strong> during<br />

development<br />

Experimental analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> neural crest migrati<strong>on</strong> during development Cell migrati<strong>on</strong><br />

and cell fate decisi<strong>on</strong>s are str<strong>on</strong>gly influenced by microenvir<strong>on</strong>mental signals<br />

during embry<strong>on</strong>ic development and cancer. Yet, it is largely unclear how cells receive<br />

and interpret microenvir<strong>on</strong>mental signals <str<strong>on</strong>g>th</str<strong>on</strong>g>at influence <str<strong>on</strong>g>th</str<strong>on</strong>g>eir fate and choice<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> directi<strong>on</strong>. To address <str<strong>on</strong>g>th</str<strong>on</strong>g>ese questi<strong>on</strong>s, we use <str<strong>on</strong>g>th</str<strong>on</strong>g>e neural crest (NC) as our model<br />

system. NC cells are a highly invasive, multipotent embry<strong>on</strong>ic cell populati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

are sculpted into discrete migratory streams and patterned into multiple derivatives<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ments cells travel <str<strong>on</strong>g>th</str<strong>on</strong>g>rough. We have developed an in vivo<br />

imaging platform in chick <str<strong>on</strong>g>th</str<strong>on</strong>g>at permits single cell resoluti<strong>on</strong> and behavior analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fluorescently labeled NC cells. By combining molecular interventi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> timelapse<br />

imaging, we have discovered a role for NC cell chemotaxis and how cells may<br />

resp<strong>on</strong>d to distinct microenvir<strong>on</strong>mental signals and navigate to precise locati<strong>on</strong>s.<br />

We will show recent tissue transplantati<strong>on</strong> and ablati<strong>on</strong> experiments <str<strong>on</strong>g>th</str<strong>on</strong>g>at alter <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NC cells al<strong>on</strong>g a migratory route and discuss how cells resp<strong>on</strong>d to local<br />

microenvir<strong>on</strong>mental signals. These data provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis for close collaborati<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modellers and <str<strong>on</strong>g>of</str<strong>on</strong>g>fer insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

embry<strong>on</strong>ic pattern formati<strong>on</strong>.<br />

550


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Toshikazu Kuniya<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

e-mail: tkuniya@ms.u-tokyo.ac.jp<br />

Epidemics; Thursday, June 30, 11:30<br />

Global stability analysis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a discretizati<strong>on</strong> approach for<br />

an age-structured SIR epidemic model<br />

The global stability analysis for each equilibrium <str<strong>on</strong>g>of</str<strong>on</strong>g> an age-structured SIR epidemic<br />

model is carried out. After discretizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>th</str<strong>on</strong>g>at is a system <str<strong>on</strong>g>of</str<strong>on</strong>g> PDE wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e age variable, we obtain a multigroup epidemic model <str<strong>on</strong>g>th</str<strong>on</strong>g>at is a system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ODE and can apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> Lyapunov, a recently developed<br />

graph-<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic approach and a m<strong>on</strong>ot<strong>on</strong>e iterative me<str<strong>on</strong>g>th</str<strong>on</strong>g>od in order to show <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

global asymptotic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease-free equilibrium for R0 ≤ 1, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

global attractivity <str<strong>on</strong>g>of</str<strong>on</strong>g> an endemic equilibrium for R0 > 1, where R0 is <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic<br />

reproducti<strong>on</strong> number. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough for <str<strong>on</strong>g>th</str<strong>on</strong>g>e original PDE model <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> local<br />

instability <str<strong>on</strong>g>of</str<strong>on</strong>g> an endemic equilibrium was shown even for R0 > 1, for <str<strong>on</strong>g>th</str<strong>on</strong>g>e discretized<br />

versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it we can obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e aforementi<strong>on</strong>ed global attractivity result, and <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic soluti<strong>on</strong>s might be ruled out from <str<strong>on</strong>g>th</str<strong>on</strong>g>e model,<br />

which has been discussed as an open questi<strong>on</strong> for more <str<strong>on</strong>g>th</str<strong>on</strong>g>an two decades. Numerical<br />

simulati<strong>on</strong> provides an example indicating <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

PDE and ODE systems become closer to each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er as <str<strong>on</strong>g>th</str<strong>on</strong>g>e step size <str<strong>on</strong>g>of</str<strong>on</strong>g> discretizati<strong>on</strong><br />

decreases.<br />

References.<br />

[1] S.N. Busenberg, M. Iannelli, H.R. Thieme, Global behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> an age-structured epidemic<br />

model SIAM J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Anal. 22 1065–1080.<br />

[2] H.R. Thieme, Stability change <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e endemic equilibrium in age-structured models for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

spread <str<strong>on</strong>g>of</str<strong>on</strong>g> S-I-R type infectious diseases in; S. Busenberg and M. Martelli (Eds.), Differential<br />

Equati<strong>on</strong>s Models in Biology, Epidemiology and Ecology, Springer-Verkag, Berlin, 1991, pp.<br />

139–158.<br />

551


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modelling bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms: from gene regulati<strong>on</strong> to large-scale structure and<br />

functi<strong>on</strong>; Wednesday, June 29, 17:00<br />

Christina Kuttler<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Technische Universität München, Boltzmannstraße<br />

3, 85747 Garching, Germany<br />

e-mail: kuttler@ma.tum.de<br />

Modelling approaches for Quorum sensing in Pseudom<strong>on</strong>as<br />

putida and its observati<strong>on</strong> in a bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm compartment<br />

More and more bacterial species are found to regulate gene expressi<strong>on</strong> via extracellular<br />

signals called autoinducers. By <str<strong>on</strong>g>th</str<strong>on</strong>g>at mechanism, usually called Quorum<br />

sensing (QS), <str<strong>on</strong>g>th</str<strong>on</strong>g>ey check for <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s as populati<strong>on</strong> density<br />

and diffusi<strong>on</strong> limitati<strong>on</strong>. Pseudom<strong>on</strong>as putida, a rhizosphere bacterium, has <strong>on</strong>e<br />

such QS regulati<strong>on</strong> system. Expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fluorescence protein (GFP) allows for<br />

direct m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> inducti<strong>on</strong> behaviour <strong>on</strong> single cell level, but uses as sec<strong>on</strong>d<br />

autoinducer receptor which perturbs <str<strong>on</strong>g>th</str<strong>on</strong>g>e original system to some extent. An ODE<br />

model allows to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>is perturbati<strong>on</strong> and helps to interpret <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed behaviour.<br />

In an experimental approach <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> upregulati<strong>on</strong> was observed under flow<br />

and n<strong>on</strong>-flow c<strong>on</strong>diti<strong>on</strong>s. A two compartment model was set up and fitted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

experimental data. By <str<strong>on</strong>g>th</str<strong>on</strong>g>at, several hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses could be checked, giving a clear<br />

hint <strong>on</strong> a growing layer which is not directly accessible by <str<strong>on</strong>g>th</str<strong>on</strong>g>e flow compartment,<br />

probably a bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm.<br />

A sec<strong>on</strong>d interesting topic c<strong>on</strong>cerns an QS-induced (delayed) producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

autoinducer-degrading enzyme. We introduce a delay differential system, analyse<br />

its behaviour and compare it to simpler models. Transferred to a spatial model<br />

(as part <str<strong>on</strong>g>of</str<strong>on</strong>g> a reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>) it allows to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecological c<strong>on</strong>sequences<br />

for single bacteria in a bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm.<br />

552


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Julia Kzhyshkowska<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Heidelberg<br />

e-mail: julia.kzhyshkowska@umm.de<br />

Immunology; Wednesday, June 29, 14:30<br />

Perspectives <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling for understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

intracellular signalling and vesicular trafficking in<br />

macrophages<br />

Perspectives <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling for understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular signalling<br />

and vesicular trafficking in macrophages<br />

Julia Kzhyshkowska, Anna Marciniak-Czochra, Alexei Gratchev University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Heidelberg, Germany.<br />

Macrophages are essential elements <str<strong>on</strong>g>of</str<strong>on</strong>g> immune system <str<strong>on</strong>g>th</str<strong>on</strong>g>at orchestrate activati<strong>on</strong><br />

and downregulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inflammatory reacti<strong>on</strong>s, tissue remodelling, healing<br />

processes and tissue homeostasis. Macrophages have to resp<strong>on</strong>d to complex signals<br />

specific for homeostatic or pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologic c<strong>on</strong>diti<strong>on</strong>s. To retain sufficient accuracy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> macrophages make use <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperative acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple extracellular<br />

factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at may amplify required activities and suppress undesired <strong>on</strong>es. This cooperativity<br />

is based <strong>on</strong> complex branching signalling networks coupled to positive<br />

and negative feedback loops; ligand uptake by scavenger receptors; intracellular<br />

sorting and multiple secretory pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. Deregulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperativity leads to<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ological situati<strong>on</strong>s such as chr<strong>on</strong>ic inflammati<strong>on</strong>, allergy, tumour initiati<strong>on</strong> and<br />

progressi<strong>on</strong>. The complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system makes it impossible to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> every particular molecular event using classical molecular biological me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> signalling and membrane trafficking pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways<br />

using frameworks <str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s will allow qualitative and quantitative<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophage behaviour in c<strong>on</strong>diti<strong>on</strong>s simulating physiological situati<strong>on</strong>.<br />

Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e model c<strong>on</strong>structi<strong>on</strong> requires large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative<br />

experimental data, <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods enables<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e elements critical for <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. Established models may<br />

be used to simulate behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophages under different c<strong>on</strong>diti<strong>on</strong>s and to<br />

predict <str<strong>on</strong>g>th</str<strong>on</strong>g>eir reacti<strong>on</strong>s in vivo. Identified critical elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system will facilitate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e isolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> predictive/diagnostic markers as well as potential <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic<br />

targets.<br />

553


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioengineering; Tuesday, June 28, 14:30<br />

Paweł Lachor<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: pawel.lachor@polsl.pl<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Puszyński<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>.puszynski@polsl.pl<br />

Andrzej Polański<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: andrzej.polanski@polsl.pl<br />

Accuracy indices for assessing performance <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Gillespie Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for stochastic molecular<br />

simulati<strong>on</strong>s<br />

Dynamics in populati<strong>on</strong> models at <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular level are comm<strong>on</strong>ly described using<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic approach based <strong>on</strong> systems <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled first-order ordinary<br />

differential equati<strong>on</strong>s (ODEs). Deterministic approach al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough fast in calculati<strong>on</strong><br />

is not always accurate for systems c<strong>on</strong>taining low-rate reacti<strong>on</strong>s particularly for<br />

species occurring in small quantities. To account for random fluctuati<strong>on</strong>s in numbers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> molecular species numerous variants <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic Gillespie Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m has<br />

been introduced. There are already several survey studies comparing and summarizing<br />

different approaches in stochastic modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular mechanisms. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese studies <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> modeling is addressed at <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> simplifying<br />

hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir verificati<strong>on</strong> [3], [4]. In our talk we critically discuss<br />

several possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> assessing accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> different strategies <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic molecular<br />

modeling. We also propose a new, direct and precise me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> comparing<br />

different stochastic modeling strategies based <strong>on</strong> comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> probability distributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observed time instants <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular events. By using our me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

we compare several variants <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic simulati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, direct, approximate<br />

and hybrid (numerical integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs and stochastic simulati<strong>on</strong>) [5], [6]. We<br />

grade accuracies <str<strong>on</strong>g>of</str<strong>on</strong>g> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> different algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> differences betweeen<br />

c<strong>on</strong>diti<strong>on</strong>al distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> times <str<strong>on</strong>g>of</str<strong>on</strong>g> sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular events. In comparis<strong>on</strong>s<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e basic versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gillespie algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m is c<strong>on</strong>sidered as an accurate<br />

<strong>on</strong>e, predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms are analyzed based <strong>on</strong> its comparis<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

basic versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gillespie Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m [1], [2]. Dedicated system written in C++<br />

is used as a computati<strong>on</strong>al platform for calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> models applying deferent approaches.<br />

Efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> system is also evaluated in comparis<strong>on</strong> to comm<strong>on</strong> soluti<strong>on</strong>s.<br />

Acknowledgment. This work was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Community from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Social Fund.<br />

Acknowledgment. This work was financially supported by The Fundati<strong>on</strong> for<br />

Polish Science.<br />

554<br />

References.


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] D. T. Gillespie, Exact stochastic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled chemical reacti<strong>on</strong>s The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Physical Chemistry 81 25.<br />

[2] D. T. Gillespie, Approximate accelerated stochastic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemically reacting systems<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Physics 115 4.<br />

[3] J. Pahle, Biochemical simulati<strong>on</strong>s: stochastic, approximate stochastic and hybrid approaches<br />

Briefings in Bioinformatics 10 53-64.<br />

[4] Mario Pineda-Krch, GillespieSSA: Implementing <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gillespie Stochastic Simulati<strong>on</strong> Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m<br />

in R Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistical S<str<strong>on</strong>g>of</str<strong>on</strong>g>tware 25 12.<br />

[5] E.L. Haseltine, J.B. Rawlings, Approximate simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled fast and slow reacti<strong>on</strong>s for<br />

stochastic chemical kinetics Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Physics 117 15.<br />

[6] K. Puszyński, R. Bertolusso, T. Lipniacki, Crosstalk between p53 and NF-kB systems: proand<br />

anti-apoptotic functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> NF-kB IET System Biology 3 5.<br />

555


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Semigroups <str<strong>on</strong>g>of</str<strong>on</strong>g> Operators in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology II; Saturday, July 2, 11:00<br />

Mirosław Lachowicz<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics<br />

and Mechanics, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics<br />

e-mail: lachowic@mimuw.edu.pl<br />

Some Markov Jump Processes in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology<br />

The general approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows to c<strong>on</strong>struct <str<strong>on</strong>g>th</str<strong>on</strong>g>e Markov processes describing<br />

various processes in ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biology (or in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er applied sciences) is presented.<br />

The Markov processes are <str<strong>on</strong>g>of</str<strong>on</strong>g> a jump type and <str<strong>on</strong>g>th</str<strong>on</strong>g>e starting point is <str<strong>on</strong>g>th</str<strong>on</strong>g>e related linear<br />

equati<strong>on</strong>s. They describe at <str<strong>on</strong>g>th</str<strong>on</strong>g>e micro–scale level <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a large number N<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interacting entities (particles, agents, cells, individuals,...). The large entity limit<br />

("N → ∞") is studied and <str<strong>on</strong>g>th</str<strong>on</strong>g>e intermediate level (<str<strong>on</strong>g>th</str<strong>on</strong>g>e meso–scale level) is given<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear kinetic–type equati<strong>on</strong>s. Finally <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding systems<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear ODEs (or PDEs) at <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic level (in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> densities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e interacting subpopulati<strong>on</strong>s) are obtained. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical relati<strong>on</strong>ships between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese <str<strong>on</strong>g>th</str<strong>on</strong>g>ree possible descripti<strong>on</strong>s are presented and explicit error estimates are given.<br />

The general framework is applied to propose <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic and mesoscopic models<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at corresp<strong>on</strong>d to well known systems <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear equati<strong>on</strong>s in bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics.<br />

556


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

IV; Wednesday, June 29, 08:30<br />

Mirosław Lachowicz<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics<br />

and Mechanics, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics<br />

e-mail: lachowic@mimuw.edu.pl<br />

Macroscopic limits <str<strong>on</strong>g>of</str<strong>on</strong>g> a model <str<strong>on</strong>g>of</str<strong>on</strong>g> alignment<br />

The macroscopic limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetic model for interacting entities are studied.<br />

The kinetic model is <strong>on</strong>e–dimensi<strong>on</strong>al and entities are characterized by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir positi<strong>on</strong><br />

and orientati<strong>on</strong> (+/-) wi<str<strong>on</strong>g>th</str<strong>on</strong>g> swarming interacti<strong>on</strong> c<strong>on</strong>trolled by <str<strong>on</strong>g>th</str<strong>on</strong>g>e sensitivity<br />

parameter. The macroscopic limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model are c<strong>on</strong>sidered for soluti<strong>on</strong>s close<br />

ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er to <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusive (isotropic) or to <str<strong>on</strong>g>th</str<strong>on</strong>g>e aligned (swarming) equilibrium states<br />

for various sensitivity parameters. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e former case <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical linear diffusi<strong>on</strong><br />

equati<strong>on</strong> results whereas in <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter a traveling wave soluti<strong>on</strong> does bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

zero<str<strong>on</strong>g>th</str<strong>on</strong>g> ("Euler") and first ("Navier–Stokes") order <str<strong>on</strong>g>of</str<strong>on</strong>g> approximati<strong>on</strong>.<br />

557


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Tuesday, June 28, 17:00<br />

Tanny Lai<br />

Biophysics Team, Fluid Dynamics, A*STAR Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> High Performance<br />

Computing<br />

e-mail: laitl@ihpc.a-star.edu.sg<br />

Yukai Zeng<br />

Mechanical Engineering, Carnegie Mell<strong>on</strong> University<br />

Philip R. LeDuc<br />

Mechanical Engineering, Carnegie Mell<strong>on</strong> University<br />

K.-H. Chiam<br />

Biophysics Team, Fluid Dynamics, A*STAR Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> High Performance<br />

Computing<br />

Combined experimental and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

circular dorsal ruffles<br />

Circular dorsal ruffles (CDRs) are transient actin-based structures <str<strong>on</strong>g>th</str<strong>on</strong>g>at are observed<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dorsal plasma membrane up<strong>on</strong> stimulati<strong>on</strong> by receptor-tyrosine-kinase<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e platelet-derived grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor (PDGF). While <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CDRs has not been elucidated, it has been suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are involved<br />

in cell migrati<strong>on</strong> and macropinocytosis. Here, we combine experiments wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

modeling to attempt to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CDRs. Experimentally,<br />

we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> CDRs can be modified by varying <str<strong>on</strong>g>th</str<strong>on</strong>g>e substrate stiffness,<br />

whereas <str<strong>on</strong>g>th</str<strong>on</strong>g>eir sizes are independent <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate stiffness. To understand <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

results, we c<strong>on</strong>struct a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways <str<strong>on</strong>g>th</str<strong>on</strong>g>at regulate<br />

CDRs. By coupling such reacti<strong>on</strong>s to protein diffusi<strong>on</strong>, we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at our reacti<strong>on</strong>diffusi<strong>on</strong><br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s can reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e ring-like structure <str<strong>on</strong>g>of</str<strong>on</strong>g> CDRs, and<br />

how substrate stiffness modifies <str<strong>on</strong>g>th</str<strong>on</strong>g>eir lifetime via <str<strong>on</strong>g>th</str<strong>on</strong>g>e focal adhesi<strong>on</strong> kinase (FAK).<br />

We also show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e low diffusi<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane bound proteins relative<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e high diffusi<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> cytosolic proteins is key to <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CDRs. Finally, we reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to a coupled two-species model involving<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e proteins Rac (which has been shown to result in <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> actin filaments)<br />

and Rho (which has been shown to be involved in cell-substrate adhesi<strong>on</strong>),<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir antag<strong>on</strong>ism, and was able to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CDRs as an<br />

excitable system. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is reduced model, we study <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>is excitability<br />

to occur, and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore make predicti<strong>on</strong>s <strong>on</strong> when and where CDRs will<br />

appear.<br />

558


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Christoph Landsberg<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific Computing, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Natural<br />

Sciences, Technische Universität Dresden, Germany<br />

e-mail: Christoph.Landsberg@tu-dresden.de<br />

Sascha Heinemann<br />

Thomas Hanke<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering,<br />

Technische Universität Dresden, Germany<br />

Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoblast-m<strong>on</strong>ocyte cocultures<br />

<strong>on</strong> calcium-modulating biomaterials<br />

We adapt and extend an existing model <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e remodeling [1] and simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoblast-m<strong>on</strong>ocyte coculture <strong>on</strong> two different types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

calcium-modulating biomaterials [2],[3], covered by m<strong>on</strong>olayers <str<strong>on</strong>g>of</str<strong>on</strong>g> hMSC-derived<br />

osteoblasts. From experimental findings it is known <str<strong>on</strong>g>th</str<strong>on</strong>g>at up<strong>on</strong> increased extracellular<br />

calcium c<strong>on</strong>centrati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e activity <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e forming cells is greatly enhanced,<br />

while b<strong>on</strong>e resorpti<strong>on</strong> is reduced significantly [4], [5]. We include <str<strong>on</strong>g>th</str<strong>on</strong>g>ese observati<strong>on</strong>s<br />

by inserting a for<str<strong>on</strong>g>th</str<strong>on</strong>g> state variable and resp<strong>on</strong>se functi<strong>on</strong>s into <str<strong>on</strong>g>th</str<strong>on</strong>g>e original model, describing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular calcium c<strong>on</strong>centrati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium sorpti<strong>on</strong><br />

to or from <str<strong>on</strong>g>th</str<strong>on</strong>g>e biomaterial, respectively. Starting from different initial c<strong>on</strong>diti<strong>on</strong>s,<br />

we simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> active osteoblasts and m<strong>on</strong>ocytes, reacting<br />

to different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> extracellular calcium and different sorpti<strong>on</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

underlying scaffolds. As a result, we identify interesting parameter regimes for inducing<br />

transient changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e osteoblast/osteoclast ratio, indicating possible new<br />

approaches for tissue engineering applicati<strong>on</strong>s, e.g. in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e healing<br />

approaches for systemically diseased patients. In <strong>on</strong>going experiments, we develop<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to compare our results to bo<str<strong>on</strong>g>th</str<strong>on</strong>g> m<strong>on</strong>oculture and coculture experiments <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

osteoblasts and m<strong>on</strong>ocytes [6] <strong>on</strong> different resorbable biomaterials [2],[3] in vitro.<br />

References.<br />

[1] Vincent Lemaire et al. (2004), Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s between osteoblast and osteoclast<br />

activities in b<strong>on</strong>e remodeling, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology, 229 (3), pp. 293-309.<br />

[2] Sascha Heinemann et al. (2007), A Novel Biomimetic Hybrid Material Made <str<strong>on</strong>g>of</str<strong>on</strong>g> Silicified Collagen:<br />

Perspectives for B<strong>on</strong>e Replacement, Advanced Engineering Materials, 9 (12), pp. 1061-<br />

1068.<br />

[3] Michael Gelinsky et al. (2008), Porous <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al scaffolds made <str<strong>on</strong>g>of</str<strong>on</strong>g> mineralised collagen:<br />

Preparati<strong>on</strong> and properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a biomimetic nanocomposite material for tissue engineering<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e, Chemical Engineering Journal, 137 (1), pp. 84-96.<br />

[4] Yoichi Shirai et al. (1999), Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> extracellular calcium c<strong>on</strong>centrati<strong>on</strong>s <strong>on</strong> osteoclast differentiati<strong>on</strong><br />

in vitro, Biochemical and Biophysical Research Communicati<strong>on</strong>s, 265, 2, pp. 484-488.<br />

[5] Melita M. Dvorak et al. (2004), Physiological changes in extracellular calcium c<strong>on</strong>centrati<strong>on</strong><br />

directly c<strong>on</strong>trol osteoblast functi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> calciotropic horm<strong>on</strong>es, Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e United States <str<strong>on</strong>g>of</str<strong>on</strong>g> America, 2004, 101 (14), pp. 5140-5145.<br />

[6] Christiane Heinemann et al. (2011), Development <str<strong>on</strong>g>of</str<strong>on</strong>g> an osteoblast/osteoclast co-culture derived<br />

by human b<strong>on</strong>e marrow stromal cells and human m<strong>on</strong>ocytes for biomaterials testing, <str<strong>on</strong>g>European</str<strong>on</strong>g><br />

Cells and Materials, 21, pp. 80-93.<br />

559


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models in Eco-epidemiology II; Wednesday, June 29, 11:00<br />

Michel Langlais<br />

Universite Bordeaux Segalen<br />

e-mail: michel.langlais@u-bordeaux2.fr<br />

E. Gillot-From<strong>on</strong>t<br />

VetAgro Sup, Campus Vétérinaire de Ly<strong>on</strong>, Ly<strong>on</strong> (France)<br />

M. Lélu<br />

VetAgro Sup, Campus Vétérinaire de Ly<strong>on</strong>, Ly<strong>on</strong> (France)<br />

Prey abundance, fragmented spatial structures and predator<br />

persistence in a predator-prey ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we develop a complex fragmented spatial model in which bo<str<strong>on</strong>g>th</str<strong>on</strong>g> dispersing<br />

well-fed and starving domestic cat populati<strong>on</strong>s are sharing a comm<strong>on</strong> multi-patch<br />

range occupied by n<strong>on</strong> dispersing prey. The overall dynamic is ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er intricate<br />

to decipher for Lotka-Volterra functi<strong>on</strong>al resp<strong>on</strong>ses to predati<strong>on</strong>. It becomes even<br />

quite complex when Holling type II functi<strong>on</strong>al resp<strong>on</strong>ses to predati<strong>on</strong> are c<strong>on</strong>sidered.<br />

Assuming dispersal occurs at a fast time scale while reproducti<strong>on</strong> and predati<strong>on</strong><br />

are much slower processes it is possible to transform our complex model into a<br />

simpler <strong>on</strong>e for which some (local) stability analysis is feasible. A toy model c<strong>on</strong>sists<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a spatial range made <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree patches wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two resident predators in <str<strong>on</strong>g>th</str<strong>on</strong>g>e first<br />

two patches, <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er a well-fed or a starving resident predator, and no<br />

predator at all in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ird <strong>on</strong>e, predators traveling all over <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial range. For<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree resulting toy models more (local) stability analysis results are available<br />

and illustrated by numerical simulati<strong>on</strong>s.<br />

560


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Petr Lansky<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology, Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Czech Republic<br />

e-mail: lansky@biomed.cas.cz<br />

Zbynek Pawlas<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Physics, Charles University<br />

Multiple neur<strong>on</strong>al spike trains observed in a short-time<br />

window<br />

Informati<strong>on</strong> obtained in experiments in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e spikes are recorded, usually from<br />

a single neur<strong>on</strong> or from quite limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em, is fundamentally different<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>at which a neur<strong>on</strong> receives from <str<strong>on</strong>g>th</str<strong>on</strong>g>e network <str<strong>on</strong>g>of</str<strong>on</strong>g> interc<strong>on</strong>nected neur<strong>on</strong>s. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e experiments, a spike train is recorded for a relatively l<strong>on</strong>g period <str<strong>on</strong>g>of</str<strong>on</strong>g> time and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing are deduced. If <str<strong>on</strong>g>th</str<strong>on</strong>g>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigated firing is<br />

transient, like in <str<strong>on</strong>g>th</str<strong>on</strong>g>e stimulated activity, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e extensive leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e record is<br />

replaced by repetiti<strong>on</strong>s assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese are identical and independent copies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same phenomen<strong>on</strong>. In natural c<strong>on</strong>diti<strong>on</strong>s, neur<strong>on</strong> receives a large number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spike trains, up to several <str<strong>on</strong>g>th</str<strong>on</strong>g>ousands, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> has to be deduced in<br />

short-time intervals. This creates a discrepancy between what can be read from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

experiments and how real neur<strong>on</strong>s perform. To estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing frequency in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

parallel neur<strong>on</strong>al data is ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er simple task even if <str<strong>on</strong>g>th</str<strong>on</strong>g>e time window available for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong> is very short. In paper 1 we showed how to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interspike intervals under <str<strong>on</strong>g>th</str<strong>on</strong>g>e scenario wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e short-time window.<br />

Several n<strong>on</strong>parametric me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cumulative distributi<strong>on</strong> functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interspike intervals under <str<strong>on</strong>g>th</str<strong>on</strong>g>e same restricti<strong>on</strong> posed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong><br />

appear in our recent paper 2. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e present c<strong>on</strong>tributi<strong>on</strong> is summarize<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e results and to show furter development in studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem.<br />

References.<br />

[1] Pawlas Z., Klebanov L.B., Prokop M., Lansky P. (2008) Parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> spike trains observed<br />

in a short time window. Neural Computati<strong>on</strong>, 20 1325-1343.<br />

[2] Pawlas Z., Lansky P. (2011) Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interspike intervals estimated from multiple spike<br />

trains observed in a short time window. Physical Review E, 83 Art. No. 011910.<br />

561


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

A. Lapin, M. Reuss<br />

Center Systems Biology, University Stuttgart, Germany<br />

e-mail: lapin@ibvt.uni-stuttgart.de<br />

Stirred Bioreactor Heating: Temperature Experience <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

Single Organism<br />

Rapid heating <str<strong>on</strong>g>of</str<strong>on</strong>g> bioreactors is extensively used for <str<strong>on</strong>g>th</str<strong>on</strong>g>e producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinant<br />

proteins. Such temperature-induced expressi<strong>on</strong> systems show high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinant<br />

protein producti<strong>on</strong>s and present important and c<strong>on</strong>venient features for<br />

bioprocessing. The heating <str<strong>on</strong>g>of</str<strong>on</strong>g> a lab-scale stirred bioreactor is investigated, based<br />

<strong>on</strong> a two layer turbulence model. The wall temperature is assumed to be about 80<br />

degree Centigrade.<br />

We observed <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> a narrow high temperature layer near <str<strong>on</strong>g>th</str<strong>on</strong>g>e bioreactor<br />

wall. Bioorganisms entering <str<strong>on</strong>g>th</str<strong>on</strong>g>e viscous hot layer usually stay <str<strong>on</strong>g>th</str<strong>on</strong>g>ere for a<br />

l<strong>on</strong>g time and <str<strong>on</strong>g>th</str<strong>on</strong>g>is typically induces <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eir dea<str<strong>on</strong>g>th</str<strong>on</strong>g>. The simulati<strong>on</strong> results show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at a c<strong>on</strong>siderable part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microorganism populati<strong>on</strong> is endangered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e high<br />

temperature near <str<strong>on</strong>g>th</str<strong>on</strong>g>e bioreactor wall.<br />

562


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Anastasia Lavrova<br />

Physics Institute, Humboldt University at Berlin<br />

e-mail: aurebours@googlemail.com<br />

L. Schimansky-Geier<br />

Physics Institute, Humboldt University at Berlin<br />

Neurosciences; Thursday, June 30, 11:30<br />

Dynamical switching between network states in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

hippocampal circuit<br />

It is known <str<strong>on</strong>g>th</str<strong>on</strong>g>at hippocampus is a structure required for processes <str<strong>on</strong>g>of</str<strong>on</strong>g> learning and<br />

memory [1]. Gloveli et al. [2] reported <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong> network <str<strong>on</strong>g>of</str<strong>on</strong>g> CA3<br />

regi<strong>on</strong> exhibits some types <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong>s, so called gamma (30-80 Hz) and <str<strong>on</strong>g>th</str<strong>on</strong>g>eta(4-<br />

12 Hz) rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. These oscillati<strong>on</strong>s are resp<strong>on</strong>sible for informati<strong>on</strong> transmissi<strong>on</strong>,<br />

storage, and spatial encoding [3]. Also, it have been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at gamma and <str<strong>on</strong>g>th</str<strong>on</strong>g>eta<br />

rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms are generated by different types <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in CA3 regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hippocampus.<br />

We have c<strong>on</strong>sidered a minimal network scheme, which describes c<strong>on</strong>necti<strong>on</strong>s<br />

between different types <str<strong>on</strong>g>of</str<strong>on</strong>g> cells. We have developed model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is scheme<br />

which reproduces important physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> all cells<br />

types: <str<strong>on</strong>g>th</str<strong>on</strong>g>e period, amplitude and phase shift. The model allows us to analyze<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> synaptic streng<str<strong>on</strong>g>th</str<strong>on</strong>g>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network synchr<strong>on</strong>izati<strong>on</strong> and dynamical<br />

switching between <str<strong>on</strong>g>th</str<strong>on</strong>g>eta, gamma, and bursting regimes. In particular, we perform a<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>orough bifurcati<strong>on</strong> analysis and identify parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> synaptic c<strong>on</strong>necti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

can efficiently induce switches in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network activity.<br />

References.<br />

[1] O’Keefe J.and Recce ML., Hippocampus, bf3 317-30, (1993)<br />

[2] Gloveli T., Dugladze T.,Rotstein H.,Traub R., M<strong>on</strong>yer H., Heinemann U., Whittingt<strong>on</strong> M.,<br />

Kopell N., PNAS, bf102 13295-300, (2005)<br />

[3] Harris KD, Csicsvari J., Hirase H., Dragoi G., Buzsaki G., Nature, bf424 552-56, (2003)<br />

[4] Tort A., Rotstein H., Dugladze T., Gloveli T., Kopell N., PNAS, bf104 13490-95, (2007)<br />

563


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>luids, Solute Transport, and Hemodynamics; Wednesday, June 29, 11:00<br />

Anita Layt<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Duke University<br />

e-mail: alayt<strong>on</strong>@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.duke.edu<br />

Myogenic Resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Afferent Arteriole<br />

We have formulated a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rat afferent arteriole (AA). Our<br />

model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a series <str<strong>on</strong>g>of</str<strong>on</strong>g> arteriolar smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> muscle cells, each <str<strong>on</strong>g>of</str<strong>on</strong>g> which represents<br />

i<strong>on</strong> transport, cell membrane potential, cellular c<strong>on</strong>tracti<strong>on</strong>, gap juncti<strong>on</strong> coupling,<br />

and wall mechanics. Blood flow <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e AA lumen is described by Poiseuille<br />

flow. Model results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at interacting calcium and potassium fluxes, mediated<br />

by voltage-gated and voltage-calcium-gated channels, respectively, give rise<br />

to periodic oscillati<strong>on</strong>s in cytoplasmic calcium c<strong>on</strong>centrati<strong>on</strong>, myosin light chain<br />

phosphorylati<strong>on</strong>, and crossbridge formati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> attending muscle stress mediating<br />

vasomoti<strong>on</strong>. The AA model’s representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e myogenic resp<strong>on</strong>se is based<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e voltage dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium channel openings resp<strong>on</strong>ds<br />

to transmural pressure so <str<strong>on</strong>g>th</str<strong>on</strong>g>at vessel diameter decreases wi<str<strong>on</strong>g>th</str<strong>on</strong>g> increasing<br />

pressure. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>figurati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e AA model simulati<strong>on</strong>s agree<br />

well wi<str<strong>on</strong>g>th</str<strong>on</strong>g> findings in <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental literature, notably <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> Steinhausen et<br />

al. (J Physiol 505:493, 1997), which indicated <str<strong>on</strong>g>th</str<strong>on</strong>g>at propagated vasoc<strong>on</strong>strictive resp<strong>on</strong>se<br />

induced by local electrical stimulati<strong>on</strong> decayed more rapidly in <str<strong>on</strong>g>th</str<strong>on</strong>g>e upstream<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>an in <str<strong>on</strong>g>th</str<strong>on</strong>g>e downstream flow directi<strong>on</strong>. The model can be incorporated into models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> integrated renal hemodynamic regulati<strong>on</strong>. This research was supported in part<br />

by NIH grants DK-42091 and DK-89066, and by NSF grant DMS-0715021.<br />

564


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>luids, Solute Transport, and Hemodynamics; Wednesday, June 29, 11:00<br />

Harold E. Layt<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Duke University, Durham, NC 27708-0320,<br />

USA<br />

e-mail: layt<strong>on</strong>@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.duke.edu<br />

Anita T. Layt<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Duke University, Durham, NC 27708-0320,<br />

USA<br />

e-mail: alayt<strong>on</strong>@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.duke.edu<br />

Countercurrent Multiplicati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kidney: Is it Real?<br />

A fundamental functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mammalian kidney, when blood plasma osmolality<br />

is too high, is to produce a urine <str<strong>on</strong>g>th</str<strong>on</strong>g>at is more c<strong>on</strong>centrated <str<strong>on</strong>g>th</str<strong>on</strong>g>an blood plasma<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>ereby reduce blood plasma osmolality to a normal level. Urine is c<strong>on</strong>centrated<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e renal medulla by means <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>centrati<strong>on</strong> gradient <str<strong>on</strong>g>th</str<strong>on</strong>g>at promotes<br />

osmotic water wi<str<strong>on</strong>g>th</str<strong>on</strong>g>drawal from <str<strong>on</strong>g>th</str<strong>on</strong>g>e kidney’s collecting ducts. It has become widely<br />

accepted <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e osmolality gradient al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e cortico-medullary axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mammalian<br />

outer medulla is generated and sustained by a process <str<strong>on</strong>g>of</str<strong>on</strong>g> countercurrent<br />

multiplicati<strong>on</strong>: active NaCl absorpti<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>ick ascending limbs is coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a counter-flow c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e descending and ascending limbs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e loops <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Henle to generate <str<strong>on</strong>g>th</str<strong>on</strong>g>e axial gradient. However, aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> anatomic structure (e.g.,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e physical separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e descending limbs <str<strong>on</strong>g>of</str<strong>on</strong>g> short loops <str<strong>on</strong>g>of</str<strong>on</strong>g> Henle from c<strong>on</strong>tiguous<br />

ascending limbs), recent physiologic experiments (e.g., <str<strong>on</strong>g>th</str<strong>on</strong>g>ose which suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>in descending limbs <str<strong>on</strong>g>of</str<strong>on</strong>g> short loops <str<strong>on</strong>g>of</str<strong>on</strong>g> Henle have a low water permeability),<br />

and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling studies (e.g., <str<strong>on</strong>g>th</str<strong>on</strong>g>ose which predict <str<strong>on</strong>g>th</str<strong>on</strong>g>at water-permeable<br />

descending limbs <str<strong>on</strong>g>of</str<strong>on</strong>g> short loops are not required for <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an axial osmolality<br />

gradient) suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at countercurrent multiplicati<strong>on</strong> may be an incomplete,<br />

or perhaps even err<strong>on</strong>eous, explanati<strong>on</strong>. We propose an alternative explanati<strong>on</strong> for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e axial osmolality gradient: we regard <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ick limbs as NaCl sources for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

surrounding interstitium, and we hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esize <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e increasing axial osmolality<br />

gradient al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e outer medulla is primarily sustained by an increasing ratio, as a<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> medullary dep<str<strong>on</strong>g>th</str<strong>on</strong>g>, <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCl absorpti<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>ick ascending limbs to water<br />

absorpti<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>in descending limbs <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g loops <str<strong>on</strong>g>of</str<strong>on</strong>g> Henle and from collecting<br />

ducts.<br />

565


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

II; Tuesday, June 28, 14:30<br />

Urszula Ledzewicz<br />

Sou<str<strong>on</strong>g>th</str<strong>on</strong>g>ern Illinois University Edwardsville<br />

e-mail: uledzew@siue.edu<br />

Heinz Schaettler<br />

Washingt<strong>on</strong> University<br />

Optimal protocols for chemo- and immuno<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in a<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor-immune interacti<strong>on</strong>s<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, a classical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s between tumor and <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune<br />

system under treatment is c<strong>on</strong>sidered as an optimal c<strong>on</strong>trol problem wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple<br />

c<strong>on</strong>trols representing acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cytotoxic drugs as well as <str<strong>on</strong>g>of</str<strong>on</strong>g> agents <str<strong>on</strong>g>th</str<strong>on</strong>g>at give a boost<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune system. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e objective, a weighted average <str<strong>on</strong>g>of</str<strong>on</strong>g> several quantities<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment is minimized. These terms include (i)<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells at <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal time, (ii) a measure for <str<strong>on</strong>g>th</str<strong>on</strong>g>e immunocompetent<br />

cell densities at <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal point (included as a negative term), (iii) a<br />

measure for <str<strong>on</strong>g>th</str<strong>on</strong>g>e side effects and cost <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment in form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agents given and (iv) a small penalty <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal time <str<strong>on</strong>g>th</str<strong>on</strong>g>at limits <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy horiz<strong>on</strong> which is assumed to be free. This last term is essential in obtaining<br />

a well-posed problem formulati<strong>on</strong>. The form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e objective is motivated by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out treatment and models <str<strong>on</strong>g>th</str<strong>on</strong>g>e goal to move <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system from a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> malignant cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> into a benign regi<strong>on</strong>.<br />

Employing a Gompertzian grow<str<strong>on</strong>g>th</str<strong>on</strong>g> model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells, for various scenarios<br />

optimal c<strong>on</strong>trols and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir corresp<strong>on</strong>ding system resp<strong>on</strong>ses are calculated. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cases <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>o- and combinati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies will be c<strong>on</strong>sidered.<br />

566


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Chang Hye<strong>on</strong>g Lee<br />

Ulsan Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology(UNIST), Ulsan,<br />

Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Korea<br />

e-mail: chlee@unist.ac.kr<br />

Recent Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for Computati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Reacti<strong>on</strong> Networks<br />

We c<strong>on</strong>sider reacti<strong>on</strong> networks where many biological or biochemical species<br />

interact <str<strong>on</strong>g>th</str<strong>on</strong>g>rough various reacti<strong>on</strong> channels. We introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e background for analysis<br />

and computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> networks and we present recent results <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> networks. We also show<br />

numerical results obtained by simulating some motivating biological models.<br />

References.<br />

[1] Chang Hye<strong>on</strong>g Lee and Hans G. O<str<strong>on</strong>g>th</str<strong>on</strong>g>mer, A multi-time-scale analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical reacti<strong>on</strong><br />

networks: I. Deterministic systems, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, Volume 60, 387-450<br />

(2010)<br />

[2] Chang Hye<strong>on</strong>g Lee and Roger Lui, A reducti<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for multiple time scale stochastic<br />

reacti<strong>on</strong> networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>-unique equilibrium probability,Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Chemistry<br />

Vol 47, 750-770(2010)<br />

[3] Chang Hye<strong>on</strong>g Lee, Kye<strong>on</strong>g-Hun Kim and Pilw<strong>on</strong> Kim, A moment closure me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for stochastic<br />

reacti<strong>on</strong> networks”, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Physics, vol 130, issue 13, 134107 (2009)<br />

[4] Chang Hye<strong>on</strong>g Lee and Roger Lui, “A reducti<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for multiple time scale stochastic<br />

reacti<strong>on</strong> networks”, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Chemistry Vol 46, 1292-1321(2009)<br />

567


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Junggul Lee<br />

K<strong>on</strong>kuk University<br />

e-mail: jack9872@k<strong>on</strong>kuk.ac.kr<br />

Eunok Jung<br />

K<strong>on</strong>kuk University<br />

e-mail: junge@k<strong>on</strong>kuk.ac.kr<br />

Do-Wan Kim<br />

Inha University<br />

e-mail: dokim@inha.ac.kr<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

An Open Tank System <str<strong>on</strong>g>of</str<strong>on</strong>g> Valveless Pumping<br />

We present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> flows driven by periodic pumping wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out<br />

valves (valveless pumping) in an open tank system. The model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a cylindrical<br />

elastic closed tube wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two open tanks under gravity. The two dimensi<strong>on</strong>al<br />

elastic tube is c<strong>on</strong>structed based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immersed boundary me<str<strong>on</strong>g>th</str<strong>on</strong>g>od and <str<strong>on</strong>g>th</str<strong>on</strong>g>e tank<br />

model is governed by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e law<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> energy. We have observed <str<strong>on</strong>g>th</str<strong>on</strong>g>e difference <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid heights in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

tanks by <str<strong>on</strong>g>th</str<strong>on</strong>g>e periodic compress-and-release acti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at is applied to an asymmetric<br />

regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e elastic tube. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e previous research <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e open systems <str<strong>on</strong>g>of</str<strong>on</strong>g> valveless<br />

pumping, we have also observed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong> and magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> a net flow in<br />

our open tank system are determined sensitively by <str<strong>on</strong>g>th</str<strong>on</strong>g>e driving frequency and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

compressi<strong>on</strong> durati<strong>on</strong>. We are able to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> local maximum<br />

or minimum mean flows (difference <str<strong>on</strong>g>of</str<strong>on</strong>g> tank heights) due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e res<strong>on</strong>ances <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

system.<br />

References.<br />

[1] Y. Kim, W. Lee, and E. Jung, An immersed boundary heart model coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a multicompartment<br />

lumped model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e circulatory system SIAM J. Sci. Comput. 32 1809–1831.<br />

[2] C. S. Peskin and B. F. Printz Improved volume c<strong>on</strong>servati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flows wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

immersed elastic boundaries J. Comput. Phys. 105 33–46.<br />

[3] E. Jung and C.S. Peskin Two-dimensi<strong>on</strong>al simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> valveless pumping using <str<strong>on</strong>g>th</str<strong>on</strong>g>e immersed<br />

boundary me<str<strong>on</strong>g>th</str<strong>on</strong>g>od SIAM J. Sci. Comput. 23 19-–45.<br />

[4] K. M. Ar<str<strong>on</strong>g>th</str<strong>on</strong>g>urs, L. C. Moore, C. S. Peskin, E. B. Pitman and H. E. Layt<strong>on</strong> Modeling arteriolar<br />

flow and mass transport using <str<strong>on</strong>g>th</str<strong>on</strong>g>e immersed boundary me<str<strong>on</strong>g>th</str<strong>on</strong>g>od J. Comput. Phys. 147 402–440.<br />

[5] R. P. Beyer A computati<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cochlea using <str<strong>on</strong>g>th</str<strong>on</strong>g>e immersed boundary me<str<strong>on</strong>g>th</str<strong>on</strong>g>od J.<br />

Comput. Phys. 98 145—162.<br />

[6] D. M. McQueen, C. S. Peskin, and E. L. Yellin Fluid dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mitral valve: Physiological<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model Amer. J. Physiol. 242 H1095—H1110.<br />

[7] G. Liebau Die Bedeutung der Tragheitskrafte für die Dynamik des Blutkreislaufs Zs. Kreislaufforschung<br />

46 428—438.<br />

[8] J. S. Hansen and J. T. Ottesen Molecular dynamics simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillatory flows in micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luidic<br />

channels Micr<str<strong>on</strong>g>of</str<strong>on</strong>g>luid. Nan<str<strong>on</strong>g>of</str<strong>on</strong>g>luid. 2 301-–307.<br />

568


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Nam-Kyung Lee<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Sej<strong>on</strong>g University<br />

e-mail: lee@sej<strong>on</strong>g.ac.kr<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Relaxati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> End-Grafted DNA Chains<br />

By spreading fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> a bioadhesive vesicle over stained end-grafted DNA molecules,<br />

DNA molecules are stapled into frozen c<strong>on</strong>finement pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>formati<strong>on</strong>al<br />

relaxati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> topologically trapped chain is very slow, it has been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

stapled DNA gives access to <str<strong>on</strong>g>th</str<strong>on</strong>g>e local stretching values <str<strong>on</strong>g>of</str<strong>on</strong>g> individual DNA molecules<br />

and provides evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> self-entanglements. By means <str<strong>on</strong>g>of</str<strong>on</strong>g> two dimensi<strong>on</strong>al computer<br />

simulati<strong>on</strong>s and scaling arguments, we study <str<strong>on</strong>g>th</str<strong>on</strong>g>e relaxati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single grafted<br />

semiflexible chains freely rotating around <str<strong>on</strong>g>th</str<strong>on</strong>g>e grafting point. We provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e autocorrelati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e end-to-end vector for <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole chain and for terminal secti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> various leng<str<strong>on</strong>g>th</str<strong>on</strong>g>s.<br />

569


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Turing !! Turing?? <strong>on</strong> morphogenesis via experimental and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

approaches; Wednesday, June 29, 17:00<br />

S. Seirin Lee<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo, Japan<br />

e-mail: seirin.lee@gmail.com; seirin@ms.u-tokyo.ac.jp<br />

Gene Expressi<strong>on</strong> Time Delays and Turing Pattern Formati<strong>on</strong><br />

There are numerous examples <str<strong>on</strong>g>of</str<strong>on</strong>g> morphogen gradients c<strong>on</strong>trolling l<strong>on</strong>g range<br />

signalling in developmental and cellular systems. The prospect <str<strong>on</strong>g>of</str<strong>on</strong>g> two such interacting<br />

morphogens instigating l<strong>on</strong>g range self-organisati<strong>on</strong> in biological systems via<br />

a Turing bifurcati<strong>on</strong> has been explored, postulated or implicated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

numerous developmental processes. However, modelling investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular<br />

systems typically neglect <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> <strong>on</strong> such dynamics, even<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ough transcripti<strong>on</strong> and translati<strong>on</strong> are observed to be important in morphogenetic<br />

systems.<br />

The investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our study dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing models<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly changes <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> dynamics and is sensitive<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e sub-cellular details <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong>. These results also indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing pattern formati<strong>on</strong> systems <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong><br />

time delays may provide a means <str<strong>on</strong>g>of</str<strong>on</strong>g> distinguishing between possible forms <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong><br />

kinetics, and also emphasises <str<strong>on</strong>g>th</str<strong>on</strong>g>at sub-cellular and gene expressi<strong>on</strong> dynamics<br />

should not be simply neglected in models <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g range biological pattern formati<strong>on</strong><br />

via morphogens. We present results mainly for Gierer-Meinhardt systems but our<br />

results are observed more universally in many Turing pattern formati<strong>on</strong> systems.<br />

Exploring <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese systems suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic Turing mechanism<br />

should be rec<strong>on</strong>sidered or would generally require a novel and extensive sec<strong>on</strong>dary<br />

mechanism to c<strong>on</strong>trol reacti<strong>on</strong> diffusi<strong>on</strong> patterning.<br />

*This work has already been extended in several papers. The works have been<br />

collaborated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> E.A. Gaffney (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford), R.E. Baker (University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Oxford) and N.A.M. M<strong>on</strong>k (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham). Papers related wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work<br />

are given in <str<strong>on</strong>g>th</str<strong>on</strong>g>e following References.<br />

References.<br />

[1] E.A. Gaffney, N.A.M. M<strong>on</strong>k, Gene expressi<strong>on</strong> time delays and Turing pattern formati<strong>on</strong> systems<br />

Bull.Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.Bio. (2006) 68: 99–130.<br />

[2] S. Seirin Lee, E.A. Gaffney, N.A.M. M<strong>on</strong>k, The Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Gene Expressi<strong>on</strong> Time Delays<br />

<strong>on</strong> Gierer-Meinhardt Pattern Formati<strong>on</strong> Systems Bull.Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.Bio. (2010) 72: 2139–2160.<br />

[3] S. Seirin Lee, E.A. Gaffney, Aberrant Behaviours <str<strong>on</strong>g>of</str<strong>on</strong>g> Reacti<strong>on</strong> Diffusi<strong>on</strong> Self-organisati<strong>on</strong> Models<br />

<strong>on</strong> Growing Domains in The Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Gene Expressi<strong>on</strong> Time Delays Bull.Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.Bio.<br />

(2010) 72: 2161–2179.<br />

570


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[4] S. Seirin Lee, E.A. Gaffney, R.E. Baker The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing patterns for morphogenregulated<br />

growing domains wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cellular resp<strong>on</strong>se delays. (Submitted in Bull.Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.Bio.).<br />

[5] E.A. Gaffney, S. Seirin Lee, The Sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing Self-Organisati<strong>on</strong> to Biological Feedback<br />

Delays: 2D Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Zebrafish Pigmentati<strong>on</strong>. (Submitted in JTB).<br />

571


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fluid-structure interacti<strong>on</strong> problems in biomechanics; Saturday, July 2, 08:30<br />

Karin Leiderman<br />

Duke University<br />

e-mail: karin@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.duke.edu<br />

A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Thrombus Formati<strong>on</strong> Under Flow<br />

To explore how blood flow affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>rombi (blood clots) and how <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

growing masses, in turn, feed back and affect flow, we have developed a spatialtemporal<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> platelet depositi<strong>on</strong> and coagulati<strong>on</strong> under flow. The<br />

model includes detailed descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coagulati<strong>on</strong> biochemistry, chemical activati<strong>on</strong><br />

and depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blood platelets, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-way interacti<strong>on</strong> between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e growing platelet mass. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, I will present <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model and use it to explain what underlies <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an important enzyme wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e coagulati<strong>on</strong> system. I will<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>en show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e wall shear rate <str<strong>on</strong>g>of</str<strong>on</strong>g> flow and a near-wall enhanced platelet c<strong>on</strong>centrati<strong>on</strong>s<br />

affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> growing <str<strong>on</strong>g>th</str<strong>on</strong>g>rombi. Since we account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

porous nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>rombi, I am also able to dem<strong>on</strong>strate how advective and diffusive<br />

transport to and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>rombi affects <str<strong>on</strong>g>th</str<strong>on</strong>g>eir grow<str<strong>on</strong>g>th</str<strong>on</strong>g> at different stages and spatial<br />

locati<strong>on</strong>s.<br />

572


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Felix Lenk<br />

TU Dresden / Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Technology and Bioprocess Engineering<br />

/ Chair <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioprocess Engineering<br />

e-mail: felix.lenk@tu-dresden.de<br />

Th. Bley<br />

TU Dresden / Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Technology and Bioprocess Engineering<br />

/ Chair <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioprocess Engineering<br />

J. Steingroewer<br />

TU Dresden / Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Food Technology and Bioprocess Engineering<br />

/ Chair <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioprocess Engineering<br />

A structured grow<str<strong>on</strong>g>th</str<strong>on</strong>g> model for hairy roots <str<strong>on</strong>g>of</str<strong>on</strong>g> beetroot (Beta<br />

vulgaris)<br />

Sec<strong>on</strong>dary metabolites produced by plant in vitro cultures such as Betanin (red-dye<br />

in beetroot) are nowadays in <str<strong>on</strong>g>th</str<strong>on</strong>g>e main focus wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e branch <str<strong>on</strong>g>of</str<strong>on</strong>g> White Biotechnology.<br />

Cells genetically altered using Agrobacterium rhizogenes form hairy roots<br />

which can be cultivated in horm<strong>on</strong>e free media in modern bioreactors.<br />

In order to improve <str<strong>on</strong>g>th</str<strong>on</strong>g>e cultivati<strong>on</strong> process (higher yield, shorter cultivati<strong>on</strong><br />

time) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e bioreactor design (bubble column vs. stirred) a structured grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>sequent simulati<strong>on</strong>s and visualizati<strong>on</strong> is necessary. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese tissue cultures <strong>on</strong> agar plates, in shaking flasks or bioreactors for industrial<br />

use has been heavily investigated experimentally <strong>on</strong>ly limited <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical descripti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> processes exist. The gained knowledge can be used by o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

scientists to improve <str<strong>on</strong>g>th</str<strong>on</strong>g>eir cultivati<strong>on</strong> protocols and to simulate grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir own<br />

cultures by amending <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

The hairy roots <str<strong>on</strong>g>of</str<strong>on</strong>g> beetroot (Beta vulgaris) have been chosen for modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> hairy roots also wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary<br />

metabolites such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e red dye Betanin. A matrix based approach is used for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed model which c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a 2-dimensi<strong>on</strong>al model matrix for agar plates<br />

c<strong>on</strong>taining informati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each cell forming <str<strong>on</strong>g>th</str<strong>on</strong>g>e organ complex.<br />

C<strong>on</strong>diti<strong>on</strong>s are positi<strong>on</strong>, age, nutrient c<strong>on</strong>centrati<strong>on</strong> inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell as well as c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary metabolites. A sec<strong>on</strong>d matrix c<strong>on</strong>tains nutrient c<strong>on</strong>centrati<strong>on</strong>s<br />

such as carb<strong>on</strong> source and oxygen in <str<strong>on</strong>g>th</str<strong>on</strong>g>e media.<br />

The simulati<strong>on</strong> process begins wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a given start state <str<strong>on</strong>g>of</str<strong>on</strong>g> a small organ complex<br />

which is recalculated recursively for a defined time step. The grow<str<strong>on</strong>g>th</str<strong>on</strong>g> processes involved<br />

such as el<strong>on</strong>gati<strong>on</strong> and branching <str<strong>on</strong>g>th</str<strong>on</strong>g>rough cell divisi<strong>on</strong> as well as sec<strong>on</strong>dary<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ickening <str<strong>on</strong>g>of</str<strong>on</strong>g> already existing cells are described using differential equati<strong>on</strong>s. After<br />

each grow<str<strong>on</strong>g>th</str<strong>on</strong>g> step <str<strong>on</strong>g>th</str<strong>on</strong>g>e organ matrix and <str<strong>on</strong>g>th</str<strong>on</strong>g>e nutrient matrix wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e involved<br />

diffusi<strong>on</strong> processes are calculated using partial differential equati<strong>on</strong>s (PDE). The<br />

newly formed matrices are used for <str<strong>on</strong>g>th</str<strong>on</strong>g>e next calculati<strong>on</strong> step. Experimental results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cultivati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> B. vulgaris are compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>s.<br />

573


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Anne-Cécile Lesart<br />

UJF-Grenoble 1, CNRS, Laboratory TIMC-IMAG UMR 5525, DyCTiM<br />

research team, Grenoble, F-38041, France<br />

e-mail: aclesart@imag.fr<br />

Boudewijn van der Sanden<br />

INSERM U836, Grenoble Institut des Neurosciences,UJF-Grenoble,<br />

CHU Michall<strong>on</strong>, Grenoble, F-38042 France.<br />

François Esteve<br />

INSERM U836, Grenoble Institut des Neurosciences,UJF-Grenoble,<br />

CHU Michall<strong>on</strong>, Grenoble, F-38042 France.<br />

Angélique Stephanou<br />

UJF-Grenoble 1, CNRS, Laboratory TIMC-IMAG UMR 5525, DyCTiM<br />

research team, Grenoble, F-38041, France<br />

A Computati<strong>on</strong>al Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Vascular Tumour Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> as<br />

Observed by Intravital Microscopy <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a Dorsal<br />

Skinfold Chamber <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Mouse<br />

A computati<strong>on</strong>al model is potentially a powerful tool to apprehend complex<br />

phenomena like solid tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, and to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies in<br />

order to find <str<strong>on</strong>g>th</str<strong>on</strong>g>e best soluti<strong>on</strong> to fight <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease. To <str<strong>on</strong>g>th</str<strong>on</strong>g>at end, <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>fr<strong>on</strong>tati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biological experiments is essential to validate <str<strong>on</strong>g>th</str<strong>on</strong>g>is tool.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is poster, we present a model specifically c<strong>on</strong>structed to match and interpret<br />

biological results obtained in vivo <strong>on</strong> mice by <str<strong>on</strong>g>th</str<strong>on</strong>g>e dorsal chamber me<str<strong>on</strong>g>th</str<strong>on</strong>g>od.<br />

We will focus especially <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vascular adaptati<strong>on</strong> and alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood<br />

rheology. In order to reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor evoluti<strong>on</strong>, interrelati<strong>on</strong> between vascular<br />

development and tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> are established <str<strong>on</strong>g>th</str<strong>on</strong>g>anks to oxygen diffusi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

angiogenesis process. Indeed, oxygen is transported to <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor by <str<strong>on</strong>g>th</str<strong>on</strong>g>e vessels<br />

and hypoxia induces <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> new blood vessels via <str<strong>on</strong>g>th</str<strong>on</strong>g>e emissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular<br />

endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors by <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour cells. Vascular collapse in tumor is also<br />

taken into account as well as dilati<strong>on</strong> or c<strong>on</strong>stricti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vessels.<br />

Simulati<strong>on</strong>s based <strong>on</strong> existing vascular network and measured rheological parameters<br />

reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed tumour evoluti<strong>on</strong> including <str<strong>on</strong>g>th</str<strong>on</strong>g>e increased vascular<br />

density at <str<strong>on</strong>g>th</str<strong>on</strong>g>e periphery and <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a necrotic core. Biological results<br />

obtained by <str<strong>on</strong>g>th</str<strong>on</strong>g>e dorsal chamber me<str<strong>on</strong>g>th</str<strong>on</strong>g>od and numerical simulati<strong>on</strong> results are fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

compared to calibrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e model so as to use it as a predictive tool in order to<br />

fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er test and design new <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy protocols.<br />

574


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Signals II; Saturday, July 2, 11:00<br />

Jacek Leśkow<br />

The Polish-American Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Business WSB-NLU Nowy<br />

Sacz, Poland.<br />

e-mail: leskow@wsb-nlu.edu.pl<br />

Resampling wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Applicati<strong>on</strong>s to Neurophysiological Time<br />

Series<br />

Resampling wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Applicati<strong>on</strong>s to Neurophysiological Time Series<br />

Jacek Leskow Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantitative Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in Management The Polish-<br />

American Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Business WSB-NLU Nowy Sacz<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fundamental tools in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> biosignals including functi<strong>on</strong>al<br />

magnetic res<strong>on</strong>ance imaging (fMRI) is a time series model and corresp<strong>on</strong>ding set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> parameters. Such time series are known to exhibit temporal autocorrelati<strong>on</strong><br />

which is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fundamental characteristic for such fMRI observati<strong>on</strong>s (see e.g.<br />

Bullmore et al (2001)). In <str<strong>on</strong>g>th</str<strong>on</strong>g>e presentati<strong>on</strong>, a general survey <str<strong>on</strong>g>of</str<strong>on</strong>g> resampling me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

for time series will be presented and c<strong>on</strong>sistency issues will be addressed. The focus<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e presentati<strong>on</strong> will be applicati<strong>on</strong>-oriented toward fMRI signals <str<strong>on</strong>g>th</str<strong>on</strong>g>at exhibit<br />

n<strong>on</strong>-gaussian behavior and are n<strong>on</strong>-stati<strong>on</strong>ary. The statistical results presented e.g<br />

in Leskow et al (2008) will be accompanied by applicati<strong>on</strong>s to neurophysiological<br />

time series.<br />

References.<br />

[1] Bullmore E., L<strong>on</strong>g, C., Suckling, J. ,Fadili, J. Calvert, G., Zelaya. F., Carpenter, T.A, Brammer,<br />

M. (2001), Colored Noise and Computati<strong>on</strong>al Inference in Neurophysiological (fMRI)<br />

Time Series Analysis: Resampling Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in Time and Wavelet Domains. Human Brain<br />

Mapping, 12:61-78.<br />

[2] Leskow, J., Lenart, L and Synowiecki, R. (2008), Subsampling in testing autocovariance for<br />

periodically correlated time series, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Time Series Analysis, Vol. 29, No.6.<br />

575


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Sivan Leviyang<br />

Georgetown University<br />

e-mail: sr286@georgetown.edu<br />

Populati<strong>on</strong> Genetics; Wednesday, June 29, 17:00<br />

Sampling HIV intrahost genealogies based <strong>on</strong> a model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

acute stage CTL resp<strong>on</strong>se<br />

Genealogy based me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods have become a comm<strong>on</strong> tool in analyzing intrahost HIV<br />

evoluti<strong>on</strong>. These me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods require a coalescent model which implicitly describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

role <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary forces in shaping HIV genealogies. Currently, HIV genealogies<br />

are c<strong>on</strong>structed assuming variants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kingman coalescent. The Kingman coalescent<br />

is a generic coalescent model <str<strong>on</strong>g>th</str<strong>on</strong>g>at does not explicitly account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e special<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV evoluti<strong>on</strong>. For example, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kingman coalescent does not account<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> CTL attack.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we introduce a coalescent model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e acute stage <str<strong>on</strong>g>th</str<strong>on</strong>g>at explicitly<br />

incorporates <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> early CTL attack. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is coalescent model, we develop<br />

a computati<strong>on</strong>al me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows us to sample HIV genealogies shaped by CTL<br />

attack. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at such genealogies are different in form <str<strong>on</strong>g>th</str<strong>on</strong>g>an Kingman coalescent<br />

genealogies. We use our genealogy sampler to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> CTL attack<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at is best at c<strong>on</strong>trolling HIV diversity. Our work is a first step in developing<br />

computati<strong>on</strong>al tools <str<strong>on</strong>g>th</str<strong>on</strong>g>at can use HIV genetic data to infer parameters describing<br />

CTL attack.<br />

576


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an F. Li<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> California at Irvine<br />

e-mail: j<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an.li@smes.org<br />

John Lowengrub<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> California at Irvine<br />

e-mail: lowengrb@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.uci.edu<br />

Cell and Tissue Biophysics; Saturday, July 2, 11:00<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Compressibility, Motility and C<strong>on</strong>tact<br />

Inhibiti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Cell Clusters<br />

We analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong>, compressi<strong>on</strong>, and c<strong>on</strong>tact inhibiti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cell clusters using <str<strong>on</strong>g>th</str<strong>on</strong>g>e Cellular Potts Model (CPM) in a m<strong>on</strong>olayer<br />

geometry. Cell proliferati<strong>on</strong>, motility, cell-to-cell adhesi<strong>on</strong>, c<strong>on</strong>tact inhibiti<strong>on</strong>, and<br />

cell compressibility are incorporated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at increased motility<br />

has a direct effect <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> clusters. Cell lines wi<str<strong>on</strong>g>th</str<strong>on</strong>g> greater motility<br />

overcome <str<strong>on</strong>g>th</str<strong>on</strong>g>e attractive forces <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-to-cell adhesi<strong>on</strong> and have more space to proliferate.<br />

We analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between cell motility and compressibility wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e CPM, and find <str<strong>on</strong>g>th</str<strong>on</strong>g>at more motile cells are generally smaller <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>eir more<br />

sedentary counterparts, which can lead to smaller clusters. We obtain an explicit<br />

inverse-relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell compressibility and motility parameters and<br />

use <str<strong>on</strong>g>th</str<strong>on</strong>g>is relati<strong>on</strong>ship to compensate for motility-induced cell compressi<strong>on</strong>. Clusters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> motile cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at do not experience significant compressi<strong>on</strong> grow faster <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ose<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> less motile cells. In additi<strong>on</strong>, c<strong>on</strong>tact inhibiti<strong>on</strong> amplifies <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

motility. Strict c<strong>on</strong>tact inhibiti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e CPM penalizes clumped cells by halting<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, giving motile cells a greater advantage. We have begun testing our<br />

model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> in vitro data obtained from a collaborator and our model is reflective<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data.<br />

577


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Chelsea Liddell<br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College, USA<br />

e-mail: Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y.Wallace@Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g>.edu<br />

Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y Wallace<br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

Nicci Owusu-Brackett<br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

Kristen Klepac<br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

Evoluti<strong>on</strong>ary Ecology; Thursday, June 30, 11:30<br />

Persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Sickle Cell Genome in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Malaria<br />

It is believed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e sickle cell gene has persisted in <str<strong>on</strong>g>th</str<strong>on</strong>g>e human populati<strong>on</strong> due<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e partial resistance it c<strong>on</strong>fers <strong>on</strong> victims <str<strong>on</strong>g>of</str<strong>on</strong>g> malaria. We use a system <str<strong>on</strong>g>of</str<strong>on</strong>g> six<br />

equati<strong>on</strong>s tracking populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree genotypes and two age brackets to study<br />

what relative dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates for malaria and sickle cell are required in order for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

gene to persist, and what resulting proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> are expected to<br />

carry <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene under different assumpti<strong>on</strong>s about malarial dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates. The results<br />

can be compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> current data to infer historical dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates for malaria. The<br />

model also allows estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> time it takes such a gene to reach<br />

equilibrium in a populati<strong>on</strong>, and how <str<strong>on</strong>g>th</str<strong>on</strong>g>is depends <strong>on</strong> assumed dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates.<br />

578


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bridging Time Scales in Biological Sciences; Saturday, July 2, 14:30<br />

Volkmar Liebscher<br />

Ernst-Moritz-Arndt-University Greifswald<br />

e-mail: volkmar.liebscher@uni-greifswald.de<br />

Stephan Thober<br />

Helmholtz-Centre for Envir<strong>on</strong>mental Research Leipzig<br />

The Quasi-steady state hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis for stochastic models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

enzyme kinetics<br />

In a stochastic versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Briggs-Haldane equati<strong>on</strong>s, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical<br />

quasi-steady state hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis corresp<strong>on</strong>ds to a averaging principle or local ergodic<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eorem for <str<strong>on</strong>g>th</str<strong>on</strong>g>e fast enzymatic reacti<strong>on</strong>. This way, we obtain a more natural<br />

explanati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Michaelis Menten kinetics <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e slow time scale. Some more<br />

detailed estimates are presented, too.<br />

579


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Game <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical modelling and optimizati<strong>on</strong> in evoluti<strong>on</strong> and ecology I;<br />

Tuesday, June 28, 11:00<br />

Magnus Lindh<br />

UmeåUniversity, Sweden<br />

e-mail: magnus.lindh@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.umu.se<br />

Ulf Dieckmann<br />

Internati<strong>on</strong>al Institute for Applied Systems Analysis, Austria<br />

e-mail: dieckmann@iiasa.ac.at<br />

Åke Brännström<br />

UmeåUniversity, Sweden<br />

e-mail: ake.brannstrom@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.umu.se<br />

Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tree architecture<br />

The astounding biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ear<str<strong>on</strong>g>th</str<strong>on</strong>g>’s ecosystems is <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong>,<br />

cooperati<strong>on</strong>, and migrati<strong>on</strong> am<strong>on</strong>g species and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-species varieties. The<br />

potential for frequency-dependent selecti<strong>on</strong> to shape <str<strong>on</strong>g>th</str<strong>on</strong>g>ese biodiversity patterns is<br />

easily appreciated in plants, where height-asymmetric competiti<strong>on</strong> for light has not<br />

<strong>on</strong>ly driven <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tall trees, but is also resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir coexistence<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> smaller plants. Less is known, however, <str<strong>on</strong>g>of</str<strong>on</strong>g> how frequency-dependent competiti<strong>on</strong><br />

for light has affected o<str<strong>on</strong>g>th</str<strong>on</strong>g>er salient aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> plant architecture. Here, we<br />

present a trait-, size-, and patch-structured model <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> dynamics to study<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tree-crown architecture. Our study extends a related model by<br />

Falster et al. (2011), by incorporating self-shading wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in tree crowns and a more<br />

detailed representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass-allocati<strong>on</strong> to branches. Tree-crown architecture<br />

is described by two individual-level traits for crown shape and crown wid<str<strong>on</strong>g>th</str<strong>on</strong>g>. Three<br />

scenarios are investigated and c<strong>on</strong>trasted for different combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sun angle,<br />

site productivity, and disturbance frequency. First, we c<strong>on</strong>sider optimal tree-crown<br />

architectures for solitary trees growing apart from competing trees. Sec<strong>on</strong>d, we ask<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e same questi<strong>on</strong> for a m<strong>on</strong>oculture <str<strong>on</strong>g>of</str<strong>on</strong>g> identical trees subject to density-dependent<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Third, we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e coevoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tree-crown shape and tree-crown<br />

wid<str<strong>on</strong>g>th</str<strong>on</strong>g> under competiti<strong>on</strong> and for potentially polymorphic traits, and determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

resultant evoluti<strong>on</strong>arily stable state. Finally, we critically reassess <str<strong>on</strong>g>th</str<strong>on</strong>g>e comm<strong>on</strong> belief<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at a low sun angle is a main force driving <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>ical tree-crown architectures<br />

observed in boreal forests.<br />

References.<br />

[1] Falster DS, Brännström Å, Dieckmann U, Westoby M. 2011. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> four major plant<br />

traits <strong>on</strong> average height, leaf-area cover, net primary productivity, and biomass density in<br />

single-species forests: a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical investigati<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 99, 148-164.<br />

[2] Shinozaki K, Yoda K, Hozumi K, Kira T. 1964. A quantitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> plant form - <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pipe model <str<strong>on</strong>g>th</str<strong>on</strong>g>eory. I. Basic analyses. Japanese Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 14, 97-105<br />

[3] Shinozaki K, Yoda K, Hozumi K, Kira T. 1964. A quantitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> plant form - <str<strong>on</strong>g>th</str<strong>on</strong>g>e pipe<br />

model <str<strong>on</strong>g>th</str<strong>on</strong>g>eory. II. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and its applicati<strong>on</strong> in forest ecology. Japanese<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 14, 133-139<br />

580


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective phenomena in biological systems; Saturday, July 2,<br />

08:30<br />

Pietro Lio<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

e-mail: pl219@cam.ac.uk<br />

Nicola Paoletti<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Camerino<br />

Emanuela Merelli<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Camerino<br />

A combined process algebraic and a stochastic approaches to<br />

b<strong>on</strong>e remodeling<br />

In adult life <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e is being c<strong>on</strong>tinuously resorbed and replaced by new b<strong>on</strong>e. Here<br />

we present a stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e homeostatic nature <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e remodeling, where<br />

osteoclasts perform b<strong>on</strong>e resorpti<strong>on</strong> which is equally balanced by b<strong>on</strong>e formati<strong>on</strong><br />

performed by osteoblasts. The stochastic model is embedded in an algebraic process<br />

based <strong>on</strong> Shape calculus, which provides an effective multiscale descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e process. Our model c<strong>on</strong>siders increasing dimensi<strong>on</strong>ality from Rankl molecular<br />

signalling to osteoclast/osteoblast stochastic dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a basic multicellular<br />

units (BMU) to a b<strong>on</strong>e mass formati<strong>on</strong>. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at after a micr<str<strong>on</strong>g>of</str<strong>on</strong>g>racture <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

simulated b<strong>on</strong>e remodeling dynamics has timescale c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological<br />

process. Our combined me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology provides a first effective stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

b<strong>on</strong>e remodeling framework which could be used to test heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y and pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ological<br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

581


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling II; Wednesday, June 29,<br />

14:30<br />

Dipak Barua 1,2<br />

Wiliam Hlavacek 1,2,3<br />

Tomasz Lipniacki 4<br />

1 Theoretical Biology and Biophysics Group, Theoretical Divisi<strong>on</strong> and<br />

Center for N<strong>on</strong>linear Studies, Los Alamos Nati<strong>on</strong>al Laboratory, Los<br />

Alamos, New Mexico, USA<br />

2 Clinical Translati<strong>on</strong>al Research Divisi<strong>on</strong>, Translati<strong>on</strong>al Genomics<br />

Research Institute, Scottsdale, Ariz<strong>on</strong>a, USA<br />

3 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> New Mexico, Albuquerque,<br />

New Mexico, USA<br />

4 Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research, Polish Academy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw, Poland, email: tlipnia@ippt.gov.pl<br />

A rule-based model for early events in B cell antigen<br />

receptor signaling<br />

B cell antigen receptor (BCR) signaling regulates <str<strong>on</strong>g>th</str<strong>on</strong>g>e activities and fates <str<strong>on</strong>g>of</str<strong>on</strong>g> B<br />

cells. Here, we present a rule-based model for early events in BCR signaling <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

encompasses membrane-proximal interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> BCR, two membrane-te<str<strong>on</strong>g>th</str<strong>on</strong>g>ered Srcfamily<br />

protein tyrosine kinases, Lyn and Fyn, <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptor protein PAG, and two<br />

cytosolic protein tyrosine kinases, Csk and Syk. The signaling is triggered by aggregati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e BCR by foreign antigens, which increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> BCR-Src<br />

kinases interacti<strong>on</strong>s. The interacti<strong>on</strong>s involve two feedback loops: a positive feedback<br />

loop acting <strong>on</strong> a short time scale and a negative feedback loop acting <strong>on</strong> a<br />

l<strong>on</strong>ger time scale. The positive feedback loop arises because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

Src-family kinases, Lyn and Fyn, interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two signaling chains <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e BCR<br />

complex, Igα (CD79A) and Igβ (CD79B). Lyn and Fyn c<strong>on</strong>stitutively associate<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> BCR via low-affinity interacti<strong>on</strong>s and trans-phosphorylate tyrosine residues<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e immunoreceptor tyrosine-based activati<strong>on</strong> motifs (ITAMs) <str<strong>on</strong>g>of</str<strong>on</strong>g> Igα and Igβ<br />

in neighboring receptors wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in antigen-induced clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> BCR. These sites <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phosphorylati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>en serve as high-affinity docking sites for <str<strong>on</strong>g>th</str<strong>on</strong>g>e SH2 domains in<br />

Lyn and Fyn, which recruit more Lyn and Fyn to BCR clusters. Lyn and Fyn also<br />

undergo autophosphorylati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in antigen-induced clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> BCR, which upregulates<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir kinase activities. The negative feedback loop is mediated by PAG,<br />

which associates wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Lyn and Fyn in a phosphorylati<strong>on</strong>-dependent manner. PAG<br />

serves as a docking site for Csk, which mediates <str<strong>on</strong>g>th</str<strong>on</strong>g>e phosphorylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a C-terminal<br />

regulatory tyrosine residue found in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> Lyn and Fyn. Phosphorylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

residue enables an intramolecular interacti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at downregulates Lyn/Fyn kinase<br />

activity. The model makes <str<strong>on</strong>g>th</str<strong>on</strong>g>e distincti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two Src kinases, Lyn and<br />

Fyn. Whereas Lyn is allowed to phosphorylate PAG at all tyrosine residues, Fyn<br />

may not phosphorylate its own binding sites <strong>on</strong> PAG due to allosteric c<strong>on</strong>straints.<br />

This distinguishes Lyn as <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly Src kinase capable to induce <str<strong>on</strong>g>th</str<strong>on</strong>g>e negative feedback<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system. A dynamical stability analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

BCR circuit can display two interesting behaviors. Bistability can be expected in<br />

PAG -/-, Csk -/-, and Lyn -/- cells, whereas oscillatory pulse-like resp<strong>on</strong>ses to BCR<br />

clustering can be expected in cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e negative feedback loop intact (wild-type<br />

582


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

cells and Fyn -/- cells) under some c<strong>on</strong>diti<strong>on</strong>s. The qualitative behaviors predicted<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e model are c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e known behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> Lyn and Fyn deficient<br />

cells.<br />

This study was supported by Foundati<strong>on</strong> for Polish Science grant TEAM/2009-<br />

3/6 and Nati<strong>on</strong>al Institutes <str<strong>on</strong>g>of</str<strong>on</strong>g> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> grants GM076570 and GM085273.<br />

583


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Bartosz Lisowski, Michał Świątek, Michał Żabicki and Ewa Gudowska-<br />

Nowak<br />

M. Smoluchowski Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics and M. Kac Complex Systems<br />

Research Center, Jagiell<strong>on</strong>ian University, Reym<strong>on</strong>ta 4, 30-059 Kraków,<br />

Poland<br />

e-mail: bartek.lisowski@uj.edu.pl<br />

Molecular Motor-Cargo systems: Modeling energetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

kinesin wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different approaches<br />

Motor proteins, sometimes referred to as mechanoenzymes, are a group <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at maintain a large part <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular moti<strong>on</strong>. Being enzymes, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey undergo<br />

chemical reacti<strong>on</strong>s leading to energy c<strong>on</strong>versi<strong>on</strong> and changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>formati<strong>on</strong>.<br />

Being mechano, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey use <str<strong>on</strong>g>th</str<strong>on</strong>g>e (chemical) energy to perform mechanical<br />

work, leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. Series <str<strong>on</strong>g>of</str<strong>on</strong>g> novel experiments, e.g. single<br />

molecule observati<strong>on</strong>s, were performed to gain <str<strong>on</strong>g>th</str<strong>on</strong>g>e knowledge about <str<strong>on</strong>g>th</str<strong>on</strong>g>e performance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chemical states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular motors as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>eir dynamics in<br />

presence or absence <str<strong>on</strong>g>of</str<strong>on</strong>g> an external force.<br />

At <str<strong>on</strong>g>th</str<strong>on</strong>g>e same time, many <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical models were proposed, <str<strong>on</strong>g>of</str<strong>on</strong>g>fering deeper<br />

insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e small-world (nanoworld) dynamics. They can be divided into <str<strong>on</strong>g>th</str<strong>on</strong>g>ree<br />

main categories: chemical models, ratchet models and molecular dynamics models.<br />

Chemical models focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Markovchain, kinetic descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong><br />

cycles resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical transiti<strong>on</strong>s. Ratchet models are mostly based<br />

<strong>on</strong> sets <str<strong>on</strong>g>of</str<strong>on</strong>g> Langevin equati<strong>on</strong>s and treat <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinesin dimer as two linked Brownian<br />

particles moving in a periodic potential. Molecular dynamics models approach<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e problem from <str<strong>on</strong>g>th</str<strong>on</strong>g>e low level dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> single or grouped molecules, based <strong>on</strong><br />

informati<strong>on</strong> obtained from crystallographical data.<br />

We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at by combining <str<strong>on</strong>g>th</str<strong>on</strong>g>ose complementary approaches <strong>on</strong>e can gain<br />

deeper understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics and chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e motor proteins. As a<br />

working example, we choose kinesin and dynein — motor proteins resp<strong>on</strong>sible for<br />

bidirecti<strong>on</strong>al transport <str<strong>on</strong>g>of</str<strong>on</strong>g> organelles and vesicles using microtubular tracts.<br />

References.<br />

[1] M. Żabicki, W. Ebeling, E. Gudowska-Nowak The <str<strong>on</strong>g>th</str<strong>on</strong>g>ermodynamic cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> an entropy-driven<br />

stepper motor walking hand-over-hand Chem. Phys. 375 472–478 (2010)<br />

[2] B. Lisowski, M. Świątek and E. Gudowska-Nowak Understanding operating principles and<br />

processivity <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular motors work in progress.<br />

584


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Project operated wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Foundati<strong>on</strong> for Polish Science (Internati<strong>on</strong>al Ph.D.<br />

Projects Programme co-financed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Regi<strong>on</strong>al Development Fund covering,<br />

under <str<strong>on</strong>g>th</str<strong>on</strong>g>e agreement No. MPD/2009/6; <str<strong>on</strong>g>th</str<strong>on</strong>g>e Jagiell<strong>on</strong>ian University Internati<strong>on</strong>al<br />

Ph.D. Studies in Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Systems)<br />

585


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Mosquito-Borne Diseases; Tuesday, June 28, 11:00<br />

Alun Lloyd<br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Graduate Program, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Nor<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Carolina State University<br />

e-mail: alun_lloyd@ncsu.edu<br />

Modeling Wolbachia-Based Strategies for C<strong>on</strong>trolling<br />

Mosquito-Borne Diseases<br />

Mosquito borne infecti<strong>on</strong>s, most notably malaria and dengue, kill over a milli<strong>on</strong><br />

people every year. Traditi<strong>on</strong>al c<strong>on</strong>trol measures (such as insecticides) against <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

infecti<strong>on</strong>s in developing countries have had mixed success. A novel avenue <str<strong>on</strong>g>of</str<strong>on</strong>g> attack<br />

involves <str<strong>on</strong>g>th</str<strong>on</strong>g>e producti<strong>on</strong> and release <str<strong>on</strong>g>of</str<strong>on</strong>g> mosquitoes <str<strong>on</strong>g>th</str<strong>on</strong>g>at have been manipulated or<br />

genetically engineered to be less able, or even unable, to transmit infecti<strong>on</strong>.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling is playing an important role in several large-scale<br />

projects <str<strong>on</strong>g>th</str<strong>on</strong>g>at are currently under way to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese techniques. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I shall discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e biology <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at uses <str<strong>on</strong>g>th</str<strong>on</strong>g>e bacterial symbi<strong>on</strong>t<br />

Wolbachia and <str<strong>on</strong>g>th</str<strong>on</strong>g>e accompanying modelling work, illustrating how a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

models are being used as <str<strong>on</strong>g>th</str<strong>on</strong>g>e projects move al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g> from lab-based<br />

studies to field deployment.<br />

586


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor invasi<strong>on</strong> I; Tuesday, June 28, 11:00<br />

Georgios Lolas<br />

Nati<strong>on</strong>al Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> A<str<strong>on</strong>g>th</str<strong>on</strong>g>ens<br />

e-mail: glolas@yahoo.gr<br />

Avner Friedman<br />

Michael Pepper<br />

The Lymphatic Vascular System in Lymphangiogenesis,<br />

Invasi<strong>on</strong> and Metastasis: A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Approach<br />

There are two distinct categories <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors: benign and malignant. Benign tumors<br />

remain c<strong>on</strong>fined to <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue in which <str<strong>on</strong>g>th</str<strong>on</strong>g>ey arise and al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>ey may c<strong>on</strong>tinue<br />

to grow, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey do not spread to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e body. Unlike benign tumors,<br />

malignant tumors grow rapidly, invade and destroy <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissues and,<br />

by exploiting <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood or <str<strong>on</strong>g>th</str<strong>on</strong>g>e lymphatic systems, establish new col<strong>on</strong>ies, a process<br />

called metastasis. Metastasis is <str<strong>on</strong>g>th</str<strong>on</strong>g>e predominant cause <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer dea<str<strong>on</strong>g>th</str<strong>on</strong>g>. There are<br />

four major routes <str<strong>on</strong>g>of</str<strong>on</strong>g> neoplastic disseminati<strong>on</strong>: (1) local invasi<strong>on</strong>; (2) direct seeding<br />

to body cavities; (3) hematogenous spread; and (4) lymphatic spread, preferentially<br />

to regi<strong>on</strong>al lymph nodes and later to distant sites.<br />

For a primary tumor to grow, it needs a supply <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients, delivered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

blood. The tumor <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore secrets grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors which induce <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

new blood vessels, sprouting <str<strong>on</strong>g>th</str<strong>on</strong>g>em from preexisting vessels and directing <str<strong>on</strong>g>th</str<strong>on</strong>g>em toward.<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor. This is <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor angiogenesis. Targeting angiogenesis,<br />

namely, cutting <str<strong>on</strong>g>of</str<strong>on</strong>g> blood supply, is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>th</str<strong>on</strong>g>e strategies for blocking tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

and disseminati<strong>on</strong>.<br />

A similar, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough far less well studied process, also occurs in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lymphatic<br />

system and is referred to as lymphangiogenesis or lymphagenesis. Surprisingly,<br />

almost all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e published literature focuses <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e correlati<strong>on</strong>s between angiogenesis,<br />

microvessel density, metastatic spread, and tumor prognosis, leaving a missed<br />

link between primary tumor and nodal metastases: <str<strong>on</strong>g>th</str<strong>on</strong>g>e lymphatic system.The lymphatic<br />

system comprises a vascular network <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e-way, open-ended, <str<strong>on</strong>g>th</str<strong>on</strong>g>in-walled<br />

complex network <str<strong>on</strong>g>of</str<strong>on</strong>g> capillaries and larger vessels, collecting vessels, lymph nodes,<br />

trunks, and ducts <str<strong>on</strong>g>th</str<strong>on</strong>g>at transport lymph and cells from body tissues back to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

circulatory system.<br />

Various studies have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at angiogenesis is important for solid tumour<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and, presumably, also in hematogenous metastasis. By c<strong>on</strong>trast, <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lymphatic vessels and <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> lymphangiogenesis to tumor pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology is less<br />

clear. Until recently <strong>on</strong>ly limited informati<strong>on</strong> c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular mechanisms<br />

and pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways involved in tumor lymphangiogenesis and tumor lymphatic invasi<strong>on</strong><br />

have been obtained<br />

Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough intensive research in tumor angiogenesis has been going <strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

past four decades, experimental results in tumor lymphangiogenesis began to appear<br />

<strong>on</strong>ly in <str<strong>on</strong>g>th</str<strong>on</strong>g>e last five years. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we propose <str<strong>on</strong>g>th</str<strong>on</strong>g>e first ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> lymphangiogenesis, and obtain numerical results <str<strong>on</strong>g>th</str<strong>on</strong>g>at qualitatively agree<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental results. In c<strong>on</strong>clusi<strong>on</strong>, we propose <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility to use <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model presented as a possible lymphangiogenesis assay for better<br />

understandingand preventing tumor invasi<strong>on</strong> and tumor lymphangiogenesis<br />

587


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 11:00<br />

Juan Carlos López Alf<strong>on</strong>so<br />

Interdisciplinary Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute (IMI), Complutense University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Madrid, Spain<br />

e-mail: jc.atlantis@gmail.com<br />

Dr. Miguel A. Herrero<br />

Interdisciplinary Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute (IMI), Complutense University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Madrid, Spain<br />

Dr. Luis Nunez<br />

Radiophysics Department, Hospital Universitario Puerta de Hierro,<br />

Majadah<strong>on</strong>da, Spain<br />

Some Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Problems in Radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

Determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radiati<strong>on</strong> over a target and selecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

best manner to deliver it are two key issues in radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is lecture, I shall<br />

describe recent results <strong>on</strong> optimizati<strong>on</strong>s me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods aimed at addressing <str<strong>on</strong>g>th</str<strong>on</strong>g>ese goals,<br />

and some examples <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese techniques will be presented.<br />

588


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Tuesday, June 28, 14:30<br />

M. J. Lopez-Herrero<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, Complutense University <str<strong>on</strong>g>of</str<strong>on</strong>g> Madrid, 28040 Madrid,<br />

Spain<br />

e-mail: lherrero@estad.ucm.es<br />

The SIS and SIR stochastic epidemic models Leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

outbreak and time to infecti<strong>on</strong><br />

We deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e SIS and SIR stochastic epidemic models. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is to<br />

present <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> some c<strong>on</strong>tinuous characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is sense,<br />

we first extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> an outbreak by investigating<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e whole probability distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extincti<strong>on</strong> time via Laplace transforms.<br />

Moreover, we also study <str<strong>on</strong>g>th</str<strong>on</strong>g>e time until a n<strong>on</strong>-infected individual becomes infected.<br />

The obtained results are illustrated by numerical examples including an applicati<strong>on</strong><br />

to head lice infecti<strong>on</strong>s.<br />

589


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

O. Angulo<br />

Universidad de Valladolid, Valladolid, Spain<br />

e-mail: oscar@mat.uva.es<br />

J. C. López-Marcos<br />

Universidad de Valladolid, Valladolid, Spain<br />

e-mail: lopezmar@mac.uva.es<br />

M. A. López-Marcos<br />

Universidad de Valladolid, Valladolid, Spain<br />

e-mail: malm@mac.uva.es<br />

J. Martínez-Rodríguez<br />

Universidad de Valladolid, Valladolid, Spain<br />

e-mail: julia@eco.uva.es<br />

Populati<strong>on</strong> Dynamics; Thursday, June 30, 11:30<br />

Numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> marine<br />

invertebrates wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different life stages<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we c<strong>on</strong>sider an age-structured populati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> marine invertebrates<br />

whose life stage is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> sessile adults and pelagic larvae, such as<br />

barnacles c<strong>on</strong>tained in a local habitat. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, proposed by Roughgarden and<br />

Iwasa and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically analyzed by Kamioka, space is <str<strong>on</strong>g>th</str<strong>on</strong>g>e principal limiting resource.<br />

The l<strong>on</strong>g time simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is kind <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled systems is difficult. Here,<br />

we propose and analyze a numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od in order to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>s.<br />

References.<br />

[1] J. Roughgarden and Y. Iwasa, Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a metapopulati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> space-limited subpopulati<strong>on</strong>,<br />

Theoretical Populati<strong>on</strong> Biology 29 (1986) 235–261.<br />

[2] K. Kamioka, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an age-structured populati<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> space-limited<br />

recruitment, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences 198 (2005) 27–56.<br />

[3] O. Angulo, L. M. Abia, J. C. López-Marcos and M. A. López-Marcos, L<strong>on</strong>g-time simulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a size-structured populati<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a dynamical resource, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Natural Phenomena 5 (2010) 1–21.<br />

[4] O. Angulo, J. C. López-Marcos, M. A. López-Marcos and J. Martínez-Rodríguez, Numerical<br />

investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e recruitment process in open marine populati<strong>on</strong> models, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistical<br />

Mechanics: Theory and Experiment (2011) doi: 10.1088/1742-5468/2011/01/P01003.<br />

.<br />

590


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Horacio Lopez-Menendez<br />

Zaragoza University<br />

e-mail: hlopez@unizar.es<br />

Manuel Doblare<br />

Zaragoza University<br />

Jose Felix Rodriguez<br />

Zaragoza University<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> fluctuati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eorems in biological adhesi<strong>on</strong><br />

The catch-slip b<strong>on</strong>d mechanism are b<strong>on</strong>ds between ligands and receptors, <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

shows a counterintuitive effect. At low forces <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>d lifetime increase until a<br />

maximum value, wich is called <str<strong>on</strong>g>th</str<strong>on</strong>g>e catch b<strong>on</strong>d; after <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximun <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>d lifetime<br />

decrease as describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e Bell’s <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> adhesi<strong>on</strong>(Bell, 1978). In biology <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

effect can be observed in many ligand-receptor interacti<strong>on</strong>s such as Escherichia coli<br />

adhesi<strong>on</strong>, FimH and P-L selectins expressed in leukocytes, actin-myosin interacti<strong>on</strong>,<br />

or in integrins. But also <str<strong>on</strong>g>th</str<strong>on</strong>g>is effect can be useful in order to develop new nanotechnological<br />

applicati<strong>on</strong>s. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluctuati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>eorems during<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e late 90’s. These <str<strong>on</strong>g>th</str<strong>on</strong>g>eorems had shown be very usefull in order to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> small systems in biology, such as folding/unfolding cooperative effects.<br />

This systems operates away from equilibrium, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluctuati<strong>on</strong>s induce transiti<strong>on</strong>s<br />

between steady states. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e Crook’s fluctuati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eorem<br />

in order to derive an expressi<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>d lifetime, as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e applied<br />

elastic energy. The propossed model it is validated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er published works.<br />

591


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> kinetics in biology; Tuesday, June 28, 14:30<br />

Andreas Hellander, Stefan Hellander, Per Lötstedt<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific Computing<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> Technology<br />

Uppsala University<br />

P O Box 337, SE 75105 Uppsala, Sweden<br />

e-mail: andreas.hellander@it.uu.se, stefan.hellander@it.uu.se,<br />

perl@it.uu.se<br />

Stochastic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong> processes in living<br />

cells <strong>on</strong> multiple scales<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules <str<strong>on</strong>g>of</str<strong>on</strong>g> each chemical species in biological cells is small<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecules react wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a certain probability. A stochastic<br />

mesoscopic model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemical reacti<strong>on</strong>s is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore more accurate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>an a deterministic, macroscopic model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> rate equati<strong>on</strong>s.<br />

In a computer simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a trajectory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system, <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most computati<strong>on</strong>ally expensive part. The diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different species are treated<br />

differently in [1] in order to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al cost. Depending <strong>on</strong> if <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

copy number is high, intermediate or low <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> events are simulated macroscopically,<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tau leap me<str<strong>on</strong>g>th</str<strong>on</strong>g>od or wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic simulati<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m<br />

(SSA) by Gillespie in an unstructured mesh covering <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. The reacti<strong>on</strong>s are<br />

handled by SSA. Sometimes <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesoscopic model is not sufficiently accurate and<br />

a microscopic descripti<strong>on</strong> is necessary. In such a model, single reacting and diffusing<br />

molecules are tracked [2]. The molecules move in <str<strong>on</strong>g>th</str<strong>on</strong>g>e unstructured mesh by<br />

Brownian moti<strong>on</strong> and are coupled to <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesoscopic model via <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>s [3].<br />

Examples from molecular biology will be given.<br />

References.<br />

[1] L. Ferm, A. Hellander, P. Lötstedt, An adaptive algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic<br />

reacti<strong>on</strong>-diffusi<strong>on</strong> processes, J. Comput. Phys., 229 (2010), 343-360.<br />

[2] S. Hellander, P. Lötstedt, Flexible single molecule simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong> processes,<br />

J. Comput. Phys., to appear.<br />

[3] A. Hellander, S. Hellander, P. Lötstedt, Coupled mesoscopic and microscopic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stochastic reacti<strong>on</strong>–diffusi<strong>on</strong> processes in mixed dimensi<strong>on</strong>s, to appear.<br />

592


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Kavi<str<strong>on</strong>g>th</str<strong>on</strong>g>a Louis<br />

Periyar University, Tamil Nadu, India<br />

e-mail: kavi<str<strong>on</strong>g>th</str<strong>on</strong>g>alouis@yahoo.com<br />

A. Marlewski<br />

Pozna University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Pozna, Poland<br />

A. Muniyappan<br />

Periyar University, Tamil Nadu, India<br />

S. Zdravković<br />

Vinca Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Sciences, Belgrade, Serbia<br />

D. Gopi<br />

Periyar University, Tamil Nadu, India<br />

Energy localizati<strong>on</strong> and shape changing solit<strong>on</strong>s in<br />

microtubules<br />

Microtubules are protein polymers made <str<strong>on</strong>g>of</str<strong>on</strong>g> / tubulin heterodimers <str<strong>on</strong>g>th</str<strong>on</strong>g>at form an<br />

essential part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all eukaryotic cells. Besides giving structural<br />

stability and rigidity to a cell, microtubules play key roles in many physiological<br />

processes such as intracellular vesicle transport and chromosome separati<strong>on</strong> during<br />

mitosis. Nucleated MTs (e.g., as nucleated from <str<strong>on</strong>g>th</str<strong>on</strong>g>e centrosome during <str<strong>on</strong>g>th</str<strong>on</strong>g>e mitosis)<br />

are tightly attached to <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleated site by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir minus ends and MTs exchange<br />

tubulin dimers between <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluble and polymer pools at <str<strong>on</strong>g>th</str<strong>on</strong>g>eir free plus ends using<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamic instability mechanism. Modulati<strong>on</strong>al instability (MI) is a universal<br />

process in which small phase and amplitude perturbati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are always present<br />

in a wide input beam grow exp<strong>on</strong>entially during propagati<strong>on</strong> under <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay<br />

between dispersi<strong>on</strong> and n<strong>on</strong>linearity. The mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> depolymerizati<strong>on</strong> and repolymerizati<strong>on</strong><br />

provides c<strong>on</strong>tinual supply <str<strong>on</strong>g>of</str<strong>on</strong>g> energy into <str<strong>on</strong>g>th</str<strong>on</strong>g>e microtubule structures<br />

in a cell. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e tubulin heterodimers are polar, <str<strong>on</strong>g>th</str<strong>on</strong>g>e vibrati<strong>on</strong>s generate an oscillating<br />

electric field <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be excited by <str<strong>on</strong>g>th</str<strong>on</strong>g>e energy released from <str<strong>on</strong>g>th</str<strong>on</strong>g>e hydrolysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e GTP. Also, we employ <str<strong>on</strong>g>th</str<strong>on</strong>g>e symbolic computati<strong>on</strong> and look for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical<br />

equati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at supports solit<strong>on</strong> excitati<strong>on</strong>s. It was assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-kink<br />

formati<strong>on</strong> is mainly due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> GTP into GDP so <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e can act<br />

as a hydrolyser which corresp<strong>on</strong>ds to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>formati<strong>on</strong>al change resulting in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a solitary pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. The propagati<strong>on</strong> will <str<strong>on</strong>g>th</str<strong>on</strong>g>en distribute <str<strong>on</strong>g>th</str<strong>on</strong>g>e energy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hydrolysis at a preferred end <str<strong>on</strong>g>of</str<strong>on</strong>g> MT. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, each solitary pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile can be<br />

viewed as a bit <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> whose propagati<strong>on</strong> can be c<strong>on</strong>trolled by an external<br />

electric field.<br />

593


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modelling dengue fever epidemiology; Saturday, July 2, 08:30<br />

José Lourenço<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford, Oxford, UK.<br />

Instituto Gulbenkian de Ciência, Lisb<strong>on</strong>, Portugal.<br />

e-mail: lourenco.jml@gmail.com<br />

Mario Recker<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford, Oxford, United Kingdom.<br />

e-mail: mario.recker@zoo.ox.ac.uk<br />

Determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue virus phylodynamics.<br />

Dengue fever (DF) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e more severe dengue haemorrhagic fever (DHF)<br />

are mosquito borne viral infecti<strong>on</strong>s which have seen a major increase in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> global distributi<strong>on</strong> and total case numbers over <str<strong>on</strong>g>th</str<strong>on</strong>g>e last few decades. There<br />

are currently four antigenically distinct and potentially co-circulating dengue virus<br />

(DENV) serotypes and each <strong>on</strong>e shows substantial genetic diversity, organised into<br />

phylogenetically distinct lineages (genotypes). While <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is some evidence for<br />

positive selecti<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> DENV is supposed to be mostly dominated<br />

by purifying selecti<strong>on</strong> due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>straints imposed by its two-host lifecycle.<br />

Results from our previous work dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough small differences<br />

in viral fitness can explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e rapid expansi<strong>on</strong> and fixati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> novel genotypes, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

fate is ultimately determined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiological landscape in which <str<strong>on</strong>g>th</str<strong>on</strong>g>ey arise.<br />

Using a stochastic, spatially explicit model we revisit previous c<strong>on</strong>clusi<strong>on</strong>s and<br />

address <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> host and vector populati<strong>on</strong> structure <strong>on</strong> DENV molecular<br />

evoluti<strong>on</strong> and disease epidemiology.<br />

594


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Yoram Louzoun<br />

Bar Ilan University<br />

e-mail: louzouy@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.biu.ac.il<br />

Tal Vider<br />

Yaacov Maman<br />

Alexandra Agaranovich<br />

Lea Tsaban<br />

B and T cell immune resp<strong>on</strong>ses; Wednesday, June 29, 11:00<br />

Viruses selectively mutate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir CD8+ T cell epitopes an<br />

optimizati<strong>on</strong> framework, a novel machine learning<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology and a large scale genetic analysis.<br />

The relati<strong>on</strong> between organisms and proteins complexity and between <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

evoluti<strong>on</strong> has been discussed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple generic models. The main<br />

robust claim from most such models is <str<strong>on</strong>g>th</str<strong>on</strong>g>e negative relati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e organism<br />

complexity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> mutati<strong>on</strong> accumulati<strong>on</strong>.<br />

We here validate <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>clusi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong> between viral gene leng<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir CD8 T cell epitope density. Viruses mutate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir epitopes to avoid detecti<strong>on</strong><br />

by CD8 T cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>e following destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir host cell. We propose a<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical model to show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in viruses <str<strong>on</strong>g>th</str<strong>on</strong>g>e epitope density is negatively correlated<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> each protein and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins.<br />

In order to validate <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>clusi<strong>on</strong>, we developed a novel machine learning<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology to combine multiple modalities <str<strong>on</strong>g>of</str<strong>on</strong>g> peptide-protein docking measurement.<br />

We use <str<strong>on</strong>g>th</str<strong>on</strong>g>is me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology and large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> genomic data to compute<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e epitope repertoire presented by over 1,300 viruses in many HLA alleles. We<br />

show <str<strong>on</strong>g>th</str<strong>on</strong>g>at such a negative correlati<strong>on</strong> is indeed observed.This negative correlati<strong>on</strong><br />

is specific to human viruses.<br />

The optimizati<strong>on</strong> framework also predicts a difference between human and n<strong>on</strong>human<br />

viruses, and an effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral life cycle <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epitope density. Proteins<br />

expressed early in <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral life cycle are expected to have a lower epitope density<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>an late proteins.<br />

We define <str<strong>on</strong>g>th</str<strong>on</strong>g>e "Size <str<strong>on</strong>g>of</str<strong>on</strong>g> Immune Repertoire (SIR) score," which represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ratio between <str<strong>on</strong>g>th</str<strong>on</strong>g>e epitope density wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a protein and <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected density. This<br />

score is applied to all sequenced viruses to validate <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimizati<strong>on</strong><br />

model.<br />

The removal <str<strong>on</strong>g>of</str<strong>on</strong>g> early epitopes and <str<strong>on</strong>g>th</str<strong>on</strong>g>e targeting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular immune resp<strong>on</strong>se<br />

to late viral proteins, allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus a time interval to propagate before its host<br />

cells are destroyed by T cells. Interestingly, such a selecti<strong>on</strong> is also observed in<br />

some bacterial proteins. We specifically discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e cases <str<strong>on</strong>g>of</str<strong>on</strong>g> Herpesviruses, HIV<br />

and HBV showing interesting selecti<strong>on</strong> biases.<br />

595


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

John Lowengrub<br />

UC Irvine<br />

e-mail: lowengrb@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.uci.edu<br />

Stem cells and cancer; Wednesday, June 29, 14:30<br />

Feedback, lineages and cancer<br />

We have developed a multispecies c<strong>on</strong>tinuum model to simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cell lineages in solid tumors. The model accounts for spatiotemporally varying<br />

cell proliferati<strong>on</strong> and dea<str<strong>on</strong>g>th</str<strong>on</strong>g> mediated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneous distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen<br />

and soluble proteins. Toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese regulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e rates <str<strong>on</strong>g>of</str<strong>on</strong>g> self-renewal and differentiati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lineages. Terminally differentiated cells release<br />

feedback factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at promote differentiati<strong>on</strong> (e.g., from <str<strong>on</strong>g>th</str<strong>on</strong>g>e TGF superfamily <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

proteins) and decrease rates <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferati<strong>on</strong> (and self-renewal) <str<strong>on</strong>g>of</str<strong>on</strong>g> less differentiated<br />

cells. Stem cells release a short-range feedback factor <str<strong>on</strong>g>th</str<strong>on</strong>g>at promotes self-renewal<br />

(e.g., representative <str<strong>on</strong>g>of</str<strong>on</strong>g> Wnt signaling factors), as well as a l<strong>on</strong>g-range inhibitor<br />

(e.g., representative <str<strong>on</strong>g>of</str<strong>on</strong>g> Wnt inhibitors such as Dkk) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is factor. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumors and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir resp<strong>on</strong>se to treatment is c<strong>on</strong>trolled by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

spatiotemporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling processes. The model predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spatiotemporal heterogeneous distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback factors (Wnt,<br />

Dkk and TGF) and tumor cell populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cells appearing<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor margin, cyes<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> recent experiments. The n<strong>on</strong>linear coupling<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneous expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors, <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneous<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell populati<strong>on</strong>s at different lineage stages and <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor shape may<br />

sufficiently depress feedback c<strong>on</strong>trol in parts <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors to favor eventual escape from<br />

c<strong>on</strong>trol. This is shown to lead to invasive fingering, and enhanced aggressiveness<br />

after standard <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic interventi<strong>on</strong>s. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at using a combinati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

involving differentiati<strong>on</strong> promoters and radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is very effective in eradicating<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor.<br />

596


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: from physical tools to<br />

applicati<strong>on</strong>s in cancer modeling II; Saturday, July 2, 11:00<br />

John Lowengrub<br />

UC Irvine<br />

e-mail: lowengrb@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.uci.edu<br />

Physical <strong>on</strong>cology<br />

Cancer models relating basic science to clinical care in <strong>on</strong>cology may fail to address<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e nuances <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor behavior and <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, as in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case, discussed herein, <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

complex multiscale dynamics leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>ten-observed enhanced invasiveness,<br />

paradoxically induced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e very antiangiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy designed to destroy <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

tumor. Studies would benefit from approaches <str<strong>on</strong>g>th</str<strong>on</strong>g>at quantitatively link <str<strong>on</strong>g>th</str<strong>on</strong>g>e multiple<br />

physical and temporal scales from molecule to tissue in order to <str<strong>on</strong>g>of</str<strong>on</strong>g>fer outcome<br />

predicti<strong>on</strong>s for individual patients. Physical <strong>on</strong>cology is an approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at applies<br />

fundamental principles from <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical and biological sciences to explain certain<br />

cancer behaviors as observable characteristics arising from <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying physical<br />

and biochemical events. For example, <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen molecules <str<strong>on</strong>g>th</str<strong>on</strong>g>rough<br />

tissue affects phenotypic characteristics such as cell proliferati<strong>on</strong>, apoptosis, and<br />

adhesi<strong>on</strong>, which in turn underlie <str<strong>on</strong>g>th</str<strong>on</strong>g>e patient-scale tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and invasiveness.<br />

Here, we illustrate how tumor behavior and treatment resp<strong>on</strong>se may be a quantifiable<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marginally stable molecular and/or cellular c<strong>on</strong>diti<strong>on</strong>s modulated<br />

by inhomogeneity. By incorporating patient-specific genomic, proteomic,<br />

metabolomic, and cellular data into multiscale physical models, physical <strong>on</strong>cology<br />

could complement current clinical practice <str<strong>on</strong>g>th</str<strong>on</strong>g>rough enhanced understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer<br />

behavior, <str<strong>on</strong>g>th</str<strong>on</strong>g>us potentially improving patient survival.<br />

597


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Thursday, June 30, 11:30<br />

Shar<strong>on</strong> Lubkin<br />

Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina State University<br />

e-mail: lubkin@eos.ncsu.edu<br />

Oswaldo Lozoya<br />

Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina State University/University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina-Chapel<br />

Hill<br />

Mechanical c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> spheroid grow<str<strong>on</strong>g>th</str<strong>on</strong>g>: distinct<br />

morphogenetic regimes<br />

We develop a model <str<strong>on</strong>g>of</str<strong>on</strong>g> transport and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elio-mesenchymal interacti<strong>on</strong>s.<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> an avascular solid spheroid inside a passive mesenchyme<br />

or gel shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at sustained volumetric grow<str<strong>on</strong>g>th</str<strong>on</strong>g> requires four generic mechanisms:<br />

(1) grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor, (2) protease, (3) c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> cellularity, and (4) swelling. The<br />

model reveals a bifurcati<strong>on</strong> delineating two distinct morphogenetic regimes: (A)<br />

steady grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, (B) grow<str<strong>on</strong>g>th</str<strong>on</strong>g> arrested by capsule formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesenchyme. In<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> morphogenetic regimes, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> velocity is c<strong>on</strong>stant unless and until a complete<br />

capsule forms. Comprehensive explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e large parameter space reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcati<strong>on</strong> is determined by just two ratios representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative streng<str<strong>on</strong>g>th</str<strong>on</strong>g>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and proteolytic activity. Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> velocity is determined <strong>on</strong>ly by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ratio governing grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, independent <str<strong>on</strong>g>of</str<strong>on</strong>g> proteolytic activity. There is a c<strong>on</strong>tinuum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interior versus surface grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fastest grow<str<strong>on</strong>g>th</str<strong>on</strong>g> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface. The model<br />

provides a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical basis for explaining observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> arrest despite<br />

proteolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> surrounding tissue, and gives a quantitative framework for <str<strong>on</strong>g>th</str<strong>on</strong>g>e design<br />

and interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments involving spheroids, and tissues which are locally<br />

equivalent to spheroids.<br />

598


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Friday, July 1, 14:30<br />

Torbjörn Lundh<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Chalmers and University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: torbjorn.lundh@chalmers.se<br />

Jun Udagawa<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Developmental Biology, Shimane University<br />

e-mail: jun@med.shimane-u.ac.jp<br />

Sven-Erik Hänel<br />

IFP Research AB, 431 22 Mölndal, Sweden<br />

e-mail: haenel@gotanet.com<br />

Hiroki Otani<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Developmental Biology, Shimane University<br />

e-mail: hotani@med.shimane-u.ac.jp<br />

Invariances <str<strong>on</strong>g>of</str<strong>on</strong>g> cross- and trippel-ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> human limbs?<br />

Recall <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex plain, four points, p, q, r, s, can be mapped to four<br />

, if and <strong>on</strong>ly if <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er points, ˜p, ˜q, ˜r, ˜s, by a Möbius transformati<strong>on</strong>, z ↦→ az+b<br />

cz+d<br />

cross-ratio, (p−r)(q−s)<br />

(p−s)(q−r)<br />

, equals <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜p, ˜q, ˜r, ˜s. In [1], a bold and highly<br />

inspiring statement was given <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>secutive joints <str<strong>on</strong>g>of</str<strong>on</strong>g> human<br />

limbs, are invariant, not <strong>on</strong>ly over time, but also between different limbs, and even<br />

different pers<strong>on</strong>s! In order to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>is intriguing statement, but also to<br />

develop new morphometric tools for development studies, we geometrically analyze<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e morphological development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human body, and we examined <str<strong>on</strong>g>th</str<strong>on</strong>g>e crossratio<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree c<strong>on</strong>secutive body parts <str<strong>on</strong>g>th</str<strong>on</strong>g>at are segmented by four landmarks in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>figurati<strong>on</strong>. Moreover, we introduce an generalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross-ratio:<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e triple-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> five landmarks <str<strong>on</strong>g>th</str<strong>on</strong>g>at segments four c<strong>on</strong>secutive parts (e.g. <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

shoulder, upper arm, forearm, and hand) and examined <str<strong>on</strong>g>th</str<strong>on</strong>g>eir grow<str<strong>on</strong>g>th</str<strong>on</strong>g> patterns. The<br />

triple-ratio was defined for five arbitrary points, p, q, r, s, and t as:<br />

κ(p, q, r, s, t) =<br />

|p − r||q − s||r − t|<br />

|q − r||r − s||p − t| .<br />

It is easy to show <str<strong>on</strong>g>th</str<strong>on</strong>g>at also <str<strong>on</strong>g>th</str<strong>on</strong>g>e trippel-ratio is invariant under Möbius transformati<strong>on</strong>s.<br />

The cross- and triple-ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e upper limb and shoulder girdle in fetuses<br />

were c<strong>on</strong>stant when biomechanical landmarks were used al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross-ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e upper limb varied when <str<strong>on</strong>g>th</str<strong>on</strong>g>e anatomical landmarks were used. The cross-ratios<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lower limbs, trunk, and pelvic girdles <str<strong>on</strong>g>of</str<strong>on</strong>g> fetuses differed from <str<strong>on</strong>g>th</str<strong>on</strong>g>eir corresp<strong>on</strong>ding<br />

cross-ratios in adults. These results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>e Möbius grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fetal upper limb and shoulder girdle, but not in <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er body parts we examined.<br />

However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree c<strong>on</strong>tiguous body parts was represented by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e developmental change in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross-ratio. Therefore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e cross- and triple-ratios<br />

may be applicable for <str<strong>on</strong>g>th</str<strong>on</strong>g>e assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> balance or proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e body<br />

parts.<br />

References.<br />

[1] S.V. Petukhov N<strong>on</strong>-Euclidean geometries and algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms <str<strong>on</strong>g>of</str<strong>on</strong>g> living bodies Comput. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Appl.<br />

17:505–534.<br />

599


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Jamie Luo<br />

Centre for Complexity Science, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warwick<br />

e-mail: J.X.Luo@warwick.ac.uk<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew Turner<br />

Centre for Complexity Science, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warwick<br />

Functi<strong>on</strong>ality and Speciati<strong>on</strong> in Boolean Networks<br />

Boolean Networks have been used to model Genetic Regulatory Networks since<br />

Stuart Kauffmann proposed <str<strong>on</strong>g>th</str<strong>on</strong>g>em as a model in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 1960s. Early work focused<br />

<strong>on</strong> how <str<strong>on</strong>g>th</str<strong>on</strong>g>e topology <str<strong>on</strong>g>of</str<strong>on</strong>g> a network influenced its dynamics. We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

inverse problem asking which network topologies satisfy a specified dynamic. In<br />

earlier work by A. Wagner a biological functi<strong>on</strong> or cell process was specified by<br />

an initial c<strong>on</strong>diti<strong>on</strong> v(0) and an end point v1 in <str<strong>on</strong>g>th</str<strong>on</strong>g>e expressi<strong>on</strong> state space. By<br />

so specifying a biological functi<strong>on</strong> <strong>on</strong>e can <str<strong>on</strong>g>th</str<strong>on</strong>g>en ask which networks perform <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

functi<strong>on</strong>. Our view is <str<strong>on</strong>g>th</str<strong>on</strong>g>at in many cases a more appropriate means for defining a<br />

biological functi<strong>on</strong> would be by specifying <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire pa<str<strong>on</strong>g>th</str<strong>on</strong>g> v(0), v(1), ... , v(T). We<br />

will report <strong>on</strong> how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two c<strong>on</strong>trasting definiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> biological functi<strong>on</strong>ality lead<br />

to divergent results for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir respective functi<strong>on</strong>al topologies, particularly regarding<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e implicati<strong>on</strong>s for neutral evoluti<strong>on</strong>, multi-functi<strong>on</strong>ality and speciati<strong>on</strong>.<br />

600


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cell systems: from intercellular interacti<strong>on</strong><br />

to tissue-level traits I; Wednesday, June 29, 14:30<br />

Richard Gejji 1,2 , Pavel M. Lushnikov 3 and Mark Alber 1<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied and Computati<strong>on</strong>al Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Notre Dame, Notre Dame, IN 46656, USA<br />

2 Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, Ohio State University, 1735 Neil<br />

Avenue, Columbus, OH 43210<br />

3 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> New Mexico,<br />

Albuquerque, NM 87131, USA<br />

e-mail: plushnik@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.unm.edu<br />

Macroscopic model <str<strong>on</strong>g>of</str<strong>on</strong>g> self-propelled bacteria swarming wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

regular reversals<br />

Periodic reversals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> in systems <str<strong>on</strong>g>of</str<strong>on</strong>g> self-propelled rod shaped<br />

bacteria enable <str<strong>on</strong>g>th</str<strong>on</strong>g>em to effectively resolve traffic jams formed during swarming and<br />

maximize <str<strong>on</strong>g>th</str<strong>on</strong>g>eir swarming rate. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, a c<strong>on</strong>necti<strong>on</strong> is found between a microscopic<br />

<strong>on</strong>e dimensi<strong>on</strong>al cell-based stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> reversing n<strong>on</strong>-overlapping<br />

bacteria and a macroscopic n<strong>on</strong>-linear diffusi<strong>on</strong> equati<strong>on</strong> describing dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular density. Boltzmann-Matano analysis is used to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>linear<br />

diffusi<strong>on</strong> equati<strong>on</strong> corresp<strong>on</strong>ding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e specific reversal frequency. Macroscopically<br />

(ensemble-vise) averaged stochastic dynamics is shown to be in a very good<br />

agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>linear diffusi<strong>on</strong> equati<strong>on</strong>. Critical<br />

density p0 is obtained such <str<strong>on</strong>g>th</str<strong>on</strong>g>at n<strong>on</strong>linear diffusi<strong>on</strong> is str<strong>on</strong>gly suppressed for p < p0.<br />

An analytical approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pairwise collisi<strong>on</strong> time and semi-analytical fit<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e total jam time per reversal period are also obtained. It is shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

cell populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high reversal frequencies are able to spread out effectively at<br />

high densities. If <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells rarely reverse <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are able to spread out at lower<br />

densities but are less efficient to spread out at higher densities.<br />

601


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Mosquito-Borne Diseases; Tuesday, June 28, 11:00<br />

Angelina Mageni Lutambi 1,2<br />

e-mail: angelina-m.lutambi@unibas.ch<br />

Nakul Chitnis 1<br />

Melissa Penny 1<br />

Tom Smi<str<strong>on</strong>g>th</str<strong>on</strong>g> 1<br />

1 Swiss Tropical and Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Institute, Socinstrasse 574002 BASEL,<br />

Switzerland<br />

2 Data Analysis Cluster, Ifakara Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Institute, Coordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fice,<br />

Kiko Avenue, Mikocheni, PO Box 78373, Dar es Salaam, Tanzania<br />

Modelling mosquito dispersal in a heterogeneous<br />

envir<strong>on</strong>ment<br />

Mosquito foraging behaviour for hosts and ovipositi<strong>on</strong> sites/habitats is an important<br />

aspect for malaria c<strong>on</strong>trol. Recent studies have highlighted <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats <strong>on</strong> mosquito search for ovipositi<strong>on</strong> sites. While o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers have<br />

highlighted <str<strong>on</strong>g>th</str<strong>on</strong>g>e significance <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat eliminati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in certain distances from human<br />

habitati<strong>on</strong>s to prevent mosquitoes using human hosts for blood meals. While<br />

minimizing or eliminating <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> mosquitoes <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> malaria has<br />

been a c<strong>on</strong>cern <str<strong>on</strong>g>of</str<strong>on</strong>g> current malaria research, mosquito dynamics and mosquito spatial<br />

distributi<strong>on</strong> remain a challenge. The goal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to describe and understand<br />

mosquito populati<strong>on</strong> dynamics in relati<strong>on</strong> to dispersal in spatial envir<strong>on</strong>ments.<br />

A simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mosquito life cycle is formulated<br />

to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> mosquitoes. Dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> adult mosquitoes<br />

searching ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er for hosts or ovipositi<strong>on</strong> sites is also modelled and its effects incorporated<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics. The spatial aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> mosquito dispersal is<br />

described by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir movement between patches in a two-dimensi<strong>on</strong>al spatial envir<strong>on</strong>ment.<br />

A hexag<strong>on</strong>al grid wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each hexag<strong>on</strong> representing a patch is used where<br />

vital dynamics are allowed to occur. Numerical simulati<strong>on</strong>s are carried out to<br />

dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

The modelled populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> each stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mosquito life cycle in<br />

space are presented and <str<strong>on</strong>g>th</str<strong>on</strong>g>e links between factors influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial dynamics<br />

are discussed.<br />

602


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Saturday, July 2, 11:00<br />

Wes Maciejewski<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Queen’s University, Canada<br />

e-mail: wes@mast.queensu.ca<br />

Resistance Distance and Relatedness <strong>on</strong> an Evoluti<strong>on</strong>ary<br />

Graph<br />

When investigating evoluti<strong>on</strong> in structured populati<strong>on</strong>s, it is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>venient to<br />

c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> as an evoluti<strong>on</strong>ary graph – individuals as nodes, and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

relati<strong>on</strong>s as edges. There has, in recent years, been a surge <str<strong>on</strong>g>of</str<strong>on</strong>g> interest in evoluti<strong>on</strong>ary<br />

graphs, especially in <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> social behaviors ([5],[6]). An<br />

inclusive fitness framework is best suited for <str<strong>on</strong>g>th</str<strong>on</strong>g>is type <str<strong>on</strong>g>of</str<strong>on</strong>g> study [2]. An expressi<strong>on</strong><br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic similarity between individuals residing <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e graph is required for<br />

inclusive fitness calculati<strong>on</strong>s. This has been a major hindrance for work in <str<strong>on</strong>g>th</str<strong>on</strong>g>is area<br />

as highly technical ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten required [1]. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong>, I will<br />

derive a recent result [4] <str<strong>on</strong>g>th</str<strong>on</strong>g>at links genetic relatedness between haploid individuals<br />

<strong>on</strong> an evoluti<strong>on</strong>ary graph to <str<strong>on</strong>g>th</str<strong>on</strong>g>e resistance between vertices <strong>on</strong> a corresp<strong>on</strong>ding<br />

electrical network. Specifically, if Rij be <str<strong>on</strong>g>th</str<strong>on</strong>g>e relatedness and γij <str<strong>on</strong>g>th</str<strong>on</strong>g>e resistance<br />

distance [3] bo<str<strong>on</strong>g>th</str<strong>on</strong>g> between individuals i and j <strong>on</strong> a transitive graph G wi<str<strong>on</strong>g>th</str<strong>on</strong>g> N<br />

vertices each <str<strong>on</strong>g>of</str<strong>on</strong>g> degree k. Then,<br />

Rij = 1 − γij<br />

An example <str<strong>on</strong>g>th</str<strong>on</strong>g>at dem<strong>on</strong>strates <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is result over c<strong>on</strong>temporary<br />

approaches will be provided. I will discuss some new insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relatedness c<strong>on</strong>cept brought about by <str<strong>on</strong>g>th</str<strong>on</strong>g>is result and menti<strong>on</strong> possible directi<strong>on</strong>s<br />

for future investigati<strong>on</strong>.<br />

References.<br />

[1] Grafen, A. (2007). An Inclusive Fitness Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Alrtuism <strong>on</strong> a Cyclical Network. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong>ary Biology, 20, pp. 2278-2283.<br />

[2] Hamilt<strong>on</strong>, W. D. (1964) The Genetical Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Social Behaviour I and II. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Biology, 7, pp. 1–16, and 17-52.<br />

[3] Klein, D.J., Randić, M. (1993). Resistance Distance. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Chemistry, 12,<br />

pp. 81-95.<br />

[4] Maciejewski, W. (for<str<strong>on</strong>g>th</str<strong>on</strong>g>coming). Resistance Distance and Relatedness <strong>on</strong> an Evoluti<strong>on</strong>ary<br />

Graph.<br />

[5] Nowak, M.A. (2006). Evoluti<strong>on</strong>ary Dynamics. Cambridge, MA: Harvard University Press.<br />

[6] Taylor, P., Day, T., Wild, G. (2007). Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cooperati<strong>on</strong> in a Finite Homogeneous Graph.<br />

Nature, 447, pp. 469-472.<br />

γave<br />

.<br />

603


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Delay Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s I; Friday, July 1, 14:30<br />

Michael C. Mackey<br />

McGill University<br />

e-mail: michael.mackey@mcgill.ca<br />

Using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling to tailor <str<strong>on</strong>g>th</str<strong>on</strong>g>e administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and G-CSF<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will briefly describe recent work <str<strong>on</strong>g>th</str<strong>on</strong>g>at we have carried out using a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human hematopoiesis to investigate optimal delivery<br />

strategies for granulocyte col<strong>on</strong>y stimulating factor (G-CSF) in <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cyclical neutropenia, and to aid patients in <str<strong>on</strong>g>th</str<strong>on</strong>g>e post-chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

phase. Additi<strong>on</strong>ally I will discuss optimal ways to deliver chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy.<br />

604


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulati<strong>on</strong>; Tuesday, June 28, 11:00<br />

Michael C. Mackey<br />

McGill University<br />

e-mail: michael.mackey@mcgill.ca<br />

Marta Tyran-Kamińska<br />

Silesian University<br />

RomainYvinec<br />

Universite Ly<strong>on</strong> 1<br />

Molecular distributi<strong>on</strong>s in gene regulatory dynamics<br />

Extending <str<strong>on</strong>g>th</str<strong>on</strong>g>e work <str<strong>on</strong>g>of</str<strong>on</strong>g> Friedman et al.(2006), we study <str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular c<strong>on</strong>stituents in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise arising from ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

bursting transcripti<strong>on</strong> or translati<strong>on</strong>, or noise in degradati<strong>on</strong> rates. We examine<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e global stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stati<strong>on</strong>ary density as well as its bifurcati<strong>on</strong> structure.<br />

We have compared our results wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same model systems<br />

(ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er inducible or repressible oper<strong>on</strong>s) in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> any stochastic effects, and<br />

shown <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>dence between behaviour in <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic system and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

stochastic analogs. We have identified key dimensi<strong>on</strong>less parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trol<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two stable steady states in <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic case, or unimodal<br />

and bimodal densities in <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic systems, and detailed <str<strong>on</strong>g>th</str<strong>on</strong>g>e analytic<br />

requirements for <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> different behaviours. This approach provides, in<br />

some situati<strong>on</strong>s, an alternative to computati<strong>on</strong>ally intensive stochastic simulati<strong>on</strong>s.<br />

Our results indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simple models we have examined,<br />

bursting and degradati<strong>on</strong> noise cannot be distinguished analytically when<br />

present al<strong>on</strong>e.<br />

605


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Dorota Mackiewicz<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genomics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland<br />

e-mail: dorota@smorfland.uni.wroc.pl<br />

Paulo Murilo Castro de Oliveira<br />

Instituto de Física, Universidade Federal Fluminense; Av. Litorânea<br />

s/n, Boa Viagem, Niterói 24210-340, RJ, Brazil<br />

Suzana Moss de Oliveira<br />

Instituto de Física, Universidade Federal Fluminense; Av. Litorânea<br />

s/n, Boa Viagem, Niterói 24210-340, RJ, Brazil<br />

Stanisław Cebrat<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genomics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland<br />

Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong> hotspots in human genome<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> computer simulati<strong>on</strong>s and real data<br />

Analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> meiotic recombinati<strong>on</strong> between homologous human chromosomes revealed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e uneven distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong> events al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e chromosomes.<br />

This phenomen<strong>on</strong> has been observed in different genomic scales. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e megabase<br />

scale, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean recombinati<strong>on</strong> rate is higher in <str<strong>on</strong>g>th</str<strong>on</strong>g>e sub-telomeric regi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>an in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

middle parts <str<strong>on</strong>g>of</str<strong>on</strong>g> chromosomes. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, at <str<strong>on</strong>g>th</str<strong>on</strong>g>e finer scale, recombinati<strong>on</strong><br />

events tend to cluster into narrow spans <str<strong>on</strong>g>of</str<strong>on</strong>g> a few kb in leng<str<strong>on</strong>g>th</str<strong>on</strong>g>, which are called recombinati<strong>on</strong><br />

hotspots. These short regi<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> very high recombinati<strong>on</strong> frequency<br />

occur also more frequently at <str<strong>on</strong>g>th</str<strong>on</strong>g>e ends <str<strong>on</strong>g>th</str<strong>on</strong>g>an in <str<strong>on</strong>g>th</str<strong>on</strong>g>e centre <str<strong>on</strong>g>of</str<strong>on</strong>g> chromosome. They<br />

were discovered based <strong>on</strong> high-resoluti<strong>on</strong> recombinati<strong>on</strong> maps which were inferred<br />

from high-density single-nucleotide polymorphism (SNP) data using linkage disequilibrium<br />

(LD) patterns. Recently, it has been reported a degenerate 13 bp l<strong>on</strong>g<br />

motif, CCNCCNTNNCCNC, which is overrepresented inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e human hotspots.<br />

Moreover, many experiments suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e zinc-finger protein PRDM9 binds to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is motif, which can indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a comm<strong>on</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong><br />

regulati<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, hotspot locati<strong>on</strong>s are not shared between human<br />

and chimpanzee, which suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>eir short lifespan. Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

recombinati<strong>on</strong> hotspots can provide insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e linkage disequilibrium patterns<br />

and help create <str<strong>on</strong>g>th</str<strong>on</strong>g>e accurate linkage map for disease associati<strong>on</strong> studies. We have<br />

found <str<strong>on</strong>g>th</str<strong>on</strong>g>at many recombinati<strong>on</strong> properties, for example <str<strong>on</strong>g>th</str<strong>on</strong>g>e uneven distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hotspots, can be predicted and explained by computer simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong><br />

evoluti<strong>on</strong>. Assuming spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e chromosomes and finite<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s, simulati<strong>on</strong>s render a perfect picture <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong> observed<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e human genome. The obtained results <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>s indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crossing points are subjected to evoluti<strong>on</strong>. Therefore, it is expected <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e recombinati<strong>on</strong> motifs for <str<strong>on</strong>g>th</str<strong>on</strong>g>e hotspot regulati<strong>on</strong> should follow<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e uneven distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong> events. In order to test our hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis,<br />

we check <str<strong>on</strong>g>th</str<strong>on</strong>g>e locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e motif al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e human chromosomes using bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

physical and <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic map. The analyses showed <str<strong>on</strong>g>th</str<strong>on</strong>g>e correlati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> motif. In additi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e examinati<strong>on</strong><br />

606


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distances between motifs c<strong>on</strong>firmed <str<strong>on</strong>g>th</str<strong>on</strong>g>eir n<strong>on</strong> random distributi<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

human chromosomes.<br />

607


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Paweł Mackiewicz<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genomics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland<br />

e-mail: pamac@smorfland.uni.wroc.pl<br />

Zuzanna Drulis-Kawa<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics and Microbiology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wrocław, Przybyszewskiego<br />

63/77, 51-148 Wrocław, Poland<br />

Ewa Maciaszczyk-Dziubinska<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wrocław, Kan<strong>on</strong>ia 6/8, 50-<br />

328 Wrocław Poland<br />

Andrew M. Kropinski<br />

Laboratory for Foodborne Zo<strong>on</strong>oses, Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Agency <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada,<br />

110 St<strong>on</strong>e Road West, Guelph, ON, N1G 3W4, Canada<br />

Clustering and genomic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> phages from Podoviridae<br />

family<br />

Phage genomes evolve, according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e modular evoluti<strong>on</strong>, by <str<strong>on</strong>g>th</str<strong>on</strong>g>e exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> interchangeable<br />

genetic elements. This causes <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard hierarchical branching<br />

phylogeny <str<strong>on</strong>g>of</str<strong>on</strong>g> phages and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir classificati<strong>on</strong> are unsatisfied and even impossible. To<br />

show relati<strong>on</strong>ships between <str<strong>on</strong>g>th</str<strong>on</strong>g>e phage genomes by an alternative approach, we applied<br />

CLANS s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware which uses a versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fruchterman–Reingold graph layout<br />

algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m to visualize pairwise sequence similarities in ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er two-dimensi<strong>on</strong>al<br />

or <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al space. The analyses were performed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e 92 Podoviridae<br />

complete genome sequences using all-against-all TBLASTX searches <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e amino<br />

acid level. Additi<strong>on</strong>ally, we made <str<strong>on</strong>g>th</str<strong>on</strong>g>e pairwise comparis<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleotide level<br />

in BLASTN for 36 genome sequences from Autographivirinae subfamily to study<br />

relati<strong>on</strong>ships between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese phages in detail. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e studies we also included <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

newly sequenced genome from Klebsiella pneum<strong>on</strong>iae KP34 phage. The analyses<br />

made possible to group <str<strong>on</strong>g>th</str<strong>on</strong>g>e phage genomes in clusters and proposed some modificati<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir current tax<strong>on</strong>omic classificati<strong>on</strong>. The applied me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is very sensitive<br />

and enabled to find a signal coming from horiz<strong>on</strong>tal gene transfer from some Picovirinae<br />

members to Lactococcus phage KSY1. Detailed comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genomes<br />

from phiKMV viruses revealed distinct gene c<strong>on</strong>tent and arrangement at <str<strong>on</strong>g>th</str<strong>on</strong>g>e 3’-end<br />

genomic regi<strong>on</strong> which may be resp<strong>on</strong>sible for differences in <str<strong>on</strong>g>th</str<strong>on</strong>g>e host recogniti<strong>on</strong> and<br />

infecti<strong>on</strong> mechanisms.<br />

608


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: from physical tools to<br />

applicati<strong>on</strong>s in cancer modeling I; Saturday, July 2, 08:30<br />

Paul Macklin<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee, United Kingdom<br />

e-mail: Paul.Macklin@Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>Cancer.org<br />

Mary E. Edgert<strong>on</strong><br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, M.D. Anders<strong>on</strong> Cancer Center, USA<br />

Vittorio Cristini<br />

Depts. <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology & Chemical Engineering, U. <str<strong>on</strong>g>of</str<strong>on</strong>g> New Mexico, USA<br />

Lee B. Jordan, Colin A. Purdie<br />

NHS Tayside Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology / University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee, UK<br />

Andrew J. Evans, Alastair M. Thomps<strong>on</strong><br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Surgical & Molecular Oncology, U. <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee, UK<br />

An illustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> patient-specific cancer modelling: from<br />

microscopic data to macroscopic, quantitative predicti<strong>on</strong>s<br />

Ductal carcinoma in situ (DCIS)—a type <str<strong>on</strong>g>of</str<strong>on</strong>g> breast cancer whose grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is c<strong>on</strong>fined<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e duct lumen—is a significant precursor to invasive breast carcinoma.<br />

DCIS is comm<strong>on</strong>ly detected as a subtle pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> calcificati<strong>on</strong>s in mammograms.<br />

Mammograms are also used to plan surgical resecti<strong>on</strong> (lumpectomy) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour,<br />

but multiple surgeries are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten required to fully eliminate DCIS. This highlights<br />

deficiencies in current surgical planning. Immunohistochemical measurements have<br />

been proposed to assess DCIS and plan treatment, but no standard has emerged<br />

to quantitatively predict a patient’s clinical progressi<strong>on</strong> (i.e., macroscopic measurements<br />

such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate) based up<strong>on</strong> such microscopic measurements.<br />

We present a mechanistic, agent-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> solid-type DCIS wi<str<strong>on</strong>g>th</str<strong>on</strong>g> comed<strong>on</strong>ecrosis<br />

and calcificati<strong>on</strong> [1]. Each agent has a lattice-free positi<strong>on</strong> and phenotypic<br />

state. Cells move by exchanging biomechanical forces wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cells and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e basement membrane. Each phenotypic state has a “submodel” <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in<br />

cell volume and compositi<strong>on</strong>. Phenotypic transiti<strong>on</strong>s from <str<strong>on</strong>g>th</str<strong>on</strong>g>e quiescent state are<br />

regulated by proteomic- and microenvir<strong>on</strong>ment-dependent stochastic processes. We<br />

combine a model analysis, a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically-oriented literature search, and a new<br />

patient-specific calibrati<strong>on</strong> protocol to fully c<strong>on</strong>strain and calibrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to<br />

an individual patient’s immunohistochemical and morphometric data [3].<br />

The model predicts linear grow<str<strong>on</strong>g>th</str<strong>on</strong>g> at approximately 7–10 mm per year, c<strong>on</strong>sistent<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mammography [4]. It also predicts a linear correlati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e calcificati<strong>on</strong><br />

size (as in a mammogram) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour size (post-operative pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology<br />

measurement), in excellent quantitative agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 87 clinical data points [4].<br />

These results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at hybrid multiscale models can be rigorously calibrated to<br />

molecular data by upscaling mechanistic cell-scale models. Such multiscale models<br />

can potentially bring ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics to <str<strong>on</strong>g>th</str<strong>on</strong>g>e clinic to improve patient care.<br />

References.<br />

[1] P. Macklin et al., Patient-calibrated agent-based modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> ductal carcinoma in situ (DCIS)<br />

I: Model formulati<strong>on</strong> and analysis, J. Theor. Biol. (2011, in review)<br />

[2] P. Macklin et al., Patient-calibrated agent-based modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> ductal carcinoma in situ (DCIS)<br />

II: From microscopic measurements to macroscopic predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> clinical progressi<strong>on</strong>, J.<br />

Theor. Biol. (2011, in review)<br />

609


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] J.Z. Thoms<strong>on</strong> et al., Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> ductal carcinoma in situ (DCIS): a retrospective<br />

analysis based <strong>on</strong> mammographic findings, Br. J. Canc., 85 225–7 (2001)<br />

[4] M.A.J. de Roos et al., Correlati<strong>on</strong> between imaging and pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology in ductal carcinoma in situ<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e breast, World J. Surg. Onco. 2 4 (2004)<br />

610


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanical Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Movement and Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cells and Tissues II;<br />

Wednesday, June 29, 17:00<br />

Paul Macklin<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee, United Kingdom<br />

e-mail: Paul.Macklin@Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>Cancer.org<br />

Mary E. Edgert<strong>on</strong><br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, M.D. Anders<strong>on</strong> Cancer Center, USA<br />

Vittorio Cristini<br />

Depts. <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology & Chemical Engineering, U. <str<strong>on</strong>g>of</str<strong>on</strong>g> New Mexico, USA<br />

Lee B. Jordan, Colin A. Purdie<br />

NHS Tayside Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology / University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee, UK<br />

Andrew J. Evans, Alastair M. Thomps<strong>on</strong><br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Surgical & Molecular Oncology, U. <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee, UK<br />

Mechanistic cell-scale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> ductal carcinoma in situ<br />

(DCIS): impact <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanics in comed<strong>on</strong>ecrosis<br />

Ductal carcinoma in situ (DCIS)—a type <str<strong>on</strong>g>of</str<strong>on</strong>g> breast cancer whose grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is c<strong>on</strong>fined<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e duct lumen—is a significant precursor to invasive breast carcinoma. The<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> a central necrotic core in <strong>on</strong>e or more affected ducts (comed<strong>on</strong>ecrosis) indicates<br />

poorer patient prognosis. Microcalcificati<strong>on</strong>s—calcium phosphate deposits<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at gradually replace necrotic cytoplasmic debris—are critically important to detecting<br />

DCIS by mammography. N<strong>on</strong>e<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, most models <strong>on</strong>ly include necrosis as<br />

a simplistic volume loss term, and n<strong>on</strong>e have examined necrotic cell calcificati<strong>on</strong>.<br />

We present a mechanistic, agent-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> solid-type DCIS wi<str<strong>on</strong>g>th</str<strong>on</strong>g> comed<strong>on</strong>ecrosis<br />

and calcificati<strong>on</strong> [1]. Each agent has a lattice-free positi<strong>on</strong> and phenotypic<br />

state. Cells move under <str<strong>on</strong>g>th</str<strong>on</strong>g>e balance <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanical forces <str<strong>on</strong>g>th</str<strong>on</strong>g>at are exchanged<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>e basement membrane. Each phenotypic state has<br />

a “submodel” <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in cell volume and compositi<strong>on</strong>. Necrotic cells swell, lyse,<br />

and leak cytoplasmic fluid. Their nuclei degrade (pyknosis), and microcalcificati<strong>on</strong>s<br />

form in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir cytoplasm and deteriorate over l<strong>on</strong>g time scales [2]. Phenotypic transiti<strong>on</strong>s<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e quiescent state are regulated by proteomic- and microenvir<strong>on</strong>mentdependent<br />

stochastic processes. The model is fully calibrated to patient data [3].<br />

The model predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>at fast necrotic cell swelling and lysis account for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mechanical separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e viable rim and necrotic core seen in histopa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology—<br />

a feature <str<strong>on</strong>g>of</str<strong>on</strong>g>ten assumed to be an artifact <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue preparati<strong>on</strong>. Necrotic cell lysis is<br />

a major source <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical relaxati<strong>on</strong>, directing proliferative cell flux towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

duct centre, ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e duct. Due to <str<strong>on</strong>g>th</str<strong>on</strong>g>is necrotic “flux absorbing” effect,<br />

DCIS grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is linear, and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is slower in larger ducts, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a minimum grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 7.5 mm/year—in excellent agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mammography [4]. These results<br />

illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>at well-calibrated, mechanistic cell modelling can provide quantitative<br />

insight <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biophysical phenomena <str<strong>on</strong>g>th</str<strong>on</strong>g>at drive cancer progressi<strong>on</strong>.<br />

References.<br />

[1] P. Macklin et al., Patient-calibrated agent-based modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> ductal carcinoma in situ (DCIS)<br />

I: Model formulati<strong>on</strong> and analysis, J. Theor. Biol. (2011, in review)<br />

[2] P. Macklin et al., An improved model <str<strong>on</strong>g>of</str<strong>on</strong>g> necrosis and calcificati<strong>on</strong>: quantitative comparis<strong>on</strong><br />

against ductal carcinoma in situ (DCIS) histopa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology and radiology, (2011, in preparati<strong>on</strong>)<br />

611


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] P. Macklin et al., Patient-calibrated agent-based modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> ductal carcinoma in situ (DCIS)<br />

II: From microscopic measurements to macroscopic predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> clinical progressi<strong>on</strong>, J.<br />

Theor. Biol. (2011, in review)<br />

[4] J.Z. Thoms<strong>on</strong> et al., Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> ductal carcinoma in situ (DCIS): a retrospective<br />

analysis based <strong>on</strong> mammographic findings, Br. J. Canc., 85 225–7 (2001)<br />

612


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Wednesday, June 29, 17:00<br />

Anotida Madzvamuse<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex, Bright<strong>on</strong>, BN1 9QH,<br />

UK<br />

e-mail: a.madzvamuse@sussex.ac.uk<br />

Raquel Barreira<br />

Escola Superior de Tecnologia do Barreiro/IPS, Rua Américo da Silva<br />

Marinho-Lavradio, 2839-001 Barreiro, Portugal<br />

e-mail: raquel.barreira@estbarreiro.ips.pt<br />

Charlie M. Elliott<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Institute and Centre for Scientific Computing, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Warwick, Coventry CV4 7AL, UK<br />

e-mail: C.M.Elliott@warwick.ac.uk<br />

The evolving surface finite element me<str<strong>on</strong>g>th</str<strong>on</strong>g>od (ESFEM) for<br />

pattern formati<strong>on</strong> <strong>on</strong> evolving biological surfaces<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we propose models and a numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for pattern formati<strong>on</strong> <strong>on</strong><br />

evolving curved surfaces. We formulate reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s [4] <strong>on</strong> evolving<br />

surfaces using <str<strong>on</strong>g>th</str<strong>on</strong>g>e material transport formula, surface gradients and diffusive<br />

c<strong>on</strong>servati<strong>on</strong> laws [1]. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface is defined by a material surface<br />

velocity. The numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evolving surface finite element<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od (ESFEM) [2, 3]. The key idea is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Γ by a<br />

triangulated surface Γh c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> a uni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> triangles wi<str<strong>on</strong>g>th</str<strong>on</strong>g> vertices <strong>on</strong> Γ. A<br />

finite element space <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s is <str<strong>on</strong>g>th</str<strong>on</strong>g>en defined by taking <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous functi<strong>on</strong>s<br />

<strong>on</strong> Γh which are linear affine <strong>on</strong> each simplex <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e polyg<strong>on</strong>al surface. To dem<strong>on</strong>strate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e capability, flexibility, versatility and generality <str<strong>on</strong>g>of</str<strong>on</strong>g> our me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology we<br />

present results for uniform isotropic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> as well as anisotropic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong><br />

surfaces and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> coupled to <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong> system.<br />

The surface finite element me<str<strong>on</strong>g>th</str<strong>on</strong>g>od provides a robust numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for solving<br />

partial differential systems <strong>on</strong> c<strong>on</strong>tinuously evolving domains and surfaces wi<str<strong>on</strong>g>th</str<strong>on</strong>g> numerous<br />

applicati<strong>on</strong>s in developmental biology, tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and cell movement<br />

and deformati<strong>on</strong>.<br />

References.<br />

[1] Barreira, R. Elliott, C.M. & Madzvamuse, A. (2011). The surface finite element me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

(SFEM) for pattern formati<strong>on</strong> <strong>on</strong> evolving biological surfaces. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol., in press.<br />

[2] Dziuk, G. and Elliott, C.M. (2007) Finite elements <strong>on</strong> evolving surfaces. IMA J. Num. Anal.,<br />

27, 262-292.<br />

[3] Dziuk, G. and Elliott, C.M. (2007) Surface finite elements for parabolic equati<strong>on</strong>s. J. Comp.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>., 25, 430-439.<br />

[4] Madzvamuse, A. Maini, P. K. and Wa<str<strong>on</strong>g>th</str<strong>on</strong>g>en, A. J. (2003). A moving grid finite element me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

applied to a model biological pattern generator. J. Comp. Phys. 190, 478-500.<br />

613


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Carsten Magnus<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Integrative Biology, ETH Zürich, Switzerland<br />

e-mail: carsten.magnus@env.e<str<strong>on</strong>g>th</str<strong>on</strong>g>z.ch<br />

Roland R. Regoes<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Integrative Biology, ETH Zürich, Switzerland<br />

e-mail: roland.regoes@env.e<str<strong>on</strong>g>th</str<strong>on</strong>g>z.ch<br />

Restricted Occupancy Models for Human Immunodeficiency<br />

Virus Neutralizati<strong>on</strong> by Antibodies<br />

Viruses are not able to replicate by <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves. They need a host cell, which <str<strong>on</strong>g>th</str<strong>on</strong>g>ey<br />

manipulate to produce <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic code <str<strong>on</strong>g>th</str<strong>on</strong>g>ey provide. To <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

end, <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus has to enter <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. The Human Immunodeficiency Virus (HIV) has<br />

spikes <strong>on</strong> its surface <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree identical envelope proteins. These spikes<br />

attach to target cell receptors and induce <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell.<br />

To prevent <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune system elicits antibodies <str<strong>on</strong>g>th</str<strong>on</strong>g>at bind to specific<br />

structures <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envelope proteins. If <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> spikes necessary for infecti<strong>on</strong><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> antibodies binding to <strong>on</strong>e spike such <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e spike is rendered<br />

n<strong>on</strong>-functi<strong>on</strong>al are known, <strong>on</strong>e can estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> antibodies needed to<br />

neutralize <strong>on</strong>e viri<strong>on</strong> or a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viri<strong>on</strong>s.<br />

However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> spikes <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e viri<strong>on</strong>’s surface vary from viri<strong>on</strong> to viri<strong>on</strong> and<br />

antibodies can bind randomly to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envelope proteins <str<strong>on</strong>g>of</str<strong>on</strong>g> different spikes. These<br />

effects make it impossible to directly determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> neutralizing antibodies.<br />

We present ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporate <str<strong>on</strong>g>th</str<strong>on</strong>g>ese random effects<br />

and allow to derive lower and upper bounds for <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> antibodies <str<strong>on</strong>g>th</str<strong>on</strong>g>at have<br />

to bind to neutralize a viri<strong>on</strong> or a viri<strong>on</strong> populati<strong>on</strong>. In additi<strong>on</strong>, by using restricted<br />

occupancy <str<strong>on</strong>g>th</str<strong>on</strong>g>eory, we are able to calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> antibodies<br />

neutralizing <strong>on</strong>e viri<strong>on</strong> and a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viri<strong>on</strong>s.<br />

614


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 14:30<br />

, Mohammed Shuker<br />

Mohammed Shuker Mahmood<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Mechanical Engineering Faculty,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Žilina, 010 26 Žilina, Slovakia<br />

e-mail: mahmoodm@fstroj.uniza.sk<br />

Silvia Mahmood<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Biochemistry, Jessenius Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Comenius<br />

University, 037 54 Martin, Slovakia<br />

e-mail: mahmood@jfmed.uniba.sk<br />

Dušan Dobrota<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Biochemistry, Jessenius Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Comenius<br />

University, 037 54 Martin, Slovakia<br />

e-mail: dobrota@jfmed.uniba.sk<br />

Numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>tinuum model for avascular<br />

tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Avascular grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is a benign stage <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer. Multicellular spheroids serve as<br />

powerful 3D experimental model system for <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> solid<br />

tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. We present results obtained from using a c<strong>on</strong>tinuum model <str<strong>on</strong>g>th</str<strong>on</strong>g>at we<br />

previously developed (Mahmood et al., 2010, 2011). The <str<strong>on</strong>g>th</str<strong>on</strong>g>ree cell types c<strong>on</strong>sidered<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model are: <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferating cells, able to grow and divide at intervals<br />

dependent up<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir size, envir<strong>on</strong>ment and regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell cycle; <str<strong>on</strong>g>th</str<strong>on</strong>g>e quiescent<br />

n<strong>on</strong>-dividing cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at may return to <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferative part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cycle ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er by<br />

an increase in nutrient c<strong>on</strong>centrati<strong>on</strong> or in resp<strong>on</strong>se to external stimuli such as<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor; dead cells due to apoptosis or necrosis. We assume a different motile<br />

resp<strong>on</strong>se kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferating and quiescent cells to <str<strong>on</strong>g>th</str<strong>on</strong>g>e available nutrient<br />

gradient. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model includes viable cell diffusi<strong>on</strong>, diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular<br />

material, viability inhibitor c<strong>on</strong>tributing to <str<strong>on</strong>g>th</str<strong>on</strong>g>e expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> necrotic centre and<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> dead cell. This means <str<strong>on</strong>g>th</str<strong>on</strong>g>at our model is a system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> parabolic and hyperbolic types. The numerical simulati<strong>on</strong>s are performed using<br />

different sets <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, including biologically realistic <strong>on</strong>es, to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese model parameters <strong>on</strong> reaching <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady state reflecting<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> saturati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> viable cells, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spheroid size.<br />

Acknowledgement: This work was supported by project "CENTER OF EXCEL-<br />

LENCY FOR RESEARCH IN PERSONALIZED THERAPY (CEVYPET)", code:<br />

26- 220120053, co-financed from EU sources and <str<strong>on</strong>g>European</str<strong>on</strong>g> Regi<strong>on</strong>al Development<br />

Fund and by project "CENTER OF TRANSLATIONAL MEDICINE" co-financed<br />

from EC sources and <str<strong>on</strong>g>European</str<strong>on</strong>g> Regi<strong>on</strong>al Development Fund, by Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Slovak Republic 2007/57-UK-17.<br />

References.<br />

[1] Mahmood, M. S., Mahmood, S., Dobrota, D., A numerical algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for avascular tumour<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> model. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computers in Simulati<strong>on</strong>, Vol. 80 (6),(2010), pp. 1269-1277.<br />

[2] Mahmood, M. S., Mahmood, S., Dobrota, D., Formulati<strong>on</strong> and numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

c<strong>on</strong>tinuum model <str<strong>on</strong>g>of</str<strong>on</strong>g> avascular tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Accepted in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Bioscience.<br />

615


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ludovic Mailleret<br />

INRA, Sophia Antipolis, France<br />

e-mail: ludovic.mailleret@sophia.inra.fr<br />

Magda Castel<br />

INRA, Agrocampus Ouest, Rennes, France<br />

e-mail: castel@agrocampus-ouest.fr<br />

Frédéric Hamelin<br />

INRA, Agrocampus Ouest, Rennes, France<br />

e-mail: Frederic.hamelin@agrocampus-ouest.fr<br />

Epidemics; Tuesday, June 28, 11:00<br />

From elaborate to compact seas<strong>on</strong>al plant epidemic models<br />

Seas<strong>on</strong>ality, or periodic host absence, is a central feature in Plant Epidemiology.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is respect, seas<strong>on</strong>al plant epidemic models take into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

parasite overwinters and generate new infecti<strong>on</strong>s. The former are termed primary<br />

infecti<strong>on</strong>s while <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter are sec<strong>on</strong>dary infecti<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature, <strong>on</strong>e finds two<br />

classes <str<strong>on</strong>g>of</str<strong>on</strong>g> models: elaborate models, where primary infecti<strong>on</strong> dynamics are explicit<br />

[1, 2], and lower-dimensi<strong>on</strong>al, compact, models, where primary infecti<strong>on</strong> dynamics<br />

are implicit [3, 4]. The way compact models may derive from elaborate models has<br />

not been made explicit yet.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>tributi<strong>on</strong>, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at approximating primary infecti<strong>on</strong> dynamics<br />

as a fast process compared to sec<strong>on</strong>dary infecti<strong>on</strong>s in two elaborate models translate<br />

into two compact forms. Yet, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese are less linear <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e compact models<br />

usually found in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature. It is <strong>on</strong>ly in some particular instances <str<strong>on</strong>g>th</str<strong>on</strong>g>at we find<br />

back <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter models. In particular, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at density dependence in primary<br />

infecti<strong>on</strong> dynamics has a pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound influence <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e compact form. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

models seems to produce fairly similar dynamics, we highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a structural<br />

difference between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e co-existence, or competitive<br />

exclusi<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> different parasite strains.<br />

References.<br />

[1] Truscott JE, Webb CR, Gilligan CA (1997) Asymptotic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

primary and sec<strong>on</strong>dary infecti<strong>on</strong>. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology 59(6):1101–1123.<br />

[2] Madden LV, van den Bosch F (2002) A populati<strong>on</strong>-dynamics approach to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reat <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

plant pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens as biological weap<strong>on</strong>s against annual crops. BioScience 52(1):65–74.<br />

[3] Madden LV, van den Bosch F (2007) The study <str<strong>on</strong>g>of</str<strong>on</strong>g> plant diseases epidemics. A.P.S. Press,<br />

Saint Paul.<br />

[4] van den Berg F, Bacaer N, Metz JAJ, Lannou C, van den Bosch F (2011) Periodic host<br />

absence can select for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> higher or lower parasite transmissi<strong>on</strong> rates. Evoluti<strong>on</strong>ary Ecology.<br />

25(1):121-137.<br />

616


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective phenomena in biological systems; Saturday, July 2,<br />

08:30<br />

Danuta Makowiec<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Physics and Astrophysics<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Gdańsk, Gdańsk, Poland<br />

e-mail: fizdm@univ.gda.pl<br />

Discrete modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinoatrial node automaticity<br />

Each heart cell — myocyte, communicates wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e outside world by rapid changes<br />

displayed by i<strong>on</strong> channels. The membrane activity is tranduced directly to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

neighboring cells establishing cell-to-cell communicati<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cell-tocell<br />

c<strong>on</strong>necti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart tissue is perfectly suited for modeling as a network <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interacting units. Differences in intercellular c<strong>on</strong>necti<strong>on</strong>s are known to be crucial<br />

in forming physiologically different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart tissue.<br />

The rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mic c<strong>on</strong>tracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart begin in <str<strong>on</strong>g>th</str<strong>on</strong>g>e area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac tissue<br />

located <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e right atrium called <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinoatrial node (SAN), see [1] for descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> SAN physiology. Understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAN means to known how pacemaker<br />

cells maintain <str<strong>on</strong>g>th</str<strong>on</strong>g>e final functi<strong>on</strong>, namely, successful pacemaking <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole heart.<br />

Much difficulty in understanding is related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> cells — how<br />

ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er poorly c<strong>on</strong>nected cells can produce a signal self-c<strong>on</strong>sistent enough to drive<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e heart c<strong>on</strong>tracti<strong>on</strong>. There are two basic approaches to <str<strong>on</strong>g>th</str<strong>on</strong>g>e organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

SAN cells: <str<strong>on</strong>g>th</str<strong>on</strong>g>e mosaic and gradient models. The first <strong>on</strong>e c<strong>on</strong>siders coexistence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two types <str<strong>on</strong>g>of</str<strong>on</strong>g> cells: nodal and atrial. The sec<strong>on</strong>d approach assumes <str<strong>on</strong>g>th</str<strong>on</strong>g>e gradual<br />

change <str<strong>on</strong>g>of</str<strong>on</strong>g> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals cells when moving from <str<strong>on</strong>g>th</str<strong>on</strong>g>e central part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

SAN to its border. The main objective <str<strong>on</strong>g>of</str<strong>on</strong>g> our presentati<strong>on</strong> is to find whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

SAN automaticity can result from heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> intercellular links.<br />

The complex cellular processes involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAN functi<strong>on</strong>ing are modeled<br />

by modified Greenberg-Hastings cellular automat<strong>on</strong> [2]. Since, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a c<strong>on</strong>sensus<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at SAN cells are remains <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart tissue from its very early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> development,<br />

namely from <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intercellular c<strong>on</strong>necti<strong>on</strong>s<br />

rooted <strong>on</strong> stochastical square lattice is physiologically justified. Synchr<strong>on</strong>ic activati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e large parts <str<strong>on</strong>g>of</str<strong>on</strong>g> such network denotes adjusting <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular excitati<strong>on</strong>s into<br />

a robust spiral wave [3].<br />

Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> perturbati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e topology <str<strong>on</strong>g>of</str<strong>on</strong>g> intercellular c<strong>on</strong>necti<strong>on</strong>s <strong>on</strong> periodicity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system are c<strong>on</strong>sidered. The focus is how <str<strong>on</strong>g>th</str<strong>on</strong>g>orough wrinkling <str<strong>on</strong>g>of</str<strong>on</strong>g> initially flat<br />

structure influences <str<strong>on</strong>g>th</str<strong>on</strong>g>e regular beating. Since automaticity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinoatrial node<br />

relies <strong>on</strong> a single cell activity, cyclical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cells are studied. It<br />

appears <str<strong>on</strong>g>th</str<strong>on</strong>g>at robust diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell depends <strong>on</strong> bo<str<strong>on</strong>g>th</str<strong>on</strong>g>: properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

intrinsic cellular dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying topology <str<strong>on</strong>g>of</str<strong>on</strong>g> intercellular c<strong>on</strong>necti<strong>on</strong>s.<br />

Moderate n<strong>on</strong>uniformity <str<strong>on</strong>g>of</str<strong>on</strong>g> intercellular c<strong>on</strong>necti<strong>on</strong>s are found vital for <str<strong>on</strong>g>th</str<strong>on</strong>g>e proper<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinoatrial node, namely, to resp<strong>on</strong>d effectively to <str<strong>on</strong>g>th</str<strong>on</strong>g>e aut<strong>on</strong>omic<br />

system c<strong>on</strong>trol [4].<br />

References.<br />

[1] M. E. Mang<strong>on</strong>i, and J. Nargeot, Genesis and Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Herat Automaticity Physiol.<br />

Rev. 89 919-982.<br />

[2] J. M. Greenberg, and S. P. Hastings, Spatial patterns for discrete models <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> in<br />

excitable media SIAM J. Appl. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. 34 515–523.<br />

617


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] G. Bub, A. Shrier, and L. Glass, Global Organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dynamics in Oscillatory Heterogeneous<br />

Excitable Media. Phys. Rev. Lett. 94 028105-1 – 028105-4.<br />

[4] D. Makowiec, Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> intercellular c<strong>on</strong>necti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinoatrial node Acta Physica Pol<strong>on</strong>ica<br />

B Proceedings Supplement 3 377–390.<br />

618


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Heart rate dynamics: models and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity (part I);<br />

Wednesday, June 29, 14:30<br />

Danuta Makowiec<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Physics and Astrophysics<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Gdańsk, Gdańsk, Poland<br />

e-mail: fizdm@univ.gda.pl<br />

A. Rynkiewicz<br />

J. Wdowczyk-Szulc<br />

M. Żarczyńska-Buchowiecka<br />

First Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiology, Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Gdańsk<br />

Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y aging by multifractal analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> heart interbeat<br />

intervals<br />

Heart rate resp<strong>on</strong>ds dynamically to various intrinsic and envir<strong>on</strong>mental stimuli. The<br />

resp<strong>on</strong>se is supposed to be mediated by aut<strong>on</strong>omic nervous system. Multifractal<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a novel me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>is resp<strong>on</strong>se. Fractal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

power spectra in VLF (and ultra-low-frequency (ULF: ≤ 0.0033Hz)) have being<br />

analyzed for more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 20 years and <str<strong>on</strong>g>th</str<strong>on</strong>g>ey were found to have prognostic significance<br />

in cardiac patients [1] <str<strong>on</strong>g>th</str<strong>on</strong>g>ough also <str<strong>on</strong>g>th</str<strong>on</strong>g>ey were questi<strong>on</strong>ed when <str<strong>on</strong>g>th</str<strong>on</strong>g>ey were used for an<br />

individual [2]. Therefore <str<strong>on</strong>g>th</str<strong>on</strong>g>e reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e approach has to be carefully validated.<br />

The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> effective reading <str<strong>on</strong>g>of</str<strong>on</strong>g> multifractal properties will be described.<br />

The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two way analysis pertaining each signal. In parallel, a<br />

given signal analysis and integrated signal analysis are performed. Differences between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e multifractal spectra received from <str<strong>on</strong>g>th</str<strong>on</strong>g>e same signal are found important<br />

in discriminating m<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>ractality from multifractality.<br />

The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is used in study 24-hour ECG recordings <str<strong>on</strong>g>of</str<strong>on</strong>g> RR interbeat intervals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 48 elderly volunteers, 40 middle-aged pers<strong>on</strong>s and 36 young adults in order to<br />

assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aging <strong>on</strong> aut<strong>on</strong>omic regulati<strong>on</strong> during normal activity in heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y<br />

adults. The variability <str<strong>on</strong>g>of</str<strong>on</strong>g> heart interbeat intervals was evaluated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e VLF band<br />

(32-420 RR intervals) to preserve links to standard measures <str<strong>on</strong>g>of</str<strong>on</strong>g> heart rate variability<br />

[1]. The nocturnal and diurnal multifractality was c<strong>on</strong>sidered separately.<br />

The switch from multi- to m<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>ractality is observed between diurnal and nocturnal<br />

series in <str<strong>on</strong>g>th</str<strong>on</strong>g>e group <str<strong>on</strong>g>of</str<strong>on</strong>g> young adults. That change can be directly related<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian alternati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e central mechanisms c<strong>on</strong>trolling <str<strong>on</strong>g>th</str<strong>on</strong>g>e temporal<br />

organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular system — nocturnal dominance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vagal t<strong>on</strong>e<br />

versus sympa<str<strong>on</strong>g>th</str<strong>on</strong>g>etic main drive during daily activities. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> aging <str<strong>on</strong>g>th</str<strong>on</strong>g>e multifractal<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> nocturnal signals declines. Our observati<strong>on</strong>s are c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> [3]<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at imbalance in <str<strong>on</strong>g>th</str<strong>on</strong>g>e aut<strong>on</strong>omic c<strong>on</strong>trol due to heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y aging should be related<br />

to changes <str<strong>on</strong>g>th</str<strong>on</strong>g>at are emerging from <str<strong>on</strong>g>th</str<strong>on</strong>g>e vagal t<strong>on</strong>e, what in c<strong>on</strong>sequence results in<br />

increasing activity <str<strong>on</strong>g>of</str<strong>on</strong>g> sympa<str<strong>on</strong>g>th</str<strong>on</strong>g>etic modulati<strong>on</strong>.<br />

References.<br />

[1] Tan C O, Cohen M A, Eckberg D L and Taylor J A, Fractal properties <str<strong>on</strong>g>of</str<strong>on</strong>g> human heart period<br />

variability: physiological and me<str<strong>on</strong>g>th</str<strong>on</strong>g>odological implicati<strong>on</strong>s J. Physiol. 587 3929<br />

[2] Task Force <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiology <str<strong>on</strong>g>th</str<strong>on</strong>g>e Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacing<br />

and Electrophysiology 1996 Heart rate variability. Standards <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement, physiological<br />

interpretati<strong>on</strong>, and clinical use Eur. Heart J. 17 354–81<br />

619


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] Struzik Z R, Hayano J, Soma R, Kwak S and Yamamoto Y Aging <str<strong>on</strong>g>of</str<strong>on</strong>g> complex heart rate<br />

dynamics IEEE Transacti<strong>on</strong>s <strong>on</strong> Biomededical Engineering 53 89<br />

620


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Adam Makuchowski<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: adam.makuchowski@polsl.pl<br />

mgr Adam Makuchowski<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

dr inż. Pokrzywa Rafał<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr hab. inż. Polaski Andrzej<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Cellular Systems Biology; Tuesday, June 28, 17:00<br />

Discovering motifs in DNA sequences<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e important aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular biology is to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex<br />

mechanisms regulating a gene expressi<strong>on</strong>. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e steps in <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> exploring<br />

regulatory mechanisms is discovering regulatory motifs <str<strong>on</strong>g>th</str<strong>on</strong>g>at influence gene<br />

expressi<strong>on</strong>. Gene expressi<strong>on</strong> is transformed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> factors<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir corresp<strong>on</strong>ding binding sites. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> presented algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m is<br />

to detect <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>servative motifs in DNA sequences, in order to identify regulatory<br />

sites.<br />

New algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m is presented in <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> new motifs<br />

in a set <str<strong>on</strong>g>of</str<strong>on</strong>g> related regulatory DNA sequences and also in genome-wide search. This<br />

algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m uses a heuristic approach based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> suffix trie. For representati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> motif sequences, we used a positi<strong>on</strong> specific scoring matrices (PSSMs),<br />

which are widely used for <str<strong>on</strong>g>th</str<strong>on</strong>g>is purpose. In additi<strong>on</strong>, two approaches have been<br />

examined: c<strong>on</strong>sidering prior residue probability <str<strong>on</strong>g>of</str<strong>on</strong>g> background, and omitting real<br />

value probability. Taking into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e actual likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e background during<br />

discovering <str<strong>on</strong>g>of</str<strong>on</strong>g> motifs, improves <str<strong>on</strong>g>th</str<strong>on</strong>g>e quality <str<strong>on</strong>g>of</str<strong>on</strong>g> found motifs. Proposed algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m<br />

was tested <strong>on</strong> reference genomes <str<strong>on</strong>g>of</str<strong>on</strong>g> human and mouse. The results obtained from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m were compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er known algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms are performed based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e following comparis<strong>on</strong> measurements:<br />

nucleotide Performance Coefficien, Site Sensitivit, Site Positive Predicti<strong>on</strong>, and Site<br />

Average Performance. From experiments <strong>on</strong> real biological data sets, we observed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong>s such as genome-wide search can be identified, in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m behaves better <str<strong>on</strong>g>th</str<strong>on</strong>g>an o<str<strong>on</strong>g>th</str<strong>on</strong>g>er existing tools to search for motifs. But in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller data sets, average values <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements were comparable to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

existing motif finding tools.<br />

621


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models in Eco-epidemiology II; Wednesday, June 29, 11:00<br />

Horst Malchow<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Systems Research<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Osnabrück, 49069 Osnabrück, Germany<br />

e-mail: malchow@uos.de<br />

Infecti<strong>on</strong> and bioc<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> an invading competitor<br />

Biological invasi<strong>on</strong>s including <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases have str<strong>on</strong>g ecological<br />

and ec<strong>on</strong>omical impacts. The percepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir <str<strong>on</strong>g>of</str<strong>on</strong>g>ten harmful effects has<br />

been c<strong>on</strong>tinuously growing bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in sciences and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e public. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling<br />

is a suitable me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>s, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> supplementary<br />

to and initiating field studies as well as c<strong>on</strong>trol measures.<br />

Holling-type II and III predati<strong>on</strong> as well as Lotka-Volterra competiti<strong>on</strong> models wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

possible infecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e prey or <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e competitors are introduced. The interplay<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> local predati<strong>on</strong>, intra- and interspecific competiti<strong>on</strong> as well as infecti<strong>on</strong> and<br />

diffusive spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>s can cause spatial and spatiotemporal pattern<br />

formati<strong>on</strong>. The envir<strong>on</strong>mental noise may have c<strong>on</strong>structive as well as destructive<br />

effects.<br />

A plant competiti<strong>on</strong>-flow model is c<strong>on</strong>sidered for c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> invasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> a certain<br />

model area occupied by a native species. Short-distance invasi<strong>on</strong> is assumed as<br />

diffusi<strong>on</strong> whereas l<strong>on</strong>g-distance seed dispersal can be stratified diffusive or advective.<br />

The variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment due to c<strong>on</strong>tingent landslides and artificial<br />

causes such as deforestati<strong>on</strong> or weed c<strong>on</strong>trol leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e temporary extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>on</strong>e or bo<str<strong>on</strong>g>th</str<strong>on</strong>g> species at a randomly chosen time and spatial range. The spatiotemporal<br />

dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese extreme fragmentati<strong>on</strong> events as well as a possible selected<br />

harvesting or infecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invading weed turn out to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e crucial driving forces<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system dynamics.<br />

622


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanical regulati<strong>on</strong> in b<strong>on</strong>e tissue (Sessi<strong>on</strong><br />

II); Wednesday, June 29, 11:00<br />

Solvey Mald<strong>on</strong>ado<br />

Chair for Systems Theory and Automatic C<strong>on</strong>trol<br />

Institute for Automati<strong>on</strong> Engineering<br />

Otto-V<strong>on</strong>-Guericke-Universität Magdeburg, Magdeburg, Germany<br />

e-mail: solvey.mald<strong>on</strong>ado@ovgu.de<br />

Rolf Findeisen<br />

Chair for Systems Theory and Automatic C<strong>on</strong>trol<br />

Institute for Automati<strong>on</strong> Engineering<br />

Otto-V<strong>on</strong>-Guericke-Universität Magdeburg, Magdeburg, Germany<br />

e-mail: rolf.findeisen@ovgu.de<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling and Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Force-induced B<strong>on</strong>e<br />

Adaptati<strong>on</strong><br />

In biological systems, all living organisms are able to react to <str<strong>on</strong>g>th</str<strong>on</strong>g>e biophysical signals<br />

arising in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir envir<strong>on</strong>ment. To do <str<strong>on</strong>g>th</str<strong>on</strong>g>at, <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stituent cells are provided<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow <str<strong>on</strong>g>th</str<strong>on</strong>g>em to perceive biophysical signals and to react accordingly<br />

to accommodate to <str<strong>on</strong>g>th</str<strong>on</strong>g>e demanding envir<strong>on</strong>ment. B<strong>on</strong>e as a biological<br />

system is not exempted from <str<strong>on</strong>g>th</str<strong>on</strong>g>is mechanoresp<strong>on</strong>sive capacity. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e last decades<br />

significant progress has been made from <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental site as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e medical<br />

insights [1], to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects produced by applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical loading<br />

<strong>on</strong> b<strong>on</strong>e tissue and <strong>on</strong> b<strong>on</strong>e cells. Experimental studies have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>e key role<br />

played by mechanical usage <strong>on</strong> b<strong>on</strong>e tissue adaptati<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular<br />

behaviors, like proliferati<strong>on</strong>, differentiati<strong>on</strong>, or apoptosis. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e precise<br />

biological mechanisms behind <str<strong>on</strong>g>th</str<strong>on</strong>g>e organizati<strong>on</strong> and regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e site-specific<br />

b<strong>on</strong>e adaptati<strong>on</strong> process remain poorly understood.<br />

The functi<strong>on</strong>al adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e is <str<strong>on</strong>g>th</str<strong>on</strong>g>e process whereby b<strong>on</strong>e adapts its mass<br />

and structure to wi<str<strong>on</strong>g>th</str<strong>on</strong>g>stand changes in biophysical demands. The process <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e<br />

remodeling is <str<strong>on</strong>g>th</str<strong>on</strong>g>e suitable mechanism used by b<strong>on</strong>e to renew, repair and maintain<br />

b<strong>on</strong>e surfaces al<strong>on</strong>g life. In b<strong>on</strong>e remodeling, two cellular activities are highly<br />

coordinated to achieve <str<strong>on</strong>g>th</str<strong>on</strong>g>e renewal process at a particular site, mainly resorpti<strong>on</strong><br />

and formati<strong>on</strong>. Resorpti<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e process by which highly specialized cells, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

osteoclasts, destroy b<strong>on</strong>e tissue by creating resorpti<strong>on</strong> pits, and afterwards release<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e matrix c<strong>on</strong>stituents to <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood. C<strong>on</strong>versely, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> process<br />

osteoblast cells syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esize and secrete <str<strong>on</strong>g>th</str<strong>on</strong>g>e osteoid, new unmineralized matrix, and<br />

afterwards organize as well <str<strong>on</strong>g>th</str<strong>on</strong>g>e osteoid mineralizati<strong>on</strong>.<br />

Following <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanostat hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis [2], b<strong>on</strong>e can adapt its shape and structure<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue level mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> modeling and/or remodeling. In b<strong>on</strong>e modeling,<br />

resorpti<strong>on</strong> and formati<strong>on</strong> happen <strong>on</strong> different b<strong>on</strong>e sites, a process <str<strong>on</strong>g>th</str<strong>on</strong>g>at arises<br />

during grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and development. C<strong>on</strong>versely, in b<strong>on</strong>e remodeling, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cellular activities<br />

occur sequentially at <str<strong>on</strong>g>th</str<strong>on</strong>g>e same b<strong>on</strong>e site, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> resorpti<strong>on</strong> being followed by<br />

formati<strong>on</strong>. In adult skelet<strong>on</strong>, b<strong>on</strong>e remodeling runs in general as a self-maintenance<br />

mechanism used to repair microdamage or fractures, or to streng<str<strong>on</strong>g>th</str<strong>on</strong>g>en a b<strong>on</strong>e surface<br />

623


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

supporting increasing mechanical stress. To organize and regulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e sequencing<br />

events in remodeling, <str<strong>on</strong>g>th</str<strong>on</strong>g>e involved cells act as a multicellular team which evolves<br />

accordingly and is known as <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic multicellular unit or BMU.<br />

To start b<strong>on</strong>e remodeling a b<strong>on</strong>e surface target is activated, maybe due to microdamage<br />

reparati<strong>on</strong> or osteocytes apoptosis. Then, <str<strong>on</strong>g>th</str<strong>on</strong>g>e BMU operati<strong>on</strong> starts by<br />

recruiting osteoclast and osteoblast progenitors to <str<strong>on</strong>g>th</str<strong>on</strong>g>e site to be resorbed. Osteoclast<br />

progenitors differentiate and get fused into multinucleated osteoclasts who are<br />

attracted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e site and start resorpti<strong>on</strong>. In oste<strong>on</strong>al remodeling [3], a fully developed<br />

BMU c<strong>on</strong>tains teams <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoclasts actively resorbing at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cutting c<strong>on</strong>e,<br />

followed by teams <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoblasts producing and depositing layers <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoid at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

closing c<strong>on</strong>e. The coupling am<strong>on</strong>g resorpti<strong>on</strong> and formati<strong>on</strong> may happen during<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e reversal stage coming after resorpti<strong>on</strong>, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e site may be prepared for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

coming formati<strong>on</strong> phase. During b<strong>on</strong>e remodeling tight organizati<strong>on</strong> and regulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular interacti<strong>on</strong>s are required because sustained imbalances in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

quantity or quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e renewed b<strong>on</strong>e can derive in b<strong>on</strong>e disorders compromising<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e biomechanical integrity and performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e skelet<strong>on</strong>.<br />

The b<strong>on</strong>e cells involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e remodeling process are osteoclasts, osteoblasts,<br />

lining cells, and osteocytes. Osteoclasts are cells <str<strong>on</strong>g>of</str<strong>on</strong>g> hematopoietic origin resp<strong>on</strong>sible<br />

for b<strong>on</strong>e resorpti<strong>on</strong>, whereas osteoblasts are cells <str<strong>on</strong>g>of</str<strong>on</strong>g> mesenchymal origin <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

produce and deposit <str<strong>on</strong>g>th</str<strong>on</strong>g>e new matrix. Osteoclasts and osteoblasts are cells found,<br />

however, <strong>on</strong>ly temporary <strong>on</strong> b<strong>on</strong>e surfaces. Osteoclasts are found actively resorbing<br />

a surface, while osteoblasts are found actively producing new matrix. Instead,<br />

osteocytes and lining cells are <str<strong>on</strong>g>th</str<strong>on</strong>g>e osteoblastic lineage cells residing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e<br />

matrix. Lining cells derive from osteoblasts who have stopped syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esizing osteoid<br />

during b<strong>on</strong>e formati<strong>on</strong> and differentiate to a very flat cell covering <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e surfaces.<br />

Osteocytes are terminally differentiated osteoblasts, which are embedded<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e matrix during <str<strong>on</strong>g>th</str<strong>on</strong>g>e mineralizati<strong>on</strong> process. They live in lacunae <str<strong>on</strong>g>th</str<strong>on</strong>g>at are<br />

small cavities inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e matrix, and extend <str<strong>on</strong>g>th</str<strong>on</strong>g>eir cytoplasmic extensi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>rough<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e canaliculi. Due to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese fingerlike extensi<strong>on</strong>s osteocytes keep in c<strong>on</strong>tact wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er osteocytes wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e matrix and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cells <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e surface, <str<strong>on</strong>g>th</str<strong>on</strong>g>us forming<br />

a highly interc<strong>on</strong>nected network <str<strong>on</strong>g>th</str<strong>on</strong>g>at makes <str<strong>on</strong>g>th</str<strong>on</strong>g>em <str<strong>on</strong>g>th</str<strong>on</strong>g>e suitable cells for sensing and<br />

transducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanochemical signals [4].<br />

The understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e remodeling dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

b<strong>on</strong>e to mechanical loading is <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant scientific interest due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential<br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> physical exercise to counteract aging-induced b<strong>on</strong>e loss and to avoid <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

decline <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e mass and streng<str<strong>on</strong>g>th</str<strong>on</strong>g> in c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e loss, such as osteoporosis<br />

or immobilizati<strong>on</strong>. Osteoporosis is a worldwide spread b<strong>on</strong>e disorder where b<strong>on</strong>e<br />

streng<str<strong>on</strong>g>th</str<strong>on</strong>g> and mass are highly compromise <str<strong>on</strong>g>th</str<strong>on</strong>g>us increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g> fractures.<br />

For instance, postmenopausal osteoporosis has been associated to a failure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e to maintain b<strong>on</strong>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g> when estrogen levels are diminished [5].<br />

In additi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at astr<strong>on</strong>auts lose b<strong>on</strong>e mass during prol<strong>on</strong>ged spaceflights,<br />

or patients in bed rest c<strong>on</strong>diti<strong>on</strong> present osteopenia, show <str<strong>on</strong>g>th</str<strong>on</strong>g>e key role play by ear<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

gravity, locomoti<strong>on</strong> and physical activity <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e body, specially <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e skelet<strong>on</strong><br />

maintenance [1].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we employ a systems biology approach to get a better understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> force induced b<strong>on</strong>e adaptati<strong>on</strong>. To achieve <str<strong>on</strong>g>th</str<strong>on</strong>g>is, firstly a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e adapti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e due to mechanical and chemical<br />

stimuli was developed [6,7], and sec<strong>on</strong>dly, system <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are applied<br />

624


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex interacti<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e design <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies<br />

for b<strong>on</strong>e disorders [8,9].<br />

The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> focuses <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e remodeling process as an essential<br />

tissue level mechanism used by adult skelet<strong>on</strong> to maintaining b<strong>on</strong>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>roughout life. The main operati<strong>on</strong>al stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e multicellular unit during<br />

b<strong>on</strong>e remodeling covered are activati<strong>on</strong>, resorpti<strong>on</strong>, and formati<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e model,<br />

osteocytes are introduced as <str<strong>on</strong>g>th</str<strong>on</strong>g>e main mechanotransducers, sensing <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical<br />

loading changes and releasing local factors, e.g. nitric oxide and prostaglandins,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s am<strong>on</strong>g osteoclast and osteoblast cell populati<strong>on</strong>s,<br />

mainly regulated <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e RANKL/RANK/OPG signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way.<br />

For a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e adaptati<strong>on</strong> process, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong>/discriminati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> possible <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic targets for remodeling-related b<strong>on</strong>e<br />

disorders, a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for global sensitivity analysis is applied to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters/inputs variati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

stati<strong>on</strong>ary behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e cells and tissue adaptati<strong>on</strong>. In additi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods allows to explore for beneficial effects <str<strong>on</strong>g>of</str<strong>on</strong>g> combining mechanical<br />

and n<strong>on</strong>-mechanical agents in <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> particular b<strong>on</strong>e disorders, such as<br />

postmenopausal osteoporosis, or bed rest/immobilizati<strong>on</strong>.<br />

References.<br />

[1] H.M. Frost, The Utah Paradigm <str<strong>on</strong>g>of</str<strong>on</strong>g> Skeletal Physiology, W.S.S. Jee Ed., Greece: Internati<strong>on</strong>al<br />

Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Musculoskeletal and Neur<strong>on</strong>al Interacti<strong>on</strong>s, 2004. Vol. I B<strong>on</strong>e and B<strong>on</strong>es and<br />

Associated Problems.<br />

[2] H. Frost, A 2003 Updated <str<strong>on</strong>g>of</str<strong>on</strong>g> B<strong>on</strong>e Physiology and Wolff’s Law for Clinicians, Angle Or<str<strong>on</strong>g>th</str<strong>on</strong>g>od,<br />

74, 3–15, 2004.<br />

[3] A. Parfitt, Oste<strong>on</strong>al and Hemi-Oste<strong>on</strong>al Remodeling: The Spatial and Temporal Framework<br />

for Signal Traffic in Adult Human B<strong>on</strong>e, Cell Biochem, 55, 273–286, 1994.<br />

[4] E Burger and J Klein-Nulend, Mechanotransducti<strong>on</strong> in b<strong>on</strong>e-role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lacunocanalicular<br />

network, FASEB Journal, 13, 101–112, 1999.<br />

[5] L Lany<strong>on</strong> and T Skerry, Postmenopausal Osteoporosis as a Failure <str<strong>on</strong>g>of</str<strong>on</strong>g> B<strong>on</strong>e’s Adaptati<strong>on</strong> to<br />

Functi<strong>on</strong>al Loading: A Hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis, J B<strong>on</strong>e Miner Res, 16, 1937–1947, 2001.<br />

[6] S. Mald<strong>on</strong>ado, R. Findeisen, and F Allgöwer, Describing Force-induced B<strong>on</strong>e Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

Adaptati<strong>on</strong> by a Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Model, J Musculoskeletal Neur<strong>on</strong>al Interacti<strong>on</strong>s, 8, 15–17, 2008.<br />

[7] S. Mald<strong>on</strong>ado, R. Findeisen, and F Allgöwer, Phenomenological Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling and<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Force-induced B<strong>on</strong>e Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Adaptati<strong>on</strong>, In: Proc. 2nd. FOSBE, 147–152,<br />

2007.<br />

[8] S. Mald<strong>on</strong>ado, R. Findeisen, and F Allgöwer, Global Sensitivity Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Force-induced<br />

B<strong>on</strong>e Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Adaptati<strong>on</strong> using Semidefinite Programming, In: Proc. 3nd. FOSBE, 141–<br />

144, 2009.<br />

[9] S. Mald<strong>on</strong>ado, and R. Findeisen, Force-induced B<strong>on</strong>e Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Adaptati<strong>on</strong>: A System<br />

Theoretical Approach to Understanding B<strong>on</strong>e Mechanotransducti<strong>on</strong>, IOP C<strong>on</strong>f. Ser.: Mater.<br />

Sci. Eng. 10 012127 2010. doi: 10.1088/1757-899X/10/1/012127.<br />

625


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cell systems: from intercellular interacti<strong>on</strong><br />

to tissue-level traits II; Wednesday, June 29, 17:00<br />

Jens Malmros<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical statistics, Stockholm University<br />

e-mail: jensm@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

Ola Hössjer<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical statistics, Stockholm University<br />

e-mail: ola@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

John Lock<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences and Nutriti<strong>on</strong>, Karolinska Institutet<br />

e-mail: john.lock@ki.se<br />

Joanna Tyrcha<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical statistics, Stockholm University<br />

e-mail: joanna@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

Olivia Erikss<strong>on</strong><br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical statistics, Stockholm University<br />

e-mail: olivia@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.su.se<br />

Stochastic modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong><br />

Cell migrati<strong>on</strong> is a central process in normal human tissue development as well<br />

as in numerous disease states. Metastatic spread <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer tumours occurs as a<br />

direct result <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in cell migrati<strong>on</strong>, and fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms<br />

behind cell migrati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance in cancer research. CMACs (cellmatrix<br />

adhesi<strong>on</strong> complexes) are at <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migratory system <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell;<br />

elucidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CMAC behaviour is essential in understanding cell migrati<strong>on</strong> [1] [2].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, quantitative time-series live cell microscopy data are used toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> existing knowledge to develop a stochastic model describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e CMAC populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wild-type cell wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to CMAC areas and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> CMACs. New CMACs are born according to a Poiss<strong>on</strong> process and <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e subsequent multiplicative grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and decline <str<strong>on</strong>g>of</str<strong>on</strong>g> CMAC area and final dea<str<strong>on</strong>g>th</str<strong>on</strong>g> is<br />

described by means <str<strong>on</strong>g>of</str<strong>on</strong>g> a random walk wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a Markov process regime. Analytical<br />

results are derived and simulati<strong>on</strong>s are performed to validate model performance.<br />

It is shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is able to mimic CMAC behaviour wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to most<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties described above, and also is able to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> new perturbed experimental c<strong>on</strong>diti<strong>on</strong>s.<br />

References.<br />

[1] John G. Lock, Bernhard Wehrle-Haller and Staffan Strömblad, Cell–matrix adhesi<strong>on</strong> complexes:<br />

Master c<strong>on</strong>trol machinery <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> Seminars in Cancer Biology, Volume 18,<br />

Issue 1, February 2008, Pages 65-76.<br />

[2] John G. Lock and Staffan Strömblad, Systems microscopy: An emerging strategy for <str<strong>on</strong>g>th</str<strong>on</strong>g>e life<br />

sciences Experimental Cell Research, Volume 316, Issue 8, 1 May 2010, Pages 1438-1444.<br />

626


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Marcin Małogrosz<br />

Uniwersytet Warszawski<br />

e-mail: malogrosz@mimuw.edu.pl<br />

Models <str<strong>on</strong>g>of</str<strong>on</strong>g> morphogen transport<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> morphogens is a process occurring in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue, affecting cell differentiati<strong>on</strong>.<br />

In [?] au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors proposed several ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models (systems <str<strong>on</strong>g>of</str<strong>on</strong>g> PDEs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong> type) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is process. In [?] a detailed analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose<br />

models was made in 1D setting. I will present my recent results c<strong>on</strong>cerning global<br />

in time existence and asymptotic behavior for <str<strong>on</strong>g>th</str<strong>on</strong>g>e 3D setting.<br />

References.<br />

[1] Lander, A. D., Nie, Q., Wan, Y. M. Do Morphogen Gradients Arise by Diffusi<strong>on</strong>? Dev. Cell,<br />

Vol. 2, pp. 785-796.<br />

[2] Krzyżanowski, P., Laurençot, P., Wrzosek, D. Well-posedness and c<strong>on</strong>vergence to <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady<br />

state for a model <str<strong>on</strong>g>of</str<strong>on</strong>g> morphogen transport, SIAM J.MATH. ANAL. Vol. 40, No. 5, pp. 1725-<br />

1749.<br />

627


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Informati<strong>on</strong>, human behaviour and infecti<strong>on</strong> c<strong>on</strong>trol; Saturday, July 2, 08:30<br />

Piero Manfredi<br />

Dipartimento di Statistica e Matematica Applicata all’Ec<strong>on</strong>omia, Università<br />

di Pisa, Via Ridolfi 10, Pisa, 56124, Italy<br />

e-mail: manfredi@ec.unipi.it<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccinating behaviour <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e natural history<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> immunizati<strong>on</strong> programmes.<br />

Recent <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical studies have provided increasing evidence <str<strong>on</strong>g>th</str<strong>on</strong>g>at human behaviour<br />

can play a critical role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e achievement <str<strong>on</strong>g>of</str<strong>on</strong>g> public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> targets, such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e mitigati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a pandemic influenza outbreak or <str<strong>on</strong>g>th</str<strong>on</strong>g>e success <str<strong>on</strong>g>of</str<strong>on</strong>g> a vaccinati<strong>on</strong> programme<br />

for a childhood infecti<strong>on</strong>. As for <str<strong>on</strong>g>th</str<strong>on</strong>g>e area <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccine preventable infecti<strong>on</strong>s, much <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e recent research has focused <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> immunizati<strong>on</strong> choices - modelled as<br />

an evoluti<strong>on</strong>ary game wi<str<strong>on</strong>g>th</str<strong>on</strong>g> imitati<strong>on</strong> dynamics - <strong>on</strong> voluntary vaccinati<strong>on</strong> regimes,<br />

particularly <str<strong>on</strong>g>th</str<strong>on</strong>g>e issue <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccinati<strong>on</strong> free-riding. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we first use a simple<br />

transmissi<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> vaccinati<strong>on</strong> pay<str<strong>on</strong>g>of</str<strong>on</strong>g>f modelled as an increasing functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccine side effects, to interpret historical trends in serious morbidity<br />

and mortality from various childhood infecti<strong>on</strong>s. This allows us to clearly show<br />

which are <str<strong>on</strong>g>th</str<strong>on</strong>g>e major killers <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccinati<strong>on</strong> programmes in industrialised countries.<br />

These seem mainly to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e technological progress and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ensuing epidemiological<br />

transiti<strong>on</strong>, which during <str<strong>on</strong>g>th</str<strong>on</strong>g>e last century have brought down to negligible levels<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e perceived risks <str<strong>on</strong>g>of</str<strong>on</strong>g> serious disease given infecti<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e sustained vaccinati<strong>on</strong><br />

programmes c<strong>on</strong>ducted in <str<strong>on</strong>g>th</str<strong>on</strong>g>e past, which have brought down to negligible levels<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e perceived risks <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>. This yields ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er pessimistic predicti<strong>on</strong>s about <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

future lifetime <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccinati<strong>on</strong> programmes. Subsequently, motivated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact no<br />

current vaccinati<strong>on</strong> regimes are fully voluntary, we propose a new framework aimed<br />

to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between inter-human and public<br />

informati<strong>on</strong> <strong>on</strong> vaccine uptake, based <strong>on</strong> a modified evoluti<strong>on</strong>ary game equati<strong>on</strong><br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e vaccinated proporti<strong>on</strong>, including <str<strong>on</strong>g>th</str<strong>on</strong>g>e effort <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> system as<br />

well. The underlying idea is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e hazard <str<strong>on</strong>g>of</str<strong>on</strong>g> becoming a vaccinator is <str<strong>on</strong>g>th</str<strong>on</strong>g>e sum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

two comp<strong>on</strong>ents, <strong>on</strong>e due to informati<strong>on</strong> spread <str<strong>on</strong>g>th</str<strong>on</strong>g>rough inter-human c<strong>on</strong>tacts (e.g.<br />

imitati<strong>on</strong>), and <strong>on</strong>e due to informati<strong>on</strong> spread by <str<strong>on</strong>g>th</str<strong>on</strong>g>e public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> system. Unlike<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e former, <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter aims to suggest a very small, possibly zero, perceived risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vaccine side effects, and a larger, possibly prevalence independent, risk <str<strong>on</strong>g>of</str<strong>on</strong>g> disease.<br />

Our main results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at public interventi<strong>on</strong> can play a stabilising role capable<br />

to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e violence <str<strong>on</strong>g>of</str<strong>on</strong>g> ’imitati<strong>on</strong>’ induced oscillati<strong>on</strong>s, to allow for disease eliminati<strong>on</strong>,<br />

and to even make <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called Disease Free Pure Vaccinators Equilibrium<br />

Globally attractive. This suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at keeping a degree <str<strong>on</strong>g>of</str<strong>on</strong>g> public interventi<strong>on</strong> in<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>erwise voluntary vaccinati<strong>on</strong> regimes might be <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>ly way to mitigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pessimistic c<strong>on</strong>clusi<strong>on</strong>s reported above.<br />

628


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Mosquito-Borne Diseases; Tuesday, June 28, 11:00<br />

Carrie Manore<br />

Oreg<strong>on</strong> State University<br />

e-mail: manorec@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.oreg<strong>on</strong>state.edu<br />

Nakul Chitnis<br />

Swiss Tropical and Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Institute<br />

Mac Hyman<br />

Tulane University<br />

A Model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Rift Valley Fever in Livestock<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Vertical Transmissi<strong>on</strong><br />

Rift Valley Fever (RVF) is a zo<strong>on</strong>otic infectious disease spread by mosquitoes and<br />

transmitted between several animals species and occasi<strong>on</strong>ally humans. We present<br />

and analyze a new model for mosquito-transmitted disease <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes vertical<br />

transmissi<strong>on</strong> mechanisms from an infected mosquito mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er to infected <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring.<br />

In particular, we model <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> RVF in cattle and mosquito populati<strong>on</strong>s,<br />

extending existing models for vector-borne diseases to include vertical transmissi<strong>on</strong><br />

and an egg/larvae stage. We analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> vertical transmissi<strong>on</strong> in<br />

predicting <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> RVF and discuss how modeling can reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e uncertainty<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> disease prevalence. We also make <str<strong>on</strong>g>th</str<strong>on</strong>g>is extended model reactive<br />

to envir<strong>on</strong>mental changes and dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at even if <str<strong>on</strong>g>th</str<strong>on</strong>g>e endemic equilibrium<br />

has a low ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious vectors and animals, a large pulse <str<strong>on</strong>g>of</str<strong>on</strong>g> vectors resulting<br />

from increased hatch and survival rates due to high rainfall events can result in a<br />

large epidemic.<br />

629


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Semigroups <str<strong>on</strong>g>of</str<strong>on</strong>g> Operators in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology I; Wednesday, June 29, 08:30<br />

Anna Marciniak-Czochra<br />

Interdisciplinary Center for Scientific Computing,<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and BIOQUANT,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Heidelberg<br />

e-mail: anna.marciniak@iwr.uni-heidelberg.de<br />

Structured populati<strong>on</strong> models in metric spaces<br />

Time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a heterogeneous populati<strong>on</strong> parametrised by <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamically<br />

regulated properties <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals can be described by so called structured<br />

populati<strong>on</strong> models, which are first order hyperbolic equati<strong>on</strong>s defined <strong>on</strong> R + .<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk a new framework for <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> measure-valued soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

n<strong>on</strong>linear structured populati<strong>on</strong> model is presented. Existence and Lipschitz dependence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model parameters and initial data are shown using<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear semigroups in suitably chosen metric spaces. The estimates<br />

for a corresp<strong>on</strong>ding linear model are obtained based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e duality formula<br />

for transport equati<strong>on</strong>s. The results are discussed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s to<br />

biological data. In particularly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e new framework is applied to describe a process<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cell differentiati<strong>on</strong>, which involves discrete and c<strong>on</strong>tinuous transiti<strong>on</strong>s.<br />

The presentati<strong>on</strong> is based <strong>on</strong> joint works wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Piotr Gwiazda (University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Warsaw) and Grzegorz Jamroz (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw/University <str<strong>on</strong>g>of</str<strong>on</strong>g> Heidelberg).<br />

630


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part I;<br />

Tuesday, June 28, 11:00<br />

Anna Marciniak-Czochra<br />

Interdisciplinary Center for Scientific Computing,<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and BIOQUANT,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Heidelberg<br />

e-mail: anna.marciniak@iwr.uni-heidelberg.de<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> pattern formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e models <str<strong>on</strong>g>of</str<strong>on</strong>g> early<br />

cancerogenesis<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we will explore a mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> pattern formati<strong>on</strong> arising in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

processes described by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> a single reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong> couples wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

ordinary differential equati<strong>on</strong>s. Such models are very different from classical Turingtype<br />

models and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern emerging from <str<strong>on</strong>g>th</str<strong>on</strong>g>e destabilisati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatially homogeneous steady state cannot be c<strong>on</strong>cluded based <strong>on</strong> linear<br />

stability analysis. The models exhibit qualitatively new patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s,<br />

including a str<strong>on</strong>g dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e emerging pattern <strong>on</strong> initial c<strong>on</strong>diti<strong>on</strong>s<br />

and quasi-stability followed by rapid grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s. In numerical simulati<strong>on</strong>s,<br />

soluti<strong>on</strong>s having <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic or irregular spikes are observed. Recently we<br />

have proposed models <str<strong>on</strong>g>of</str<strong>on</strong>g> spatially-distributed grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>al populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> precancerous<br />

cells, which remained under c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> endogenous or exogenous grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

factors diffusing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular medium and binding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell surface. We<br />

found c<strong>on</strong>diti<strong>on</strong>s for emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> patterns, which took <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> spiketype<br />

spatially inhomogeneous steady states. This multifocality is as expected from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e field <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> carcinogenesis.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we approach <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> spike soluti<strong>on</strong>s, which is<br />

essential for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir observability in experiments. We study existence and stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

regular spatially inhomogeneous stati<strong>on</strong>ary soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic type and <str<strong>on</strong>g>of</str<strong>on</strong>g> disc<strong>on</strong>tinuous<br />

patterns.<br />

The talk is a based <strong>on</strong> a series <str<strong>on</strong>g>of</str<strong>on</strong>g> joint works wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Marek Kimmel (Rice University),<br />

Kanako Suzuki (Tohoku University), Grzegorz Karch (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wroclaw)<br />

and Steffen Härting (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Heidelberg)<br />

631


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 14:30<br />

Michał Marczyk<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Michal.Marczyk@polsl.pl<br />

Roman Jaksik<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Joanna Polańska<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Andrzej Polański<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Discriminative gene selecti<strong>on</strong> in low dose radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

microarray data for radiosensitivity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile search<br />

In radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy total dose delivered to targeted tumor tissue is limited to minimize<br />

late side effects in normal tissue, which also limits its healing effect. Ability to adjust<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dose to <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual patient radiosensitivity wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> given<br />

after low dose radiati<strong>on</strong> will help in reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e negative effects <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

while increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer treatment. In most gene expressi<strong>on</strong> studies<br />

selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> significant features for sample classificati<strong>on</strong> is a comm<strong>on</strong> task. The<br />

main goal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is step is to discover <str<strong>on</strong>g>th</str<strong>on</strong>g>e smallest possible set <str<strong>on</strong>g>of</str<strong>on</strong>g> genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows<br />

to achieve good predictive performance. However, in analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer patients<br />

radiosensitivity, differences between analyzed groups are hardly noticed. Also clinical<br />

observati<strong>on</strong>s indicate large variati<strong>on</strong>s between individuals wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in group, which<br />

provides a need to explore different me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> feature selecti<strong>on</strong>.<br />

Examined data c<strong>on</strong>tain two groups <str<strong>on</strong>g>of</str<strong>on</strong>g> breast cancer patients showing clinical<br />

differences in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir normal tissue late resp<strong>on</strong>se to radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. Data pre-processing<br />

includes probe sets re-annotati<strong>on</strong> using PLANdbAffy database, tRMA background<br />

correcti<strong>on</strong>, normalizati<strong>on</strong> and summarizati<strong>on</strong>. Preliminary data analysis and quality<br />

c<strong>on</strong>trol pointed out str<strong>on</strong>g batch effect, which was corrected using ComBat<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware.<br />

To select significant genes, which can predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e status <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sample <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, we use statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods (t-test, modified Welch<br />

test, F-test) and recurrent feature replacement me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods (Recursive Feature Eliminati<strong>on</strong>,<br />

fuzzy C-Means RFE). In statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods correcti<strong>on</strong> due to correlati<strong>on</strong><br />

between genes was applied. We perform comprehensive experiments to compare<br />

feature selecti<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms using two classifiers as SVM, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> linear and n<strong>on</strong>linear<br />

kernel, and Naive Bayes. The validati<strong>on</strong> step was divided into 2 stages. Training<br />

pilot study patient set, which in opini<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> clinicians was more informative, and<br />

testing set, which c<strong>on</strong>tained <str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> samples, were used to see if <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exist gene<br />

signature related to radiosensitivity. Multiple random validati<strong>on</strong> procedure using<br />

all data was later performed to prove generalizability <str<strong>on</strong>g>of</str<strong>on</strong>g> selected features.<br />

As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> applying <str<strong>on</strong>g>th</str<strong>on</strong>g>e above described algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms, it was possible to c<strong>on</strong>struct<br />

a classifier <str<strong>on</strong>g>th</str<strong>on</strong>g>at could discriminate patients based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir late resp<strong>on</strong>se to<br />

radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy treatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 25% error rate using SVM and n<strong>on</strong>linear kernel. This<br />

632


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

result was proven <str<strong>on</strong>g>th</str<strong>on</strong>g>rough multiple random validati<strong>on</strong>. When comparing me<str<strong>on</strong>g>th</str<strong>on</strong>g>odologies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> feature selecti<strong>on</strong> recruitment modified Welch test which deals wi<str<strong>on</strong>g>th</str<strong>on</strong>g> unequal<br />

variability <str<strong>on</strong>g>of</str<strong>on</strong>g> genes between groups performed best, however <strong>on</strong>ly wi<str<strong>on</strong>g>th</str<strong>on</strong>g> correcti<strong>on</strong><br />

due to correlati<strong>on</strong>.<br />

This work was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Program FP6 - 036452, GENEPIlowRT<br />

and Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Higher Educati<strong>on</strong> grant no N N519 647840.<br />

633


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 08:30<br />

Glenn Mari<strong>on</strong><br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics & Statistics Scotland<br />

e-mail: glenn@bioss.ac.uk<br />

Stephen Catterall<br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics & Statistics Scotland<br />

Alex R. Cook<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Nati<strong>on</strong>al University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Singapore<br />

Philip E. Hulme<br />

The Bio-Protecti<strong>on</strong> Research Centre, Lincoln University, New Zealand<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive aliens:<br />

process-based models and Bayesian inference<br />

Discrete state-space Markov processes provide a remarkably flexible framework bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

to describe and infer <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> a broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> systems in epidemiology and<br />

bey<strong>on</strong>d. For many models <str<strong>on</strong>g>of</str<strong>on</strong>g> interest reversible jump Markov chain M<strong>on</strong>te Carlo<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are a practical approach to implementing statistically sound parameter estimati<strong>on</strong><br />

for such models when, as is typically <str<strong>on</strong>g>th</str<strong>on</strong>g>e case, <strong>on</strong>ly partial observati<strong>on</strong>s are<br />

available. We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such inference approaches, applied wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

spatial epidemic models, to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive species at large spatial<br />

scales. In such applicati<strong>on</strong>s local envir<strong>on</strong>mental characteristics determine susceptibility<br />

(suitability for <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasive species) which emphasises <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape<br />

heterogeneity.<br />

In particular we present a generic Bayesian approach to parameter inference<br />

in a grid-based stochastic, spatio-temporal model <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal and establishment<br />

describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a regi<strong>on</strong> by an alien plant species. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od requires<br />

species distributi<strong>on</strong> data from multiple time points, and accounts for temporal uncertainty<br />

in col<strong>on</strong>isati<strong>on</strong> times inherent in such data. The impact <strong>on</strong> col<strong>on</strong>isati<strong>on</strong><br />

suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> covariates, which capture landscape heterogeneities, is also inferred.<br />

The model and inference algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m are applied to British floristic atlas data for Heracleum<br />

mantegazzianum (giant hogweed), an invasive alien plant <str<strong>on</strong>g>th</str<strong>on</strong>g>at has rapidly<br />

increased its range since 1970. Using systematic surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> species distributi<strong>on</strong><br />

across a 10km grid covering <str<strong>on</strong>g>th</str<strong>on</strong>g>e British Isles, we infer key characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

species, predict its future spread, and use <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting fitted model to inform a<br />

simulati<strong>on</strong>-based assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology.<br />

634


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 17:00<br />

A. Martínez-G<strong>on</strong>zález<br />

Departamento de Matemáticas, E.T.S. de Ingenieros Industriales &<br />

IMACI-Instituto de Matemática Aplicada a la Ciencia y la Ingeniería,<br />

Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain<br />

e-mail: alicia.martinez@uclm.es<br />

G. F. Calvo<br />

Departamento de Matemáticas, E.T.S. de Ingenieros de Caminos, Canales<br />

y Puertos & IMACI-Instituto de Matemática Aplicada a la Ciencia y<br />

la Ingeniería, Universidad de Castilla-La Mancha, 13071, Ciudad Real,<br />

Spain<br />

e-mail: gabriel.fernandez@uclm.es<br />

V. M. Pérez-García<br />

Departamento de Matemáticas, E.T.S. de Ingenieros Industriales &<br />

IMACI-Instituto de Matemática Aplicada a la Ciencia y la Ingeniería,<br />

Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain<br />

e-mail: victor.perezgarcia@uclm.es<br />

Hypoxic Migratory Cell Waves around Necrotic Cores in<br />

Glioblastomas: A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Model<br />

Malignant gliomas are <str<strong>on</strong>g>th</str<strong>on</strong>g>e most comm<strong>on</strong> and deadly brain tumors. Survival<br />

for patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> glioblastoma (GBM), <str<strong>on</strong>g>th</str<strong>on</strong>g>e most aggressive glioma, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough individually<br />

variable, is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g>s to 14 m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g>s after diagnosis, using<br />

standard treatments which include surgery, radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy (temozolamide<br />

and antiangiogenic drugs such as bevacizumab) [1]. GBM is a rapidly evolving<br />

astrocytoma <str<strong>on</strong>g>th</str<strong>on</strong>g>at is distinguished pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologically from lower grade gliomas by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> necrosis and microvascular hyperplasia. Interestingly, necrotic foci<br />

are tipically surrounded by a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rapidly moving tumor cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at superimpose<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>emselves <strong>on</strong> a more stati<strong>on</strong>ary populati<strong>on</strong>, causing increased cell density,<br />

known as "pseudopalisades" [2, 3]. Evidence suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is tumor cell migrati<strong>on</strong><br />

is caused by a vaso-occlusive event where <str<strong>on</strong>g>th</str<strong>on</strong>g>e local tumor blood vessels no l<strong>on</strong>ger<br />

provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e necessary oxygen supply. This leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a wave <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor<br />

cells actively migrating away from central hypoxia (oxygen deprivati<strong>on</strong>) <str<strong>on</strong>g>th</str<strong>on</strong>g>at arises<br />

after a vascular insult. Indeed, pseudopalisading cells show nuclear expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hypoxia-inducible factor 1α, c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir hypoxic nature [2, 3].<br />

We have developed a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporates <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal<br />

interplay am<strong>on</strong>g two tumor cell phenotypes, a necrotric core and <str<strong>on</strong>g>th</str<strong>on</strong>g>e oxygen distributi<strong>on</strong>.<br />

Our scenario c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cells embedded wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in two blood<br />

vessels. We will assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypoxic phenotype is <str<strong>on</strong>g>th</str<strong>on</strong>g>e migratory <strong>on</strong>e but n<strong>on</strong>proliferative,<br />

whereas <str<strong>on</strong>g>th</str<strong>on</strong>g>e normoxic is less migratory but proliferative [4, 5]. In<br />

additi<strong>on</strong>, our model takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e switching mechanisms between bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

phenotypes when <str<strong>on</strong>g>th</str<strong>on</strong>g>e local oxygen levels cross a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold value characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hypoxia. Our numerical simulati<strong>on</strong>s reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a superimposed travelling<br />

wave <str<strong>on</strong>g>of</str<strong>on</strong>g> hypoxic cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at qualitatively reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimentally observed<br />

patterns. This suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at our model could be fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er extended to include <str<strong>on</strong>g>th</str<strong>on</strong>g>e selective<br />

acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cells depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir oxic state.<br />

635


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] E. G. Van Meir, C. G. Hadjipanayis, A. D. Norden, H.-K. Shu, P. Y. Wen, and J. J. Ols<strong>on</strong>,<br />

Exciting New Advances in Neuro-Oncology: The Avenue to a Cure for Malignant Glioma,<br />

CA Cancer J. Clin. 60 166-193 (2010).<br />

[2] D. J. Brat, A. A. Castellano-Sanchez, S. B. Hunter, M. Pecot, C. Cohen, E. H. Hamm<strong>on</strong>d, S.<br />

N. Devi, B. Kaur, and E. G. Van Meir, Pseudopalisades in Glioblastoma Are Hypoxic, Express<br />

Extracellular Matrix Proteases, and Are Formed by an Actively Migrating Cell Populati<strong>on</strong>,<br />

Cancer Res. 64 920-927 (2004).<br />

[3] Y. R<strong>on</strong>g, D. L. Durden, E. G. Van Meir, and D. J. Brat, ’Pseudopalisading’ Necrosis in<br />

Glioblastoma: A Familiar Morphologic Feature That Links Vascular Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, Hypoxia, and<br />

Angiogenesis, J Neuropa<str<strong>on</strong>g>th</str<strong>on</strong>g>ol Exp Neurol 65 529-539 (2006).<br />

[4] A. Giese, R. Bjerkvig, M. E. Berens and M. Westphal, Cost <str<strong>on</strong>g>of</str<strong>on</strong>g> Migrati<strong>on</strong>: Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Malignant<br />

Gliomas and Implicati<strong>on</strong>s for Treatment, J Clin Oncology 21 1624-1636 (2003).<br />

[5] R. G. Bristow and R. P. Hill, Hypoxia, DNA repair and genetic instability, Nature Rev Cancer<br />

8 180-192 (2008).<br />

636


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modelling dengue fever epidemiology; Saturday, July 2, 08:30<br />

Marcos Amaku<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Veterinary Medicine, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> São Paulo, Brazil.<br />

Francisco Ant<strong>on</strong>io Bezerra Coutinho<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> São Paulo, and LIM 01 HCF-<br />

MUSP, Brazil.<br />

Eduardo Massad<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> São Paulo, and LIM 01 HCF-<br />

MUSP, Brazil.<br />

L<strong>on</strong>d<strong>on</strong> School <str<strong>on</strong>g>of</str<strong>on</strong>g> Hygiene and Tropical Medicine, UK.<br />

e-mail: edmassad@usp.br<br />

Why dengue and yellow fever coexist in some areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

world and not in o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers?<br />

Urban yellow fever and dengue coexist in Africa but not in Asia and Sou<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

America. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we examine four hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses (and combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em)<br />

advanced to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> yellow fever in urban areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Asia and Sou<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

America. In additi<strong>on</strong>, we examine <strong>on</strong>e fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at would explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong>s in Africa and at <str<strong>on</strong>g>th</str<strong>on</strong>g>e same time explaining why <str<strong>on</strong>g>th</str<strong>on</strong>g>ey do<br />

not coexist in Asia and Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> America. The hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses advanced to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

n<strong>on</strong>existence <str<strong>on</strong>g>of</str<strong>on</strong>g> yellow fever in Asia and Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> America are: <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g> importati<strong>on</strong><br />

to Asia <str<strong>on</strong>g>of</str<strong>on</strong>g> a yellow fever viraemic pers<strong>on</strong> is very low; <str<strong>on</strong>g>th</str<strong>on</strong>g>e Asian Aedes aegypti is<br />

relatively incompetent to transmit yellow fever; <str<strong>on</strong>g>th</str<strong>on</strong>g>ere would exists a competiti<strong>on</strong><br />

between dengue and yellow fever viruses wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mosquitoes, as suggested by<br />

some in vitru studies, in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e dengue virus always wins; <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is an important<br />

cross-immunity between yellow fever and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er flaviviroses, dengue in particular,<br />

such <str<strong>on</strong>g>th</str<strong>on</strong>g>at a pers<strong>on</strong> recovered from a bout <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue would have his/her susceptibility<br />

to yellow fever diminished. This latter hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis is called hereafter <str<strong>on</strong>g>th</str<strong>on</strong>g>e “Asian<br />

hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis”. Finally, we hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esize <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong>s in Africa<br />

is due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e virtual absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mosquito Aedes albopicuts, which competes wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Aedes aegypti, in Africa. We call <str<strong>on</strong>g>th</str<strong>on</strong>g>is latter hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>e “African hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis”. We<br />

c<strong>on</strong>struct a model <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows all <str<strong>on</strong>g>th</str<strong>on</strong>g>e above hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses to be tested.<br />

We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e Asian and <str<strong>on</strong>g>th</str<strong>on</strong>g>e African hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses can explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed<br />

phenomena. The o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses do not explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed phenomena.<br />

637


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis I; Wednesday, June 29,<br />

08:30<br />

Susan Christine Massey<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> (UW)<br />

e-mail: suzyn03@u.washingt<strong>on</strong>.edu<br />

Russell Rockne<br />

Departments <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, UW<br />

e-mail: rockne@u.washingt<strong>on</strong>.edu<br />

Alexander R. Anders<strong>on</strong><br />

Integrated Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology Center, H. Lee M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer<br />

Center & Research Institute<br />

e-mail: alexander.anders<strong>on</strong>@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

Kristin R. Swans<strong>on</strong><br />

Departments <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, UW<br />

e-mail: krae@u.washingt<strong>on</strong>.edu<br />

Parameter sensitivity investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> glioma angiogenesis via Latin hypercube sampling.<br />

Malignant glioblastoma multiforme (GBM) is a relatively rare cancer wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a very<br />

poor prognosis. It is unique am<strong>on</strong>g cancers in <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumors are quite diffuse<br />

and infiltrative, but do not metastasize out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CNS. This diffuse nature, as well<br />

as its locati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e brain, presents many challenges for treatment and disease<br />

m<strong>on</strong>itoring. Following <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-angiogenic agents in <str<strong>on</strong>g>th</str<strong>on</strong>g>e past few<br />

years, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere has been much hope <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is form <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment might make great<br />

strides in <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment and management <str<strong>on</strong>g>of</str<strong>on</strong>g> malignant glioma, but clinical resp<strong>on</strong>se<br />

to date has been disappointing. Patients <str<strong>on</strong>g>of</str<strong>on</strong>g>ten show a str<strong>on</strong>g initial resp<strong>on</strong>se <strong>on</strong><br />

MRI, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> imageable tumor receding relatively so<strong>on</strong> following treatment initiati<strong>on</strong>.<br />

However, after some time <str<strong>on</strong>g>th</str<strong>on</strong>g>ey all progress, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten wi<str<strong>on</strong>g>th</str<strong>on</strong>g> more diffuse, wide-spread<br />

disease <str<strong>on</strong>g>th</str<strong>on</strong>g>an prior to anti-angiogenic treatment. To better understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e role<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis and anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in GBM patients, we have created a<br />

proliferati<strong>on</strong>-invasi<strong>on</strong>-hypoxia-necrosis-angiogenesis (PIHNA) ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> glioma grow<str<strong>on</strong>g>th</str<strong>on</strong>g> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> angiogenesis and have adapted it to simulate anti-angiogenic<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. Based <strong>on</strong> our clinically validated, extensive work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferati<strong>on</strong>invasi<strong>on</strong><br />

(PI) model <str<strong>on</strong>g>of</str<strong>on</strong>g> glioma grow<str<strong>on</strong>g>th</str<strong>on</strong>g> (1, 2, 3) <str<strong>on</strong>g>th</str<strong>on</strong>g>is model was developed to simulate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> hypoxia <strong>on</strong> vascular recruitment in glioma. It has been correlated<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> FMISO PET imaging data (4), and provides a basis from which we can better<br />

understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-angiogenic treatment <strong>on</strong> vascular recruitment, as<br />

well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor envir<strong>on</strong>ment. Here we present our use <str<strong>on</strong>g>of</str<strong>on</strong>g> a sensitivity analysis<br />

technique incorporating latin hypercube sampling (LHS) to vary parameters against<br />

each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er and determine which parameters in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model have <str<strong>on</strong>g>th</str<strong>on</strong>g>e most significant<br />

influence <strong>on</strong> hypoxic burden and how treatment parameters fit in. This knowledge<br />

allows us to better assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e significance <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies <strong>on</strong> tumor<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> patterns and give insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ships between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese factors and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor microenvir<strong>on</strong>ment to enhance combat and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease.<br />

638<br />

References.


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] H. L. P. Harpold, E. C. Alvord, Jr., K. R. Swans<strong>on</strong>, 2007. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> glioma grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and invasi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Neuropa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology and Experimental Neurology<br />

66(1) 1–9.<br />

[2] K. R. Swans<strong>on</strong>, R. Rostomily, E. C. Alvord, Jr., 2008. Predicting Survival <str<strong>on</strong>g>of</str<strong>on</strong>g> Patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Glioblastoma by Combining a Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Model and Pre-operative MR imaging Characteristics:<br />

A Pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Principle. British Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer. 98 113–9.<br />

[3] C. Wang, J. K. Rockhill, M. Mrugala, D.L. Peacock, A. Lai, K. Jusenius, J. M. Wardlaw,<br />

T. Cloughesy, A. M. Spence, R. Rockne, E. C. Alvord Jr., K. R. Swans<strong>on</strong>, 2009. Prognostic<br />

significance <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> kinetics in newly diagnosed glioblastomas revealed by combining serial<br />

imaging wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a novel bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model. Cancer Research 69(23) 9133–40.<br />

[4] S. Gu, G. Chakraborty, K. Champley, A. Alessio, J. Claridge, R. Rockne, M. Muzi, K. A.<br />

Krohn, A. M. Spence, E. C. Alvord, Jr., A. R. A. Anders<strong>on</strong>, P. Kinahan, K. R. Swans<strong>on</strong>, 2010.<br />

Applying a Patient –Specific Bio-Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Glioma Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> to Develop Virtual<br />

[18F]-FMISO-PET Images. Under review.<br />

639


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Moving Organisms: From Individuals to Populati<strong>on</strong>s; Wednesday, June 29, 17:00<br />

Franziska Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>äus 1<br />

Mario S. Mommer 2<br />

Marko Jagodič 3<br />

Tine Curk 4,6<br />

Jure Dobnikar 5,6<br />

1 BIOMS, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Heidelberg<br />

2 IWR, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Heidelberg<br />

3 Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Physics and Mechanics, Ljubljana, Slove-<br />

nia<br />

4 Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Sciences and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Mari-<br />

bor, Slovenia<br />

5 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Physics, Jožef Stefan Institute, Ljubl-<br />

jana, Slovenia<br />

6 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge, UK<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>its from noise: <str<strong>on</strong>g>th</str<strong>on</strong>g>e example <str<strong>on</strong>g>of</str<strong>on</strong>g> E. coli moti<strong>on</strong> and<br />

chemotaxis<br />

E. coli bacteria propel <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves <str<strong>on</strong>g>th</str<strong>on</strong>g>rough flagellar rotati<strong>on</strong>. The c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

flagella is given <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er simple signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way, involving <strong>on</strong>ly a very<br />

small number <str<strong>on</strong>g>of</str<strong>on</strong>g> enzymes. Despite its simplicity <str<strong>on</strong>g>th</str<strong>on</strong>g>is signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way regulates<br />

a number <str<strong>on</strong>g>of</str<strong>on</strong>g> complex behaviors like chemotaxis, adaptati<strong>on</strong>, and even Lévy walks.<br />

A Lévy walk is a special type <str<strong>on</strong>g>of</str<strong>on</strong>g> a random walk, characterized by a power-law run<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong>. It has been proven to represent <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal search strategy to<br />

find randomly located and sparse targets. Interestingly, in E. coli bacteria <str<strong>on</strong>g>th</str<strong>on</strong>g>e Lévy<br />

walk is a result <str<strong>on</strong>g>of</str<strong>on</strong>g> noisy fluctuati<strong>on</strong>s affecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way. We use a model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way given in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> differential and algebraic equati<strong>on</strong>s,<br />

augmented by a stochastic term, to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> noise <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong><br />

dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> single cells and populati<strong>on</strong>s. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model we<br />

derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e power-law run leng<str<strong>on</strong>g>th</str<strong>on</strong>g> distributi<strong>on</strong> analytically in dependence <strong>on</strong> and<br />

statistical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e noise and properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way. Our<br />

expressi<strong>on</strong> yields a power-law exp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> -2.2 which coincides wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental<br />

data. We also use <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to simulate chemotactic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> large populati<strong>on</strong>s<br />

in different chemical landscapes. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at also chemotactic behavior pr<str<strong>on</strong>g>of</str<strong>on</strong>g>its<br />

from noise, as it increases bacterial motility and behavioral variability.<br />

640


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Crowd Dynamics: Modeling, Analysis and Simulati<strong>on</strong> (Part 1); Wednesday,<br />

June 29, 11:00<br />

Maury Bertrand<br />

Laboratoire de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques d’Orsay, Université Paris-Sud 11, 91405<br />

Orsay cedex, France<br />

e-mail: Bertrand.Maury@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.u-psud.fr<br />

Handling <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>gesti<strong>on</strong> in crowd moti<strong>on</strong> modeling<br />

We propose a general framework to incorporate c<strong>on</strong>gesti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crowd moti<strong>on</strong> in evacuati<strong>on</strong> situati<strong>on</strong>s. This approach can be seen as a first<br />

order (in time) counterpart <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> problem associated to <str<strong>on</strong>g>th</str<strong>on</strong>g>e collective<br />

moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rigid spheres (or discs) wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a n<strong>on</strong> elastic collisi<strong>on</strong> law. In its simpler,<br />

microscopic, form (see [4]), <str<strong>on</strong>g>th</str<strong>on</strong>g>e approach we propose is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a desired velocity (corresp<strong>on</strong>ding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e velocity <strong>on</strong>e would have in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers); <str<strong>on</strong>g>th</str<strong>on</strong>g>e actual velocity is <str<strong>on</strong>g>th</str<strong>on</strong>g>en defined as <str<strong>on</strong>g>th</str<strong>on</strong>g>e projecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is desired velocity<br />

<strong>on</strong>to <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> feasible velocities (velocity which do not violate <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-overlapping<br />

c<strong>on</strong>straints between individuals). This model fits into <str<strong>on</strong>g>th</str<strong>on</strong>g>e general framework <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sweeping processes by c<strong>on</strong>vex sets [5], and its generalizati<strong>on</strong> to n<strong>on</strong>-c<strong>on</strong>vex sets [1].<br />

Well-posedness results rely <strong>on</strong> a so called catching up algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m, which follows a<br />

predicti<strong>on</strong>-correcti<strong>on</strong> strategy, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e correcti<strong>on</strong> c<strong>on</strong>sists in projecting a c<strong>on</strong>figurati<strong>on</strong><br />

which violates <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>straints <strong>on</strong>to <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> feasible c<strong>on</strong>figurati<strong>on</strong>s.<br />

We proposed recently a macroscopic versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach ([2]): <str<strong>on</strong>g>th</str<strong>on</strong>g>e crowd<br />

is described by a density which is subject to remain below a maximal value (c<strong>on</strong>gesti<strong>on</strong>).<br />

We shall present how <str<strong>on</strong>g>th</str<strong>on</strong>g>e general framework <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal transportati<strong>on</strong><br />

endows <str<strong>on</strong>g>th</str<strong>on</strong>g>e space <str<strong>on</strong>g>of</str<strong>on</strong>g> densities wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a natural distance (Wasserstein distance) which<br />

makes it possible to generalize <str<strong>on</strong>g>th</str<strong>on</strong>g>e catching up approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>is n<strong>on</strong>-Hilbertian<br />

setting [3].<br />

We shall address <str<strong>on</strong>g>th</str<strong>on</strong>g>e links and deep differences between micro and macro approaches,<br />

from bo<str<strong>on</strong>g>th</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and modeling standpoints.<br />

References.<br />

[1] J.F. Edm<strong>on</strong>d, L. Thibault, BV soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>c<strong>on</strong>vex sweeping process differential inclusi<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> perturbati<strong>on</strong>, J. Differential Equati<strong>on</strong>s 226(1) (2006) 135–179.<br />

[2] B. Maury, A. Roudneff-Chupin, F. Santambrogio, A macroscopic Crowd Moti<strong>on</strong> Model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

gradient-flow type, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models and Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in Applied Sciences Vol. 20, No. 10<br />

(2010) 1787-1821.<br />

[3] B. Maury, A. Roudneff-Chupin, F. Santambrogio, J. Venel, Handling C<strong>on</strong>gesti<strong>on</strong> in Crowd<br />

Moti<strong>on</strong> Modeling, submitted (arXiv:1101.4102v1).<br />

[4] B. Maury, J. Venel, A discrete C<strong>on</strong>tact Model for crowd Moti<strong>on</strong>, accepted in M2AN, 2010<br />

(hal-00350815).<br />

[5] J.J. Moreau, Evoluti<strong>on</strong> problem associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a moving c<strong>on</strong>vex set in a Hilbert space,<br />

J.Differential Equati<strong>on</strong>s 26(3) (1977) 346?374.<br />

641


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Jessica B. McGillen 1 , Eam<strong>on</strong>n A. Gaffney 1 , Natasha K. Martin 2,3 , Robert<br />

A. Gatenby 4 , Philip K. Maini 1<br />

1 Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, Oxford University<br />

2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Social Medicine, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bristol<br />

3 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Global Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> and Development, L<strong>on</strong>d<strong>on</strong> School <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hygiene and Tropical Medicine<br />

4 M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Research Centre<br />

e-mail: jessica.mcgillen@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer Ecology<br />

We model <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolism and behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> a developing tumour in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> its microenvir<strong>on</strong>ment, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aim <str<strong>on</strong>g>of</str<strong>on</strong>g> elucidating what drives <str<strong>on</strong>g>th</str<strong>on</strong>g>e hallmarks<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> malignancy [1]. The multiscale, multistage, highly n<strong>on</strong>linear nature <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer<br />

progressi<strong>on</strong> [2] calls for a dual modelling approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at can link c<strong>on</strong>tinuous tissuelevel<br />

spatiotemporal patterns wi<str<strong>on</strong>g>th</str<strong>on</strong>g> discrete cell-level adaptati<strong>on</strong>s at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumourhost<br />

interface. Of particular interest is <str<strong>on</strong>g>th</str<strong>on</strong>g>e acid-mediated invasi<strong>on</strong> hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis [3],<br />

which suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at tissue hypoxia, adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e glycolytic phenotype [4], and<br />

acquisiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance to acidic byproducts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e glycolytic phenotype comprise<br />

a critical stage in tumour progressi<strong>on</strong>. Many open questi<strong>on</strong>s remain c<strong>on</strong>cerning<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis and how it fits into <str<strong>on</strong>g>th</str<strong>on</strong>g>e somatic evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer,<br />

illustrating just <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> many research avenues for modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e somatic evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cancer in general. We have generalised an existing c<strong>on</strong>tinuum model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e acidmediated<br />

invasi<strong>on</strong> hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis [5] by c<strong>on</strong>sidering additi<strong>on</strong>al, potentially important,<br />

biological features <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong>, such as realistic acid-induced cellular dea<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

terms and cellular competiti<strong>on</strong>. Using bo<str<strong>on</strong>g>th</str<strong>on</strong>g> analytical and numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, we<br />

firstly explore how a wave <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour cell invasi<strong>on</strong> is influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e acquisiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> acid resistance, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er studies investigating parameter sensitivity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> modelling invasi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> more <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong>e spatial dimensi<strong>on</strong>.<br />

References.<br />

[1] D. Hanahan, RA. Weinberg, The hallmarks <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer Cell 100(1) 57-70.<br />

[2] RA. Gatenby, PK. Maini, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical <strong>on</strong>cology: cancer summed up Nature 421(6921) 321.<br />

[3] RJ. Gillies, RA. Gatenby, Hypoxia and adaptive landscapes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carcinogenesis<br />

Cancer and Metastasis Reviews 26(2) 311-317.<br />

[4] O. Warburg, The Metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumors, Arnold C<strong>on</strong>stable, L<strong>on</strong>d<strong>on</strong>.<br />

[5] RA. Gatenby, ET. Gawlinski, A reacti<strong>on</strong>-diffusi<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong> Cancer Research<br />

56(24) 5745-5753.<br />

642


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemic models: Networks and stochasticity II; Thursday, June 30, 11:30<br />

Alan McKane<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Manchester<br />

e-mail: alan.mckane@manchester.ac.uk<br />

Stochastic amplificati<strong>on</strong> in an epidemic model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> seas<strong>on</strong>al<br />

forcing<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will discuss, using <str<strong>on</strong>g>th</str<strong>on</strong>g>e formalism <str<strong>on</strong>g>of</str<strong>on</strong>g> master equati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic dynamics which appears in models <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> biology, and in<br />

particular childhood epidemics. When <str<strong>on</strong>g>th</str<strong>on</strong>g>ey c<strong>on</strong>tain a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituents,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models may be analysed using an expansi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system<br />

size. To leading order <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic analogues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models can be compared to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s which are normally written down <strong>on</strong> phenomenological grounds, for<br />

example <str<strong>on</strong>g>th</str<strong>on</strong>g>e SIR (Susceptible-Infected-Recovered) differential equati<strong>on</strong>s. At nextto-leading<br />

order a simplified stochastic descripti<strong>on</strong> is obtained. Attenti<strong>on</strong> will focus<br />

<strong>on</strong> systems for which <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic descripti<strong>on</strong> fails to predict cycles, but where<br />

large cycles are found at next-to-leading order. These cycles have <str<strong>on</strong>g>th</str<strong>on</strong>g>eir origin in<br />

fluctuati<strong>on</strong>s due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system comp<strong>on</strong>ents, and are much<br />

larger <str<strong>on</strong>g>th</str<strong>on</strong>g>an would naively be expected because <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are amplified by a res<strong>on</strong>ance<br />

phenomen<strong>on</strong>. The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese ideas to <str<strong>on</strong>g>th</str<strong>on</strong>g>e SIR model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> term-time<br />

forcing will be described.<br />

643


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 11:00<br />

Nicola McPhers<strong>on</strong><br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing Science & Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling,<br />

Stirling FK9 4LA, UK<br />

e-mail: njm@cs.stir.ac.uk<br />

Dr. Rachel Norman<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing Science & Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling,<br />

Stirling FK9 4LA, UK<br />

e-mail: ran@cs.stir.ac.uk<br />

Macroparasites in Managed Systems: Using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

models to help reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Argulus foliaceus in UK<br />

Fisheries<br />

Argulus foliaceus is a macroparasite which reduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e aes<str<strong>on</strong>g>th</str<strong>on</strong>g>etic appeal and catchability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow (Oncorhynchus mykiss) and brown (Salmo trutta) trout in stillwater<br />

fisheries across <str<strong>on</strong>g>th</str<strong>on</strong>g>e UK; infecti<strong>on</strong> is detrimental to fish welfare, can lead to<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> revenue, and impacts negatively <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reputati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e affected fisheries.<br />

Current me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol can be bo<str<strong>on</strong>g>th</str<strong>on</strong>g> extreme and ineffective, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parasite<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten surviving in surprising circumstances, despite c<strong>on</strong>stant, expensive treatment.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is to present ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled<br />

n<strong>on</strong>-linear ODEs, which describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between argulids and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir hosts,<br />

incorporating reduced catch rates and several different stocking me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. Fishery<br />

managers can stock fish into <str<strong>on</strong>g>th</str<strong>on</strong>g>eir lakes in a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different ways in order to<br />

make sure <str<strong>on</strong>g>th</str<strong>on</strong>g>at anglers catch enough fish and want to return to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir fishery. This<br />

talk will investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>ose stocking me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fish to parasitism and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> parasites in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lake. These combine to<br />

have a - sometimes counterintuitive - knock-<strong>on</strong> effect <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> fish caught<br />

and hence <str<strong>on</strong>g>th</str<strong>on</strong>g>e ec<strong>on</strong>omic viability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fishery.<br />

644


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Tuesday, June 28, 17:00<br />

O.A. Melnichenko<br />

moscow state university, faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and<br />

cybernetics<br />

e-mail: olesya.melnichenko@gmail.com<br />

Tuberculosis in Russia: comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TB c<strong>on</strong>trol<br />

programmes<br />

Tuberculosis is recognized as a major global public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> problem, so development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> TB c<strong>on</strong>trol strategies and estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir efficiency are important tasks.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling can be a tool for solving <str<strong>on</strong>g>th</str<strong>on</strong>g>ese problems.<br />

We compared c<strong>on</strong>trol programmes for 14 regi<strong>on</strong>s related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Central Federal<br />

District <str<strong>on</strong>g>of</str<strong>on</strong>g> Russia. The initial values <str<strong>on</strong>g>of</str<strong>on</strong>g> indicators for m<strong>on</strong>itoring TB c<strong>on</strong>trol<br />

programmes were obtained from data analysis [1]. Average smear-positive case<br />

detecti<strong>on</strong> rate equals 74%, average treatment success rate equals 78%, average<br />

smear-negative case detecti<strong>on</strong> rate equals 34%.<br />

We c<strong>on</strong>sidered two TB c<strong>on</strong>trol programmes. The programme 1 is recommended<br />

by WHO, <str<strong>on</strong>g>th</str<strong>on</strong>g>e targets <str<strong>on</strong>g>of</str<strong>on</strong>g> programme are detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> new smear-positive cases<br />

and cure <str<strong>on</strong>g>of</str<strong>on</strong>g> 85% <str<strong>on</strong>g>of</str<strong>on</strong>g> such cases. Russian heal<str<strong>on</strong>g>th</str<strong>on</strong>g> system c<strong>on</strong>siders two c<strong>on</strong>secutive<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis: smear-negative and smear-positive. Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> smearnegative<br />

cases is an important part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Russian TB c<strong>on</strong>trol programme and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erefore we c<strong>on</strong>sidered programme 2 focused <strong>on</strong> improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> smear-negative<br />

case detecti<strong>on</strong>. The target <str<strong>on</strong>g>of</str<strong>on</strong>g> programme 2 is detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 40% <str<strong>on</strong>g>of</str<strong>on</strong>g> new smearnegative<br />

cases.<br />

To compare c<strong>on</strong>trol programmes we used a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> TB in populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Russia, <str<strong>on</strong>g>th</str<strong>on</strong>g>e values <str<strong>on</strong>g>of</str<strong>on</strong>g> model parameters were<br />

obtained from model fitting [1]. To analyze sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> model soluti<strong>on</strong> to changes<br />

in model parameters we used a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> adjoint equati<strong>on</strong>s, also we obtained<br />

formulas for calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in basic epidemiological indicators [2].<br />

The changes in TB mortality rate, TB incidence and number <str<strong>on</strong>g>of</str<strong>on</strong>g> people who<br />

infected by mycobacteria per year were calculated for each programme. Programme<br />

1 is more effective <str<strong>on</strong>g>th</str<strong>on</strong>g>an programme 2 in 9 regi<strong>on</strong>s and less effective in 3 regi<strong>on</strong>s.<br />

They are approximately equal in 2 regi<strong>on</strong>s. The results obtained show <str<strong>on</strong>g>th</str<strong>on</strong>g>at type<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol programme should be chosen separately for each regi<strong>on</strong> after analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epidemic situati<strong>on</strong>.<br />

The technique developed can be used to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er TB<br />

c<strong>on</strong>trol programmes <str<strong>on</strong>g>th</str<strong>on</strong>g>at were not c<strong>on</strong>sidered in <str<strong>on</strong>g>th</str<strong>on</strong>g>is study. It can be a usefull tool<br />

to choose <str<strong>on</strong>g>th</str<strong>on</strong>g>e most effective programme.<br />

References.<br />

[1] O.A. Melnichenko, A.A. Romanyukha A model <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis epidemiology: estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameters and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> factors influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic process Russ. J.<br />

Numer. Anal. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Modelling, 2008, vol. 23, No. 1, pp. 63-75.<br />

[2] O.A. Melnichenko Model <str<strong>on</strong>g>of</str<strong>on</strong>g> tuberculosis epidemiology: sensitivity analysis Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> 4<str<strong>on</strong>g>th</str<strong>on</strong>g> Internati<strong>on</strong>al<br />

<str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> C<strong>on</strong>trol Problems, Moscow, 2009, pp. 857–863. (in Russian)<br />

645


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Models in Spatial Ecology; Tuesday, June 28, 17:00<br />

, R.M.<br />

M.Z. Cardoso<br />

Departamento de Botânica, Ecologia e Zoologia, Universidade Federal<br />

do Rio Grande do Norte, Brazil<br />

e-mail: mzc@cb.ufrn.br<br />

G. Corso<br />

Departamento de Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ísica e Farmacologia, Universidade Federal do<br />

Rio Grande do Norte, Brazil<br />

e-mail: corso@cb.ufrn.br<br />

R.M. Coutinho<br />

Instituto de Física Teórica Universidade Estadual Paulista - UNESP,<br />

São Paulo, Brazil<br />

e-mail: renatomc@ift.unesp<br />

R.A. Kraenkel<br />

Instituto de Física Teórica Universidade Estadual Paulista - UNESP,<br />

São Paulo, Brazil<br />

e-mail: kraenkel@ift.unesp.br<br />

C<strong>on</strong>nectivity and diffusi<strong>on</strong> for Helic<strong>on</strong>ius species in a<br />

seas<strong>on</strong>ally dry fragmented habitat<br />

In a fragmented landscape, <str<strong>on</strong>g>th</str<strong>on</strong>g>e capability <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s to move between habitat<br />

patches, called functi<strong>on</strong>al c<strong>on</strong>nectivity, is influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intervening<br />

matrix and how organisms resp<strong>on</strong>d to it. Models usually treat <str<strong>on</strong>g>th</str<strong>on</strong>g>e matrix as<br />

a fixed category and fail to appreciate <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic matrix types. We<br />

studied <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al changes in matrix quality, given <str<strong>on</strong>g>th</str<strong>on</strong>g>at it differs between<br />

dry and wet seas<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e seas<strong>on</strong>al tropics. The durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e favorable period<br />

for dispersal, <str<strong>on</strong>g>th</str<strong>on</strong>g>e species’ ability to disperse and <str<strong>on</strong>g>th</str<strong>on</strong>g>e distance between patches could<br />

be important factors determining patch c<strong>on</strong>nectivity. We explored <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>necti<strong>on</strong>s<br />

by employing a diffusi<strong>on</strong> model to a <strong>on</strong>e-dimensi<strong>on</strong>al landscape subjected to<br />

periodical fluctuati<strong>on</strong>s in matrix quality; diffusi<strong>on</strong> was curtailed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e dry seas<strong>on</strong><br />

and permitted in <str<strong>on</strong>g>th</str<strong>on</strong>g>e wet seas<strong>on</strong>. Our model predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>at, given a particular organism’s<br />

lifetime and diffusi<strong>on</strong> c<strong>on</strong>stant, c<strong>on</strong>nectivity will depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong><br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dispersal seas<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e time for <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> to<br />

fully extend into <str<strong>on</strong>g>th</str<strong>on</strong>g>e matrix. We parameterize our model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> demographic data<br />

from Helic<strong>on</strong>ius butterflies, finding <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model successfully describes c<strong>on</strong>nectivity<br />

between habitat patches and so it could be used to model dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

organisms in seas<strong>on</strong>al envir<strong>on</strong>ments and to help guide restorati<strong>on</strong> efforts and design<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protected areas in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tropics.<br />

646


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Wednesday, June 29, 11:00<br />

B. Mendoza-Juez<br />

Departamento de Matemáticas, E.T.S. de Ingenieros industriales &<br />

IMACI - Instituto de Matemática Aplicada a la Ciencia y la Ingeniería,<br />

Universidad de Castilla - La Mancha, 13071, Ciudad Real, Spain<br />

e-mail: berta.mendoza@uclm.es<br />

A. Martínez-G<strong>on</strong>zález, D. Diego, G. F. Calvo, V. M. Pérez-García<br />

Departamento de Matemáticas & IMACI - Instituto de Matemática<br />

Aplicada a la Ciencia y la Ingeniería, Universidad de Castilla - La<br />

Mancha, 13071, Ciudad Real, Spain<br />

e-mail: alicia.martinez@uclm.es, david.diego@uclm.es,<br />

gabriel.fernandez@uclm.es,victor.perezgarcia@uclm.es<br />

P. Melgar, P. Sanchez-Prieto<br />

Laboratorio de Oncología Molecular, CRIB, Facultad de Medicina,<br />

Universidad de Castilla - La Mancha, Avda. Almansa s/n, 02071 Albacete,<br />

Spain<br />

e-mail: pedro.melgar@uclm.es, ricardo.sanchez@uclm.es<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic symbiosis in tumors<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e 1920s <str<strong>on</strong>g>th</str<strong>on</strong>g>e findings by Otto Warburg’s highlighted <str<strong>on</strong>g>th</str<strong>on</strong>g>e fundamental differences<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>cogene revoluti<strong>on</strong> somehow<br />

pushed tumor metabolism to an ancillary level in cancer research. It is currently<br />

becoming clear <str<strong>on</strong>g>th</str<strong>on</strong>g>at many key <strong>on</strong>cogenic signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways c<strong>on</strong>verge to adapt tumor<br />

cell metabolism to support grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and survival, and some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese alterati<strong>on</strong>s<br />

seem to be required for malignant transformati<strong>on</strong> [1, 2, 3].<br />

The abnormal tumor microenvir<strong>on</strong>ment has a major role in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

metabolic phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells. Tumor vasculature is irregular and malfuncti<strong>on</strong>ing,<br />

creating spatial and temporal heterogeneity in oxygenati<strong>on</strong>, pH, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, lactate and many o<str<strong>on</strong>g>th</str<strong>on</strong>g>er metabolites. Under such varying<br />

and extreme c<strong>on</strong>diti<strong>on</strong>s, adaptive resp<strong>on</strong>ses are induced <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tribute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

switching metabolic phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> malignant cells greatly influencing tumor progressi<strong>on</strong>.<br />

Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough aerobic glycolysis (<str<strong>on</strong>g>th</str<strong>on</strong>g>e Warburg effect) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e best documented<br />

metabolic phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells, it is not a universal feature <str<strong>on</strong>g>of</str<strong>on</strong>g> all human cancers.<br />

Moreover, even in glycolytic tumors, oxidative phosphorylati<strong>on</strong> is not completely<br />

shut down.<br />

Hypoxic cells use glucose for glycolysis, producing large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> lactate<br />

and exporting it via m<strong>on</strong>ocarboxylate transporters (mainly <str<strong>on</strong>g>th</str<strong>on</strong>g>e is<str<strong>on</strong>g>of</str<strong>on</strong>g>orm MCT4), a<br />

family <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins <str<strong>on</strong>g>th</str<strong>on</strong>g>at when expressed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e plasma membrane are resp<strong>on</strong>sible<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport <str<strong>on</strong>g>of</str<strong>on</strong>g> different types <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules [4,5]. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e accelerated<br />

metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese transporters are up-regulated in many different<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> cancers [2,4,6]<br />

This fact has been recognized in <str<strong>on</strong>g>th</str<strong>on</strong>g>e last few years as opening a potential target<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies since blocking <str<strong>on</strong>g>th</str<strong>on</strong>g>e activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese transporters might lead to different<br />

scenarios leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cell [2,7-10]<br />

647


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

It has been recently dem<strong>on</strong>strated [10] <str<strong>on</strong>g>th</str<strong>on</strong>g>at oxygenated cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor<br />

can import extracellular lactate using ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er transporter (MCT1) to fuel respirati<strong>on</strong>,<br />

preserving glucose for use by <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypoxic cells and regulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e medium pH.<br />

This metabolic symbiosis between oxidative and glycolytic tumor cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at mutually<br />

regulate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir access to energy metabolites and pH makes <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor progressi<strong>on</strong><br />

very robust. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, it has been shown in [10] <str<strong>on</strong>g>th</str<strong>on</strong>g>at inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MCT1 induces<br />

a switch <strong>on</strong> oxidative cells from lactate-fueled respirati<strong>on</strong> to glycolysis. As<br />

a c<strong>on</strong>sequence, hypoxic cells die from glucose starvati<strong>on</strong> rendering <str<strong>on</strong>g>th</str<strong>on</strong>g>e remaining<br />

better-oxygenated cells sensitive to irradiati<strong>on</strong> and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies.<br />

Similar symbiotic phenomena between <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor and its altered microenvir<strong>on</strong>ment<br />

have been reported in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er tumor models [11,12].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is communicati<strong>on</strong> we will present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells<br />

behavior in vitro able to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e glucose and lactate uptake in different scenarios.<br />

The model fits <str<strong>on</strong>g>th</str<strong>on</strong>g>e in-vitro experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> Ref. [10], toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

measurements reported in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature [13], as well as our own experiments wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

glioma cell lines.<br />

We will discuss how to extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e in-vitro model to incorporate o<str<strong>on</strong>g>th</str<strong>on</strong>g>er phenomena<br />

present in cancers such as hypoxia and reoxygenati<strong>on</strong>. Finally, it will be<br />

examined how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models can assist in <str<strong>on</strong>g>th</str<strong>on</strong>g>e design <str<strong>on</strong>g>of</str<strong>on</strong>g> optimized combinati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapies wi<str<strong>on</strong>g>th</str<strong>on</strong>g> radiati<strong>on</strong> and inhibitors <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ocarboxylate transporters.<br />

References.<br />

[1] M.G. Vander Heiden, L.C. Cantley and C.B. Thomps<strong>on</strong>, Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e Warburg Effect:<br />

The Metabolic Requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Proliferati<strong>on</strong>, Science 324 1029 (2009).<br />

[2] D.A. Tennant, R.V. Durán and E. Gottlieb, Targeting metabolic transformati<strong>on</strong> for cancer<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, Nature Reviews Cancer 10 267 (2010).<br />

[3] R. A. Cairns, I. S. Harris, T. W. Mak, Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cell metabolism, Nature Reviews<br />

Cancer 11 85–95 (2011).<br />

[4] C. Pinheiro, R. M. Reis, S. Ricardo, A. L<strong>on</strong>gatto-Filho, F. Schmitt, and F. Baltazar, Expressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>ocarboxylate Transporters 1, 2, and 4 in Human Tumours and Their Associati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

CD147 and CD44, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomedicine and Biotechnology 2010, 427694 (2010).<br />

[5] A. P. Halestrap, N. T. Price, The prot<strong>on</strong>-linked m<strong>on</strong>ocarboxylate transporter (MCT) family :<br />

structure, functi<strong>on</strong> and regulati<strong>on</strong>, Biochem. J. 343 (1999) 281-299.<br />

[6] C. Pinheiro et al., M<strong>on</strong>ocarboxylate transporter 1 is up-regulated in basal-like breast carcinoma,<br />

Histopa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology 56 (2010) 860-867.<br />

[7] K. M. Kennedy, M. W. Dewhrist, Tumor metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> lactate: <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence and <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic<br />

potential for MCT and CD147 regulati<strong>on</strong>, Future Oncology 6 (2010) 127.<br />

[8] S. P. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>upala, P. Parajuli, A. E. Sloan, Silencing <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ocarboxylate transportes via siRNA<br />

inhibits glycolisis and induces cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g> in malignant glioma: An in vitro study, Neurosurgery<br />

55 (2004) 1410<br />

[9] J. Fang, Q. J. Quin<strong>on</strong>es, T. L. Holman, M. J. Morowitz, Q. Wang, H. Zhao, F. Sivo, J. M.<br />

Maris, and M. L. Wahl, The H+-Linked M<strong>on</strong>ocarboxylate Transporter (MCT1/SLC16A1):<br />

A Potential Therapeutic Target for High-Risk Neuroblastoma, Molecular Pharmacology 70<br />

(2006) 2108.<br />

[10] P. S<strong>on</strong>veaux et al., Targeting lactate-fueled respirati<strong>on</strong> selectively kills hypoxic tumor cells in<br />

mice The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Clinical Investigati<strong>on</strong> 118 3930 (2008).<br />

[11] S. Pavlides et al., The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor stroma, Cell Cycle 8 (2009) 3984-4001.<br />

[12] G. Migneco et al., Glycolytic cancer associated fibroblasts promote breast cancer tumor<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out a measurable increase in angiogenesis: Evidence for stromal-epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial metabolic<br />

coupling, Cell Cycle 9 (2010) 2412-2422.<br />

[13] R. L. Elstrom, D. E. Bauer, M. Buzzai, R. Karnauskas, M. H. Harris,1 D. R. Plas, H. Zhuang,<br />

R. M. Cinalli, A. Alavi, C. M. Rudin, and C. B. Thomps<strong>on</strong>, Akt stimulates aerobic glycolisys<br />

in cancer cells, Cancer Research 64 (2004) 3892-3899.<br />

648


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Computati<strong>on</strong>al toxicology and pharmacology - in silico drug activity and<br />

safety assessment; Saturday, July 2, 11:00<br />

Aleksander Mendyk<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmaceutical Technology and Biopharmaceutics Faculty<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacy Jagiell<strong>on</strong>ian University Medical College, Medyczna<br />

9 Street, Kraków 30-688, Poland<br />

e-mail: mfmendyk@cyf-kr.edu.pl<br />

Barbara Wiśniowska<br />

Unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacoepidemiology and Pharmacoec<strong>on</strong>omics Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pharmacy Jagiell<strong>on</strong>ian University Medical College, Medyczna 9 Street,<br />

Kraków 30-688, Poland<br />

Miłosz Polak<br />

Unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacoepidemiology and Pharmacoec<strong>on</strong>omics Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pharmacy Jagiell<strong>on</strong>ian University Medical College, Medyczna 9 Street,<br />

Kraków 30-688, Poland<br />

Jakub Szlęk<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmaceutical Technology and Biopharmaceutics Faculty<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacy Jagiell<strong>on</strong>ian University Medical College, Medyczna<br />

9 Street, Kraków 30-688, Poland<br />

Anna Glinka<br />

Unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacoepidemiology and Pharmacoec<strong>on</strong>omics Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pharmacy Jagiell<strong>on</strong>ian University Medical College, Medyczna 9 Street,<br />

Kraków 30-688, Poland<br />

Sebastian Polak<br />

Unit <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacoepidemiology and Pharmacoec<strong>on</strong>omics Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Pharmacy Jagiell<strong>on</strong>ian University Medical College, Medyczna 9 Street,<br />

Kraków 30-688, Poland<br />

Artificial neural networks for carditoxicity predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

drugs - practical c<strong>on</strong>siderati<strong>on</strong>s<br />

Introducti<strong>on</strong> Early toxicity predicti<strong>on</strong> for potential drugs is c<strong>on</strong>sidered as a necessary<br />

safety measure regarding recent wi<str<strong>on</strong>g>th</str<strong>on</strong>g>drawals <str<strong>on</strong>g>of</str<strong>on</strong>g> many substances from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pharmaceutical market. The latter was substantially based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e identified cardiotoxicity<br />

related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e potassium channels encoded by hERG<br />

(<str<strong>on</strong>g>th</str<strong>on</strong>g>e human e<str<strong>on</strong>g>th</str<strong>on</strong>g>er-a-go-go related gene). Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e drugs affinity to hERG channels<br />

is c<strong>on</strong>sidered now as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e major screening factors for potentially dangerous<br />

substances. There are <str<strong>on</strong>g>th</str<strong>on</strong>g>eories describing relati<strong>on</strong>ships between hERG channels<br />

blocking activity and chemical structure but <str<strong>on</strong>g>th</str<strong>on</strong>g>ey <str<strong>on</strong>g>of</str<strong>on</strong>g>ten lack <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological/pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ological<br />

factors and drug c<strong>on</strong>centrati<strong>on</strong> influence. Thus, it is feasible to<br />

use empirical modeling to fill <str<strong>on</strong>g>th</str<strong>on</strong>g>is gap. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work was to create predictive<br />

model for chemical substances affinity to hERG channels by means <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial<br />

neural networks (ANNs).<br />

Materials and me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods Database used for <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling purposes was recently<br />

published and is freely available from <str<strong>on</strong>g>th</str<strong>on</strong>g>e CompTox project website (www.toxportal.net).<br />

Input data were derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>e published in vitro experiments. Inputs<br />

represented in vitro experiment settings, chemical descriptors <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs and<br />

drug c<strong>on</strong>centrati<strong>on</strong>. Output was simply percent <str<strong>on</strong>g>of</str<strong>on</strong>g> hERG channel inhibiti<strong>on</strong> (range<br />

649


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

0 to 1). Final set c<strong>on</strong>tained 1969 records describing 200 drugs. Initial number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inputs was 109. Enhanced 10-fold cross validati<strong>on</strong> (10-cv) was applied, where whole<br />

drugs informati<strong>on</strong> was excluded from test sets. For external validati<strong>on</strong> a test set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 193 records (25 substances) for drugs bo<str<strong>on</strong>g>th</str<strong>on</strong>g> previously present (different in vitro<br />

settings) and absent in <str<strong>on</strong>g>th</str<strong>on</strong>g>e native dataset was used. Drugs chemical structures<br />

were drawn in MarvinSketch or downloaded from PubChem Compound database.<br />

The molecules were structurally optimized wi<str<strong>on</strong>g>th</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> molc<strong>on</strong>vert command-line<br />

program included in Marvin Beans package. Resulting *.sdf files were <str<strong>on</strong>g>th</str<strong>on</strong>g>e subject<br />

to descriptor calculati<strong>on</strong>s by cxcalc program wi<str<strong>on</strong>g>th</str<strong>on</strong>g> selected 41 plugins. The default<br />

parameters were used in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cxcalc and molc<strong>on</strong>vert programs. Multi-layer<br />

perceptr<strong>on</strong>s (MLPs) and neuro-fuzzy ANNs (NFs) were trained wi<str<strong>on</strong>g>th</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> backpropagati<strong>on</strong><br />

(BP) algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m wi<str<strong>on</strong>g>th</str<strong>on</strong>g> momentum, delta-bar-delta and jog-<str<strong>on</strong>g>of</str<strong>on</strong>g>-weights<br />

modificati<strong>on</strong>s. Various activati<strong>on</strong> functi<strong>on</strong>s were tested: hyperbolic tangent, logari<str<strong>on</strong>g>th</str<strong>on</strong>g>mic,<br />

logistic and linear. MLPs architectures were varied from 1 to 6 hidden<br />

layers and up to 200 nodes in each layer. For NFs <str<strong>on</strong>g>of</str<strong>on</strong>g> Mamdani (multiple input<br />

single output) MISO type <strong>on</strong>ly <strong>on</strong>e layer was applied. Adjacent layers were fully interc<strong>on</strong>nected.<br />

Sensitivity analysis was performed in order to reduce initial number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> inputs to <str<strong>on</strong>g>th</str<strong>on</strong>g>e crucial variables set by means <str<strong>on</strong>g>of</str<strong>on</strong>g> iterative algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m wi<str<strong>on</strong>g>th</str<strong>on</strong>g> gradual<br />

inputs reducti<strong>on</strong> and models predictive performance assessment. The latter was<br />

generalizati<strong>on</strong> error estimated by means <str<strong>on</strong>g>of</str<strong>on</strong>g> 10-cv wi<str<strong>on</strong>g>th</str<strong>on</strong>g> root mean squared error<br />

(RMSE) measure. Ensemble ANNs systems were applied and combined by simple<br />

average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir outputs in order to improve predictability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

Results The input reducti<strong>on</strong> procedure resulted in 39 parameters describing<br />

in vitro setting (8), drug physico-chemical properties (30), and c<strong>on</strong>centrati<strong>on</strong> (1).<br />

The best ANNs architectures found were as follows: (1) ANN wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 3 hidden layers<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 15, 7 and 5 nodes in each <strong>on</strong>e respectively and logistic activati<strong>on</strong> functi<strong>on</strong>; 2)<br />

ANN wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 2 hidden layers wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 20 and 10 nodes. The resulting 10-cv RMSE was<br />

0.22 wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e validati<strong>on</strong> data set RMSE = 0.2. This result, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough<br />

not satisfactory seems to be final wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e available data representati<strong>on</strong>. Future<br />

research will be devoted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model by enhancing input data<br />

by new factors/variables, if available.<br />

650


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Friday, July 1, 14:30<br />

Carsten Mente<br />

Technische Universität Dresden, Center for Informati<strong>on</strong> Services and<br />

High Performance Computing, 01062 Dresden Germany<br />

e-mail: carsten.mente@tu-dresden.de<br />

Andreas Deutsch<br />

Technische Universität Dresden, Center for Informati<strong>on</strong> Services and<br />

High Performance Computing, 01062 Dresden Germany<br />

e-mail: andreas.deutsch@tu-dresden.de<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Cell Dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Individual-based<br />

Lattice-gas Cellular Automata<br />

Malignant tumors can be c<strong>on</strong>sidered as populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a high amount <str<strong>on</strong>g>of</str<strong>on</strong>g> phenotypic heterogeneity. To model cooperative phenomena<br />

(e.g. cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g>) in interacting cell populati<strong>on</strong>s, lattice-gas cellular automat<strong>on</strong><br />

(LGCA) models are increasingly used. Major advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> LGCA models are<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey admit computati<strong>on</strong>ally efficient simulati<strong>on</strong>s and <str<strong>on</strong>g>of</str<strong>on</strong>g>ten analytical treatment<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeled problem. However, it has not been possible so far to distinguish<br />

individual biological cells in LGCA models making <str<strong>on</strong>g>th</str<strong>on</strong>g>em unsuitable to model<br />

phenomena where <str<strong>on</strong>g>th</str<strong>on</strong>g>e explicit descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cells is required. However,<br />

lattice-gas cellular automata have been successfully applied to model specific tumors<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out specifically c<strong>on</strong>sidering individual cells, e.g. grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma<br />

tumors. N<strong>on</strong>e<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are processes during tumor formati<strong>on</strong> for which a "classical<br />

lattice-gas model" is unsuitable. One such process is <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surrounding<br />

tissue by single tumor cells, a prerequisite for <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metastasis.<br />

We propose an extensi<strong>on</strong> to (classical) lattice-gas cellular automata which allows<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> and tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cells. In particular, we derive stochastic<br />

differential equati<strong>on</strong>s (Langevin equati<strong>on</strong>s) corresp<strong>on</strong>ding to specific LGCA<br />

models. The LGCA model toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding<br />

Langevin equati<strong>on</strong> allows computati<strong>on</strong>ally efficient simulati<strong>on</strong>s and feasible analytical<br />

treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cells in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cells.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, our proposed approach facilitates <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual-based<br />

LGCA models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cell-dependent dynamics. This also supports <str<strong>on</strong>g>th</str<strong>on</strong>g>e incorporati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> LGCA models into multi-scale models which c<strong>on</strong>sider processes at sub-cellular<br />

and cellular scales.<br />

We present applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our individual-based LGCA appoach to <str<strong>on</strong>g>th</str<strong>on</strong>g>e following<br />

examples: random walk, adhesi<strong>on</strong>, and collective moti<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we use<br />

an individual-based LGCA model to investigate c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue<br />

invasi<strong>on</strong> by single tumor cells.<br />

651


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Saturday, July 2, 14:30<br />

Gülnihal Meral<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Arts and Sciences<br />

Z<strong>on</strong>guldak Karaelmas University<br />

67100 Z<strong>on</strong>guldak<br />

Turkey<br />

e-mail: gulnihal@karaelmas.edu.tr<br />

Christina Surulescu<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Einsteinstr. 62<br />

48149 Münster<br />

Germany<br />

e-mail: christina.surulescu@uni-muenster.de<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling and Numerical Simulati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Heat Shock Proteins <strong>on</strong> Tumour Invasi<strong>on</strong><br />

Invasi<strong>on</strong> is a key property <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells; <str<strong>on</strong>g>th</str<strong>on</strong>g>ereby, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey encounter a large variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soluble and substratum-bound factors which can influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e different stages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir migrati<strong>on</strong>. There are at least two mechanisms promoted by such factors:<br />

chemotaxis and haptotaxis. These in turn are influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular dynamics.<br />

In our talk we focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> heat shock proteins (HSP), a class <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

functi<strong>on</strong>ally related proteins whose expressi<strong>on</strong> is enhanced when cells are exposed<br />

to elevated temperature or o<str<strong>on</strong>g>th</str<strong>on</strong>g>er stresses and which have been recently proposed to<br />

influence cancer cell migrati<strong>on</strong>. Our ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model has a multiscale character,<br />

accounting bo<str<strong>on</strong>g>th</str<strong>on</strong>g> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic, intracellular level <strong>on</strong> which <str<strong>on</strong>g>th</str<strong>on</strong>g>ese proteins<br />

are acting and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic level <str<strong>on</strong>g>of</str<strong>on</strong>g> cell populati<strong>on</strong>. It c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e density <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells, <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular<br />

matrix and <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix degrading enzymes, which is <str<strong>on</strong>g>th</str<strong>on</strong>g>en coupled<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a delay differential equati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e HSP dynamics. We propose several different<br />

ways for modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e time lag and perform numerical simulati<strong>on</strong>s in order<br />

to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> our choices <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system.<br />

652


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Tuesday, June 28, 17:00<br />

Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>fry N. Mercer<br />

Nati<strong>on</strong>al Centre for Epidemiology and PPopulati<strong>on</strong> Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Australian<br />

Nati<strong>on</strong>al University, Canberra, ACT, AUSTRALIA<br />

e-mail: Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>f.Mercer@anu.edu.au<br />

Hea<str<strong>on</strong>g>th</str<strong>on</strong>g> Kelly<br />

Victorian Infectious Disease Reference Laboratory, Melbourne, Victoria,<br />

AUSTRALIA<br />

e-mail: Hea<str<strong>on</strong>g>th</str<strong>on</strong>g>.Kelly@mh.org.au<br />

Did seas<strong>on</strong>al influenza vaccinati<strong>on</strong> increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pandemic influenza infecti<strong>on</strong>?<br />

Recent studies have suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at vaccinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> seas<strong>on</strong>al influenza vaccine<br />

resulted in an apparent higher risk <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> pandemic influenza H1N1 2009.<br />

A simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model incorporating strain competiti<strong>on</strong> and a hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esised<br />

temporary strain-transcending immunity is c<strong>on</strong>structed to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>is observati<strong>on</strong>.<br />

Results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model over a range <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> numbers and effective vaccinati<strong>on</strong><br />

coverage c<strong>on</strong>firm <str<strong>on</strong>g>th</str<strong>on</strong>g>is apparent increased risk in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Nor<str<strong>on</strong>g>th</str<strong>on</strong>g>ern, but not <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Sou<str<strong>on</strong>g>th</str<strong>on</strong>g>ern, hemisphere. This is due to unvaccinated individuals being more likely to<br />

be infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> seas<strong>on</strong>al influenza (if it is circulating) and developing hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esised<br />

temporary immunity to <str<strong>on</strong>g>th</str<strong>on</strong>g>e pandemic strain. Because vaccinated individuals are<br />

less likely to have been infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> seas<strong>on</strong>al influenza, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are less likely to have<br />

developed <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esised temporary immunity and are <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore more likely to<br />

be infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> pandemic influenza. If <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number for pandemic influenza<br />

is increased, as it is for children, an increase in <str<strong>on</strong>g>th</str<strong>on</strong>g>e apparent risk <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al<br />

vaccinati<strong>on</strong> is observed. The maximum apparent risk effect is found when seas<strong>on</strong>al<br />

vaccinati<strong>on</strong> coverage is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e range 20-40%<br />

Only when pandemic influenza is recently preceded by seas<strong>on</strong>al influenza circulati<strong>on</strong><br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>ere a modelled increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g> pandemic influenza infecti<strong>on</strong> associated<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> prior receipt <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al vaccine.<br />

653


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

From <strong>on</strong>e to many: Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective, emergent behaviors<br />

in biology -I; Tuesday, June 28, 11:00<br />

Roeland M. H. Merks<br />

Centrum Wiskunde & Informatica (Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands)<br />

Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands C<strong>on</strong>sortium for Systems Biology (Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands)<br />

e-mail: roeland.merks@cwi.nl<br />

Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> plant tissues using VirtualLeaf<br />

Plant organs, including leaves and roots, develop by means <str<strong>on</strong>g>of</str<strong>on</strong>g> a complicated,<br />

multi-level cross-talk between gene regulati<strong>on</strong>, patterned cell divisi<strong>on</strong> and cell expansi<strong>on</strong>,<br />

and tissue mechanics. In c<strong>on</strong>trast to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells in many animal tissues, plant<br />

cells cannot migrate and, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> very few excepti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey cannot slide past each<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. C<strong>on</strong>sequently, plant morphogenesis depends entirely <strong>on</strong> patterned cell divisi<strong>on</strong>,<br />

cell expansi<strong>on</strong>, and cell differentiati<strong>on</strong>. Thus plant development requires different<br />

cell-centered models <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ose developed for animal development, in which<br />

cell migrati<strong>on</strong> and tissue folding play a primary role. We will present a cell-centered<br />

computer-modeling framework for plant tissue morphogenesis <str<strong>on</strong>g>th</str<strong>on</strong>g>at we named VirtualLeaf<br />

[1]. We will illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e current use <str<strong>on</strong>g>of</str<strong>on</strong>g> VirtualLeaf wi<str<strong>on</strong>g>th</str<strong>on</strong>g> examples <str<strong>on</strong>g>of</str<strong>on</strong>g> auxindriven<br />

vasculature development, determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf shape, and meristem grow<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

VirtualLeaf defines a set <str<strong>on</strong>g>of</str<strong>on</strong>g> biologically intuitive C++ objects, including cells, cell<br />

walls, and diffusing and reacting chemicals, <str<strong>on</strong>g>th</str<strong>on</strong>g>at provide useful abstracti<strong>on</strong>s for<br />

building biological simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> developmental processes. VirtualLeaf-based models<br />

provide a means for plant researchers to analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> developmental<br />

genes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biophysics <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and patterning. VirtualLeaf is an<br />

<strong>on</strong>going open-source s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware project (http://virtualleaf.googlecode.com) <str<strong>on</strong>g>th</str<strong>on</strong>g>at runs<br />

<strong>on</strong> Windows, Mac, and Linux.<br />

References.<br />

[1] R. M. H. Merks, M. Guravage, D. Inzé, G.T.S. Beemster. VirtualLeaf: an Open Source framework<br />

for cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> plant tissue grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and development Plant Physiology 155<br />

656–666, 2011.<br />

654


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis II; Wednesday, June<br />

29, 11:00<br />

Roeland M. H. Merks<br />

Centrum Wiskunde & Informatica (Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands)<br />

Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands C<strong>on</strong>sortium for Systems Biology (Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands)<br />

e-mail: roeland.merks@cwi.nl<br />

Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenic blood vessel sprouting:<br />

cell-ECM interacti<strong>on</strong> and tip-cell selecti<strong>on</strong><br />

Angiogenesis is a topic <str<strong>on</strong>g>of</str<strong>on</strong>g> intensive experimental investigati<strong>on</strong> so its phenomenology<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular signals c<strong>on</strong>tributing to it have been well characterized. Yet<br />

it is poorly understood how <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological comp<strong>on</strong>ents fit toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er dynamically to<br />

drive <str<strong>on</strong>g>th</str<strong>on</strong>g>e outgrow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> blood vessels. Cell-based simulati<strong>on</strong> models <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis<br />

describe endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cell behaviour in detail, help analyze how cells assemble into<br />

blood vessels, and reveal how cell behaviour depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cells <str<strong>on</strong>g>th</str<strong>on</strong>g>emselves produce. Our previous simulati<strong>on</strong> models, based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Cellular<br />

Potts model, have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e el<strong>on</strong>gated shape <str<strong>on</strong>g>of</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells is key to<br />

correct spatiotemporal in silico replicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular network grow<str<strong>on</strong>g>th</str<strong>on</strong>g> [1]. We also<br />

identified a new stochastic mechanism for angiogenic sprouting [2]. Here I will<br />

briefly discuss new insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> cell shape and stochastic motility during<br />

vascular branching. Then I will present recent results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> tip cells,<br />

suggesting <str<strong>on</strong>g>th</str<strong>on</strong>g>at tip cell-stalk cell interacti<strong>on</strong>s accelerate angiogenic sprouting. I<br />

will also discuss our recent cell-based modeling studies <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-extracellular matrix<br />

interacti<strong>on</strong>s during angiogenesis.<br />

References.<br />

[1] Merks, R.M.H., Brodsky, S.V., Goligorsky, M.S., Glazier J.A. Cell el<strong>on</strong>gati<strong>on</strong> is key to in silico<br />

replicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro vasculogenesis and subsequent remodeling. Developmental Biology 289<br />

44–54, 2006.<br />

[2] Merks, R.M.H., E.D. Perryn, A. Shirinifard, Glazier J.A. C<strong>on</strong>tact-inhibited chemotaxis in de<br />

novo and sprouting blood-vessel grow<str<strong>on</strong>g>th</str<strong>on</strong>g> PLoS Computati<strong>on</strong>al Biology 4 e1000163, 2008.<br />

655


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Speciati<strong>on</strong>; Wednesday, June 29, 08:30<br />

Géza Meszéna<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Physics, Eötvös University, Budapest<br />

e-mail: geza.meszena@elte.hu<br />

András Szilágyi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant tax<strong>on</strong>omy and Ecology, Eötvös University, Budapest<br />

Liz Pásztor<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Genatics, Eötvös University, Budapest<br />

Darwinian speciati<strong>on</strong> <strong>on</strong> a regulated landscape<br />

Darwin envisi<strong>on</strong>ed speciati<strong>on</strong> as a gradual transformati<strong>on</strong> from wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-species diversity<br />

to between species <strong>on</strong>e, driven by <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness-advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> reduced competiti<strong>on</strong><br />

via niche-segregati<strong>on</strong>. We identify <str<strong>on</strong>g>th</str<strong>on</strong>g>ree issues why Darwins suggesti<strong>on</strong> has been<br />

c<strong>on</strong>sidered problematic since <str<strong>on</strong>g>th</str<strong>on</strong>g>e New Syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis: I: The noti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> niche and reduced<br />

competiti<strong>on</strong> have no meaning in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> a rigid adaptive landscape.<br />

Instead, <strong>on</strong>e has to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e landscape (i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness functi<strong>on</strong>) as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotype-distributi<strong>on</strong> in a functi<strong>on</strong>al analytic c<strong>on</strong>text. The functi<strong>on</strong>al<br />

derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is map is <str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong> functi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e correct biological meaning.<br />

The adaptive dynamics phenomenology, including evoluti<strong>on</strong>ary branching, can<br />

be derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>is setup. II: The observed <str<strong>on</strong>g>of</str<strong>on</strong>g>ten-allopatric nature <str<strong>on</strong>g>of</str<strong>on</strong>g> speciati<strong>on</strong><br />

seems to exclude a role for competiti<strong>on</strong>. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> structured populati<strong>on</strong>s<br />

allows c<strong>on</strong>sidering spatially distributed populati<strong>on</strong>s as a single populati<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an over-all fitness value. Therefore, we can define <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive landscape <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e large spatial scale and apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>siderati<strong>on</strong>s above for allopatric and parapatric<br />

speciati<strong>on</strong> modes analogously to <str<strong>on</strong>g>th</str<strong>on</strong>g>e sympatric case. III: Biological species<br />

c<strong>on</strong>cept declared reproductive isolati<strong>on</strong> as <str<strong>on</strong>g>th</str<strong>on</strong>g>e defining issue <str<strong>on</strong>g>of</str<strong>on</strong>g> speciati<strong>on</strong>. In our<br />

picture emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> isolati<strong>on</strong> is sec<strong>on</strong>dary to ecological segregati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulated/changing<br />

landscape. As selecti<strong>on</strong> for ecological divergence is caused by a<br />

fitness minimum, it is always accompanied by a selecti<strong>on</strong> pressure for isolati<strong>on</strong>.<br />

Whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>is pressure results in an evoluti<strong>on</strong>ary buildup <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive isolati<strong>on</strong><br />

depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e availability and genetic organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible isolating mechanisms.<br />

C<strong>on</strong>sidering <str<strong>on</strong>g>th</str<strong>on</strong>g>ese <str<strong>on</strong>g>th</str<strong>on</strong>g>ree issues toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er leads us to c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at Darwins<br />

original idea is still <str<strong>on</strong>g>th</str<strong>on</strong>g>e most parsim<strong>on</strong>ious <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> speciati<strong>on</strong>. Species diversity is<br />

necessarily based <strong>on</strong> competiti<strong>on</strong>-reducing niche segregati<strong>on</strong>, i.e. segregati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>of</str<strong>on</strong>g> being regulated. This structure translates to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

regulated adaptive landscape, providing selecti<strong>on</strong> pressure for competiti<strong>on</strong>-reducing<br />

branching evoluti<strong>on</strong>, which may, or may not be related to spatial segregati<strong>on</strong>.<br />

656


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fractals and Complexity I; Wednesday, June 29, 14:30<br />

K<strong>on</strong>radin Metze<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Sciences , University <str<strong>on</strong>g>of</str<strong>on</strong>g> Campinas, Campinas, Brazil<br />

e-mail: kmetze@fmc.unicamp.br<br />

Fractality <str<strong>on</strong>g>of</str<strong>on</strong>g> chromatin<br />

The extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fractal c<strong>on</strong>cept towards biology and medicine has improved<br />

our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al properties and <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological phenomena<br />

in living organisms Fractals are very useful to characterize properly <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> tissues by describing relevant underlying design principles [1]. Fractality<br />

has evoluti<strong>on</strong>ary advantages. Structures wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fractal features can be built<br />

by simple, iterative programs. Fractal banching is a simple and efficient way for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complex c<strong>on</strong>necti<strong>on</strong>s resulting in short distances for transport.<br />

Fractal foldings <str<strong>on</strong>g>of</str<strong>on</strong>g> membranes permit to create a large surface area wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a very<br />

small volume. Power law organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological systems increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e capacity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment [1]. Therefore we<br />

can expect <str<strong>on</strong>g>th</str<strong>on</strong>g>at fractality can also be found in <str<strong>on</strong>g>th</str<strong>on</strong>g>e organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e epigenome. Several investigators showed <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> self-similarity in DNA<br />

sequences. Experimental data support <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a fractal organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chromatin.<br />

In intact interphase chicken ery<str<strong>on</strong>g>th</str<strong>on</strong>g>rocytes, spectra obtained by small angle<br />

neutr<strong>on</strong> scattering. revealed a c<strong>on</strong>stant fractal dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein comp<strong>on</strong>ent,<br />

and a biphasic DNA organizati<strong>on</strong>, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a fractal dimensi<strong>on</strong> <strong>on</strong> lower scales and a<br />

different <strong>on</strong>e <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e larger scales [2]. Fractal structures can be created in polymers<br />

by iterative processes for instance by repeated folding during c<strong>on</strong>densati<strong>on</strong>. Thus a<br />

polymer can be packed in a small volume wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out entanglements, facilitating rapid<br />

unravelling when necessary. Recent experiments suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is process applies<br />

also to chromatin leading to a genome organizati<strong>on</strong> in form <str<strong>on</strong>g>of</str<strong>on</strong>g> a spatial segregati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> open and closed chromatin wi<str<strong>on</strong>g>th</str<strong>on</strong>g> knot-free fractal globule formati<strong>on</strong>s[3]. All <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

studies support <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a fractal nature <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA, nuclear chromatin and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

surrounding nucleoplasmic space, i.e. a fractal organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleus. Morphologists,<br />

using light and electr<strong>on</strong> microscopy, are dem<strong>on</strong>strating indirect evidence<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e fractal organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chromatin for nearly two decades . They differentiate<br />

basically two distinct chromatin c<strong>on</strong>formati<strong>on</strong>s: <str<strong>on</strong>g>th</str<strong>on</strong>g>e unc<strong>on</strong>densed euchromatin and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e much denser and darker heterochromatin, which is usually c<strong>on</strong>sidered to be transcripti<strong>on</strong>ally<br />

less active. Alterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nuclear architecture reflect genomic and<br />

n<strong>on</strong>-genomic changes, which are very comm<strong>on</strong> in tumor cells. Genomic changes may<br />

be point mutati<strong>on</strong>s translocati<strong>on</strong>s, or amplificati<strong>on</strong>s or alterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e chromosomal<br />

positi<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore malignant tumors show widespread epigenetic changes<br />

including global hypome<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong>, as well as focal hyperme<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple<br />

CpG island gene regulatory regi<strong>on</strong>s. Hypome<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong> is associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> dec<strong>on</strong>densing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e chromatin structure and induces chromosomal instability. A more<br />

aggressive behaviour is usually observed in genetically unstable neoplasias wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an<br />

increasing number <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic or epigenetic changes. Therefore unstable tumors are<br />

expected to show a more complex chromatin rearrangement, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

many chromatin areas wi<str<strong>on</strong>g>th</str<strong>on</strong>g> varying density (lighter and darker), equivalent to a<br />

higher fractal dimensi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e computerized image analysis[1]. Clinico-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologic<br />

studies dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at an increased fractal dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chromatin at diagnosis<br />

657


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

was an independent adverse prognostic factor for survival <str<strong>on</strong>g>of</str<strong>on</strong>g> patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different<br />

malignant neoplasias, such as multiple myeloma , squamous cell carcinoma <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

oral cavity squamous cell carcinoma <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e larynx , and malignant melanoma <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e skin [4-7]. Therefore we may c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e chromatin<br />

architecture in neoplastic cells may reveal important prognostic informati<strong>on</strong>. In<br />

summary, fractal characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleus are essential for its functi<strong>on</strong> and are<br />

reflected in its chromatin structure, which may accompany pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologic processes ,<br />

such as carcinogenesis and tumor progressi<strong>on</strong>.<br />

References.<br />

[1] Metze K. Fractal dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chromatin and cancer prognosis. Epigenomics,2: 601-604 (2010)<br />

[2] Lebedev DV, Filatov MV, Kuklin AI, Islamov AKh, Kentzinger E, Pantina R, Toperverg BP,<br />

Isaev-Ivanov VV: Fractal nature <str<strong>on</strong>g>of</str<strong>on</strong>g> chromatin organizati<strong>on</strong> in interphase chicken ery<str<strong>on</strong>g>th</str<strong>on</strong>g>rocyte<br />

nuclei: DNA structure exhibits biphasic fractal properties. FEBS Lett 579:1465-1468(2005).<br />

[3] Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit<br />

I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M,<br />

Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J: Comprehensive mapping<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-range interacti<strong>on</strong>s reveals folding principles <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human genome. Science 326: 289-<br />

293(2009).<br />

[4] Delides A, Panayiotides I, Alegakis A, Kyroudi A, Banis C, Pavlaki A, Helid<strong>on</strong>is E, Kittas C:<br />

Fractal dimensi<strong>on</strong> as a prognostic factor for laryngeal carcinoma. Anticancer Res (2005) 25,<br />

2141-2144 (2005).<br />

[5] Goutzanis L, Papadogeorgakis N, Pavlopoulos PM, Katti K, Petsinis V, Plochoras I, Pantelidaki<br />

C, Kavantzas N, Patsouris E, Alexandridis C: Nuclear fractal dimensi<strong>on</strong> as a prognostic<br />

factor in oral squamous cell carcinoma. Oral Oncol 44, 345-353(2008).<br />

[6] Metze K, Ferro DP, Falc<strong>on</strong>i MA, Adam RL, Ortega M, Lima CP, De Souza AC, Lorand-Metze<br />

I: Fractal characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear chromatin in routinely stained cytology are independent<br />

prognostic factors in patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple myeloma. Virchows Archiv 2009<br />

[7] Bedin V, Adam RL, de Sá BC, Landman G, Metze K : Fractal dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chromatin is an<br />

independent prognostic factor for survival in melanoma. BMC Cancer 10, 260 (2010) .<br />

658


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bridging <str<strong>on</strong>g>th</str<strong>on</strong>g>e Divide: Cancer Models in Clinical Practice; Thursday, June 30,<br />

11:30<br />

Michael Meyer-Hermann<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Systems Immunology, Helmholtz Centre for Infecti<strong>on</strong><br />

Research<br />

e-mail: michael.meyer-hermann@helmholtz-hzi.de<br />

Harald Kempf<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Systems Immunology, Helmholtz Centre for Infecti<strong>on</strong><br />

Research<br />

Optimised cancer treatment using cell cycle synchr<strong>on</strong>isati<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> heavy i<strong>on</strong> irradiati<strong>on</strong><br />

Cancer is a leading cause <str<strong>on</strong>g>of</str<strong>on</strong>g> dea<str<strong>on</strong>g>th</str<strong>on</strong>g> worldwide. As a c<strong>on</strong>sequence a multitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experimental and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical studies <strong>on</strong> cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and a diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments<br />

are being developed. Am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>ese is tumour irradiati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> heavy i<strong>on</strong>s.<br />

While <str<strong>on</strong>g>th</str<strong>on</strong>g>is novel me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology was restricted to research institutes for a l<strong>on</strong>g time,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is treatment became a full part <str<strong>on</strong>g>of</str<strong>on</strong>g> clinical reality now.<br />

We present an agent-based approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>e modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular dynamics<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in tumour spheroids <str<strong>on</strong>g>th</str<strong>on</strong>g>at is based <strong>on</strong> experimentally accessible parameters and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>us is able to take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental data from irradiati<strong>on</strong> experiments.<br />

As <str<strong>on</strong>g>th</str<strong>on</strong>g>e model architecture is lattice-free and average-free, it can be c<strong>on</strong>sidered to<br />

be a realistic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumours. The model grows a tumour from a single<br />

malignant cell and <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in resp<strong>on</strong>se to irradiati<strong>on</strong> protocols<br />

can be tracked. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is single cell based we are able to provide an<br />

in dep<str<strong>on</strong>g>th</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> all possible observables ranging from <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle phase, pressure<br />

inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e spheroid, nutrient supply and limitati<strong>on</strong>s, up to genetic expressi<strong>on</strong><br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles for <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular network. Target <str<strong>on</strong>g>of</str<strong>on</strong>g> our study is a detailed examinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumours to heavy-i<strong>on</strong> irradiati<strong>on</strong> treatment.<br />

It is found <str<strong>on</strong>g>th</str<strong>on</strong>g>at irradiati<strong>on</strong> treatment induces a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical reacti<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a tumour. Reoxygenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour volume and a decrease in pressure<br />

due to cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g> lead to excessive regrow<str<strong>on</strong>g>th</str<strong>on</strong>g> after irradiati<strong>on</strong>. As expected fracti<strong>on</strong>ati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e radiati<strong>on</strong> dose changes <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour c<strong>on</strong>trol c<strong>on</strong>siderably<br />

depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e applied fracti<strong>on</strong>ati<strong>on</strong> scheme. A pr<strong>on</strong>ounced resynchr<strong>on</strong>isati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour after irradiati<strong>on</strong> is found which could be exploited<br />

in order to administer follow-up treatments in accordance to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell’s most<br />

radiosensitive phases. This result has direct implicati<strong>on</strong>s for experimental studies<br />

and eventually for clinical trials.<br />

659


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

C<strong>on</strong>necting microscale and macroscale models <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular migrati<strong>on</strong>;<br />

Tuesday, June 28, 17:00<br />

Alistair Middlet<strong>on</strong><br />

Center for Biological Systems Analysis, Albert-Ludwigs-Universität<br />

Freiburg i.Br., Habsburgerstraße 49 79104 Freiburg i.Br.<br />

e-mail: alistair.middlet<strong>on</strong>@zbsa.de<br />

Christian Fleck<br />

Center for Biological Systems Analysis, Albert-Ludwigs-Universität<br />

Freiburg i.Br., Habsburgerstraße 49 79104 Freiburg i.Br.<br />

e-mail: Christian.Fleck@fdm.uni-freiburg.de<br />

Ram<strong>on</strong> Grima<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Edinburgh, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, C.H.<br />

Waddingt<strong>on</strong> Building, Room 3.03, King’s Buildings Campus, Mayfield<br />

Road, Edinburgh, Scotland<br />

e-mail: Ram<strong>on</strong>.Grima@ed.ac.uk<br />

From particles to PDEs: c<strong>on</strong>tinuum approximati<strong>on</strong>s to<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular migrati<strong>on</strong><br />

Cell migrati<strong>on</strong> is a fundamental process in biology. Examples range from <str<strong>on</strong>g>th</str<strong>on</strong>g>e development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> multi-cellular organisms, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough to <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> complex spatial<br />

patterns in bacterial populati<strong>on</strong>s. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> can help<br />

increase our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying biology. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e models <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular scale interacti<strong>on</strong>s are typically ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er complex and can be<br />

difficult to analyze. Here, we explore <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem by developing a model based <strong>on</strong><br />

Langevin dynamics, whereby short-range intercellular interacti<strong>on</strong>s are represented<br />

using an appropriate potential functi<strong>on</strong>. Following Newman and Grima (2004),<br />

we obtain a mean field approximati<strong>on</strong> to our model, <str<strong>on</strong>g>th</str<strong>on</strong>g>is being an integro-partial<br />

differential equati<strong>on</strong>. By exploiting <str<strong>on</strong>g>th</str<strong>on</strong>g>e biologically plausible limit <str<strong>on</strong>g>of</str<strong>on</strong>g> intercellular<br />

interacti<strong>on</strong>s occurring <strong>on</strong> infinitesimally small leng<str<strong>on</strong>g>th</str<strong>on</strong>g> scales, we derive a system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential equati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at can approximate <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean-field behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e original Langevin model and and is amenable to analysis. We will show how<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular scale details (represented by our choice <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> potential) are<br />

reflected in <str<strong>on</strong>g>th</str<strong>on</strong>g>e PDE approximati<strong>on</strong>. An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting patterns will<br />

be given. Relevant applicati<strong>on</strong>s, such as cell-sorting and chemotaxis, will also be<br />

discussed.<br />

660


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Delay Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s I; Friday, July 1, 14:30<br />

Jacek Miekisz<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

e-mail: miekisz@mimuw.edu.pl<br />

Delayed protein degradati<strong>on</strong> does not cause oscillati<strong>on</strong>s<br />

It is well known <str<strong>on</strong>g>th</str<strong>on</strong>g>at time delays may cause oscillati<strong>on</strong>s in soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary<br />

differential equati<strong>on</strong>s. We would like to point out <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong>s<br />

depends <strong>on</strong> particular causes <str<strong>on</strong>g>of</str<strong>on</strong>g> a time delay.<br />

Models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> time delays may be divided into two families [1,2]. In socialtype<br />

models, where individuals react to <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

populati<strong>on</strong> at some earlier time, we should expect oscillati<strong>on</strong>s. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand,<br />

in biological-type models, where some changes already take place in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

at an earlier time, oscillati<strong>on</strong>s might not be present for any time delay. We will<br />

briefly review two specific examples <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary games - replicator dynamics<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> time delay [1].<br />

Our main goal is to show <str<strong>on</strong>g>th</str<strong>on</strong>g>at delayed degradati<strong>on</strong> does not cause oscillati<strong>on</strong>s<br />

as it was recently argued [3]. To do so we propose a new me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology to deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

time delays in biological systems and apply it to simple models <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> delayed degradati<strong>on</strong> [4].<br />

We develop a systematic analytical treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic models <str<strong>on</strong>g>of</str<strong>on</strong>g> time delays.<br />

Specifically, we take into account <str<strong>on</strong>g>th</str<strong>on</strong>g>at some reacti<strong>on</strong>s, for example degradati<strong>on</strong>,<br />

are c<strong>on</strong>suming, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is <strong>on</strong>ce molecules start to degrade <str<strong>on</strong>g>th</str<strong>on</strong>g>ey cannot be part in<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er degradati<strong>on</strong> processes. It follows from our rigorous analysis <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e should<br />

look for different mechanisms <str<strong>on</strong>g>th</str<strong>on</strong>g>an just delayed protein degradati<strong>on</strong> to explain<br />

causes <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillati<strong>on</strong>s observed in certain biological experiments.<br />

References.<br />

[1] J. Alboszta and J. Miekisz, Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>arily stable strategies in discrete replicator<br />

dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> time delay, J. Theor. Biol. 231: 175-179 (2004).<br />

[2] J. Miekisz, Evoluti<strong>on</strong>ary game <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and populati<strong>on</strong> dynamics, Lecture Notes in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

1940: 269-316 (2008).<br />

[3] D. Bratsun, D. Volfs<strong>on</strong>, L. S. Tsimring, and J. Hasty, Delay-induced stochastic oscillati<strong>on</strong>s in<br />

gene regulati<strong>on</strong>, Proc. Natl. Acad. Sci. USA 102: 14593-14598 (2005).<br />

[4] J. Miekisz, J. Poleszczuk, M. Bodnar, and U. Forys, Stochastic models <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

delayed degradati<strong>on</strong>, Bull. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. DOI 10.1007/s11538-010-9622-4 (2011).<br />

661


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling IV; Saturday, July 2, 08:30<br />

Jacek Miekisz<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

e-mail: miekisz@mimuw.edu.pl<br />

Simple stochastic models <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulati<strong>on</strong><br />

We will discuss simple models <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulati<strong>on</strong>. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mRNA and protein molecules is small and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore to describe biochemical<br />

processes <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong>, translati<strong>on</strong>, and degradati<strong>on</strong>, we use bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and dea<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

processes. We linearize Hill functi<strong>on</strong>s which describe regulati<strong>on</strong>, use <str<strong>on</strong>g>th</str<strong>on</strong>g>e generating<br />

functi<strong>on</strong> approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Masters equati<strong>on</strong>s, and show <str<strong>on</strong>g>th</str<strong>on</strong>g>at translati<strong>on</strong>al repressi<strong>on</strong><br />

c<strong>on</strong>tributes greater noise to gene expressi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>an transcripti<strong>on</strong>al repressi<strong>on</strong> [1].<br />

Our main goal now is to derive analytical expressi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance (noise)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> protein molecules in models where changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA state<br />

between an active and inactive <strong>on</strong>e are governed by bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and dea<str<strong>on</strong>g>th</str<strong>on</strong>g> processes<br />

whose intensities depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> protein molecules [2]. We will discuss<br />

different approaches to <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> closure <str<strong>on</strong>g>of</str<strong>on</strong>g> an infinite chain <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s for<br />

moments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein probability distributi<strong>on</strong> and apply it to systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two<br />

gene copies [3].<br />

References.<br />

[1] M. Komorowski, J. Miekisz, and A. M. Kierzek, Translati<strong>on</strong>al repressi<strong>on</strong> c<strong>on</strong>tributes greater<br />

noise to gene expressi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>an transcripti<strong>on</strong>al repressi<strong>on</strong>, Biophysical Journal 96: 372384 (2009).<br />

[2] J. E. M. Hornos, D. Schultz, G. C. P. Innocentini, J. Wang, A. M. Walczak, J. N. Onuchic,<br />

and P. G. Wolynes, Self-regulating gene: an exact soluti<strong>on</strong>. Phys. Rev. E 72: 51907 (2005).<br />

[3] J. Miekisz and P. Szymanska, work in progress.<br />

662


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent developments in <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> Lotka-Volterra and Kolmogorov<br />

systems; Saturday, July 2, 14:30<br />

Janusz Mierczyński<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science, Wrocław University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: mierczyn@pwr.wroc.pl<br />

Permanence for Kolmogorov competitive systems <str<strong>on</strong>g>of</str<strong>on</strong>g> PDEs<br />

This talk is about recent results <strong>on</strong> permanence for Kolmogorov reacti<strong>on</strong>–diffusi<strong>on</strong><br />

systems <str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential equati<strong>on</strong>s (PDE)<br />

∂ui<br />

∂t = ∆ui + fi(t, x, u1, . . . , uN)ui, 1 ≤ i ≤ N, t ∈ [0, ∞), x ∈ Ω.<br />

Here ui(t, x) measures <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e i-<str<strong>on</strong>g>th</str<strong>on</strong>g> species at time t and spatial<br />

locati<strong>on</strong> x, and Ω is a bounded habitat. The system is endowed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> appropriate<br />

boundary c<strong>on</strong>diti<strong>on</strong>s.<br />

Systems are assumed to be competitive, which means <str<strong>on</strong>g>th</str<strong>on</strong>g>at ∂fi/∂uj ≤ 0 for<br />

1 ≤ i, j ≤ N, i = j (usually much more will be assumed).<br />

Permanence (sometimes called uniform persistence) means <str<strong>on</strong>g>th</str<strong>on</strong>g>at any positive<br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system becomes bounded away from zero, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e ultimate bound<br />

is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>.<br />

We will give a survey <str<strong>on</strong>g>of</str<strong>on</strong>g> results <strong>on</strong> permanence for Kolmogorov competitive<br />

systems <str<strong>on</strong>g>of</str<strong>on</strong>g> PDEs, in particular wi<str<strong>on</strong>g>th</str<strong>on</strong>g> general dependence <strong>on</strong> time. Especially, c<strong>on</strong>necti<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> invasibility will be addressed.<br />

663


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis I; Wednesday, June 29,<br />

08:30<br />

Florian Milde<br />

Chair <str<strong>on</strong>g>of</str<strong>on</strong>g> Computati<strong>on</strong>al Science, ETH Zurich<br />

e-mail: mildef@e<str<strong>on</strong>g>th</str<strong>on</strong>g>z.ch<br />

Petros Koumoutsakos<br />

Chair <str<strong>on</strong>g>of</str<strong>on</strong>g> Computati<strong>on</strong>al Science, ETH Zurich<br />

e-mail: petros@e<str<strong>on</strong>g>th</str<strong>on</strong>g>z.ch<br />

Image Driven Computati<strong>on</strong>al models <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell migrati<strong>on</strong><br />

Cell migrati<strong>on</strong> has been identified as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fundamental mechanisms driving<br />

embryogenesis, organ development, angiogenesis and tumor invasi<strong>on</strong>. We develop<br />

computati<strong>on</strong>al models <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> and tissue infiltrati<strong>on</strong> to assist related experimental<br />

studies. C<strong>on</strong>tinuum models are developed to capture migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

agglomerates at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue level resoluti<strong>on</strong> and a discrete particle model enables for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> <strong>on</strong> a cellular scale.<br />

The models are validated against a set <str<strong>on</strong>g>of</str<strong>on</strong>g> in-vitro and in-vivo model systems.<br />

In order to facilitate <str<strong>on</strong>g>th</str<strong>on</strong>g>e validati<strong>on</strong> process, we develop a set <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al tools<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at allow for <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant statistical metrics <strong>on</strong> biological experiments.<br />

Curvelet based image rec<strong>on</strong>structi<strong>on</strong> is used for vessel network and cell membrane<br />

segmentati<strong>on</strong> and Particle Image Velocimetry (PIV) <strong>on</strong> in-vitro experiments to<br />

register mass transport in migrating cell layers. We combine <str<strong>on</strong>g>th</str<strong>on</strong>g>ese me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods and<br />

present a robust algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for in-vitro cell shape tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple cells.<br />

References.<br />

[1] F. Milde, M. Bergdorf, and P. Koumoutsakos, Particle simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>: Applicati<strong>on</strong> to<br />

angiogenesis Modeling Tumor Vasculature: Molecular, Cellular, and Tissue Level Aspects and<br />

Implicati<strong>on</strong>s. in press.<br />

[2] P. Koumoutsakos, B. Bayati, F. Milde, G. Tauriello, Particle Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Morphogenesis<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Model Me<str<strong>on</strong>g>th</str<strong>on</strong>g> Appl Sci. accepted.<br />

664


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Judi<str<strong>on</strong>g>th</str<strong>on</strong>g> Miller<br />

Georgetown University<br />

e-mail: jrm32@georgetown.edu<br />

Evoluti<strong>on</strong>ary Ecology; Friday, July 1, 14:30<br />

Bey<strong>on</strong>d mutati<strong>on</strong> surfing: adaptati<strong>on</strong> during invasi<strong>on</strong>s<br />

We use stochastic simulati<strong>on</strong>s to model invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new territory by a populati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at evolves by natural selecti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e novel envir<strong>on</strong>ment, as well as by drift.<br />

Previous studies have resulted in competing claims to <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e process<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> may ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er promote or inhibit adaptati<strong>on</strong>. By comparing adaptati<strong>on</strong> in<br />

invading and established populati<strong>on</strong>s, we identify c<strong>on</strong>diti<strong>on</strong>s under which invasi<strong>on</strong><br />

facilitates adaptati<strong>on</strong> (when compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> evoluti<strong>on</strong> in an established populati<strong>on</strong>),<br />

as well as regimes in which invasi<strong>on</strong> impedes adaptati<strong>on</strong>. We also discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e extent<br />

to which analytical models can provide insight <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem.<br />

665


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Harriet Mills<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bristol<br />

e-mail: harriet.mills@bris.ac.uk<br />

Caroline Colijn<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bristol<br />

Ayalvadi Ganesh<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Bristol<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen spread <strong>on</strong> coupled networks: effect <str<strong>on</strong>g>of</str<strong>on</strong>g> host and<br />

network properties <strong>on</strong> transmissi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>resholds<br />

In recent years network models have been extensively used to study how spreading<br />

dynamics in human populati<strong>on</strong>s, such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> an infectious disease, a rumour<br />

or even a behaviour, depend <strong>on</strong> how individuals are c<strong>on</strong>nected to each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er.<br />

Real populati<strong>on</strong>s are c<strong>on</strong>nected via a large variety <str<strong>on</strong>g>of</str<strong>on</strong>g> networks; respiratory, sexual<br />

or <strong>on</strong>line social networks to name just a few. These networks, <str<strong>on</strong>g>th</str<strong>on</strong>g>ough generally<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> very difference structure, are not always independent and interacti<strong>on</strong>s <strong>on</strong> <strong>on</strong>e<br />

may influence interacti<strong>on</strong>s <strong>on</strong> ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er. For example, HIV is spread over a sexual<br />

network and TB over a respiratory network, infecti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> HIV raises <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

progressing from latent to active TB, potentially increasing transmissi<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

TB across <str<strong>on</strong>g>th</str<strong>on</strong>g>e respiratory network. Here we develop <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory behind network<br />

models. First we c<strong>on</strong>sider two processes spreading <strong>on</strong> two distinct networks. Process<br />

B spreads <strong>on</strong>ly over network b, but process A spreads over bo<str<strong>on</strong>g>th</str<strong>on</strong>g> networks,<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a reduced transmissi<strong>on</strong> rate over network b. We examine how <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> process A over network b affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic, and find <str<strong>on</strong>g>th</str<strong>on</strong>g>at even a<br />

small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> across ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er network can greatly influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic<br />

size. Sec<strong>on</strong>dly, we c<strong>on</strong>sider how different host types in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> affect<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold <str<strong>on</strong>g>of</str<strong>on</strong>g> a disease over <strong>on</strong>e network. We apply <str<strong>on</strong>g>th</str<strong>on</strong>g>ese frameworks<br />

to our motivating example <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV and TB.<br />

666


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fractals and Complexity II; Wednesday, June 29, 17:00<br />

Nebojsa Milosevic<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biophysics, Medical faculty, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Belgrade,<br />

Serbia<br />

e-mail: mtn@med.bg.ac.rs<br />

Dusan Ristanovic<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biophysics, Medical faculty, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Belgrade<br />

Katarina Rajkovic<br />

Laboratory for Medical Imaging, Medical faculty, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Belgrade<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> box-counting analysis in <str<strong>on</strong>g>th</str<strong>on</strong>g>e human<br />

dentate nucleus during development<br />

Many disorders <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cerebellum may be developmental in origin. In order to<br />

recognize impaired development and better to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e etiology <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

neurological disturbances <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cerebellum, a precise timetable <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular events<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at take place during normal development is needed. Therefore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e binary and<br />

skelet<strong>on</strong>ized two dimensi<strong>on</strong>al neur<strong>on</strong>al images <str<strong>on</strong>g>of</str<strong>on</strong>g> Golgi impregnated secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

human dentate nucleus at various gestati<strong>on</strong>al periods were subjected to fractal<br />

analysis in order to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cells during development.<br />

Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e results showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> parameters increased during gestati<strong>on</strong>, a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model which quantitatively describes changes in morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>s<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e human dentate nucleus during development is proposed. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e binary<br />

fractal dimensi<strong>on</strong> linearly increased wi<str<strong>on</strong>g>th</str<strong>on</strong>g> gestati<strong>on</strong>al time, <str<strong>on</strong>g>th</str<strong>on</strong>g>e skelet<strong>on</strong>ized fractal<br />

dimensi<strong>on</strong> increased wi<str<strong>on</strong>g>th</str<strong>on</strong>g> time exp<strong>on</strong>entially. The findings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e present study are<br />

generally in accordance wi<str<strong>on</strong>g>th</str<strong>on</strong>g> previous qualitative data and provide better understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong>al circuitry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human dentate nucleus.<br />

667


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Structure and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Reacti<strong>on</strong> Networks II; Tuesday, June<br />

28, 17:00<br />

Maya Mincheva<br />

Nor<str<strong>on</strong>g>th</str<strong>on</strong>g>ern Illinois University<br />

e-mail: mincheva@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.niu..edu<br />

Oscillati<strong>on</strong>s in Biochemical Reacti<strong>on</strong> Networks<br />

Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s in complex biochemical networks is an<br />

important problem in modern biology. Biochemical reacti<strong>on</strong> networks are modeled<br />

by large n<strong>on</strong>linear dynamical systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> many unknown kinetic parameters,<br />

which complicates <str<strong>on</strong>g>th</str<strong>on</strong>g>eir numerical analysis. Important properties, such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a biochemical reacti<strong>on</strong> network to oscillate can be determined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e network’s<br />

structure. We will discuss a new graph-<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic c<strong>on</strong>diti<strong>on</strong> which includes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e negative cycle c<strong>on</strong>diti<strong>on</strong> for oscillati<strong>on</strong>s as a special case.<br />

668


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent advances in infectious disease modelling I; Saturday, July 2, 11:00<br />

Rachelle Mir<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ottawa<br />

e-mail: rachelle_mir<strong>on</strong>@hotmail.com<br />

Impulsive differential equati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir applicati<strong>on</strong> to<br />

disease modelling<br />

Many evoluti<strong>on</strong>ary processes are characterized by <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at at certain moments<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>th</str<strong>on</strong>g>ey experience a change <str<strong>on</strong>g>of</str<strong>on</strong>g> state abruptly. These processes are subject<br />

to short-term perturbati<strong>on</strong>s which act instantaneously; <str<strong>on</strong>g>th</str<strong>on</strong>g>at is, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> impulses.<br />

Thus, impulsive differential equati<strong>on</strong>s - differential equati<strong>on</strong>s involving impulse<br />

effects - appear as a natural descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observed evoluti<strong>on</strong> phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

several real-world problems. We will discuss how to solve linear homogeneous and<br />

n<strong>on</strong>-homogeneous impulsive differential equati<strong>on</strong>s as well as n<strong>on</strong>-linear aut<strong>on</strong>omous<br />

impulsive differential equati<strong>on</strong>s. We will also give an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> existence and<br />

uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> impulsive systems as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e issues <str<strong>on</strong>g>th</str<strong>on</strong>g>at arise wi<str<strong>on</strong>g>th</str<strong>on</strong>g> stability. We<br />

illustrate using a model for HIV drug <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy.<br />

669


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Thursday, June 30, 11:30<br />

Victoria Mir<strong>on</strong>ova<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics, Novosibirsk, Russia<br />

e-mail: kviki@bi<strong>on</strong>et.nsc.ru<br />

Ekaterina Novoselova<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics, Novosibirsk, Russia<br />

Nadya Omelyanchuk<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics, Novosibirsk, Russia<br />

Vitaly Likhoshvai<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics, Novosibirsk, Russia<br />

The combined mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reverse fountain and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

reflected flow provide for self-organizati<strong>on</strong> and maintenance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root apical meristem<br />

The phytohorm<strong>on</strong>e auxin is critical for patterning and morphogenesis in plants.<br />

In plant roots, auxin maxima coincide wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sites <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root apical meristem<br />

(RAM) initiati<strong>on</strong> and functi<strong>on</strong>ing. By today, <str<strong>on</strong>g>th</str<strong>on</strong>g>e two main mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

auxin distributi<strong>on</strong> formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e root tip were proposed. The reverse fountain<br />

mechanism is based <strong>on</strong> a specific RAM structure in which each cell has a specified<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin efflux. A stable locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e auxin maximum in silico<br />

is provided for by a reflux <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin from <str<strong>on</strong>g>th</str<strong>on</strong>g>e basipetal flow back to <str<strong>on</strong>g>th</str<strong>on</strong>g>e acropetal<br />

flow all al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e meristem, which transports auxin in a loop. The reflected flow<br />

mechanism is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e auxin-dependent regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin acropetal flow: low<br />

auxin c<strong>on</strong>centrati<strong>on</strong>s activate <str<strong>on</strong>g>th</str<strong>on</strong>g>e transcripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PIN1 genes, whereas <str<strong>on</strong>g>th</str<strong>on</strong>g>e high<br />

c<strong>on</strong>centrati<strong>on</strong>s induce degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PIN1 proteins [2]. The mechanism explains<br />

self-organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e auxin distributi<strong>on</strong> pattern in an array <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>ally identical<br />

cells acquiring cell type specializati<strong>on</strong> due to auxin regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> PIN1 proteins in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cells. We suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e reverse fountain and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

reflected flow mechanisms are complementary in root development. In particular,<br />

<strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e reflected flow mechanism operates at <str<strong>on</strong>g>th</str<strong>on</strong>g>e very early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> root<br />

development. At later developmental stages, an anatomical structure forms and<br />

provides for <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reverse fountain mechanism <str<strong>on</strong>g>th</str<strong>on</strong>g>at serve for more<br />

robust maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e auxin maximum in <str<strong>on</strong>g>th</str<strong>on</strong>g>e RAM. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e reflected<br />

flow mechanism does not disappear, revealing itself if RAM structure is disrupted<br />

or <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment changes. To test <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis we combined bo<str<strong>on</strong>g>th</str<strong>on</strong>g> mechanisms<br />

in 2D ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model. This model describes (1) auxin flow from <str<strong>on</strong>g>th</str<strong>on</strong>g>e shoot; (2)<br />

auxin syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at is positively regulated by auxin itself; (3) irreversible loss <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

auxin (degradati<strong>on</strong>); (4) auxin diffusi<strong>on</strong>, providing for an isotropic distributi<strong>on</strong> in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e root; syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis and degradati<strong>on</strong> depending <strong>on</strong> auxin c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> (5) PIN1,<br />

(6) PIN2, (7) PIN3; (8) active auxin transport mediating by PINs proteins; (9)<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> root cells. Two cell types are c<strong>on</strong>sidered in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 2D model:<br />

central cylinder and epidermis. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e central cylinder cells <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes (1-5,7-9)<br />

are c<strong>on</strong>sidered and described as in [2]. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidermal cells <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes (2-<br />

4,6-9) are c<strong>on</strong>sidered. As auxin transporters carry out different, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten redundant,<br />

functi<strong>on</strong>s in specialized tissues, we introduced to <str<strong>on</strong>g>th</str<strong>on</strong>g>e model some simplificati<strong>on</strong>s.<br />

Only <str<strong>on</strong>g>th</str<strong>on</strong>g>ree auxin carriers are c<strong>on</strong>sidered: PIN1 transports auxin acropetally, PIN2<br />

mediates basipetal auxin flow as well as lateral transport from basipetal back to<br />

670


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

acropetal flow, PIN3 regulates auxin redistributi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e root cap. Thus, PIN proteins<br />

have <str<strong>on</strong>g>th</str<strong>on</strong>g>e following locati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells: PIN1 is localized at <str<strong>on</strong>g>th</str<strong>on</strong>g>e basal side <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e central cylinder cells, PIN2 at <str<strong>on</strong>g>th</str<strong>on</strong>g>e lateral internal and apical sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidermal<br />

cells and PIN3 at all sides <str<strong>on</strong>g>of</str<strong>on</strong>g> potentially all cells. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes (1,3-5,8-9)<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter values were taken from [2]. O<str<strong>on</strong>g>th</str<strong>on</strong>g>er parameters were estimated so<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at: (1) PIN2 is expressed predominantly in epidermal cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low auxin level;<br />

(2) PIN3 expressi<strong>on</strong> domain is localized in <str<strong>on</strong>g>th</str<strong>on</strong>g>e z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> high auxin level; (3) auxin<br />

syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rates are high in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high auxin level. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is set <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

and initial uniform auxin distributi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model provides steady-state auxin<br />

distributi<strong>on</strong> pattern <str<strong>on</strong>g>th</str<strong>on</strong>g>at agree well wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data. The mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> auxin distributi<strong>on</strong> self-organizati<strong>on</strong> found in <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting stati<strong>on</strong>ary soluti<strong>on</strong>s is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e following. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e first step, auxin maximum is generated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e central cylinder<br />

cell array at <str<strong>on</strong>g>th</str<strong>on</strong>g>e distance from <str<strong>on</strong>g>th</str<strong>on</strong>g>e root end under <str<strong>on</strong>g>th</str<strong>on</strong>g>e reflected flow mechanism. As<br />

a result, <str<strong>on</strong>g>th</str<strong>on</strong>g>e z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> high auxin level in <str<strong>on</strong>g>th</str<strong>on</strong>g>e root tip is organized where PIN3 and<br />

auxin syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate are high. Sec<strong>on</strong>d, <str<strong>on</strong>g>th</str<strong>on</strong>g>e PIN3-mediated auxin redistributi<strong>on</strong> is<br />

switched <strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e root tip, and auxin moves to PIN2-mediated basipetal flow in<br />

epidermis. Third, As PIN2 is localized <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lateral internal cell sides in epidermis,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e reflux <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin from <str<strong>on</strong>g>th</str<strong>on</strong>g>e basipetal flow back to <str<strong>on</strong>g>th</str<strong>on</strong>g>e acropetal flow starts to<br />

work. Finally, <str<strong>on</strong>g>th</str<strong>on</strong>g>e auxin gradient associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum is formed under <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

reverse fountain mechanism which finishes formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin distributi<strong>on</strong> pattern.<br />

In numerical experiments we showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e 2D model reveals bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e robustness<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e developmental processes from <str<strong>on</strong>g>th</str<strong>on</strong>g>e reverse fountain mechanism [1] and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e plasticity to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment changes from <str<strong>on</strong>g>th</str<strong>on</strong>g>e reflected flow mechanism [2].<br />

Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese advantages <str<strong>on</strong>g>th</str<strong>on</strong>g>e 2D model gave new predicti<strong>on</strong>s about <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong>al<br />

informati<strong>on</strong> in root patterning <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be checked in <str<strong>on</strong>g>th</str<strong>on</strong>g>e experiments. The 2D<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin distributi<strong>on</strong> in root can be a powerful tool for investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> root<br />

development in silico.<br />

The work was partially supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e RAS programs A.II.5.26, A.II.6.8,<br />

B.27.29, SB RAS 107, 119, and RFBR 10-01-00717-,11-04-01254-.<br />

1. Grieneisen VA, Xu J, Marée AF, Hogeweg P, Scheres B: Auxin transport<br />

is sufficient to generate a maximum and gradient guiding root grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Nature<br />

2007, 449(7165):1008-1013. 2. VV Mir<strong>on</strong>ova, NA Omelyanchuk, G Yosiph<strong>on</strong>, SI<br />

Fadeev, NA Kolchanov, E Mjolsness, VA Likhoshvai A plausible mechanism for<br />

auxin patterning al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing root. BMC Systems Biology 2010, 4:98<br />

671


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Signals II; Saturday, July 2, 11:00<br />

Mariola Molenda<br />

The Warsaw University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

The Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Informati<strong>on</strong> Science<br />

e-mail: molenda.mariola@gmail.com<br />

Level crossings in biological time series<br />

Kedem in his research [1] made use <str<strong>on</strong>g>of</str<strong>on</strong>g> zero crossings <str<strong>on</strong>g>th</str<strong>on</strong>g>eory in time series analysis.<br />

Zero crossings are remarkably simple and effective tool to examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e autocorrelati<strong>on</strong><br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> time series. The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear binary transformati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time series allows to retain informati<strong>on</strong> c<strong>on</strong>tained in <str<strong>on</strong>g>th</str<strong>on</strong>g>e autocorrelati<strong>on</strong> functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e original data. Kedem (1989) found relati<strong>on</strong> between first order autocorrelati<strong>on</strong><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected zero crossings rate. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> zero mean stati<strong>on</strong>ary<br />

Gaussian time series <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exist explicit formula (cosine formula), c<strong>on</strong>necting <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

first order autocorrelati<strong>on</strong> ρ1 and <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected number <str<strong>on</strong>g>of</str<strong>on</strong>g> zero crossings E[D]. The<br />

relati<strong>on</strong>ship looks as follows<br />

ρ1 = cos( πE[D]<br />

n − 1 ).<br />

Cosine formula is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore very useful for <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimati<strong>on</strong> purposes. Having given<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> zero crossings, we can estimate first order autocorrelati<strong>on</strong> in a very<br />

simple and fast way. Using Electroencephalogram (EEG) signal we ilustrate how<br />

accurate <str<strong>on</strong>g>th</str<strong>on</strong>g>e cosine formula is. We also answer <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> how far precisely we<br />

can compute <str<strong>on</strong>g>th</str<strong>on</strong>g>e first order autocorrelati<strong>on</strong> using zero crossings.<br />

References.<br />

[1] B.Kedem, Time Series Analysis by Higher Order Crossings IEEE Press New York 1993.<br />

[2] S.Y.Tseng, R.C.Chen, F.C.Ch<strong>on</strong>g, T.S.Kuo, Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parametric me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in EEG signal<br />

analysis Medical Enginiering and Physics 17 71–78.<br />

[3] Z.Mu, J.Hu, Research <str<strong>on</strong>g>of</str<strong>on</strong>g> EEG identificati<strong>on</strong> computing based <strong>on</strong> AR model BioMedical Informati<strong>on</strong><br />

Engineering FBIE 2009 366–368.<br />

672


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Macromolecules and Molecular Aggregates;<br />

Saturday, July 2, 14:30<br />

Rubem P. M<strong>on</strong>daini<br />

Federal University <str<strong>on</strong>g>of</str<strong>on</strong>g> Rio de Janeiro -ufrj- Centre <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

Coppe, Biomat C<strong>on</strong>sortium<br />

21941-972, P. O. Box 68511, Rio de Janeiro, RJ, Brazil<br />

e-mail: rpm<strong>on</strong>daini@gmail.com<br />

Global optimizati<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> viral capsids and amide<br />

planes<br />

A scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> Combinatorial Optimizati<strong>on</strong> (CO) is introduced in order to describe<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e geometrical pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macromolecular structures like A-DNA and<br />

molecular aggregates like Tobacco Mosaic Virus (TMV). Backb<strong>on</strong>e sequences <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

internal atom sites are seen to be associated to sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Steiner points <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

Euclidean Steiner Tree Problem. The agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental data is 94.6%<br />

and 98.2% for A-DNA and TMV, respectively.<br />

Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er CO scheme in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e Steiner points have a fundamental role, is <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an objective functi<strong>on</strong> which minimum will lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>firmati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> Amide planes in protein structure. This is a Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Programming<br />

approach such <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e variables are small perturbati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>d and<br />

dihedral angles. Objective functi<strong>on</strong> and c<strong>on</strong>straints are derived <strong>on</strong>ly from knowledge<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e 3-dimensi<strong>on</strong>al molecular structure.<br />

These results provide excellent examples <str<strong>on</strong>g>of</str<strong>on</strong>g> robust me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> optimizati<strong>on</strong> as applied<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> geometrical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biopolymers and molecular aggregates.<br />

References.<br />

[1] R. P. M<strong>on</strong>daini, Steiner Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomolecular Structures - in Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Optimizati<strong>on</strong>,<br />

2nd ed., Springer Verlag, 2007, 6 3718–3723.<br />

[2] R. P. M<strong>on</strong>daini, The Steiner Tree problem and its applicati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomolecular<br />

Structures - in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosystems, Applied Optimizati<strong>on</strong> Series, Springer<br />

Verlag, 2008, 102 199–220.<br />

[3] R. P. M<strong>on</strong>daini, An Analytical Me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Steiner Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> 3D Euclidean<br />

Steiner Trees - J. Global Optimizati<strong>on</strong>, 2009, 43 459–470.<br />

[4] R. P. M<strong>on</strong>daini, A Correlati<strong>on</strong> between Atom Sites and Amide Planes in Protein Structures<br />

- in BIOMAT 2009 Internati<strong>on</strong>al Symposium <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Computati<strong>on</strong>al Biology,<br />

BIOMAT Series, World Scientific, 2010, 136–151.<br />

[5] R. P. M<strong>on</strong>daini, S. P. Vilela, A Proposal for modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomacromolecules<br />

- in BIOMAT 2010 Internati<strong>on</strong>al Symposium <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Computati<strong>on</strong>al Biology,<br />

BIOMAT Series, World Scientific, 2011, 61–72.<br />

673


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Wednesday, June 29, 11:00<br />

Shabnam Moobedmehdiabadi<br />

Deaprtment <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Irvine, CA<br />

e-mail: smoobedm@uci.edu<br />

John Lowengrub<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Irvine, CA<br />

e-mail: lowengrb@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.uci.edu<br />

Haralampos Hatzikirou<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> New<br />

Mexico, Albuquerque, NM<br />

e-mail: hhatzikirou@salud.unm.edu<br />

Lattice Gas Cellular Automata modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> lineage dynamics<br />

and feedback c<strong>on</strong>trol<br />

This study is important in understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism and dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> some<br />

biological problems such as tumor invasi<strong>on</strong> and wound healing. Firstly, we describe<br />

microscopically <str<strong>on</strong>g>th</str<strong>on</strong>g>e model and we derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding mesoscopic approximati<strong>on</strong>,<br />

via <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean field assumpti<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e following, we upscale our model<br />

providing a PDE which serves as a macroscopic manifestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying<br />

cellular interacti<strong>on</strong>s. We focus <strong>on</strong> investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed and <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> fr<strong>on</strong>t, using <str<strong>on</strong>g>th</str<strong>on</strong>g>e above menti<strong>on</strong>ed approximati<strong>on</strong>s, as functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

underling cell phenotypes and microenvir<strong>on</strong>mental factors (i.e. nutrients).<br />

References.<br />

[1] A. D. Lander, K. K. Gok<str<strong>on</strong>g>of</str<strong>on</strong>g>fski, F. Y. M. Wan, Q. Nie, A. L. Cal<str<strong>on</strong>g>of</str<strong>on</strong>g>, Cell lineages and <str<strong>on</strong>g>th</str<strong>on</strong>g>e logic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> proliferative c<strong>on</strong>trol PLOSBiology, Vol 7,Issue 9, January 2009.<br />

[2] H. Hatzikirou, L.Brusch, A. Deutsch, From Cellular Automata rules to a macroscopic meanfield<br />

descripti<strong>on</strong> Acta Physica Pol<strong>on</strong>ica B Proceedings Supplement, Vol 3, 2010.<br />

674


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Saturday, July 2, 11:00<br />

Yoshihiro Morishita<br />

Kyushu University<br />

e-mail: ymorishi@bio-ma<str<strong>on</strong>g>th</str<strong>on</strong>g>10.biology.kyushu-u.ac.jp<br />

Coding design <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong>al informati<strong>on</strong> for robust<br />

morphogenesis<br />

Robust positi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in a tissue against unavoidable noises is important for<br />

achieving normal and reproducible morphogenesis. The positi<strong>on</strong> in a tissue is represented<br />

by morphogen c<strong>on</strong>centrati<strong>on</strong>s, and cells read out <str<strong>on</strong>g>th</str<strong>on</strong>g>em to recognize <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

spatial coordinates. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e engineering viewpoint, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese positi<strong>on</strong>ing processes<br />

can be regarded as an informati<strong>on</strong> coding. Organisms are c<strong>on</strong>jectured to adopt<br />

good coding designs wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high reliability for a given number <str<strong>on</strong>g>of</str<strong>on</strong>g> available morphogen<br />

species and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir chemical properties. To answer quantitatively <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong>s, how<br />

good coding is adopted? and when, where, and to what extent does each morphogen<br />

c<strong>on</strong>tribute to positi<strong>on</strong>ing?, we need a way to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> coding. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, by introducing basic c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> computer science, we ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically<br />

formulate coding processes in morphogen-dependent positi<strong>on</strong>ing, and define some<br />

key c<strong>on</strong>cepts such as encoding, decoding, and positi<strong>on</strong>al informati<strong>on</strong> and its precisi<strong>on</strong>.<br />

We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e best designs for pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> encoding and decoding rules.<br />

We also discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> our <str<strong>on</strong>g>th</str<strong>on</strong>g>eory to biological data.<br />

675


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanical regulati<strong>on</strong> in b<strong>on</strong>e tissue (Sessi<strong>on</strong><br />

I); Wednesday, June 29, 08:30<br />

Adam Moroz<br />

De M<strong>on</strong>tfort University,<br />

e-mail: amoroz@dmu.ac.uk<br />

Mikhail Goman<br />

De M<strong>on</strong>tfort University<br />

David I. Wimpenny<br />

De M<strong>on</strong>tfort University<br />

BMU remodelling simulati<strong>on</strong> using reducer order me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

Adam Moroz, Mikhail Goman, David I. Wimpenny BMU remodelling simulati<strong>on</strong><br />

using reducer order me<str<strong>on</strong>g>th</str<strong>on</strong>g>od The b<strong>on</strong>e remodelling process, performed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e B<strong>on</strong>e<br />

Multicellular Unit (BMU) is a key multi-hierarchically regulated process, which<br />

provides and supports various functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e tissue. It is also plays a critical<br />

role in b<strong>on</strong>e disorders, as well as b<strong>on</strong>e tissue healing following damage. Modelling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e turnover processes could play a significant role in helping to understand<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying cause <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e disorders and <str<strong>on</strong>g>th</str<strong>on</strong>g>us develop more effective treatment<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. The reducer order approach to modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e turnover, based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

osteocyte loop <str<strong>on</strong>g>of</str<strong>on</strong>g> regulati<strong>on</strong>, have been employed, <str<strong>on</strong>g>th</str<strong>on</strong>g>in wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> rate parameters<br />

using <str<strong>on</strong>g>th</str<strong>on</strong>g>e M<strong>on</strong>te Carlo me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. The optimal c<strong>on</strong>trol framework for regulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> remodelling has been discussed. The study illustrates <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> formalisati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic processes and <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>s between hierarchical subsystems<br />

in hard tissue where a relatively small number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells are active.<br />

676


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stem cells and cancer; Wednesday, June 29, 14:30<br />

Charles Mort<strong>on</strong><br />

Center <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer Systems Biology - Tufts University School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine<br />

e-mail: charles.mort<strong>on</strong>@tufts.edu<br />

Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> Kinetics Modulated by Generati<strong>on</strong>al<br />

Lifespan <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>-Stem Cancer Cells<br />

Numerous solid tumors are heterogeneous in compositi<strong>on</strong>. While grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is driven<br />

by cancer stem cells (CSCs), <str<strong>on</strong>g>th</str<strong>on</strong>g>e reported relative frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> CSC versus n<strong>on</strong>stem<br />

cancer cells span wide ranges wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in tumors arising from a given tissue type.<br />

We have previously shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> kinetics and compositi<strong>on</strong> can be<br />

studied <str<strong>on</strong>g>th</str<strong>on</strong>g>rough an agent-based cellular automat<strong>on</strong> model using minimal sets <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biological assumpti<strong>on</strong>s and parameters. Herein we describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e pivotal role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

generati<strong>on</strong>al lifespan <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-stem cancer cells in modulating solid tumor progressi<strong>on</strong>.<br />

Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough CSCs are necessary for expansi<strong>on</strong>, tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> kinetics are surprisingly<br />

modulated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-stem cancer cells. Our findings suggest<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at variance in tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> curves and CSC c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> solid tumors may be<br />

attributable to <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferative capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-stem cancer cell populati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at arises during asymmetric divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CSCs. Remarkably, slight variati<strong>on</strong>s in<br />

proliferative capacity result in tumors wi<str<strong>on</strong>g>th</str<strong>on</strong>g> CSC fracti<strong>on</strong>s differing by multiple orders<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude. Larger proliferative capacities yield migrati<strong>on</strong>-limited tumors,<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>e emerging populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-stem cancer cells spatially impedes expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e CSC compartment. C<strong>on</strong>versely, lower proliferative capacities yield persistencelimited<br />

tumors, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> symmetric divisi<strong>on</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> CSCs determining tumor<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate. Intermediate proliferative capacities give rise to fastest-growing tumors,<br />

indicating a between self-metastatic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough symmetric CSC divisi<strong>on</strong><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e availability <str<strong>on</strong>g>of</str<strong>on</strong>g> space facilitated by removal <str<strong>on</strong>g>of</str<strong>on</strong>g> senescent n<strong>on</strong>-stem cancer<br />

cells. Our results <str<strong>on</strong>g>of</str<strong>on</strong>g>fer novel explanati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e large variati<strong>on</strong>s in CSC ratio<br />

reported in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature, and highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-stem cancer cell<br />

dynamics in <str<strong>on</strong>g>th</str<strong>on</strong>g>e CSC hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis.<br />

677


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Patricia Mostardinha<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Aveiro<br />

e-mail: pmostardinha@ua.pt<br />

Fernão Vistulo de Abreu<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Aveiro<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Modelling Homeostatic Resp<strong>on</strong>ses<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is poster I will derive a set <str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a cellular frustrated system. I will c<strong>on</strong>centrate <strong>on</strong> how <str<strong>on</strong>g>th</str<strong>on</strong>g>e system is capable <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

performing immune resp<strong>on</strong>ses <str<strong>on</strong>g>th</str<strong>on</strong>g>at drive <str<strong>on</strong>g>th</str<strong>on</strong>g>e system back to homeostatic c<strong>on</strong>trol.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is way we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at cellular frustrated systems can resp<strong>on</strong>d to endogeneous<br />

or exogenous perturbati<strong>on</strong>s. The immunological significance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results will be<br />

discussed, in particular in c<strong>on</strong>necti<strong>on</strong> to autoimunity or tumour eliminati<strong>on</strong>.<br />

678


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Genetics; Wednesday, June 29, 14:30<br />

M. G<strong>on</strong>zález<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Extremadura<br />

e-mail: mvelasco@unex.es<br />

C. Gutiérrez<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Extremadura<br />

e-mail: cgutierrez@unex.es<br />

R. Martínez<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Extremadura<br />

e-mail: rmartinez@unex.es<br />

M. Mota<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Extremadura<br />

e-mail: mota@unex.es<br />

C<strong>on</strong>diti<strong>on</strong>s for extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some le<str<strong>on</strong>g>th</str<strong>on</strong>g>al alleles <str<strong>on</strong>g>of</str<strong>on</strong>g> X-linked<br />

genes<br />

Some le<str<strong>on</strong>g>th</str<strong>on</strong>g>al alleles <str<strong>on</strong>g>of</str<strong>on</strong>g> certain genes can cause <str<strong>on</strong>g>th</str<strong>on</strong>g>e dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e organisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at carry<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>em. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese alleles, as could be <str<strong>on</strong>g>th</str<strong>on</strong>g>at resp<strong>on</strong>sible <str<strong>on</strong>g>of</str<strong>on</strong>g> hemophilia, corresp<strong>on</strong>d<br />

to genes linked to sex chromosomes, especially to X chromosome. If <str<strong>on</strong>g>th</str<strong>on</strong>g>ese alleles<br />

are dominant, all <str<strong>on</strong>g>th</str<strong>on</strong>g>e carriers die so <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are rarely detected due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir rapid<br />

eliminati<strong>on</strong> from populati<strong>on</strong>s. However, recessive le<str<strong>on</strong>g>th</str<strong>on</strong>g>al alleles <strong>on</strong>ly cause dea<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> carrier males and homozygous carrier females, <str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e last <strong>on</strong>es must be<br />

daughters <str<strong>on</strong>g>of</str<strong>on</strong>g> a carrier male, so <str<strong>on</strong>g>th</str<strong>on</strong>g>ey rarely exist. Heterozygous carrier females<br />

are able to live and reproduce. They do not phenotypically express <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic<br />

c<strong>on</strong>diti<strong>on</strong> but can pass <str<strong>on</strong>g>th</str<strong>on</strong>g>e le<str<strong>on</strong>g>th</str<strong>on</strong>g>al allele <strong>on</strong>to <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we introduce a multitype bisexual branching process for describing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals carrying <str<strong>on</strong>g>th</str<strong>on</strong>g>e alleles, R and r, <str<strong>on</strong>g>of</str<strong>on</strong>g> a gene<br />

linked to X chromosome. The R allele is c<strong>on</strong>sidered dominant and <str<strong>on</strong>g>th</str<strong>on</strong>g>e r allele is<br />

assumed to be recessive and le<str<strong>on</strong>g>th</str<strong>on</strong>g>al. Females can have two genotypes: homozygous,<br />

RR, and heterozygous, Rr, whereas <strong>on</strong>ly R males are able to live. Homozygous and<br />

heterozygous females have identical phenotypes so males do not know <str<strong>on</strong>g>th</str<strong>on</strong>g>e genotype<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir mates, it can be said <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey made a “blind” choice am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

genotypes.<br />

In such a model, we take into account <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring <str<strong>on</strong>g>of</str<strong>on</strong>g> a couple wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a<br />

homozygous female do not carry <str<strong>on</strong>g>th</str<strong>on</strong>g>e le<str<strong>on</strong>g>th</str<strong>on</strong>g>al allele. However, couples wi<str<strong>on</strong>g>th</str<strong>on</strong>g> heterozygous<br />

females can give bir<str<strong>on</strong>g>th</str<strong>on</strong>g> to RR and Rr females and R and r males. Since r males<br />

die, Mendelian inheritance ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese couples are altered. The total <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each couple is modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a random variable whose probability distributi<strong>on</strong><br />

is supposed to be different for homozygous and heterozygous females.<br />

We use <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e extincti<strong>on</strong> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese le<str<strong>on</strong>g>th</str<strong>on</strong>g>al alleles,<br />

i.e. under which c<strong>on</strong>diti<strong>on</strong>s it will eventually disappear and when it will survive<br />

al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong>s. Such c<strong>on</strong>diti<strong>on</strong>s are expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> extincti<strong>on</strong>, we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

carriers <str<strong>on</strong>g>of</str<strong>on</strong>g> such alleles.<br />

679


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Acknowledgements: Research supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ministerio de Ciencia e Innovación,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Junta de Extremadura and <str<strong>on</strong>g>th</str<strong>on</strong>g>e FEDER, grants MTM2009-13248 and<br />

GR10118.<br />

680


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 17:00<br />

Iw<strong>on</strong>a Mroz<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wroclaw, Plac Maxa<br />

Borna 9, 50-204 Wroclaw, Poland<br />

e-mail: imroz@ifd.uni.wroc.pl<br />

Adaptati<strong>on</strong> to a given habitat as a factor influencing<br />

dynamics and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> model populati<strong>on</strong>s.<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s under which a model populati<strong>on</strong> can survive in a<br />

given habitat, col<strong>on</strong>ize a new (spatially separated) habitat and is able to co-exist<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a populati<strong>on</strong> living in a neighbouring habitat.<br />

Each habitat is represented by a square lattice and a model phenotype, describing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual <str<strong>on</strong>g>th</str<strong>on</strong>g>at is fully adapted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sidered habitat.<br />

The populati<strong>on</strong>s are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals <str<strong>on</strong>g>th</str<strong>on</strong>g>at move over <str<strong>on</strong>g>th</str<strong>on</strong>g>e lattice, mate,<br />

produce <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings and die. The individuals are characterized by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir genotypes,<br />

phenotypes and ages. The individuals adaptati<strong>on</strong> to a given habitat depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> its phenotypic features <str<strong>on</strong>g>th</str<strong>on</strong>g>at are <str<strong>on</strong>g>th</str<strong>on</strong>g>e same as <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ’<str<strong>on</strong>g>th</str<strong>on</strong>g>e model phenotype’ according to a power functi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some exp<strong>on</strong>ent n. The<br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptati<strong>on</strong> is related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e individuals probability <str<strong>on</strong>g>of</str<strong>on</strong>g> survival.<br />

We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e value <str<strong>on</strong>g>of</str<strong>on</strong>g> n <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics and<br />

its genetic and phenotypic variability. In particular, we compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e situati<strong>on</strong>s<br />

when: n>1 (briefly, in <str<strong>on</strong>g>th</str<strong>on</strong>g>is case <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e individuals <str<strong>on</strong>g>th</str<strong>on</strong>g>at are quite similar to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

model phenotype can survive easily) and 0>n>1 (here, even small similarities between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotype <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sidered individual and <str<strong>on</strong>g>th</str<strong>on</strong>g>e model phenotype may be<br />

significantly advantageous for survival). For co-existing populati<strong>on</strong>s, possibilities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> different shapes are also investigated. Computer<br />

simulati<strong>on</strong>s based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard M<strong>on</strong>te Carlo technique are performed.<br />

References.<br />

[1] Mroz I, Pekalski A, Sznajd-Wer<strong>on</strong> K: C<strong>on</strong>diti<strong>on</strong>s for adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an evolving populati<strong>on</strong>.<br />

Phys Rev Lett 76,(1996),3025-3028.<br />

[2] Mroz I, Pekalski A: Model <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s col<strong>on</strong>izing a new habitat. Eur Phys J B 10,(1999),181-<br />

186.<br />

[3] Mroz I: A model <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> dynamics - fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er investigati<strong>on</strong>s. Physica A 323,(2003),569-577.<br />

681


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Kalina Mrozek<br />

Proteome and Metabolome Research, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, Bielefeld<br />

University, Germany<br />

e-mail: kalina.mrozek@uni-bielefeld.de<br />

Petra Lutter<br />

Proteome and Metabolome Research, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, Bielefeld<br />

University, Germany<br />

Karsten Niehaus<br />

Proteome and Metabolome Research, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, Bielefeld<br />

University, Germany<br />

Modelling calcium transients in plant pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen defence<br />

reacti<strong>on</strong>s<br />

Recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> so-called pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen-associated molecular patterns (PAMPs) triggers<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e plant immunity. As a first line <str<strong>on</strong>g>of</str<strong>on</strong>g> defence <str<strong>on</strong>g>th</str<strong>on</strong>g>e producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive oxygen<br />

species (ROS) is started. ROS are able to kill <str<strong>on</strong>g>th</str<strong>on</strong>g>e invading pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen and to crosslink<br />

cell wall comp<strong>on</strong>ents forming a barrier to block <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong>. The plant receptors<br />

perceive <str<strong>on</strong>g>th</str<strong>on</strong>g>e PAMPs <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell surface and transfer a signal into <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. As a<br />

c<strong>on</strong>sequence, <str<strong>on</strong>g>th</str<strong>on</strong>g>e release <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium from internal stores is mediated, generating a<br />

spike <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytosolic calcium c<strong>on</strong>centrati<strong>on</strong>. This increase depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e type<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> elicitor and can differ in lag time, magnitude, peak time, intensity and durati<strong>on</strong>.<br />

The project focuses <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytosolic calcium signals up<strong>on</strong> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen c<strong>on</strong>tact and also should<br />

be expandable for integrating o<str<strong>on</strong>g>th</str<strong>on</strong>g>er comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is signal transducti<strong>on</strong> chain.<br />

Initially, <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytosolic calcium levels are measured in aequorin-transformed tobacco<br />

cell cultures. Simultaneously, <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytosolic calcium c<strong>on</strong>centrati<strong>on</strong> is ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically<br />

described, based <strong>on</strong> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s. The MatLab s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware<br />

is used for running simulati<strong>on</strong>s. The simulati<strong>on</strong>s imply <str<strong>on</strong>g>th</str<strong>on</strong>g>e variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

sets <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e different kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium transients, doseresp<strong>on</strong>se-relati<strong>on</strong>ship<br />

curves and additi<strong>on</strong>ally reproducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e refractory behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytosolic calcium increase for comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e measured datasets.<br />

682


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Saturday, July 2, 14:30<br />

Maciej Mrugala<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Neurology<br />

e-mail: mmrugala@u.washingt<strong>on</strong>.edu<br />

Kristin Swans<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

e-mail: krae@u.washingt<strong>on</strong>.edu<br />

Addie Bo<strong>on</strong>e<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology<br />

Russell Rockne<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Predicting pseudoprogressi<strong>on</strong> in glioblastoma patients: A<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and clinical perspective<br />

Background: Glioblastoma multiforme (GBM) is a highly invasive primary brain<br />

tumor <str<strong>on</strong>g>th</str<strong>on</strong>g>at diffusely invades <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding normal appearing tissue and yields<br />

short life expectancies despite aggressive treatment. A combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemo and<br />

radiati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies is <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard <str<strong>on</strong>g>of</str<strong>on</strong>g> care for newly diagnosed GBM. However,<br />

published data estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>at 20%-50% <str<strong>on</strong>g>of</str<strong>on</strong>g> progressive enhancement <strong>on</strong> MRI occurring<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in 12 weeks post chemoradio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>of</str<strong>on</strong>g> pseudoprogressi<strong>on</strong><br />

(Psp) and does not indicate true progressi<strong>on</strong> (TP) <str<strong>on</strong>g>of</str<strong>on</strong>g> disease. Though many novel<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods and modalities are currently being evaluated to distinguish Psp from TP,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no widely accepted n<strong>on</strong>invasive mechanism to predict Psp in individual<br />

patients.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: A reacti<strong>on</strong>-diffusi<strong>on</strong> model has effectively quantified <str<strong>on</strong>g>th</str<strong>on</strong>g>e net proliferati<strong>on</strong><br />

() and invasti<strong>on</strong> rate (D) (P-I) <str<strong>on</strong>g>of</str<strong>on</strong>g> untreated glioma grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and invasi<strong>on</strong>.<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e P-I model as a mechanism to predict which<br />

patents will be more likely to experience pseudoprogressi<strong>on</strong> and true progressive<br />

disease. The pre- and post-chemoradio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy MRI scans <str<strong>on</strong>g>of</str<strong>on</strong>g> 57 patients were reviewed<br />

retrospectively.<br />

Results: Eleven <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e 57 patients were clinically c<strong>on</strong>firmed to exhibit pseudoprogressi<strong>on</strong><br />

and 46 patients were c<strong>on</strong>firmed to exhibit true progressi<strong>on</strong>. These<br />

patients were <str<strong>on</strong>g>th</str<strong>on</strong>g>en evaluated based <strong>on</strong> model-generated parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e net migrati<strong>on</strong><br />

(D) and proliferati<strong>on</strong> rates () <str<strong>on</strong>g>of</str<strong>on</strong>g> each patients glioma tumor. Of <str<strong>on</strong>g>th</str<strong>on</strong>g>e 11<br />

Psp patients, 9 (82%) had pretreatment D/1 mm2.<br />

C<strong>on</strong>clusi<strong>on</strong>: A pre-treatment D/rho


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecosystems Dynamics; Tuesday, June 28, 11:00<br />

Johannes Müller<br />

Technische Universität München„ Zentrum Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik, Boltzmannstr. 3,<br />

85758 Garching / Munich, Germany<br />

e-mail: johannes.mueller@mytum.de<br />

Annett Henkel<br />

Technische Universität München, Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologie der Waldbäume, Hans-<br />

Carl-v<strong>on</strong>-Carlowitz-Platz 2, 85354 Freising<br />

e-mail: annett_henkel@email.de<br />

Christian Pötzsche<br />

Technische Universität München„ Zentrum Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik, Boltzmannstr. 3,<br />

85758 Garching / Munich, Germany<br />

e-mail: poetzsch@ma.tum.de<br />

Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora<br />

The genus Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora de Bary is a well-known group <str<strong>on</strong>g>of</str<strong>on</strong>g> fungus-like pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> algal relatives which are <str<strong>on</strong>g>th</str<strong>on</strong>g>e causal agent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most devastating plant diseases.<br />

Herbaceous crops like potatoes as well as woody crops like citrus or even<br />

trees in natural forests fall prey to <str<strong>on</strong>g>th</str<strong>on</strong>g>em and cause tremendous pecuniary and ecological<br />

losses each year which attract a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> interest in <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

behaviour and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora.<br />

We c<strong>on</strong>sider a model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphology and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora using <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

example <str<strong>on</strong>g>of</str<strong>on</strong>g> Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora plurivora utilizing a correlated random walk describing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e density <str<strong>on</strong>g>of</str<strong>on</strong>g> tips. This correlated random walk incorporates some n<strong>on</strong>-standard<br />

aspects, as grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and change <str<strong>on</strong>g>of</str<strong>on</strong>g> directi<strong>on</strong> are intertwined, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> newly<br />

split tips is delayed (apical dominance).<br />

First we investigate running fr<strong>on</strong>ts, especially questi<strong>on</strong>ing <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is delay,<br />

for uniform- as well as n<strong>on</strong>-uniform turning kernels. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is delay<br />

primarily influences <str<strong>on</strong>g>th</str<strong>on</strong>g>e slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t and <str<strong>on</strong>g>th</str<strong>on</strong>g>erewi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial appropriati<strong>on</strong>,<br />

and not its velocity. This <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical predicti<strong>on</strong> is c<strong>on</strong>firmed by experimental<br />

data <str<strong>on</strong>g>of</str<strong>on</strong>g> Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora growing in Petri dishes.<br />

The sec<strong>on</strong>d questi<strong>on</strong> we are dealing wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e manner<br />

tips are interacting, especially <str<strong>on</strong>g>th</str<strong>on</strong>g>e point why tips stop to grow “behind” <str<strong>on</strong>g>th</str<strong>on</strong>g>e interface<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t, respectively in c<strong>on</strong>fr<strong>on</strong>tati<strong>on</strong> experiments at <str<strong>on</strong>g>th</str<strong>on</strong>g>e interface between<br />

two col<strong>on</strong>ies. The combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental data about <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial structured<br />

time course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e glucose c<strong>on</strong>centrati<strong>on</strong> and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a model taking into<br />

account bo<str<strong>on</strong>g>th</str<strong>on</strong>g>, tips and glucose, reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at nutrient depleti<strong>on</strong> is most likely <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

central mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> tip interacti<strong>on</strong> and hyphal grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. We presume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e growing mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora in infected plant tissue and <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen will sap its hosts via energy depleti<strong>on</strong> and tissue destructi<strong>on</strong> in infected<br />

areas.<br />

684


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Sreeharish Muppirisetty<br />

The Micros<str<strong>on</strong>g>of</str<strong>on</strong>g>t Research - University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento COSBI<br />

e-mail: sreeharishm@cosbi.eu<br />

Federico Vaggi<br />

The Micros<str<strong>on</strong>g>of</str<strong>on</strong>g>t Research - University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento COSBI<br />

Yari Ciribilli<br />

Centre for Integrative Biology (CIBIO), University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento<br />

Alberto Inga<br />

Centre for Integrative Biology (CIBIO), University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento<br />

Attila Csikasz-Nagy<br />

The Micros<str<strong>on</strong>g>of</str<strong>on</strong>g>t Research - University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento COSBI<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> p53 transactivati<strong>on</strong> <strong>on</strong> different Resp<strong>on</strong>se<br />

Elements<br />

p53 is <str<strong>on</strong>g>th</str<strong>on</strong>g>e guardian <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome, it acts as a transcripti<strong>on</strong> factor regulating<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several proteins up<strong>on</strong> DNA damage. Maybe <str<strong>on</strong>g>th</str<strong>on</strong>g>is is <str<strong>on</strong>g>th</str<strong>on</strong>g>e most<br />

investigated protein in human cells, still <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact mechanism how p53 binds to<br />

resp<strong>on</strong>se elements (REs) in <str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA is still unclear. A yeast-based essay enables us<br />

to investigate its binding dynamics to REs <str<strong>on</strong>g>of</str<strong>on</strong>g> highly important targets. We collected<br />

time courses <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong>al activity at various REs by measuring luminescence<br />

induced by p53 regulated promoters at various p53 inducti<strong>on</strong> levels. We created a<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> p53 dimers and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir binding<br />

to REs. Alternative versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model c<strong>on</strong>tain possible proposed binding orders<br />

and interacti<strong>on</strong>s. We perform large scale parameter estimati<strong>on</strong> to identify which<br />

model can give such parameter sets <str<strong>on</strong>g>th</str<strong>on</strong>g>at fits <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental measurements. Initial<br />

results revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at earlier time points need to be measured to allow proper fitting.<br />

We observed <str<strong>on</strong>g>th</str<strong>on</strong>g>at, some parameters show low sensitivity at all p53 inducti<strong>on</strong> levels.<br />

Thus we narrowed down <strong>on</strong> a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters from <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial set and run <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

estimati<strong>on</strong> by fitting all <str<strong>on</strong>g>th</str<strong>on</strong>g>e measured REs toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er and observed <str<strong>on</strong>g>th</str<strong>on</strong>g>e intra RE and<br />

inter RE variati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter estimati<strong>on</strong> we plan to<br />

identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e details <str<strong>on</strong>g>of</str<strong>on</strong>g> p53 RE binding events. The emerging modeling results will<br />

be fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er validated experimentally.<br />

685


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Friday, July 1, 14:30<br />

Daniele Muraro 1<br />

e-mail: daniele.muraro@nottingham.ac.uk<br />

Leah Band 1<br />

e-mail: leah.band@nottingham.ac.uk<br />

Helen Byrne 1,2<br />

e-mail: helen.byrne@nottingham.ac.uk<br />

John King 1,2<br />

e-mail: john.king@nottingham.ac.uk<br />

Ute Voß 1<br />

e-mail: ute.voss@nottingham.ac.uk<br />

Susana Ubeda Tomas 1<br />

e-mail: susana.ubeda-tomas@nottingham.ac.uk<br />

Joseph Kieber 3<br />

e-mail: jkieber@ad.unc.edu<br />

Malcolm Bennett 1<br />

e-mail: malcolm.bennett@nottingham.ac.uk<br />

[1]: Centre for Plant Integrative Biology, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, Sutt<strong>on</strong> B<strong>on</strong>ingt<strong>on</strong> Campus, Loughborough<br />

LE12 5RD, UK<br />

[2]: School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, University<br />

Park, Nottingham NG7 2RD, UK<br />

[3]: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina at<br />

Chapel Hill, Chapel Hill, Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina 27599-3280<br />

A multi-scale analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> horm<strong>on</strong>al<br />

cross-talk: cell-fate determinati<strong>on</strong> in Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana<br />

root development<br />

Root grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and development in Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana are sustained by a specialised<br />

z<strong>on</strong>e termed <str<strong>on</strong>g>th</str<strong>on</strong>g>e meristem, which c<strong>on</strong>tains a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dividing and<br />

differentiating cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at is functi<strong>on</strong>ally analogous to a stem cell niche in animals.<br />

The size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e meristem is regulated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e balance between cell divisi<strong>on</strong> and<br />

cell differentiati<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>is balance is c<strong>on</strong>trolled antag<strong>on</strong>istically by <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>es<br />

auxin and cytokinin. Local accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin promotes cell divisi<strong>on</strong>, whereas<br />

high cytokinin c<strong>on</strong>centrati<strong>on</strong>s promote differentiati<strong>on</strong>. The cross-talk between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

two horm<strong>on</strong>es is c<strong>on</strong>trolled by a genetic regulatory network.<br />

As a first step <str<strong>on</strong>g>of</str<strong>on</strong>g> our analysis, we propose and compare wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental observati<strong>on</strong>s<br />

a single-cell, deterministic ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is regulatory mechanism.<br />

We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough genetic mutati<strong>on</strong>s can reproduce qualitatively <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> varying auxin and cytokinin supply <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir resp<strong>on</strong>se genes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e general<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network is different and an analysis based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese two horm<strong>on</strong>es may be misleading.<br />

Recently, gibberellin has been shown to be relevant in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e adult<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e meristem by interacting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> auxin and cytokinin. We propose a multiscale<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is interacti<strong>on</strong> and we validate <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>of</str<strong>on</strong>g> our simulati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

experimental data. We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at a multi-scale investigati<strong>on</strong> can provide insight<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e signalling network c<strong>on</strong>trolling meristematic activity, by enabling <str<strong>on</strong>g>th</str<strong>on</strong>g>e study<br />

686


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network in different tissues and <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> potential missing comp<strong>on</strong>ents.<br />

687


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chaste framework;<br />

Tuesday, June 28, 11:00<br />

Philip J. Murray, Philip K. Maini, Ru<str<strong>on</strong>g>th</str<strong>on</strong>g> E. Baker<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, The Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford.<br />

e-mail: murrayp@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Using Chaste to simulate a multiscale problem in<br />

developmental biology<br />

During somitogenesis <str<strong>on</strong>g>th</str<strong>on</strong>g>e posterior PSM segments at regular time time intervals<br />

into blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells called somites. A clock and wavefr<strong>on</strong>t mechanism is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e widely accepted model for <str<strong>on</strong>g>th</str<strong>on</strong>g>is process, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cellular clocks and a travelling<br />

molecular wavefr<strong>on</strong>t determining when and where <str<strong>on</strong>g>th</str<strong>on</strong>g>e somites form, respectively.<br />

Recent experimental findings in zebrafish have highlighted <str<strong>on</strong>g>th</str<strong>on</strong>g>e fundamental role <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Notch-Delta signalling in <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbouring cellular oscillators. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

framework <str<strong>on</strong>g>of</str<strong>on</strong>g> phase coupled oscillators to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e Notch-Delta coupled molecular<br />

oscillators, we dem<strong>on</strong>strate how oscillator coupling al<strong>on</strong>e is sufficient to yield a range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> experimentally observed results. A notable feature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sidered phasecoupled<br />

framework is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e clock and wavefr<strong>on</strong>t are not separate entities, ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e wavefr<strong>on</strong>t <str<strong>on</strong>g>th</str<strong>on</strong>g>at slows clock oscillati<strong>on</strong>s is a gradient in clock phase.<br />

Cell movements in <str<strong>on</strong>g>th</str<strong>on</strong>g>e chick PSM have recently been quantified: cells are most<br />

motile in <str<strong>on</strong>g>th</str<strong>on</strong>g>e posterior PSM while cell densities are largest anteriorly. Using a<br />

cell-based model implemented in Chaste, we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree tightly-coupled processes: embryo el<strong>on</strong>gati<strong>on</strong>, embryo c<strong>on</strong>vergence and cell<br />

proliferati<strong>on</strong>. Results from <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical simulati<strong>on</strong>s are compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> available<br />

experimental data and <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is used to suggest fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er experimental studies.<br />

688


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling viral hepatitis dynamics in-vivo and in-vitro in <str<strong>on</strong>g>th</str<strong>on</strong>g>e era <str<strong>on</strong>g>of</str<strong>on</strong>g> direct<br />

anti-viral agents I; Tuesday, June 28, 17:00<br />

Robert B. Nachbar<br />

Merck Research Laboratories<br />

e-mail: nachbar@merck.com<br />

Matt S. Anders<strong>on</strong><br />

Merck Research Laboratories<br />

Diana M. Brainard<br />

Merck Research Laboratories (present address Gilead Sciences)<br />

Paul Panorchan<br />

Merck Research Laboratories (present address Vertex Pharmaceuticals)<br />

Jeffrey S. Saltzman<br />

Merck Research Laboratories<br />

Jack L. Valentine<br />

Merck Research Laboratories (present address Bristol-Myers Squibb)<br />

The use <str<strong>on</strong>g>of</str<strong>on</strong>g> viral dynamics modeling to optimize <str<strong>on</strong>g>th</str<strong>on</strong>g>e design <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a Phase Ib trial, facilitate its analysis, and inform <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

decisi<strong>on</strong> making for <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> directly acting HCV<br />

compounds<br />

Hepatitis C virus (HCV) causes a chr<strong>on</strong>ic infecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver, and leads to fibrosis,<br />

cirrhosis, and in some patients to hepatocellular carcinoma. Current standard <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

care (pegylated interfer<strong>on</strong> plus ribavirin for 48 weeks) is an arduous regimen for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

patient and has a cure rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly 50 % in genotype 1 (GT 1) patients. Therefore,<br />

in recent years <str<strong>on</strong>g>th</str<strong>on</strong>g>ere has been significant effort to develop directly acting antivirals<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at will have a substantially higher rate <str<strong>on</strong>g>of</str<strong>on</strong>g> cure and require a shorter period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

treatment. This presentati<strong>on</strong> will describe how we used pharmacokinetic and viral<br />

dynamics modeling to design <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment in a Phase Ib clinical trial <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an HCV NS5B polymerase inhibitor in GT 1a, 1b, and 3 patients, and to determine<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal sampling times bo<str<strong>on</strong>g>th</str<strong>on</strong>g> during and after treatment. Quantitative analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting viral load data led to a much clearer understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se<br />

across genotypes and supported <str<strong>on</strong>g>th</str<strong>on</strong>g>e decisi<strong>on</strong> making process in clinical development.<br />

689


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 17:00<br />

J.C. Nacher 1<br />

e-mail: nacher@fun.ac.jp<br />

M. Hayashida 2<br />

e-mail: morihiro@kuicr.kyoto-u.ac.jp<br />

T. Akutsu 2<br />

e-mail: takutsu@kuicr.kyoto-u.ac.jp<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex and Intelligent Systems, Future University<br />

Hakodate, Japan<br />

2 Bioinformatics Center, Institute for Chemical Research, Kyoto Uni-<br />

versity, Uji, Japan<br />

Data analysis and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> internal<br />

duplicati<strong>on</strong> process in multi-domain proteins<br />

Multi-domain proteins have likely been shaped by selective genome grow<str<strong>on</strong>g>th</str<strong>on</strong>g> dynamics<br />

during evoluti<strong>on</strong>. Emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> new protein domains allows to perform<br />

new functi<strong>on</strong>s as well as to create polypeptide structures <str<strong>on</strong>g>th</str<strong>on</strong>g>at fold <strong>on</strong> a biologically<br />

feasible time scale. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> genome grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough shuffling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

protein domains have been studied extensively over decades, recent experimental<br />

observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a significantly large number <str<strong>on</strong>g>of</str<strong>on</strong>g> domain repeats <str<strong>on</strong>g>of</str<strong>on</strong>g> several domains<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e same family suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e more process involving domain recombinati<strong>on</strong><br />

may still remain hidden [1, 2]. Here we examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein domain statistics<br />

retrieved from Pfam, SMART, Gene3D, ProDom and TIGRFAMs databases and<br />

c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> 68 eukaryotic, 56 archaeal, and 929 bacterial organisms. We show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is analysis c<strong>on</strong>firms earlier observati<strong>on</strong>s [3] and extends <str<strong>on</strong>g>th</str<strong>on</strong>g>em to numerous<br />

organisms in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree kingdoms <str<strong>on</strong>g>of</str<strong>on</strong>g> life. The results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> total<br />

protein domains and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> domain families in a protein are governed by<br />

different statistical laws. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e former follows a power-law distributi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

latter exhibits an exp<strong>on</strong>ential statistics. We develop a me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology and propose<br />

an evoluti<strong>on</strong>ary dynamics model, based <strong>on</strong> a rate equati<strong>on</strong> formalism, and c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> domain fusi<strong>on</strong>, mutati<strong>on</strong>, protein duplicati<strong>on</strong> and internal duplicati<strong>on</strong><br />

processes. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese distinct distributi<strong>on</strong>s are in fact rooted<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e internal domain duplicati<strong>on</strong> mechanism. The analytical results derived from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary dynamics model as well as computer simulati<strong>on</strong> show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

domain-repeats event generates a wide number <str<strong>on</strong>g>of</str<strong>on</strong>g> domains in a protein while at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

same time preserving a <str<strong>on</strong>g>th</str<strong>on</strong>g>in number <str<strong>on</strong>g>of</str<strong>on</strong>g> domain families across proteome species.<br />

To our knowledge, <str<strong>on</strong>g>th</str<strong>on</strong>g>is is <str<strong>on</strong>g>th</str<strong>on</strong>g>e first ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> protein domain evoluti<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at explicitly takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> internal duplicati<strong>on</strong> mechanism and<br />

provides analytical soluti<strong>on</strong>. These findings bring in our view new insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fundamental mechanisms governing genome expansi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> potential implicati<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> protein interacti<strong>on</strong> network models and related evoluti<strong>on</strong>ary<br />

studies.<br />

References.<br />

[1] A.D. Moore, Arrangements in <str<strong>on</strong>g>th</str<strong>on</strong>g>e modular evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins Trends in Biochemical Sciences<br />

33 444-451.<br />

[2] A.K. Björklund, D. Ekman and A. El<str<strong>on</strong>g>of</str<strong>on</strong>g>ss<strong>on</strong>, Expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein domain repeats PLoS Computati<strong>on</strong>al<br />

Biology 2, e114.<br />

690


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] E.V. Ko<strong>on</strong>in, Y.I. Wolf and G. P. Karev, The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> protein universe and genome<br />

evoluti<strong>on</strong> Nature 420, 218-223.<br />

691


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Reports from US - African BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Initiative: C<strong>on</strong>servati<strong>on</strong><br />

Biology; Saturday, July 2, 14:30<br />

Robyn Nadolny<br />

Old Domini<strong>on</strong> University Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences<br />

e-mail: rnado002@odu.edu<br />

Emna Harigua<br />

Institut Pasteur de Tunis<br />

Karen Wylie<br />

Rutgers University Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology, Evoluti<strong>on</strong> & Natural Resources<br />

Oussama Souai<br />

Institut Pasteur de Tunis<br />

Canine Distemper Virus (CDV): Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for modeling<br />

spillover infecti<strong>on</strong>s for African Wild Dogs (Lyca<strong>on</strong> pictus) in<br />

a multi-host community<br />

Canine Distemper Virus (CDV) is a potentially le<str<strong>on</strong>g>th</str<strong>on</strong>g>al morbillivirus spread via<br />

aerosol. It is comm<strong>on</strong> in domestic dogs and also affects many wild carnivores,<br />

including li<strong>on</strong>s, hyenas, jackals and African wild dogs (AWDs). The AWD is a critically<br />

endangered canid <str<strong>on</strong>g>th</str<strong>on</strong>g>at is known to experience high mortality from epizootics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CDV. AWDs are <strong>on</strong>ly known to survive in protected areas in Africa, which <str<strong>on</strong>g>th</str<strong>on</strong>g>ey<br />

share wi<str<strong>on</strong>g>th</str<strong>on</strong>g> li<strong>on</strong>s, hyenas and jackals. Inter-species interacti<strong>on</strong>s at shared kill sites<br />

provide an opportunity for CDV to spill over from <strong>on</strong>e infected species to ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

susceptible species. We aim to examine how CDV is transmitted between four<br />

different host species (li<strong>on</strong>s, jackals, hyenas and AWDs) wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a reserve.<br />

We c<strong>on</strong>structed a heterogeneous deterministic SEIR model to establish a diseasefree<br />

equilibrium for each species. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en introduced stochasticity to our model to<br />

understand how CDV spreads <str<strong>on</strong>g>th</str<strong>on</strong>g>rough multispecies metapopulati<strong>on</strong>s. Stochasticity<br />

was introduced in <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong> process and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e inter-species c<strong>on</strong>tact process.<br />

Due to variati<strong>on</strong> in collecti<strong>on</strong> techniques for demographic data in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature, our<br />

model was compromised since data for some species may already reflect <str<strong>on</strong>g>th</str<strong>on</strong>g>e endemic<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease while o<str<strong>on</strong>g>th</str<strong>on</strong>g>er species are potentially disease-free. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless,<br />

our model dem<strong>on</strong>strates a valid me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e sources and sinks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

disease in a multi-host metapopulati<strong>on</strong>. We also plan to build a c<strong>on</strong>tact network<br />

model to avoid <str<strong>on</strong>g>th</str<strong>on</strong>g>e issue <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing endemic host populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> disease-free host<br />

populati<strong>on</strong>s. These models could be applied to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er metapopulati<strong>on</strong> systems to<br />

study or prevent disease spillovers between neighboring populati<strong>on</strong>s.<br />

692


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulati<strong>on</strong>; Tuesday, June 28, 11:00<br />

Felix Naef<br />

Ecole Polytechnique Federale de Lausanne (EPFL)<br />

e-mail: felix.naef@epfl.ch<br />

Calibrating stochastic models <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong>al bursting in<br />

single mammalian cells<br />

In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> prokaryotes and eukaryotes, stochasticity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> mRNA and<br />

protein expressi<strong>on</strong> has important c<strong>on</strong>sequences <strong>on</strong> gene regulati<strong>on</strong> and <strong>on</strong> n<strong>on</strong>genetic<br />

cell-to-cell variability. Here, we show how disc<strong>on</strong>tinuous transcripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mammalian genes leads to broad spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> temporal bursting in mRNA syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis.<br />

To m<strong>on</strong>itor transcripti<strong>on</strong> at high temporal resoluti<strong>on</strong>, we designed chromosomallyintegrated<br />

vectors encoding a very short-lived luciferase in combinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ultrasensitive<br />

bioluminescence microscopy. These data enabled us to develop and calibrate<br />

a probabilistic model <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> to estimate gene-specific transcripti<strong>on</strong><br />

burst sizes and switching rates. The model was fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er used to dec<strong>on</strong>volve <str<strong>on</strong>g>th</str<strong>on</strong>g>e time<br />

traces, which showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at rapid bursting at timescales <str<strong>on</strong>g>of</str<strong>on</strong>g> tens <str<strong>on</strong>g>of</str<strong>on</strong>g> minutes may be an<br />

intrinsic property <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> in mammalian cells, and lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e characterizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> refractory periods <str<strong>on</strong>g>of</str<strong>on</strong>g> variable durati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e inactive state. Experiments<br />

in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory elements were modified showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e bursting kinetics<br />

was markedly altered by sequence modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cis-regulatory sequences. This<br />

high temporal resoluti<strong>on</strong> m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> is readily applicable to many<br />

systems; including <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian oscillator in which we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at increased bursting<br />

frequency precede maximal burst sizes by few hours.<br />

693


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> and cortical actin at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular level;<br />

Saturday, July 2, 08:30<br />

Sundar Nagana<str<strong>on</strong>g>th</str<strong>on</strong>g>an, Justin Bois, Guillaume Salbreux, Stephan W. Grill<br />

MPI CBG<br />

e-mail: nagana<str<strong>on</strong>g>th</str<strong>on</strong>g>@mpi-cbg.de<br />

Actin binding proteins govern <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> polarizing<br />

cortical flows in C. elegans zygotes<br />

Establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> polarity is essential for c<strong>on</strong>ferring different developmental fates to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dividing cells <str<strong>on</strong>g>of</str<strong>on</strong>g> an embryo. In Caenorhabditis elegans <strong>on</strong>e cell embryos, anteroposterior<br />

polarizati<strong>on</strong> is facilitated by l<strong>on</strong>g-ranged flow <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e actomyosin cortex.<br />

Even <str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e flowing cortex c<strong>on</strong>tains many actin binding proteins (ABPs) <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

c<strong>on</strong>tribute to its structure and dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are <strong>on</strong>ly a limited number <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical<br />

properties <str<strong>on</strong>g>th</str<strong>on</strong>g>at are important at large leng<str<strong>on</strong>g>th</str<strong>on</strong>g> and time scales relevant for<br />

polarizati<strong>on</strong>, for example c<strong>on</strong>tractility and cortical viscosity (Mayer, Bois, Depken,<br />

Jülicher, Grill, 2010). Importantly, <str<strong>on</strong>g>th</str<strong>on</strong>g>is suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is <strong>on</strong>ly a reduced spectrum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cortical flow phenotypes <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e might expect to obtain by modulating<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese few mechanical properties <str<strong>on</strong>g>th</str<strong>on</strong>g>rough different molecular mechanisms. To bridge<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e gap between molecular and cellular scales, we here sought to investigate which<br />

cell-scale mechanical properties are c<strong>on</strong>trolled by which ABPs. We devised a candidate<br />

RNAi screen <str<strong>on</strong>g>of</str<strong>on</strong>g> ABPs and found <str<strong>on</strong>g>th</str<strong>on</strong>g>at several ABPs affect cortical flow. This<br />

was achieved by analyzing myosin foci size and density and several flow characteristics,<br />

such as peak velocities and spatio-temporal velocity-velocity correlati<strong>on</strong>s,<br />

for each ABP knockdown. The velocity-velocity correlati<strong>on</strong>s provided us wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic hydrodynamic leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cortical flow, which describes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e extent to which flows are l<strong>on</strong>g-ranged. Interestingly, all <str<strong>on</strong>g>th</str<strong>on</strong>g>ose ABPs<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at displayed a detectable cortical flow phenotype did so <str<strong>on</strong>g>th</str<strong>on</strong>g>rough affecting <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

hydrodynamic leng<str<strong>on</strong>g>th</str<strong>on</strong>g>. RNAi ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er resulted in short-ranged flows, indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

less viscous cortex, or it resulted in flows <str<strong>on</strong>g>th</str<strong>on</strong>g>at were l<strong>on</strong>ger-ranged <str<strong>on</strong>g>th</str<strong>on</strong>g>an wild type,<br />

indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> a cortex <str<strong>on</strong>g>th</str<strong>on</strong>g>at is more viscous <str<strong>on</strong>g>th</str<strong>on</strong>g>at under wild-type c<strong>on</strong>diti<strong>on</strong>s. Our<br />

results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic hydrodynamic leng<str<strong>on</strong>g>th</str<strong>on</strong>g> is a central physical<br />

property subject to precise regulati<strong>on</strong>. They also point towards a type <str<strong>on</strong>g>of</str<strong>on</strong>g> “mechanical<br />

redundancy” in animal development, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> many molecular mechanisms affecting<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e same cell-scale physical property.<br />

694


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling viral hepatitis dynamics in-vivo and in-vitro in <str<strong>on</strong>g>th</str<strong>on</strong>g>e era <str<strong>on</strong>g>of</str<strong>on</strong>g> direct<br />

anti-viral agents II; Wednesday, June 29, 08:30<br />

Jun Nakabayashi<br />

Graduate University for Advanced Studies (SOKENDAI)<br />

e-mail: nakabayashi_jun@soken.ac.jp<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular replicati<strong>on</strong> and<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in host evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HBV and HCV<br />

Hepatitis virus type B (HBV) is a major causative agent <str<strong>on</strong>g>of</str<strong>on</strong>g> acute and chr<strong>on</strong>ic<br />

hepatitis. Especially, chr<strong>on</strong>ic hepatitis is a major risk factor <str<strong>on</strong>g>of</str<strong>on</strong>g> liver cirrhosis and<br />

hepatocellular carcinoma. During <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g time course <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic hepatitis, severity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis varies depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral load. It is important to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

viral kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> HBV for <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis. Though <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

detailed mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> HBV replicati<strong>on</strong> is revealed according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> molecular biological technique, how reproducti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> HBV is determined in<br />

single cell level had not been clear yet. To investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular replicati<strong>on</strong><br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> HBV, a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> HBV replicati<strong>on</strong> process is c<strong>on</strong>structed.<br />

And how <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g time course <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis is affected by wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in host evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

HBV was investigated by using an evoluti<strong>on</strong>ary simulati<strong>on</strong> [1]. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e exacerbati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis during <str<strong>on</strong>g>th</str<strong>on</strong>g>e chr<strong>on</strong>ic<br />

hepatitis is obtained. It is shown by our model <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e waiting time for release<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> newly produced viri<strong>on</strong> from infected cell plays critical roles for determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

clinical course <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis. Now, a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> HCV is additi<strong>on</strong>ally<br />

c<strong>on</strong>structed to compare wi<str<strong>on</strong>g>th</str<strong>on</strong>g> HBV.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular replicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> virus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral genome should play several<br />

distinguished roles, as a template <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome replicati<strong>on</strong>, as a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

viral particle and as a template for <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral gene expressi<strong>on</strong>. Because it is impossible<br />

to simultaneously play many roles, it is necessary to optimally distribute <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

viral genome to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese roles for <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficient replicati<strong>on</strong>. The optimum distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> genome is comm<strong>on</strong> problem for many viruses. HBV is DNA virus, <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

hand, HCV is <str<strong>on</strong>g>th</str<strong>on</strong>g>e positive strand RNA virus, and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir replicati<strong>on</strong> patterns are<br />

quite different. HBV and HCV respectively achieve <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimum distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

genome by different regulatory mechanism. The intracellular replicati<strong>on</strong> dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> HBV and HCV are drastically changed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genome. I would<br />

like to show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e replicati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> HBV and HCV is affected by <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir genome. And I would like to discuss how <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g time course <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chr<strong>on</strong>ic hepatitis is affected by <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular dynamics and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in host evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> HBV and HCV in <str<strong>on</strong>g>th</str<strong>on</strong>g>is mini-symposium.<br />

References.<br />

[1] Nakabayashi J. and Sasaki A, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular replicati<strong>on</strong> and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

host evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatitis type B virus: Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g time course <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic hepatitis.<br />

J Theor Biol. 2011 269 318-329.<br />

695


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Turing !! Turing?? <strong>on</strong> morphogenesis via experimental and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

approaches; Wednesday, June 29, 17:00<br />

Tetsuya Nakamura<br />

Developmental Genetics group<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Fr<strong>on</strong>tier Biosciences<br />

Osaka university, Japan<br />

e-mail: t-nakamura@fbs.osaka-u.ac.jp<br />

The Mechanism To Establish Robust Left-Right Asymmetry<br />

A development <str<strong>on</strong>g>of</str<strong>on</strong>g> animal body proceeds under <str<strong>on</strong>g>th</str<strong>on</strong>g>e intrinsic noise (gene expressi<strong>on</strong>,<br />

protein interacti<strong>on</strong>, cell migrati<strong>on</strong> etc.) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e extrinsic noise (envir<strong>on</strong>ment).<br />

In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> existence <str<strong>on</strong>g>of</str<strong>on</strong>g> so much noise, an animal development proceeds robustly<br />

and C.H.Waddingt<strong>on</strong> called a stability <str<strong>on</strong>g>of</str<strong>on</strong>g> a development, “Canalizati<strong>on</strong>”. Of course,<br />

left and right determinati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse is not excepti<strong>on</strong> and canalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> L-R<br />

development attains 99.99 %.<br />

Our body has many internal organs <str<strong>on</strong>g>th</str<strong>on</strong>g>at show asymmetric morphologies about<br />

left-right axis and <str<strong>on</strong>g>th</str<strong>on</strong>g>ese morphologies play important roles in its functi<strong>on</strong>, such<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart, liver, stomach and intestine. Recently, mechanisms to establish L-<br />

R asymmetry in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse embryo have been elucidated by using genetics and<br />

molecular approaches. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse embryo, <str<strong>on</strong>g>th</str<strong>on</strong>g>e small leftward fluid flow in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

node produces first asymmetric informati<strong>on</strong> al<strong>on</strong>g L-R axis and <str<strong>on</strong>g>th</str<strong>on</strong>g>e left-side specific<br />

genes are expressed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e left lateral plate mesoderm subsequently.<br />

Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough some cascades <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong>s were studied, it is unknown how robust<br />

expressi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> left side specific genes are established from <str<strong>on</strong>g>th</str<strong>on</strong>g>e small asymmetric<br />

water flow in <str<strong>on</strong>g>th</str<strong>on</strong>g>e node. Nodal and Lefty, two members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transforming grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

factor-β super family <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins and are expressed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lateral plate mesoderm,<br />

have been implicated in Turing system. Turing system is a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> two diffusible molecules and may underlie pattern formati<strong>on</strong> during<br />

development. We have now examined <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential role <str<strong>on</strong>g>of</str<strong>on</strong>g> Turing system in<br />

left-right patterning bo<str<strong>on</strong>g>th</str<strong>on</strong>g> by experimentally manipulating Nodal and Lefty gene<br />

expressi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse embryos and by c<strong>on</strong>structing a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model.<br />

Our results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at an initial small difference in <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> an activating<br />

signal between <str<strong>on</strong>g>th</str<strong>on</strong>g>e left and right sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo is amplified and c<strong>on</strong>verted into<br />

robust asymmetry by Turing system involving Nodal and Lefty.<br />

References.<br />

[1] T. Nakamura, Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> robust left-right asymmetry in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse embryo requires a selfenhancement<br />

and lateral-inhibiti<strong>on</strong> system. Developmental Cell, 2006, Oct ; 11 (4) 495–504.<br />

[2] H. Hamada, Establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> vertebrate left-right asymmetry. Nature Review Genetics, 2002,<br />

Feb ; 3 (2) 103–13.<br />

696


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Delay Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s I; Friday, July 1, 14:30<br />

Yukihiko Nakata<br />

BCAM-Basque Center for Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

e-mail: nakata@bcama<str<strong>on</strong>g>th</str<strong>on</strong>g>.org<br />

Philipp Getto<br />

BCAM-Basque Center for Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

e-mail: getto@bcama<str<strong>on</strong>g>th</str<strong>on</strong>g>.org<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a characteristic equati<strong>on</strong> for a Delay Equati<strong>on</strong><br />

from cell populati<strong>on</strong> dynamics<br />

We present Delay Equati<strong>on</strong>s describing age-structured cell populati<strong>on</strong> dynamics<br />

where <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell populati<strong>on</strong> is divided into proliferative and quiescent cells. We derived<br />

a characteristic equati<strong>on</strong> for an interior equilibrium and analyzed <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> [1, 2]. We will show how to use <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic equati<strong>on</strong> to<br />

determine stability boundaries for <str<strong>on</strong>g>th</str<strong>on</strong>g>e interior equilibrium in two-parameter space.<br />

References.<br />

[1] O. Diekmann, S.A. van Gils, S.M.V. Lunel, H.O. Wal<str<strong>on</strong>g>th</str<strong>on</strong>g>er (1995) Delay equati<strong>on</strong>s: functi<strong>on</strong>al,<br />

complex,and n<strong>on</strong>linear analysis, vol 110 <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences. Springer-Verlag<br />

[2] O. Diekmann, Ph. Getto, M. Gyllenberg (2007) Stability and bifurcati<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Volterra<br />

functi<strong>on</strong>al equati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e light <str<strong>on</strong>g>of</str<strong>on</strong>g> suns and stars. SIAM J Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Anal 39:1023-1069<br />

697


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecosystems Dynamics; Tuesday, June 28, 14:30<br />

Toshiyuki Namba<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Osaka Prefecture University<br />

e-mail: tnamba@b.s.osakafu-u.ac.jp<br />

Intraguild Predati<strong>on</strong> in a Source–Sink Metacommunity<br />

Dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms in a heterogeneous landscape str<strong>on</strong>gly influences <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> indirectly interacting populati<strong>on</strong>s. The source–sink habitat structure<br />

is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e major mechanisms to promote coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> locally exclusive competitors.<br />

It is known <str<strong>on</strong>g>th</str<strong>on</strong>g>at two populati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at interfere wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er (Takeuchi<br />

1989) or compete exploitatively (Namba and Hashimoto, 2004; Abrams and Wils<strong>on</strong>,<br />

2004) or apparently (Namba, 2007) in spatially heterogeneous metacommunities can<br />

coexist regi<strong>on</strong>ally even if <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em is locally inferior in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> patches.<br />

Here, I c<strong>on</strong>sider a Lotka-Volterra model <str<strong>on</strong>g>of</str<strong>on</strong>g> intraguild predati<strong>on</strong> in two patches<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at have different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s and are c<strong>on</strong>nected by dispersal:<br />

dR i<br />

dt = r i − aRRR i − aRCC i − aRP P i R i ,<br />

dC i<br />

dt = (−mC + eRCaRCR i − aCP P i )C i − dC(C i − C j ),<br />

dP i<br />

dt = (−mP + eRP aRP R i + eCP aCP C i )P i − dP (P i − P j ),<br />

(i, j) = (1.2) or (2, 1). r’s are intrinsic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates, m’s are mortalities, a’s are<br />

interacti<strong>on</strong> coefficients, e’s are c<strong>on</strong>versi<strong>on</strong> efficiencies, and m’s are diffusi<strong>on</strong> rates.<br />

The subscripts express species identity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e superscripts denote patch number.<br />

I study c<strong>on</strong>diti<strong>on</strong>s for coexistence and competitive exclusi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e following<br />

four cases; (1) when <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraguild prey is inferior in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> patches, (2) when <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

intraguild predator is inferior in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> patches, and (3) when <str<strong>on</strong>g>th</str<strong>on</strong>g>e local interacti<strong>on</strong>s<br />

are bistable and ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraguild prey and predator can dominate each patch<br />

if it is initially abundant, (4) when <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraguild prey is inferior in <strong>on</strong>e patch (a<br />

sink) and superior in ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er patch (a source). I will show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraguild prey<br />

and predator can coexist regi<strong>on</strong>ally in a habitat wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a source–sink structure even<br />

if <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em becomes competitively excluded in isolated patches in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e habitat is in a true source–sink structure and each species<br />

dominates <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two patches, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> patches may become sinks for <str<strong>on</strong>g>th</str<strong>on</strong>g>e intratuild<br />

prey when <str<strong>on</strong>g>th</str<strong>on</strong>g>e dispersal rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intraguild predator is intermediate. I will<br />

also show <str<strong>on</strong>g>th</str<strong>on</strong>g>e stabilizing role <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> when <str<strong>on</strong>g>th</str<strong>on</strong>g>e local dynamics are oscillatory.<br />

In summary, dispersal between patches in different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s may<br />

ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er promote or demote coexistence depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e precise habitat c<strong>on</strong>diti<strong>on</strong>s<br />

and interacti<strong>on</strong> streng<str<strong>on</strong>g>th</str<strong>on</strong>g>s.<br />

References.<br />

[1] Abrams, P., and Wils<strong>on</strong>, W. G., 2004. Coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> competitors in metacommunities due<br />

to spatial variati<strong>on</strong> in resource grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates; does R ∗ predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong>?<br />

Ecology Letters 7 929–940.<br />

[2] Namba, T., 2007. Dispersal-mediated coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> indirect competitors in source–sink metacommunities.<br />

Japan Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Industrial and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics 24 39–55.<br />

[3] Namba, T., and Hashimoto, C., 2004. Dispersal-mediated coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> competing predators.<br />

Theoretical Populati<strong>on</strong> Biology 66 53–70.<br />

698


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[4] Takeuchi, Y., 1989. Diffusi<strong>on</strong>–mediated persistence in two-species competiti<strong>on</strong> Lotka-Volterra<br />

model. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences 95 65–83.<br />

699


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in computati<strong>on</strong>al neuroscience II; Wednesday, June 29,<br />

17:00<br />

Martin Paul Nawrot<br />

Neuroinformatics and Theoretical Neuroscience, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Biology, Freie Universität Berlin<br />

e-mail: martin.nawrot@fu-berlin.de<br />

Exploring <str<strong>on</strong>g>th</str<strong>on</strong>g>e Relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Interval and Count Variability in<br />

Neural Spike Trains<br />

Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature and origin <str<strong>on</strong>g>of</str<strong>on</strong>g> neural variability at <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> single<br />

neur<strong>on</strong>s and neural networks is fundamental to our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> how neural<br />

systems can reliably process informati<strong>on</strong>. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> single neur<strong>on</strong> spike trains<br />

we discern two aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> variability. The variance <str<strong>on</strong>g>of</str<strong>on</strong>g> inter-spike intervals (ISIs)<br />

reflects intra-trial variability <strong>on</strong> a relatively fast time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> tens to hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

millisec<strong>on</strong>ds. In c<strong>on</strong>trast, <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> potentials counted<br />

during repeated experimental observati<strong>on</strong>s reflects a variability <strong>on</strong> a comparably<br />

slow time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>ds or even minutes. On <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical grounds, interval and<br />

count statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic point processes are fundamentally related. Analyzing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir empirical relati<strong>on</strong> in neural spike trains <str<strong>on</strong>g>th</str<strong>on</strong>g>us allows to better characterize <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

observed neural spiking processes [1].<br />

To estimate inter-spike interval variability I employ <str<strong>on</strong>g>th</str<strong>on</strong>g>e empirical coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variati<strong>on</strong> (CV) defined as <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ISIs normalized by <str<strong>on</strong>g>th</str<strong>on</strong>g>e average<br />

ISI. The empirical count variability is measured by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fano factor (FF) defined by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> count variance and mean count as estimated during repeated observati<strong>on</strong>s.<br />

For general stati<strong>on</strong>ary n<strong>on</strong>-renewal processes we obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong><br />

<br />

∞<br />

(1) lim FF = CV21<br />

+ 2 ξ wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ξ = ξi ,<br />

T →∞<br />

where ξi denotes <str<strong>on</strong>g>th</str<strong>on</strong>g>e i<str<strong>on</strong>g>th</str<strong>on</strong>g>-order serial interval correlati<strong>on</strong> coefficient. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a renewal process Eq.(1) simplifies to FF = CV 2 . I will discuss how deviati<strong>on</strong>s<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>is equality can be interpreted wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to n<strong>on</strong>-renewal properties and<br />

n<strong>on</strong>-stati<strong>on</strong>arity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed spiking processes [1].<br />

The relati<strong>on</strong> Eq.(1) transfers to <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> superimposed point<br />

processes, which allows to deduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e average CV 2 and serial correlati<strong>on</strong> ξ <str<strong>on</strong>g>of</str<strong>on</strong>g> single<br />

neur<strong>on</strong> spike trains from <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called multi unit activity obtained in extracellular<br />

recordings [2].<br />

References.<br />

[1] M.P. Nawrot (2010) Analysis and Interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Interval and Count Variability in Neural<br />

Spike Trains. In: S. Grün, S. Rotter (eds.), Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Parallel Spike Trains, Springer Series<br />

in Computati<strong>on</strong>al Neuroscience 7 37–58.<br />

[2] F. Farkhooi, E. Muller, M.P. Nawrot (2010) Adaptati<strong>on</strong> Reduces Variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Neur<strong>on</strong>al<br />

Populati<strong>on</strong> Code. arXiv: 1007.3490<br />

700<br />

i=1


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Bakhyt Nedorezova<br />

The Research Center for Interdisciplinary Envir<strong>on</strong>mental Cooperati<strong>on</strong><br />

(INENCO) <str<strong>on</strong>g>of</str<strong>on</strong>g> Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Saint-Petersburg,<br />

Russian Federati<strong>on</strong><br />

e-mail: b.n.nedorezova@gmail.com<br />

L.V. Nedorezov<br />

The Research Center for Interdisciplinary Envir<strong>on</strong>mental Cooperati<strong>on</strong><br />

(INENCO) <str<strong>on</strong>g>of</str<strong>on</strong>g> Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Saint-Petersburg,<br />

Russian Federati<strong>on</strong><br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> pine lopper populati<strong>on</strong> dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> discrete<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models<br />

The well-known discrete time ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models (Moran Ricker model, modified<br />

discrete logistic model, Kostitzin model, Skellam model, and Varley Gradwell Morris<br />

model) were used for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> pine lopper (Bupalus piniarius L.) populati<strong>on</strong><br />

dynamics in nati<strong>on</strong>al park De Hoge Veluwe (Klomp, 1966 The Global Populati<strong>on</strong><br />

Dynamics Database, N 2727, N 2728 and N 2729). Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree correlated<br />

time series (for larva, pupae, and eggs) showed, <str<strong>on</strong>g>th</str<strong>on</strong>g>at good approximati<strong>on</strong> (global<br />

fitting) can be obtained wi<str<strong>on</strong>g>th</str<strong>on</strong>g> discrete logistic model trajectories. It means <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

in c<strong>on</strong>sidering locati<strong>on</strong> populati<strong>on</strong> cannot realize its eruptive properties (Isaev et<br />

al., 1984, 2001), populati<strong>on</strong> dynamics can be explained as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

intra-populati<strong>on</strong> self-regulative mechanisms, and its dynamics can be characterized<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e narrow phase portrait wi<str<strong>on</strong>g>th</str<strong>on</strong>g> unique stati<strong>on</strong>ary state.<br />

701


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Jost Neigenfind<br />

Max-Planck Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular plant physiology, potsdam, germany<br />

e-mail: Neigenfind@mpimp-golm.mpg.de<br />

Zoran Nikoloski<br />

Max-Planck Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular plant physiology and institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biochemistry and biology, university <str<strong>on</strong>g>of</str<strong>on</strong>g> potsdam, potsdam, germany<br />

e-mail: Nikoloski@mpimp-golm.mpg.de<br />

Structural Sources <str<strong>on</strong>g>of</str<strong>on</strong>g> Robustness in Biochemical Reacti<strong>on</strong><br />

Networks Using a Simplified Analytical Me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

Robustness is a property <str<strong>on</strong>g>of</str<strong>on</strong>g> a biological system which enables maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

systemic functi<strong>on</strong>ality in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> external and internal perturbati<strong>on</strong>s. Here, we<br />

investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> robustness for <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolite c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles and<br />

its effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system as a whole: Given a metabolic network<br />

operating in steady state, we are interested in characterizing and identifying <str<strong>on</strong>g>th</str<strong>on</strong>g>ose<br />

metabolites whose c<strong>on</strong>centrati<strong>on</strong> assumes <strong>on</strong>ly <strong>on</strong>e value under <str<strong>on</strong>g>th</str<strong>on</strong>g>e given internal<br />

c<strong>on</strong>diti<strong>on</strong>s (specified by <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> rates). This c<strong>on</strong>cept has recently been termed<br />

absolute c<strong>on</strong>centrati<strong>on</strong> robustness (ACR) [1], since <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolite wi<str<strong>on</strong>g>th</str<strong>on</strong>g> such property<br />

has <str<strong>on</strong>g>th</str<strong>on</strong>g>e same c<strong>on</strong>centrati<strong>on</strong> in every positive steady state <str<strong>on</strong>g>th</str<strong>on</strong>g>e system might<br />

admit. Note <str<strong>on</strong>g>th</str<strong>on</strong>g>at a metabolic network in which some metabolites have <str<strong>on</strong>g>th</str<strong>on</strong>g>e ACR<br />

property requires smaller extent <str<strong>on</strong>g>of</str<strong>on</strong>g> regulati<strong>on</strong> to maintain a given steady state,<br />

rendering <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire system more robust. Moreover, Shinar and Feinberg have<br />

shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at metabolites endowed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ACR can be elegantly determined wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

apparatus <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chemical Reacti<strong>on</strong> Network Theory (CRNT) [1].<br />

Metabolic networks <str<strong>on</strong>g>of</str<strong>on</strong>g>ten show switching behavior related to multistati<strong>on</strong>arity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> metabolite c<strong>on</strong>centrati<strong>on</strong>s [2]. Moreover, metabolic network states, characterized<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluxes and metabolite c<strong>on</strong>centrati<strong>on</strong>s, may exhibit intrinsic<br />

flux and c<strong>on</strong>centrati<strong>on</strong> couplings. Therefore, for metabolic networks, <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

robustness should encompass <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between reacti<strong>on</strong> fluxes and <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting<br />

metabolite c<strong>on</strong>centrati<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. To capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between multistati<strong>on</strong>arity<br />

and couplings in <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic state, we generalize <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ACR to a<br />

family <str<strong>on</strong>g>of</str<strong>on</strong>g> robustness types for <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolites. Unlike <str<strong>on</strong>g>th</str<strong>on</strong>g>e CRNTbased<br />

approach, we present an analysis based <strong>on</strong> commutative algebra and algebraic<br />

geometry <str<strong>on</strong>g>th</str<strong>on</strong>g>at helps to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e qualitative properties <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic networks<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at included elements endowed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed robustness types. The c<strong>on</strong>cepts<br />

are illustrated <strong>on</strong> paradigmatic network models as well as existing metabolic<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways.<br />

References.<br />

[1] G. Shinar, M. Feinberg, Structual sources <str<strong>on</strong>g>of</str<strong>on</strong>g> robustness in biochemical reacti<strong>on</strong> networks Science<br />

327 1389–1391.<br />

[2] S. Grimbs, A. Arnold, A. Koseska, J. Kur<str<strong>on</strong>g>th</str<strong>on</strong>g>s, J. Selbig, Z. Nikoloski, Spatiotemporal dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Calvin cycle: Multistati<strong>on</strong>arity and symmetry breaking instabilities Biosystems 103<br />

212–223.<br />

702


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Zoltan Neufeld<br />

UCD Dublin<br />

e-mail: zoltan.neufeld@ucd.ie<br />

Luca Cer<strong>on</strong>e<br />

UCD Dublin<br />

Javier Munoz-Garcia<br />

UCD Dublin<br />

Cellular Systems Biology; Tuesday, June 28, 17:00<br />

Integrating multiple signals into cell decisi<strong>on</strong>s by a network<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protein modificati<strong>on</strong> cycles<br />

Cell resp<strong>on</strong>ses to internal and external stimuli are governed by protein interacti<strong>on</strong>s.<br />

The enzymatic activity and biological functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins is modulated<br />

by reversible post-translati<strong>on</strong>al modificati<strong>on</strong>s such as phosphorylati<strong>on</strong>, acetylati<strong>on</strong>,<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong>, ubiquitinati<strong>on</strong>, sumoylati<strong>on</strong>, etc. Here we present a general model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

reversible protein modificati<strong>on</strong>s and show <str<strong>on</strong>g>th</str<strong>on</strong>g>at such system can integrate multiple<br />

input signals into digital-like resp<strong>on</strong>ses, representing robust cellular decisi<strong>on</strong>s. C<strong>on</strong>sequently,<br />

proteins modified by multiple enzymes can functi<strong>on</strong> as complex switches,<br />

playing a similar role in cellular informati<strong>on</strong> processing as neur<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e brain. We<br />

develop an analytical approach for c<strong>on</strong>structing <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> such systems<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein modificati<strong>on</strong> network, determining how switching<br />

between distinct resp<strong>on</strong>ses take place. This me<str<strong>on</strong>g>th</str<strong>on</strong>g>od can be applied to a broad class<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protein modificati<strong>on</strong> systems and provides an alternative to numerical approaches<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at give limited insight when <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> unknown parameters is large.<br />

703


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Undergraduate Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Educati<strong>on</strong> Bey<strong>on</strong>d BIO 2010 (Part I);<br />

Wednesday, June 29, 14:30<br />

Claudia Neuhauser<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Minnesota Rochester<br />

e-mail: neuha001@umn.edu<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Statistics, and Biology: An Integrative<br />

Approach<br />

Over <str<strong>on</strong>g>th</str<strong>on</strong>g>e past five years, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> funding from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Howard Hughes Medical Institute,<br />

we have developed courses and shorter teaching units to enhance <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantitative<br />

educati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> life science majors. We will present examples <str<strong>on</strong>g>th</str<strong>on</strong>g>at illustrate how<br />

biological applicati<strong>on</strong>s can enhance ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and statistics courses at <str<strong>on</strong>g>th</str<strong>on</strong>g>e lower<br />

divisi<strong>on</strong> and how ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and statistics can be integrated into biology courses,<br />

in particular into labs. We will report <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e curricula at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e University <str<strong>on</strong>g>of</str<strong>on</strong>g> Minnesota Rochester and <str<strong>on</strong>g>th</str<strong>on</strong>g>e disseminati<strong>on</strong> strategy <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Numbers Count website and workshops held in collaborati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> BioQUEST.<br />

704


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling viral hepatitis dynamics in-vivo and in-vitro in <str<strong>on</strong>g>th</str<strong>on</strong>g>e era <str<strong>on</strong>g>of</str<strong>on</strong>g> direct<br />

anti-viral agents I; Tuesday, June 28, 17:00<br />

Avidan U. Neumann<br />

Bar-Ilan University, Ramat-Gan, Israel<br />

e-mail: auneumann@gmail.com<br />

Tal Olshak<br />

ITB, Humboldt University, Berlin, Germany<br />

Deterministic and Stochastic Multi-level Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hepatitis C Viral Kinetics and Resistance Evoluti<strong>on</strong><br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> viral dynamics and resistance evoluti<strong>on</strong> have brought important<br />

insights for understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV, HBV and HCV viral<br />

infecti<strong>on</strong>s. However, current models <str<strong>on</strong>g>of</str<strong>on</strong>g> in vivo anti-viral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy (CI models) c<strong>on</strong>sider<br />

<strong>on</strong>ly cell to cell infecti<strong>on</strong> dynamics, disregarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> intra-cellular<br />

replicati<strong>on</strong> dynamics. This class <str<strong>on</strong>g>of</str<strong>on</strong>g> models shows ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er viral decline wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>resistant<br />

viral strains or a permanent viral rebound <strong>on</strong>ce a phenotypically resistant<br />

strain evolves. Indeed, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese are <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns observed for HIV, where intra-cellular<br />

replicati<strong>on</strong> has less <str<strong>on</strong>g>of</str<strong>on</strong>g> an impact because integrated viral DNA is a static replicati<strong>on</strong><br />

unit and <str<strong>on</strong>g>th</str<strong>on</strong>g>e various resistance events occur at <str<strong>on</strong>g>th</str<strong>on</strong>g>e time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> cell infecti<strong>on</strong>.<br />

However, o<str<strong>on</strong>g>th</str<strong>on</strong>g>er patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> viral evoluti<strong>on</strong> kinetics, which are c<strong>on</strong>tradictory to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

current models, were observed during direct anti-viral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy against HCV, where<br />

intra-cellular dynamics play an important role.<br />

We have <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore developed a novel model (Guedj and Neumann, 2010) for<br />

resistance evoluti<strong>on</strong>, which includes viral dynamics and evoluti<strong>on</strong> in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular<br />

replicati<strong>on</strong> level and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell-infecti<strong>on</strong> level (ICCI model). As a c<strong>on</strong>sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex interacti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two levels <str<strong>on</strong>g>of</str<strong>on</strong>g> viral dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ICCI model<br />

predicts a rich repertoire <str<strong>on</strong>g>of</str<strong>on</strong>g> viral kinetics and resistance evoluti<strong>on</strong> patterns. In particular,<br />

we predict <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tinuous viral decline is possible even if a phenotypically<br />

resistant strain has emerged. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at a resistance related viral<br />

break<str<strong>on</strong>g>th</str<strong>on</strong>g>rough could be merely transient and never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless resolved. In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cases,<br />

counter-intuitively to our experience wi<str<strong>on</strong>g>th</str<strong>on</strong>g> HIV, viral eradicati<strong>on</strong> may be achieved<br />

even wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a phenotypically resistant virus.<br />

In additi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ICCI model allows for rapid emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance evoluti<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out <str<strong>on</strong>g>th</str<strong>on</strong>g>e need for rapid turnover <str<strong>on</strong>g>of</str<strong>on</strong>g> infected cells, i.e. new cells are not needed to<br />

be available for infecti<strong>on</strong> by resistance virus. This is due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular<br />

replicati<strong>on</strong> space can be freed for evoluti<strong>on</strong> to resistant virus wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at are already infected. This <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical possibility was verified also by stochastic<br />

modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intra-cellular resistance evoluti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a fixed populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infected<br />

cells. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, stochastic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ICCI model shows how different<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance evoluti<strong>on</strong> occur as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intra-cellular parameters.<br />

These results elucidate what <str<strong>on</strong>g>th</str<strong>on</strong>g>e important parameters to measure empirically in<br />

order to understand what kind <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance patterns will occur during treatment.<br />

705


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Friday, July 1, 14:30<br />

Sergey Nikolaev<br />

The Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cytology and Genetics The Siberian Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: nikolaev@bi<strong>on</strong>et.nsc.ru<br />

Spatial Distributed Genetic Mechanism for Stem Cell Niche<br />

Structure C<strong>on</strong>trol in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Shoot Apical Meristem<br />

There is a qualitative hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> interplay between CLV and WUS genes as a<br />

mechanism for <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM compartmentalizati<strong>on</strong> into central z<strong>on</strong>e (CZ stem cells),<br />

organizing center (OC), and peripheral z<strong>on</strong>e (PZ). The following is an important<br />

moment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis: CLV3 expressi<strong>on</strong> occurs in <str<strong>on</strong>g>th</str<strong>on</strong>g>e central cells <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 upper<br />

layers (CZ), while WUS expressi<strong>on</strong> occurs in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells <str<strong>on</strong>g>of</str<strong>on</strong>g> OC, just below CZ; and<br />

CLV3 by means <str<strong>on</strong>g>of</str<strong>on</strong>g> binding wi<str<strong>on</strong>g>th</str<strong>on</strong>g> putative receptor CLV1/CLV2 inhibits WUS expressi<strong>on</strong>,<br />

while WUS activates CLV3 expressi<strong>on</strong>. This interplay is believed to be<br />

able to regulate stem cell niche structure in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM.<br />

We developed a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributed molecular-genetic<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> such a compartmentalizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM to test <str<strong>on</strong>g>th</str<strong>on</strong>g>e above hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis.<br />

We added a hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>etical gene expressing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e uppermost cells. And we supposed<br />

regulatory molecules propagate across <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM by diffusi<strong>on</strong>. A resulting system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s was numerically solved to obtain a stati<strong>on</strong>ary soluti<strong>on</strong> <strong>on</strong><br />

a 2D domain representing vertical cut <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM.<br />

Obtained model parameters supply a stati<strong>on</strong>ary soluti<strong>on</strong> for spatial distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeled genes expressi<strong>on</strong> in qualitative accordance wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimentally<br />

observed data <strong>on</strong> vertical cuts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM.<br />

The hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esized mechanism for stem cell niche structure c<strong>on</strong>trol in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM<br />

grasps main features <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e compartments experimentally observed.<br />

706


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Thursday, June 30, 11:30<br />

Ryosuke Nishi<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Aer<strong>on</strong>autics and Astr<strong>on</strong>autics, The Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

Japan Society for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

e-mail: tt097086@mail.ecc.u-tokyo.ac.jp<br />

Atsushi Kamimura<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Industrial Science, The Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

Katsuhiro Nishinari<br />

Research Center for Advanced Science and Technology, The Univ. <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Tokyo<br />

PRESTO, Japan Science and Technology Agency<br />

Toru Ohira<br />

S<strong>on</strong>y Computer Science Laboratories, Inc.<br />

e-mail: ohira@csl.s<strong>on</strong>y.co.jp<br />

Chase and Escape in Groups: Vampire Problem<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important issues in our society is how to understand and<br />

deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases. This is important not <strong>on</strong>ly in physical<br />

space but in cyberspace as well. There have been numerical and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

models used to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious spreads. SIR models such<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kermack-McKendrick model are based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> “susceptible,”<br />

“infected,” and “recovered” populati<strong>on</strong>s. The c<strong>on</strong>tact process is ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

representative <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical model.<br />

The main purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper is to introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e element <str<strong>on</strong>g>of</str<strong>on</strong>g> “chase and escape”<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e above phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious spreads. The problems <str<strong>on</strong>g>of</str<strong>on</strong>g> “chase and<br />

escape,” also referred to as “pursuit and evasi<strong>on</strong>,” have a l<strong>on</strong>g history in ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

literature [1]. They produce ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er complex and elegant trajectories out<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> simple problem settings. Traditi<strong>on</strong>ally, <str<strong>on</strong>g>th</str<strong>on</strong>g>e main interest has been <str<strong>on</strong>g>th</str<strong>on</strong>g>e problems<br />

in which a single chaser try to catch a single evader. Recently, we introduced <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

paradigm “group chase and escape,” in which <strong>on</strong>e group chases ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er group [2]. It<br />

was motivated by recent research interests in <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> groups, or swarms, such<br />

as <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> humans, animals, insects, and cars [3]. We have found <str<strong>on</strong>g>th</str<strong>on</strong>g>at a ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

complex behavior arises from <str<strong>on</strong>g>th</str<strong>on</strong>g>e models for “group chase and escape.”<br />

Here, we will modify our original models for “group chase and escape” to better<br />

fit <str<strong>on</strong>g>th</str<strong>on</strong>g>e models for infectious spread. Previously, when a chaser caught an evader, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evader perished. Therefore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> evaders decreased m<strong>on</strong>ot<strong>on</strong>ically as <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

process c<strong>on</strong>tinued. We will modify <str<strong>on</strong>g>th</str<strong>on</strong>g>e process so <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e evaders do not become<br />

extinct as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are caught but are instead c<strong>on</strong>verted or infected to become chasers.<br />

Heuristically, <str<strong>on</strong>g>th</str<strong>on</strong>g>is is like vampires trying to increase <str<strong>on</strong>g>th</str<strong>on</strong>g>eir numbers by attacking<br />

people. In reality, a similar situati<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies, in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong><br />

is transmitted <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e bites <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected.There are studies <str<strong>on</strong>g>of</str<strong>on</strong>g> models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

spatial spread <str<strong>on</strong>g>of</str<strong>on</strong>g> rabies. We will show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e element <str<strong>on</strong>g>of</str<strong>on</strong>g> “chase and escape” will<br />

bring in a new phase to <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models.<br />

References.<br />

[1] P. J. Nahin, Chase and Escape: The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> pursuit and evasi<strong>on</strong> (Princet<strong>on</strong> Univ.<br />

Press, 2007).<br />

707


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] A. Kamimura and T. Ohira, Group Chase and Escape New Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics 12 053013<br />

(2010).<br />

[3] T. Vicsek and A. Zafiris, Collective Moti<strong>on</strong> arXiv:c<strong>on</strong>d-mat:1010.5017 (2010).<br />

708


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Tuesday, June 28, 17:00<br />

Hiroshi Nishiura<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> H<strong>on</strong>g K<strong>on</strong>g and Japan Science and Technology Agency<br />

e-mail: nishiura@hku.hk<br />

Gerardo Chowell<br />

Ariz<strong>on</strong>a State University<br />

e-mail: gchowell@asu.edu<br />

Carlos Castillo-Chavez<br />

Ariz<strong>on</strong>a State University<br />

e-mail: ccchavez@asu.edu<br />

Validating early estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pandemic influenza (H1N1-2009): Sample size estimati<strong>on</strong> for<br />

post-epidemic seroepidemiological studies<br />

Seroepidemiological studies before and after <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic wave <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza (H1N1-<br />

2009) are useful for estimating final size wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a potential to validate early estimates<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number, R, in modeling studies. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, a glance at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e literature shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at various seroepidemiological studies published so far have<br />

adopted a binomial sampling process to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> infected individuals. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e present study, <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> an asymptotic distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e final epidemic size <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows for <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> approximate 95% c<strong>on</strong>fidence<br />

intervals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals in a populati<strong>on</strong> infected during<br />

an epidemic, is proposed since infecti<strong>on</strong> events are not independent. Let ˆρ be an<br />

observed final size, v be <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong> time distributi<strong>on</strong>,<br />

and q be <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> initially immune individuals. Assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at v<br />

and q are known, we propose <str<strong>on</strong>g>th</str<strong>on</strong>g>e Wald approximati<strong>on</strong> by which <str<strong>on</strong>g>th</str<strong>on</strong>g>e 100(1 − 2α)%<br />

c<strong>on</strong>fidence interval for ρ is calculated as<br />

(1) ˆρ ± zα<br />

<br />

ˆρ 3 (1 − ˆρ) + v 2 ˆρ(1 − ˆρ) 2 ln 2 (1 − ˆρ/(1 − q))<br />

n [ˆρ + (1 − ˆρ) ln(1 − ˆρ/(1 − q))]<br />

where n is <str<strong>on</strong>g>th</str<strong>on</strong>g>e sample size and zα denotes 1 − α quantile <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard normal<br />

distributi<strong>on</strong>. This approach allows <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observed final sizes against<br />

model studies based predicti<strong>on</strong>s (R = 1.15, 1.40 and 1.90) while yielding simple formulae<br />

for determining acceptable sample sizes for future seroepidemiological studies.<br />

Eleven published seroepidemiological studies <str<strong>on</strong>g>of</str<strong>on</strong>g> H1N1-2009, which took place<br />

after observing <str<strong>on</strong>g>th</str<strong>on</strong>g>e peak incidence in a number <str<strong>on</strong>g>of</str<strong>on</strong>g> countries, are used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e testing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology. Observed seropositive proporti<strong>on</strong>s in six studies appear to be<br />

significantly smaller <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ose predicted from R = 1.40; four <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e six studies<br />

sampled serum less <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong>e m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g> after <str<strong>on</strong>g>th</str<strong>on</strong>g>e reported peak incidence. Comparis<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> observed final sizes against R = 1.15 provide evidence <str<strong>on</strong>g>th</str<strong>on</strong>g>at all eleven studies<br />

do not significantly deviate from <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> R = 1.15 while comparis<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> R = 1.90 suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e final sizes in nine studies would be overestimated.<br />

Sample sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> published seroepidemiological studies were too small to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

validity <str<strong>on</strong>g>of</str<strong>on</strong>g> model predicti<strong>on</strong>s except when R = 1.90 was used. We recommend<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed approach in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e sample size <str<strong>on</strong>g>of</str<strong>on</strong>g> post-epidemic<br />

709


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

seroepidemiological studies, calculating <str<strong>on</strong>g>th</str<strong>on</strong>g>e 95% c<strong>on</strong>fidence interval <str<strong>on</strong>g>of</str<strong>on</strong>g> observed final<br />

size, and c<strong>on</strong>ducting relevant hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis testing instead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at rely <strong>on</strong> a binomial proporti<strong>on</strong>,<br />

710


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Robert Noble<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: robert.noble@linacre.ox.ac.uk<br />

Zoe Christodoulou<br />

Wear<str<strong>on</strong>g>th</str<strong>on</strong>g>erall Institute for Molecular Medicine<br />

Robert Pinches<br />

Wear<str<strong>on</strong>g>th</str<strong>on</strong>g>erall Institute for Molecular Medicine<br />

Sue A. Kyes<br />

Wear<str<strong>on</strong>g>th</str<strong>on</strong>g>erall Institute for Molecular Medicine<br />

Chris I. Newbold<br />

Wear<str<strong>on</strong>g>th</str<strong>on</strong>g>erall Institute for Molecular Medicine<br />

Mario Recker<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Regulatory Networks; Tuesday, June 28, 17:00<br />

Using iterative me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to determine an antigenic switching<br />

network in Plasmodium falciparum<br />

Background: The malaria parasite Plasmodium falciparum evades host protective<br />

antibody resp<strong>on</strong>ses by transcripti<strong>on</strong>al switching between members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e var gene<br />

family, which encode <str<strong>on</strong>g>th</str<strong>on</strong>g>e immunodominant surface proteins and virulence factors<br />

PfEMP1. This process <str<strong>on</strong>g>of</str<strong>on</strong>g> antigenic variati<strong>on</strong> must be coordinated across a whole<br />

populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parasites during infecti<strong>on</strong> to minimise exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parasites limited<br />

antigenic repertoire. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro transcripti<strong>on</strong> data has previously suggested<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is process underlies a n<strong>on</strong>-random pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong>al change<br />

in which activati<strong>on</strong> and silencing not <strong>on</strong>ly differs significantly between individual<br />

var genes but may also be biased [1,2].<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: To elucidate whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er switching between var genes is predominantly<br />

governed by local switch hierarchies, whereby activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> var genes is dominated<br />

by switch biases between different genes, or by a more global hierarchy in which<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> activati<strong>on</strong> is independent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e previously active gene, we analysed in<br />

vitro expressi<strong>on</strong> data from eleven cl<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e HB3 isolate toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parent<br />

culture. We used simulated annealing and a Markov Chain M<strong>on</strong>te Carlo me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>f-rates and switch biases <str<strong>on</strong>g>th</str<strong>on</strong>g>at best fitted <str<strong>on</strong>g>th</str<strong>on</strong>g>e data, enabling us to<br />

c<strong>on</strong>struct a global gene switching network <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e var gene repertoire <str<strong>on</strong>g>of</str<strong>on</strong>g> HB3. Tests<br />

using artificial data c<strong>on</strong>firmed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms can recover reliable estimates<br />

despite <str<strong>on</strong>g>th</str<strong>on</strong>g>e large parameter space.<br />

Principle findings: Our results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e course <str<strong>on</strong>g>of</str<strong>on</strong>g> antigenic variati<strong>on</strong> in<br />

P. falciparum can be described by a fixed network <str<strong>on</strong>g>of</str<strong>on</strong>g> transiti<strong>on</strong> rates. C<strong>on</strong>sistent<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> previous studies we found <str<strong>on</strong>g>th</str<strong>on</strong>g>at activated var genes switch <str<strong>on</strong>g>of</str<strong>on</strong>g>f at fixed rates<br />

which range between 0.3% and 5.2% per generati<strong>on</strong>. Our results fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular var being activated depends <strong>on</strong> which var is switching<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biases towards <strong>on</strong>e dominant gene found to vary from less <str<strong>on</strong>g>th</str<strong>on</strong>g>an 25% to more<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>an 75%. This indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>at var gene switching in P. falciparum is a combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> local switch biases and global activati<strong>on</strong> hierarchies.<br />

References.<br />

711


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] Horrocks, P., Pinches, R., Christodoulou, Z., Kyes, S.A., Newbold, C.I (2004) Variable var<br />

transiti<strong>on</strong> rates underlie antigenic variati<strong>on</strong> in malaria. Proc.Natl.Acad.Sci.U.S.A. 101(30):<br />

11129-11134<br />

[2] Recker, M., Buckee, C.O., Serazin, A., Kyes, S., Pinches, R., Christodoulou, Z., Springer, A.L.,<br />

Gupta, S., Newbold, C.I (in press) Antigenic variati<strong>on</strong> in Plasmodium falciparum malaria<br />

involves a highly structured switching pattern. PLoS Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens<br />

712


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

L. Noiret<br />

CoMPLEX, University College L<strong>on</strong>d<strong>on</strong> (UCL), UK<br />

e-mail: l.noiret@ucl.ac.uk<br />

S. Baigent<br />

Dept Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, UCL, UK<br />

e-mail: s.baigent@ucl.ac.uk<br />

R. Jalan<br />

Royal Free Hospital - UCL Medical School, UK<br />

e-mail: r.jalan@ucl.ac.uk<br />

S. R. Thomas<br />

IR4M UMR8081 CNRS, Universite Paris-Sud 11, Orsay, France<br />

e-mail: sr<str<strong>on</strong>g>th</str<strong>on</strong>g>omas@ibisc.univ-evry.fr<br />

Renal amm<strong>on</strong>ia handling in cirrhosis<br />

Background The kidney plays a dual role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e amm<strong>on</strong>ia metabolism by producing<br />

amm<strong>on</strong>ia and c<strong>on</strong>trolling <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia reabsorbed into <str<strong>on</strong>g>th</str<strong>on</strong>g>e renal vein<br />

or excreted into <str<strong>on</strong>g>th</str<strong>on</strong>g>e urine. In advanced stages <str<strong>on</strong>g>of</str<strong>on</strong>g> liver cirrhosis, renal reabsorpti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia seems to diminish in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> urinary excreti<strong>on</strong> ([1]). The underlying<br />

mechanisms are not fully understood, but it is likely <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e decrease is triggered<br />

by an elevated arterial c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia and by functi<strong>on</strong>al alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e amm<strong>on</strong>ia transporter system al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e renal tubule. We developed a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> renal amm<strong>on</strong>ia handling to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters associated<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an increased urinary excreti<strong>on</strong>.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods The model is an adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a model by Hervy and Thomas ([2])<br />

and was initially designed to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e osmotic gradient in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

medullary interstitium. It simulates <str<strong>on</strong>g>th</str<strong>on</strong>g>e reabsorpti<strong>on</strong> and secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solutes (NaCl,<br />

KCl, urea, amm<strong>on</strong>ia) and water al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e renal tubules. Each idealized tubule is<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> a loop <str<strong>on</strong>g>of</str<strong>on</strong>g> Henle and a collecting duct, and is supplied by a vasa recta.<br />

The tubes are ba<str<strong>on</strong>g>th</str<strong>on</strong>g>ed and exchange solutes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> in an interstitium, which is lumped<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ascending porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vasa recta. The equati<strong>on</strong>s describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmural<br />

fluxes between <str<strong>on</strong>g>th</str<strong>on</strong>g>e tubes and interstitium due to osmosis, c<strong>on</strong>vecti<strong>on</strong>, diffusi<strong>on</strong> and<br />

active transport. Baseline parameters values were taken from <str<strong>on</strong>g>th</str<strong>on</strong>g>e rat literature.<br />

Results We compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e outputs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model obtained wi<str<strong>on</strong>g>th</str<strong>on</strong>g> parameters mimicking<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y and diseased states.<br />

References.<br />

[1] SWM Olde Damink, R Jalan, NEP Deutz, DN Redhead, CHC Dej<strong>on</strong>g,P Hynd, RA Jalan,PC<br />

Hayes, PB Soeters. The kidney plays a major role in amm<strong>on</strong>ia homeostasis after portasystemic<br />

shunting in patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cirrhosis. Hepatology 37(6):1277–1285, 2006.<br />

[2] S Hervy, SR Thomas. Inner medullary lactate producti<strong>on</strong> and urine-c<strong>on</strong>centrating mechanism:<br />

a flat medullary model. Am J Physiol Renal Physiol 284(1): F65–81, 2003.<br />

713


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Plants, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and transport processes II; Tuesday, June 28, 14:30<br />

Robert Nolet<br />

VU University Amsterdam<br />

e-mail: r.w.nolet@vu.nl<br />

J. Hulsh<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

VU University Amsterdam<br />

G. Prokert<br />

Eindhoven University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Existence <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusive VSC model.<br />

The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a vesicle supply center (VSC), first proposed by Bartnicki-Garcia<br />

et al lies at <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis for a whole hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models which attempt<br />

to explain tip grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in fungal hyphae. It assumes <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a point source in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tip which distributes cell wall material for <str<strong>on</strong>g>th</str<strong>on</strong>g>e tip. Vesicles diffuse out from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e VSC to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell wall, producing grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell wall or<str<strong>on</strong>g>th</str<strong>on</strong>g>og<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e wall<br />

surface. This yields a geometric evoluti<strong>on</strong> equati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypha, in<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface is proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e flux <str<strong>on</strong>g>of</str<strong>on</strong>g> new material<br />

arriving at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell wall and <str<strong>on</strong>g>th</str<strong>on</strong>g>e inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean curvature. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we<br />

shall assume <str<strong>on</strong>g>th</str<strong>on</strong>g>e VSC is given a fixed velocity, we will <str<strong>on</strong>g>th</str<strong>on</strong>g>en show how to prove <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> surfaces which stay stati<strong>on</strong>ary in a coordinate frame moving al<strong>on</strong>g wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e supply center.<br />

714


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 11:00<br />

Etsuko N<strong>on</strong>aka<br />

IceLab & Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Envir<strong>on</strong>mental Science, Umeå University,<br />

Sweden<br />

e-mail: etsuko.n<strong>on</strong>aka@gmail.com<br />

David J. T. Sumpter<br />

Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Uppsala University, Sweden<br />

Kalle Parvinen<br />

Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, Finland<br />

Åke Brännström<br />

IceLab & Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Statistics, Umeå University,<br />

Sweden<br />

Adaptive advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregati<strong>on</strong> in a populati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Allee effects<br />

Aggregati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten believed to be advantageous in populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> positive density<br />

dependence at small populati<strong>on</strong> size (i.e., Allee effects). Many species <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>social<br />

animals aggregate to acquire resources for survival and reproducti<strong>on</strong>. By aggregating,<br />

organisms may create a more favorable envir<strong>on</strong>ment, reduce per capita<br />

predati<strong>on</strong> risk, or procure resources, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> which is likely attainable for individuals<br />

acting al<strong>on</strong>e. However, when resources are scarce or populati<strong>on</strong> density is high,<br />

aggregati<strong>on</strong> likely results in overcrowding and severe competiti<strong>on</strong>. Moreover, aggregati<strong>on</strong><br />

behavior can affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e collective reproductive success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>us can alter populati<strong>on</strong> dynamics and populati<strong>on</strong> density. Because benefits to aggregati<strong>on</strong><br />

behavior may be density dependent, its adaptive advantage can be more<br />

properly examined by explicitly accounting for <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback loop between behavior<br />

and populati<strong>on</strong> dynamics. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is project is to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s<br />

under which aggregati<strong>on</strong> is advantageous. We c<strong>on</strong>structed a minimal model<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporates aggregati<strong>on</strong>, Allee effects, and scramble competiti<strong>on</strong>. The part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> group formati<strong>on</strong> by preferential attachment is<br />

based <strong>on</strong> analytical soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and dea<str<strong>on</strong>g>th</str<strong>on</strong>g> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> groups <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

different sizes. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en used <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods from adaptive dynamics and performed<br />

invasi<strong>on</strong> analysis to examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> fitness <str<strong>on</strong>g>of</str<strong>on</strong>g> various aggregati<strong>on</strong> tendencies.<br />

We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough a str<strong>on</strong>g tendency to join larger groups is advantageous for<br />

establishing a populati<strong>on</strong> from a small size, it is generally not advantageous. This<br />

is due to high populati<strong>on</strong> density produced by effective aggregati<strong>on</strong>. A strategy<br />

where individuals pick a group randomly is overall more advantageous and able<br />

to invade populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a str<strong>on</strong>ger aggregati<strong>on</strong> tendency. In some regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

parameter space, we observe evoluti<strong>on</strong>ary suicide where invaders go extinct after<br />

successfully invading <str<strong>on</strong>g>th</str<strong>on</strong>g>e resident populati<strong>on</strong>. Str<strong>on</strong>g tendencies for aggregati<strong>on</strong><br />

become advantageous enough to persist when some mechanisms regulating group<br />

size are included or when <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> frequently experiences a low density (e.g,<br />

dispersal, stochastic high mortality events). We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at aggregati<strong>on</strong> al<strong>on</strong>e is<br />

mostly not advantageous and needs some additi<strong>on</strong>al mechanisms to ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er regulate<br />

group size or suppress populati<strong>on</strong> density.<br />

715


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Wednesday, June 29, 08:30<br />

Ekaterina A. Nosova<br />

Russian Federal Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

e-mail: cnosova@gmail.com<br />

Alexei A. Romanyukha<br />

Russian Academy od Sciences Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Equilibrium in model <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> transiti<strong>on</strong>s<br />

between risk group<br />

It is well known <str<strong>on</strong>g>th</str<strong>on</strong>g>at features <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> for human immunodeficiency virus<br />

allow c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>e infecti<strong>on</strong> process by behavior change. Populati<strong>on</strong> heterogeneity in<br />

propensity to risky behavior leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> separating <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase transiti<strong>on</strong>s<br />

in epidemic dynamics. These phase transiti<strong>on</strong>s distinguish between low-level,<br />

c<strong>on</strong>centrated and generalized epidemics. Data analysis[1] shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at an important<br />

role in spreading HIV <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e territory <str<strong>on</strong>g>of</str<strong>on</strong>g> Russia is played by processes <str<strong>on</strong>g>of</str<strong>on</strong>g> social<br />

maladjustment: drug abuse, alcoholism and <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an increased risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

substance abuse pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e models have been applied before to explain<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e situati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e territory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e former Soviet Uni<strong>on</strong>, including Russia,<br />

show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese risk-groups and its influence <strong>on</strong> HIV<br />

epidemics is more complicated <str<strong>on</strong>g>th</str<strong>on</strong>g>an it was represented[2,3]. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we formulated<br />

a deterministic model <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV spread in a heterogeneous populati<strong>on</strong>, where<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> risk groups is presented as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> social maladjustment. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is model an individual from general populati<strong>on</strong> can increase or decrease <str<strong>on</strong>g>th</str<strong>on</strong>g>e level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> his/her social maladjustment being susceptible to <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus. In each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

states, <strong>on</strong>e has a certain risk <str<strong>on</strong>g>of</str<strong>on</strong>g> being infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> HIV. The proposed model in<br />

part is similar to <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> STIs in heterogeneous populati<strong>on</strong>,<br />

as proposed by Cooke and Yorke[4]. Unlike <str<strong>on</strong>g>th</str<strong>on</strong>g>e traditi<strong>on</strong>al approach <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> transfer individuals between risk groups was taken to account. Thus<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e formulated model bel<strong>on</strong>gs to a broader class <str<strong>on</strong>g>of</str<strong>on</strong>g> deterministic SI models. This<br />

generalizati<strong>on</strong> allows obtain new results about <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

system and c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> existence and transiti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>em. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model we investigate in <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper.<br />

This work is supported by Russian Foundati<strong>on</strong> for Basic Research: RFBR 09-<br />

01-00098a. Data analysis was provided via financial support <str<strong>on</strong>g>of</str<strong>on</strong>g> UNDP: UNDP/212/2007.<br />

References.<br />

[1] E. A. Nosova, A. A. Romanyukha Regi<strong>on</strong>al index <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV infecti<strong>on</strong> risk based <strong>on</strong> factors <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

social disadaptati<strong>on</strong>. RJNAMM Vol 24 No 4 pp 325-340, 2009<br />

[2] Alistar S., Owens D., Brandeau M. Effectiveness and cost effectivenes <str<strong>on</strong>g>of</str<strong>on</strong>g> expanding drug<br />

treatment programs and HIV antiretroviral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in a mixed HIV epidemic: an Analysis for<br />

Ukraine. Russian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AIDS, Cancer and Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Vol. 14 No 1(29) p.44, 2010<br />

[3] Kupryashkina-McGill S. V. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Global Fund grants <strong>on</strong> HIV/AIDS policy in Ukraine.<br />

Russian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AIDS, Cancer and Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Vol. 14 No 1(29) p.27, 2010<br />

[4] Cooke K. L., Yorke J. A. Some equati<strong>on</strong>s modelling grow<str<strong>on</strong>g>th</str<strong>on</strong>g> processes and g<strong>on</strong>orrhea epidemics.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci., 16, pp. 75-101, 1973<br />

716


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ka<str<strong>on</strong>g>th</str<strong>on</strong>g>erine Novoselova<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics SB RAS, Russia<br />

e-mail: esn@bi<strong>on</strong>et.nsc.ru<br />

Victoria Mir<strong>on</strong>ova<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics SB RAS, Russia<br />

Nadezda Omelyanchuk<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics SB RAS, Russia<br />

Vitaly Likhoshvai<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> cytology and genetics SB RAS, Russia<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Modelling auxin transport in root provascular tissues<br />

All vascular plants are called so because <str<strong>on</strong>g>th</str<strong>on</strong>g>ey have special vascular or c<strong>on</strong>ductive<br />

tissues providing effective transport <str<strong>on</strong>g>of</str<strong>on</strong>g> water, dissolved minerals and organic substances,<br />

including phytohorm<strong>on</strong>es. Root apical meristem (RAM) c<strong>on</strong>tains vascular<br />

initials from which protoxylem and protophloem differentiate fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er producing<br />

xylem and phloem, respectively. Acropetal flow <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin al<strong>on</strong>g root provascular<br />

tissues is required for normal functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RAM. Auxin distributes in plant<br />

tissue by means <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> and active transport <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane<br />

transporters (PINs, AUX/LAX etc). In protoxylem, auxin active transport is mediated<br />

by PIN efflux transporters <str<strong>on</strong>g>th</str<strong>on</strong>g>at are polarly localized at <str<strong>on</strong>g>th</str<strong>on</strong>g>e basal side <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cell membranes. In protophloem, additi<strong>on</strong>ally to PINs efflux transporters, AUX1<br />

influx carriers are localized at <str<strong>on</strong>g>th</str<strong>on</strong>g>e apical side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membranes provide for auxin<br />

transport. Thus, protoxylem and protophloem differ in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin<br />

active transport. To study how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese differences in transporters affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e auxin<br />

distributi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese tissues we have created ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin transport<br />

in root protophloem and protoxylem. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> models use as a prototype <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

published model <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin transport al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e central axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root [Mir<strong>on</strong>ova<br />

et al., 2010]. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e protoxylem model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e active auxin efflux is determined by<br />

PIN transporters, where auxin influx from <str<strong>on</strong>g>th</str<strong>on</strong>g>e intercellular space is provided <strong>on</strong>ly<br />

by diffusi<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e protophloem model, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> PIN and AUX1 transport systems<br />

are active. Initially, in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> protoxylem and protophloem simulati<strong>on</strong>s we used <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

same set <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters. Parameter values were (1) taken from <str<strong>on</strong>g>th</str<strong>on</strong>g>e prototype model<br />

[Mir<strong>on</strong>ova et al., 2010], (2) adjusted using <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e comparative<br />

efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin active transport and diffusi<strong>on</strong> [Yang and Murphy, 2009] and<br />

(3) estimated using <str<strong>on</strong>g>th</str<strong>on</strong>g>e microarray data [Pap<strong>on</strong>ov et al., 2008]. The protoxylem<br />

model soluti<strong>on</strong>s represented <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimentally observed auxin distributi<strong>on</strong> al<strong>on</strong>g<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e central axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root tip. The protophloem model provided <str<strong>on</strong>g>th</str<strong>on</strong>g>ese soluti<strong>on</strong>s<br />

<strong>on</strong>ly if <str<strong>on</strong>g>th</str<strong>on</strong>g>e values <str<strong>on</strong>g>of</str<strong>on</strong>g> some parameters were significantly changed. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is, we<br />

proposed <str<strong>on</strong>g>th</str<strong>on</strong>g>e following hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses about <str<strong>on</strong>g>th</str<strong>on</strong>g>e differences in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin<br />

transport in protophloem and protoxylem: 1. Auxin-depended PINs degradati<strong>on</strong><br />

in protophloem occurs at higher levels <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin c<strong>on</strong>centrati<strong>on</strong>s; 2. Auxin-dependent<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PINs syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis in protophloem occurs at lower auxin c<strong>on</strong>centrati<strong>on</strong>s;<br />

3. Auxin transport via PINs in protophloem is more efficient <str<strong>on</strong>g>th</str<strong>on</strong>g>an in protoxylem.<br />

The latter hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis was indirectly c<strong>on</strong>firmed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e recently published experimental<br />

data [Scacchi et al., 2010], where expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protophloem marker gene<br />

BRX was shown to be activated by ARF5, <str<strong>on</strong>g>th</str<strong>on</strong>g>e transcripti<strong>on</strong> factor <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary<br />

717


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

auxin resp<strong>on</strong>se. In its turn, BRX activates <str<strong>on</strong>g>th</str<strong>on</strong>g>e PIN3 expressi<strong>on</strong>. One may assume<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at BRX-mediated PIN3 expressi<strong>on</strong> provides <str<strong>on</strong>g>th</str<strong>on</strong>g>e additi<strong>on</strong>al facility <str<strong>on</strong>g>th</str<strong>on</strong>g>at makes<br />

protophloem auxin transport more effective. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical simulati<strong>on</strong>s<br />

we c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e same pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin distributi<strong>on</strong> in provascular tissues<br />

provides for by <str<strong>on</strong>g>th</str<strong>on</strong>g>e quite different mechanisms.<br />

The work is partially supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e RAS programs A.II.5.26, A.II.6.8,<br />

B.27.29, SB RAS 107, 119, and RFBR 10-01-00717-,11-04-01254-.<br />

References.<br />

[1] Mir<strong>on</strong>ova VV, Omelyanchuk NA, Yosiph<strong>on</strong> G, Fadeev SI, Kolchanov NA, Mjolsness E, Likhoshvai<br />

VA: A plausible mechanism for auxin patterning al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing root. BMC Systems<br />

Biology 2010, 4:98.<br />

[2] Yang H and Murphy AS: Functi<strong>on</strong>al expressi<strong>on</strong> and characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Arabidopsis ABCB,<br />

AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J. 2009, 59(1):179-<br />

91.<br />

[3] Pap<strong>on</strong>ov IA, Pap<strong>on</strong>ova M, Tealea W, Mengesb M, Chakraborteeb S, Murray JAH and Palmea<br />

K: Comprehensive transcriptome analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin resp<strong>on</strong>ses in Arabidopsis. Mol Plant. 2008,<br />

1(2):321-37.<br />

[4] Scacchi E, Salinas P, Gujas B, Santuari L, Krogan N, Ragni L, Berle<str<strong>on</strong>g>th</str<strong>on</strong>g> T and Hardtke CS:<br />

Spatio-temporal sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> cross-regulatory events in root meristem grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Proc Natl Acad<br />

Sci U S A. 2010, 107(52):22734-9.<br />

718


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Wednesday, June 29, 11:00<br />

Artem S. Novozhilov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics–1, Moscow State University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Railway Engineering, Obraztsova 9, Moscow 127994, Russia<br />

e-mail: anovozhilov@gmail.com<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics in a closed heterogeneous<br />

populati<strong>on</strong>: Stochastic aspects<br />

In [1,2] we presented an attempt to formulate a general deterministic <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

spread <str<strong>on</strong>g>of</str<strong>on</strong>g> an infectious disease in a closed heterogeneous populati<strong>on</strong>. Specifically,<br />

we looked into heterogeneity in disease parameters (such as susceptibility to a disease);<br />

disease parameters were c<strong>on</strong>sidered as an inherent and invariant property <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

individuals, whereas <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter values could vary between individuals. The two<br />

major findings for a heterogeneous SIR model were: 1) we derived <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong> for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e final size <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic for an arbitrary initial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptibility,<br />

which shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial susceptibility distributi<strong>on</strong> is crucial in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at escapes infecti<strong>on</strong>; 2) <str<strong>on</strong>g>th</str<strong>on</strong>g>e widely used power transmissi<strong>on</strong><br />

functi<strong>on</strong> was deduced from <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> distributed susceptibility and infectivity<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial gamma-distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease parameters, <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore, a mechanistic<br />

derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomenological model, which is believed to mimic reality<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high accuracy, was provided.<br />

Here we additi<strong>on</strong>ally discuss stochastic aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, which are impossible<br />

to study wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> deterministic models, namely:<br />

• In which way <str<strong>on</strong>g>th</str<strong>on</strong>g>e parametric heterogeneity changes <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

major outbreak;<br />

• What are <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parametric heterogeneity <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic;<br />

• What are <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean and variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e final epidemic<br />

size for different initial susceptibility distributi<strong>on</strong>s.<br />

References.<br />

[1] A. S. Novozhilov. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics in a closed heterogeneous populati<strong>on</strong>. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Biosciences, 215(2):177–185, 2008.<br />

[2] A. S. Novozhilov. Heterogeneous susceptibles–infectives model: Mechanistic derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

power law transmissi<strong>on</strong> functi<strong>on</strong>. Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tinuous, Discrete and Impulsive Systems<br />

(Series A, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Analysis), 16(S1):136–140, 2009.<br />

719


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

V; Wednesday, June 29, 11:00<br />

A. Nowakowski, A. Popa<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lodz, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> & Computer Sciences<br />

Hamilt<strong>on</strong>-Jacobi analysis for cancer treatment<br />

Tumor anti-angiogenesis is a cancer <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at targets <str<strong>on</strong>g>th</str<strong>on</strong>g>e vasculature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a growing tumor. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e last fifteen years tumor anti-angiogenesis became<br />

an active area <str<strong>on</strong>g>of</str<strong>on</strong>g> research not <strong>on</strong>ly in medicine (see e.g. [2], [3]) but also in ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

biology (see e.g. [1], [6], [7]) and several models <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis<br />

have been described e.g. by Hahnfeldt et all [1], d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio [6], [7]. In a sequence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> papers [4], [5] Ledzewicz and Schaettler completely decribed and solved from<br />

optimal c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>eory point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>th</str<strong>on</strong>g>e following or similar free terminal time T<br />

problem (P): minimize<br />

(1) J(p, q, u) = p(T ) + κ<br />

T<br />

0<br />

u(t)dt<br />

over all Lebesgue measurable functi<strong>on</strong>s u : [0, T ] → [0, a] = U subject to<br />

(2)<br />

<br />

p<br />

˙p = −ξp ln ,<br />

q<br />

p(0) = p0,<br />

<br />

(3) ˙q = bp −<br />

µ + dp 2<br />

3<br />

<br />

q − Guq, q(0) = q0.<br />

The term T<br />

u(t)dt is viewed as a measure for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment or related<br />

0<br />

to side effects. The upper limit a in <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol set U = [0, a] is a<br />

maximum dose at which inhibitors can be given. The time T is <str<strong>on</strong>g>th</str<strong>on</strong>g>e time when <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

maximum tumor reducti<strong>on</strong> achievable wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e given overall amount A <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibitors<br />

is being realized. The state variables p and q are, respectively, <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary tumor<br />

volume and <str<strong>on</strong>g>th</str<strong>on</strong>g>e carrying capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vasculature. Tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is modelled by<br />

a Gompertzian grow<str<strong>on</strong>g>th</str<strong>on</strong>g> functi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> carrying capacity q, by equati<strong>on</strong> (2), where ξ<br />

denotes a tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> parameter. The dynamics for <str<strong>on</strong>g>th</str<strong>on</strong>g>e endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial support is<br />

described by (3), where bp models <str<strong>on</strong>g>th</str<strong>on</strong>g>e stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells by <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e term dp 2<br />

3 q models endogenous inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor. The coefficients b<br />

and d are grow<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>stants. The terms µq and Guq describe, respectively, loss to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

carrying capacity <str<strong>on</strong>g>th</str<strong>on</strong>g>rough natural causes (dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells etc.), and loss<br />

due to extra outside inhibiti<strong>on</strong>. The variable u represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system<br />

and corresp<strong>on</strong>ds to <str<strong>on</strong>g>th</str<strong>on</strong>g>e angiogenic dose rate while G is a c<strong>on</strong>stant <str<strong>on</strong>g>th</str<strong>on</strong>g>at represents<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-angiogenic killing parameter. Ledzewicz and Schaettler analysed <str<strong>on</strong>g>th</str<strong>on</strong>g>e above<br />

problem using first-order necessary c<strong>on</strong>diti<strong>on</strong>s for optimality <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>trol u given by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e P<strong>on</strong>tryagin Maximum Principle, <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d order: <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called streng<str<strong>on</strong>g>th</str<strong>on</strong>g>ened<br />

Legendre-Clebsch c<strong>on</strong>diti<strong>on</strong> and geometric me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> optimal c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>eory.<br />

In most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e menti<strong>on</strong>ed papers <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> approximated<br />

soluti<strong>on</strong>s are presented. However in any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are not proved asserti<strong>on</strong>s<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at calculated numerically soluti<strong>on</strong>s are really near <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal <strong>on</strong>e.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper is an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e porblem (1)-(3) from Hamilt<strong>on</strong>-<br />

Jacobi-Bellman point <str<strong>on</strong>g>of</str<strong>on</strong>g> view i.e. using dynamic programming approach and to<br />

720


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at for calculated numerically soluti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>e fucti<strong>on</strong>al (1) takes an approximate<br />

value wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a given accuracy ε > 0.<br />

References.<br />

[1] P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic<br />

signaling: a dynamical <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, treatment resp<strong>on</strong>se, and postvascular<br />

dormancy, Cancer Research, 59, (1999), pp. 4770-4775.<br />

[2] R.S. Kerbel, Tumor angiogenesis: past, present and near future, Carcinogensis, 21, (2000),<br />

pp. 505-515<br />

[3] M. Klagsburn and S. Soker, VEGF/VPF: <str<strong>on</strong>g>th</str<strong>on</strong>g>e angiogenesis factor found?, Curr. Biol., 3, (1993),<br />

pp. 699-702<br />

[4] U. Ledzewicz and H. Schaettler, Optimal bang-bang c<strong>on</strong>trols for a 2-compartment model in<br />

cancer chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Optimizati<strong>on</strong> Theory and Applicati<strong>on</strong>s - JOTA, 114, (2002),<br />

pp. 609-637.<br />

[5] U. Ledzewicz and H. Schaettler, Anti-Angiogenic Therapy in Cancer treatment as an Optimal<br />

C<strong>on</strong>trol Problem, SIAM J. <strong>on</strong> C<strong>on</strong>trol and Optimizati<strong>on</strong>, 46 (3), (2007), pp. 1052-1079<br />

[6] A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio, Rapidly acting antitumoral anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies, Physical Review E, 76 (3),<br />

Art. No. 031920, 2007.<br />

[7] A. d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio and A. Gandolfi, Tumour eradicati<strong>on</strong> by antiangiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy: analysis and<br />

extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model by Hahnfeldt et al. (1999), Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci., 191, (2004), pp. 159-184.<br />

721


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Tuomas Nurmi<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, Finland<br />

e-mail: tuomas.nurmi@utu.fi<br />

Evoluti<strong>on</strong>ary Ecology; Thursday, June 30, 11:30<br />

Joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specializati<strong>on</strong> and dispersal in structured<br />

metapopulati<strong>on</strong>s<br />

I propose a metapopulati<strong>on</strong> model [1] <str<strong>on</strong>g>th</str<strong>on</strong>g>at is mechanistically based <strong>on</strong> individual<br />

level processes and <str<strong>on</strong>g>th</str<strong>on</strong>g>us suitable for evoluti<strong>on</strong>ary analysis. I use adaptive dynamics<br />

[2] to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal and specializati<strong>on</strong> in resource utilizati<strong>on</strong><br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case wi<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>sumers facing a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between abilities to c<strong>on</strong>sume two<br />

different but nutriti<strong>on</strong>ally equivalent resources. I illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary scenarios<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at are possible in <str<strong>on</strong>g>th</str<strong>on</strong>g>is model. Moreover, I illustrate how different ecological<br />

parameters affect evoluti<strong>on</strong>ary dynamics. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e main result [3], I show <str<strong>on</strong>g>th</str<strong>on</strong>g>at joint<br />

evoluti<strong>on</strong> may result in evoluti<strong>on</strong>arily stable coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree phenotypes, two<br />

specialists and a generalist, in a metapopulati<strong>on</strong> comprising several patch types.<br />

References.<br />

[1] Nurmi and Parvinen, 2008, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specializati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a mechanistic underpinning<br />

in metapopulati<strong>on</strong>s Theor. Pop. Biol. 73 222–243.<br />

[2] Geritz et al, 1998, Evoluti<strong>on</strong>ary Singular Strategies and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Adaptive Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Branching<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Evoluti<strong>on</strong>ary Tree Evol. Ecol. 12 35–57.<br />

[3] Nurmi and Parvinen. Joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specializati<strong>on</strong> and dispersal in structured metapopulati<strong>on</strong>s.<br />

J. Theor. Biol. In press.<br />

722


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Signals I; Saturday, July 2, 08:30<br />

Boguslaw Obara<br />

Oxford e-Research Centre and Oxford Centre for Integrative Systems<br />

Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford, UK<br />

e-mail: boguslaw.obara@oerc.ox.ac.uk<br />

Mark Fricker<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford, UK<br />

e-mail: mark.fricker@plants.ox.ac.uk<br />

Alexander Lichius<br />

Fungal Cell Biology Group, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Edinburgh, UK<br />

e-mail: a.lichius@ed.ac.uk<br />

Nick Read<br />

Fungal Cell Biology Group, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Edinburgh, UK<br />

e-mail: nick.read@ed.ac.uk<br />

David Gavaghan<br />

Computing Laboratory, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford, UK<br />

e-mail: david.gavaghan@comlab.ox.ac.uk<br />

Vicente Grau<br />

Oxford e-Research Centre and Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomedical Engineering,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford, UK<br />

e-mail: vicente.grau@oerc.ox.ac.uk<br />

Analysis and Understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> Fungal Tip Grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Fungi cause devastating plant and human diseases. There is c<strong>on</strong>siderable evidence<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular machinery driving grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive fungal hyphae is<br />

comm<strong>on</strong> across all fungi, including plant and mammalian pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens, and involves<br />

localized tip grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, successful fungal infecti<strong>on</strong> is critically dependent<br />

<strong>on</strong> accurate percepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e host surface at <str<strong>on</strong>g>th</str<strong>on</strong>g>e tip to c<strong>on</strong>trol morphogenesis<br />

and trigger host invasi<strong>on</strong>. This suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at detailed investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese early<br />

morphogenetic and signalling events is crucial to a <str<strong>on</strong>g>th</str<strong>on</strong>g>orough understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> virulence.<br />

We are <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore developing high-<str<strong>on</strong>g>th</str<strong>on</strong>g>roughput automated microscope-based multidimensi<strong>on</strong>al<br />

image analysis systems to segment and characterize fungal grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, and<br />

characterize <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> protein localizati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tip <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trol development.<br />

We propose a curvature-based approach to identify fungal cell tip and<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> directi<strong>on</strong>, based <strong>on</strong> segmentati<strong>on</strong> using local <str<strong>on</strong>g>th</str<strong>on</strong>g>resholding<br />

and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical morphology me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. The curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> cell boundary is calculated<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary point wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e highest curvature value defines <str<strong>on</strong>g>th</str<strong>on</strong>g>e tip cell<br />

positi<strong>on</strong>. For cell expressing key GFP-tagged regulatory proteins, <str<strong>on</strong>g>th</str<strong>on</strong>g>e image intensity<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e left and right side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tip positi<strong>on</strong> are recorded to provide a<br />

map <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e plasmamembrane protein distributi<strong>on</strong>, and to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship<br />

between grow<str<strong>on</strong>g>th</str<strong>on</strong>g> vector and asymmetric localizati<strong>on</strong>. This procedure is repeated for<br />

all images in <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-lapse.<br />

723


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

We tested <str<strong>on</strong>g>th</str<strong>on</strong>g>e performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed c<strong>on</strong>cept <strong>on</strong> fluorescence images <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Neurospora crassa germlings expressing GFP-CRIB and GFP-tagged MAK2 kinase<br />

during hyphal avoidance resp<strong>on</strong>ses and c<strong>on</strong>idial anastomosis tube fusi<strong>on</strong>, respectively.<br />

References.<br />

[1] K. Kvilekval, D.Fedorov, B. Obara, A.K. Singh, B.S. Manjuna<str<strong>on</strong>g>th</str<strong>on</strong>g>, Bisque: a platform for<br />

bioimage analysis and management, Bioinformatics, 26, 544–552, 2010<br />

[2] J. Serra, Image Analysis And Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Morphology, Academic Press, New York, 1982<br />

724


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Saturday, July 2, 11:00<br />

Anna Ochab-Marcinek<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry, Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw,<br />

Poland<br />

e-mail: ochab@ichf.edu.pl<br />

Marcin Tabaka<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry, Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw,<br />

Poland<br />

How stochasticity in gene expressi<strong>on</strong> differentiates<br />

phenotypes wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out changing genotypes<br />

Bimodal gene expressi<strong>on</strong> (<str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene products <str<strong>on</strong>g>th</str<strong>on</strong>g>at has two<br />

maxima), as an effect c<strong>on</strong>tributing to phenotypic diversity in genetically identical<br />

cell populati<strong>on</strong>s, enhances <str<strong>on</strong>g>th</str<strong>on</strong>g>e survival <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in a fluctuating envir<strong>on</strong>ment. We<br />

study a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical model <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> in a minimal gene cascade, in which<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory gene produces transcripti<strong>on</strong> factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at have a n<strong>on</strong>linear effect <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e target gene. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at a unimodal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong><br />

factors over <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell populati<strong>on</strong> can generate a bimodal steady-state output<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out cooperative transcripti<strong>on</strong> factor binding and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out feedback loops. We<br />

introduce a simple me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> geometric c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows <strong>on</strong>e to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> bimodality. A. Ochab-Marcinek, M. Tabaka, Bimodal gene expressi<strong>on</strong> in<br />

n<strong>on</strong>cooperative regulatory systems , PNAS 107(51) (2010) 22096-22101<br />

725


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fractals and Complexity II; Wednesday, June 29, 17:00<br />

Edward Oczeretko<br />

Bialystok University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: e.oczeretko@pb.edu.pl<br />

Marta Borowska<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Białystok<br />

Agnieszka Kitlas<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Białystok<br />

Fractal analysis in irregular regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> interest<br />

Fractals have been successfully applied in many areas <str<strong>on</strong>g>of</str<strong>on</strong>g> science and technology.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most prominent applicati<strong>on</strong>s is fractal analysis in medicine, especially in<br />

analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> different kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> images. For medical images diagnostically important<br />

informati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ten lies in <str<strong>on</strong>g>th</str<strong>on</strong>g>e texture. Fractal dimensi<strong>on</strong> may be used as an index<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> irregularity. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intensity difference<br />

scaling me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fractal dimensi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e irregular regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interest (irregular ROI-s). Near boundary between different tissues or structures <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> fractal dimensi<strong>on</strong>s changed significantly. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> fractal dimensi<strong>on</strong>s<br />

were calculated <strong>on</strong> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic fractal textures which ranged in fractal dimensi<strong>on</strong><br />

from 2.05 to 2.95 (2.05, 2.10, 2.20, 2.30, 2.40, 2.50, 2.60, 2.70, 2.80, 2.90, 2.95).<br />

For each value <str<strong>on</strong>g>of</str<strong>on</strong>g> fractal dimensi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>irty 64-by-64 images were obtained. The<br />

mean squared error (MSE) for <str<strong>on</strong>g>th</str<strong>on</strong>g>e 330 samples for each algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m was assessed.<br />

We tested 7 me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> computing <str<strong>on</strong>g>of</str<strong>on</strong>g> fractal dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surfaces: rectangular<br />

prism surface area me<str<strong>on</strong>g>th</str<strong>on</strong>g>od (MSE = 0.0054), triangular prism surface area me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

(MSE = 0.0098), power spectral density me<str<strong>on</strong>g>th</str<strong>on</strong>g>od (MSE = 0.0241), me<str<strong>on</strong>g>th</str<strong>on</strong>g>od based <strong>on</strong><br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical morphology (MSE = 0.0093), variogram analysis (MSE = 0.0054),<br />

intensity difference scaling me<str<strong>on</strong>g>th</str<strong>on</strong>g>od (MSE = 0.0020), and our adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intensity<br />

difference scaling me<str<strong>on</strong>g>th</str<strong>on</strong>g>od in irregular ROI-s (MSE = 0,0017). Our experiments for<br />

dental radiovisiographic images, pantomograms and nuclear medicine scans showed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at it is difficult to fit <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire regular regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interest wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e examined<br />

organ wi<str<strong>on</strong>g>th</str<strong>on</strong>g> simultaneous inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevant fragment avoiding <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> boundaries and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> unnecessary structures at <str<strong>on</strong>g>th</str<strong>on</strong>g>e same time. Our<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> fractal dimensi<strong>on</strong> in irregular regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> interest solves<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese difficulties.<br />

726


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cell systems: from intercellular interacti<strong>on</strong><br />

to tissue-level traits I; Wednesday, June 29, 14:30<br />

Reuben O’Dea<br />

Nottingham Trent University<br />

e-mail: reuben.odea@ntu.ac.uk<br />

Multiscale analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> pattern formati<strong>on</strong> and wave<br />

propagati<strong>on</strong> in a discrete cell signalling model<br />

It is well known <str<strong>on</strong>g>th</str<strong>on</strong>g>at cell-scale interacti<strong>on</strong>s can have pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound effects <strong>on</strong> macroscale<br />

tissue grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. I will discuss two approaches to analysing such phenomena wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a<br />

c<strong>on</strong>tinuum framework, allowing <str<strong>on</strong>g>th</str<strong>on</strong>g>eir inclusi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in macroscale models <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

Firstly, a multiscale asymptotic me<str<strong>on</strong>g>th</str<strong>on</strong>g>od wi<str<strong>on</strong>g>th</str<strong>on</strong>g> which to analyse fine-grained<br />

patterning patterning in cellular differentiati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a c<strong>on</strong>tinuum framework is<br />

introduced, based <strong>on</strong> a generic discrete signalling model. Most applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are to c<strong>on</strong>tinuous systems, while here discreteness <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e short leng<str<strong>on</strong>g>th</str<strong>on</strong>g>scale<br />

must be taken into account.<br />

An important feature <str<strong>on</strong>g>of</str<strong>on</strong>g> such systems is <str<strong>on</strong>g>th</str<strong>on</strong>g>e progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pattern-forming<br />

modulated travelling waves across <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete lattice. Such phenomena have been<br />

widely studied wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in discrete diffusi<strong>on</strong> equati<strong>on</strong>s for m<strong>on</strong>ot<strong>on</strong>e waves; employing<br />

a WKBJ technique in place <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e standard travelling wave ansatz, I show how<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> such waves is greatly simplified and highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>e crucial dependence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wave propagati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying lattice geometry. In additi<strong>on</strong>, I extend <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

analysis to <str<strong>on</strong>g>th</str<strong>on</strong>g>e modulated travelling waves exhibited in cell signalling models.<br />

727


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Eryll Ogg<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling, UK and Cefas, UK<br />

e-mail: gill.ogg@cefas.co.uk<br />

Rachel Norman<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling, UK<br />

e-mail: ran@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.stir.ac.uk<br />

Nick Taylor<br />

Cefas, UK<br />

e-mail: nick.taylor@cefas.co.uk<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Modelling Aquatic Viral Dynamics<br />

Viral haemorrhagic septicaemia (VHS) and infectious haematopoietic necrosis (IHN)<br />

are two important viruses <str<strong>on</strong>g>of</str<strong>on</strong>g> rainbow trout (Oncorhynchus mykiss). Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> viruses<br />

have a significant impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e trout industry worldwide, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> VHS costing an<br />

estimated £10.3-31 milli<strong>on</strong> per year in Europe [1] and IHN costing <str<strong>on</strong>g>th</str<strong>on</strong>g>e US ec<strong>on</strong>omy<br />

£22.2 milli<strong>on</strong> per year (data up to 2005) [2]. Currently <str<strong>on</strong>g>th</str<strong>on</strong>g>e UK is free <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

viruses, but should <strong>on</strong>e or <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er enter <str<strong>on</strong>g>th</str<strong>on</strong>g>e UK, knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey may<br />

spread is vital to reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall impact. Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> introducti<strong>on</strong> are limited<br />

to ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er importati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infected livestock or wild fish movements. Using deterministic<br />

models, we can investigate how <str<strong>on</strong>g>th</str<strong>on</strong>g>e viruses would spread geographically over<br />

time and predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> different c<strong>on</strong>trol measures to aid in minimising <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

overall impact an outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er virus would cause.<br />

This poster will present some initial findings regarding stocking density and<br />

an outline <str<strong>on</strong>g>of</str<strong>on</strong>g> a preliminary first model, looking at viral movements wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a single<br />

tank <str<strong>on</strong>g>of</str<strong>on</strong>g> fish.<br />

References.<br />

[1] Gregory, A., Murray, A.G., Raynard, R.S. and Snow, M., A Risk Analysis Approach to Aquatic<br />

Disease Management [Poster] (2010)<br />

[2] Lorenzen, N. and LaPatra, S.E., DNA vaccines for aquacultured fish Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

DNA vaccines against fish Revue Scientifique et Technique (Internati<strong>on</strong>al Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Epizootics)<br />

24 201–213<br />

728


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Genetics and Genomics; Wednesday, June 29, 08:30<br />

Łukasz Olczak<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Lukasz.Olczak@polsl.pl<br />

Rafał Pokrzywa<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Andrzej Polaski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Informatics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> tandem repeat evoluti<strong>on</strong> based <strong>on</strong><br />

comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Homo sapiens and Homo neander<str<strong>on</strong>g>th</str<strong>on</strong>g>alensis<br />

genomes<br />

Tandem repeats are genomic markers well suited for studying evoluti<strong>on</strong>ary scenarios<br />

for closely related species, due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir high mutati<strong>on</strong> rates. There are many studies<br />

c<strong>on</strong>cerned wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fitting evoluti<strong>on</strong>ary models to data <strong>on</strong> short tandem repeats wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

c<strong>on</strong>clusi<strong>on</strong>s leading to estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> tandem repeats mutati<strong>on</strong> process,<br />

evoluti<strong>on</strong>ary and demographic scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> different species and populati<strong>on</strong>s etc.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we present coalescence based ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tandem repeats based <strong>on</strong> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genomes <str<strong>on</strong>g>of</str<strong>on</strong>g> homo sapiens and Homo neander<str<strong>on</strong>g>th</str<strong>on</strong>g>alensis.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e coalescence model we assume <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic moment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

speciati<strong>on</strong> event leading to Homo sapiens and Homo neander<str<strong>on</strong>g>th</str<strong>on</strong>g>alensis species. The<br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coalescence model <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> are probability distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> differences<br />

between numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> repeats in two species. These probability distributi<strong>on</strong>s<br />

depend <strong>on</strong> parameters, mutati<strong>on</strong> intensities, different for models for evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

loci wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different motif leng<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

The obtained models are <str<strong>on</strong>g>th</str<strong>on</strong>g>en fitted to data <strong>on</strong> locati<strong>on</strong>s and structures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tandem repeat loci <str<strong>on</strong>g>of</str<strong>on</strong>g> homo sapiens and Homo neander<str<strong>on</strong>g>th</str<strong>on</strong>g>alensis genomes obtained<br />

by using <str<strong>on</strong>g>th</str<strong>on</strong>g>e recently developed genome browsing tool BWtrs and <str<strong>on</strong>g>th</str<strong>on</strong>g>e appropriately<br />

designed alignment algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m. Due to imperfecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e assembly process for<br />

Homo neader<str<strong>on</strong>g>th</str<strong>on</strong>g>alensis genome <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> censored observati<strong>on</strong>s is applied and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e appropriate EM procedure is designed.<br />

Estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> mutati<strong>on</strong>s rates for different sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> repeat motifs are compared<br />

to results <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er populati<strong>on</strong> dynamics studies. Possible sources <str<strong>on</strong>g>of</str<strong>on</strong>g> biases in different<br />

approaches are highlighted and possible future improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e developed<br />

model are presented.<br />

729


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Katarzyna Oleś<br />

Jagiell<strong>on</strong>ian University, M. Smoluchowski Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics,<br />

30-059 Krakow, ul. Reym<strong>on</strong>ta 4.<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling, Computing Science and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

FK9 4LA Stirling, UK<br />

e-mail: kas@cs.stir.ac.uk<br />

Adam Kleczkowski<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling, Computing Science and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

FK9 4LA Stirling, UK<br />

e-mail: ak@cs.stir.ac.uk<br />

Ewa Gudowska - Nowak<br />

Jagiell<strong>on</strong>ian University, M. Smoluchowski Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics,<br />

30-059 Krakow, ul. Reym<strong>on</strong>ta 4.<br />

e-mail: gudowska@<str<strong>on</strong>g>th</str<strong>on</strong>g>.if.uj.edu.pl<br />

Understanding disease c<strong>on</strong>trol: influence <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemiological<br />

and ec<strong>on</strong>omic factors<br />

The goal <str<strong>on</strong>g>of</str<strong>on</strong>g> our work is to find optimal c<strong>on</strong>trol strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics. We have<br />

c<strong>on</strong>sidered extended SIR model including pre- and symptomatic cases for a disease<br />

spreading <strong>on</strong> regular network.<br />

The effective treatment strategies for a disease c<strong>on</strong>trol are expected to minimize<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e total cost <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic. In designing c<strong>on</strong>trol strategies, however, we<br />

have to c<strong>on</strong>sider bo<str<strong>on</strong>g>th</str<strong>on</strong>g> epidemiology and ec<strong>on</strong>omics. The most optimal c<strong>on</strong>trol is<br />

determined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative costs <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment and infecti<strong>on</strong>, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious cases and kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> its spread and transformati<strong>on</strong>. It has<br />

been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen may be unknown and we are able to<br />

make predicti<strong>on</strong> based <strong>on</strong> ec<strong>on</strong>omics analysis <strong>on</strong>ly. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough ec<strong>on</strong>omics determines<br />

c<strong>on</strong>trol strategies, <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> scenarios depends <strong>on</strong> epidemiological<br />

factors such as infectiousness, detectability, recovery, removal and map <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tacts<br />

in populati<strong>on</strong>. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>at factors such as c<strong>on</strong>tagi<strong>on</strong> or mortality are str<strong>on</strong>gly c<strong>on</strong>nected<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> particular disease and we can hardly change <str<strong>on</strong>g>th</str<strong>on</strong>g>eir properties. However<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters we have an influence. So <str<strong>on</strong>g>th</str<strong>on</strong>g>e quicker <str<strong>on</strong>g>th</str<strong>on</strong>g>e symptoms occur<br />

or <str<strong>on</strong>g>th</str<strong>on</strong>g>e higher recovery level, <str<strong>on</strong>g>th</str<strong>on</strong>g>e smaller c<strong>on</strong>trol radius. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship<br />

between c<strong>on</strong>trol and infected neighbourhood size has been studied and an influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> epidemiological parameters <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at relati<strong>on</strong> has been discussed.<br />

References.<br />

[1] Kleczkowski, A and Oleś, K and Gudowska - Nowak, E and Gilligan, CA Searching for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most cost-effective strategy for c<strong>on</strong>trolling epidemics in prep.<br />

[2] Dybiec, B and Kleczkowski, A and Gilligan, CA C<strong>on</strong>trolling disease spread <strong>on</strong> networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

incomplete knowledge Physical Review E 70 066145.<br />

[3] Gersovitz, M and Hammer, JS, Infectious diseases, public policy, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e marriage <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omics<br />

and epidemiology WORLD BANK RESEARCH OBSERVER 18 129–157.<br />

730


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fluid-structure interacti<strong>on</strong> problems in biomechanics; Saturday, July 2, 08:30<br />

Sarah Ols<strong>on</strong><br />

Tulane University<br />

e-mail: sols<strong>on</strong>2@tulane.edu<br />

Susan Suarez<br />

Cornell University<br />

Lisa Fauci<br />

Tulane University<br />

Coupling biochemistry, mechanics, and hydrodynamics to<br />

model sperm motility<br />

Calcium (Ca2+) dynamics in mammalian sperm are directly linked to motility.<br />

These dynamics depend <strong>on</strong> diffusi<strong>on</strong>, n<strong>on</strong>linear fluxes, Ca2+ channels specific to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e sperm flagellum, and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er signaling molecules. The goal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to<br />

couple Ca2+ dynamics to a mechanical model <str<strong>on</strong>g>of</str<strong>on</strong>g> a motile sperm wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a viscous,<br />

incompressible fluid. We will first discuss a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CatSper mediated<br />

Ca2+ dynamics relevant to hyperactivated motility. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> regularized<br />

Stokeslets is used to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e hydrodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> swimming sperm. Results<br />

showing emergent waveforms, swimming speeds, and trajectories will be compared<br />

to experimental data.<br />

731


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling physiological systems: model validati<strong>on</strong> and experimental design<br />

issues; Wednesday, June 29, 11:00<br />

Mette Olufsen<br />

Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina State University, Raleigh NC<br />

e-mail: msolufse@ncsu.edu<br />

Modeling and parameter estimati<strong>on</strong> in cardiovascular<br />

dynamics<br />

The main role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiovascular system is to maintain adequate oxygenati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> all tissues. This is accomplished by maintaining blood flow and pressure at a<br />

fairly c<strong>on</strong>stant level and transporting blood from <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart to <str<strong>on</strong>g>th</str<strong>on</strong>g>e periphery wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a minimal loss <str<strong>on</strong>g>of</str<strong>on</strong>g> energy. In additi<strong>on</strong>, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol mechanisms are imposed<br />

regulating vascular resistance, compliance, pumping efficiency and frequency.<br />

In cardiovascular diseases, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport system and its regulati<strong>on</strong> may be<br />

compromised, and for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases it is ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er not known or difficult to<br />

study what mechanism <str<strong>on</strong>g>th</str<strong>on</strong>g>at lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> homeostasis. Typically, some<br />

general observati<strong>on</strong>s can be made, but <str<strong>on</strong>g>th</str<strong>on</strong>g>ese vary significant between individuals.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, for most patients <strong>on</strong>ly a few quantities can be measured, making it<br />

difficult to assess essential quantities such as cerebral vascular resistance, cardiac<br />

c<strong>on</strong>tractility, or <str<strong>on</strong>g>th</str<strong>on</strong>g>e gain and time c<strong>on</strong>stants associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong>. This<br />

presentati<strong>on</strong> will discuss development <str<strong>on</strong>g>of</str<strong>on</strong>g> patient specific models obtained by combining<br />

models predicting c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> blood flow and pressure wi<str<strong>on</strong>g>th</str<strong>on</strong>g> parameter estimati<strong>on</strong><br />

techniques. Models analyzed are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> systems <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear equati<strong>on</strong>s each<br />

specified via a set <str<strong>on</strong>g>of</str<strong>on</strong>g> model parameters. Nominal parameter values are obtained<br />

from analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s and data available. Subsequently, sensitivity analysis,<br />

correlati<strong>on</strong> analysis, and subset selecti<strong>on</strong>, are combined wi<str<strong>on</strong>g>th</str<strong>on</strong>g> parameter estimati<strong>on</strong><br />

techniques to obtain a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> patient specific parameters.<br />

732


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanical Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Movement and Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cells and Tissues II;<br />

Wednesday, June 29, 17:00<br />

A model linking <str<strong>on</strong>g>th</str<strong>on</strong>g>e lamellipodial actin cytoskelet<strong>on</strong> to cell<br />

shape and movement.<br />

Dietmar Oelz<br />

RICAM (Rad<strong>on</strong> Institute for Compuati<strong>on</strong>al and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics),<br />

Vienna/Linz, Austria<br />

e-mail: dietmar.oelz@univie.ac.at<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will give an overview <strong>on</strong> a recent modelling effort c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

lamellipodial Actin-cytoskelet<strong>on</strong>. In more detail I will outline <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protein linkages and compare two different scaling aproaches <str<strong>on</strong>g>th</str<strong>on</strong>g>at apply<br />

to ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er cross-linking proteins or adhesi<strong>on</strong> complexes. The results are macroscopic,<br />

possibly n<strong>on</strong>linear, fricti<strong>on</strong> coefficients. I wil also shortly menti<strong>on</strong> analytic results<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>cern <str<strong>on</strong>g>th</str<strong>on</strong>g>e interpretati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models.<br />

733


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ryosuke Omori<br />

Kyushu University<br />

e-mail: omori@bio-ma<str<strong>on</strong>g>th</str<strong>on</strong>g>10.biology.kyushu-u.ac.jp<br />

Ben Adams<br />

Ba<str<strong>on</strong>g>th</str<strong>on</strong>g> University<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> disrupting seas<strong>on</strong>ality to dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epidemics: <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> KHV<br />

Koi herpesvirus (KHV), a highly virulent disease affecting carp (fish in freshwater)<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at emerged in <str<strong>on</strong>g>th</str<strong>on</strong>g>e late 1990s, is a serious <str<strong>on</strong>g>th</str<strong>on</strong>g>reat to aquaculture industry. After a<br />

fish is infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> KHV, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a temperature dependent delay before it becomes<br />

infectious, and a fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er delay before mortality. C<strong>on</strong>sequently KHV epidemiology<br />

is driven by seas<strong>on</strong>al changes in water temperature. It has also been proposed <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

outbreaks could be c<strong>on</strong>trolled by resp<strong>on</strong>sive management <str<strong>on</strong>g>of</str<strong>on</strong>g> water temperature in<br />

aquaculture setups. We use a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model to analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al<br />

temperature cycles <strong>on</strong> KHV epidemiology, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> attempting to c<strong>on</strong>trol<br />

outbreaks by disrupting <str<strong>on</strong>g>th</str<strong>on</strong>g>is cycle. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough disease progressi<strong>on</strong> is<br />

fast in summer and slow in winter, total mortality over a two year period is similar<br />

for outbreaks <str<strong>on</strong>g>th</str<strong>on</strong>g>at start in ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er seas<strong>on</strong>. However, for outbreaks <str<strong>on</strong>g>th</str<strong>on</strong>g>at start in late<br />

autumn, mortality may be low and immunity high. A single bout <str<strong>on</strong>g>of</str<strong>on</strong>g> water temperature<br />

management can be an effective outbreak c<strong>on</strong>trol strategy if it is started<br />

as so<strong>on</strong> as dead fish are detected and maintained for a l<strong>on</strong>g time. It can also be<br />

effective if <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious fish is used as an indicator for <str<strong>on</strong>g>th</str<strong>on</strong>g>e beginning<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> treatment. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case, however, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a risk <str<strong>on</strong>g>th</str<strong>on</strong>g>at starting <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment too<br />

so<strong>on</strong> will increase mortality relative to <str<strong>on</strong>g>th</str<strong>on</strong>g>e case when no treatment is used. This<br />

counterproductive effect can be avoided if multiple bouts <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature management<br />

are used. We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at disrupting normal seas<strong>on</strong>al patterns in water<br />

temperature can be an effective strategy for c<strong>on</strong>trolling koi herpesvirus. Exploiting<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e seas<strong>on</strong>al patterns, possibly in combinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> temperature management, can<br />

also induce widespread immunity to KHV in a cohort <str<strong>on</strong>g>of</str<strong>on</strong>g> fish. However, employing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods successfully requires careful assessment to ensure <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment<br />

is started, and finished, at <str<strong>on</strong>g>th</str<strong>on</strong>g>e correct time.<br />

734


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Nooshin Omranian 1,2<br />

Bernd Mueller–Roeber 1,2<br />

Zoran Nikoloski 2<br />

1-University <str<strong>on</strong>g>of</str<strong>on</strong>g> Potsdam, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry and Biology, Karl-<br />

Liebknecht-Str. 24-25, 14476 Potsdam,Germany<br />

2-Systems Biology and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling, Max-Planck-Institute<br />

for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam,<br />

Germany<br />

e-mail: omranian@mpimp-golm.mpg.de<br />

PageRank-based identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling crosstalk from<br />

transcriptomics data in Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana<br />

The levels <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular organizati<strong>on</strong>, from gene transcripti<strong>on</strong> to translati<strong>on</strong> to proteinprotein<br />

interacti<strong>on</strong> and metabolism, operate via tightly regulated mutual interacti<strong>on</strong>s<br />

facilitating organismal adaptability and various stress resp<strong>on</strong>ses. Characterizing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mutual interacti<strong>on</strong>s between genes, transcripti<strong>on</strong> factors, and proteins<br />

involved in signalling, termed crosstalk, is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore crucial for understanding<br />

and c<strong>on</strong>trolling cell’s functi<strong>on</strong>ality. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> data used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

analysis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for identifying crosstalk can be divided into two<br />

groups: (1) proteomics-based, relying <strong>on</strong> integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein-protein interacti<strong>on</strong><br />

data wi<str<strong>on</strong>g>th</str<strong>on</strong>g> existing pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way informati<strong>on</strong> and (2) transcriptomics-based, employing<br />

high-<str<strong>on</strong>g>th</str<strong>on</strong>g>roughput transcriptomics data sets from different c<strong>on</strong>diti<strong>on</strong>s.<br />

Here we propose and analyze a novel me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for crosstalk identificati<strong>on</strong> which<br />

relies <strong>on</strong> transcriptomics data and overcomes <str<strong>on</strong>g>th</str<strong>on</strong>g>e lack <str<strong>on</strong>g>of</str<strong>on</strong>g> available informati<strong>on</strong> for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways in Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana. Our me<str<strong>on</strong>g>th</str<strong>on</strong>g>od employs a networkbased<br />

transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results from <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> differential gene<br />

expressi<strong>on</strong> in carefully c<strong>on</strong>structed groups <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments (c<strong>on</strong>diti<strong>on</strong>s). Modificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PageRank algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m is <str<strong>on</strong>g>th</str<strong>on</strong>g>en used <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network c<strong>on</strong>structed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

previous step to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e putative transcripts interrelating different signalling<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, we analyze a transcriptomics<br />

data set incorporating experiments <strong>on</strong> four different stresses/signals: nitrate, sulfur,<br />

ir<strong>on</strong>, and horm<strong>on</strong>e and identified a promising gene candidates involved in crosstalk.<br />

In additi<strong>on</strong>, we c<strong>on</strong>duct a comparative analysis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>th</str<strong>on</strong>g>e art me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>is field which used a biclustering-based approach [1]. Unlike approaches<br />

based biclustering, our approach does not rely <strong>on</strong> any hidden parameters. To<br />

compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e two approaches, we use transcriptomics data sets from Arabidopsis<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>aliana under 31 different experimental c<strong>on</strong>diti<strong>on</strong>s: 5 nitrate, 4 sulfur, 2 ir<strong>on</strong> and<br />

20 horm<strong>on</strong>e experiments. Surprisingly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e biclustering-based approach fails to<br />

identify any candidate genes involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e crosstalk <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e analyzed signals. On<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, we find a small set <str<strong>on</strong>g>of</str<strong>on</strong>g> interesting genes<br />

putatively involved in crosstalk (verified by literature search). The small number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> genes involved in crosstalk <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese signals could be attributed to: (1) <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e analyzed data and (2) <str<strong>on</strong>g>th</str<strong>on</strong>g>e lack <str<strong>on</strong>g>of</str<strong>on</strong>g> raw data for all experiments,<br />

resulting in a n<strong>on</strong>-uniform normalizati<strong>on</strong>. C<strong>on</strong>sequently, we dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at our<br />

proposed me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is more efficient for species for which large transcriptomics data<br />

sets, normalized wi<str<strong>on</strong>g>th</str<strong>on</strong>g> same techniques, are available.<br />

735


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] D. Nero, G. Krouk, D. Tranchina, GM. Coruzzi: A system biology approach highlights a<br />

horm<strong>on</strong>al enhancer effect <strong>on</strong> regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes in a nitrate resp<strong>on</strong>sive "biomodule" BMC<br />

Syst Biol 3 59.<br />

736


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Natsuki Orita<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> and Computer Sciences , Nara Women’s<br />

University<br />

e-mail: kol<strong>on</strong>x3@ics.nara-wu.ac.jp<br />

Fugo Takasu<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> and Computer Sciences , Nara Women’s<br />

University<br />

e-mail: takasu@ics.nara-wu.ac.jp<br />

Individual-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial populati<strong>on</strong> dynamics<br />

In last decades, a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical approaches have been explored and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ey have c<strong>on</strong>tributed much to better understand populati<strong>on</strong> dynamics in general.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models have been accumulating. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em, however , remain<br />

qualitative descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> dynamics focused at "populati<strong>on</strong> level" where<br />

analytical tractability is prioritized and mechanistic process <str<strong>on</strong>g>of</str<strong>on</strong>g> individual bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

dea<str<strong>on</strong>g>th</str<strong>on</strong>g> are ignored.<br />

(1) Nt+1 = exp<br />

<br />

r 1 − Nt<br />

<br />

Nt<br />

K<br />

For example, <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at per capita grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate linearly or exp<strong>on</strong>entially<br />

decreases wi<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong> size as assumed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ricker logistic model (1) is completely<br />

descriptive <strong>on</strong>e wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out any mechanistic process explicitly c<strong>on</strong>sidered at<br />

individual level; we just assume it and start from such a descriptive model.<br />

In order to understand populati<strong>on</strong> dynamics in general, we <str<strong>on</strong>g>th</str<strong>on</strong>g>ink it is necessary<br />

to link populati<strong>on</strong> dynamics, a phenomen<strong>on</strong> at populati<strong>on</strong> level, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mechanistic<br />

processes <str<strong>on</strong>g>of</str<strong>on</strong>g> bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>at occur at individual level. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper, we aim to<br />

rec<strong>on</strong>struct a populati<strong>on</strong> dynamics in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> individual bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and dea<str<strong>on</strong>g>th</str<strong>on</strong>g> and try to<br />

derive a dynamical system based <strong>on</strong> mechanistic interacti<strong>on</strong>s between individuals.<br />

We first c<strong>on</strong>struct a spatial populati<strong>on</strong> dynamics where an individual is a point<br />

located in a c<strong>on</strong>tinuous two dimensi<strong>on</strong>al space and a populati<strong>on</strong> is represented as a<br />

point pattern. Each individual has a territory wi<str<strong>on</strong>g>th</str<strong>on</strong>g> radius σc and c<strong>on</strong>sumes renewable<br />

resource to reproduce. Interacti<strong>on</strong> between individuals occurs when territories<br />

overlap and overlapped area is handled according to a certain rule each individual<br />

adopts. These algori<str<strong>on</strong>g>th</str<strong>on</strong>g>mic rule c<strong>on</strong>stitutes a point process and we have built a flexible<br />

framework to implement <str<strong>on</strong>g>th</str<strong>on</strong>g>ese rules as individual-based simulati<strong>on</strong> model. We<br />

analyze how <str<strong>on</strong>g>th</str<strong>on</strong>g>e point pattern changes temporarily in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> size and<br />

pair correlati<strong>on</strong> functi<strong>on</strong>. And we derive a dynamical system to explain behaviors<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual-based simulati<strong>on</strong>.<br />

(2) Nt+1 =<br />

∞<br />

Nt−1Ck(4πσ<br />

k=0<br />

2 c ) k (1 − 4πσ 2 c ) Nt−1−k e r ×Max<br />

<br />

1 − αk<br />

, 0<br />

2<br />

where α is <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> coefficient.<br />

Our final goal is to understand phenomena at populati<strong>on</strong> level based <strong>on</strong> mechanistic<br />

interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> individual level and how such interacti<strong>on</strong>s can be described<br />

as a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical form. Our individual-based framework also allows to explore<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters such as territory size and dispersal range. We discuss an<br />

<br />

Nt<br />

737


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

individual-based approach to better understand populati<strong>on</strong> dynamics as well as<br />

evoluti<strong>on</strong>ary dynamics.<br />

738


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chaste framework;<br />

Tuesday, June 28, 11:00<br />

Dr James Osborne<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: james.osborne@comlab.ox.ac.uk<br />

A multiscale computati<strong>on</strong>al framework for modelling<br />

biological systems: Chaste<br />

The Chaste framework (http://web.comlab.ox.ac.uk/chaste) in an Open Source numerical<br />

library which enables multicellular and multiscale simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> biological<br />

processes. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is, <str<strong>on</strong>g>th</str<strong>on</strong>g>e first talk <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mini-symposium, we introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e multiscale<br />

framework <strong>on</strong> which Chaste is based <strong>on</strong>, discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework,<br />

and provide a dem<strong>on</strong>strati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how to set up a simulati<strong>on</strong>.<br />

The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical framework is based up<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e natural<br />

structural unit <str<strong>on</strong>g>of</str<strong>on</strong>g> biology is <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell, and it c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree main scales: <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue<br />

level (macro-scale); <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell level (meso-scale); and <str<strong>on</strong>g>th</str<strong>on</strong>g>e sub-cellular level (microscale),<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> interacti<strong>on</strong>s occurring between all scales. The cell level is central to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e framework and cells are modelled as discrete interacting entities using <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a number <str<strong>on</strong>g>of</str<strong>on</strong>g> possible modelling paradigms, including lattice based models (cellular<br />

automata and cellular Potts) and <str<strong>on</strong>g>of</str<strong>on</strong>g>f-lattice models (cell centre and vertex based<br />

representati<strong>on</strong>s). The sub-cellular level c<strong>on</strong>cerns numerous metabolic and biochemical<br />

processes represented by interacti<strong>on</strong> networks rendered stochastically or into<br />

ODEs. The outputs from such systems influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell level affecting<br />

properties such as adhesi<strong>on</strong> and also influencing cell mitosis and apoptosis.<br />

Tissue level behaviour is represented by field equati<strong>on</strong>s for nutrient or messenger<br />

c<strong>on</strong>centrati<strong>on</strong>, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cells functi<strong>on</strong>ing as sinks and sources. This modular approach<br />

enables multiple models to be simulated and is easily extensible allowing more<br />

realistic behaviour to be c<strong>on</strong>sidered at each scale.<br />

Chaste is comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> libraries <str<strong>on</strong>g>of</str<strong>on</strong>g> object orientated C++, developed using an<br />

agile development approach. All s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware is tested, robust, reliable and extensible.<br />

The library enables general simulati<strong>on</strong>s to be undertaken and includes tools to automatically<br />

curate and store simulati<strong>on</strong> results expediting model development. One<br />

key aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> such a framework is <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to model specific biological systems using<br />

multiple modelling paradigms, as a case study we present a simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

colorectal crypt using four different cell level models and illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e similarities<br />

and differences.<br />

739


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Yo-Hey Otake<br />

NISTEP, MEXT, Government <str<strong>on</strong>g>of</str<strong>on</strong>g> Japan<br />

e-mail: otake@nistep.go.jp<br />

Populati<strong>on</strong> Dynamics; Saturday, July 2, 14:30<br />

C<strong>on</strong>vergence properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e law <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

first principle derivati<strong>on</strong> in populati<strong>on</strong> dynamics<br />

We want to relate <str<strong>on</strong>g>th</str<strong>on</strong>g>e law <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> interacti<strong>on</strong> between individuals. For<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is purpose, we use <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> infinite series, which is called “first principle derivati<strong>on</strong>”<br />

[5, chapter 4]. By <str<strong>on</strong>g>th</str<strong>on</strong>g>is me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, we can derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> reproducti<strong>on</strong><br />

functi<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals (<str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> functi<strong>on</strong> between individuals). Previous research[1, 5] has<br />

derived a few c<strong>on</strong>cave functi<strong>on</strong>s, which are Ricker model and Skellam model. We<br />

extended previous research in ec<strong>on</strong>omical viewpoint. As a result, we could derive<br />

new types <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong> like Holling’s type III functi<strong>on</strong>al resp<strong>on</strong>se [2], so we could represent<br />

bistability in populati<strong>on</strong> dynamics[3]. The reas<strong>on</strong> comes from <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e derived functi<strong>on</strong> has c<strong>on</strong>vexity in case <str<strong>on</strong>g>th</str<strong>on</strong>g>at populati<strong>on</strong> is small. Previous research<br />

did not have <str<strong>on</strong>g>th</str<strong>on</strong>g>is property. Our model, in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, c<strong>on</strong>tains bo<str<strong>on</strong>g>th</str<strong>on</strong>g> density<br />

dependent effect and Allee effect. In order to clarify <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e law <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducti<strong>on</strong> from “first principle derivati<strong>on</strong>”, we analysed <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability<br />

and bifurcati<strong>on</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> fixed points <str<strong>on</strong>g>of</str<strong>on</strong>g> our infinite series functi<strong>on</strong>[4, chapter 2].<br />

References.<br />

[1] Å. Brännström and D. J. T. Sumpter, The role <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong> and clustering in populati<strong>on</strong><br />

dynamics Proc. R. Soc. B 272(1576) : 2065–2072, oct 2005.<br />

[2] C. S. Holling, The comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> predati<strong>on</strong> as revealed by a study <str<strong>on</strong>g>of</str<strong>on</strong>g> small-mammal predati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e european pine sawfly Canad. Entomol. 91(5) : 293–320, may 1959.<br />

[3] Yo-Hey Otake et al., Clustering and relati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> neighbors in populati<strong>on</strong> dynamics: Expansi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> individual-based first principle derivati<strong>on</strong> RIMS Kokyuroku, Kyoto-U 1556 : 59–102,<br />

mar 2007. (in Japanese)<br />

[4] Yo-Hey Otake, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Study <strong>on</strong> Decisi<strong>on</strong> Making and Collective Behavior in Social<br />

Relati<strong>on</strong>ship PhD <str<strong>on</strong>g>th</str<strong>on</strong>g>esis, U-Tokyo , mar 2008. (in Japanese)<br />

[5] T. Royama, Populati<strong>on</strong> process models , Chapman & Hall, L<strong>on</strong>d<strong>on</strong>, 1992.<br />

740


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanical Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Movement and Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cells and Tissues I;<br />

Wednesday, June 29, 14:30<br />

Hans G. O<str<strong>on</strong>g>th</str<strong>on</strong>g>mer<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics & Digital Technology Center, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Minnesota<br />

e-mail: o<str<strong>on</strong>g>th</str<strong>on</strong>g>mer@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.umn.edu<br />

From Crawlers to Swimmers — Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and<br />

Computati<strong>on</strong>al Problems in Cell Motility<br />

Cell locomoti<strong>on</strong> is essential for early development, angiogenesis, tissue regenerati<strong>on</strong>,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se, and wound healing in multicellular organisms, and plays a<br />

very deleterious role in cancer metastasis in humans. Locomoti<strong>on</strong> involves <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

detecti<strong>on</strong> and transducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extracellular chemical and mechanical signals, integrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signals into an intracellular signal, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal c<strong>on</strong>trol<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular biochemical and mechanical resp<strong>on</strong>ses <str<strong>on</strong>g>th</str<strong>on</strong>g>at lead to force generati<strong>on</strong>,<br />

morphological changes and directed movement. While many single-celled<br />

organisms use flagella or cilia to swim, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are two basic modes <str<strong>on</strong>g>of</str<strong>on</strong>g> movement<br />

used by eukaryotic cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at lack such structures – mesenchymal and amoeboid.<br />

The former, which can be characterized as ‘crawling’ in fibroblasts or ‘gliding’ in<br />

keratocytes, involves <str<strong>on</strong>g>th</str<strong>on</strong>g>e extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> finger-like filopodia or pseudopodia and/or<br />

broad flat lamellipodia, whose protrusi<strong>on</strong> is driven by actin polymerizati<strong>on</strong> at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

leading edge. This mode dominates in cells such as fibroblasts when moving <strong>on</strong> a 2D<br />

substrate. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e amoeboid mode, which does not rely <strong>on</strong> str<strong>on</strong>g adhesi<strong>on</strong>, cells are<br />

more rounded and employ shape changes to move – in effect ’jostling <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

crowd’ or ‘swimming’. Here force generati<strong>on</strong> relies more heavily <strong>on</strong> actin bundles<br />

and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> myosin c<strong>on</strong>tractility. Leukocytes use <str<strong>on</strong>g>th</str<strong>on</strong>g>is mode for movement<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> adhesi<strong>on</strong> sites, as does<br />

Dictyostelium discoideum when cells sort in <str<strong>on</strong>g>th</str<strong>on</strong>g>e slug. However, recent experiments<br />

have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at numerous cell types display enormous plasticity in locomoti<strong>on</strong> in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey sense <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir envir<strong>on</strong>ment and adjust <str<strong>on</strong>g>th</str<strong>on</strong>g>e balance<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e modes accordingly by altering <str<strong>on</strong>g>th</str<strong>on</strong>g>e balance between parallel signal<br />

transducti<strong>on</strong> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. Thus pure crawling and pure swimming are <str<strong>on</strong>g>th</str<strong>on</strong>g>e extremes<br />

<strong>on</strong> a c<strong>on</strong>tinuum <str<strong>on</strong>g>of</str<strong>on</strong>g> locomoti<strong>on</strong> strategies, but many cells can sense <str<strong>on</strong>g>th</str<strong>on</strong>g>eir envir<strong>on</strong>ment<br />

and use <str<strong>on</strong>g>th</str<strong>on</strong>g>e most efficient strategy in a given c<strong>on</strong>text. We will discuss some<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and computati<strong>on</strong>al challenges <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is diversity poses.<br />

741


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

From <strong>on</strong>e to many: Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective, emergent behaviors<br />

in biology -II; Tuesday, June 28, 14:30<br />

Hans G O<str<strong>on</strong>g>th</str<strong>on</strong>g>mer<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics & Digital Technology Center, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Minnesota<br />

e-mail: o<str<strong>on</strong>g>th</str<strong>on</strong>g>mer@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.umn.edu<br />

Multiscale Modeling in Biology — The Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and<br />

Computati<strong>on</strong>al Challenges<br />

New techniques in cell and molecular biology have produced a better understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cell-level processes <str<strong>on</strong>g>th</str<strong>on</strong>g>at has in turn led to better cell-level models for problems<br />

ranging from bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm formati<strong>on</strong> to embry<strong>on</strong>ic development and cancer. However <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

raises <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> how to incorporate detailed descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> individual-level<br />

behavior, be it at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell, tissue or organ level, into populati<strong>on</strong> level descripti<strong>on</strong>s.<br />

We will illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and computati<strong>on</strong>al challenges involved wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an<br />

f example from pattern formati<strong>on</strong> in bacteria, and will discuss some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e open<br />

problems in <str<strong>on</strong>g>th</str<strong>on</strong>g>is area.<br />

742


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling physiological systems: model validati<strong>on</strong> and experimental design<br />

issues; Wednesday, June 29, 11:00<br />

Johnny Ottesen<br />

Roskilde University<br />

e-mail: Johnny@ruc.dk<br />

Patient specific modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart as a tool for early<br />

diagnoses and treatment planning.<br />

The perspective for Patient Specific Modeling (PSM) is to create and develop medical<br />

decisi<strong>on</strong> system based ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying mechanisms<br />

and statistics. We will give an example <str<strong>on</strong>g>of</str<strong>on</strong>g> PSM <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart including<br />

a discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> patient specific parameter estimati<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in<br />

combinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> new individual patient data obtained from MR measurements <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

various relevant blood volumes (and flows). Such parameters will characterize <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e patients in far more details <str<strong>on</strong>g>th</str<strong>on</strong>g>an clinical investigati<strong>on</strong>s unveil today.<br />

Thus <str<strong>on</strong>g>th</str<strong>on</strong>g>ese parameters will define diagnosed heart illnesses in a refined manner<br />

and pinpoint exactly where in <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological system malfuncti<strong>on</strong>ing appears.<br />

This opens up for early diagnoses and individual treatments targeting <str<strong>on</strong>g>th</str<strong>on</strong>g>e actual<br />

malfuncti<strong>on</strong>ing part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological system.<br />

Recently precise and detailed volume data have become assessable by help<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> MR scanning and imaging technologies. The associated finding c<strong>on</strong>firm earlier<br />

results except <str<strong>on</strong>g>th</str<strong>on</strong>g>at atria volumes may show <strong>on</strong>e hump or two hump and all intermediate<br />

c<strong>on</strong>figurati<strong>on</strong>s in between during <strong>on</strong>e heart cycle. These findings are reflected<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding ventricle volume curves but are not so pr<strong>on</strong>ounced. In additi<strong>on</strong>,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese curves vary very much wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tractile streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e atria and ventricles and <str<strong>on</strong>g>th</str<strong>on</strong>g>us it become reduced in cicatrical myocardial tissue<br />

(after an infarcti<strong>on</strong>) and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart valves.<br />

Data from 40 subjects encompass left atria volume, left ventricle volume, right<br />

atria volume, right ventricle volume, flow from left ventricle into aorta, and flow<br />

from right ventricle into pulm<strong>on</strong>ary aorta versus time during <strong>on</strong>e heart cycle. Data<br />

was recorded for objects at rest and for objects given dobutrex and robinul as well.<br />

Our model describe preload to atria, atria itself, ventricle, and afterload for<br />

left heart using ordinary differential equati<strong>on</strong>s. Based <strong>on</strong> data, sensitivities <strong>on</strong><br />

and correlati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e model parameters will be investigated and parameter<br />

estimati<strong>on</strong> <strong>on</strong> a meaningful subset will be performed. Thus various pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies,<br />

including decreased c<strong>on</strong>tractile capacities and stenosis, will be categorizes in terms<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model parameters.<br />

743


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Saturday, July 2, 08:30<br />

Aziz Ouhinou<br />

African Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, 6 Melrose Road, Muizenberg,<br />

7945, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa<br />

e-mail: aziz@aims.ac.za<br />

Semu Mitiku Kassa<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Addis Ababa University,<br />

P.O.Box 1176 Addis Ababa, E<str<strong>on</strong>g>th</str<strong>on</strong>g>iopia<br />

e-mail: smtk@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.aau.edu.et<br />

Epidemiological Models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Prevalence Dependent<br />

Endogenous Self-Protecti<strong>on</strong> Measure<br />

A simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for human disease epidemics <str<strong>on</strong>g>th</str<strong>on</strong>g>at takes <str<strong>on</strong>g>th</str<strong>on</strong>g>e human<br />

learning behaviour and self-protective measures into account is proposed. We<br />

analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> endogenous self-protective measures wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e prevalence<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease and c<strong>on</strong>versely. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e model it is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at people<br />

start reacting against c<strong>on</strong>tracting a disease wi<str<strong>on</strong>g>th</str<strong>on</strong>g> self protective measures whenever<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ey are informed about <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease and when <str<strong>on</strong>g>th</str<strong>on</strong>g>e burden <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease is in a<br />

recognizable stage. We show how suppressing <str<strong>on</strong>g>th</str<strong>on</strong>g>e prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease is more<br />

sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e average effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> self-protective measures <str<strong>on</strong>g>th</str<strong>on</strong>g>an increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals in a populati<strong>on</strong> into which awareness is created.<br />

References.<br />

[1] Z. Mukandavire, W. Garira, Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> educati<strong>on</strong>al campaigns and <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> sex<br />

workers <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV/AIDS am<strong>on</strong>g heterosexuals, Theoretical Populati<strong>on</strong> Biology, 72<br />

(2007) 346-365.<br />

[2] Z. Mukandavire, W. Garira, J.M. Tchuenche, Modelling effects <str<strong>on</strong>g>of</str<strong>on</strong>g> public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> educati<strong>on</strong>al<br />

campaigns <strong>on</strong> HIV/AIDS transmissi<strong>on</strong> dynamics, Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling, 33 (2009)<br />

2084–2095.<br />

[3] H. Ying-Hen, K. Cooke, Behaviour change and treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> core groups: its effect <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

spread <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV/AIDS, IMA Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Applied in Medicine and Biology, 17<br />

(2000) 213-241.<br />

[4] F. Baryarama, J. Y. T. Mugisha, L. S. Luboobi, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> HIV/AIDS wi<str<strong>on</strong>g>th</str<strong>on</strong>g> gradual behaviour change, Computati<strong>on</strong>al and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in<br />

Medicine, 7 (2006) 15-26.<br />

[5] A. Galata, N. Johns<strong>on</strong>, D. Hogg, Learning behaviour models <str<strong>on</strong>g>of</str<strong>on</strong>g> human activities, In Proc.<br />

British Machine Visi<strong>on</strong> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>, BMVC’99, Sept. 1999.<br />

744


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modelling bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms: from gene regulati<strong>on</strong> to large-scale structure and<br />

functi<strong>on</strong>; Wednesday, June 29, 17:00<br />

Niels Chr Overgaard<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Lund University, Sweden<br />

e-mail: nco@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.l<str<strong>on</strong>g>th</str<strong>on</strong>g>.se<br />

A new necessary c<strong>on</strong>diti<strong>on</strong> for coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> species in<br />

equilibrium states <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Wanner-Gujer-Kissel bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm model<br />

We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical Wanner-Gujer-Kissel 1D-model [1,2] in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

bacterial species competing for space and a single limiting substrate in a bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

given fixed <str<strong>on</strong>g>th</str<strong>on</strong>g>ickness. We focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model’s ability to describe equilibrium states<br />

in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e two species coexist. If we let f(z, t) = (f1(z, t), f2(z, t)), 0 ≤ z ≤ L,<br />

t ≥ 0, denote <str<strong>on</strong>g>th</str<strong>on</strong>g>e volume fracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two species and S(z, t) <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e limiting substrate, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e model c<strong>on</strong>sistes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e following system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear<br />

PDEs:<br />

(1) ft + (vf)z = A(S)f, f1(z, t) + f2(z, t) = 1, v(0, t) = 0,<br />

and<br />

(2) St − DSzz + λ T A(S)f = 0, Sz(0) = 0, S(L) = S 0 ,<br />

al<strong>on</strong>g wi<str<strong>on</strong>g>th</str<strong>on</strong>g> appropriate initial data. Here v = v(z, t) is a (scalar) velocity field,<br />

A(S) = diag(a1(S), a2(S)) <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> matrix, and S 0 <str<strong>on</strong>g>th</str<strong>on</strong>g>e bulk c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e substrate at <str<strong>on</strong>g>th</str<strong>on</strong>g>e bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm-water interface z = L. Moreover, D denotes diffusivity<br />

and λ is a vector c<strong>on</strong>taining reciprocal yield coefficients. More about ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm modelling can be found in a recent overview by Klapper and Dockery [3]<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we derive a new necessary c<strong>on</strong>diti<strong>on</strong>, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> an inequality,<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> coexistence equilibrium states to <str<strong>on</strong>g>th</str<strong>on</strong>g>e model (1) and (2). This<br />

c<strong>on</strong>diti<strong>on</strong> is used in numerical experiments to locate model parameters which exibit<br />

coexistence states, some<str<strong>on</strong>g>th</str<strong>on</strong>g>ing which would be difficult o<str<strong>on</strong>g>th</str<strong>on</strong>g>erwise. The equilibrium is<br />

computed using a robust numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od developed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e au<str<strong>on</strong>g>th</str<strong>on</strong>g>or and presented<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e ECMTB 2008 in Edinburgh. It is hoped <str<strong>on</strong>g>th</str<strong>on</strong>g>at our necessary c<strong>on</strong>diti<strong>on</strong> could<br />

be a stepping st<strong>on</strong>e in <str<strong>on</strong>g>th</str<strong>on</strong>g>e search for a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically rigorous pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> coexcistence equilibrium states for bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is class.<br />

A motivati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is a recent article by Klapper and Szomolay [4],<br />

where an exclusi<strong>on</strong> principle for ruling out occurence <str<strong>on</strong>g>of</str<strong>on</strong>g> certain coexistence equilibrium<br />

states is presented. While <str<strong>on</strong>g>th</str<strong>on</strong>g>is principle is correct, it is exemplified wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm system, <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e kind studied here, for which <str<strong>on</strong>g>th</str<strong>on</strong>g>e au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors seem to imply<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at a coexistence equilibrium may occur <strong>on</strong>ly for <strong>on</strong>e special value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e applied<br />

substrate bulk c<strong>on</strong>centrati<strong>on</strong> S 0 . Our investigati<strong>on</strong>s indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e situati<strong>on</strong> is<br />

far more favorable, and <str<strong>on</strong>g>th</str<strong>on</strong>g>at coexistence equilibria actually exists for a whole range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> S 0 , and <str<strong>on</strong>g>th</str<strong>on</strong>g>at for each such value, <str<strong>on</strong>g>th</str<strong>on</strong>g>e system is actually attracted to a<br />

coexistence equilibrium state.<br />

References.<br />

[1] Wanner, O. and W. Gujer, A multispecies bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm model. Biotechnol. Bioengn. 28, 314–328,<br />

1986.<br />

[2] Kissel, J.C., P.L. McCarty and R.L. Street, Numerical simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed-culture bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm. J.<br />

Envir<strong>on</strong>. Eng. 110, 391–411, 1984.<br />

745


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] Klapper, I. and J. Dockery, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms, SIAM Rev. 52,<br />

221–265, 2010.<br />

[4] Klapper, I. and B. Szomolay, An Exclusi<strong>on</strong> Principle and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> Motility for<br />

a Class <str<strong>on</strong>g>of</str<strong>on</strong>g> Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm Models. Bull. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. Published <strong>on</strong>line: 15 January 2011, DOI:<br />

10.1007/s11538-010-9621-5.<br />

746


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Marcin Pacholczyk<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

Poland<br />

e-mail: marcin.pacholczyk@polsl.pl<br />

Marek Kimmel<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, Rice University, TX USA<br />

e-mail: kimmel@rice.edu<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> protein - small molecule interacti<strong>on</strong>s using<br />

probilistic approach<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> protein - small molecule interacti<strong>on</strong>s is crucial in <str<strong>on</strong>g>th</str<strong>on</strong>g>e discovery <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

new drug candidates and lead structure optimizati<strong>on</strong>. Small biomolecules (ligands)<br />

are highly flexible and may adopt numerous c<strong>on</strong>formati<strong>on</strong>s up<strong>on</strong> binding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

protein. Using computer simulati<strong>on</strong>s instead <str<strong>on</strong>g>of</str<strong>on</strong>g> sophisticated laboratory procedures<br />

may significantly reduce cost <str<strong>on</strong>g>of</str<strong>on</strong>g> some stages <str<strong>on</strong>g>of</str<strong>on</strong>g> drug development. Inspired<br />

by probabilistic pa<str<strong>on</strong>g>th</str<strong>on</strong>g> planning in robotics, stochastic roadmap me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology can be<br />

regarded as a very interesting approach to effective sampling <str<strong>on</strong>g>of</str<strong>on</strong>g> ligand c<strong>on</strong>formati<strong>on</strong>al<br />

space around a protein molecule. Protein - ligand interacti<strong>on</strong>s are divided<br />

into two parts electrostatics, modeled by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Poiss<strong>on</strong>-Boltzmann equati<strong>on</strong>, and van<br />

der Waals interacti<strong>on</strong>s represented by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Lennard-J<strong>on</strong>es potential. The results are<br />

promising since it can be shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> binding sites predicted by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

simulati<strong>on</strong> are in agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose revealed by experimental x-ray crystallography<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protein-ligand complexes. We would like to extend our knowledge bey<strong>on</strong>d<br />

scope available to most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e current molecular modeling tools toward better understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ligand binding process. We try to accomplish <str<strong>on</strong>g>th</str<strong>on</strong>g>is goal using<br />

two-level model <str<strong>on</strong>g>of</str<strong>on</strong>g> protein-ligand interacti<strong>on</strong> and sampling <str<strong>on</strong>g>of</str<strong>on</strong>g> ligand c<strong>on</strong>formati<strong>on</strong>al<br />

space covering <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire surface <str<strong>on</strong>g>of</str<strong>on</strong>g> protein target.<br />

References.<br />

[1] Apaydin MS, Guestrin CE, Varma C, Brutlag DL, Latombe JC. 2002. Stochastic roadmap<br />

simulati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> ligand-protein interacti<strong>on</strong>s. Bioinformatics 18,S18–S26.<br />

[2] Apaydin MS, Brutlag DL, Guestrin C, Hsu D, Latombe JC, Varma C. 2003. Stochastic roadmap<br />

simulati<strong>on</strong>: An efficient representati<strong>on</strong> and algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m for analyzing molecular moti<strong>on</strong>. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Computati<strong>on</strong>al Biology 10,257–281.<br />

[3] Taylor HM, Karlin S. 1998. Markov Chains: Introducti<strong>on</strong>. In An Introducti<strong>on</strong> to Stochastic<br />

Modelling, Academic Press, San Diego. 95–198.<br />

[4] B-Rao C, Subramanian J, Sharma SD. 2009. Managing protein flexibility in docking and its<br />

applicati<strong>on</strong>s. Drug Discovery Today 14,394–400.<br />

[5] Laurie ATR, Jacks<strong>on</strong> RM. 2006. Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein-ligand binding sites<br />

for Structure-Based Drug Design and virtual ligand screening. Current Protein and Peptide<br />

Science 7,395-406.<br />

747


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell migrati<strong>on</strong> during development: modelling and experiment; Saturday,<br />

July 2, 08:30<br />

Kevin Painter<br />

Heriot-Watt University<br />

e-mail: painter@ma.hw.ac.uk<br />

Richard L. Mort<br />

MRC Human Genetics Unit, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics and Molecular Medicine,<br />

Edinburgh<br />

Ian J. Jacks<strong>on</strong><br />

MRC Human Genetics Unit, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics and Molecular Medicine,<br />

Edinburgh<br />

An integrated experimental/<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical approach to explore<br />

cell migrati<strong>on</strong> during embry<strong>on</strong>ic development<br />

Cell migrati<strong>on</strong> is critical to multiple developmental processes, from early embry<strong>on</strong>ic<br />

reorganisati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e intricate wiring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nervous system. Neural crest<br />

cells (NCCs) form a highly motile populati<strong>on</strong> characterised by an epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial to<br />

mesenchymal transformati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows <str<strong>on</strong>g>th</str<strong>on</strong>g>eir migrati<strong>on</strong> to various remote target<br />

tissues, where <str<strong>on</strong>g>th</str<strong>on</strong>g>ey differentiate into multiple cell types. Failure to migrate, proliferate<br />

or differentiate leads to a ple<str<strong>on</strong>g>th</str<strong>on</strong>g>ora <str<strong>on</strong>g>of</str<strong>on</strong>g> bir<str<strong>on</strong>g>th</str<strong>on</strong>g> defects. Melanoblasts, a subtype<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NCC and <str<strong>on</strong>g>th</str<strong>on</strong>g>e embry<strong>on</strong>ic precursors <str<strong>on</strong>g>of</str<strong>on</strong>g> melanocytes, serve as a model system for<br />

cell migrati<strong>on</strong> during development and in pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies such as cancer cell metastasis.<br />

Melanoblasts migrate out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e neural crest into <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing skin before localising<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing embry<strong>on</strong>ic hair follicles. A variety <str<strong>on</strong>g>of</str<strong>on</strong>g> factors may c<strong>on</strong>tribute<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir col<strong>on</strong>isati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e embry<strong>on</strong>ic skin, including tissue grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, melanoblast<br />

motility, melanoblast proliferati<strong>on</strong> and extracellular signaling factors. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk<br />

I will discuss our integrated experimental/<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical approach to understanding<br />

melanoblast invasi<strong>on</strong>, in which data obtained in an ex vivo system for live imaging<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> melanoblast migrati<strong>on</strong> in embry<strong>on</strong>ic skin is incorporated into ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

models which, in turn, are used to test distinct hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses for col<strong>on</strong>isati<strong>on</strong> and<br />

formulate experimentally testable predicti<strong>on</strong>s.<br />

748


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor invasi<strong>on</strong> II; Tuesday, June 28, 14:30<br />

Kevin Painter<br />

Heriot-Watt University<br />

e-mail: painter@ma.hw.ac.uk<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> a heterogeneous envir<strong>on</strong>ment <strong>on</strong> invasive<br />

processes<br />

The invasi<strong>on</strong> or migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in tissues, ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er during embry<strong>on</strong>ic development,<br />

normal physiological processes such as tissue repair or as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies<br />

such as cancer, can be highly variable according to cellular and tissue type. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

talk I will present a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> results, based <strong>on</strong> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> indivudual and c<strong>on</strong>tinuous<br />

level models, <str<strong>on</strong>g>th</str<strong>on</strong>g>at examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix envir<strong>on</strong>ment <strong>on</strong><br />

invasi<strong>on</strong>. Specifically, I will examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> a heterogeneous adhesive<br />

envir<strong>on</strong>ment surrounding cells and varying degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> anisotropy resulting from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

oriented structure <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix fibres.<br />

749


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Laurence Palk<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Auckland<br />

e-mail: l.palk@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.auckland.ac.nz<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid secreti<strong>on</strong> and calcium<br />

dynamics in <str<strong>on</strong>g>th</str<strong>on</strong>g>e salivary gland.<br />

It is estimated <str<strong>on</strong>g>th</str<strong>on</strong>g>at 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> adults in <str<strong>on</strong>g>th</str<strong>on</strong>g>e US will suffer xerostomia, a c<strong>on</strong>diti<strong>on</strong><br />

whereby a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> saliva producti<strong>on</strong> causes issues wi<str<strong>on</strong>g>th</str<strong>on</strong>g> dental cavities, oral pain and<br />

infecti<strong>on</strong>. We c<strong>on</strong>struct a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parotid acinar cell wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

aim <str<strong>on</strong>g>of</str<strong>on</strong>g> investigating how <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> K+ channels and Ca2+ wave speed<br />

affects saliva producti<strong>on</strong>. Secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fluid is initiated by Ca2+ signals acting <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Ca2+ dependent K+ and Cl- channels. The opening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese channels facilitates <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

movement <str<strong>on</strong>g>of</str<strong>on</strong>g> Cl- i<strong>on</strong>s into <str<strong>on</strong>g>th</str<strong>on</strong>g>e lumen which water follows by osmosis. We use recent<br />

results into bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e release <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca2+ from internal stores via <str<strong>on</strong>g>th</str<strong>on</strong>g>e inositol (1,4,5)trisphosphate<br />

receptor (IP3R) and IP3 dynamics to create a physiologically realistic<br />

Ca2+ model which is able to recreate important experimentally observed behaviours<br />

seen in parotid acinar cells. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at maximum saliva producti<strong>on</strong> occurs when<br />

a small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> K+ c<strong>on</strong>ductance is located at <str<strong>on</strong>g>th</str<strong>on</strong>g>e apical membrane, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

majority in <str<strong>on</strong>g>th</str<strong>on</strong>g>e basal membrane. We simulate Ca2+ waves as periodic functi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e apical and basal membranes. This enables us in investigate<br />

how <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase difference <str<strong>on</strong>g>of</str<strong>on</strong>g> apical and basal Ca2+ signals affects fluid flow. We<br />

find maximum fluid flow when Ca2+ signals are in-sync, predicting increased cell<br />

efficiency wi<str<strong>on</strong>g>th</str<strong>on</strong>g> faster Ca2+ waves.<br />

750


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Systems Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Development; Saturday, July 2, 14:30<br />

Margriet M. Palm<br />

Centrum Wiskunde & Informatica (Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands)<br />

and Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands C<strong>on</strong>sortium for Systems Biology (Amsterdam, The<br />

Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands), Science Park 123, 1098 XG The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: m.m.palm@cwi.nl<br />

Roeland M.H. Merks<br />

Centrum Wiskunde & Informatica (Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands)<br />

and Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands C<strong>on</strong>sortium for Systems Biology (Amsterdam, The<br />

Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands), Science Park 123, 1098 XG The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: roeland.merks@cwi.nl<br />

Cell el<strong>on</strong>gati<strong>on</strong> and cell adhesi<strong>on</strong> suffice for vascular network<br />

formati<strong>on</strong><br />

The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blood vessels is crucial in many biological processes including<br />

embry<strong>on</strong>ic development, wound healing and cancer. Vascular networks form by<br />

migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ECM. A multitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

computati<strong>on</strong>al models explain vascular network formati<strong>on</strong> by means <str<strong>on</strong>g>of</str<strong>on</strong>g> chemotaxis<br />

driven aggregati<strong>on</strong>. However, experiments suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at vascular networks may form<br />

also wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out secreted chemoattractants [1].<br />

Previously, we have highlighted cell leng<str<strong>on</strong>g>th</str<strong>on</strong>g> as a key property for vascular-like<br />

network formati<strong>on</strong> [2]: a cell-based, Cellular Potts model indicated <str<strong>on</strong>g>th</str<strong>on</strong>g>at chemotaxis<br />

and cell el<strong>on</strong>gati<strong>on</strong>, toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er, suffice for forming stable, regular networks. We have<br />

now analyzed <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model in absence <str<strong>on</strong>g>of</str<strong>on</strong>g> chemotaxis, and find <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

cell el<strong>on</strong>gati<strong>on</strong> and cell adhesi<strong>on</strong> al<strong>on</strong>e suffice for forming network-like structures.<br />

The deformability <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir adhesi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e ECM turn out to be key to<br />

network formati<strong>on</strong>. Flexible, adherent cells form blobs wi<str<strong>on</strong>g>th</str<strong>on</strong>g> individual cells packed<br />

closely toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er. More rigid, el<strong>on</strong>gated cells cannot assume <str<strong>on</strong>g>th</str<strong>on</strong>g>eir ideal shape inside<br />

a blob, making network-like structures <str<strong>on</strong>g>th</str<strong>on</strong>g>e preferred c<strong>on</strong>figurati<strong>on</strong>. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out chemotaxis,<br />

network-like patterns form in a narrow regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter space; chemotaxis<br />

dramatically widens <str<strong>on</strong>g>th</str<strong>on</strong>g>is regi<strong>on</strong> and sharpens <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase transiti<strong>on</strong>s between blobs<br />

and networks. C<strong>on</strong>cluding, vascular network formati<strong>on</strong> does not necessarily require<br />

chemotaxis or similar, midrange attractive forces between cells, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough such forces<br />

make network-like patterning more robust.<br />

References.<br />

[1] Andras Szabó, Network Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tissue Cells via Preferential Attracti<strong>on</strong> to El<strong>on</strong>gated<br />

Structures Phys Rev Lett 2007<br />

[2] Roeland M.H. Merks et al, Cell el<strong>on</strong>gati<strong>on</strong> is key to in silico replicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> in vitro vasculogenesis<br />

and subsequent remodeling Dev Biol 2006<br />

751


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Thursday, June 30, 11:30<br />

Peter Pang<br />

Nati<strong>on</strong>al University <str<strong>on</strong>g>of</str<strong>on</strong>g> Singapore (Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>)<br />

e-mail: matpyh@nus.edu.sg<br />

H. L. Li<br />

Sou<str<strong>on</strong>g>th</str<strong>on</strong>g>east University, China<br />

M. X. Wang<br />

Harbin Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, China<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> an ecosystem wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-level<br />

trophic interacti<strong>on</strong>s<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, <str<strong>on</strong>g>th</str<strong>on</strong>g>e speaker will discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatiotemporal<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> an ecosystem wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-level trophic interacti<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

model, a general trophic functi<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio between <str<strong>on</strong>g>th</str<strong>on</strong>g>e prey and a linear<br />

functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e predator is used at each level. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e two limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is trophic<br />

functi<strong>on</strong>, <strong>on</strong>e recovers <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical prey-dependent (Lotka-Volterra type) predati<strong>on</strong><br />

model and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio-dependent predati<strong>on</strong> model, respectively.<br />

The model results in a str<strong>on</strong>gly-coupled system <str<strong>on</strong>g>of</str<strong>on</strong>g> parabolic partial differential<br />

equati<strong>on</strong>s. The speaker will analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence, uniqueness, stability and bifurcati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> equilibrium (steady state) soluti<strong>on</strong>s using <str<strong>on</strong>g>th</str<strong>on</strong>g>e upper-lower soluti<strong>on</strong>s me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e topological degree me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. He will also interpret some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> different predati<strong>on</strong> behaviors (prey-dependent vs ratio-dependent).<br />

The speaker also points out <str<strong>on</strong>g>th</str<strong>on</strong>g>at he and his co-au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors have used similar me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

to study ecosystems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different predati<strong>on</strong> behaviors and strategies, different<br />

spatial features, as well as different species grow<str<strong>on</strong>g>th</str<strong>on</strong>g> patterns. This talk will include<br />

a brief survey <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results (which have been published in a series <str<strong>on</strong>g>of</str<strong>on</strong>g> papers<br />

in Proc Roy Soc Edinburgh, Proc L<strong>on</strong>d<strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Soc, J Differential Equati<strong>on</strong>s,<br />

IMA J Appl Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>, SIAM J Appl Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> etc).<br />

752


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Signals II; Saturday, July 2, 11:00<br />

A. Panorska<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nevada, Reno<br />

e-mail: ania@unr.edu<br />

The joint distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sum and maximum <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

exp<strong>on</strong>ential random variables wi<str<strong>on</strong>g>th</str<strong>on</strong>g> applicati<strong>on</strong>s to biology<br />

We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum Y and sum X <str<strong>on</strong>g>of</str<strong>on</strong>g> n iid exp<strong>on</strong>ential<br />

random variables. We present <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact joint distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vector (X, Y)<br />

toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its marginals and c<strong>on</strong>diti<strong>on</strong>als. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er, we extend our result to<br />

stochastic number <str<strong>on</strong>g>of</str<strong>on</strong>g> terms, and present <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact joint distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e random<br />

vector (N, X, Y), when N has a geometric distributi<strong>on</strong>. Then, X is <str<strong>on</strong>g>th</str<strong>on</strong>g>e random sum<br />

and Y is <str<strong>on</strong>g>th</str<strong>on</strong>g>e random maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> N iid exp<strong>on</strong>ential random variables. We illustrate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese distributi<strong>on</strong>s using applicati<strong>on</strong>s in biology.<br />

753


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Structure and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Reacti<strong>on</strong> Networks I; Tuesday, June<br />

28, 14:30<br />

Casian Pantea<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>sin-Madis<strong>on</strong><br />

e-mail: pantea@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.wisc.edu<br />

Persistence and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Global Attractor C<strong>on</strong>jecture: Recent<br />

Approaches<br />

We describe recent approaches to proving <str<strong>on</strong>g>th</str<strong>on</strong>g>e Persistence C<strong>on</strong>jecture (which describes<br />

a class <str<strong>on</strong>g>of</str<strong>on</strong>g> mass-acti<strong>on</strong> systems for which variables do not approach zero) and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Global Attractor C<strong>on</strong>jecture (which describes a class <str<strong>on</strong>g>of</str<strong>on</strong>g> mass-acti<strong>on</strong> systems for<br />

which trajectories c<strong>on</strong>verge to a single positive equilibrium). We introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e class<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> "endotactic" networks (which c<strong>on</strong>tains <str<strong>on</strong>g>th</str<strong>on</strong>g>e class <str<strong>on</strong>g>of</str<strong>on</strong>g> weakly reversible networks),<br />

and formulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e Extended Persistence C<strong>on</strong>jecture, which says <str<strong>on</strong>g>th</str<strong>on</strong>g>at endotactic<br />

mass-acti<strong>on</strong> systems are persistent, even if <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong> rate parameters are allowed<br />

to vary in time (to incorporate <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> external signals). We describe a pro<str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Extended Persistence C<strong>on</strong>jecture for systems <str<strong>on</strong>g>th</str<strong>on</strong>g>at have two-dimensi<strong>on</strong>al stoichiometric<br />

subspace. In particular, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in weakly reversible mass-acti<strong>on</strong><br />

systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two-dimensi<strong>on</strong>al stoichiometric subspace all bounded trajectories are<br />

persistent. These ideas also apply to power-law systems and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er n<strong>on</strong>linear dynamical<br />

systems. Moreover, we use <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results to prove <str<strong>on</strong>g>th</str<strong>on</strong>g>e Global Attractor<br />

C<strong>on</strong>jecture for systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al stoichiometric subspace. This is<br />

joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Gheorghe Craciun and Fedor Nazarov.<br />

754


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Je<strong>on</strong>g-Man Park<br />

The Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>olic University <str<strong>on</strong>g>of</str<strong>on</strong>g> Korea<br />

e-mail: jmanpark@ca<str<strong>on</strong>g>th</str<strong>on</strong>g>olic.ac.kr<br />

Mark Ancliff<br />

The Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>olic University <str<strong>on</strong>g>of</str<strong>on</strong>g> Korea<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Spin coherent state representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Crow-Kimura and<br />

Eigen models <str<strong>on</strong>g>of</str<strong>on</strong>g> quasispecies <str<strong>on</strong>g>th</str<strong>on</strong>g>eory<br />

We present a spin coherent state representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Crow-Kimura and Eigen<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> biological evoluti<strong>on</strong>. We deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> quasispecies models where <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness<br />

is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hamming distances from <strong>on</strong>e or more reference sequences. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

limit <str<strong>on</strong>g>of</str<strong>on</strong>g> large sequence leng<str<strong>on</strong>g>th</str<strong>on</strong>g> N, we find exact expressi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean fitness and<br />

magnetizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic quasispecies distributi<strong>on</strong> in symmetric fitness landscapes.<br />

The results are obtained by c<strong>on</strong>structing a pa<str<strong>on</strong>g>th</str<strong>on</strong>g> integral for <str<strong>on</strong>g>th</str<strong>on</strong>g>e propagator<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coset SU(2)/U(1) and taking <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical limit. The classical limit gives a<br />

Hamilt<strong>on</strong>ian functi<strong>on</strong> <strong>on</strong> a circle for <strong>on</strong>e reference sequence, and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e product <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

2m − 1 circles for m reference sequences. We apply our representati<strong>on</strong> to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Schuster-Swetina phenomena, where a wide lower peak is selected over a narrow<br />

higher peak. The quadratic landscape wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two reference sequences is also analyzed<br />

specifically and we present <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase diagram <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong>-fitness parameter<br />

phase space. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we use our me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to investigate more biologically relevant<br />

system, a model <str<strong>on</strong>g>of</str<strong>on</strong>g> escape from adaptive c<strong>on</strong>flict <str<strong>on</strong>g>th</str<strong>on</strong>g>rough gene duplicati<strong>on</strong>,<br />

and find <str<strong>on</strong>g>th</str<strong>on</strong>g>ree different phases for <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic populati<strong>on</strong> distributi<strong>on</strong>.<br />

755


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Genetics; Wednesday, June 29, 17:00<br />

Su-Chan Park<br />

The Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>olic University <str<strong>on</strong>g>of</str<strong>on</strong>g> Korea, Republic <str<strong>on</strong>g>of</str<strong>on</strong>g> Korea<br />

e-mail: spark0@ca<str<strong>on</strong>g>th</str<strong>on</strong>g>olic.ac.kr<br />

Kavita Jain<br />

Jawaharlal Nehru Centre for Advanced Scientific Research, India<br />

Joachim Krug<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cologne, Germany<br />

Evoluti<strong>on</strong>ary advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> small populati<strong>on</strong>s <strong>on</strong> complex<br />

fitness landscapes<br />

Recent experimental (Rozen et al. 2008) and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical (Handel and Rozen, 2009)<br />

studies have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at small asexual populati<strong>on</strong>s evolving <strong>on</strong> complex fitness landscapes<br />

may achieve a higher fitness <str<strong>on</strong>g>th</str<strong>on</strong>g>an large <strong>on</strong>es due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e increased heterogeneity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive trajectories. Here we introduce a class <str<strong>on</strong>g>of</str<strong>on</strong>g> haploid <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-locus fitness<br />

landscapes <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is scenario in a precise and quantitative<br />

way. Our main result derived analytically shows how <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> choosing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e largest initial fitness increase grows wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> size. This<br />

makes large populati<strong>on</strong>s more likely to get trapped at local fitness peaks and implies<br />

an advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> small populati<strong>on</strong>s at intermediate time scales. The range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

populati<strong>on</strong> sizes where <str<strong>on</strong>g>th</str<strong>on</strong>g>is effect is operative coincides wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>al<br />

interference. Additi<strong>on</strong>al studies using ensembles <str<strong>on</strong>g>of</str<strong>on</strong>g> random fitness landscapes show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e results achieved for a particular choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-locus landscape parameters<br />

are robust and also persist as <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> loci increases. Our study indicates<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at an advantage for small populati<strong>on</strong>s is likely whenever <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness landscape<br />

c<strong>on</strong>tains local maxima. The advantage appears at intermediate time scales, which<br />

are l<strong>on</strong>g enough for trapping at local fitness maxima to have occurred but too short<br />

for peak escape by <str<strong>on</strong>g>th</str<strong>on</strong>g>e creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple mutants. This presentati<strong>on</strong> is based <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e paper (Jain et al. 2011).<br />

References.<br />

[1] Rozen, D. E., M. G. J. L. Habets, A. Handel, and J. A. G. M. de Visser. 2008. Heterogeneous<br />

adaptive trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> small populati<strong>on</strong>s <strong>on</strong> complex fitness landscapes. PLoS ONE 3:e1715.<br />

[2] Handel, A., and D. E. Rozen. 2009. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> size <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> asexual<br />

microbes <strong>on</strong> smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> versus rugged fitness landscapes. BMC Evoluti<strong>on</strong>ary Biology 9:236.<br />

[3] Jain, K., J. Krug, and S.-C. Park. 2011. Evoluti<strong>on</strong>ary advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> small populati<strong>on</strong>s <strong>on</strong><br />

complex fitness landscapes, to appear in Evoluti<strong>on</strong>.<br />

756


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Thursday, June 30, 11:30<br />

Kalle Parvinen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, Finland<br />

e-mail: kalle.parvinen@utu.fi<br />

Joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal and cooperati<strong>on</strong> in a locally<br />

stochastic metapopulati<strong>on</strong> model<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will investigate a structured metapopulati<strong>on</strong> model [2], c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> small local populati<strong>on</strong>s. Local populati<strong>on</strong> dynamics (bir<str<strong>on</strong>g>th</str<strong>on</strong>g>, dea<str<strong>on</strong>g>th</str<strong>on</strong>g>, emigrati<strong>on</strong><br />

and immigrati<strong>on</strong>) is <str<strong>on</strong>g>th</str<strong>on</strong>g>us stochastic. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal in <str<strong>on</strong>g>th</str<strong>on</strong>g>is model has<br />

been earlier studied [3]: <str<strong>on</strong>g>th</str<strong>on</strong>g>e dispersal rate evolves, because catastrophes and demographic<br />

stochasticity result in sparsely populated patches, into which immigrati<strong>on</strong><br />

is beneficial. In additi<strong>on</strong>, dispersal reduces kin competiti<strong>on</strong>.<br />

Recently, <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> public goods cooperati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>is model has also been<br />

studied [4]. In each habitat patch, individuals can c<strong>on</strong>tribute to a comm<strong>on</strong> resource,<br />

which benefits <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e patch. C<strong>on</strong>tributi<strong>on</strong> is<br />

costly, and increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributor. I assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at cooperati<strong>on</strong><br />

is altruistic, <str<strong>on</strong>g>th</str<strong>on</strong>g>us <str<strong>on</strong>g>th</str<strong>on</strong>g>e direct benefits from <str<strong>on</strong>g>th</str<strong>on</strong>g>e own acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a focal individual will<br />

never exceed <str<strong>on</strong>g>th</str<strong>on</strong>g>eir direct costs. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless cooperati<strong>on</strong> can evolve, because <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

benefits to own kin.<br />

It is obvious <str<strong>on</strong>g>th</str<strong>on</strong>g>at dispersal affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperati<strong>on</strong>: for low dispersal<br />

rates relatedness is high, and cooperati<strong>on</strong> can evolve. Increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dispersal rate<br />

is expected to decrease relatedness, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us make cooperati<strong>on</strong> less favorable. This<br />

is, however, not always <str<strong>on</strong>g>th</str<strong>on</strong>g>e case, and even evoluti<strong>on</strong>ary suicide can be observed<br />

[4]. Cooperati<strong>on</strong> will also affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal: a highly cooperating<br />

individual is expected to disperse less <str<strong>on</strong>g>th</str<strong>on</strong>g>an an individual, which cooperates <strong>on</strong>ly<br />

little or not at all. These effects give motivati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal and cooperati<strong>on</strong> using <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive dynamics [1]. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

talk I will present various evoluti<strong>on</strong>ary outcomes possible in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, including<br />

evoluti<strong>on</strong>ary branching and evoluti<strong>on</strong>ary suicide. I will also discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

essential parameters.<br />

References.<br />

[1] Geritz, S. A. H., É. Kisdi, G. Meszéna, and J. A. J. Metz. Evoluti<strong>on</strong>arily singular strategies<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and branching <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary tree. Evol. Ecol. 12, 35–57, 1998.<br />

[2] J. A. J. Metz and M. Gyllenberg. How should we define fitness in structured metapopulati<strong>on</strong><br />

models? Including an applicati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ES dispersal strategies. Proc. Royal<br />

Soc. L<strong>on</strong>d<strong>on</strong> B, 268:499–508, 2001.<br />

[3] K. Parvinen, U. Dieckmann, M. Gyllenberg, and J. A. J. Metz. Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal in<br />

metapopulati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> local density dependence and demographic stochasticity. J. Evol. Biol,<br />

16:143–153, 2003.<br />

[4] K. Parvinen. Adaptive dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> altruistic cooperati<strong>on</strong> in a metapopulati<strong>on</strong>: Evoluti<strong>on</strong>ary<br />

emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> cooperators and defectors or evoluti<strong>on</strong>ary suicide? Bull. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol., in press<br />

DOI: 10.1007/s11538-011-9638-4<br />

757


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Virginia Pasour<br />

US Army Research Office<br />

e-mail: virginia.pasour@us.army.mil<br />

Laura Miller<br />

UNC - Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Steve Ellner<br />

Cornell - EEB<br />

Ecosystems Dynamics; Tuesday, June 28, 14:30<br />

Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Macrophytes <strong>on</strong> Biological Residence Time in a<br />

Flow-Through System<br />

While plankt<strong>on</strong> have <str<strong>on</strong>g>of</str<strong>on</strong>g>ten been <str<strong>on</strong>g>th</str<strong>on</strong>g>ought to behave as passive tracers, completely at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mercy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hydrodynamic flow, <str<strong>on</strong>g>th</str<strong>on</strong>g>e comm<strong>on</strong>ness <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong> patches, as well<br />

as field studies showing evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> microorganism movement against <str<strong>on</strong>g>th</str<strong>on</strong>g>e bulk (or<br />

mean) flow, suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at individual plankt<strong>on</strong> behavior such as vertical/horiz<strong>on</strong>tal<br />

migrati<strong>on</strong> may dominate at smaller scales. In natural water bodies such as embayments<br />

and estuaries, macrophytes can have a significant and complex effect <strong>on</strong><br />

water flow and can greatly complicate physical/biological interacti<strong>on</strong>s. Using a<br />

two-dimensi<strong>on</strong>al hydrodynamic model to create flows in an idealized channel wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

macrophytes modeled as a porous layer, we first model <str<strong>on</strong>g>th</str<strong>on</strong>g>e channel under a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different macrophyte regimes, varying <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> patches and height and<br />

density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macrophytes. We next model plankt<strong>on</strong> behavior under <str<strong>on</strong>g>th</str<strong>on</strong>g>ese different<br />

flow regimes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an individual-based model and explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e extent to which<br />

vertical migrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> macrophytes affects plankt<strong>on</strong> trajectories. In<br />

particular, we are interested in studying how <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong> migrati<strong>on</strong><br />

behaviors and macrophyte structures affect biological retenti<strong>on</strong> and whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er a set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong> regimes exists for a given hydrodynamic forcing <str<strong>on</strong>g>th</str<strong>on</strong>g>at will allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

plankt<strong>on</strong> to stay wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e study system (avoid washout) ’forever.’<br />

758


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling I; Tuesday, June 28, 17:00<br />

Pawel Paszek<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Liverpool<br />

e-mail: paszek@liv.ac.uk<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Michael White<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Manchester<br />

Oscillati<strong>on</strong>s and feedback regulati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e NF-B signalling<br />

Time-lapse cell imaging showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at in resp<strong>on</strong>se to Tumour Necrosis Factor alpha<br />

(TNF) Nuclear Factor kappa B (NF-B) transcripti<strong>on</strong> factor oscillates between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cytoplasm and nucleus (Nels<strong>on</strong> et al., (2004) Science 306: 704). Treatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

repeat pulses <str<strong>on</strong>g>of</str<strong>on</strong>g> TNF at different intervals enabled frequency-dependent encoding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> target gene expressi<strong>on</strong> (Ashall et al., (2009) Science 324: 242). Development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a highly c<strong>on</strong>strained ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at cellular variati<strong>on</strong> in NF-B<br />

dynamics arises from a dual-delayed negative feedback motif (involving stochastic<br />

transcripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> IB and IB). We suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is feedback motif enables NF-B<br />

signalling to generate robust single cell oscillati<strong>on</strong>s by reducing sensitivity to key<br />

parameter perturbati<strong>on</strong>s. Enhanced cell heterogeneity may represent a mechanism<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trols <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall coordinati<strong>on</strong> and stability <str<strong>on</strong>g>of</str<strong>on</strong>g> cell populati<strong>on</strong> resp<strong>on</strong>ses by<br />

decreasing temporal fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> paracrine signalling (Paszek et al., (2010) PNAS<br />

107: 11644). We have also shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell to cell heterogeneity is pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly<br />

increased following low-dose stimulati<strong>on</strong>. Low doses <str<strong>on</strong>g>of</str<strong>on</strong>g> TNF resulted in stochastic<br />

delays in single cells, but <strong>on</strong>ce <str<strong>on</strong>g>th</str<strong>on</strong>g>e first translocati<strong>on</strong> occurs <str<strong>on</strong>g>th</str<strong>on</strong>g>e typical 100 min<br />

period was maintained (Turner, et al., (2010) J. Cell Sci. 15: 2834). Our analyses<br />

dem<strong>on</strong>strate a fundamental role <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillatory dynamics in c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> inflammatory<br />

signalling at different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular organisati<strong>on</strong>.<br />

759


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent advances in infectious disease modelling I; Saturday, July 2, 11:00<br />

Kasia Pawelek<br />

Oakland University<br />

e-mail: kmarzec@oakland.edu<br />

Modeling wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-host dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza virus infecti<strong>on</strong><br />

including kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> innate and adaptive immune resp<strong>on</strong>ses<br />

Despite vaccines and antiviral agents, influenza infecti<strong>on</strong> remains a major public<br />

heal<str<strong>on</strong>g>th</str<strong>on</strong>g> problem worldwide. It is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological events<br />

underlying virus replicati<strong>on</strong> and host immune resp<strong>on</strong>se in order to develop more<br />

effective vaccines, treatments, and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er preventi<strong>on</strong> strategies. Here, we develop a<br />

new ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-host dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza infecti<strong>on</strong>.<br />

By comparing modeling predicti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> interfer<strong>on</strong> and virus kinetic data, we<br />

examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative roles <str<strong>on</strong>g>of</str<strong>on</strong>g> target cell availability, innate and adaptive immune<br />

resp<strong>on</strong>se in c<strong>on</strong>trolling <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus. This work provides a detailed and quantitative<br />

understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at can explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e virus kinetics during a<br />

typical influenza infecti<strong>on</strong>.<br />

760


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling IV; Saturday, July 2, 08:30<br />

Jakub Pekalski 1 , Paweł Żuk 1 , Savas Tay 2 and Tomasz Lipniacki 3<br />

e-mail: jpek@ippt.gov.pl<br />

e-mail: pzuk@ippt.gov.pl<br />

e-mail: savas.tay@gmail.com<br />

e-mail: tlipnia@ippt.gov.pl<br />

1 University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Poland<br />

2 ETH Zurich Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosystems Science and Engineering, Basel,<br />

Switzerland.<br />

3 Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research - Polish Academy<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw, Poland<br />

Positive feedback in NF-κB signaling<br />

NF-κB is a key transcripti<strong>on</strong> factor c<strong>on</strong>trolling immune resp<strong>on</strong>ses, such as inflammati<strong>on</strong>,<br />

proliferati<strong>on</strong> and apoptosis. Its regulatory system is tightly c<strong>on</strong>trolled<br />

by several feedback loops. The two negative loops mediated by NF-κB inducible<br />

inhibitors, IκBα and A20, provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillatory resp<strong>on</strong>ses to <str<strong>on</strong>g>th</str<strong>on</strong>g>e t<strong>on</strong>ic TNFα<br />

stimulati<strong>on</strong>, in which NF-κB translocates in and out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nucleus wi<str<strong>on</strong>g>th</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

about 100 min. These oscillati<strong>on</strong>s maintain NF-κB phosphorylati<strong>on</strong>, and are indispensable<br />

for NF-κB dependent signalling. Here, we explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback<br />

loop mediated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e NF-κB inducible cytokine TNFα, which is secreted by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

activated cells and can bind TNFα membrane receptors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e neighboring cells,<br />

or <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same cell <str<strong>on</strong>g>th</str<strong>on</strong>g>at give rise to <str<strong>on</strong>g>th</str<strong>on</strong>g>e positive feedback regulati<strong>on</strong>. This positive<br />

feedback is negligible in most <str<strong>on</strong>g>of</str<strong>on</strong>g> cell lines, but may become, as suggested by our<br />

study, dominant in immune cells like m<strong>on</strong>ocytes or macrophages <str<strong>on</strong>g>th</str<strong>on</strong>g>at have a high<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> TNFα expressi<strong>on</strong>.<br />

The proposed stochastic model pursues our earlier studies [1-2], by including<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e positive feedback loop regulati<strong>on</strong>. The bifurcati<strong>on</strong> analysis performed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

deterministic approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic model, revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at for a broad range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcati<strong>on</strong> parameter (rate <str<strong>on</strong>g>of</str<strong>on</strong>g> TNFα syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis) <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit cycle and stable<br />

steady state coexist. As a result single cells stochastic trajectories may jump between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese two attractors. Such jumps corresp<strong>on</strong>d to <str<strong>on</strong>g>th</str<strong>on</strong>g>e sp<strong>on</strong>taneous activatory –<br />

inactivatory transiti<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic model <str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcati<strong>on</strong> parameter c<strong>on</strong>trols<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong> and <str<strong>on</strong>g>of</str<strong>on</strong>g>f rates and <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>th</str<strong>on</strong>g>at cell is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillatory state. Interestingly,<br />

even in <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter range in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit cycle oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

deterministic approximati<strong>on</strong> are not present, <str<strong>on</strong>g>th</str<strong>on</strong>g>e sp<strong>on</strong>taneous activati<strong>on</strong> probability<br />

is not zero. The model satisfactorily reproduces single cell kinetic <str<strong>on</strong>g>of</str<strong>on</strong>g> SK-N-AS<br />

cell [3], which exhibit sp<strong>on</strong>taneous activati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> TNF stimulati<strong>on</strong>.<br />

This study was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Polish Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Higher Educati<strong>on</strong><br />

grant N N501 132936 and Foundati<strong>on</strong> for Polish Science grant TEAM/2009-<br />

3/6.<br />

References.<br />

[1] Lipniacki, T., Puszynski, K., Paszek, P., Brasier, A.R., Kimmel, M., 2007. Single TNFα trimers<br />

mediating NF-κB activati<strong>on</strong>: Stochastic robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> NF-κB signaling. BMC Bioinformatics<br />

8, 376.<br />

761


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] S. Tay, J. Hughey, T. Lee, T. Lipniacki, M. Covert, S. Quake., Single-cell NF-κB dynamics<br />

reveal digital activati<strong>on</strong> and analogue informati<strong>on</strong> processing Nature. 466 267-271.<br />

[3] Turner DA, Paszek P, Woodcock DJ, Nels<strong>on</strong> DE, Hort<strong>on</strong> CA, Wang Y, Spiller DG, Rand DA,<br />

White MR, Harper CV., Physiological levels <str<strong>on</strong>g>of</str<strong>on</strong>g> TNFα stimulati<strong>on</strong> induce stochastic dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NF-κB resp<strong>on</strong>ses in single living cells J Cell Sci. 123 2834-43.<br />

762


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling V; Saturday, July 2, 11:00<br />

Zbigniew Peradzynski<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics<br />

and Mechanics, Banacha 2, 00-097 Warsaw, Poland<br />

and<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research, 02-106 Warsaw<br />

e-mail: zperadz@mimuw.edu.pl<br />

On mechanical effects accompanying and influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium.<br />

We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling between chemical and mechanical processes which are<br />

accompanying and influencing <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium in biological tissues. The<br />

tissue as a whole, similarly as a single cell, is treated as a visco-elastic medium.<br />

The diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium is enhanced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e autocatalytic release <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium, and<br />

modified by reacti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> diffusing buffers. In additi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical strain<br />

can also influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e release <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytosolic calcium. As a result, <str<strong>on</strong>g>th</str<strong>on</strong>g>e waves <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

calcium c<strong>on</strong>centrati<strong>on</strong> can be excited by <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical as well as by <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemical<br />

means. Developing certain asymptotic procedures wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e viscosity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e medium as well as wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to its size (a <str<strong>on</strong>g>th</str<strong>on</strong>g>in cylinder as a model <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell and<br />

a <str<strong>on</strong>g>th</str<strong>on</strong>g>in layer <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue), and finally assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>e fast reacti<strong>on</strong> terms in equati<strong>on</strong>s for<br />

buffers, we reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e full system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s to a single n<strong>on</strong>linear reacti<strong>on</strong> diffusi<strong>on</strong><br />

equati<strong>on</strong>. The dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is equati<strong>on</strong> corresp<strong>on</strong>ds to <str<strong>on</strong>g>th</str<strong>on</strong>g>e dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e problem (a single space variable for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell, two space variables for a <str<strong>on</strong>g>th</str<strong>on</strong>g>in layer<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tissue, and <str<strong>on</strong>g>th</str<strong>on</strong>g>ree space variables in case <str<strong>on</strong>g>of</str<strong>on</strong>g> a bulk medium).<br />

This study was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Polish Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Higher Educati<strong>on</strong><br />

grant N N501 132936.<br />

References.<br />

[1] B. Kazmierczak. Z. Peradzynski, Calcium waves wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fast buffers and mechanical effects, J.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 62 (2011), 1-38.<br />

[2] Z. Peradzynski, Diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium in biological tissues and accompanying mechano-chemical<br />

effects, Arch. Mech., 62 (2010), Issue 6, 423-440.<br />

763


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 11:00<br />

Víctor M. Pérez-García<br />

Departamento de Matemáticas, E.T.S. de Ingenieros Industriales &<br />

IMACI-Instituto de Matemática Aplicada a la Ciencia y la Ingeniería,<br />

Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain<br />

e-mail: victor.perezgarcia@uclm.es<br />

J. Belm<strong>on</strong>te-Beitia, G. F. Calvo, D. Diego<br />

Departamento de Matemáticas, IMACI-Instituto de Matemática Aplicada<br />

a la Ciencia y la Ingeniería, Universidad de Castilla-La Mancha,<br />

13071, Ciudad Real, Spain<br />

Bright solit<strong>on</strong>s in malignant gliomas<br />

Malignant gliomas are <str<strong>on</strong>g>th</str<strong>on</strong>g>e most comm<strong>on</strong> and deadly brain tumors. Survival<br />

for patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> glioblastoma multiforme (GBM), <str<strong>on</strong>g>th</str<strong>on</strong>g>e most aggressive glioma, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough<br />

individually variable, is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g>s to 14 m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g>s after diagnosis,<br />

using standard treatments which include surgery, radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy, chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

(temozolamide and antiangiogenic drugs such as bevacizumab) [1]. GBM is a<br />

rapidly evolving astrocytoma <str<strong>on</strong>g>th</str<strong>on</strong>g>at is distinguished pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologically from lower grade<br />

gliomas by <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> necrosis and microvascular hyperplasia.<br />

Many ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models have been proposed to describe specific aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

GBM cell lines in vitro [2,3] and <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in vivo even under <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy [4-6]. Recently some applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models have been used<br />

to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e survival <str<strong>on</strong>g>of</str<strong>on</strong>g> patients after surgical resecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GBMs [7].<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models in use for GBM are based <strong>on</strong> a simple<br />

reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fischer equati<strong>on</strong> [8]. This equati<strong>on</strong> in <strong>on</strong>e spatial<br />

dimensi<strong>on</strong>s has travelling wave soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> kink type but has no travelling<br />

wave soluti<strong>on</strong>s in higher dimensi<strong>on</strong>s [9].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is communicati<strong>on</strong> we will first describe two extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fischer equati<strong>on</strong>,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e first <strong>on</strong>e accounting for <str<strong>on</strong>g>th</str<strong>on</strong>g>e necrotic core and <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal tissue and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

sec<strong>on</strong>d <strong>on</strong>e incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>e vasculature. We will <str<strong>on</strong>g>th</str<strong>on</strong>g>en show how bright tumor<br />

solit<strong>on</strong>s arise sp<strong>on</strong>taneously separating a kink <str<strong>on</strong>g>of</str<strong>on</strong>g> normal tissue from a kink <str<strong>on</strong>g>of</str<strong>on</strong>g> growing<br />

necrotic tissue. We will relate <str<strong>on</strong>g>th</str<strong>on</strong>g>e solit<strong>on</strong> parameters (corresp<strong>on</strong>ding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

active tumor area) to <str<strong>on</strong>g>th</str<strong>on</strong>g>e clinically relevant parameters. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> surgical resecti<strong>on</strong><br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>linear dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system will be discussed. In our analysis<br />

we will resort to different tools <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear waves: time-dependent<br />

variati<strong>on</strong>al me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods [10], moment me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods [11], Lie group <str<strong>on</strong>g>th</str<strong>on</strong>g>eory me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods [12],<br />

similarity transformati<strong>on</strong>s [13], and numerical simulati<strong>on</strong>s. We will also discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

existence <str<strong>on</strong>g>of</str<strong>on</strong>g> multidimensi<strong>on</strong>al travelling waves employing analytical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods and<br />

advanced numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>e system’s geometry [14].<br />

References.<br />

[1] E. G. Van Meir, C. G. Hadjipanayis, A. D. Norden, H.-K. Shu, P. Y. Wen, and J. J. Ols<strong>on</strong>,<br />

Exciting New Advances in Neuro-Oncology: The Avenue to a Cure for Malignant Glioma,<br />

CA Cancer J. Clin. 60 166-193 (2010).<br />

[2] E. Khain and L. M. Sander, Dynamics and Pattern Formati<strong>on</strong>s in Invasive Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g>,<br />

Physical Review Letters, 96, 188103 (2006).<br />

[3] K. Swans<strong>on</strong>, Quantifying glioma cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and invasi<strong>on</strong> in vitro, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Computer<br />

Modelling 47 638-648 (2008).<br />

764


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[4] P.-Y. B<strong>on</strong>diau, O. Clatz, M. Sermensant, P.-Y. Marcy, H. Delingette, M. Frenay, N. Ayache,<br />

Biocomputing: numerical simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma grow<str<strong>on</strong>g>th</str<strong>on</strong>g> using diffusi<strong>on</strong> tensor imaging,<br />

Physics in Medicine and Biology 53 879-893 (2008).<br />

[5] E. K<strong>on</strong>ukoglu, O. Clatz, P.-Y. B<strong>on</strong>diau, H. Delingette, N. Ayache, Medical Image Analysis 14<br />

111-125 (2010).<br />

[6] R. Rockne, J. Rockhill, M. Mrugala, A. M. Spence, I. Kalet, K. Hendricks<strong>on</strong>, A. Lai, T.<br />

Cloughesy, E. C. Alvord, K. R. Swans<strong>on</strong>, Predicting <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> radio<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in individual<br />

glioblastoma patients in vivo: a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling approach, Physics in Medicine and<br />

Biology 55 3271-3285 (2010).<br />

[7] K.R. Swans<strong>on</strong>, R.C. Rostomily and E.C. Alvord Jr, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling tool for predicting<br />

survival <str<strong>on</strong>g>of</str<strong>on</strong>g> individual patients following resecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma: a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> principle,<br />

British Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer 98 113-119 (2008).<br />

[8] J. D . Murray, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biology, Springer, Third Editi<strong>on</strong> (2007).<br />

[9] P. V. Brazhnik, J. J. Tys<strong>on</strong>, On travelling wave soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Fischers equati<strong>on</strong> in two spatial<br />

dimensi<strong>on</strong>s, SIAM J. <strong>on</strong> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics 60 371 (2000).<br />

[10] B. A. Malomed, Variati<strong>on</strong>al me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in n<strong>on</strong>linear fiber optics and related fields, Progress in<br />

Optics 43 71-193 (2002).<br />

[11] Víctor M. Pérez-García, P. J. Torres, G. D. M<strong>on</strong>tesinos, The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> moments for n<strong>on</strong>linear<br />

Schrödinger equati<strong>on</strong>s: Theory and Applicati<strong>on</strong>s, SIAM J. Appl. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. 67 990-1015 (2007).<br />

[12] J. Belm<strong>on</strong>te-Beitia, Víctor M. Pérez-García, V. Vekslerchik, P. Torres, Lie symmetries and<br />

solit<strong>on</strong>s in n<strong>on</strong>linear systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> spatially inhomogeneous n<strong>on</strong>linearities, Physical Review<br />

Letters 98 064102 (2007).<br />

[13] J. Belm<strong>on</strong>te-Beitia, Víctor M. Pérez-García, V. Vekslerchik, V. V. K<strong>on</strong>otop, Localized n<strong>on</strong>linear<br />

waves in systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> time- and space-modulated n<strong>on</strong>linearities, Physical Review Letters<br />

100 164102 (2008).<br />

[14] A. Bueno-Orovio, Víctor M. Pérez-García, F. H. Fent<strong>on</strong>, Spectral Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for Partial Differential<br />

Equati<strong>on</strong>s in Irregular Domains: The Spectral Smoo<str<strong>on</strong>g>th</str<strong>on</strong>g>ed Boundary Me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, SIAM<br />

Journal <strong>on</strong> Scientific Computing 28 886 (2006).<br />

765


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modelling bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms: from gene regulati<strong>on</strong> to large-scale structure and<br />

functi<strong>on</strong>; Wednesday, June 29, 17:00<br />

J. Pérez-Velázquez<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Biometry, Helmholtz Zentrum München<br />

e-mail: perez-velazquez@helmholtz-muenchen.de<br />

B. A. Hense<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Biometry, Helmholtz Zentrum München<br />

e-mail: burkhard.hense@helmholtz-muenchen.de<br />

C. Kuttler<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Science, Technical University Munich<br />

e-mail: kuttler@ma.tum.de<br />

J. Müller<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Science, Technical University Munich<br />

e-mail: johannes.mueller@mytum.de<br />

R. Schlicht<br />

Universität Greifswald, Institut für Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik und Informatik<br />

e-mail: schlichtr@uni-greifswald.de<br />

G. Dulla<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>, Dept. Civil and Envir<strong>on</strong>mental Engineering<br />

e-mail: gfjdulla@uw.edu<br />

Early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pseudom<strong>on</strong>a syringae <strong>on</strong><br />

leaves surfaces<br />

Bacterial aggregates observed <strong>on</strong> leaf surfaces can be compared to bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms in<br />

aquatic and medical envir<strong>on</strong>ments due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir nutrient heterogeneity, and c<strong>on</strong>stantly<br />

changing water c<strong>on</strong>diti<strong>on</strong>s. Bacteria <strong>on</strong> leaves surface are found forming<br />

aggregates <str<strong>on</strong>g>of</str<strong>on</strong>g> a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> sizes. A localized high level <str<strong>on</strong>g>of</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> cells may<br />

foster genetic and metabolic exchange; fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore epiphytic survival <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria<br />

during desiccati<strong>on</strong> is likely enhanced when <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are aggregated. Aggregates may<br />

also locally facilitate coordinated bacterial populati<strong>on</strong> resp<strong>on</strong>ses for traits expressed<br />

in a density-dependent manner <str<strong>on</strong>g>th</str<strong>on</strong>g>rough quorum sensing. We developed a stochastic<br />

model to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency, size, and spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gram-negative<br />

bacterium Pseudom<strong>on</strong>as syringae aggregates <strong>on</strong> bean leaf surfaces. Our model, a<br />

logistic bir<str<strong>on</strong>g>th</str<strong>on</strong>g>-dea<str<strong>on</strong>g>th</str<strong>on</strong>g> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> migrati<strong>on</strong> (time-homogeneous Markov process), is<br />

able to elucidate two factors fostering aggregate formati<strong>on</strong>: migrati<strong>on</strong> and variability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaf surface envir<strong>on</strong>ment. Our results successfully explain quantitative<br />

experimental data available. We discuss how to analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregates <str<strong>on</strong>g>of</str<strong>on</strong>g> different sizes at a given time and explore how to account<br />

for new aggregates being created, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is, <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e family size<br />

statistics c<strong>on</strong>diti<strong>on</strong>al <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e total number <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregates. Through simulati<strong>on</strong>s we<br />

examine several migrati<strong>on</strong> regimes in order to find out how <str<strong>on</strong>g>th</str<strong>on</strong>g>is affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e aggregates<br />

size distributi<strong>on</strong>. We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e ecological significance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e large aggregates<br />

formed <strong>on</strong> leaves as early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm formati<strong>on</strong>. Aggregati<strong>on</strong> formati<strong>on</strong> is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ought to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e first step towards pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is bacterium; understanding<br />

aggregate size distributi<strong>on</strong> would prove useful to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e switch<br />

from epiphytic to pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenic behaviour.<br />

766


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] Dulla, G., Lindow, S. E. Quorum size <str<strong>on</strong>g>of</str<strong>on</strong>g> Pseudom<strong>on</strong>as syringae is small and dictated by<br />

water availability <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaf surface. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences 105<br />

(8), 3082-3087, , 2008.<br />

[2] Dulla, G., Marco, M., Quin<strong>on</strong>es, B., Lindow, S. A Closer Look at Pseudom<strong>on</strong>as syringae as<br />

a Leaf Col<strong>on</strong>ist - The pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen P-syringae <str<strong>on</strong>g>th</str<strong>on</strong>g>rives <strong>on</strong> heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y plants by employing quorum<br />

sensing, virulence factors, and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er traits. ASM NEWS 71 (10), 469+, 2005<br />

767


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

From <strong>on</strong>e to many: Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective, emergent behaviors<br />

in biology -II; Tuesday, June 28, 14:30<br />

Holger Perfahl<br />

Center Systems Biology, University Stuttgart, Germany<br />

e-mail: holger.perfahl@ibvt.uni-stuttgart.de<br />

Helen M. Byrne<br />

Centre <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Medicine and Biology, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, Nottingham, UK<br />

e-mail: helen.byrne@nottingham.ac.uk<br />

Tomás Alarcón<br />

Centre de Recerca Matemàtica, Campus de Bellaterra.Barcel<strong>on</strong>a,<br />

Spain<br />

e-mail: talarc<strong>on</strong>@crm.cat<br />

Alexei Lapin<br />

Center Systems Biology, University Stuttgart, Germany<br />

e-mail: lapin@ibvt.uni-stuttgart.de<br />

Philip K. Maini<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford, Oxford, UK<br />

Oxford Centre for Integrative Systems Biology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford, Oxford, UK<br />

e-mail: maini@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ias Reuss<br />

Center Systems Biology, University Stuttgart, Germany<br />

e-mail: reuss@ibvt.uni-stuttgart.de<br />

Markus R. Owen<br />

Centre <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Medicine and Biology, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, Nottingham, UK<br />

e-mail: markus.owen@nottingham.ac.uk<br />

Multiscale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

angiogenesis<br />

A <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al multiscale model <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is presented. In<br />

our model, cells are modelled as individual entities (agent-based approach) each<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir own cell cycle and subcellular-signalling machinery. Nutrients are supplied<br />

by a dynamic vascular network, which is subject to remodelling and angiogenesis.<br />

The model is formulated <strong>on</strong> a regular grid <str<strong>on</strong>g>th</str<strong>on</strong>g>at subdivides <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> domain<br />

into lattice sites. Each lattice site can be occupied by several biological cells<br />

whose movement <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lattice is governed by reinforced random walks, and whose<br />

proliferati<strong>on</strong> is c<strong>on</strong>trolled by a subcellular cell cycle model. The vascular network<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> vessel segments c<strong>on</strong>necting adjacent nodes <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lattice, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> defined<br />

inflow and outflow nodes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> prescribed pressures. We also specify <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> haematocrit entering <str<strong>on</strong>g>th</str<strong>on</strong>g>e system <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e inlets. The vessel network evolves<br />

via sprouting <str<strong>on</strong>g>of</str<strong>on</strong>g> tip cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a probability <str<strong>on</strong>g>th</str<strong>on</strong>g>at increases wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e local VEGF<br />

c<strong>on</strong>centrati<strong>on</strong>, tip cell movement is described by a reinforced random walk, and<br />

new c<strong>on</strong>necti<strong>on</strong>s forming via anastomosis. In additi<strong>on</strong>, vessel segments wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low<br />

768


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

wall shear stress may be pruned away. Elliptic reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen and VEGF are implemented <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same spatial lattice<br />

using finite difference approximati<strong>on</strong>s, and include source and sink terms based <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vessels (which act as sources <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen and sinks <str<strong>on</strong>g>of</str<strong>on</strong>g> VEGF) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

different cell types (e.g. cells act as sinks for oxygen and hypoxic cells as sources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

VEGF).<br />

In our simulati<strong>on</strong>s we dem<strong>on</strong>strate how our model may be combined wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental<br />

data, to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a vascular tumour<br />

toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> angiogenesis.<br />

769


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bridging <str<strong>on</strong>g>th</str<strong>on</strong>g>e Divide: Cancer Models in Clinical Practice; Thursday, June 30,<br />

11:30<br />

Holger Perfahl<br />

Center Systems Biology, University Stuttgart, Germany<br />

e-mail: holger.perfahl@ibvt.uni-stuttgart.de<br />

Helen M. Byrne<br />

Centre <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Medicine and Biology, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, Nottingham, UK<br />

e-mail: helen.byrne@nottingham.ac.uk<br />

Tomás Alarcón<br />

Centre de Recerca Matemàtica, Campus de Bellaterra.Barcel<strong>on</strong>a,<br />

Spain<br />

e-mail: talarc<strong>on</strong>@crm.cat<br />

Philip K. Maini<br />

Centre for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford, Oxford, UK<br />

Oxford Centre for Integrative Systems Biology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford, Oxford, UK<br />

e-mail: maini@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ias Reuss<br />

Center Systems Biology, University Stuttgart, Germany<br />

e-mail: reuss@ibvt.uni-stuttgart.de<br />

Markus R. Owen<br />

Centre <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Medicine and Biology, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham, Nottingham, UK<br />

e-mail: markus.owen@nottingham.ac.uk<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e Spatio-Temporal Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Drugs in<br />

Tumours<br />

The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drugs in tumours is studied in a multiscale modelling framework.<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular scale we analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e random walk <str<strong>on</strong>g>of</str<strong>on</strong>g> drug molecules <str<strong>on</strong>g>th</str<strong>on</strong>g>rough<br />

subsystems <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vascular network, from which molecules extravasate into <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

tissue, diffuse in <str<strong>on</strong>g>th</str<strong>on</strong>g>e interstitial space, bind to receptors <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surfaces <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour<br />

cells and finally induce apoptosis. Knowledge gained <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular scale, like<br />

diffusi<strong>on</strong> coefficients and reacti<strong>on</strong> rates, is <str<strong>on</strong>g>th</str<strong>on</strong>g>en incorporated in a multiscale model<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vascular tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and angiogenesis. The model combines blood flow,<br />

angiogenesis, vascular remodelling, interacti<strong>on</strong>s between normal and tumour cells<br />

and diffusive nutrient / VEGF transport as well as cell-cycle dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in each<br />

cell. To study <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model enables us to include a drug specific<br />

intracellular resp<strong>on</strong>se (modelled by ordinary differential equati<strong>on</strong>s) and link it to an<br />

extracellular drug c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at is described by reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s.<br />

Drugs are supplied by <str<strong>on</strong>g>th</str<strong>on</strong>g>e vascular system and adsorbed by normal and cancer cells,<br />

as well as decomposed by natural decay.<br />

The numerical simulati<strong>on</strong>s let us analyse how <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour<br />

structure influences <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug distributi<strong>on</strong> and lead to predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic<br />

efficacy.<br />

770


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Valeriy Perminov<br />

"BioTeckFarm, Ltd"<br />

e-mail: vdperm@yandex.ru<br />

Epidemics; Thursday, June 30, 11:30<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number in different infectious diseases<br />

models<br />

The classical Kermack-McKendrick homogeneous SIR (susceptible, infected and<br />

removed) model is well known. Its general soluti<strong>on</strong> is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e unique<br />

parameter (<str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number) <str<strong>on</strong>g>th</str<strong>on</strong>g>at is equal to a mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary<br />

cases produced by a typical infected individual in a completely susceptible populati<strong>on</strong>.<br />

If <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number is more <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong>e (<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold value) its value<br />

describes an epidemic level larger values corresp<strong>on</strong>d to str<strong>on</strong>ger epidemics. This<br />

model bases <strong>on</strong> two assumpti<strong>on</strong>s 1) all members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> have <str<strong>on</strong>g>th</str<strong>on</strong>g>e equal<br />

probability to get infected and 2) mixing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> is uniform. It is clear<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese assumpti<strong>on</strong>s are n<strong>on</strong>realistic for any large human populati<strong>on</strong>. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e more complex compartment SIR models <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> is divided into several<br />

n<strong>on</strong>-overlapping groups. It allows us to partly remove assumpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical<br />

model. Twenty years ago Diekmann et al 1 showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at for <str<strong>on</strong>g>th</str<strong>on</strong>g>is kind <str<strong>on</strong>g>of</str<strong>on</strong>g> models, just<br />

as for <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical model <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold parameter R0. Usually it is called<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e same name <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number <str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

parameter has changed. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>is new parameter is a not unique measure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

an epidemic severity (it will be proven during my talk). In particular it means <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

for such models comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e severity <str<strong>on</strong>g>of</str<strong>on</strong>g> two epidemics by simple comparing<br />

values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir reproducti<strong>on</strong> numbers is incorrect. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e more realistic model<br />

has to c<strong>on</strong>tain much more parameters for more detailed descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

and epidemic itself, we can be sure <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e last c<strong>on</strong>clusi<strong>on</strong> is valid for <str<strong>on</strong>g>th</str<strong>on</strong>g>e real<br />

epidemics too. Individual-based models (IBMs) are more complex in comparis<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e compartment <strong>on</strong>es since <str<strong>on</strong>g>th</str<strong>on</strong>g>ey use overlapping groups (school children are<br />

members <str<strong>on</strong>g>of</str<strong>on</strong>g> a family also, for example). This peculiarity <str<strong>on</strong>g>of</str<strong>on</strong>g> IBMs makes Diekmanns<br />

calculati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number inapplicable. Moreover <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no<br />

usual ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical formulati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e IBMs (by differential equati<strong>on</strong>s, for example).<br />

It means <str<strong>on</strong>g>th</str<strong>on</strong>g>at we may not use analytic me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> research and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore,<br />

an existence <str<strong>on</strong>g>of</str<strong>on</strong>g> any similarity parameter in <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> (for example, a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold<br />

c<strong>on</strong>diti<strong>on</strong> or some analog <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducti<strong>on</strong> number) has to be proved numerically.<br />

Unfortunately, papers wi<str<strong>on</strong>g>th</str<strong>on</strong>g> misunderstandings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e IBMs peculiarities c<strong>on</strong>tinue<br />

to appear.<br />

References.<br />

[1] Diekmann, O., J. A. P. Heesterbeek, J. A. J. Metz, 1990. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong> and computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproducti<strong>on</strong> ratio R0 in models for infectious diseases in heterogeneous populati<strong>on</strong>s.<br />

J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol., 28, pp.365-382.<br />

771


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cell systems: from intercellular interacti<strong>on</strong><br />

to tissue-level traits II; Wednesday, June 29, 17:00<br />

Fernando Peruani<br />

Max Planck Institute for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Systems, Nö<str<strong>on</strong>g>th</str<strong>on</strong>g>nitzer<br />

Str. 38, 01187 Dresden, Germany<br />

e-mail: peruani@pks.mpg.de<br />

Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria<br />

The spatial self-organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria can be understood by <str<strong>on</strong>g>th</str<strong>on</strong>g>inking <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria<br />

as self-propelled rods <str<strong>on</strong>g>th</str<strong>on</strong>g>at interact by pushing each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. Despite <str<strong>on</strong>g>th</str<strong>on</strong>g>e simplicity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model, it is possible to show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two ingredients, selfpropulsi<strong>on</strong><br />

and volume exclusi<strong>on</strong>, is enough to reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomena observed<br />

in experiments: collective moti<strong>on</strong>, clustering, and aggregati<strong>on</strong>. Interestingly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> self-propulsi<strong>on</strong> and volume exclusi<strong>on</strong> can induced a surprisingly<br />

rich variety <str<strong>on</strong>g>of</str<strong>on</strong>g> self-organized patterns which is not limited to <str<strong>on</strong>g>th</str<strong>on</strong>g>e above menti<strong>on</strong>ed<br />

patterns. As a pro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> principles, it will be shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at when volume exclusi<strong>on</strong><br />

induces stagnati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, a new phenomenology driven by <str<strong>on</strong>g>th</str<strong>on</strong>g>e jamming <str<strong>on</strong>g>of</str<strong>on</strong>g> cells<br />

emerges.<br />

772


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Heart rate dynamics: models and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity (part II);<br />

Wednesday, June 29, 17:00<br />

M<strong>on</strong>ika Petelczyc<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Warsaw University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Warsaw, Poland<br />

e-mail: petelczyc_m@if.pw.edu.pl<br />

Jan Jacek Żebrowski<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Warsaw University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Warsaw, Poland<br />

e-mail: zebra@if.pw.edu.pl<br />

Rafał Baranowski<br />

Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiology, Warsaw, Poland<br />

e-mail: rbaranowski@ikard.pl<br />

Correlati<strong>on</strong> in human heart rate variability from a stochastic<br />

model<br />

The extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kramers-Moyal coefficients [1] from measurement data was applied<br />

to human heart rate variability. The expansi<strong>on</strong> truncated at <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d element<br />

is known as <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fokker-Planck equati<strong>on</strong>. The Langevin equati<strong>on</strong> is equivalent<br />

to a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system dynamics c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> two parts: a deterministic <strong>on</strong>e<br />

and a stochastic term. The necessary assumpti<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e noise term be due to<br />

δ-correlated noise [2,3]. For heart rate variability, we found <str<strong>on</strong>g>th</str<strong>on</strong>g>at such a descripti<strong>on</strong><br />

is valid <strong>on</strong>ly for daytime recordings <str<strong>on</strong>g>of</str<strong>on</strong>g> heart rate variability. Nighttime heart<br />

rate variability is characterised by n<strong>on</strong>-negligible higher order Kramers-Moyal coefficients<br />

[4]. This effect can be explained by <str<strong>on</strong>g>th</str<strong>on</strong>g>e correlati<strong>on</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> heart rate<br />

variability. Correlati<strong>on</strong>s may be related to bo<str<strong>on</strong>g>th</str<strong>on</strong>g> deterministic and stochastic comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart rate. Using Kramers-Moyal expansi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e drift (deterministic)<br />

and diffusi<strong>on</strong> (stochastic) terms are calculated. Deterministic term coresp<strong>on</strong>ds to<br />

regulatory processes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiorespiratory coupling. The stochastic <strong>on</strong>e is a measure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e noise amplitude.<br />

We will present <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> shortterm correlati<strong>on</strong>s. Especially a particular,<br />

asymmetric form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> coefficient <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart rate<br />

will be discussed. This is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system to leng<str<strong>on</strong>g>th</str<strong>on</strong>g>en and<br />

shorten <str<strong>on</strong>g>th</str<strong>on</strong>g>e RR intervals [5]. Moreover, for different recordings we obtained a different<br />

ranges and shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e slow-varing diffusi<strong>on</strong> term as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart<br />

rate close to its minimum. This property can be related to arrhytmic RR intervals.<br />

To ilustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>is, several recordings from patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> hypertrophic cardiomyopa<str<strong>on</strong>g>th</str<strong>on</strong>g>y<br />

will be compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> time series from heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y men.<br />

We will also focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurence <str<strong>on</strong>g>of</str<strong>on</strong>g> higher order Kramers-Moyal coefficients and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir meaning in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong>s [4]. We will discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e variability <str<strong>on</strong>g>of</str<strong>on</strong>g> heart<br />

rate (mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing and <str<strong>on</strong>g>of</str<strong>on</strong>g> decreasing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart rate ) including <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> recorded pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e obtained Kramers-Moyal expansi<strong>on</strong>.<br />

References.<br />

[1] H. Risken The Fokker–Planck Equati<strong>on</strong> Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> Soluti<strong>on</strong>s and Applicati<strong>on</strong>s (Springer<br />

Series in Synergetics) (Berlin: Springer) (1989)<br />

[2] F. Ghasemi, M. Sahimi, J. Peinke and M. Reza Rahimi Tabar, J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Biol. Phys. 32, 117 (2006)<br />

[3] T. Kuusela, Phys. Rev E 69, 031916 (2004)<br />

[4] M. Petelczyc, J. J. Żebrowski, R. Baranowski Phys. Rev. E 80, 031127 (2009)<br />

773


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[5] M. Petelczyc, J. J. Żebrowski, R. Baranowski and L. Chojnowska Physiol. Meas. 31, 1635<br />

(2010)<br />

774


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Aleksandra Pfeifer<br />

Maria Sklodowska-Curie Memorial Cancer Center and Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Oncology, Gliwice Branch; Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Poland<br />

e-mail: apfeifer@io.gliwice.pl<br />

Małgorzata Oczko-Wojciechowska<br />

Maria Sklodowska-Curie Memorial Cancer Center and Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Oncology, Gliwice Branch, Poland<br />

Michał Świerniak<br />

Maria Sklodowska-Curie Memorial Cancer Center and Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Oncology, Gliwice Branch; Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Poland<br />

Michał Jarząb<br />

Maria Sklodowska-Curie Memorial Cancer Center and Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Oncology, Gliwice Branch, Poland<br />

Barbara Jarząb<br />

Maria Sklodowska-Curie Memorial Cancer Center and Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Oncology, Gliwice Branch, Poland<br />

Sources <str<strong>on</strong>g>of</str<strong>on</strong>g> variability in <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

follicular <str<strong>on</strong>g>th</str<strong>on</strong>g>yroid tumours: SVD analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> microarray data<br />

Many attempts have been performed by microarray gene expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>yroid follicular tumours in order to find genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at distinguish adenomas and<br />

carcinomas. The two types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>yroid follicular tumours: adenomas (benign) and<br />

carcinomas (malignant) are indistinguishable before surgical procedure by classical<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology. A hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at gene expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling by microarray test may aid<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e diagnosis has not been fully verified. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> our study was to apply<br />

unsupervised me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> analysis to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e main sources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variability in follicular tumors which may influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic testing<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>is disease. We performed microarray gene expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling in 45 follicular<br />

tumours by Affymetrix hgu133plus2 microarray. We performed Singular Value Decompositi<strong>on</strong><br />

(SVD) analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole dataset to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e supergenes (modes)<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at characterise <str<strong>on</strong>g>th</str<strong>on</strong>g>e main sources <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> and are more representative/stable<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>an single transcripts. Next we analysed <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e variability<br />

related to each supergene. We selected genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tribute most to each <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e supergenes and analysed <str<strong>on</strong>g>th</str<strong>on</strong>g>em wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different biological mining me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: gene<br />

<strong>on</strong>tology analysis, gene groups analysis and hierarchical clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> samples. We<br />

revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e main sources <str<strong>on</strong>g>of</str<strong>on</strong>g> variance in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysed dataset are related to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se (1st, 3rd and 6<str<strong>on</strong>g>th</str<strong>on</strong>g> supergenes), cell proliferati<strong>on</strong> (2nd and<br />

5<str<strong>on</strong>g>th</str<strong>on</strong>g> supergenes) and differentiati<strong>on</strong> (2nd supergene). Am<strong>on</strong>g genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tribute<br />

most to <str<strong>on</strong>g>th</str<strong>on</strong>g>e 1st, 3rd and 4<str<strong>on</strong>g>th</str<strong>on</strong>g> supergene, many are related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e difference between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>yroid carcinoma and normal <str<strong>on</strong>g>th</str<strong>on</strong>g>yroid tissue. As in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis we noted certain<br />

arbitrary steps, we also performed SVD analysis <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e artificial microarray dataset<br />

to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese parameters <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SVD to<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er unsupervised me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods will also be presented.<br />

775


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Plants, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and transport processes I; Tuesday, June 28, 11:00<br />

Roland Pieruschka<br />

Forschungszentrum Jülch<br />

e-mail: r.pieruschka@fz-juelich.de<br />

The interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment<br />

Plant leaves are highly specialized organs to facilitate gas exchange, carb<strong>on</strong> uptake<br />

and water loss usually up<strong>on</strong> illuminati<strong>on</strong>. Leaf internal structures have an enormous<br />

influence <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese processes. For example, heterobaric leaves have bundle shea<str<strong>on</strong>g>th</str<strong>on</strong>g>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> extensi<strong>on</strong>s which reach from <str<strong>on</strong>g>th</str<strong>on</strong>g>e upper to <str<strong>on</strong>g>th</str<strong>on</strong>g>e lower epidermis and create<br />

closed compartments. Homobaric leaves, <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand lack <str<strong>on</strong>g>th</str<strong>on</strong>g>ese extensi<strong>on</strong>s<br />

and have large interc<strong>on</strong>nected intercellular spaces so <str<strong>on</strong>g>th</str<strong>on</strong>g>at lateral diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2<br />

can substantially support photosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis in particular, when <strong>on</strong>e part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaf is<br />

shaded being a CO2 source while <str<strong>on</strong>g>th</str<strong>on</strong>g>e adjacent leaf area is illuminated and a CO2<br />

sink. Light envir<strong>on</strong>ment also plays a key role for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> plant processes. A light<br />

beam interacting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a leaf penetrates <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidermis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> little interacti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

largest part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e energy is absorbed by<str<strong>on</strong>g>th</str<strong>on</strong>g>e pigments in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesophyll cells driving<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f water vapor which in turn affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidermis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> stomata. This interacti<strong>on</strong><br />

feeds back <strong>on</strong> stomata and provides a c<strong>on</strong>trol mechanism for <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stomata wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment. These processes aim at a mechanistic descripti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment. Comprehensive understanding<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> plant interacti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment for a predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant performance<br />

requires a measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> phenotyping variati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> genotypes. This<br />

approach called plant phenotyping is a rapidly evolving c<strong>on</strong>cept <str<strong>on</strong>g>th</str<strong>on</strong>g>at links genomics<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ecophysiology and agr<strong>on</strong>omy. The basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>cept is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>al<br />

plant body (phenotype) originates during plant grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and development from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dynamic interacti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e plant genetic background and <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment in<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>e plant develops.<br />

776


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Delay Differential Equati<strong>on</strong>s and Applicati<strong>on</strong>s II; Saturday, July 2, 08:30<br />

M<strong>on</strong>ika Piotrowska<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics and Mechanics<br />

e-mail: m<strong>on</strong>ika@mimuw.edu.pl<br />

Urszula Foryś<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics and Mechanics<br />

Gompertz model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> time delays<br />

We study <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> time delays <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical Gompertz<br />

model. First we c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>e discrete delay introduced in two<br />

different ways and next <str<strong>on</strong>g>th</str<strong>on</strong>g>e models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two delays. We present <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> investigated models including <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hopf bifurcati<strong>on</strong> occurrence and stability switches. We also show<br />

results for <str<strong>on</strong>g>th</str<strong>on</strong>g>e types <str<strong>on</strong>g>of</str<strong>on</strong>g> occurring bifurcati<strong>on</strong>s. The analytical results are illustrated<br />

and completed by numerical simulati<strong>on</strong>s.<br />

777


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Heart rate dynamics: models and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity (part II);<br />

Wednesday, June 29, 17:00<br />

J. Piskorski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ziel<strong>on</strong>a Gora, Szafrana 4a, Ziel<strong>on</strong>a<br />

Gora, Poland<br />

e-mail: jaropis@zg.home.pl<br />

P. Guzik<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Cardiology - Intensive Therapy and Internal Diseases,<br />

Poznan University <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Sciences, Przybyszewskiego 49, Poznan,<br />

Poland<br />

e-mail: pguzik@ptkardio.pl<br />

Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> heart rate asymmetry<br />

Heart rate asymmetry (HRA) is a physiological phenomen<strong>on</strong> reflecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

heart rate decelerati<strong>on</strong>s c<strong>on</strong>tribute more to short-term HRV <str<strong>on</strong>g>th</str<strong>on</strong>g>an accelerati<strong>on</strong>s, and<br />

accelerati<strong>on</strong>s c<strong>on</strong>tribute more to l<strong>on</strong>g-term and total HRV <str<strong>on</strong>g>th</str<strong>on</strong>g>an decelerati<strong>on</strong>s. These<br />

HRA me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are variance-based, and can be called macrostructural. Recently, a<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods based <strong>on</strong> a counting statistics which depends <strong>on</strong> fast- and slow- changing<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RR intervals time series was defined. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study we<br />

show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e related entropic parameters HAR (dependent <strong>on</strong> accelerati<strong>on</strong>s) and<br />

HDR (dependent <strong>on</strong> decelerati<strong>on</strong>s) are asymmetric. The nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is asymmetry<br />

is exactly <str<strong>on</strong>g>th</str<strong>on</strong>g>e same as wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance-based descriptors: it is unidirecti<strong>on</strong>al and<br />

c<strong>on</strong>sistent.<br />

Materials and me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: 24-hour Holter ECG recordings were obtained from<br />

50 heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y subjects, including 27 women. The microstructure related to decelerati<strong>on</strong>s<br />

and accelerati<strong>on</strong>s was calculated from <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting RR time series and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

HAR and HDR were computed. This was repeated for <str<strong>on</strong>g>th</str<strong>on</strong>g>e same recordings in<br />

shuffled order, for which <str<strong>on</strong>g>th</str<strong>on</strong>g>e shuffling distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microstructure is known for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical c<strong>on</strong>siderati<strong>on</strong>s. The HAR and HDR were compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e t-test after<br />

establishing normal distributi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Shapiro-Wilk test. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

asymmetry in <str<strong>on</strong>g>th</str<strong>on</strong>g>e studied group was established wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e binomial test.<br />

Results: The value <str<strong>on</strong>g>of</str<strong>on</strong>g> HAR was 1.08±0.021 and HDR 1.01±0.18. This difference<br />

is statistically significant wi<str<strong>on</strong>g>th</str<strong>on</strong>g> p<br />

HDR, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e binomial test for equality <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> proporti<strong>on</strong>s being equal gives<br />

a statistically significant result p


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanical regulati<strong>on</strong> in b<strong>on</strong>e tissue (Sessi<strong>on</strong><br />

I); Wednesday, June 29, 08:30<br />

Peter Piv<strong>on</strong>ka, Stefan Scheiner, Pascal Buenzli, David W. Smi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, Computing, and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, The University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Western Australia, Australia<br />

e-mail: peter.piv<strong>on</strong>ka@uwa.edu.au<br />

Christian Hellmich<br />

Institute for Mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials and Structures, Vienna University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Austria<br />

Lynda B<strong>on</strong>ewald<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Dentistry, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Missouri-Kansas City, USA<br />

A coupled systems biology-micromechanical model for<br />

mechanostat-type regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e remodeling<br />

The capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e tissue to alter its mass and structure in resp<strong>on</strong>se to mechanical<br />

demands was recognized more <str<strong>on</strong>g>th</str<strong>on</strong>g>an a century ago and Frost formulated<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called mechanostat <str<strong>on</strong>g>th</str<strong>on</strong>g>eory for capturing <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically.<br />

This <str<strong>on</strong>g>th</str<strong>on</strong>g>eory proposes <str<strong>on</strong>g>th</str<strong>on</strong>g>at b<strong>on</strong>e resp<strong>on</strong>ds to changes from a loading relating to an<br />

equilibrated b<strong>on</strong>e turnover by triggering ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er increased b<strong>on</strong>e resorpti<strong>on</strong> or formati<strong>on</strong><br />

as resp<strong>on</strong>se to decreased or increased loading. While <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>ceptual <str<strong>on</strong>g>th</str<strong>on</strong>g>eory<br />

is useful for a qualitative understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e tissue level resp<strong>on</strong>ses to mechanical<br />

loading no quantitative estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e volume/mass changes can be made.<br />

Also incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying cellular mechanisms is still outstanding. Over<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e last several years significant progress has been made to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells and<br />

signaling molecules involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e. It is now well<br />

accepted <str<strong>on</strong>g>th</str<strong>on</strong>g>at osteocytes act as mechanosensory cells in b<strong>on</strong>e which express several<br />

signaling molecules able to trigger b<strong>on</strong>e adaptati<strong>on</strong> resp<strong>on</strong>ses. Here we present an<br />

extended b<strong>on</strong>e cell populati<strong>on</strong> model incorporating a simplified osteocyte-feedback<br />

to simulate b<strong>on</strong>e remodeling events corresp<strong>on</strong>ding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e actual mechanical loading.<br />

The mechanical feedback to b<strong>on</strong>e biology is achieved by employing c<strong>on</strong>tinuum<br />

micromechanics-based homogenizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e stiffness, allowing for estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e deformati<strong>on</strong> osteocytes are subjected to. This me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology allows for m<strong>on</strong>itoring<br />

effects <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical load changes <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e compositi<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

load-carrying capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e. To <str<strong>on</strong>g>th</str<strong>on</strong>g>e au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors knowledge, <str<strong>on</strong>g>th</str<strong>on</strong>g>is is <str<strong>on</strong>g>th</str<strong>on</strong>g>e first model<br />

which incorporates <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanostat <str<strong>on</strong>g>th</str<strong>on</strong>g>eory based <strong>on</strong> cellular feedback mechanisms.<br />

779


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Tuesday, June 28, 11:00<br />

Mateusz M. Pluciński<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science, Policy and Management, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> California, Berkeley. Berkeley, CA, 94720<br />

e-mail: mateusz@berkeley.edu<br />

Human social network structure is reflected in sequence data<br />

for commensal bacteria<br />

DNA sequence data has traditi<strong>on</strong>ally been used to infer transmissi<strong>on</strong> networks <strong>on</strong>ly<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics and outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens, but it can analogously<br />

be applied to cases <str<strong>on</strong>g>of</str<strong>on</strong>g> ubiquitous commensal bacteria in order to infer informati<strong>on</strong><br />

about host c<strong>on</strong>tact networks. Here, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at multilocus DNA sequence data,<br />

based <strong>on</strong> multilocus sequence typing schemes (MLST), from isolates <str<strong>on</strong>g>of</str<strong>on</strong>g> commensal<br />

bacteria circulating in an endemic equilibrium can be used to infer bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

local and global properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tact networks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>s being sampled.<br />

Indeed, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at MLST data obtained from simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <strong>on</strong> a<br />

small-world network can be used to robustly estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e small world parameter<br />

c<strong>on</strong>trolling <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree <str<strong>on</strong>g>of</str<strong>on</strong>g> structure in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tact network. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e pairwise<br />

distances in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network — degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong> — correlate wi<str<strong>on</strong>g>th</str<strong>on</strong>g> genetic distances<br />

between isolates meaning <str<strong>on</strong>g>th</str<strong>on</strong>g>at how far apart two individuals in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network are can<br />

be inferred from MLST analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir commensal bacteria. This result has important<br />

c<strong>on</strong>sequences, and we show an example from epidemiology — how <str<strong>on</strong>g>th</str<strong>on</strong>g>is result<br />

could be used to test for infectious origins <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> unknown etiology. We also<br />

extend our previous work to include <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> commensal bacteria<br />

<strong>on</strong> scale-free networks; in particular, we examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> highly c<strong>on</strong>nected<br />

individuals in determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sequence types.<br />

780


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Heart rate dynamics: models and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity (part II);<br />

Wednesday, June 29, 17:00<br />

Piotr Podziemski<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Warsaw University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: podziemski@if.pw.edu.pl<br />

Jan J. Żebrowski<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Warsaw University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: zebra@if.pw.edu.pl<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human atrium using Liénard equati<strong>on</strong>s<br />

Liénard systems can be used for modeling oscillatory behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> many phenomena<br />

- starting from chemical reacti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>rough neur<strong>on</strong> excitability [1], up to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

acti<strong>on</strong> potential in <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart muscle. The universality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Liénard systems and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er well-established ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical knowledge about <str<strong>on</strong>g>th</str<strong>on</strong>g>em creates a flexible<br />

framework for designing simple models. Such models are very robust and computati<strong>on</strong>ally<br />

efficient. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trary, <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing physiological i<strong>on</strong>ic channel models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac cells are too complex to allow an investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g time dynamical<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart. As a c<strong>on</strong>sequence, very rarely do <str<strong>on</strong>g>th</str<strong>on</strong>g>ey address <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> heart rate variability comparable wi<str<strong>on</strong>g>th</str<strong>on</strong>g> portable ECG recordings.<br />

We focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human atria, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> potential<br />

propagati<strong>on</strong> affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinus ry<str<strong>on</strong>g>th</str<strong>on</strong>g>m <str<strong>on</strong>g>th</str<strong>on</strong>g>e most. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e right<br />

atrium proposed here, we describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e various anatomical parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e atrium by<br />

means <str<strong>on</strong>g>of</str<strong>on</strong>g> different equati<strong>on</strong>s but all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same class <str<strong>on</strong>g>of</str<strong>on</strong>g> Liénard equati<strong>on</strong>s. The<br />

two nodes - <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinoatrial and <str<strong>on</strong>g>th</str<strong>on</strong>g>e atrioventricular node are modeled by diffusively<br />

coupled modified van der Pol-Duffing oscillators while <str<strong>on</strong>g>th</str<strong>on</strong>g>e atrial muscle tissue is<br />

currently represented by a diffusively coupled modified FitzHugh-Nagumo system.<br />

Models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinoatrial and atrio-ventricular nodes were developed taking into<br />

account physiologically important properties such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase resp<strong>on</strong>se curve, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

refracti<strong>on</strong> period and <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold potential. Several modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models presented<br />

in [2] allowed to achieve a more physiological behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. The<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aut<strong>on</strong>omous nervous system activity is incorporated into <str<strong>on</strong>g>th</str<strong>on</strong>g>e model in<br />

a simple way.<br />

We performed a series <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e atrium, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> differing anatomical<br />

simplificati<strong>on</strong>s varying from a simple 1 dimensi<strong>on</strong>al chain <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillators to a twodimensi<strong>on</strong>al<br />

mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e atrium wi<str<strong>on</strong>g>th</str<strong>on</strong>g> chosen anatomical details included. The<br />

simulati<strong>on</strong>s allowed to rec<strong>on</strong>struct such effects as <str<strong>on</strong>g>th</str<strong>on</strong>g>e AV node reentry tachycardia<br />

- bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in an extended <strong>on</strong>e dimensi<strong>on</strong>al model and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 2D simulati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase<br />

relati<strong>on</strong>s between sinus rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>m and <str<strong>on</strong>g>th</str<strong>on</strong>g>e locati<strong>on</strong> and properties <str<strong>on</strong>g>of</str<strong>on</strong>g> an ectopic source<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resultant rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>m.<br />

References.<br />

[1] D. Postnov, K. H. Seung, and K. Hyungtae, Synchr<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusively coupled oscillators<br />

near <str<strong>on</strong>g>th</str<strong>on</strong>g>e homoclinic bifurcati<strong>on</strong> Phys. Rev. E 60, 2799.2807 (1999).<br />

781


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] J.J. Żebrowski, P. Kuklik, T. Buchner. R. Baranowski, Assessment and clinical applicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cardiovascular oscillati<strong>on</strong>s IEEE Eng. In Med. And Biol. Mag., Nov./Dec. 2009 .<br />

782


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models in Eco-epidemiology I; Wednesday, June 29, 08:30<br />

J.-C. Poggiale<br />

Aix-Marseille University<br />

A spatially extended trophic chain model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> recycling :<br />

how spatial structure determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e matter cycle?<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we study spatially extended trophic chain models. We focus <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient recycling <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e food chain dynamics. Top predators recycling<br />

is known to have some positive effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary producers and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese effects can be compared to <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>th</str<strong>on</strong>g>at top predators have<br />

<strong>on</strong> primary producers by regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivores. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> recycling is here<br />

investigated by means <str<strong>on</strong>g>of</str<strong>on</strong>g> two models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> details. Then <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

models are spatially extended to understand how <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial structure affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

trophic chain dynamics. The spatial scales are assumed to be small enough to<br />

allow individuals to move fast wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to local populati<strong>on</strong> dynamics. We aim<br />

to provide a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>al resp<strong>on</strong>ses at <str<strong>on</strong>g>th</str<strong>on</strong>g>e global<br />

scale, which can be suggested as <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>al resp<strong>on</strong>ses to use at larger scales.<br />

The global functi<strong>on</strong>al resp<strong>on</strong>ses integrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial effect and <str<strong>on</strong>g>th</str<strong>on</strong>g>e recycling effects.<br />

783


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Ondrej Pokora<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,<br />

Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic<br />

e-mail: pokora@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.muni.cz<br />

Petr Lansky<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology, Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Czech Republic,<br />

Videnska 1083, 142 20 Prague, Czech Republic<br />

e-mail: lansky@biomed.cas.cz<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual firing frequencies from superposed<br />

spike train<br />

When m<strong>on</strong>itoring neur<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> single extracellular electrode <str<strong>on</strong>g>th</str<strong>on</strong>g>e acti<strong>on</strong> potentials<br />

from different neur<strong>on</strong>s are comm<strong>on</strong>ly recorded. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problems is to<br />

identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e active neur<strong>on</strong>s. The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pooled record <str<strong>on</strong>g>of</str<strong>on</strong>g> several independent<br />

spike trains wi<str<strong>on</strong>g>th</str<strong>on</strong>g> refractory period leads to identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specific groups <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spikes appearing in time intervals shorter <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e refractory period (<str<strong>on</strong>g>th</str<strong>on</strong>g>ese are<br />

usually called doublets, triplets, etc.). In (Meunier et al., 2003), <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem was<br />

solved for two independent spike trains and <str<strong>on</strong>g>th</str<strong>on</strong>g>e result is generalized for any number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> independent records here.<br />

How <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> individual neur<strong>on</strong>s are related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative<br />

frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> doublets, triplets, etc. in <str<strong>on</strong>g>th</str<strong>on</strong>g>e superposed spike train<br />

is shown. The closed form-relati<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e respective firing frequencies and<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e superposed record are derived. A me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> respective<br />

firing frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> any number <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>s, producing indistinguishable spikes,<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e superposed record, number <str<strong>on</strong>g>of</str<strong>on</strong>g> recorded neur<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

refractory period is presented. The task is similar to <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> coincidence<br />

detecti<strong>on</strong> (Grün et al., 1999; Krips & Furst, 2009).<br />

References.<br />

[1] Grün S., Diesmann. M., Gramm<strong>on</strong>t, F., Riehle, A., Aersten, A. (1999), Detecting unitary<br />

events wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out discretizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> time Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Neuroscience Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods 93 67–79.<br />

[2] Krips, R., Furst, M. (2009), Stochastic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> coincidence-detector neural cells Neural<br />

Computati<strong>on</strong> 21 2524–2553.<br />

[3] Meunier, M., Mari<strong>on</strong>-Poll, F., Lansky, P., Rospars, J.-P. (2003), Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual<br />

firing frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> two neur<strong>on</strong>s recorded wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a single electrode Chemical Senses 28 671–679.<br />

784


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Computati<strong>on</strong>al toxicology and pharmacology - in silico drug activity and<br />

safety assessment; Saturday, July 2, 11:00<br />

Sebastian Polak<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacy Jagiell<strong>on</strong>ian University Medical College<br />

e-mail: spolak@cm-uj.krakow.pl<br />

Barbara Wiśniowska<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacy Jagiell<strong>on</strong>ian University Medical College<br />

Systems Biology in drug development - cardiotoxicity<br />

predicti<strong>on</strong><br />

Cardiac liability testing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e drugs candidates during development process has<br />

gained increased regulatory and public attenti<strong>on</strong> due to a growing awareness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac risks across a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> marketed products. Nowadays, cardiac safety<br />

assessment in pre-approval clinical trials is obligatory and possible failure at <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

late stage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e R&D pipeline has tremendous impact <strong>on</strong> pay-<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole process.<br />

Thus it is desirable to screen compounds as early as possible, before large<br />

amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> time and m<strong>on</strong>ey have been spent. Traditi<strong>on</strong>al pre-clinical in vivo and<br />

ex vivo animal studies employed in risk assessment are criticised due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e e<str<strong>on</strong>g>th</str<strong>on</strong>g>ical<br />

and meritorious reas<strong>on</strong>s and in vitro cell lines based studies are currently effectively<br />

utilized. Results extrapolati<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e in vitro tests to in vivo human risk<br />

became an issue and systems biology approach is proposed to derive appropriate<br />

c<strong>on</strong>clusi<strong>on</strong>s from in vitro lab observati<strong>on</strong>s. Developed system is hybrid in nature<br />

and combines ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e human left ventricle cardiomyocyte wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

in vitro assessed drug induced i<strong>on</strong>ic channels inhibiti<strong>on</strong>. The <str<strong>on</strong>g>th</str<strong>on</strong>g>ird main element is<br />

a virtual populati<strong>on</strong> generator. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data derived from available scientific<br />

literature dynamic database <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> was developed. Randomly chosen<br />

virtual individuals are described by physiological and genetic parameters, namely<br />

cardiomyocyte volume, sarcoplasmic reticulum volume, cell electric capacitance,<br />

potassium channels genetic polymorphism, which are used as simulati<strong>on</strong> parameters.<br />

Therefore <str<strong>on</strong>g>th</str<strong>on</strong>g>e system allows for <str<strong>on</strong>g>th</str<strong>on</strong>g>e inter-individual variability assessment<br />

which is a fundamental advantage comparing wi<str<strong>on</strong>g>th</str<strong>on</strong>g> animal in vivo and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er available<br />

muli-scale models. Combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> above-described approach wi<str<strong>on</strong>g>th</str<strong>on</strong>g> physiology<br />

based pharmacokinetic models (PBPK) used for plasma and tissues drug c<strong>on</strong>centrati<strong>on</strong><br />

changes predicti<strong>on</strong> can be used for c<strong>on</strong>centrati<strong>on</strong> dependent in vitro - in<br />

vivo extrapolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiotoxic effect for new chemical entities.<br />

785


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

II; Tuesday, June 28, 14:30<br />

Jan Poleszczuk<br />

College <str<strong>on</strong>g>of</str<strong>on</strong>g> Inter-faculty Individual Studies in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Natural<br />

Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Warsaw Poland<br />

e-mail: j.poleszczuk@mimuw.edu.pl<br />

Urszula Foryś<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

Informatics and Mechanics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Warsaw<br />

Poland<br />

e-mail: urszula@mimuw.edu.pl<br />

M<strong>on</strong>ika Joanna Piotrowska<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

Informatics and Mechanics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Warsaw<br />

Poland<br />

e-mail: m<strong>on</strong>ika@mimuw.edu.pl<br />

Optimal and suboptimal treatment protocols for<br />

anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

In 1971 Judah Folman discovered <str<strong>on</strong>g>th</str<strong>on</strong>g>at grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> any tumour is str<strong>on</strong>gly dependent<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> blood vessels <str<strong>on</strong>g>th</str<strong>on</strong>g>at it induces to grow. He surmised <str<strong>on</strong>g>th</str<strong>on</strong>g>at, if a<br />

tumour could be stopped from growing its own blood supply, it would wi<str<strong>on</strong>g>th</str<strong>on</strong>g>er and<br />

die. Anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is a novel treatment approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at aims at preventing<br />

a tumour from developing its own blood supply system.<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biologically validated model proposed by Hahnfeldt, Panigrahy,<br />

Folkman and Hlatky in 1999, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e usage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>eory,<br />

some protocols <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-angiogenic treatment were proposed. However, in our opini<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>at model is valid <strong>on</strong>ly for <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-vascular treatment, <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

is treatment <str<strong>on</strong>g>th</str<strong>on</strong>g>at is focused <strong>on</strong> destroying endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells. Therefore, we propose<br />

a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e original model which is valid in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment which<br />

is focused <strong>on</strong> blocking angiogenic signaling.<br />

We propose also a new ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-angiogenic treatment<br />

goal. In current studies it is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e main goal <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-angiogenic<br />

treatment is to minimize <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor volume at <str<strong>on</strong>g>th</str<strong>on</strong>g>e end <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

hand, chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is still <str<strong>on</strong>g>th</str<strong>on</strong>g>e main kind <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer treatment, while anti-angiogenic<br />

treatment is <strong>on</strong>ly a supplement. The efficient treatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is possible<br />

<strong>on</strong>ly when <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug can be distributed evenly, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is when vessels penetrate<br />

most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour regi<strong>on</strong>s.<br />

Therefore, we assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e main goal <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-angiogenic treatment, despite<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e minimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour volume, is to maintain high ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> vessels volume<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at support <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour to <str<strong>on</strong>g>th</str<strong>on</strong>g>e actual tumour volume. We analyze it as an optimal<br />

c<strong>on</strong>trol problem and a soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem is given in some cases.<br />

786


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Friday, July 1, 14:30<br />

Andrey A. Polezhaev<br />

Maria Yu. Borina<br />

P. N. Lebedev Physical Institute, Moscow, Russia<br />

e-mail: apol@lpi.ru<br />

Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> pattern formati<strong>on</strong> in biological systems<br />

caused by diffusi<strong>on</strong> instability<br />

Pattern formati<strong>on</strong> in living systems including morphogenesis is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most<br />

challenging problems <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical biology. Starting from early seventies a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> models based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called Turing instability [1] were suggested (<strong>on</strong>e<br />

can find some examples in [2]). Turing instability is a type <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> instability<br />

when <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e eigenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearized problem becomes positive in a certain<br />

n<strong>on</strong>-zero range <str<strong>on</strong>g>of</str<strong>on</strong>g> wave vectors. This instability may be resp<strong>on</strong>sible for stati<strong>on</strong>ary<br />

n<strong>on</strong>homogeneous pattern formati<strong>on</strong>.<br />

Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er type <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> instability is <str<strong>on</strong>g>th</str<strong>on</strong>g>e wave instability when a pair <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

complex c<strong>on</strong>jugate eigenvalues acquires a positive real part in a certain range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wave vectors. Wave instability may be resp<strong>on</strong>sible for a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial-temporal<br />

patterns observed bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in biological (for example, in bacterial col<strong>on</strong>ies) and in<br />

chemical systems (Belousov-Zhabotinsky reacti<strong>on</strong> in microemulsi<strong>on</strong> [3]). While<br />

Turing instability can arise in a two-variable reacti<strong>on</strong>-diffusi<strong>on</strong> model, not less <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree equati<strong>on</strong>s are necessary for <str<strong>on</strong>g>th</str<strong>on</strong>g>e wave instability.<br />

We obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> Turing and wave instabilities in a <str<strong>on</strong>g>th</str<strong>on</strong>g>reevariable<br />

reacti<strong>on</strong> diffusi<strong>on</strong> model which follow from linear analysis and formulate<br />

qualitative properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e instabilities to occur. While for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Turing bifurcati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system should possess an autocatalytic variable which has<br />

a sufficiently small diffusi<strong>on</strong> coefficient compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers (it coincides<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>is bifurcati<strong>on</strong> in a two-variable model), <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e wave bifurcati<strong>on</strong> are somewhat different. Autocatalysis is necessary but not<br />

sufficient. Namely, <str<strong>on</strong>g>th</str<strong>on</strong>g>e sum <str<strong>on</strong>g>of</str<strong>on</strong>g> two terms <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main diag<strong>on</strong>al <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearizati<strong>on</strong><br />

matrix should be positive and <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ird variable should<br />

be sufficiently large. It is essential <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two bifurcati<strong>on</strong>s do<br />

not c<strong>on</strong>tradict and bo<str<strong>on</strong>g>th</str<strong>on</strong>g> instabilities can take place simultaneously.<br />

Numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modified Brusselator model support analytic results<br />

and dem<strong>on</strong>strate a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial-temporal patterns for different regi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parametric space. Finally we discuss biological systems in which pattern<br />

formati<strong>on</strong> may be caused by <str<strong>on</strong>g>th</str<strong>on</strong>g>e above mechanisms.<br />

This work was supported by grant No. 08-01-00131 from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Russian Foundati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Basic Research.<br />

References.<br />

[1] A.M. Turing, The chemical basis <str<strong>on</strong>g>of</str<strong>on</strong>g> morphogenesis Philos. Trans. R. Soc. L<strong>on</strong>d<strong>on</strong> B 237 37–2,<br />

1952.<br />

[2] J.D. Murray, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology: II. Spatial Models and Biomedical Applicati<strong>on</strong>s Springer-<br />

Verlag, 3rd ed., 2003.<br />

[3] V.K. Vanag, Waves and patterns in reacti<strong>on</strong>-diffusi<strong>on</strong> systems. Belousov-Zhabotinsky reacti<strong>on</strong><br />

in water-in-oil microemulsi<strong>on</strong>s Phys. Usp. 47 923–941, 2004.<br />

787


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Rosalyn Porter<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling<br />

e-mail: rbp@cs.stir.ac.uk<br />

Epidemics; Tuesday, June 28, 14:30<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> acaricide in preventing tick borne<br />

disease in a wild game bird.<br />

The incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> tick borne diseases is increasing which has <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential to impact<br />

<strong>on</strong> humans, live stock and wildlife. Ticks feed <strong>on</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different host species<br />

which can play different roles in disease transmissi<strong>on</strong> acting i) as a disease host<br />

which cannot sustain <str<strong>on</strong>g>th</str<strong>on</strong>g>e ticks, ii)a tick and disease host, iii) a tick host which does<br />

not transmit <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease but does increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e tick populati<strong>on</strong>. Here we will use<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>th</str<strong>on</strong>g>at acaricide can play in reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

tick populati<strong>on</strong>, preventing tick bites and reducing disease incidence.<br />

We c<strong>on</strong>sider in particular <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> louping ill virus (LIV) a potentially<br />

fatal tick borne disease affecting red grouse, an important ec<strong>on</strong>omic game bird<br />

in upland Britain. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case sheep and red deer bo<str<strong>on</strong>g>th</str<strong>on</strong>g> play a crucial role in<br />

maintaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e tick populati<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>eory any efforts made to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e tick<br />

populati<strong>on</strong> should reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e opportunity for ticks to bite grouse and hence lower<br />

virus incidence. Here we discuss SIR type models c<strong>on</strong>sidering multiple hosts and<br />

including management strategies <str<strong>on</strong>g>th</str<strong>on</strong>g>at use acaricide to achieve <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> in virus<br />

incidence. We also discuss whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> individual grouse broods can<br />

provide protecti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grouse populati<strong>on</strong>.<br />

788


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Zdeněk Pospíšil<br />

Masaryk University, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Brno, Czech Republic<br />

e-mail: pospisil@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.muni.cz<br />

Eva Janoušová<br />

Masaryk University, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biostatistics and Analyses, Brno,<br />

Czech Republic<br />

e-mail: janousova@iba.muni.cz<br />

Tomáš Pavlík<br />

Masaryk University, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biostatistics and Analyses, Brno,<br />

Czech Republic<br />

e-mail: pavlik@iba.muni.cz<br />

Jiří Mayer<br />

University Hospital, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Internal Medicine and Hemato<strong>on</strong>cology,<br />

Brno, Czech Republic<br />

e-mail: jmayer@fnbrno.cz<br />

Marek Trněný<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Hematology and Blood Transfusi<strong>on</strong>, Prague, Czech Republic<br />

e-mail: Marek.Trneny@uhkt.cz<br />

Disease-free survival – (n<strong>on</strong>-)parametric estimati<strong>on</strong><br />

Treatment efficacy in patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a disease is usually expressed using <str<strong>on</strong>g>th</str<strong>on</strong>g>e diseasefree<br />

survival, i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> staying in a remissi<strong>on</strong> after its achievement or<br />

after a <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic interventi<strong>on</strong>. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>cept does not allow to evaluate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> disease-free patients in subsequent remissi<strong>on</strong> after fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er possible<br />

relapses. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od proposed by Klein et al. enables to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> being in first and sec<strong>on</strong>d remissi<strong>on</strong>s.<br />

The c<strong>on</strong>tributi<strong>on</strong> presents two new me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> estimati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

being in any <str<strong>on</strong>g>of</str<strong>on</strong>g> remissi<strong>on</strong>s. The first <strong>on</strong>e extends <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-parametric estimati<strong>on</strong><br />

proposed by Klein et al. <str<strong>on</strong>g>th</str<strong>on</strong>g>at is based <strong>on</strong> Kaplan-Meier estimators <str<strong>on</strong>g>of</str<strong>on</strong>g> survival<br />

functi<strong>on</strong>s. The sec<strong>on</strong>d <strong>on</strong>e utilizes a multistate model and it adopts <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for<br />

matrix model parameters identificati<strong>on</strong> based <strong>on</strong> quadratic programming (<str<strong>on</strong>g>th</str<strong>on</strong>g>e idea<br />

originally elaborated by Wood) to estimate probabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> remissi<strong>on</strong>s and relapses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> any rank. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are illustrated <strong>on</strong> data <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic myeloid leukaemia<br />

patients.<br />

References.<br />

[1] J. P. Klein, N. Keiding, Y. Shu, R. M. Szydlo, J. M. Goldman, Summary curves for patients<br />

transplanted for chr<strong>on</strong>ic myeloid leukaemia salvaged by a d<strong>on</strong>or lymphocyte infusi<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

current leukaemia-free survival curve. British J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Haematology 109 148–152.<br />

[2] S. N. Wood, Inverse problems and structured-populati<strong>on</strong> dynamics. In S. Tuljapurkar,<br />

H. Caswell (eds.) Structured-populati<strong>on</strong> models in marine, terrestrial and freshwater systems.<br />

Chapman& Hall, N.Y. 1997, 555-586.<br />

789


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Saturday, July 2, 11:00<br />

Ilya Potapov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Signal Processing, Tampere University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

Korkeakoulunkatu 10, Tampere, Finland and Biophysics Department,<br />

Lom<strong>on</strong>osov Moscow State University, GSP-1, Leninskie Gory, Moscow,<br />

Russia<br />

e-mail: ilya.potapov@tut.fi<br />

Evgenii Volkov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Physics, Lebedev Physical Inst., Leninskii<br />

53, Moscow, Russia<br />

e-mail: volkov@td.lpi.ru<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic repressilators wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

phase-repulsive coupling<br />

Oscillatory processes have been discovered in various biological c<strong>on</strong>texts. Circadian<br />

clock [1], biochemical oscillati<strong>on</strong>s [2] and cell cycle [3] are <str<strong>on</strong>g>th</str<strong>on</strong>g>e well-known<br />

examples.<br />

Recently, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere were c<strong>on</strong>structed genetic networks exhibiting a specific type<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical behavior [4, 5, 6]. A prominent example <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic circuit<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e repressilator c<strong>on</strong>structed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree transcripti<strong>on</strong> factors inhibiting each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

in cyclic way. The obvious output <str<strong>on</strong>g>of</str<strong>on</strong>g> such interacti<strong>on</strong> is oscillati<strong>on</strong>s in protein<br />

c<strong>on</strong>centrati<strong>on</strong>s [4].<br />

Syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic circuits are organized simpler <str<strong>on</strong>g>th</str<strong>on</strong>g>an natural <strong>on</strong>es and can<br />

evince important details <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter.<br />

Given <str<strong>on</strong>g>th</str<strong>on</strong>g>at cells interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er it would be <str<strong>on</strong>g>of</str<strong>on</strong>g> particular interest to<br />

investigate dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> such integrated populati<strong>on</strong>. Quorum sensing is <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling<br />

mechanism found in many bacteria and utilizes a small molecule, autoinducer, which<br />

diffuses <str<strong>on</strong>g>th</str<strong>on</strong>g>rough cell membrane and activates some target gene [7].<br />

Two <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical schemes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e repressilator wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e quorum sensing coupling<br />

mechanism were proposed earlier: phase-attractive [8] and phase-repulsive [9]. The<br />

latter <strong>on</strong>e utilizes a negative feedback loop in <str<strong>on</strong>g>th</str<strong>on</strong>g>e autoinducer producti<strong>on</strong> module<br />

in additi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e average negative feedback loop <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e repressilator core. The<br />

following system <str<strong>on</strong>g>of</str<strong>on</strong>g> dimensi<strong>on</strong>less equati<strong>on</strong>s describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled repressilators<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> phase-repulsive coupling [9]:<br />

dai<br />

dt = −ai + α<br />

1+Cn ;<br />

i<br />

dbi<br />

dt = −bi + α<br />

1+An ;<br />

i<br />

dci<br />

dt = −ci + α<br />

1+Bn i<br />

+ κ Si<br />

1+Si ;<br />

dAi<br />

dt = −β(Ai − ai)<br />

dBi<br />

dt = −β(Bi − bi)<br />

dCi<br />

dt = −β(Ci − ci)<br />

dSi<br />

dt = −ks0Si + ks1Bi − η(Si − Q ¯ S)<br />

The uppercase letters Ai, Bi and Ci denote protein c<strong>on</strong>centrati<strong>on</strong>s, while lower-<br />

case ai, bi and ci are proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mRNA corresp<strong>on</strong>ding to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ose proteins, Si denotes AI c<strong>on</strong>centrati<strong>on</strong>, where i is a cell index. ¯ S = 1 N<br />

Si,<br />

N<br />

790<br />

i=1


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

where N is <str<strong>on</strong>g>th</str<strong>on</strong>g>e total number <str<strong>on</strong>g>of</str<strong>on</strong>g> cells. α is a maximal transcripti<strong>on</strong> rate. n is Hill<br />

coefficient or cooperativity. Q is proporti<strong>on</strong>al to populati<strong>on</strong> density. β is <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio<br />

between mRNA and protein lifetimes.<br />

We have investigated dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic oscillators — repressilators<br />

— coupled <str<strong>on</strong>g>th</str<strong>on</strong>g>rough autoinducer diffusi<strong>on</strong> in phase-repulsive manner. We have<br />

examined emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> periodic regimes, stable inhomogeneous steady states depending<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main systems’ parameters: coupling streng<str<strong>on</strong>g>th</str<strong>on</strong>g> and maximal transcripti<strong>on</strong><br />

rate. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese regimes were shown to exist in [9].<br />

It has been found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e autoinducer producti<strong>on</strong> module added to <str<strong>on</strong>g>th</str<strong>on</strong>g>e isolated<br />

repressilator causes <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit cycle to disappear <str<strong>on</strong>g>th</str<strong>on</strong>g>rough infinite period bifurcati<strong>on</strong><br />

for sufficiently large transcripti<strong>on</strong> rate (α). We have found hysteresis <str<strong>on</strong>g>of</str<strong>on</strong>g> limit cycle<br />

and stable steady state, <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> which is determined by ratio between mRNA<br />

and protein lifetimes.<br />

Two coupled oscillators system dem<strong>on</strong>strates stable anti-phase oscillati<strong>on</strong>s which<br />

can become a chaotic regime <str<strong>on</strong>g>th</str<strong>on</strong>g>rough invariant torus emergence, <str<strong>on</strong>g>th</str<strong>on</strong>g>at was investigated<br />

in [10], or via Feigenbaum period doubling bifurcati<strong>on</strong> cascade [11], which is<br />

alternative way to chaos found by us in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system.<br />

References.<br />

[1] J. Dunlap, Molecular bases for circadian clocks Cell 96 271–290.<br />

[2] A.K. Ghosh and B. Chance,Oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> glycolytic intermediates in yeast cells Biochem.<br />

Biophys. Res. Commun. 16 174–181.<br />

[3] P. Nurse, A l<strong>on</strong>g twentie<str<strong>on</strong>g>th</str<strong>on</strong>g> century <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle and bey<strong>on</strong>d Cell 100 71–78.<br />

[4] M. Elowitz and S. Leibler, A syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic oscillatory network <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong>al regulators Nature<br />

403 335–338.<br />

[5] T.S. Gardner, C.R. Cantor and J.J. Collins, C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a genetic toggle switch in Escherichia<br />

coli Nature 403 339–342.<br />

[6] M. Atkins<strong>on</strong>, M. Savageau, J. Myers and A. Ninfa, Development <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic circuitry exhibiting<br />

toggle switch or oscillatory behavior in Escherichia coli Cell 113 597–607.<br />

[7] C.M. Waters and B.L. Bassler, Quorum sensing: cell-to-cell communicati<strong>on</strong> in bacteria Ann.<br />

Rev. Cell Dev. Biol. 21 319–346.<br />

[8] J. García-Ojalvo, M. Elowitz and S. Strogatz, Modeling a syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic multicellular clock: Repressilators<br />

coupled by quorum sensing Proc. Natl. Acad. Sci. U.S.A. 101 10955–10960.<br />

[9] E. Ullner, A. Zaikin, E. Volkov and J. García-Ojalvo, Multistability and clustering in a populati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic oscillators via phase-repulsive cell-to-cell communicati<strong>on</strong> Phys.<br />

Rev. Lett. 99 148103.<br />

[10] E. Ullner, A. Koseska, J. Kur<str<strong>on</strong>g>th</str<strong>on</strong>g>s, E. Volkov, H. Kantz and J. García-Ojalvo, Multistability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic genetic networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> repressive cell-to-cell communicati<strong>on</strong> Phys. Rev. E. 78 031904.<br />

[11] M. Feigenbaum, Quantitative universality for a class <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear transformati<strong>on</strong>s J. Stat.<br />

Phys. 19 25–52.<br />

791


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 14:30<br />

Gibin Powa<str<strong>on</strong>g>th</str<strong>on</strong>g>il<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee, Dundee, United Kingdom.<br />

e-mail: gibin@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Mark Chaplain<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee, Dundee, United Kingdom.<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-cycle heterogeneity <strong>on</strong> tumour<br />

resp<strong>on</strong>se to chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy: Biological insights from a hybrid<br />

multi-scale cellular automat<strong>on</strong> model<br />

The <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid tumour depends critically <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

individual cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>stitute <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire tumour mass. A particular cells spatial<br />

locati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour and intracellular interacti<strong>on</strong>s, including <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in each cell, has an impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir decisi<strong>on</strong> to grow and<br />

divide. They are also influenced by external signals from o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cells, and oxygen<br />

and nutrient c<strong>on</strong>centrati<strong>on</strong>s. Hence, it is important to take <str<strong>on</strong>g>th</str<strong>on</strong>g>ese into account when<br />

modelling tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se to various cell-kill <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies, including<br />

chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy.<br />

In order to address <str<strong>on</strong>g>th</str<strong>on</strong>g>is multi-scale nature <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, we propose a<br />

hybrid, individual-based approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at analyses spatio-temporal dynamics at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> cells, linking individual cell behaviour wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

organisati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment. The individual tumour cells are modelled<br />

by using a cellular automat<strong>on</strong> (CA) approach, where each cell has its own internal<br />

cell cycle, modelled using a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ODEs. The internal cell-cycle dynamics<br />

determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> strategy in <str<strong>on</strong>g>th</str<strong>on</strong>g>e CA model, making it more predictive and<br />

biologically relevant. It also helps to classify <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells according to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir cell-cycle<br />

states and to analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> various cell-cycle dependent cytotoxic drugs.<br />

Moreover, we have incorporated <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is hybrid<br />

model in order to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment in cell-cycle regulati<strong>on</strong><br />

and tumour treatments. An important factor from <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment point <str<strong>on</strong>g>of</str<strong>on</strong>g> view is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e low c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen can result in a hypoxia-induced quiescence<br />

(G0/G1 arrest) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells, making <str<strong>on</strong>g>th</str<strong>on</strong>g>em resistant to key cytotoxic drugs.<br />

Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is multi-scale model, we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen heterogeneity <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal patterning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell distributi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir cell-cycle status.<br />

We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at oxygen transport limitati<strong>on</strong>s result in significant heterogeneity<br />

in HIF-1 alpha signalling and cell-cycle status, and when <str<strong>on</strong>g>th</str<strong>on</strong>g>ese are combined wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

drug transport limitati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is significantly impaired.<br />

792


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: from physical tools to<br />

applicati<strong>on</strong>s in cancer modeling II; Saturday, July 2, 11:00<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> phase field models in biological systems<br />

Sim<strong>on</strong> Praetorius<br />

Institut für Wissenschaftliches Rechnen, Technische Universität Dresden,<br />

Zellescher Weg 12-14, 01062 Dresden, Germany<br />

e-mail: s.praetorius@googlemail.com<br />

Shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> complex geometry are ubiquitous in our natural envir<strong>on</strong>ment. A few<br />

examples are snow flakes, crack patterns, microstructures in materials or <str<strong>on</strong>g>th</str<strong>on</strong>g> evein<br />

network in plant leaves. These shapes have in comm<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are created by<br />

out-<str<strong>on</strong>g>of</str<strong>on</strong>g>-equilibrium phenomena and <str<strong>on</strong>g>th</str<strong>on</strong>g>us evolve in time. The understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> a diverse<br />

array <str<strong>on</strong>g>of</str<strong>on</strong>g> phenomena involving complex time-dependent shapes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical<br />

and biological sciences has been greatly enhanced by a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical/computati<strong>on</strong>al<br />

framework rooted in statistical physics, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is comm<strong>on</strong>ly refered to as phase-field<br />

modeling. The main challenge in <str<strong>on</strong>g>th</str<strong>on</strong>g>is field is to c<strong>on</strong>struct models which encompass<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> practically relevant materials or biological systems, are capable <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

making quantitatively accurate predicti<strong>on</strong>s and are ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically simple enough<br />

to be solved <strong>on</strong> physically realistic time and leng<str<strong>on</strong>g>th</str<strong>on</strong>g> scales.<br />

We present various applicati<strong>on</strong>s in biological systems, including cell dynamics,<br />

viral capsides and b<strong>on</strong>e remodeling.<br />

793


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Jamie Prentice<br />

SAC<br />

e-mail: jamie@bioss.ac.uk<br />

Epidemics; Tuesday, June 28, 14:30<br />

The Perturbati<strong>on</strong> Effect in wildlife diseases: An emergent<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> simple models<br />

Populati<strong>on</strong> reducti<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used as a disease c<strong>on</strong>trol strategy when dealing wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

wildlife hosts; however, in some systems it has been associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an increase<br />

in disease (including bovine tuberculosis in badgers and classical swine fever virus<br />

in wild boar). This increase in disease following populati<strong>on</strong> reducti<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

referred to as <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong> effect. Several possible reas<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong><br />

effect have been suggested, including increased movement and c<strong>on</strong>tact rates, and<br />

compensatory reproducti<strong>on</strong> following populati<strong>on</strong> reducti<strong>on</strong>.<br />

We use ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical epidemiological SI models c<strong>on</strong>taining key processes, to<br />

investigate properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong> effect and study how it arises as an emergent<br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying populati<strong>on</strong> and disease dynamic.<br />

In a n<strong>on</strong>-spatial c<strong>on</strong>text, we investigate how a change in host behaviour (as a<br />

c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> reducti<strong>on</strong>) leading to an increase in horiz<strong>on</strong>tal disease<br />

transmissi<strong>on</strong>, can give rise to <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong> effect. We also investigate how<br />

characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> demography and disease affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is increase.<br />

In a stochastic spatial c<strong>on</strong>text, we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> density dependent<br />

movement between multiple sub populati<strong>on</strong>s, and how <str<strong>on</strong>g>th</str<strong>on</strong>g>e horiz<strong>on</strong>tal disease transmissi<strong>on</strong><br />

between groups can affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e increase. Finally we investigate how different<br />

populati<strong>on</strong> reducti<strong>on</strong> strategies can maximise <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong> effect.<br />

We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e perturbati<strong>on</strong> effect is most likely to occur in disease systems<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low disease prevalence, where populati<strong>on</strong>s are close to <str<strong>on</strong>g>th</str<strong>on</strong>g>e carrying capacity<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease is spatially heterogeneous in nature.<br />

794


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: from physical tools to<br />

applicati<strong>on</strong>s in cancer modeling I; Saturday, July 2, 08:30<br />

Luigi Preziosi<br />

Dip. Matematica, Politecnico di Torino<br />

e-mail: luigi.preziosi@polito.it<br />

Guido Vitale<br />

Dip. Matematica, Politecnico di Torino<br />

e-mail: guido.vitale@polito.it<br />

Cell Adhesi<strong>on</strong> and Re-organisati<strong>on</strong> in a Multiphase Model<br />

Describing Tumour and Tissue Grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

The main aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk is to describe how to embed <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental results<br />

recently obtained studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e detachment force <str<strong>on</strong>g>of</str<strong>on</strong>g> single adhesi<strong>on</strong> b<strong>on</strong>ds in<br />

a multiphase model developed to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumours and tissues in<br />

general. In order to do <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic infomati<strong>on</strong> is upscaled to <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic<br />

level to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> some crucial terms appearing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e PDE<br />

model <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sub-cellular dynamics involving, for instance, <str<strong>on</strong>g>th</str<strong>on</strong>g>e density <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>ds<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane, <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>d rupture and <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>d formati<strong>on</strong>.<br />

In fact, adhesi<strong>on</strong> phenomena influence bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> forces am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stituents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mixtures and <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stitutive equati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e stress <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular<br />

comp<strong>on</strong>ents.<br />

Studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e former terms a relati<strong>on</strong>ship between interacti<strong>on</strong> forces and relative<br />

velocity is found. The dynamics presents a behaviour resembling <str<strong>on</strong>g>th</str<strong>on</strong>g>e transiti<strong>on</strong> from<br />

epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial to mesenhymal cells or from mesenchymal to ameboid moti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

chemical cues triggering such transiti<strong>on</strong>s are not c<strong>on</strong>sidered here.<br />

The latter terms are dealt wi<str<strong>on</strong>g>th</str<strong>on</strong>g> using <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> evolving natural c<strong>on</strong>figurati<strong>on</strong>s<br />

c<strong>on</strong>sisting in decomposing in a multiplicative way <str<strong>on</strong>g>th</str<strong>on</strong>g>e deformati<strong>on</strong> gradient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular c<strong>on</strong>stituent distinguishing <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributi<strong>on</strong>s due to grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, to cell rearrangement<br />

and to elastic deformati<strong>on</strong>. This allows to describe situati<strong>on</strong>s in which<br />

if in some points <str<strong>on</strong>g>th</str<strong>on</strong>g>e ensemble <str<strong>on</strong>g>of</str<strong>on</strong>g> cells is subject to a stress above a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold, <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

locally some b<strong>on</strong>ds may break and some o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers may form, giving rise to an internal<br />

re-organisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows to relax exceedingly high stresses.<br />

795


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Tadeáš Přiklopil<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: tadeas.priklopil@helsinki.fi<br />

Speciati<strong>on</strong>; Wednesday, June 29, 08:30<br />

Magic traits, mate choice and speciati<strong>on</strong><br />

Many <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical models <strong>on</strong> sympatric speciati<strong>on</strong> rely <strong>on</strong> assortative mating functi<strong>on</strong>s,<br />

in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>th</str<strong>on</strong>g>at two individuals mate decreases wi<str<strong>on</strong>g>th</str<strong>on</strong>g> increasing<br />

phenotypic difference. We give results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> assortative mating functi<strong>on</strong>s<br />

in models, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e trait <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trols mate choice also determines fitness<br />

in ecological selecti<strong>on</strong> (so called magic traits). In particular, we c<strong>on</strong>centrate <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e deficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese mating functi<strong>on</strong>s and c<strong>on</strong>trast <str<strong>on</strong>g>th</str<strong>on</strong>g>e results wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mate choice<br />

which is also based <strong>on</strong> indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptedness. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er, we introduce mate choice<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at is based <strong>on</strong> a strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> sequential search, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e decisi<strong>on</strong> to mate depends<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e density distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness returns to <str<strong>on</strong>g>th</str<strong>on</strong>g>e searcher.<br />

References.<br />

[1] E. Kisdi & T. Priklopil, Evoluti<strong>on</strong>ary branching <str<strong>on</strong>g>of</str<strong>on</strong>g> a magic trait J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. DOI<br />

10.1007/s00285-010-0377-1<br />

796


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stephen Proulx<br />

UC Santa Barbara<br />

e-mail: stephen.proulx@gmail.com<br />

Alexey Yanchukov<br />

UC Santa Barbara<br />

Speciati<strong>on</strong>; Wednesday, June 29, 08:30<br />

Evoluti<strong>on</strong>ary resp<strong>on</strong>ses to migrati<strong>on</strong> load: A tall fence or a<br />

melting pot?<br />

Gene flow between populati<strong>on</strong>s in different ecological c<strong>on</strong>diti<strong>on</strong>s can reduce fitness in<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong>s. This can be due to immigrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alleles <str<strong>on</strong>g>th</str<strong>on</strong>g>at are not adapted to<br />

local ecological c<strong>on</strong>diti<strong>on</strong> or because hybrids between populati<strong>on</strong>s have lower fitness.<br />

But <str<strong>on</strong>g>th</str<strong>on</strong>g>is reducti<strong>on</strong> in fitness, or genetic load, is also a potential engine to drive<br />

evoluti<strong>on</strong>: The magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic load sets an upper bound to <str<strong>on</strong>g>th</str<strong>on</strong>g>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

selecti<strong>on</strong> to compensate for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost <str<strong>on</strong>g>of</str<strong>on</strong>g> migrati<strong>on</strong>. This load can be reduced <str<strong>on</strong>g>th</str<strong>on</strong>g>rough<br />

mating preferences for high quality mates, mating preferences for local genotypes,<br />

or by changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic architecture. Preferences for local mates would lead<br />

to reinforcement <str<strong>on</strong>g>of</str<strong>on</strong>g> low hybrid fitness and potentially speciati<strong>on</strong>. Alternatively,<br />

preferences for high quality mates or changes to <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic architecture might allow<br />

incipient species to c<strong>on</strong>tinue to transfer genetic informati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out populati<strong>on</strong><br />

collapse. I will discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> each pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way and <str<strong>on</strong>g>th</str<strong>on</strong>g>e implicati<strong>on</strong>s<br />

for local adaptati<strong>on</strong> and speciati<strong>on</strong>.<br />

797


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Jens Przybilla<br />

Interdisciplinary Centre for Bioinformatics, Institute for Medical<br />

Informatics, Statistics and Epidemiology, Leipzig University, Germany<br />

e-mail: przybilla@izbi.uni-leipzig.de<br />

Markus Löffler<br />

Institute for Medical Informatics, Statistics and Epidemiology, Interdisciplinary<br />

Centre for Bioinformatics, Leipzig University, Germany<br />

e-mail: markus.loeffler@imise.uni-leipzig.de<br />

Jörg Galle<br />

Interdisciplinary Centre for Bioinformatics, Leipzig University, Germany<br />

e-mail: galle@izbi.uni-leipzig.de<br />

Towards a whole-tissue model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intestine.<br />

The intestinal epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium is a paradigmatic system to study regenerative tissues.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is tissue <str<strong>on</strong>g>th</str<strong>on</strong>g>e stem cells are c<strong>on</strong>fined to a well-defined niche at <str<strong>on</strong>g>th</str<strong>on</strong>g>e bottom<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> invaginati<strong>on</strong>s called crypts. The progeny <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese stem cells specify into different<br />

functi<strong>on</strong>al lineages and regenerate <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire tissue wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a few days.<br />

A multitude <str<strong>on</strong>g>of</str<strong>on</strong>g> genetically altered mouse stems show not <strong>on</strong>ly changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

turnover but also clear morphological changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire intestine. In order<br />

to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>ese phenotypes a whole-tissue approach is required.<br />

Recently, we introduced an <str<strong>on</strong>g>of</str<strong>on</strong>g>f-lattice model <str<strong>on</strong>g>of</str<strong>on</strong>g> single crypt dynamics [1]. This<br />

model explains crypt dynamics in steady state and after perturbati<strong>on</strong>s in agreement<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental data. We here present a modelling framework <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows<br />

extending <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to multi-crypt systems representing a first step towards a<br />

whole-tissue model.<br />

We implemented a Cellular Potts Model <strong>on</strong> a curved surface representing multiple<br />

crypts and applied <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory mechanisms and organisati<strong>on</strong> c<strong>on</strong>cepts <str<strong>on</strong>g>of</str<strong>on</strong>g> our <str<strong>on</strong>g>of</str<strong>on</strong>g>flattice<br />

model. This enables us to cover <str<strong>on</strong>g>th</str<strong>on</strong>g>e self-organisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell producti<strong>on</strong> and<br />

loss in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue, which is assumed as fixed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e former model. We provide first<br />

simulati<strong>on</strong> results applying <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to circadian rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms <str<strong>on</strong>g>of</str<strong>on</strong>g> intestinal turnover<br />

and compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e results to experimental data [2].<br />

References.<br />

[1] P. Buske et.al., A comprehensive model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal stem cell and tissue organisati<strong>on</strong><br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e intestinal crypt. PLoS Comput Biol 2011 7 e1001045.<br />

[2] J.M. Qiu, et.al.,Cell migrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e small and large bowel shows a str<strong>on</strong>g circadian rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>m.<br />

Epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial Cell Biol 1994 3(4) 137–148.<br />

798


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Piotr Przymus<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science, Nicolaus Copernicus<br />

University, Chopina 12/18, 87-100 Toruń, Poland<br />

e-mail: eror@mat.umk.pl,<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Rykaczewski<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science, Nicolaus Copernicus<br />

University, Chopina 12/18, 87-100 Toruń, Poland<br />

e-mail: mozgun@mat.umk.pl<br />

Recurrence plot analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> time series derived from<br />

observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Dreissena polymorpha<br />

Biological Early Warning Systems provide a rapid warning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

c<strong>on</strong>taminants in water at c<strong>on</strong>centrati<strong>on</strong>s which could be immediate <str<strong>on</strong>g>th</str<strong>on</strong>g>reat to living<br />

organisms. In our work we use l<strong>on</strong>g-term observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater mussels for<br />

m<strong>on</strong>itoring water c<strong>on</strong>taminati<strong>on</strong>. This paper presents a recurrence plot (RP) based<br />

approach to analyse data derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Dreissena polymorpha.<br />

Studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-linear characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> data sequences can assist in understanding<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ships between measured mussel activities and actual state in surrounding<br />

envir<strong>on</strong>ment. Data sequences are extended to m-dimensi<strong>on</strong>al phase space and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>en we use recurrence plots to visualize recurrences <str<strong>on</strong>g>of</str<strong>on</strong>g> trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical<br />

systems. Finally, <str<strong>on</strong>g>th</str<strong>on</strong>g>e recurrence quantificati<strong>on</strong> analysis (RQA) is used to quantify<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e structures found in RPs and to classify <str<strong>on</strong>g>th</str<strong>on</strong>g>em. In order to check <str<strong>on</strong>g>th</str<strong>on</strong>g>e effectiveness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach, we need to examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e adequacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods used at various<br />

stages <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis. Therefore, we will discuss usage <str<strong>on</strong>g>of</str<strong>on</strong>g> various parameters for RP<br />

and RQA and classificati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods (SVM, KNN, FDA,SRDA, PDA, DLDA). Preliminary<br />

experiments and previous results <str<strong>on</strong>g>of</str<strong>on</strong>g> work show <str<strong>on</strong>g>th</str<strong>on</strong>g>at such formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e problem allows to extract relevant informati<strong>on</strong> from signal and lead to effective<br />

soluti<strong>on</strong>s to c<strong>on</strong>sidered problem. It is found, for example, <str<strong>on</strong>g>th</str<strong>on</strong>g>at RQA may support<br />

identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e water.<br />

References.<br />

[Bis06] Ch. M. Bishop. Pattern Recogniti<strong>on</strong> and Machine Learning. Springer, 2006.<br />

[Bor06] Jost Borcherding. Ten years <str<strong>on</strong>g>of</str<strong>on</strong>g> practical experience wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dreissena-m<strong>on</strong>itor, a biological<br />

early warning system for c<strong>on</strong>tinuous water quality m<strong>on</strong>itoring. Hydrobiologia,<br />

556:417–426, 2006.<br />

[EKR87] J.-P. Eckmann, S.O. Kamphorst, and D. Ruelle. Recurrence plots <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamical system.<br />

Europhys. Lett., 4:973–977, 1987.<br />

[Gud03] Alexander V. Gudimov. Elementary behavioral acts <str<strong>on</strong>g>of</str<strong>on</strong>g> valve movements in mussels<br />

(mytilus edulis l.). Doklady Biological Sciences, 391:346–348, 2003. Translated from<br />

Doklady Akademii Nauk, Vol. 391, No. 3, 2003, pp. 422-425.<br />

[KKCC06] Cheol-Ki Kim, Inn-Sil Kwak, Eui-Young Cha, and Tae-Soo Ch<strong>on</strong>. Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wavelets and artificial neural networks to detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic resp<strong>on</strong>se behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> chir<strong>on</strong>omids<br />

(chir<strong>on</strong>omidae: Diptera) for water quality m<strong>on</strong>itoring. Ecol. Model., 195:61–<br />

71, 2006.<br />

[LRM08] Petr<strong>on</strong>e L., Norman L. C Ragg, and A. James McQuillan. In situ infrared spectroscopic<br />

investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> perna canaliculus mussel larvae primary settlement. Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ouling.,<br />

24(6):405–413, 2008.<br />

799


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[RSH + 06] David L. Rodland, Bernd R. Schöne, Samuli O. Helama, Jan Kresten Nielsen, and<br />

Sven M. Baier. A clockwork mollusc: Ultradian rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms in bivalve activity revealed<br />

by digital photography. J. Exp. Mar. Biol. Ecol., 334:316–323, 2006.<br />

[Wiś91] Ryszard Wiśniewski. New me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for recording activity pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> bivalves: A preliminary<br />

report <strong>on</strong> dreissena polymorpha pallas during ecological stress. In Ten<str<strong>on</strong>g>th</str<strong>on</strong>g> Intern.<br />

Malacol. C<strong>on</strong>gress, pages 363–365, 1991.<br />

[WZ94] C.L. Webber and J.P. Zbilut. Dynamical assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological systems and states<br />

using recurrence plot strategies. J. Appl. Physiology, 76(2):965–973, 1994.<br />

[ZW92] J. P. Zbilut and C. L. Webber. Embeddings and delays as derived from quantificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> recurrence plots. Phys. Lett. A, 171(3-4):199–203, 1992.<br />

800


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 17:00<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Psiuk-Maksymowicz<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol,<br />

Gliwice, Poland<br />

e-mail: Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>.Psiuk-Maksymowicz@polsl.pl<br />

Computati<strong>on</strong>al study <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

in resp<strong>on</strong>se to combined <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies<br />

The microvascular network plays crucial role in development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solid tumours.<br />

It c<strong>on</strong>stitutes a source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nutrient for <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour and enables its c<strong>on</strong>tinuous<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. However, due to fast metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour cells hypoxic regi<strong>on</strong>s<br />

may occur. Such regi<strong>on</strong>s are <str<strong>on</strong>g>th</str<strong>on</strong>g>en cause <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e angiogenesis. This study is intended<br />

to analyse computati<strong>on</strong>ally interplay between <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour cells and vascular network,<br />

and additi<strong>on</strong>ally to find optimal scheduling for <str<strong>on</strong>g>th</str<strong>on</strong>g>e combined chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

and anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy [1].<br />

The deterministic model is represented by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-linear partial differential<br />

equati<strong>on</strong>s and enables to simulate grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solid tumour in its vascular<br />

phase as well as a process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e angiogenesis. In c<strong>on</strong>trast to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er models (e.g. [2])<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e microvascular network is modelled explicite, not as a density <str<strong>on</strong>g>of</str<strong>on</strong>g> blood vessels.<br />

It enables to capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour tissue, not <strong>on</strong>ly its averaged<br />

picture. In order to find optimal parameters for <str<strong>on</strong>g>th</str<strong>on</strong>g>e combined chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and<br />

anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy a few heuristic algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms are employed, including simulated<br />

annealing [3] and evoluti<strong>on</strong>ary algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m.<br />

References.<br />

[1] A. Swierniak, M. Kimmel and J. Smieja, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling as a tool for planning anticancer<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <str<strong>on</strong>g>European</str<strong>on</strong>g> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Pharmacology 625 (2009) 108–121.<br />

[2] J. Panovska, H.M. Byrne and P.K. Maini Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

and implicati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Systems, Volume I: Modeling<br />

and Simulati<strong>on</strong> in Science, Engineering and Technology, 2007, Part IV, 205–216.<br />

[3] Z. Agur, R. Hassin and S. Levy, Optimizing chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy scheduling using local search heuristics<br />

Operati<strong>on</strong>s Research 54 (2006) 829–846.<br />

801


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Plants, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and transport processes I; Tuesday, June 28, 11:00<br />

Mariya Ptashnyk<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics I, RWTH Aachen University, Wüllnerstr.<br />

5b, D-52056 Aachen<br />

e-mail: ptashnyk@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>1.rw<str<strong>on</strong>g>th</str<strong>on</strong>g>-aachen.de<br />

Andres Chavarría-Krauser<br />

BIOQUANT, Heidelberg University, Im Neuenheimer Feld 267, D-69120<br />

Heidelberg<br />

e-mail: andres.chavarria@bioquant.uni-heidelberg.de<br />

Transport <str<strong>on</strong>g>of</str<strong>on</strong>g> metal and water in plant roots: Modelling and<br />

Analysis<br />

We study <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> metal and water transport <str<strong>on</strong>g>th</str<strong>on</strong>g>rough plant roots. The<br />

model equati<strong>on</strong>s reflect <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex microscopic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> a root tissue. We<br />

distinguish between apoplastic and symplastic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways for metal and water transport.<br />

The active water transport is modelled by Stokes equati<strong>on</strong>s and is defined<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e pressure difference between roots and atmosphere and by <str<strong>on</strong>g>th</str<strong>on</strong>g>e osmotic pressure<br />

in cells. The transport <str<strong>on</strong>g>of</str<strong>on</strong>g> metal molecules is specified by reacti<strong>on</strong>-diffusi<strong>on</strong>c<strong>on</strong>vecti<strong>on</strong><br />

equati<strong>on</strong>s. The ordinary differential equati<strong>on</strong>s describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamic <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

metal transporter c<strong>on</strong>centrati<strong>on</strong>s <strong>on</strong> cell membranes. Using multiscale analysis we<br />

derive a macroscopic model for transport processes defined <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e scale <str<strong>on</strong>g>of</str<strong>on</strong>g> a whole<br />

root branch. The c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear terms is shown applying <str<strong>on</strong>g>th</str<strong>on</strong>g>e unfolding<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od.<br />

802


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Genetics; Friday, July 1, 14:30<br />

Robert Puddicombe<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Surrey, Guildford, Surrey,<br />

GU2 7XH, UK<br />

e-mail: R.Puddicombe@surrey.ac.uk<br />

Dr André Grüning<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Computing, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Surrey, Guildford, Surrey,<br />

GU2 7XH, UK<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> distinct col<strong>on</strong>ies <str<strong>on</strong>g>of</str<strong>on</strong>g> genotype in a sympatric<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> diploid entities<br />

As part <str<strong>on</strong>g>of</str<strong>on</strong>g> an investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sympatric speciati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study used a computer<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diploid entities to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> stable<br />

col<strong>on</strong>ies <str<strong>on</strong>g>of</str<strong>on</strong>g> genotypes. The investigati<strong>on</strong> tested development in variously shaped<br />

spaces where, in order to maintain a sympatric envir<strong>on</strong>ment, uniform developmental<br />

characteristics were applied in all areas.<br />

The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to establish whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er species can separate in a<br />

uniform envir<strong>on</strong>ment simply by random genetic development. The study’s dem<strong>on</strong>strati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stable ’col<strong>on</strong>ies’ wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a uniform space seems to imply <str<strong>on</strong>g>th</str<strong>on</strong>g>at sympatric<br />

speciati<strong>on</strong> is possible.<br />

The computer model represented chromosomes as binary numbers, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each<br />

digit equivalent to a gene: being ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er ’wild’ or mutated. Processes <str<strong>on</strong>g>of</str<strong>on</strong>g> inheritance<br />

were modelled using probabilistic rates <str<strong>on</strong>g>of</str<strong>on</strong>g> mutati<strong>on</strong> and cross-over. The populati<strong>on</strong><br />

was subject to a randomly-applied dea<str<strong>on</strong>g>th</str<strong>on</strong>g>-rate and <str<strong>on</strong>g>of</str<strong>on</strong>g>f-spring competed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting<br />

space. A key characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model was <str<strong>on</strong>g>th</str<strong>on</strong>g>e limited range for selecting<br />

a mate and placing <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring. This places <str<strong>on</strong>g>th</str<strong>on</strong>g>e model between models which allow<br />

panmictic mating and <str<strong>on</strong>g>th</str<strong>on</strong>g>ose which employ sexual selecti<strong>on</strong> mechanisms.<br />

In a ring-shaped corridor, starting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> uniform or random populati<strong>on</strong>s, four<br />

or five distinct col<strong>on</strong>ies <str<strong>on</strong>g>of</str<strong>on</strong>g> genotypes developed and remained stable for several<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ousand generati<strong>on</strong>s. These col<strong>on</strong>ies were similar to biological ’ring-species’ but<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model all <str<strong>on</strong>g>th</str<strong>on</strong>g>e neighbouring col<strong>on</strong>ies become equally incompatible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each<br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. The development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese col<strong>on</strong>ies was found to be related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e wid<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corridor, as well as to <str<strong>on</strong>g>th</str<strong>on</strong>g>e rates <str<strong>on</strong>g>of</str<strong>on</strong>g> recombinati<strong>on</strong> and mutati<strong>on</strong> which were<br />

applied. In a narrow corridor several distinct col<strong>on</strong>ies persisted whereas in a wide<br />

corridor <strong>on</strong>e dominant type quickly developed.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er study is required to establish whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>ese col<strong>on</strong>ies can be c<strong>on</strong>sidered<br />

as proper examples <str<strong>on</strong>g>of</str<strong>on</strong>g> sympatric speciati<strong>on</strong>.<br />

803


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Tuesday, June 28, 11:00<br />

Andrea Pugliese<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento, Italy<br />

e-mail: pugliese@science.unitn.it<br />

Gianpaolo Scalia Tomba<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Roma Tor Vergata<br />

Ant<strong>on</strong>ella Lunelli<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Trento, Italy<br />

Approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> spread in multigroup SIR models<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough homogeneous models<br />

In recent years <str<strong>on</strong>g>th</str<strong>on</strong>g>ere has been a tremendous increase in <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemic<br />

models developed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> in humans; <str<strong>on</strong>g>of</str<strong>on</strong>g>ten models include<br />

households and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er types <str<strong>on</strong>g>of</str<strong>on</strong>g> mixing groups, as well as heterogeneities due to age,<br />

behaviour, etc. In ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er directi<strong>on</strong>, a great number <str<strong>on</strong>g>of</str<strong>on</strong>g> data <strong>on</strong> infecti<strong>on</strong> spread<br />

have been analysed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models, which <str<strong>on</strong>g>of</str<strong>on</strong>g>ten are based<br />

<strong>on</strong> homogeneous mixing, or simple variants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>at. Aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is starting<br />

to understand why, while definitely mixing patterns and individual behaviour are<br />

complicated, simple homogeneous models may still reproduce adequately <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall<br />

epidemic spread. Our prototype <str<strong>on</strong>g>of</str<strong>on</strong>g> complex models is relatively simple, namely<br />

a stochastic SIR model for a closed populati<strong>on</strong> divided in groups, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> uniform<br />

global transmissi<strong>on</strong> and heterogeneous local transmissi<strong>on</strong>; simulati<strong>on</strong>s show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is type <str<strong>on</strong>g>of</str<strong>on</strong>g> models can be approximated adequately by a homogeneous model, as<br />

l<strong>on</strong>g as <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> groups is sufficiently large. Heuristic me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e homogeneous model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e original<br />

parameters. Extensi<strong>on</strong>s to models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> differential transmissi<strong>on</strong> routes are being<br />

examined.<br />

804


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Małgorzata Pułka<br />

Gdansk University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: mpulka@mif.pg.gda.pl<br />

Populati<strong>on</strong> Genetics; Wednesday, June 29, 14:30<br />

N<strong>on</strong>homogeneous Markov chains and quadratic stochastic<br />

processes in biology<br />

N<strong>on</strong>linear mappings appear in many branches <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and its applicati<strong>on</strong>s.<br />

In ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biology, so-called quadratic stochastic processes (QSP) are used<br />

to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems. We examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such processes as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymptotic properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

n<strong>on</strong>homogeneous Markov chain and asymptotic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> QSP. Moreover, we<br />

study <str<strong>on</strong>g>th</str<strong>on</strong>g>e geometric structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> Markov chains wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a particular limit<br />

bahavior.<br />

805


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Neurosciences; Wednesday, June 29, 08:30<br />

Jan Pyrzowski<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Neurology, Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Gdansk<br />

e-mail: jan.pyrzowski@gmail.com<br />

A dynamical model <str<strong>on</strong>g>of</str<strong>on</strong>g> epilepsy in a plastic neur<strong>on</strong>al network<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> self-organizati<strong>on</strong> scenarios<br />

taking place in a neur<strong>on</strong>al network model equipped wi<str<strong>on</strong>g>th</str<strong>on</strong>g> activity-dependent synaptic<br />

plasticity [1]. We identify several distinct stati<strong>on</strong>ary states as well as parameter<br />

regi<strong>on</strong>s in which two or more states are unstable and <str<strong>on</strong>g>th</str<strong>on</strong>g>e system displays sp<strong>on</strong>taneous<br />

dynamic transiti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>em. Such transiti<strong>on</strong>s take place recurrently,<br />

in various patterns, and involve abrupt reorganizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al c<strong>on</strong>nectivity<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> simultaneous appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> new oscillatory behavior. For selected parameter<br />

regi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> transiti<strong>on</strong>s suggestively resembles stereotypical seizurelike<br />

events <str<strong>on</strong>g>th</str<strong>on</strong>g>at reproduce some important pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ophysiological features <str<strong>on</strong>g>of</str<strong>on</strong>g> epilepsy.<br />

These include: a pr<strong>on</strong>ounced peak in neur<strong>on</strong>al activity accompanied by hypersynchr<strong>on</strong>izati<strong>on</strong><br />

during <str<strong>on</strong>g>th</str<strong>on</strong>g>e events and l<strong>on</strong>g, irregular inter-event intervals. We also<br />

dem<strong>on</strong>strate transient "pre-seizure states", a feature which has been recently identified<br />

by n<strong>on</strong>linear EEG analysis in some forms <str<strong>on</strong>g>of</str<strong>on</strong>g> epilepsy [2]. Our model suggests<br />

a novel hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis for <str<strong>on</strong>g>th</str<strong>on</strong>g>e still poorly understood basic mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> epilepsy and<br />

seizure generati<strong>on</strong>. We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological plausibility and bio-medical implicati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> our findings and outline some possible interpretati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phase transiti<strong>on</strong>s and complex systems <str<strong>on</strong>g>th</str<strong>on</strong>g>eory.<br />

References.<br />

[1] Izhikevich EM, Polychr<strong>on</strong>izati<strong>on</strong>: Computati<strong>on</strong> Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Spikes, Neural Comput. (2006) 18:245-<br />

282.<br />

[2] Le van Quyen M et al., Characterizing Neurodynamic Changes Before Seizures, J Clin Neurophysiol.<br />

(2001) 18(3):191-208.<br />

806


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis I; Wednesday, June 29,<br />

08:30<br />

Amina Qutub<br />

Rice University<br />

e-mail: aminaq@rice.edu<br />

Characterizing Endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial Cell Behavior and Adaptati<strong>on</strong><br />

During Brain Capillary Regenerati<strong>on</strong> by Rule Oriented<br />

Modeling<br />

Cell-cell communicati<strong>on</strong> defines how blood vessels regenerate <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a process<br />

called angiogenesis. Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factors like vascular endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor (VEGF)<br />

and brain-derived grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor (BDNF) guide angiogenic sprouting in <str<strong>on</strong>g>th</str<strong>on</strong>g>e brain,<br />

in c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hypoxia, such as during a stroke or in brain cancer. Here, we<br />

present a computati<strong>on</strong>al strategy to characterize <str<strong>on</strong>g>th</str<strong>on</strong>g>e sequence and magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cell-cell interacti<strong>on</strong>s, allowing us to quantify how each endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cell behavior<br />

inhibits or augments each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. We introduce a novel rule-oriented agent-based<br />

programming me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to allow rapid testing and comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses<br />

in silico to in vitro angiogenic experiments. Results show <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tip<br />

and stalk endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells, and predict how migrati<strong>on</strong>, proliferati<strong>on</strong>, branching,<br />

el<strong>on</strong>gati<strong>on</strong> and quiescence states inhibit or enhance <strong>on</strong>e ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er to form capillary<br />

structures wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in an in vitro 3D matrix, leading to distinct capillary phenotypes<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> VEGF and BDNF. This quantitative understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> how cells<br />

move as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular stimuli, and form vessels, will be used to help<br />

guide small molecule drugs and tissue engineering <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies targeting <str<strong>on</strong>g>th</str<strong>on</strong>g>e brain<br />

microvasculature.<br />

807


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> kinetics in biology; Tuesday, June 28, 14:30<br />

Ovidiu Radulescu<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>tpellier 2<br />

e-mail: ovidiu.radulescu@univ-m<strong>on</strong>tp2.fr<br />

Guilherme Innocentini<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sao Paolo<br />

Timescales <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic gene expressi<strong>on</strong><br />

Gene expressi<strong>on</strong> exhibits a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> stochasticity when studied at <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

individual cells. Even in genetically identical cell populati<strong>on</strong>s exposed to a uniform<br />

envir<strong>on</strong>ment, gene activity levels and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir phenotypic c<strong>on</strong>sequences are subject to<br />

random fluctuati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at generate cell-to-cell variati<strong>on</strong>s and eventually lead to alternative<br />

cell fates. This stochastic noise in gene expressi<strong>on</strong> is a critical, biologically<br />

relevant property <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic circuits in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> microbial and eukaryotic cells.<br />

Many studies underlined <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> network architecture and <str<strong>on</strong>g>of</str<strong>on</strong>g> feedback<br />

loops for shaping and c<strong>on</strong>trolling <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene expressi<strong>on</strong> noise. Here we defend<br />

a different point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, according to which in many situati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>e order relati<strong>on</strong>s<br />

between different timescales <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biochemical processes are determinant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

expressi<strong>on</strong> fluctuati<strong>on</strong>s.<br />

In order to cope wi<str<strong>on</strong>g>th</str<strong>on</strong>g> network multi-scaleness we developed hybrid stochastic<br />

approaches (Crudu et al 2009). These me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods distinguish between molecular<br />

species according to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir abundances. Species in small amounts can be treated as<br />

discrete variables, whereas species in large amounts can be c<strong>on</strong>sidered c<strong>on</strong>tinuous.<br />

For computati<strong>on</strong>al ends, hybrid approaches can be used to simplify biochemical<br />

mechanisms, accelerate simulati<strong>on</strong> and facilitate model analysis.<br />

Hybrid stochastic approaches can also be used to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

multi-scaleness <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expressi<strong>on</strong> noise in gene networks. We distinguish between<br />

two situati<strong>on</strong>s referred to as normal and inverted time hierarchies. The noise can<br />

be buffered by network feed-back in <str<strong>on</strong>g>th</str<strong>on</strong>g>e first situati<strong>on</strong>, whereas can have rich, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

counterintuitive behaviour in <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter.<br />

The <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical results are supported by recent experimental findings c<strong>on</strong>cerning<br />

stochastic noise in <str<strong>on</strong>g>th</str<strong>on</strong>g>e bacterium catabolite repressi<strong>on</strong> (Fergus<strong>on</strong> et al).<br />

References.<br />

[1] A.Crudu, A.Debussche, and O.Radulescu, BMC Systems Biology (2009) 3:89.<br />

[2] M.L. Fergus<strong>on</strong>, D. Le Coq, M. Jules, B. Chun, S. Aymerich, O. Radulescu, N. Declerck, C.A.<br />

Royer, submitted.<br />

808


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Genetics; Friday, July 1, 14:30<br />

Marina Rafajlovic<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, SE-41296 Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg,<br />

Sweden<br />

e-mail: Marina.Rafajlovic@physics.gu.se<br />

Linkage disequilibrium in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> variable size<br />

We c<strong>on</strong>sider neutral evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a large populati<strong>on</strong> subject to changes in its populati<strong>on</strong><br />

size to understand how <str<strong>on</strong>g>th</str<strong>on</strong>g>e covariance <str<strong>on</strong>g>of</str<strong>on</strong>g> gene-histories and linkage disequilibrium<br />

are influenced by such populati<strong>on</strong>-size fluctuati<strong>on</strong>s. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e coalescent<br />

approximati<strong>on</strong>, using <str<strong>on</strong>g>th</str<strong>on</strong>g>e approach employed by [2] and <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>of</str<strong>on</strong>g> [3], we have<br />

obtained an exact expressi<strong>on</strong> (see [1]) for <str<strong>on</strong>g>th</str<strong>on</strong>g>e covariance <str<strong>on</strong>g>of</str<strong>on</strong>g> gene-histories in a populati<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a populati<strong>on</strong> size <str<strong>on</strong>g>th</str<strong>on</strong>g>at randomly jumps between two values. We show<br />

under which circumstances an effective-populati<strong>on</strong>-size approximati<strong>on</strong> is appropriate,<br />

and when it fails. In additi<strong>on</strong>, we identify a parameter regime where two-locus<br />

gene-history correlati<strong>on</strong>s are well described by a coalescent process wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple<br />

mergers.<br />

References.<br />

[1] Schaper, E., A. Erikss<strong>on</strong>, M. Rafajlovic, S. Sagitov and B. Mehlig. Linkage disequilibrium in<br />

populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> variable size. (unpublished).<br />

[2] Erikss<strong>on</strong>, A. and B. Mehlig, 2004. Gene-history correlati<strong>on</strong> and populati<strong>on</strong> structure. Phys.<br />

Biol. I: 220–228.<br />

[3] Erikss<strong>on</strong>, A., B. Mehlig, M. Rafajlovic and S. Sagitov, 2010. The total branch leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> sample<br />

genealogies in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> variable size. Genetics 186: 601–611.<br />

809


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Nomenjanahary Alexia Raharinirina<br />

African Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences(AIMS), 6 Melrose road<br />

Muizenberg, Cape Town<br />

e-mail: alexia@address<br />

Dr. Aziz Ouhinou<br />

AIMS, 6 Melrose road Muizenberg, Cape Town<br />

e-mail: aziz@aims.ac.za<br />

Dr. Lafras Uys<br />

AIMS, 6 Melrose road Muizenberg, Cape Town<br />

e-mail: lafras@aims.ac.za<br />

Flagellar dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong>al persistence for<br />

bacterial run and tumble chemotaxis<br />

Motivated by experimental data, we extend an existing individual based model for<br />

bacterial run and tumble chemotaxis to include <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong>al<br />

persistence <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CW-rotating flagella. The model is built in two<br />

dimensi<strong>on</strong>al space for a fixed source <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e nutrient<br />

c<strong>on</strong>centrati<strong>on</strong> has a Gaussian distributi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. We measure <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> flagellar<br />

cooperativeness <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemotactic performance by <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bacterium to<br />

reach a favourable regi<strong>on</strong> and to stay in <str<strong>on</strong>g>th</str<strong>on</strong>g>at z<strong>on</strong>e. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore we analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> varying <str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong>al persistence <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimality <str<strong>on</strong>g>of</str<strong>on</strong>g> run and tumble<br />

chemotaxis and compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e obtained results wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose found in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er works.<br />

810


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecosystems Dynamics; Tuesday, June 28, 17:00<br />

A. Ramanantoanina<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, Stellenbosch University, Private<br />

Bag XI, Matieland 7602, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa<br />

e-mail: ar@aims.ac.za<br />

A. Ouhinou<br />

African Institute for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, 6 Melrose Road, Muizenberg<br />

7945, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa<br />

e-mail: aziz@aims.ac.za<br />

C. Hui<br />

Center <str<strong>on</strong>g>of</str<strong>on</strong>g> Invasi<strong>on</strong> Biology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany and Zoology, Private<br />

Bag XI, Matieland 7602, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa<br />

e-mail: chui@sun.ac.za<br />

A density-dependent diffusi<strong>on</strong> model for a two-phase<br />

invasi<strong>on</strong><br />

A break <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e slope between <str<strong>on</strong>g>th</str<strong>on</strong>g>e range expansi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial years <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e later years has been observed for different species. We present an approach<br />

to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>is two-phase invasi<strong>on</strong> using a model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>-linear density-dependent<br />

diffusi<strong>on</strong>. We establish <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a travelling wave soluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. We investigate also <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e density-dependent diffusi<strong>on</strong> <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e speed <str<strong>on</strong>g>of</str<strong>on</strong>g> species expansi<strong>on</strong> during <str<strong>on</strong>g>th</str<strong>on</strong>g>e two phases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong>, and study <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each phase.<br />

811


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>negative Rad<strong>on</strong> measure spaces wi<str<strong>on</strong>g>th</str<strong>on</strong>g> metric structure<br />

to populati<strong>on</strong> dynamic models; Wednesday, June 29, 17:00<br />

Gael Raoul<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

e-mail: g.raoul@damtp.cam.ac.uk<br />

Structured populati<strong>on</strong> models for evoluti<strong>on</strong><br />

We are interested in an integro-differential model <str<strong>on</strong>g>th</str<strong>on</strong>g>at describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

populati<strong>on</strong> structured wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to a c<strong>on</strong>tinuous trait. Those model are able<br />

to capture various biological phenomena, and in particular <str<strong>on</strong>g>th</str<strong>on</strong>g>e speciati<strong>on</strong> process,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at is <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> around a finite number <str<strong>on</strong>g>of</str<strong>on</strong>g> traits. We<br />

analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>is property, and relate it to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical tool used by <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

biologists. We are also able to analyse some cases pointed out by biologists, where<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> phenomena does not occur.<br />

812


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Saturday, July 2, 11:00<br />

J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an Rault<br />

BIOCORE / INRIA sophia Antipolis FRANCE<br />

e-mail: j<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an.rault@inria.fr<br />

Eric Benoit<br />

Laboratoire de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques / Université de La Rochelle FRANCE<br />

e-mail: ebenoit@univ-lr.fr<br />

Equilibria and stability results for some zooplankt<strong>on</strong><br />

size-structured models<br />

Structured models are increasingly used in biological modelling, particularly to<br />

describe marine ecosystems, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals is str<strong>on</strong>gly dependant<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir size. To modelize zooplankt<strong>on</strong> community, we first have to describe<br />

how an individual <str<strong>on</strong>g>of</str<strong>on</strong>g> some size feeds, and <str<strong>on</strong>g>th</str<strong>on</strong>g>en how it uses <str<strong>on</strong>g>th</str<strong>on</strong>g>e acquired food to grow<br />

and reproduce (according to some dynamic energy budget in order to guarantee<br />

mass c<strong>on</strong>servati<strong>on</strong>). Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e model includes cannibalism <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout zooplankt<strong>on</strong><br />

populati<strong>on</strong>, we obtain a variant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e well-known McKendrick-v<strong>on</strong> Foerster<br />

equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> integral terms which appear in grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, mortality and reproducti<strong>on</strong>.<br />

Such models are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten hard to analyse ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some<br />

more hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cannibalism behavior, we can find equilibria <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

as fixed points <str<strong>on</strong>g>of</str<strong>on</strong>g> a functi<strong>on</strong> in a finite dimensi<strong>on</strong>al space. The linearized system<br />

around <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium provides us, <str<strong>on</strong>g>th</str<strong>on</strong>g>anks to <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> linear semigroup <str<strong>on</strong>g>th</str<strong>on</strong>g>eory,<br />

some local (un)stability results about <str<strong>on</strong>g>th</str<strong>on</strong>g>ese equilibria.<br />

Results obtained will be applied to a simple versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, which allows<br />

us to go fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er into <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis.<br />

Keywords : Size-structured models, Zooplankt<strong>on</strong> ecosystem, Cannibalism, Str<strong>on</strong>gly<br />

c<strong>on</strong>tinuous semigroups.<br />

References.<br />

[1] Maury O., Faugeras B., Shin Y.-J., et al, Modelling envir<strong>on</strong>mental effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e size-structured<br />

energy flow <str<strong>on</strong>g>th</str<strong>on</strong>g>rough marine ecosystems. Part 1: <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. Progr. Oceanogr. 2007;74:479-499.<br />

[2] Farkas Jozsef Z. and Hagen Thomas, Stability and regularity results for a size-structured<br />

populati<strong>on</strong> model. J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Anal. Appl. 328 (2007) 119–136.<br />

[3] Benoît E. and Rochet M.J., A c<strong>on</strong>tinuous Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Biomass Size Spectra Governed by Predati<strong>on</strong>,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Fishing <strong>on</strong> Them. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology, Vol. 226(2004), pp<br />

9-21.<br />

[4] Vandromme P., Decadal evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ligurian sea zooplankt<strong>on</strong> linked to envir<strong>on</strong>mental fluctuati<strong>on</strong>s.<br />

From imaging systems to size-based models. PhD <str<strong>on</strong>g>th</str<strong>on</strong>g>esis (2010). http://www.obsvlfr.fr/LOV/ZooPart/ZooScan/<br />

813


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mario Recker<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: mario.recker@zoo.ox.ac.uk<br />

Vector-borne diseases; Tuesday, June 28, 14:30<br />

Evoluti<strong>on</strong>ary determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> antigenic variati<strong>on</strong> in malaria<br />

Many pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenic bacteria, fungi, and protozoa achieve chr<strong>on</strong>ic infecti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough an<br />

immune evasi<strong>on</strong> strategy known as antigenic variati<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e human malaria parasite<br />

Plasmodium falciparum, <str<strong>on</strong>g>th</str<strong>on</strong>g>is involves transcripti<strong>on</strong>al switching am<strong>on</strong>g members<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e var gene family, causing parasites wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different antigenic and phenotypic<br />

characteristics to appear at different times wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a populati<strong>on</strong>. Here we use a<br />

genome-wide approach to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>is process in vitro wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a set <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>ed parasite<br />

populati<strong>on</strong>s. Our analyses reveal a n<strong>on</strong>-random, highly structured switch pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way<br />

where an initially dominant transcript switches via a set <str<strong>on</strong>g>of</str<strong>on</strong>g> switch-intermediates<br />

ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er to a new dominant transcript, or back to <str<strong>on</strong>g>th</str<strong>on</strong>g>e original. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

specific pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way can arise <str<strong>on</strong>g>th</str<strong>on</strong>g>rough an evoluti<strong>on</strong>ary c<strong>on</strong>flict in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen<br />

has to optimise between safeguarding its limited antigenic repertoire and remaining<br />

capable <str<strong>on</strong>g>of</str<strong>on</strong>g> establishing infecti<strong>on</strong>s in n<strong>on</strong>-naïve individuals. Our results <str<strong>on</strong>g>th</str<strong>on</strong>g>us dem<strong>on</strong>strate<br />

a crucial role for structured switching during <str<strong>on</strong>g>th</str<strong>on</strong>g>e early phases <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>s<br />

and provide a unifying <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> antigenic variati<strong>on</strong> in P. falciparum malaria as a<br />

balanced process <str<strong>on</strong>g>of</str<strong>on</strong>g> parasite-intrinsic switching and immune-mediated selecti<strong>on</strong>.<br />

814


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

From <strong>on</strong>e to many: Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective, emergent behaviors<br />

in biology -II; Tuesday, June 28, 14:30<br />

Charles Reichhardt<br />

Los Alamos Nati<strong>on</strong>al Laboratory<br />

e-mail: charlesr@cnls.lanl.gov<br />

Guided Moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Individual and Collective Swimmers in<br />

Funnel Arrays<br />

We generalize a model <str<strong>on</strong>g>of</str<strong>on</strong>g> swimming bacteria in asymmetric arrays <str<strong>on</strong>g>of</str<strong>on</strong>g> obstacles [1]<br />

to include different rules <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>, including various rules for collective behvaiors.<br />

For individual n<strong>on</strong>interacting swimmers, we observe guided moti<strong>on</strong> and rectificati<strong>on</strong><br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e asymmetric barriers when <str<strong>on</strong>g>th</str<strong>on</strong>g>e particles align wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e walls <str<strong>on</strong>g>th</str<strong>on</strong>g>ey c<strong>on</strong>tact, but<br />

we find no rectificati<strong>on</strong> if <str<strong>on</strong>g>th</str<strong>on</strong>g>e particles are reflected by <str<strong>on</strong>g>th</str<strong>on</strong>g>e walls or bounce <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

walls. For collectively interacting swimmers, it is possible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e particles to form<br />

large swimming clumps <str<strong>on</strong>g>th</str<strong>on</strong>g>at can move against <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal rectificati<strong>on</strong> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e asymmetric barrier array. In general, <str<strong>on</strong>g>th</str<strong>on</strong>g>e rectificati<strong>on</strong> by <str<strong>on</strong>g>th</str<strong>on</strong>g>e barriers is lost<br />

when <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e swarms <str<strong>on</strong>g>of</str<strong>on</strong>g> collectively moving particles is significantly<br />

larger <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e funnel shaped barriers. A particle swarm can<br />

become trapped inside a funnel; however, individual strings <str<strong>on</strong>g>of</str<strong>on</strong>g> particles <str<strong>on</strong>g>th</str<strong>on</strong>g>at follow<br />

each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er can escape from <str<strong>on</strong>g>th</str<strong>on</strong>g>e trap and move against <str<strong>on</strong>g>th</str<strong>on</strong>g>e funnel directi<strong>on</strong>. [1] M.B.<br />

Wan, C.J. Ols<strong>on</strong> Reichhardt, Z. Nussinov, and C. Reichhardt, Phys. Rev. Lett.<br />

101, 018102 (2008).<br />

815


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanical Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Movement and Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cells and Tissues I;<br />

Wednesday, June 29, 14:30<br />

Katarzyna Rejniak<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Research Institute<br />

e-mail: Kasia.Rejniak@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

Forcing <str<strong>on</strong>g>th</str<strong>on</strong>g>e way to metastasis: mechanical interacti<strong>on</strong>s<br />

between endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial and circulating tumor cells<br />

Metastasis to distant organs is an ominous feature <str<strong>on</strong>g>of</str<strong>on</strong>g> most malignant tumors, and it<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality. However, no more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 0.01% <str<strong>on</strong>g>of</str<strong>on</strong>g> circulating tumor<br />

cells is able to wi<str<strong>on</strong>g>th</str<strong>on</strong>g>stand all steps <str<strong>on</strong>g>of</str<strong>on</strong>g> a metastatic cascade, such as an escape from<br />

primary tumor mass into <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood stream, circulati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood flow and<br />

extravasati<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>e new site <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be subsequently col<strong>on</strong>ized. The process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tumor cells extravasati<strong>on</strong>, i.e., <str<strong>on</strong>g>th</str<strong>on</strong>g>eir ability to leave <str<strong>on</strong>g>th</str<strong>on</strong>g>e circulati<strong>on</strong> system under <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

physiological blood flow is still poorly understood. I will present a biomechanical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> circulating tumor cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells forming<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e vascular wall. This model will be subsequently used to analyze various modes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cell translocati<strong>on</strong> under <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood flow: from circulati<strong>on</strong> to rolling, to<br />

crawling, to transmigrati<strong>on</strong>.<br />

816


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fluid-structure interacti<strong>on</strong> problems in biomechanics; Saturday, July 2, 08:30<br />

Katarzyna A. Rejniak<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Research Institute<br />

e-mail: Kasia.Rejniak@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

Interacti<strong>on</strong>s between interstitial fluid and tumor<br />

microenvir<strong>on</strong>ment in chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

Interstitial fluid, a soluti<strong>on</strong> filling <str<strong>on</strong>g>th</str<strong>on</strong>g>e space between stromal cells, provides a means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> delivering various molecules (such as nutrients, oxygen or drugs) to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells, as<br />

well as removal <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic waste. In tumorous tissues, <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport <str<strong>on</strong>g>of</str<strong>on</strong>g> anticancer<br />

drugs is moderated by differences in interstitial fluid pressure <str<strong>on</strong>g>th</str<strong>on</strong>g>at varies in<br />

different tumors and at different tumor sides, as well as by changes in stromal tissue<br />

structure. I will discuss computati<strong>on</strong>al simulati<strong>on</strong>s showing how tumor tissue<br />

metabolic state (its oxygenati<strong>on</strong> and acidity) become modified due to acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic drugs leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor z<strong>on</strong>es wi<str<strong>on</strong>g>th</str<strong>on</strong>g> potentially<br />

drug-resistant cells and/or to tumor areas <str<strong>on</strong>g>th</str<strong>on</strong>g>at are not exposed to drugs at all.<br />

Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese phenomena can c<strong>on</strong>tribute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e moderate clinical success <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

anticancer drugs.<br />

817


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

From <strong>on</strong>e to many: Cell-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective, emergent behaviors<br />

in biology -I; Tuesday, June 28, 11:00<br />

Katarzyna A. Rejniak<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Research Institute<br />

e-mail: Kasia.Rejniak@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Individual cells to homeostatic balance and<br />

imbalance in epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elia<br />

Epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial tissues (simple or stratified) form multicellular systems <str<strong>on</strong>g>of</str<strong>on</strong>g> well defined<br />

topology and functi<strong>on</strong>. In order to maintain such a fine tissue microarchitecture<br />

individual cells must act collectively and resp<strong>on</strong>d to signals from <str<strong>on</strong>g>th</str<strong>on</strong>g>eir neighbors<br />

and from <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment. I will present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model and computati<strong>on</strong>al<br />

simulati<strong>on</strong>s addressing <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> individual c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells<br />

to tissue homeostatic balance during its development and turnover. In c<strong>on</strong>trast, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue structure is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiati<strong>on</strong> and progressi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> abnormal tissue states, such as tumors. Specific local cell-cell interacti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

can lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> abnormalities <strong>on</strong> tissue scale will be also discussed.<br />

818


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Informati<strong>on</strong>, human behaviour and infecti<strong>on</strong> c<strong>on</strong>trol; Saturday, July 2, 08:30<br />

Timo<str<strong>on</strong>g>th</str<strong>on</strong>g>y Reluga<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Pennsylvania State University, USA<br />

e-mail: treluga@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.psu.edu, http://www.ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.psu.edu/treluga<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Epidemiology and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ec<strong>on</strong>omics <str<strong>on</strong>g>of</str<strong>on</strong>g> Social<br />

Planning<br />

Over <str<strong>on</strong>g>th</str<strong>on</strong>g>e last 50 years, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biologists have developed a deep <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infectious disease dynamics. Today, management problems are as much ec<strong>on</strong>omic<br />

and social as biological. We face a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> social, behavioral, and political challenges<br />

today in <str<strong>on</strong>g>th</str<strong>on</strong>g>e public-heal<str<strong>on</strong>g>th</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e last few<br />

years, a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> new modelling approaches including social networks, game <str<strong>on</strong>g>th</str<strong>on</strong>g>eory,<br />

informati<strong>on</strong> propagati<strong>on</strong> and explicit-behavioral models have been proposed as<br />

descripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> how <str<strong>on</strong>g>th</str<strong>on</strong>g>ese ec<strong>on</strong>omic influences interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biology <str<strong>on</strong>g>of</str<strong>on</strong>g> disease<br />

transmissi<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, I will review some <str<strong>on</strong>g>of</str<strong>on</strong>g> recent work I’ve been involved<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> in game-<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic ec<strong>on</strong>omics models <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious disease management, and<br />

menti<strong>on</strong>ing some open problems in <str<strong>on</strong>g>th</str<strong>on</strong>g>e field.<br />

819


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Structure and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Reacti<strong>on</strong> Networks II; Tuesday, June<br />

28, 17:00<br />

Grzegorz A. Rempala<br />

Georgia Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Sciences University<br />

e-mail: grempala@mcg.edu<br />

Jaejik Kim<br />

Georgia Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Sciences University<br />

Statistical inference for reacti<strong>on</strong> c<strong>on</strong>stants in stochastic<br />

biochemical networks<br />

The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> estimating values <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> c<strong>on</strong>stants in biochemical networks if<br />

fundamental for any network rec<strong>on</strong>structi<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e trajectory data. The talk<br />

will outline some recent developments in statistical inferential procedures for reacti<strong>on</strong><br />

c<strong>on</strong>stants in stochastic biochemical network models. We will especially focus<br />

<strong>on</strong> some newly proposed dynamical programming me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, which are similar to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Viterbi-type imputati<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms for hidden Markov chain and are especially<br />

suitable when observed trajectories c<strong>on</strong>tain missing data for some species. It will be<br />

shown how <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> dynamic programming principles allows for efficient inference<br />

via ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gibbs sampler or <str<strong>on</strong>g>th</str<strong>on</strong>g>e EM algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m and g <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called uniformizati<strong>on</strong><br />

representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Markov jump process. The applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inferential<br />

procedures will be illustrated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data from <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>gitudinal mamalian genetic<br />

studies as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e US CDC data from <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e 2009 H1N1 flu pandemic<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e US<br />

820


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Wednesday, June 29, 11:00<br />

Sarunas Repsys<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Informatics, 24 Naugarduko, LT-03225<br />

Vilnius<br />

e-mail: sarunas.repsys1@mif.vu.lt<br />

Vladas Skakauskas<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Informatics, 24 Naugarduko, LT-03225<br />

Vilnius<br />

e-mail: vladas.skakauskas@maf.vu.lt<br />

A brood-parasites dynamics model<br />

We c<strong>on</strong>sider a Comm<strong>on</strong> Cuckoo dynamics deterministic model. It is a broodparasite<br />

which lays its egg in <str<strong>on</strong>g>th</str<strong>on</strong>g>e nest <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er bird species and use host individuals<br />

to raise its young. We present a Comm<strong>on</strong> Cuckoo and a host species dynamics<br />

deterministic model taking into account a discrete set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir care.<br />

All individuals have pre-reproductive, reproductive, and post-reproductive age intervals.<br />

Individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive age are divided into single and <str<strong>on</strong>g>th</str<strong>on</strong>g>ose who care<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> young <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings. All individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> pre-reproductive age are divided into young<br />

(under maternal care) and juvenile classes. Juveniles can live wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out maternal care<br />

but cannot produce <str<strong>on</strong>g>th</str<strong>on</strong>g>eir <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings. It is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at after <str<strong>on</strong>g>th</str<strong>on</strong>g>e dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er all<br />

her young <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings die. The model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> integro-partial differential equati<strong>on</strong>s<br />

subject to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e integral type. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese equati<strong>on</strong>s depends<br />

<strong>on</strong> a biologically possible maximal number <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs laid by a hen <str<strong>on</strong>g>of</str<strong>on</strong>g> host species in<br />

a nest. Separable soluti<strong>on</strong>s and numerical results will be discussed.<br />

References.<br />

[1] V. Skakauskas, A <strong>on</strong>e-sex populati<strong>on</strong> dynamics model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> discrete set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>fsprings band child<br />

care, N<strong>on</strong>linear analysis: modelling and c<strong>on</strong>trol, 13(4) 525–552, 2008.<br />

[2] S. Repsys and V. Skakauskas, Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>on</strong>e-sex age-structured populati<strong>on</strong> dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

child care, N<strong>on</strong>linear analysis: modelling and c<strong>on</strong>trol, 12(1) 77–94, 2007.<br />

821


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Jennifer Reynolds<br />

Heriot-Watt University<br />

e-mail: jjr6@hw.ac.uk<br />

Populati<strong>on</strong> Dynamics; Friday, July 1, 14:30<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> silica defences in driving vole populati<strong>on</strong> cycles<br />

As wi<str<strong>on</strong>g>th</str<strong>on</strong>g> many small mammals, vole populati<strong>on</strong>s are comm<strong>on</strong>ly characterized by<br />

multi-year cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> abundance. Uncertainty remains over <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms underpinning<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese populati<strong>on</strong> cycles. One possible factor is <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

voles and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir food.<br />

Some grass species mount a delayed defensive resp<strong>on</strong>se to grazing by increasing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir rate <str<strong>on</strong>g>of</str<strong>on</strong>g> uptake and depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> silica. This induced resp<strong>on</strong>se occurs when<br />

herbivore populati<strong>on</strong>s are high. Elevated silica levels make <str<strong>on</strong>g>th</str<strong>on</strong>g>e grass a lower quality<br />

food for herbivores, leading to a reducti<strong>on</strong> in herbivore performance. When grazing<br />

impact is lessened, silica defences relax and plant quality recovers. This inducible<br />

defence may have an important role in driving cycles in some populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> voles.<br />

We have developed a delay differential equati<strong>on</strong> model to represent <str<strong>on</strong>g>th</str<strong>on</strong>g>is herbivoreplant<br />

interacti<strong>on</strong>. This has been parameterized using empirical data from a particular<br />

system, namely field voles (Microtus agrestis) and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir principal food species,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e grass Deschampsia caespitosa, in Kielder Forest in Nor<str<strong>on</strong>g>th</str<strong>on</strong>g>ern England. I will<br />

discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir implicati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

silica defences shape <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cyclic vole populati<strong>on</strong>s.<br />

822


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 17:00<br />

Benjamin Ribba<br />

INRIA, project-team NUMED, Ecole Normale Supérieure de Ly<strong>on</strong>, 46<br />

allée d’Italie, Ly<strong>on</strong> cedex 07, France<br />

François Ducray<br />

Hospices Civils de Ly<strong>on</strong>, Hôpital Neurologique, Neuro-<strong>on</strong>cologie,Ly<strong>on</strong>,<br />

69003 France<br />

Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e antitumor effect <str<strong>on</strong>g>of</str<strong>on</strong>g> PCV chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy <strong>on</strong><br />

diffuse low-grade gliomas wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a l<strong>on</strong>gitudinal tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

inhibiti<strong>on</strong> model<br />

Objective: To develop a tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> inhibiti<strong>on</strong> (TGI) model able to describe<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffuse low-grade gliomas (LGGs) grow<str<strong>on</strong>g>th</str<strong>on</strong>g> dynamics after first-line<br />

PCV chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy and to use <str<strong>on</strong>g>th</str<strong>on</strong>g>is model as a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical tool to suggest potential<br />

improvements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PCV chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy regimen.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: The model was formulated as systems <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s<br />

distinguishing between two cell populati<strong>on</strong>s: <strong>on</strong>e proliferative treatmentsensitive<br />

cell populati<strong>on</strong> and <strong>on</strong>e quiescent treatment-resistant cell populati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

sp<strong>on</strong>taneously undergoes apoptosis. Model evaluati<strong>on</strong> was performed in a series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

21 patients treated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> first-line PCV chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mean tumor diameter had been previously assessed.<br />

Results: C<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> LGGs biology, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model estimated <str<strong>on</strong>g>th</str<strong>on</strong>g>at LGGs c<strong>on</strong>sist<br />

mostly <str<strong>on</strong>g>of</str<strong>on</strong>g> quiescent cells. Despite large inter-individual variability <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

correctly predicted individual tumor resp<strong>on</strong>se pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 21 patients. Unexpectedly,<br />

model simulati<strong>on</strong>s suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e 6 weeks interval between PCV cycles<br />

might be suboptimal and <str<strong>on</strong>g>th</str<strong>on</strong>g>at leng<str<strong>on</strong>g>th</str<strong>on</strong>g>ening <str<strong>on</strong>g>th</str<strong>on</strong>g>e time interval between cycles might<br />

significantly improve treatment efficacy.<br />

Interpretati<strong>on</strong>: Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at LGGs c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferative<br />

treatment-sensitive cells and quiescent treatment-resistant cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at sp<strong>on</strong>taneously<br />

undergo apoptosis we propose a mixed-effect model <str<strong>on</strong>g>th</str<strong>on</strong>g>at accurately describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese tumors during and after PCV chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. Model simulati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> different PCV schedules illustrate how <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach could possibly help<br />

designing more effective chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy regimens for LGGs.<br />

823


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> liver: bridging molecular systems biology to<br />

virtual physiological human scale; Wednesday, June 29, 11:00<br />

Tim Ricken<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Duisburg-Essen<br />

e-mail: tim.ricken@uni-due.de<br />

Uta Dahmen<br />

University Hospital <str<strong>on</strong>g>of</str<strong>on</strong>g> Essen<br />

Olaf Dirsch<br />

German Heart Institute Berlin<br />

A biphasic Finitee-Element-Model for Sinusoidal Liver<br />

Perfusi<strong>on</strong> Remodeling<br />

Liver resecti<strong>on</strong> can lead to focal outflow obstructi<strong>on</strong> due to transecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hepatic<br />

veins. Outflow obstructi<strong>on</strong> may cause additi<strong>on</strong>al damage to <str<strong>on</strong>g>th</str<strong>on</strong>g>e small remnant liver.<br />

Drainage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e obstructed territories is reestablished via dilatati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sinusoids.<br />

Subsequently sinusoidal canals are formed draining <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood from <str<strong>on</strong>g>th</str<strong>on</strong>g>e obstructed<br />

territory to <str<strong>on</strong>g>th</str<strong>on</strong>g>e neighboring unobstructed territories. We raised <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomenological<br />

hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood pressure gradient is <str<strong>on</strong>g>th</str<strong>on</strong>g>e main driving force for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sinusoidal vascular canals. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> porous media we<br />

generated a biphasic mechanical model to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>is vascular remodeling process<br />

in relati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e variable pressure gradient. Therefore, we introduced a transverse<br />

isotropic permeability relati<strong>on</strong> as well as an evoluti<strong>on</strong>al optimizati<strong>on</strong> rule to describe<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between pressure gradient and <str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinusoidal blood<br />

flow in <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid phase. As a next step, we developed a framework for <str<strong>on</strong>g>th</str<strong>on</strong>g>e calculati<strong>on</strong><br />

c<strong>on</strong>cept including <str<strong>on</strong>g>th</str<strong>on</strong>g>e representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e governing weak formulati<strong>on</strong>s.<br />

The governing equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model are developed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>sistent<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ermo-mechanical approach including <str<strong>on</strong>g>th</str<strong>on</strong>g>e momentum and mass balances <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

solid and fluid phases. The ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical c<strong>on</strong>cept describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solid<br />

phases coupled by <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid transport due to pressure development. The <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

formulati<strong>on</strong>s are implemented into <str<strong>on</strong>g>th</str<strong>on</strong>g>e finite element code FEAP. Then, we examined<br />

a representative numerical example wi<str<strong>on</strong>g>th</str<strong>on</strong>g> simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood flow under<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological situati<strong>on</strong> as well as after outflow obstructi<strong>on</strong>.<br />

We based our simulati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical-induced remodeling. We<br />

incorporated <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid directly into <str<strong>on</strong>g>th</str<strong>on</strong>g>e model as a mixture toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solid.<br />

We hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esized <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e reorientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinusoidal flow and <str<strong>on</strong>g>th</str<strong>on</strong>g>e remodeling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinusoidal structure depends mainly <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid pressure and <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid pressure<br />

gradient caused by <str<strong>on</strong>g>th</str<strong>on</strong>g>e outflow obstructi<strong>on</strong>. We tested <str<strong>on</strong>g>th</str<strong>on</strong>g>is hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a<br />

numerical simulati<strong>on</strong> and compared <str<strong>on</strong>g>th</str<strong>on</strong>g>e results to <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental findings. As we<br />

did not implement liver resecti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model presented here, but<br />

c<strong>on</strong>centrated <strong>on</strong> focal outflow obstructi<strong>on</strong> <strong>on</strong>ly, liver grow<str<strong>on</strong>g>th</str<strong>on</strong>g> (=regenerati<strong>on</strong>) was<br />

not addressed. Doing so, we were able to reproduce numerically <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimentally<br />

observed process <str<strong>on</strong>g>of</str<strong>on</strong>g> reestablishing hepatic venous drainage via redirecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blood<br />

flow and formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new vascular structures in respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid flow. The calculated<br />

results support <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e reorientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blood flow mainly<br />

depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pressure gradient. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er investigati<strong>on</strong>s are needed to determine<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e micromechanical influences <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reorientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sinusoids.<br />

824


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Rachel Rider<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling, UK<br />

e-mail: rar@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.stir.ac.uk<br />

Andy Hoyle<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling, UK<br />

e-mail: ash@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.stir.ac.uk<br />

Rachel Norman<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stirling, UK<br />

e-mail: ran@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.stir.ac.uk<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Optimal C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Disease in Multihost System<br />

The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e world’s pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens are generalist wi<str<strong>on</strong>g>th</str<strong>on</strong>g> approximately 80% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

livestock diseases able to transmit between different species [1]. It is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore essential<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at any c<strong>on</strong>trol strategy takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is interacti<strong>on</strong><br />

to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e full impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease. The two species apparent competiti<strong>on</strong><br />

model has been widely studied and well understood. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods developed<br />

by Greenman and Hoyle [2] <str<strong>on</strong>g>th</str<strong>on</strong>g>is model has been extended to include <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> distinct spatial groups. This metapopulati<strong>on</strong>-type approach allows us to<br />

c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> disease spread over a much wider scale and to account for<br />

changes in spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infected individuals due to c<strong>on</strong>trol. An increase<br />

in ranging behaviour has been observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>European</str<strong>on</strong>g> Badger (Meles meles) in<br />

resp<strong>on</strong>se to culling as a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine TB (Mycobacterium bovis) c<strong>on</strong>trol in<br />

England [3]. This model may be employed to provide a l<strong>on</strong>g term predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> badger culling <strong>on</strong> a large scale and to optimise c<strong>on</strong>trol strategies to reduce<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> bovine TB from England.<br />

References.<br />

[1] Woolhouse, M.E.J., Taylor, L.H., Hayd<strong>on</strong>, D.T. Populati<strong>on</strong> biology <str<strong>on</strong>g>of</str<strong>on</strong>g> multihost pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens<br />

Science (2001) 292 1109-1112.<br />

[2] Greenman, J.V. and Hoyle, A. Exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> generalist pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens in multi-host communities<br />

American Naturalist (2008) 172 576-584.<br />

[3] ] Bourne F.J. Bovine TB: The Scientific Evidence Final report <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Independent Scientific<br />

Group <strong>on</strong> Cattle TB (2007)<br />

825


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis I; Wednesday, June 29,<br />

08:30<br />

Heiko Rieger, Michael Welter<br />

Theoretical Physics, Saarland University, D-66041 Saarbücken<br />

e-mail: h.rieger@mx.uni-saarland,de<br />

Blood vessel network remodeling during tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e help <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical model <str<strong>on</strong>g>th</str<strong>on</strong>g>e process in which a growing tumor<br />

transforms a hierarchically organized arterio-venous blood vessel network into a<br />

tumor specific vasculature is analyzed. The determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is remodeling process<br />

involve <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphological and hydrodynamic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial network,<br />

generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new vessels (sprouting angiogenesis), vessel dilati<strong>on</strong> (circumferential<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g>), blood flow correlated vessel regressi<strong>on</strong>, tumor cell proliferati<strong>on</strong> and<br />

dea<str<strong>on</strong>g>th</str<strong>on</strong>g>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e interdependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese processes via spatio-temporal changes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

blood flow parameters, oxygen / nutrient supply and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor c<strong>on</strong>centrati<strong>on</strong><br />

fields. The emerging tumor vasculature is n<strong>on</strong>-hierarchical and compartmentalized<br />

into different z<strong>on</strong>es. It displays a complex geometry wi<str<strong>on</strong>g>th</str<strong>on</strong>g> necrotic z<strong>on</strong>es and "hot<br />

spots" <str<strong>on</strong>g>of</str<strong>on</strong>g> increased vascular density and blood flow <str<strong>on</strong>g>of</str<strong>on</strong>g> varying size. The origin <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese hot spots is discussed. The blood vessel network transports drug injecti<strong>on</strong>s<br />

efficiently, but <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interstitial fluid flow shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

drug is quickly washed out from <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor after extravasati<strong>on</strong>.<br />

826


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemiology, Eco-Epidemiology and Evoluti<strong>on</strong>; Saturday, July 2, 11:00<br />

Jordi Ripoll<br />

Departament d’Informàtica i Matemàtica Aplicada, Universitat de Gir<strong>on</strong>a,<br />

17071 Gir<strong>on</strong>a, Spain<br />

e-mail: jripoll@ima.udg.edu<br />

Eusebi Calle<br />

Institut d’Informàtica i Aplicaci<strong>on</strong>s, Universitat de Gir<strong>on</strong>a, 17071 Gir<strong>on</strong>a,<br />

Spain<br />

e-mail: eusebi@eia.udg.edu<br />

Marc Manzano<br />

Institut d’Informàtica i Aplicaci<strong>on</strong>s, Universitat de Gir<strong>on</strong>a, 17071 Gir<strong>on</strong>a,<br />

Spain<br />

e-mail: mmanzano@eia.udg.edu<br />

An epidemic model <strong>on</strong> computer networks<br />

We study failure spread scenarios in computer/communicati<strong>on</strong> networks. A general<br />

epidemic model <str<strong>on</strong>g>of</str<strong>on</strong>g> type Susceptible-Infected-Disabled is analyzed and takes into<br />

account two levels <str<strong>on</strong>g>of</str<strong>on</strong>g> failure caused by <str<strong>on</strong>g>th</str<strong>on</strong>g>e attack <str<strong>on</strong>g>of</str<strong>on</strong>g> a virus or a worm for instance.<br />

The first level takes place when <str<strong>on</strong>g>th</str<strong>on</strong>g>e failure can be repaired wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out disc<strong>on</strong>necting<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e node, preserving <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>necti<strong>on</strong>s passing <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>is node. The sec<strong>on</strong>d failure<br />

level involves <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e node must be replaced and, c<strong>on</strong>sequently, <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>necti<strong>on</strong>s<br />

are dropped.<br />

The dynamic process is given by a Markov chain in c<strong>on</strong>tinuous time according<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> and recovery processes. Several results <strong>on</strong> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> types <str<strong>on</strong>g>of</str<strong>on</strong>g> steady<br />

states, disease-free and endemic, are given and an epidemic <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold is stated.<br />

Here <str<strong>on</strong>g>th</str<strong>on</strong>g>e network features are summarized by <str<strong>on</strong>g>th</str<strong>on</strong>g>e largest eigenvalue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e weighted<br />

adjacency matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network.<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, a sec<strong>on</strong>d model is presented according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneous<br />

mean-field approach. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case, <str<strong>on</strong>g>th</str<strong>on</strong>g>e network features are given by bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e node<br />

degree distributi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>al probabilities (i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>necti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

neighbours <str<strong>on</strong>g>of</str<strong>on</strong>g> each node).<br />

We have carried out several stochastic simulati<strong>on</strong>s using different network<br />

topologies (e.g. scale-free generated via Barabási-Albert, random generated via<br />

Erdős-Rényi, homogeneous, ...). Finally, a complete-parameter comparis<strong>on</strong> is performed<br />

in order to evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical approaches presented.<br />

References.<br />

[1] E. Calle, J. Ripoll, J. Segovia, P. Vilà and M. Manzano, A Multiple Failure Propagati<strong>on</strong> Model<br />

in GMPLS-based Networks, IEEE Network, 24(6):17–22, 2010.<br />

[2] D. Juher, J. Ripoll and J. Saldaña, Analysis and M<strong>on</strong>te Carlo simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a model for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases in heterogeneous metapopulati<strong>on</strong>s, Phys. Rev. E 80, 041920<br />

(2009).<br />

[3] T. Kostova, Interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> node c<strong>on</strong>nectivity and epidemic rates in <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemic<br />

networks, J. Difference Equ. Appl. 15, no. 4, 415–428 (2009).<br />

[4] O. Diekmann and J.A.P. Heesterbeek, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases. Model<br />

building, analysis and interpretati<strong>on</strong>. Wiley Series in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Computati<strong>on</strong>al Biology.<br />

John Wiley & S<strong>on</strong>s, Ltd., Chichester, 2000.<br />

[5] P. Van Mieghem, J. Omic and R. Kooij, Virus spread in networks, IEEE/ACM Trans. Netw.<br />

17, 1–14 (2009)<br />

827


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Tuesday, June 28, 17:00<br />

E. S. Roberts<br />

Randall Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell and Molecular Biophysics,<br />

King’s College L<strong>on</strong>d<strong>on</strong><br />

e-mail: ekaterina.roberts@kcl.ac.uk<br />

A. C. C. Coolen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics,<br />

King’s College L<strong>on</strong>d<strong>on</strong><br />

e-mail: t<strong>on</strong>.coolen@kcl.ac.uk<br />

T. Schlitt<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical and Molecular Genetics,<br />

King’s College L<strong>on</strong>d<strong>on</strong><br />

e-mail: <str<strong>on</strong>g>th</str<strong>on</strong>g>omas.schlitt@kcl.ac.uk<br />

Tailored graph ensembles as proxies or null models for real<br />

networks<br />

There is a great demand, especially in cellular biology, for precise ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

approaches to studying <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed topology <str<strong>on</strong>g>of</str<strong>on</strong>g> networks. We generate new<br />

tools wi<str<strong>on</strong>g>th</str<strong>on</strong>g> which to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic topological structure <str<strong>on</strong>g>of</str<strong>on</strong>g> large directed<br />

networks, via a statistical mechanical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>strained maximum entropy<br />

ensembles <str<strong>on</strong>g>of</str<strong>on</strong>g> directed random graphs. We look at prescribed joint distributi<strong>on</strong>s<br />

for in- and out-degrees and prescribed degree-degree correlati<strong>on</strong> functi<strong>on</strong>s. We follow<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e approach pi<strong>on</strong>eered in [1] for undirected networks. Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

tools include: comparing networks; distinguishing between meaningful and random<br />

structural features; and, defining and generating tailored random graphs as null<br />

models. We calculate exact and explicit formulae for <str<strong>on</strong>g>th</str<strong>on</strong>g>e leading orders in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Shann<strong>on</strong> entropies and complexities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese ensembles. The results<br />

are applied to data <strong>on</strong> gene regulati<strong>on</strong> networks.<br />

References.<br />

[1] Annibale A , Coolen A C C , Fernandes L P , Fraternali F and Kleinjung J, Tailored graph<br />

ensembles as proxies or null models for real networks I: tools for quantifying structure J. Phys.<br />

A, 42 (48):485001, (2009)<br />

[2] Roberts E S , Coolen A C C , and Schlitt T Tailored graph ensembles as proxies or null models<br />

for real networks II: results <strong>on</strong> directed graphs In preparati<strong>on</strong>.<br />

[3] Fernandes L P, Annibale A, Kleinjung J, Coolen A C C, and Fraternali F, Protein networks<br />

reveal detecti<strong>on</strong> bias and species c<strong>on</strong>sistency when analysed by informati<strong>on</strong>-<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

J. PLoS ONE, 5 :e12083, (2010).<br />

828


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mick Roberts<br />

Massey University, Albany, New Zealand<br />

e-mail: m.g.roberts@massey.ac.nz<br />

Epidemic models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> uncertainty<br />

Epidemics; Tuesday, June 28, 14:30<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first quantities to be estimated at <str<strong>on</strong>g>th</str<strong>on</strong>g>e start <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic is <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic<br />

reproducti<strong>on</strong> number, R0. The progress <str<strong>on</strong>g>of</str<strong>on</strong>g> an epidemic is sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

R0, hence we need me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for exploring <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty in <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimate.<br />

I will analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kermack-McKendrick model, and its special case <str<strong>on</strong>g>th</str<strong>on</strong>g>e SIR<br />

model, by expanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e state variable in or<str<strong>on</strong>g>th</str<strong>on</strong>g>og<strong>on</strong>al polynomials in uncertainty<br />

space. The resulting dynamical systems need <strong>on</strong>ly be solved <strong>on</strong>ce to produce a deterministic<br />

stochastic soluti<strong>on</strong>. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od will be applied to data from <str<strong>on</strong>g>th</str<strong>on</strong>g>e New<br />

Zealand epidemic <str<strong>on</strong>g>of</str<strong>on</strong>g> H1N1 influenza in 2009, to dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty<br />

when making projecti<strong>on</strong>s based <strong>on</strong> a limited amount <str<strong>on</strong>g>of</str<strong>on</strong>g> data.<br />

829


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Wednesday, June 29, 08:30<br />

Mark Roberts<strong>on</strong>-Tessi<br />

Integrated Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa,<br />

FL<br />

e-mail: mark.roberts<strong>on</strong>tessi@m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt.org<br />

R. J. Gillies<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa, FL<br />

R. A. Gatenby<br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa, FL<br />

A. R. A. Anders<strong>on</strong><br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center, Tampa, FL<br />

Metabolism: Integrating cellular and microenvir<strong>on</strong>mental<br />

heterogeneity to drive tumor progressi<strong>on</strong><br />

Clinical and experimental evidence increasingly suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at cellular and microenvir<strong>on</strong>mental<br />

heterogeneity plays a significant role in tumor progressi<strong>on</strong> and resp<strong>on</strong>se<br />

to treatment. Z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> hypoxia, acidosis, and necrosis in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor and surrounding<br />

tissue can exert selecti<strong>on</strong> pressure <strong>on</strong> a dynamic heterogeneous tumor populati<strong>on</strong>,<br />

driving <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> increasingly aggressive phenotypes. Critically, cellular<br />

metabolism acts as a key integrator between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cellular and microenvir<strong>on</strong>mental<br />

comp<strong>on</strong>ents. In order to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex interplay between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese elements,<br />

we have developed a hybrid multi-scale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in a<br />

vascularized tissue. Cellular behavior, including proliferati<strong>on</strong>, migrati<strong>on</strong>, dea<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

signaling, are driven by microenvir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, mediated <str<strong>on</strong>g>th</str<strong>on</strong>g>rough cellular<br />

metabolism. A range <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor phenotypes emerges due to selecti<strong>on</strong> by <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterogeneous<br />

microenvir<strong>on</strong>ment. The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a tumor to treatment depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> different tumor phenotypes, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e local c<strong>on</strong>diti<strong>on</strong>s. By tracking<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e multiple routes <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor progressi<strong>on</strong>, we use <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to predict optimal<br />

treatment strategies <str<strong>on</strong>g>th</str<strong>on</strong>g>at can block <str<strong>on</strong>g>th</str<strong>on</strong>g>e most malignant routes.<br />

830


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Undergraduate Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Educati<strong>on</strong> Bey<strong>on</strong>d BIO 2010 (Part I);<br />

Wednesday, June 29, 14:30<br />

Raina Robeva<br />

Sweet Briar College<br />

e-mail: robeva@sbc.edu<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> Horm<strong>on</strong>e Network<br />

Horm<strong>on</strong>e secreti<strong>on</strong> patterns are determined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> secreti<strong>on</strong> events,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e amount secreted, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>th</str<strong>on</strong>g>e secreti<strong>on</strong> event lasts. They encode<br />

messages for <str<strong>on</strong>g>th</str<strong>on</strong>g>e target cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trol vital physiological processes, and<br />

an alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a secreti<strong>on</strong> pattern may impede <strong>on</strong>e or more <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese processes.<br />

Understanding horm<strong>on</strong>e secreti<strong>on</strong> and developing <str<strong>on</strong>g>th</str<strong>on</strong>g>e capability to recognize bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

normal and pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ological patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> horm<strong>on</strong>e producti<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> utmost importance<br />

for establishing medical diagnoses, initiating treatment, and assessing <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> treatment. It is generally impossible to collect data directly from <str<strong>on</strong>g>th</str<strong>on</strong>g>e endocrine<br />

glands, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>es are secreted. Secreti<strong>on</strong> patterns have to be inferred<br />

from horm<strong>on</strong>e c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood where distorti<strong>on</strong>s, due to binding, excreti<strong>on</strong><br />

and/or biotransformati<strong>on</strong>, begin immediately after <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>es enter <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

bloodstream. Thus, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>e network interacti<strong>on</strong>s and<br />

c<strong>on</strong>trol mechanisms play a critical role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> endocrine osciallati<strong>on</strong>s.<br />

The talk will outline a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> horm<strong>on</strong>e network and a related<br />

undergraduate project appropriate for use in calculus-based courses.<br />

831


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bridging Time Scales in Biological Sciences; Saturday, July 2, 14:30<br />

Susanna Röblitz<br />

Zuse Institute Berlin (ZIB)<br />

e-mail: susanna.roeblitz@zib.de<br />

Rare events in chemical reacti<strong>on</strong> systems<br />

Chemical kinetics can usually be described by a deterministic system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary<br />

differential equati<strong>on</strong>s. However, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> certain species become<br />

small, stochastic fluctuati<strong>on</strong>s play an important role, which can be modeled by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

chemical master equati<strong>on</strong> (CME). For some systems, <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady state soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e CME is a multimodal distributi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> small transiti<strong>on</strong> rates (rare events), a<br />

situati<strong>on</strong> comparable to metastable molecular c<strong>on</strong>formati<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we will<br />

present a mesh-free discrete Galerkin me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CME, which<br />

allows for an efficient computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transiti<strong>on</strong> rates. In particular, we will discuss<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e future potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> endocrinological networks.<br />

832


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 14:30<br />

Russell Rockne<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

e-mail: rockne@uw.edu<br />

Susan Massey<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Maciej M. Mrugala<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Neurology<br />

Alexandar R. A. Anders<strong>on</strong><br />

M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center Integrative Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology<br />

Kristin R. Swans<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ology, Department <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

Resp<strong>on</strong>se to anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in human brain tumors:<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment and heterogeneity<br />

Background: Gliomas are diffuse and invasive primary brain tumors <str<strong>on</strong>g>th</str<strong>on</strong>g>at are notoriously<br />

difficult to treat and uniformly fatal. Angiogenesis is <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> neovascularizati<strong>on</strong><br />

and is a hall mark <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma, which are c<strong>on</strong>sidered am<strong>on</strong>gst <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most angiogenic <str<strong>on</strong>g>of</str<strong>on</strong>g> tumors. This suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at interacti<strong>on</strong>s between glioma cells<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cascade <str<strong>on</strong>g>of</str<strong>on</strong>g> biological events leading to tumor-induced neoangiogenesis play<br />

an important role in aggressive tumor formati<strong>on</strong> and progressi<strong>on</strong>.<br />

Anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies have been used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> gliomas wi<str<strong>on</strong>g>th</str<strong>on</strong>g> spurious<br />

results ranging from no apparent resp<strong>on</strong>se to significant imaging improvement<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> extremely diffuse patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor recurrence. The clinical task <str<strong>on</strong>g>of</str<strong>on</strong>g> assessing<br />

a patients resp<strong>on</strong>se to brain tumor <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy is difficult, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e topic <str<strong>on</strong>g>of</str<strong>on</strong>g> much current<br />

debate. Paradoxically, anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies likely increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficiency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumor vasculature <str<strong>on</strong>g>th</str<strong>on</strong>g>rough normalizati<strong>on</strong>, leading to a resoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> abnormality<br />

<strong>on</strong> imaging, while at <str<strong>on</strong>g>th</str<strong>on</strong>g>e same time increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumors invasive phenotype and<br />

actually promote ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an hinder tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. As a result, resp<strong>on</strong>se to antiangiogenic<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapies is inadequately assessed by current imaging techniques but<br />

may be interpretable by multi-modality approaches combined wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

modeling.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: Much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e difficulty in improving <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

gliomas lies wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extensive invasive potential and incredible phenotypic heterogeneity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese tumors. To quantitatively explore <str<strong>on</strong>g>th</str<strong>on</strong>g>ese tumor-microenvir<strong>on</strong>ment<br />

interacti<strong>on</strong>s, we extend our previous experience wi<str<strong>on</strong>g>th</str<strong>on</strong>g> biologically-based ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

models for glioma grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and invasi<strong>on</strong> to explicitly incorporate <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> normoxic glioma cells, hypoxic glioma cells, vascular endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells, diffusible<br />

angiogenic factors and <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> necrosis, hallmarks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e histological diagnosis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> glioma and investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e role and effects <str<strong>on</strong>g>of</str<strong>on</strong>g> anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies in<br />

silico.<br />

Results: Using in silico experimentati<strong>on</strong>, we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies<br />

drastically decrease <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypoxic phenotype and promote <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasive phenotype.<br />

However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e degree and characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se to anti-angiogenic <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies<br />

depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative extent <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> and proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor, and can<br />

833


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

vary from <strong>on</strong>e patient to <str<strong>on</strong>g>th</str<strong>on</strong>g>e next. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese effects vary across histologic<br />

grades and may promote malignant progressi<strong>on</strong> from low to higher grades. These<br />

results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies must be used if anti-angiogenic<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapies are to be effective in human gliomas.<br />

834


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modelling dengue fever epidemiology; Saturday, July 2, 08:30<br />

Helena S<str<strong>on</strong>g>of</str<strong>on</strong>g>ia Rodrigues<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Business Studies - Viana do Castelo Polytechnic Institute<br />

e-mail: s<str<strong>on</strong>g>of</str<strong>on</strong>g>iarodrigues@esce.ipvc.pt<br />

M. Teresa T. M<strong>on</strong>teiro<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Producti<strong>on</strong> and Systems, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Minho<br />

e-mail: tm@dps.uminho.pt<br />

Delfim F. M. Torres<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Aveiro, Portugal<br />

e-mail: delfim@ua.pt<br />

Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a dengue vaccine<br />

Dengue is a vector-borne disease. It is nowadays endemic in more <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong>e<br />

hundred countries, predominantly in tropical and subtropical areas. Up to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

moment, <str<strong>on</strong>g>th</str<strong>on</strong>g>e effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e programs for vector c<strong>on</strong>trol is low and, unfortunately,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no specific effective treatment for dengue. For recent ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

investigati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e subject, we refer to [1, 2] and references <str<strong>on</strong>g>th</str<strong>on</strong>g>erein.<br />

There are no commercially available dengue clinical cures or vaccine, but efforts<br />

are underway to develop <strong>on</strong>e [3]. So far, <str<strong>on</strong>g>th</str<strong>on</strong>g>e difficulties in elaborating a vaccine<br />

stemmed from <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e vaccine must protect simultaneously against <str<strong>on</strong>g>th</str<strong>on</strong>g>e four<br />

serotypes <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue. This is a difficult but crucial c<strong>on</strong>straint, because protecti<strong>on</strong><br />

against <strong>on</strong>ly <strong>on</strong>e or two dengue viruses could actually increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g> Dengue<br />

Haemorrhagic Fever. The populati<strong>on</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a vaccinati<strong>on</strong> programme may be<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ought <str<strong>on</strong>g>of</str<strong>on</strong>g> as <str<strong>on</strong>g>th</str<strong>on</strong>g>e collective impact <str<strong>on</strong>g>of</str<strong>on</strong>g> individual vaccinati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infecti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>at populati<strong>on</strong>. While direct individual protecti<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e major focus<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mass vaccinati<strong>on</strong> programmes, populati<strong>on</strong> effects also c<strong>on</strong>tribute indirectly to<br />

individual protecti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough herd immunity, providing protecti<strong>on</strong> for unprotected<br />

individuals.<br />

We present a SVIR-ASI epidemiological model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e human and mosquito<br />

populati<strong>on</strong>s, respectively. It is c<strong>on</strong>sidered an imperfect vaccine, where a proporti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> is vaccinated. Some simulati<strong>on</strong>s, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccine efficacy,<br />

are studied. It is shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vaccine has a prep<strong>on</strong>derant<br />

role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease.<br />

References.<br />

[1] H. S. Rodrigues, M. T. T. M<strong>on</strong>teiro and D. F. M. Torres, Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue epidemics when<br />

using optimal c<strong>on</strong>trol, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Comput. Modelling 52 (2010), no. 9-10, 1667–1673.<br />

[2] H. S. Rodrigues, M. T. T. M<strong>on</strong>teiro, D. F. M. Torres and A. Zinober, Dengue disease, basic<br />

reproducti<strong>on</strong> number and c<strong>on</strong>trol, Int. J. Comput. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. (2011), in press.<br />

[3] WHO, Immuniological correlates <str<strong>on</strong>g>of</str<strong>on</strong>g> protecti<strong>on</strong> induced by dengue vaccines, Vaccine 25 (2007),<br />

4130–4139.<br />

835


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Friday, July 1, 14:30<br />

Joanna M. Rodríguez Chrobak<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Castilla - La Mancha, Avda.<br />

Camilo José Cela No. 3, 13071 Ciudad Real, Spain<br />

e-mail: Joanna.Chrobak@uclm.es<br />

Henar Herrero<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Castilla - La Mancha, Avda.<br />

Camilo José Cela No. 3, 13071 Ciudad Real, Spain<br />

e-mail: Henar.Herrero@uclm.es<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> lymphoma as a failure in<br />

maintanance <str<strong>on</strong>g>of</str<strong>on</strong>g> naïve T cell repertoire<br />

We introduce a stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> lymphoma based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e competitive<br />

exclusi<strong>on</strong> between different cl<strong>on</strong>otypes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e naïve T<br />

cell repertoire [1,2]. Two cl<strong>on</strong>otypes <str<strong>on</strong>g>of</str<strong>on</strong>g> T cells compete wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er and wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cl<strong>on</strong>otypes for survival stimuli provided by pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al cells (APCs) [3,4]. We<br />

assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cl<strong>on</strong>otypes is normal and <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er is tumorous. We model<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e competiti<strong>on</strong> as a c<strong>on</strong>tinuous-time bivariate Markov process [5]. To model <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumorous cl<strong>on</strong>otype we introduce an augmented rate <str<strong>on</strong>g>of</str<strong>on</strong>g> influx <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

new naïve T cells, descendants <str<strong>on</strong>g>of</str<strong>on</strong>g> mutated stem cells, from <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus. We obtain<br />

a deterministic approximati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic model using Van Kampen’s large<br />

N expansi<strong>on</strong> technique [6] and analyse four cases <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

cl<strong>on</strong>otypes <str<strong>on</strong>g>of</str<strong>on</strong>g> T cells, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> analitically and numerically.<br />

We obtain two possible scenarios, depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e values <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters: ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cl<strong>on</strong>otypes survive in <str<strong>on</strong>g>th</str<strong>on</strong>g>e repertoire or <str<strong>on</strong>g>th</str<strong>on</strong>g>e cl<strong>on</strong>otype <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal T cells<br />

becomes extinct, meanwhile <str<strong>on</strong>g>th</str<strong>on</strong>g>e cl<strong>on</strong>otype <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumorous T cells is maintained,<br />

after achieving some maximum level <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at if <str<strong>on</strong>g>th</str<strong>on</strong>g>e income <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

new T cells from <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus is augmented, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumorous cl<strong>on</strong>otype, which<br />

is very competitive, would never be removed from <str<strong>on</strong>g>th</str<strong>on</strong>g>e repertoire; meanwhile <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

normal cl<strong>on</strong>otype could become extinct if it was not specialized enough to compete<br />

effectively for survival stimuli. This result supports <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> mutated<br />

stem cells as <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer, in particular lymphoma. Any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cells might<br />

initiate an outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e illness, so as l<strong>on</strong>g as we do not entirely get rid <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mutated stem cells, we can not successfully defeat lymphoma.<br />

References.<br />

[1] E. R. Stirk, C. Molina-París and H. A. van den Berg, Stochastic niche structure and diversity<br />

maintenance in <str<strong>on</strong>g>th</str<strong>on</strong>g>e T cell repertoire Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 255 (2008) 237–249.<br />

[2] E. R. Stirk, G. Ly<str<strong>on</strong>g>th</str<strong>on</strong>g>e, H. A. van den Berg and C. Molina-París, Stochastic competitive<br />

exclusi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e naïve T cell repertoire Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology<br />

265 (2010) 396–410.<br />

[3] R. J.De Boer and A. S. Perels<strong>on</strong>, T cell repertoires and competitive exclusi<strong>on</strong> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Biology 169 (1994) 375–390.<br />

[4] A. W. Goldra<str<strong>on</strong>g>th</str<strong>on</strong>g> and M. J. Bevan, Selecting and maintining a diverse t-cell repertoire Nature<br />

402 (1999) 255–262.<br />

[5] L. J. S. Allen, An introducti<strong>on</strong> to stochastic processes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> applicati<strong>on</strong>s to biology Prentice<br />

Hall (2003).<br />

[6] N. G. Van Kampen, Stochastic processes in physics and chemistry Nor<str<strong>on</strong>g>th</str<strong>on</strong>g>-Holland Pers<strong>on</strong>al<br />

Library (2007).<br />

836


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Thursday, June 30, 11:30<br />

Roberto Rosà<br />

F<strong>on</strong>dazi<strong>on</strong>e Edmund Mach, San Michele all’Adige (TN) - ITALY<br />

e-mail: rosa@cealp.it<br />

Luca Bolz<strong>on</strong>i<br />

F<strong>on</strong>dazi<strong>on</strong>e Edmund Mach, San Michele all’Adige (TN) - ITALY<br />

Andrea Pugliese<br />

Dipartimento di Matematica, Universita’ di Trento, Povo (TN) - ITALY<br />

Fausta Rosso<br />

F<strong>on</strong>dazi<strong>on</strong>e Edmund Mach, San Michele all’Adige (TN) - ITALY<br />

Annapaola Rizzoli<br />

F<strong>on</strong>dazi<strong>on</strong>e Edmund Mach, San Michele all’Adige (TN) - ITALY<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> helmin<str<strong>on</strong>g>th</str<strong>on</strong>g> parasite <strong>on</strong> rock partridge<br />

populati<strong>on</strong> dynamics<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work was to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> helmin<str<strong>on</strong>g>th</str<strong>on</strong>g> parasites <strong>on</strong> rock partridge<br />

(Alectoris graeca saxatilis) populati<strong>on</strong> dynamics in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Dolomitic Alps (nor<str<strong>on</strong>g>th</str<strong>on</strong>g>ern<br />

Italy). Specifically, we investigated <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e nematode parasite Ascaridia<br />

compar can drive populati<strong>on</strong> cycles in rock partridge dynamics. In order<br />

to support <str<strong>on</strong>g>th</str<strong>on</strong>g>is hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis, we compared <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong>s obtained from a hostmacroparasite<br />

interacti<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multi-annual empirical data <str<strong>on</strong>g>of</str<strong>on</strong>g> A. compar<br />

infecti<strong>on</strong> in natural host populati<strong>on</strong>s. We estimated host demographic parameters<br />

from rock partridge census data, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e parasitological parameters from a<br />

series <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental infecti<strong>on</strong>s in a rock partridge captive populati<strong>on</strong>. Our model<br />

predicts higher levels <str<strong>on</strong>g>of</str<strong>on</strong>g> A. compar infestati<strong>on</strong> for rock partridge populati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a cyclic dynamics respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a n<strong>on</strong>-cyclic dynamics. In additi<strong>on</strong>, for<br />

populati<strong>on</strong>s exhibiting cyclic dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model predicts a positive correlati<strong>on</strong><br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean parasite burden and <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cycle period. Model predicti<strong>on</strong>s<br />

are well-supported by field data; in fact, a significant differences in parasite<br />

infecti<strong>on</strong> between cyclic and n<strong>on</strong> cyclic populati<strong>on</strong>s and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in cyclic populati<strong>on</strong>s<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different oscillati<strong>on</strong> periods were observed. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results, we<br />

c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at helmin<str<strong>on</strong>g>th</str<strong>on</strong>g> parasites can be a possible driver for rock partridge populati<strong>on</strong><br />

dynamics and must be c<strong>on</strong>sidered when planning c<strong>on</strong>servati<strong>on</strong> strategies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>reatened species.<br />

837


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Plants, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and transport processes I; Tuesday, June 28, 11:00<br />

Anita Ro<str<strong>on</strong>g>th</str<strong>on</strong>g>-Nebelsick<br />

State Museum <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural History Stuttgart, Rosenstein 1, D-70191<br />

Stuttgart<br />

e-mail: anita.ro<str<strong>on</strong>g>th</str<strong>on</strong>g>nebelsick@smns-bw.de<br />

Wilfried K<strong>on</strong>rad<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tübingen, Institute for Geosciences, Sigwartstrasse 10,<br />

D-72070 Tübingen<br />

e-mail: wilfried.k<strong>on</strong>rad@uni-tuebingen.de<br />

Plant gas exchange: Theoretical c<strong>on</strong>siderati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> single stomata<br />

Plant gas exchange: Theoretical c<strong>on</strong>siderati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> single stomata<br />

Land plants require gas exchange between leaf interior and atmosphere to obtain<br />

sufficient amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 for photosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis. Stomata, micropores <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaf<br />

surface, are <str<strong>on</strong>g>th</str<strong>on</strong>g>e gateways for plant gas exchange. The stomatal pore is formed by<br />

two guard cells whose shape change (caused by changing turgor) c<strong>on</strong>trols <str<strong>on</strong>g>th</str<strong>on</strong>g>e aperture<br />

wid<str<strong>on</strong>g>th</str<strong>on</strong>g>. This in turn c<strong>on</strong>trols stomatal c<strong>on</strong>ductance. Tight c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> stomatal<br />

c<strong>on</strong>ductance is necessary since diffusi<strong>on</strong>al CO2 influx <str<strong>on</strong>g>th</str<strong>on</strong>g>rough open stomata is accompanied<br />

by water vapour loss (= transpirati<strong>on</strong>). Besides stomatal pore area <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

is c<strong>on</strong>trolled by <str<strong>on</strong>g>th</str<strong>on</strong>g>e guard cells, <str<strong>on</strong>g>th</str<strong>on</strong>g>e actual stomatal c<strong>on</strong>ductance is dependent <strong>on</strong><br />

various o<str<strong>on</strong>g>th</str<strong>on</strong>g>er anatomical traits, such as stomatal density and dep<str<strong>on</strong>g>th</str<strong>on</strong>g> and shape <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e stomatal pore [1, 2].<br />

The entire diffusi<strong>on</strong> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way is, however, more complex in reality. In most<br />

cases, it is still unclear where evaporati<strong>on</strong> inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaf occurs. If cutinizati<strong>on</strong><br />

does not reach bey<strong>on</strong>d <str<strong>on</strong>g>th</str<strong>on</strong>g>e stomatal channel, i.e. if internal cuticles are absent, <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

evaporati<strong>on</strong> should occur close to <str<strong>on</strong>g>th</str<strong>on</strong>g>e stomata [3, 4]. If internal cuticles are present,<br />

evaporating sites are seated more deeply wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaves. Shifting evaporati<strong>on</strong><br />

deeper into <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesophyll by cutinizati<strong>on</strong> bey<strong>on</strong>d <str<strong>on</strong>g>th</str<strong>on</strong>g>e stomatal channel can lead<br />

to a substantial decrease in stomatal c<strong>on</strong>ductance for water vapour (wi<str<strong>on</strong>g>th</str<strong>on</strong>g> all o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

parameters c<strong>on</strong>stant) [4].<br />

Details <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf internal diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water vapour and CO2 are <str<strong>on</strong>g>of</str<strong>on</strong>g> interest, due<br />

to different aspects. For example, measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> stomatal c<strong>on</strong>ductance for water<br />

vapour is used also for analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis, implicitly assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at diffusi<strong>on</strong><br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways <str<strong>on</strong>g>of</str<strong>on</strong>g> CO2 and water vapour are mostly identical. In ecophysiology, various<br />

modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stomata are ascribed to adaptati<strong>on</strong>s to envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s.<br />

For example, arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> stomata in stomatal crypts, <str<strong>on</strong>g>th</str<strong>on</strong>g>at are depressi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

leaf surface in which stomata are seated, should restrict water loss. It is, however,<br />

questi<strong>on</strong>able whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>is really happens, or if o<str<strong>on</strong>g>th</str<strong>on</strong>g>er functi<strong>on</strong>al benefits may linked<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese kind <str<strong>on</strong>g>of</str<strong>on</strong>g> structures. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, variati<strong>on</strong>s in stomatal structure and/or<br />

arrangement add more parameters to <str<strong>on</strong>g>th</str<strong>on</strong>g>e stomatal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way, <str<strong>on</strong>g>th</str<strong>on</strong>g>ereby altering <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>trollable stomatal channel to overall c<strong>on</strong>ductance.<br />

As a whole, important details <str<strong>on</strong>g>of</str<strong>on</strong>g> stomatal diffusi<strong>on</strong> are still not well understood.<br />

Analyzing gas diffusi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> single stomata, and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesophyll,<br />

can c<strong>on</strong>tribute substantial informati<strong>on</strong> to various topics in ecophysiology and plant<br />

physiology.<br />

838


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] J.-Y. Parlange and P. E. Wagg<strong>on</strong>er, Plant Physiology, 1970, 46, 337-342.<br />

[2] H. Kaiser, Plant, Cell and Envir<strong>on</strong>ment, 2009, 32, 1091-1098.<br />

[3] M. T. Tyree and P. Yianoulis, Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany, 1980, 46, 175-193.<br />

[4] A. Ro<str<strong>on</strong>g>th</str<strong>on</strong>g>-Nebelsick, Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany, 2007, 100, 23-32.<br />

839


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Elina Roto<br />

graduate student<br />

e-mail: elina.roto@helsinki.fi<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Unravelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> streptococcus<br />

pneum<strong>on</strong>iae wi<str<strong>on</strong>g>th</str<strong>on</strong>g> approximate bayesian computati<strong>on</strong><br />

Approximate Bayesian computati<strong>on</strong> (ABC) provides an appealing me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for c<strong>on</strong>necting<br />

stochastic models to observed data. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e help <str<strong>on</strong>g>of</str<strong>on</strong>g> ABC, it is possible<br />

to distinguish probabilistically, given <str<strong>on</strong>g>th</str<strong>on</strong>g>e data, between different model candidates,<br />

and finally learn <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> model parameters. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, having posterior<br />

distributi<strong>on</strong>s for models and model parameters, <strong>on</strong>e can calculate posterior<br />

means, and perform predicti<strong>on</strong>.<br />

Streprococcus pneum<strong>on</strong>iae is a bacteria col<strong>on</strong>izing especially children. After<br />

introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccine against <str<strong>on</strong>g>th</str<strong>on</strong>g>e most comm<strong>on</strong> strains, what has been observed<br />

is a fast serotype replacement, after which <str<strong>on</strong>g>th</str<strong>on</strong>g>e prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> streptococcus pneum<strong>on</strong>ia<br />

strains in general remains unchanged. Large carriage studies from children<br />

were c<strong>on</strong>ducted during <str<strong>on</strong>g>th</str<strong>on</strong>g>ese years. To understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

streprococcus pneum<strong>on</strong>ia, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed diversity and fast serotype replacement,<br />

we aim to c<strong>on</strong>duct ABC model selecti<strong>on</strong> and parameter learning. This<br />

could help to say whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exists fittness differences between different strains,<br />

and what <str<strong>on</strong>g>th</str<strong>on</strong>g>e ultimate effects <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccinati<strong>on</strong> will be.<br />

840


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cell systems: from intercellular interacti<strong>on</strong><br />

to tissue-level traits I; Wednesday, June 29, 14:30<br />

Robert Rovetti<br />

Loyola Marymount University<br />

e-mail: rrovetti@lmu.edu<br />

Periodicity, spatial correlati<strong>on</strong>s, and waves in a probabilistic<br />

lattice model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac cell.<br />

Cardiac cells have a surprisingly complex internal architecture, and dynamic instabilities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e calcium signaling wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>em may lead to ventricular fibrillati<strong>on</strong>,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e leading cause <str<strong>on</strong>g>of</str<strong>on</strong>g> sudden cardiac dea<str<strong>on</strong>g>th</str<strong>on</strong>g>. We study a system <str<strong>on</strong>g>of</str<strong>on</strong>g> locally-coupled<br />

stochastically-excitable elements in a 2D automata lattice <str<strong>on</strong>g>th</str<strong>on</strong>g>at replicates physiological<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac cell, including <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold excitati<strong>on</strong>, refractory period,<br />

global periodic forcing signal, and spatial nearest-neighbor interacti<strong>on</strong>s. We first<br />

derive a simple mean-field difference equati<strong>on</strong> which models <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected excitati<strong>on</strong><br />

rate at each beat, and find c<strong>on</strong>diti<strong>on</strong>s under which it can undergo a bifurcati<strong>on</strong><br />

to period-2 behavior (mimicking <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ological c<strong>on</strong>diti<strong>on</strong> known as "alternans").<br />

Using a local structure approximati<strong>on</strong> to account for pairwise (and higher-order)<br />

correlati<strong>on</strong>, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>diti<strong>on</strong>s are dependent <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e neighborto-neighbor<br />

coupling, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell itself. We finally c<strong>on</strong>sider<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous-time case, which allows for cascading spatial interacti<strong>on</strong>s, resulting<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> excitati<strong>on</strong> waves.<br />

841


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Peter Rowat<br />

Institute for Neural Computati<strong>on</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California San Diego,<br />

USA<br />

e-mail: prowat@ucsd.edu<br />

Priscilla Greenwood<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia, Vancouver,<br />

BC, Canada<br />

Identificati<strong>on</strong> and c<strong>on</strong>tinuity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

burst-leng<str<strong>on</strong>g>th</str<strong>on</strong>g> and inter-spike-intervals in <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic<br />

Morris-Lecar neur<strong>on</strong><br />

Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e Morris-Lecar model neur<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a type II parameter set and K+ channel<br />

noise, we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e inter-spike interval distributi<strong>on</strong> as increasing levels <str<strong>on</strong>g>of</str<strong>on</strong>g> applied<br />

current drive <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a sub-critical Hopf bifurcati<strong>on</strong>. Our goal was<br />

to provide a quantitative descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong>s associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> spiking as<br />

a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> applied current. The model generates bursty spiking behavior wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> random numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> spikes (bursts) separated by inter-burst intervals<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> random leng<str<strong>on</strong>g>th</str<strong>on</strong>g>. This kind <str<strong>on</strong>g>of</str<strong>on</strong>g> spiking behavior is found in many places in <str<strong>on</strong>g>th</str<strong>on</strong>g>e nervous<br />

system, most notably, perhaps, in stuttering inhibitory interneur<strong>on</strong>s in cortex.<br />

Here we show several practical and inviting aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, combining analysis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> estimati<strong>on</strong> based <strong>on</strong> simulati<strong>on</strong>s.<br />

We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e exp<strong>on</strong>ential tail <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ISI distributi<strong>on</strong> is in<br />

fact c<strong>on</strong>tinuous over <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire range <str<strong>on</strong>g>of</str<strong>on</strong>g> plausible applied current, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

bifurcati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase-portrait <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e spike<br />

sequence leng<str<strong>on</strong>g>th</str<strong>on</strong>g>, apparently studied for <str<strong>on</strong>g>th</str<strong>on</strong>g>e first time here, has a geometric distributi<strong>on</strong><br />

whose associated parameter is c<strong>on</strong>tinuous as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> applied current<br />

over <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire input range. Hence <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is applicable over a much wider range<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> applied current <str<strong>on</strong>g>th</str<strong>on</strong>g>an has been <str<strong>on</strong>g>th</str<strong>on</strong>g>ought.<br />

842


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Piotr Przymus<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science, Nicolaus Copernicus<br />

University, Chopina 12/18, 87-100 Toruń, Poland<br />

e-mail: eror@mat.umk.pl,<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Rykaczewski<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science, Nicolaus Copernicus<br />

University, Chopina 12/18, 87-100 Toruń, Poland<br />

e-mail: mozgun@mat.umk.pl<br />

Extracti<strong>on</strong> and detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater mussels behaviours,<br />

using wavelets and kernel me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

Some species <str<strong>on</strong>g>of</str<strong>on</strong>g> mussels are well-known bioindicators and may be used to create<br />

a Biological Early Warning System. Such systems use l<strong>on</strong>g-term observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

mussels activity for m<strong>on</strong>itoring purposes. Yet, many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese systems are based<br />

<strong>on</strong> statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods and do not use all <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential <str<strong>on</strong>g>th</str<strong>on</strong>g>at stays behind <str<strong>on</strong>g>th</str<strong>on</strong>g>e data<br />

derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e paper we propose an algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m based <strong>on</strong><br />

wavelets and kernel me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to detect behaviour events in <str<strong>on</strong>g>th</str<strong>on</strong>g>e collected data. It<br />

c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> raw data obtaining, pre-processing and feature extracti<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e preprocessing<br />

step, a high-pass filters and white de-noising were used. During <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> events wavelet packet was applied and <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>e data was averaged by<br />

kernel me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. Our motivati<strong>on</strong> was to highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>e multiple time scale properties<br />

and to exam <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible c<strong>on</strong>necti<strong>on</strong>s between behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> zebra mussel and water<br />

state. Results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at polluti<strong>on</strong> could be characterized by <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological signal<br />

generated by Dreissena polymorpha. Our study also showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at wavelet transforms<br />

could be powerful me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for probing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

signal and envir<strong>on</strong>ment variability.<br />

References.<br />

[asi00] J. T. Białasiewicz. Wavelets and Approximati<strong>on</strong>s (in polish “Falki i aproksymacje”).<br />

Wydawnictwo Naukowo Techniczne, Warszawa, 2000.<br />

[Bis06] Ch. M. Bishop. Pattern Recogniti<strong>on</strong> and Machine Learning. Springer, 2006.<br />

[Bor06] Jost Borcherding. Ten years <str<strong>on</strong>g>of</str<strong>on</strong>g> practical experience wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dreissena-m<strong>on</strong>itor, a biological<br />

early warning system for c<strong>on</strong>tinuous water quality m<strong>on</strong>itoring. Hydrobiologia,<br />

556:417–426, 2006.<br />

[Gud03] Alexander V. Gudimov. Elementary behavioral acts <str<strong>on</strong>g>of</str<strong>on</strong>g> valve movements in mussels<br />

(mytilus edulis l.). Doklady Biological Sciences, 391:346–348, 2003. Translated from<br />

Doklady Akademii Nauk, Vol. 391, No. 3, 2003, pp. 422-425.<br />

[KKCC06] Cheol-Ki Kim, Inn-Sil Kwak, Eui-Young Cha, and Tae-Soo Ch<strong>on</strong>. Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

wavelets and artificial neural networks to detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic resp<strong>on</strong>se behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> chir<strong>on</strong>omids<br />

(chir<strong>on</strong>omidae: Diptera) for water quality m<strong>on</strong>itoring. Ecol. Model., 195:61–<br />

71, 2006.<br />

[LRM08] Petr<strong>on</strong>e L., Norman L. C Ragg, and A. James McQuillan. In situ infrared spectroscopic<br />

investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> perna canaliculus mussel larvae primary settlement. Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ouling.,<br />

24(6):405–413, 2008.<br />

[RSH + 06] David L. Rodland, Bernd R. Schöne, Samuli O. Helama, Jan Kresten Nielsen, and<br />

Sven M. Baier. A clockwork mollusc: Ultradian rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms in bivalve activity revealed<br />

by digital photography. J. Exp. Mar. Biol. Ecol., 334:316–323, 2006.<br />

[Wiś91] Ryszard Wiśniewski. New me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for recording activity pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> bivalves: A preliminary<br />

report <strong>on</strong> dreissena polymorpha pallas during ecological stress. In Ten<str<strong>on</strong>g>th</str<strong>on</strong>g> Intern.<br />

Malacol. C<strong>on</strong>gress, pages 363–365, 1991.<br />

843


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Neurosciences; Thursday, June 30, 11:30<br />

Laura Sacerdote<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics “G. Peano”, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Torino, Via<br />

Carlo Alberto 10, Torino, Italy<br />

e-mail: laura.sacerdote@unito.it<br />

Massimiliano Tamborrino<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Universitetsparken<br />

5, DK 2100, Copenhagen, Denmark.<br />

e-mail: mt@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ku.dk<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e Interspike Times <str<strong>on</strong>g>of</str<strong>on</strong>g> two Coupled Neur<strong>on</strong>s<br />

Stochastic Leaky Integrate and Fire models describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane<br />

potential {Xt} t≥0 <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e Stein equati<strong>on</strong><br />

<br />

dXt = − Xt<br />

τ dt + adN + t + idN − t .<br />

X0 = x0<br />

Here, a > 0, i < 0 are c<strong>on</strong>stants representing excitatory and inhibitory inputs,<br />

τ is <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane time c<strong>on</strong>stant and x0 is <str<strong>on</strong>g>th</str<strong>on</strong>g>e resting potential. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore,<br />

+ −<br />

N t and Nt are two independent Poiss<strong>on</strong> processes <str<strong>on</strong>g>of</str<strong>on</strong>g> rates λ > 0 and β > 0,<br />

respectively. The release <str<strong>on</strong>g>of</str<strong>on</strong>g> a spike corresp<strong>on</strong>ds to <str<strong>on</strong>g>th</str<strong>on</strong>g>e first time when <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane<br />

potential attains a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold value S > x0. After a spike, <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane<br />

potential is reset to its resting value and <str<strong>on</strong>g>th</str<strong>on</strong>g>e process restarts its evoluti<strong>on</strong> until a<br />

time tmax. The Interspike Intervals (ISI) are modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e random variables<br />

T = inf {t : Xt > S}. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e seventies, <str<strong>on</strong>g>th</str<strong>on</strong>g>e difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first passage time<br />

problem for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Stein process has motivated <str<strong>on</strong>g>th</str<strong>on</strong>g>e introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> limits for<br />

its equati<strong>on</strong>. As result, an Ornstein-Uhlenbeck process is obtained. It models <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

sub-<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold membrane potential dynamics and it has developed <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

input-output relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> a single neur<strong>on</strong>.<br />

However, <strong>on</strong>e should c<strong>on</strong>sider two or more dependent neur<strong>on</strong>s to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

transmissi<strong>on</strong> <strong>on</strong> informati<strong>on</strong> in a network. Here, we extend <str<strong>on</strong>g>th</str<strong>on</strong>g>e Stein process to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> k neur<strong>on</strong>s, modeling its spiking activity. For <str<strong>on</strong>g>th</str<strong>on</strong>g>is aim, we prove <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>vergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a k-dimensi<strong>on</strong>al Stein process to a k-dimensi<strong>on</strong>al Ornstein-Uhlenbeck <strong>on</strong>e.<br />

We also prove <str<strong>on</strong>g>th</str<strong>on</strong>g>e weak c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir ISIs.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e two dimensi<strong>on</strong>al case, we numerically determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ISIs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two neur<strong>on</strong>s. Finally, we illustrate some results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependencies<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese times.<br />

844


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Reports from US - African BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Initiative: C<strong>on</strong>servati<strong>on</strong><br />

Biology; Saturday, July 2, 14:30<br />

Holly Gaff, Sadie Ryan<br />

Old Domini<strong>on</strong> University, SUNY-ESF<br />

e-mail: HGaff@odu.edu<br />

Looking to <str<strong>on</strong>g>th</str<strong>on</strong>g>e future: how to progress to success from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

US-Africa Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Initiative<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is sessi<strong>on</strong>, we have heard reports from <str<strong>on</strong>g>th</str<strong>on</strong>g>e US-Africa Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Initiative’s<br />

two Advanced Studies Institutes (ASIs) for C<strong>on</strong>servati<strong>on</strong> Biology. The<br />

questi<strong>on</strong> remains, what happens next? The original goals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiative were to<br />

bring toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er US and African students to examine questi<strong>on</strong>s in c<strong>on</strong>servati<strong>on</strong> biology<br />

in Africa, using a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and biological approaches. This<br />

goal has been achieved and has produced results bey<strong>on</strong>d original expectati<strong>on</strong>s. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we will address how to progress from here: <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> publicati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

potential for future work, communicating results back to c<strong>on</strong>servati<strong>on</strong> biologists.<br />

We will also discuss how participants will take <str<strong>on</strong>g>th</str<strong>on</strong>g>is experience back to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir home<br />

instituti<strong>on</strong>s, and avenues for sharing <str<strong>on</strong>g>th</str<strong>on</strong>g>e benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experience. We hope <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is will enable us all to distill important less<strong>on</strong>s in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> collaborati<strong>on</strong> and higher<br />

educati<strong>on</strong> pedagogical and communicati<strong>on</strong> abilities.<br />

845


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 11:00<br />

Eugene Bushmelev<br />

Siberian Federal university<br />

e-mail: hoochie_cool@list.ru<br />

Michael Sadovsky<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> SB RAS<br />

e-mail: msad@icm.krasn.ru<br />

Close order in triplet compositi<strong>on</strong> in genomes<br />

We studied a two-particle distributi<strong>on</strong> functi<strong>on</strong> l (ω1, ω2) <str<strong>on</strong>g>of</str<strong>on</strong>g> a distance defined in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleotides between two given triplets ω1 = ν1ν2ν3 and ω2 = µ1µ2µ3.<br />

For each entry <str<strong>on</strong>g>of</str<strong>on</strong>g> a given triplet ω1 <str<strong>on</strong>g>th</str<strong>on</strong>g>e distance to <str<strong>on</strong>g>th</str<strong>on</strong>g>e nearest given triplet ω2 has<br />

been determined, <str<strong>on</strong>g>th</str<strong>on</strong>g>us revealing <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> functi<strong>on</strong> l (ω1, ω2) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e couples<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> triplets in a genetic entity. The functi<strong>on</strong> is defined in ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er multi-dimensi<strong>on</strong>al<br />

space (64 2 = 4096) <str<strong>on</strong>g>th</str<strong>on</strong>g>at makes <str<strong>on</strong>g>th</str<strong>on</strong>g>e problems <str<strong>on</strong>g>of</str<strong>on</strong>g> its analysis and visualizati<strong>on</strong> ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

acute.<br />

The distributi<strong>on</strong> functi<strong>on</strong> l (ω1, ω2) was found to be ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er complex; it has<br />

several maxima, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number and locati<strong>on</strong> (relative distance) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose maxima<br />

are specific, for various couples <str<strong>on</strong>g>of</str<strong>on</strong>g> triplets. For yeast genome <str<strong>on</strong>g>of</str<strong>on</strong>g> Pichia stipitis CBS<br />

6054, typical number <str<strong>on</strong>g>of</str<strong>on</strong>g> maxima was equal to <str<strong>on</strong>g>th</str<strong>on</strong>g>ree, for any chromosome. Intragenomic<br />

variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> l (ω1, ω2) is ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er significant; at least, different<br />

chromosomes have indistinctively discrete types <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>.<br />

Special attenti<strong>on</strong> has been paid to <str<strong>on</strong>g>th</str<strong>on</strong>g>e couples <str<strong>on</strong>g>of</str<strong>on</strong>g> triplets <str<strong>on</strong>g>th</str<strong>on</strong>g>at make so called<br />

complementary palindrome. That latter is a couple <str<strong>on</strong>g>of</str<strong>on</strong>g> triplets read equally in opposite<br />

directi<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e complimentary rule substituti<strong>on</strong>, say, ATG ↔ CAT<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> GCA ↔ TGC. Such triplets (and l<strong>on</strong>ger strings) are well known for a kind <str<strong>on</strong>g>of</str<strong>on</strong>g> symmetry<br />

in genomes: <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> each string in a complementary palindrome is<br />

pretty close each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. Informati<strong>on</strong> charge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e triplets composing a complimentary<br />

palindrome is ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er important issue, for <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e close order in<br />

genomes. This former is a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> real frequency fν1ν2ν3 to <str<strong>on</strong>g>th</str<strong>on</strong>g>e mostly expected<br />

<strong>on</strong>e fν1ν2ν3, which is defined as<br />

fν1ν2ν3<br />

= fν1ν2 × fν2ν3<br />

Informati<strong>on</strong> charge pν1ν2ν3 is more sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological peculiarities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

genetic entity under c<strong>on</strong>siderati<strong>on</strong>.<br />

We have examined more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 20 genomes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> as many sequences, as <strong>on</strong>e<br />

hundred. All <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigated genetic entities exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>e close order <str<strong>on</strong>g>of</str<strong>on</strong>g> triplet<br />

compositi<strong>on</strong>. The pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e order was different for <str<strong>on</strong>g>th</str<strong>on</strong>g>e different species (and<br />

higher taxa). Moreover, even an intra-genetic variability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns was high<br />

enough to put <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e comprehensive analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern itself.<br />

To verify <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns observed at <str<strong>on</strong>g>th</str<strong>on</strong>g>e real genetic entities, we have carried out<br />

several computati<strong>on</strong>al experiments. We have generated a surrogate random n<strong>on</strong>correlated<br />

sequence wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleotides and <str<strong>on</strong>g>th</str<strong>on</strong>g>e same leng<str<strong>on</strong>g>th</str<strong>on</strong>g>,<br />

and developed similar patterns to figure out <str<strong>on</strong>g>th</str<strong>on</strong>g>e deviati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e patterns observed<br />

over a real sequence from similar observed over a surrogate. Significant difference<br />

has been detected.<br />

846<br />

fν2<br />

.


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Some biological issues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed order are discussed. The work is a part<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a greater project <str<strong>on</strong>g>of</str<strong>on</strong>g> a study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>ger strings wi<str<strong>on</strong>g>th</str<strong>on</strong>g> increased<br />

informati<strong>on</strong> charge al<strong>on</strong>gside a genome.<br />

847


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Koichi Saeki<br />

Kyushu University<br />

e-mail: saekikou@bio-ma<str<strong>on</strong>g>th</str<strong>on</strong>g>10.biology.kyushu-u.ac.jp<br />

Yoh Iwasa<br />

Kyushu University<br />

Immunology; Wednesday, June 29, 17:00<br />

T cell anergy as a strategy to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

autoimmunity<br />

Some self-reactive immature T cells escape negative selecti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus and<br />

may cause autoimmune diseases later. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e periphery, if T cells are stimulated<br />

insufficiently by peptide-major histocompatibility complex, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey become inactive<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cytokines changes, a phenomen<strong>on</strong> called "T cell anergy".<br />

We explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at T cell anergy may functi<strong>on</strong> to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

autoimmunity. The underlying logic is as follows: Since <str<strong>on</strong>g>th</str<strong>on</strong>g>ose self-reactive T cells<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at receive str<strong>on</strong>g stimuli from self-antigens are eliminated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus, T cells<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at receive str<strong>on</strong>g stimuli in <str<strong>on</strong>g>th</str<strong>on</strong>g>e periphery are likely to be n<strong>on</strong>-self-reactive. As a<br />

c<strong>on</strong>sequence, when a T cell receives a weak stimulus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e likelihood <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell is<br />

self-reactive is higher <str<strong>on</strong>g>th</str<strong>on</strong>g>an in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>th</str<strong>on</strong>g>at it receives a str<strong>on</strong>g stimulus. Therefore,<br />

inactivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e T cell may reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e danger <str<strong>on</strong>g>of</str<strong>on</strong>g> autoimmunity. We c<strong>on</strong>sider<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e formalism in which each T cell chooses its resp<strong>on</strong>se depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stimuli in order to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g> autoimmune diseases while maintaining its<br />

ability to attack n<strong>on</strong>-self-antigens effectively. The numerical calculati<strong>on</strong> reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

T cell anergy is <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal resp<strong>on</strong>se when a T cell meets wi<str<strong>on</strong>g>th</str<strong>on</strong>g> antigen-presenting<br />

cells many times in its lifetime, and when <str<strong>on</strong>g>th</str<strong>on</strong>g>e product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e autoimmunity risk<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> self-reactive T cells has an intermediate value.<br />

848


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Roberto Saenz<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

e-mail: ras93@cam.ac.uk<br />

Steve C. Essen<br />

Veterinary Laboratories Agency<br />

Bryan T. Grenfell<br />

Princet<strong>on</strong> University<br />

John W. McCauley<br />

MRC Nati<strong>on</strong>al Institute for Medical Research<br />

Ian H. Brown<br />

Veterinary Laboratories Agency<br />

Julia R. Gog<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cambridge<br />

Epidemics; Wednesday, June 29, 08:30<br />

Quantifying transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high- and low-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenicity<br />

H7N1 avian influenza in turkeys<br />

Outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> avian influenza in poultry can be devastating, and yet many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

basic parameters have not been accurately characterised. In 1999-2000 in Nor<str<strong>on</strong>g>th</str<strong>on</strong>g>ern<br />

Italy, outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> H7N1 low-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenicity avian influenza virus (LPAI) preceded<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> H7N1 high-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenicity avian influenza virus (HPAI). This study<br />

investigates <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> dynamics in turkeys <str<strong>on</strong>g>of</str<strong>on</strong>g> representative HPAI and LPAI<br />

H7N1 virus strains from <str<strong>on</strong>g>th</str<strong>on</strong>g>is outbreak in an experimental setting, allowing direct<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two strains. The fi<br />

tted transmissi<strong>on</strong> rates for <str<strong>on</strong>g>th</str<strong>on</strong>g>e two strains are similar: 2.04 (1.5-2.7) for HPAI,<br />

2.01 (1.6-2.5) for LPAI. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean infecti<strong>on</strong>s period is far shorter for HPAI,<br />

due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e rapid dea<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> infected turkeys: 1.48 (1.3-1.7) days for HPAI, 7.65 (7.0-<br />

8.4) days for LPAI. Hence <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive ratio, R0 is significantly lower for<br />

HPAI <str<strong>on</strong>g>th</str<strong>on</strong>g>an for LPAI: 3.01 (2.2-4.0) for HPAI, 15.37 (11.8-19.8) for LPAI. To be able<br />

to extrapolate experimental results from relatively small numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> birds to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

commercial poultry flock size, two competing hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses for how transmissi<strong>on</strong> rates<br />

vary wi<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong> size were investigated. Frequency-dependent transmissi<strong>on</strong> was<br />

determined to give a better<br />

fit to data from experiments wi<str<strong>on</strong>g>th</str<strong>on</strong>g> varying number <str<strong>on</strong>g>of</str<strong>on</strong>g> birds.<br />

849


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Tuesday, June 28, 14:30<br />

Max Sajitz-Hermstein and Zoran Nikoloski<br />

Systems Biology and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling Group<br />

Max-Planck Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Plant Physiology, 14476 Potsdam,<br />

Germany<br />

e-mail: sajitz@mpimp-golm.mpg.de<br />

e-mail: nikoloski@mpimp-golm.mpg.de<br />

Biochemical reacti<strong>on</strong> networks meet Coaliti<strong>on</strong>al Game<br />

Theory: The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> not being single<br />

A fundamental questi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> complex biological networks is how to<br />

determine which comp<strong>on</strong>ents (e.g. reacti<strong>on</strong>s) are most important regarding specific<br />

functi<strong>on</strong>. Virtually all existing approaches for establishing <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

reacti<strong>on</strong> in a biological network are based <strong>on</strong> vitality-like indices. The importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a reacti<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>en specified by <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> its removal, emulating single knockout<br />

experiments in biology. However, such technique neglects topological features, like<br />

bypassing pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways, which are crucial for network robustness. Coaliti<strong>on</strong>al game<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eory provides a framework for extending <str<strong>on</strong>g>th</str<strong>on</strong>g>e vitality-like indices by c<strong>on</strong>sidering<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single network elements wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to all <str<strong>on</strong>g>of</str<strong>on</strong>g> its interacti<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network, based purely <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network topology. Here we propose a me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

combining cooperative game <str<strong>on</strong>g>th</str<strong>on</strong>g>eory wi<str<strong>on</strong>g>th</str<strong>on</strong>g> flux balance analysis, a standard technique<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic networks. We employ <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to rank reacti<strong>on</strong>s<br />

in metabolic networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to a biologic functi<strong>on</strong>, in particular biomass<br />

producti<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, our me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e design <str<strong>on</strong>g>of</str<strong>on</strong>g> a novel approach for<br />

determining network robustness to changes imposed by gene knock-outs.<br />

850


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> and cortical actin at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular level;<br />

Saturday, July 2, 08:30<br />

Guillaume Salbreux<br />

Max Planck Institute for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Systems, Dresden<br />

e-mail: salbreux@pks.mpg.de<br />

Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e polar actin cortex in cytokinesis<br />

During cytokinesis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> physical separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell into two daughter<br />

cells, actin filaments accumulate at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cleavage furrow, producing <str<strong>on</strong>g>th</str<strong>on</strong>g>e force for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

equatorial c<strong>on</strong>stricti<strong>on</strong>. A cortical network is however also present at <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two cellular poles. The actin network is dynamically polymerized and<br />

depolymerized, and myosin molecular motors generate internal stresses in <str<strong>on</strong>g>th</str<strong>on</strong>g>e layer,<br />

putting <str<strong>on</strong>g>th</str<strong>on</strong>g>e cortex under tensi<strong>on</strong>. Here we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at for a sufficiently large value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e polar cortical tensi<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e symmetric shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dividing cell is <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically<br />

unstable, and oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e volume <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular poles are expected to occur<br />

for a sufficiently slow actin turnover rate. Such oscillati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dividing cells are<br />

experimentally observed and are well described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical framework we<br />

propose.<br />

851


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in computati<strong>on</strong>al neuroscience II; Wednesday, June 29,<br />

17:00<br />

Susanne Ditlevsen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen<br />

e-mail: susanne@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ku.dk<br />

Adeline Sams<strong>on</strong><br />

Laboratoire MAP5 CNRS UMR 8145, University Paris Descartes<br />

e-mail: adeline.sams<strong>on</strong>@parisdescartes.fr<br />

Parameter estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic Morris-Lecar model<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> particle filter me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

Stochastic Morris Lecar model is a well-known two-dimensi<strong>on</strong>al stochastic differential<br />

equati<strong>on</strong> (SDE) describing neur<strong>on</strong>al activity by taking into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e random<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>s. Drift and volatility functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is SDE are n<strong>on</strong>-linear functi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process and depend <strong>on</strong> unknown physiological parameters. Statistical<br />

estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese parameters from neur<strong>on</strong>al data is very difficult. Indeed, neur<strong>on</strong>al<br />

measurements corresp<strong>on</strong>d to discrete observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e first coordinate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

system. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e SDE has no explicit soluti<strong>on</strong>. We propose an estimati<strong>on</strong><br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>od based <strong>on</strong> a stochastic versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e EM algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m, <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAEM algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m,<br />

which requires <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hidden coordinate c<strong>on</strong>diti<strong>on</strong>ally to <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong>s.<br />

We propose to perform <str<strong>on</strong>g>th</str<strong>on</strong>g>is simulati<strong>on</strong> step wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a Particle Markov Chain<br />

M<strong>on</strong>te Carlo algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m. We illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e performance <str<strong>on</strong>g>of</str<strong>on</strong>g> our estimati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od<br />

<strong>on</strong> simulated and real data.<br />

852


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Yara Elena Sanchez Corrales<br />

J<strong>on</strong>h Innes Centre<br />

e-mail: yara.sanchez-corrales@bbsrc.ac.uk<br />

Stan Maree<br />

John Innes Centre<br />

Ver<strong>on</strong>ica Grieneisen<br />

John Innes Centre<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

LC-Elliptical Fourier Analysis for quantitative Pavement<br />

Cell shape analysis<br />

Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough c<strong>on</strong>siderable progress has been made in identifying genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>trol cell<br />

polarity, it is still unclear how <str<strong>on</strong>g>th</str<strong>on</strong>g>ey work toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er to generate cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> particular<br />

shapes. Indeed, we have limited understanding <strong>on</strong> how multicellular dynamics and<br />

patterning is linked to cell shape and how cell shape in turn influences intracellular<br />

dynamics.<br />

The complex pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> lobes and indentati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Pavement Cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidermis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaf <str<strong>on</strong>g>of</str<strong>on</strong>g> Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana <str<strong>on</strong>g>of</str<strong>on</strong>g>fers an ideal system to address <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

problem. To quantify cell shape changes in a growing leaf is extremely important<br />

to gain insight <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e time scale involved in cell morphogenesis and cell polarity<br />

coordinati<strong>on</strong>. Moreover, how <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cell morphogenesis is regulated and<br />

influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaf and leaf developmental stage has remained<br />

elusive.<br />

Quantitative me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for shape analysis are essential to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cell shape <strong>on</strong> cell intracellular dynamics and to analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e polarity effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a given mutati<strong>on</strong> or treatment. We propose a new me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to quantify cell shape<br />

changes based <strong>on</strong> Elliptical Fourier Analysis(EFA). Our new me<str<strong>on</strong>g>th</str<strong>on</strong>g>od called Lobe-<br />

C<strong>on</strong>tributi<strong>on</strong> EFA provide a measurement <str<strong>on</strong>g>th</str<strong>on</strong>g>at directly relates to morphological<br />

periodicities and provide a good separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells according wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir degree <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lobbing in analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cell after a Principal Comp<strong>on</strong>ent Analysis.<br />

853


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 14:30<br />

Luis Sanz<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics. E.T.S.I.I, Universidad Politécnica de<br />

Madrid. Madrid, Spain<br />

e-mail: lsanz@etsii.upm.es<br />

Juan Ant<strong>on</strong>io Al<strong>on</strong>so<br />

e-mail: jal<strong>on</strong>so@etsii.upm.es<br />

Exp<strong>on</strong>ential grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and extincti<strong>on</strong> in age structured<br />

populati<strong>on</strong>s incorporating envir<strong>on</strong>mental stochasticity<br />

We study different strategies to ascertain grow<str<strong>on</strong>g>th</str<strong>on</strong>g> or extincti<strong>on</strong> in Leslie type<br />

matrix models for age structured populati<strong>on</strong>s subjected to envir<strong>on</strong>mental stochasticity<br />

[1]. We <str<strong>on</strong>g>th</str<strong>on</strong>g>ink <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> described at time n by vector Xn = (x 1 n, ..., x N n ) T<br />

and living in an ambient in which <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are s different envir<strong>on</strong>mental states. The<br />

vital rates corresp<strong>on</strong>ding to each <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese envir<strong>on</strong>ments are given by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Leslie<br />

matrices Lα ∈ R N×N , α = 1, ..., s in such a way <str<strong>on</strong>g>th</str<strong>on</strong>g>at, for each α, Lα c<strong>on</strong>tains <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fertility and survival rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> in envir<strong>on</strong>ment α. The envir<strong>on</strong>mental<br />

variati<strong>on</strong> is characterized by a sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> random variables τn, <str<strong>on</strong>g>th</str<strong>on</strong>g>at we will c<strong>on</strong>sider<br />

to be an irreducible and aperiodic Markov chain, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> state space {1, ..., s}<br />

in such a way <str<strong>on</strong>g>th</str<strong>on</strong>g>at τn+1 describes for <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e system<br />

between times n and n + 1. Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model reads<br />

(1) Xn+1 = Lτn+1 Xn<br />

where X0 ≥ 0 is a fixed (n<strong>on</strong> random) n<strong>on</strong>-zero vector. Moreover, we assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices <str<strong>on</strong>g>of</str<strong>on</strong>g> vital rates meets a certain technical c<strong>on</strong>diti<strong>on</strong> (ergodic set).<br />

The most important parameter c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> (1) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called<br />

stochastic grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate (s.g.r.) defined as a := limn→∞ log Xn /n, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> probability<br />

<strong>on</strong>e [2]. Therefore, a > 0 implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at every realizati<strong>on</strong> grows asymptotically<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> rate e a , and a < 0 implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> goes extinct wi<str<strong>on</strong>g>th</str<strong>on</strong>g> probability<br />

<strong>on</strong>e. However, even in very simple situati<strong>on</strong>s, it is not possible to calculate a analytically.<br />

In order to find a useful way to study <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models, <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called “lognormal<br />

approximati<strong>on</strong>” has been proposed [2]. It c<strong>on</strong>sists in assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> size has a lognormal distributi<strong>on</strong>. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is way an approximate s.g.r. â<br />

can be defined. The validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approximati<strong>on</strong> has <strong>on</strong>ly been tested numerically<br />

and in very specific situati<strong>on</strong>s [3]. Moreover, in principle <str<strong>on</strong>g>th</str<strong>on</strong>g>e approximati<strong>on</strong> does<br />

not allow <strong>on</strong>e to calculate â analytically.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first place, <str<strong>on</strong>g>th</str<strong>on</strong>g>is work examines bo<str<strong>on</strong>g>th</str<strong>on</strong>g> numerically and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lognormal approximati<strong>on</strong>, finding <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> situati<strong>on</strong>s in which<br />

it can be c<strong>on</strong>sidered <str<strong>on</strong>g>th</str<strong>on</strong>g>at it works well. Moreover, we build different bounds for a<br />

and for â, and analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s under which each bound works best. This is<br />

used to give necessary-sufficient c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e explosi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>. The results are applied to <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> structured in<br />

juveniles and adults living in an ambient wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a “good” and a “bad” envir<strong>on</strong>ment.<br />

References.<br />

[1] H. Caswell. Matrix Populati<strong>on</strong> Models (2 nd ed.) Sinauer Associates Inc., Sunderland (2001).<br />

[2] S. Tuljapurkar. Populati<strong>on</strong> Dynamics in Variable Envir<strong>on</strong>ments Springer-Verlag, (1990).<br />

854


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] S. Tuljapurkar, S. Orzack. Populati<strong>on</strong> dynamics in variable envir<strong>on</strong>ments. I. L<strong>on</strong>g-run grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rates and extincti<strong>on</strong> Theor. Popul. Biol. 18 314–342 (1980).<br />

855


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecology and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases; Friday, July 1, 14:30<br />

Akira Sasaki<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong>ary Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosystems, The Graduate<br />

University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-<br />

0193, Japan<br />

e-mail: sasaki_akira@soken.ac.jp<br />

Sayaki U. Suzuki<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Kyushu University, Fukuoka<br />

812-8581, Japan<br />

e-mail: suzuki_sayaki@soken.ac.jp<br />

Resistance <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold in spatially explicit epidemic model:<br />

Finite size scaling applied to dynamic percolati<strong>on</strong> in<br />

epidemic processes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mixed cultivar planting<br />

We examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resistant cultivars necessary to prevent a global<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen outbreak (<str<strong>on</strong>g>th</str<strong>on</strong>g>e resistance <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold) using a spatially explicit epidemiological<br />

model (SIR model) in a finite, two-dimensi<strong>on</strong>al, lattice-structured host<br />

populati<strong>on</strong> [1] . Threshold behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is spatially explicit SIR model cannot be<br />

reduced to <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>d percolati<strong>on</strong>, as was previously noted in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature, unless<br />

extremely unrealistic assumpti<strong>on</strong>s are imposed <strong>on</strong> infecti<strong>on</strong> process. The resistance<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold is significantly lower <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al mean-field epidemic<br />

models, and is even lower if <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resistant and susceptible<br />

crops are negatively correlated. Finite size scaling applied to <str<strong>on</strong>g>th</str<strong>on</strong>g>e resistance <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold<br />

reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at its difference from static percolati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold (0.41) is inversely<br />

proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen. Estimated value, 4.7,<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> critical basic reproductive ratio in a universally susceptible populati<strong>on</strong> is much<br />

larger <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding critical value (1) in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean-field model and nearly<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree times larger <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> SIS model.<br />

References.<br />

[1] Suzuki, S.U. and Sasaki, A. How does <str<strong>on</strong>g>th</str<strong>on</strong>g>e resistance <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold in spatially explicit epidemic<br />

dynamics depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive ratio and spatial correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crop genotypes?<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 276 117–125 (2011).<br />

856


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Akiko Satake<br />

Hokkaido University, Japan<br />

e-mail: satake@ees.hokudai.ac.jp<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 08:30<br />

A computati<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> plant life cycle: genetic<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> local adaptati<strong>on</strong> in flowering time<br />

The timing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transiti<strong>on</strong> from vegetative to reproductive development is a critical<br />

adaptive trait as it is essential for plants to complete seed producti<strong>on</strong> in favorable<br />

c<strong>on</strong>diti<strong>on</strong>s. Proposed in A. <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana, <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene regulatory model <str<strong>on</strong>g>of</str<strong>on</strong>g> floral transiti<strong>on</strong><br />

describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex interacti<strong>on</strong>s between envir<strong>on</strong>mental signals (e.g., photoperiod<br />

and temperature) and endogenous cues (e.g., size, leaf number, or age). I<br />

modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> between photoperiod and vernalizati<strong>on</strong> (low-temperature)<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways, and combined <str<strong>on</strong>g>th</str<strong>on</strong>g>is gene regulati<strong>on</strong> dynamics and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> dynamics in<br />

a genetic-physiological model to explore local adaptati<strong>on</strong> to two different envir<strong>on</strong>ments<br />

(Hyogo; <str<strong>on</strong>g>th</str<strong>on</strong>g>e western part <str<strong>on</strong>g>of</str<strong>on</strong>g> central H<strong>on</strong>shu, and Hakodate; <str<strong>on</strong>g>th</str<strong>on</strong>g>e sou<str<strong>on</strong>g>th</str<strong>on</strong>g>ern<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nor<str<strong>on</strong>g>th</str<strong>on</strong>g> island in Japan). Temperature is warmer and seas<strong>on</strong>al variati<strong>on</strong>s<br />

in dayleng<str<strong>on</strong>g>th</str<strong>on</strong>g> are smaller in Hyogo <str<strong>on</strong>g>th</str<strong>on</strong>g>an Hakodate. For simplicity, I assumed<br />

l<strong>on</strong>g-day plants <str<strong>on</strong>g>th</str<strong>on</strong>g>at are self-compatible and evergreen. The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a clear difference in sensitivity to dayleng<str<strong>on</strong>g>th</str<strong>on</strong>g> between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e two plant populati<strong>on</strong>s. It was predicted <str<strong>on</strong>g>th</str<strong>on</strong>g>at a Hakodate populati<strong>on</strong> resp<strong>on</strong>ds<br />

to more extreme critical dayleng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e in Hyogo, which enables <str<strong>on</strong>g>th</str<strong>on</strong>g>e plant<br />

flower in appropriate seas<strong>on</strong> in mid spring in Hakodate. I discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e validity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical predicti<strong>on</strong> using <str<strong>on</strong>g>th</str<strong>on</strong>g>e data <str<strong>on</strong>g>of</str<strong>on</strong>g> Arabidopsis halleri.<br />

857


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Andrew Savory<br />

University Of Dundee<br />

e-mail: asavory@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 17:00<br />

Swimming Patterns Of Zoospores<br />

Oomycetes are a group <str<strong>on</strong>g>of</str<strong>on</strong>g> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens <str<strong>on</strong>g>th</str<strong>on</strong>g>at cause many destructive diseases in animals<br />

and plants. One species in particular, Phytoph<str<strong>on</strong>g>th</str<strong>on</strong>g>ora Infestans, is perhaps <str<strong>on</strong>g>th</str<strong>on</strong>g>e most<br />

well known and is resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e potato blight disease. This causes severe<br />

ec<strong>on</strong>omic damage estimated at 3 billi<strong>on</strong> per annum. The epidemic spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

disease is primarily based <strong>on</strong> rapid dispersal from host to host by free-swimming<br />

zoospore cells. These are single-nucleated, wall-less cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at are released <strong>on</strong>ly<br />

into aqueous envir<strong>on</strong>ments. Zoospores exhibit a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> tactic resp<strong>on</strong>ses to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

envir<strong>on</strong>ment to locate suitable infecti<strong>on</strong> sites. We have begun to model <str<strong>on</strong>g>th</str<strong>on</strong>g>is process<br />

using a PDE chemotaxis model <str<strong>on</strong>g>of</str<strong>on</strong>g> Keller-Segel type and in <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is approach captures some general behaviour seen in experiments. We will also<br />

discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese equati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e metastability <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

soluti<strong>on</strong>s.<br />

858


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

P. Colli Franz<strong>on</strong>e<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pavia<br />

e-mail: colli@imati.cnr.it<br />

L. F. Pavarino<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Milan<br />

e-mail: luca.pavarino@unimi.it<br />

S. Scacchi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Milan<br />

e-mail: sim<strong>on</strong>e.scacchi@unimi.it<br />

Bioengineering; Tuesday, June 28, 14:30<br />

The anisotropic Bidomain model <str<strong>on</strong>g>of</str<strong>on</strong>g> electrocardiology: a<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled and uncoupled parallel<br />

prec<strong>on</strong>diti<strong>on</strong>ers<br />

The anisotropic Bidomain model describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e bioelectric activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac<br />

tissue and c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> a parabolic n<strong>on</strong>-linear partial differential equati<strong>on</strong><br />

(PDE) and an elliptic linear PDE. The PDEs are coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary<br />

differential equati<strong>on</strong>s (ODEs), modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular membrane i<strong>on</strong>ic currents.<br />

The discretizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Bidomain model in <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al (3D) ventricular geometries<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> realistic size yields <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> large scale and ill-c<strong>on</strong>diti<strong>on</strong>ed linear<br />

systems at each time step. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to c<strong>on</strong>struct and study parallel<br />

multilevel and block prec<strong>on</strong>diti<strong>on</strong>ers, in order to str<strong>on</strong>gly reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e high computati<strong>on</strong>al<br />

costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Bidomain model, allowing <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole heart<br />

beat in 3D realistic domains. We analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e scalability <str<strong>on</strong>g>of</str<strong>on</strong>g> multilevel Schwarz<br />

block-diag<strong>on</strong>al and block-factorized prec<strong>on</strong>diti<strong>on</strong>ers for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Bidomain model and<br />

compare <str<strong>on</strong>g>th</str<strong>on</strong>g>em wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multilevel Schwarz coupled prec<strong>on</strong>diti<strong>on</strong>ers. 3D parallel numerical<br />

tests show <str<strong>on</strong>g>th</str<strong>on</strong>g>at block prec<strong>on</strong>diti<strong>on</strong>ers are scalable, but less efficient <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e coupled prec<strong>on</strong>diti<strong>on</strong>ers. Finally, we present simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac virtual<br />

electrode phenomen<strong>on</strong>, yielding anode make and break mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> excitati<strong>on</strong>,<br />

using <str<strong>on</strong>g>th</str<strong>on</strong>g>e developed parallel solver.<br />

859


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Crowd Dynamics: Modeling, Analysis and Simulati<strong>on</strong> (Part 2); Wednesday,<br />

June 29, 14:30<br />

Andreas Schadschneider<br />

Institute for Theoretical Physics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Cologne, Zülpicher<br />

Str. 77, 50937 Köln, Germany<br />

e-mail: as@<str<strong>on</strong>g>th</str<strong>on</strong>g>p.uni-koeln.de<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> pedestrian dynamics – Cellular automata<br />

models<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk we first give a classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e different modelling approaches<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at have been used to describe pedestrian flows and crowd dynamics. The merits<br />

and problems <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese approaches are discussed [1, 2].<br />

Then we focus <strong>on</strong> cellular automata models. This model class has successfully<br />

been applied to a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> complex systems [2]. One main advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

approach is its computi<strong>on</strong>al efficiency. Large crowds can be simulated faster <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

real-time. The floor field model [3, 4, 5, 6] is introduced which allows to reproduce<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e empirically observed collective phenomena like lane formati<strong>on</strong>. The interacti<strong>on</strong>s<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e pedestrians are implemented in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> virtual chemotaxis [6].<br />

Several extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model are discussed which improve its realism in certain<br />

situati<strong>on</strong>s. We also present a calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model using empirical data from<br />

laboratory experiments and an applicati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e evacuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a football stadium.<br />

References.<br />

[1] A. Schadschneider, W. Klingsch, H. Klüpfel, T. Kretz, C. Rogsch, A. Seyfried, Evacuati<strong>on</strong><br />

Dynamics: Empirical Results, Modeling and Applicati<strong>on</strong>s, Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Complexity and<br />

System Science 3142 (2009).<br />

[2] A. Schadschneider, D. Chowdhury und K. Nishinari, Stochastic Transport in Complex Systems:<br />

From Molecules to Vehicles, Elsevier (2010).<br />

[3] C. Burstedde, K. Klauck, A. Schadschneider, J. Zittartz, Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pedestrian dynamics<br />

using a 2-dimensi<strong>on</strong>al cellular automat<strong>on</strong> Physica A 295 507 (2001).<br />

[4] A. Kirchner, A. Schadschneider, Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> evacuati<strong>on</strong> processes using a bi<strong>on</strong>ics-inspired<br />

cellular automat<strong>on</strong> model for pedestrian dynamics, Physica A 312 260 (2002).<br />

[5] A. Kirchner, K. Nishinari, A. Schadschneider, Fricti<strong>on</strong> effects and clogging in a cellular automat<strong>on</strong><br />

model for pedestrian dynamics, Phys. Rev. E 67 056122 (2003).<br />

[6] A. Schadschneider, A. Kirchner, K. Nishinari, From ant trails to pedestrian dynamics, Applied<br />

Bi<strong>on</strong>ics and Biomechanics 1 11 (2003).<br />

860


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models for cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and treatment, Part<br />

V; Wednesday, June 29, 11:00<br />

Heinz Schaettler<br />

Washingt<strong>on</strong> University, USA<br />

e-mail: hms@wustl.edu<br />

Urszula Ledzewicz<br />

Sou<str<strong>on</strong>g>th</str<strong>on</strong>g>ern Illinois University Edwardsville, USA<br />

Optimal protocols for chemo- and immuno<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy in a<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor-immune interacti<strong>on</strong>s<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, a classical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s between tumor and <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune<br />

system under treatment is c<strong>on</strong>sidered as an optimal c<strong>on</strong>trol problem wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple<br />

c<strong>on</strong>trols representing acti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cytotoxic drugs as well as <str<strong>on</strong>g>of</str<strong>on</strong>g> agents <str<strong>on</strong>g>th</str<strong>on</strong>g>at give a boost<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune system. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e objective, a weighted average <str<strong>on</strong>g>of</str<strong>on</strong>g> several quantities<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment is minimized. These terms include (i)<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells at <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal time, (ii) a measure for <str<strong>on</strong>g>th</str<strong>on</strong>g>e immunocompetent<br />

cell densities at <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal point (included as a negative term), (iii) a<br />

measure for <str<strong>on</strong>g>th</str<strong>on</strong>g>e side effects and cost <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment in form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

agents given and (iv) a small penalty <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e terminal time <str<strong>on</strong>g>th</str<strong>on</strong>g>at limits <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapy horiz<strong>on</strong> which is assumed to be free. This last term is essential in obtaining<br />

a well-posed problem formulati<strong>on</strong>. The form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e objective is motivated by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out treatment and models <str<strong>on</strong>g>th</str<strong>on</strong>g>e goal to move <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system from a regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> malignant cancer grow<str<strong>on</strong>g>th</str<strong>on</strong>g> into a benign regi<strong>on</strong>.<br />

Employing a Gompertzian grow<str<strong>on</strong>g>th</str<strong>on</strong>g> model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells, for various scenarios<br />

optimal c<strong>on</strong>trols and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir corresp<strong>on</strong>ding system resp<strong>on</strong>ses are calculated. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cases <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>o- and combinati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies will be c<strong>on</strong>sidered.<br />

861


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Sascha Schäuble 1 , Ines Heiland 1 , S. Schuster 1<br />

1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics, Friedrich–Schiller–University Jena,<br />

Ernst-Abbe-Platz 2, 07743 Jena, Germany<br />

e-mail: {sascha.schaeuble, heiland.ines, stefan.schu}@uni-jena.de<br />

Olga Voytsekh 2 , Maria Mittag 2<br />

2 Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> General Botany, Friedrich–Schiller–University Jena,<br />

Am Planetarium 1,07743 Jena, Germany<br />

e-mail: {olga-olegovna.voytsekh, m.mittag}@uni-jena.de<br />

New developments in <str<strong>on</strong>g>th</str<strong>on</strong>g>e diurnal changes <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen<br />

metabolism in Chlamydom<strong>on</strong>as reinhardtii<br />

The capability <str<strong>on</strong>g>of</str<strong>on</strong>g> plants to assimilate nitrogen plays a crucial role in optimising<br />

biomass producti<strong>on</strong>. This is <str<strong>on</strong>g>of</str<strong>on</strong>g> particular interest for maximising crop yields as<br />

well as for detoxifying stressed soils.<br />

The green algae Chlamydom<strong>on</strong>as reinhardtii renders a suitable model organism,<br />

as it is ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er easily accessible compared to higher plants and shows circadian<br />

oscillati<strong>on</strong>s, which are involved in many metabolic and physiological processes [1].<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, new findings reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>at several RNAs are alternatively spliced in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

green algae [2]. We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at stoichiometric data are sufficient to provide<br />

valuable insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nitrogen uptake system. This is achieved<br />

by c<strong>on</strong>sidering different carb<strong>on</strong> sources, envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e repressive<br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian regulated mRNA-binding protein CHLAMY1 [3] and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Elementary Flux Mode analysis [4]. We retrieved <str<strong>on</strong>g>th</str<strong>on</strong>g>e most efficient<br />

fluxes in regard to <str<strong>on</strong>g>th</str<strong>on</strong>g>e biosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> amino acids <str<strong>on</strong>g>th</str<strong>on</strong>g>at show a high nitrogen to<br />

carb<strong>on</strong> ratio. Moreover, we provide clues for <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> CHLAMY1 in <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen uptake and show a reas<strong>on</strong>able time course <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen incorporati<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>roughout <str<strong>on</strong>g>th</str<strong>on</strong>g>e day.<br />

An investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amino acids in C. reinhardtii<br />

reveals a ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er high abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> simple amino acids in <str<strong>on</strong>g>th</str<strong>on</strong>g>e green algae. Thus, we<br />

included <str<strong>on</strong>g>th</str<strong>on</strong>g>ese amino acids into our metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way analysis as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey c<strong>on</strong>stitute<br />

a potential alternative nitrogen deposit.<br />

References.<br />

[1] Nakahata et al., Circadian c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e NAD+ salvage pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way by CLOCK-SIRT1. Science<br />

324 654–657, 2009.<br />

[2] Labadorf et al., Genome-wide analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative splicing in Chlamydom<strong>on</strong>as reinhardtii.<br />

BMC Genomics 11 114, 2010.<br />

[3] Kiaulehn et al., The Presence <str<strong>on</strong>g>of</str<strong>on</strong>g> UG-repeat sequences in <str<strong>on</strong>g>th</str<strong>on</strong>g>e 3’-UTRs <str<strong>on</strong>g>of</str<strong>on</strong>g> reporter luciferase<br />

mRNAs mediates circadian expressi<strong>on</strong> and can determine acrophase in Chlamydom<strong>on</strong>as reinhardtii.<br />

J Biol Rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms 22 275–277, 2007.<br />

[4] Schuster, S. and Hilgetag, C., On Elementary Flux Modes in biochemical reacti<strong>on</strong> systems at<br />

steady state J Biol Syst 2 165–182, 1994.<br />

862


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Friday, July 1, 14:30<br />

Daniella Schittler<br />

Institute for Systems Theory and Automatic C<strong>on</strong>trol, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stuttgart<br />

e-mail: schittler@ist.uni-stuttgart.de<br />

Christian Breindl<br />

Institute for Systems Theory and Automatic C<strong>on</strong>trol, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stuttgart<br />

Frank Allgower<br />

Institute for Systems Theory and Automatic C<strong>on</strong>trol, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stuttgart<br />

Model selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> networks <str<strong>on</strong>g>th</str<strong>on</strong>g>at are robust against kinetic<br />

uncertainties<br />

Gene regulatory networks are driving major biological processes, such as cell differentiati<strong>on</strong>.<br />

Dynamical models can <str<strong>on</strong>g>of</str<strong>on</strong>g>ten be built <strong>on</strong> a small number <str<strong>on</strong>g>of</str<strong>on</strong>g> key regulators,<br />

but are usually hampered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e lack <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative knowledge about <str<strong>on</strong>g>th</str<strong>on</strong>g>e detailed<br />

interacti<strong>on</strong> kinetics. Thus, it is desirable to deduce certain system properties already<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e qualitative interacti<strong>on</strong> structure.<br />

This study aims at selecting prototypes <str<strong>on</strong>g>of</str<strong>on</strong>g> minimalistic <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-node network<br />

motifs, <str<strong>on</strong>g>th</str<strong>on</strong>g>at can serve as a genetic switch model driving cell differentiati<strong>on</strong>. As a<br />

selecti<strong>on</strong> criteri<strong>on</strong>, we demand <str<strong>on</strong>g>th</str<strong>on</strong>g>at a candidate model must be able to produce<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e biologically observed <str<strong>on</strong>g>th</str<strong>on</strong>g>ree cell states: a progenitor, and two differentiated<br />

cell types. The goal is to find necessary c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> structure<br />

such <str<strong>on</strong>g>th</str<strong>on</strong>g>at a network exhibits <str<strong>on</strong>g>th</str<strong>on</strong>g>e required stable steady states, and to classify <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is capability. For <str<strong>on</strong>g>th</str<strong>on</strong>g>is model selecti<strong>on</strong>, we employ a qualitative<br />

modeling framework based <strong>on</strong> ordinary differential equati<strong>on</strong>s, but requiring <strong>on</strong>ly<br />

few qualitative assumpti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic interacti<strong>on</strong>s. The robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> a model<br />

is defined as <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum perturbati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> functi<strong>on</strong>s under which<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model criteria are still fulfilled, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us measures <str<strong>on</strong>g>th</str<strong>on</strong>g>e validity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model if<br />

<strong>on</strong>ly qualitative knowledge is available.<br />

In particular, we focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e operator combining <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s<br />

acting <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same node: These can be c<strong>on</strong>nected in an OR-fashi<strong>on</strong> (i.e. ingoing<br />

activators and inhibitors act independently <str<strong>on</strong>g>of</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er), or in an AND-fashi<strong>on</strong><br />

(resulting e.g. from complex formati<strong>on</strong>s at gene promoters). We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e OR-networks selected as models for <str<strong>on</strong>g>th</str<strong>on</strong>g>e system are a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ANDnetworks<br />

selected as models, nor vice versa; but am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>em are networks <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

meet <str<strong>on</strong>g>th</str<strong>on</strong>g>e selecti<strong>on</strong> criteria for OR- as well as for AND-kinetics. This n<strong>on</strong>empty<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> models can be regarded as robust not <strong>on</strong>ly against quantitative uncertainties,<br />

but also against uncertain knowledge about <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact interacti<strong>on</strong> c<strong>on</strong>juncti<strong>on</strong>s.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e network c<strong>on</strong>nectivity is directly correlated to <str<strong>on</strong>g>th</str<strong>on</strong>g>e robustness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e network capability to meet <str<strong>on</strong>g>th</str<strong>on</strong>g>e model selecti<strong>on</strong> criteria. In c<strong>on</strong>clusi<strong>on</strong>, for some<br />

specific interacti<strong>on</strong> networks it may be uncritical whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are modeled wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

OR- or AND-interacti<strong>on</strong> kinetics, but also in many cases <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two opti<strong>on</strong>s<br />

can successfully result in a model <str<strong>on</strong>g>th</str<strong>on</strong>g>at reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e system properties.<br />

863


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Wednesday, June 29, 08:30<br />

Daniela Schlüter<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: dkschlueter@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Ignacio Ramis-C<strong>on</strong>de<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong> Cuenca, Universidad<br />

de Castilla la Mancha<br />

e-mail: ignacio@ramis-c<strong>on</strong>de.com<br />

Mark Chaplain<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: chaplain@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

The Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell-Cell and Cell-Matrix Adhesi<strong>on</strong> in Cancer<br />

Cell Invasi<strong>on</strong>: A Multiscale Individual-Based Modelling<br />

Approach<br />

The malignancy <str<strong>on</strong>g>of</str<strong>on</strong>g> almost all types <str<strong>on</strong>g>of</str<strong>on</strong>g> solid tumours is determined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cancer cells to invade <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissues and <str<strong>on</strong>g>th</str<strong>on</strong>g>en to form sec<strong>on</strong>dary tumours<br />

(metastases) at distant sites in <str<strong>on</strong>g>th</str<strong>on</strong>g>e body. These metastases are resp<strong>on</strong>sible for 90%<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cancer dea<str<strong>on</strong>g>th</str<strong>on</strong>g>s. In order to advance and improve cancer treatment strategies, it<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore <str<strong>on</strong>g>of</str<strong>on</strong>g> high importance to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes involved in cancer cell<br />

invasi<strong>on</strong>.We focus <strong>on</strong> modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e first steps driving localised cancer cell invasi<strong>on</strong><br />

and try to identify key processes <str<strong>on</strong>g>th</str<strong>on</strong>g>at lead to observed invasi<strong>on</strong> patterns and <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

allow collective cell migrati<strong>on</strong> and/or <str<strong>on</strong>g>th</str<strong>on</strong>g>e detachment <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cells or small<br />

cell clusters from <str<strong>on</strong>g>th</str<strong>on</strong>g>e main tumour mass.<br />

In order to do <str<strong>on</strong>g>th</str<strong>on</strong>g>is, we use an individual-based, force-based multi-scale approach<br />

and model <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells and intra- and inter-cellular protein<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways involved in tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, cell-cell and cell-matrix adhesi<strong>on</strong>. The key<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways include <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> E-cadherin and beta-catenin. Our approach also allows<br />

us to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix explicitly (e.g. fibr<strong>on</strong>ectin<br />

fibres).<br />

Using computati<strong>on</strong>al simulati<strong>on</strong>s, we c<strong>on</strong>sider a growing mass <str<strong>on</strong>g>of</str<strong>on</strong>g> cells and investigate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E-cadherin and beta-catenin levels in<br />

individual cancer cells and predict what implicati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>is has for <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells to each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er and to <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix. By examining <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cell-matrix interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> our model we can fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microenvir<strong>on</strong>ment in tumour progressi<strong>on</strong> and how <str<strong>on</strong>g>th</str<strong>on</strong>g>e compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e matrix toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e E-cadherin/beta-catenin dynamics may lead to different<br />

invasi<strong>on</strong> patterns. We also show <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> matrix realignment caused by<br />

cell tracti<strong>on</strong> forces <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells’ invasive behaviour and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatio-temporal patterns<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at emerge.<br />

864


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Christoph Schmal<br />

Theorie der K<strong>on</strong>densierten Materie, Fakultät für Physik, Universität<br />

Bielefeld<br />

e-mail: schmal@physik.uni-bielefeld.de<br />

Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>ee Staiger<br />

Molekulare Zellphysiologie, Fakultät für Biologie, Universität Bielefeld<br />

Peter Reimann<br />

Theorie der K<strong>on</strong>densierten Materie, Fakultät für Physik, Universität<br />

Bielefeld<br />

The network <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RNA-binding protein AtGRP7, a<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> a molecular slave oscillator in Arabidopsis<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>aliana<br />

The AtGRP7 autoregulatory circuit is <str<strong>on</strong>g>th</str<strong>on</strong>g>e first identified molecular "slave" oscillator<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at is coupled to <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian ("master") oscillator <str<strong>on</strong>g>of</str<strong>on</strong>g> Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana.<br />

The AtGRP7 protein regulates <str<strong>on</strong>g>th</str<strong>on</strong>g>e accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its own mRNA at <str<strong>on</strong>g>th</str<strong>on</strong>g>e posttranscripti<strong>on</strong>al<br />

level via alternative splicing. It was recently shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is also a<br />

cross regulati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e AtGRP8 autoregulatory circuit. We modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>e system<br />

composed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese autoregulatory circuits interc<strong>on</strong>nected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e "master" oscillator<br />

via an ordinary differential equati<strong>on</strong> approach. As for many biological systems<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese equati<strong>on</strong>s are barely known. We defined a cost functi<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at quantifies <str<strong>on</strong>g>th</str<strong>on</strong>g>e overlap between our model and key experimental features. A<br />

search in parameter space should evaluate if our proposed model fits wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e given<br />

experimental data.<br />

865


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Christine Schmeitz<br />

Systems Immunology, Helmholtz Centre for Infecti<strong>on</strong> Research<br />

e-mail: Christine.Schmeitz@helmholtz-hzi.de<br />

Michael Meyer-Hermann<br />

Systems Immunology, Helmholtz Centre for Infecti<strong>on</strong> Research<br />

e-mail: Michael.Meyer-Hermann@helmholtz-hzi.de<br />

Modeling approach to T cell electrophysiology<br />

An effective immune resp<strong>on</strong>se to invading pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenic microorganisms requires <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

regulated interplay <str<strong>on</strong>g>of</str<strong>on</strong>g> T-lymphocytes and antigen-presenting cells (APC) facilitated<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e support <str<strong>on</strong>g>of</str<strong>on</strong>g> various cytokines. The activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T helper cells requires<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antigen, which is bound to major histocompatibility complex<br />

molecules, type class II, <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e APC. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> activati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e T cell receptor<br />

(TCR), assisted by coreceptors including CD4, interacts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bound<br />

antigen and builds up <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called immunological synapse. These complex interacti<strong>on</strong>s<br />

imply sophisticated signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lymphocyte cells and implicates<br />

a network <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> channels in T cells for managing signals.<br />

Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> regard to <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways and corresp<strong>on</strong>ding<br />

i<strong>on</strong> fluxes <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e T cell membrane, a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling approach<br />

to T cell electrophysiology, based <strong>on</strong> experimental data <str<strong>on</strong>g>of</str<strong>on</strong>g> electrophysiological<br />

measurements, is needed for understanding and illustrating <str<strong>on</strong>g>th</str<strong>on</strong>g>is functi<strong>on</strong>al network.Technically,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e background <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e projected simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> T cell electrophysiology<br />

is based <strong>on</strong> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e electrophysiology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pancreatic<br />

beta cell [1]. The T cell model is based <strong>on</strong> single protein c<strong>on</strong>ductance data and, in a<br />

first step, is focussed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e electrophysiology <str<strong>on</strong>g>of</str<strong>on</strong>g> a resting T helper cell. In a sec<strong>on</strong>d<br />

step, <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resting T lymphocyte will be adapted to <str<strong>on</strong>g>th</str<strong>on</strong>g>e activated<br />

T cell state. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is simulati<strong>on</strong> it is planned to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibiting<br />

and exciting drugs <strong>on</strong>to T cell activati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium dynamics.<br />

References.<br />

[1] Meyer-Hermann, Michael E. The Electrophysiology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ß-Cell Based <strong>on</strong> Single Transmembrane<br />

Protein Characteristics. Biophysical Journal 93, 2007: 2952-2968<br />

866


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Biological Systems; Tuesday, June 28, 17:00<br />

Deena Schmidt<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biosciences Institute, Ohio State University<br />

e-mail: dschmidt@mbi.osu.edu<br />

Janet Best<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Ohio State University<br />

e-mail: jbest@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ohio-state.edu<br />

Mark S. Blumberg<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Psychology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Iowa<br />

e-mail: mark-blumberg@uiowa.edu<br />

Linking network structure and stochastic dynamics to neural<br />

activity patterns involved in sleep-wake regulati<strong>on</strong><br />

Sleep and wake states are each maintained by activity in a corresp<strong>on</strong>ding neur<strong>on</strong>al<br />

network, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mutually inhibitory c<strong>on</strong>necti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e networks. In infant<br />

mammals, <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> states are exp<strong>on</strong>entially distributed, whereas in<br />

adults, <str<strong>on</strong>g>th</str<strong>on</strong>g>e wake states yield a heavy-tailed distributi<strong>on</strong>. What drives <str<strong>on</strong>g>th</str<strong>on</strong>g>is transformati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wake distributi<strong>on</strong>? Is it <str<strong>on</strong>g>th</str<strong>on</strong>g>e altered network structure or a change in<br />

neur<strong>on</strong>al dynamics? What properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network are necessary for maintenance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> neural activity <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network and what mechanisms are involved in transiti<strong>on</strong>ing<br />

between sleep and wake states? We explore <str<strong>on</strong>g>th</str<strong>on</strong>g>ese issues using random graph <str<strong>on</strong>g>th</str<strong>on</strong>g>eory,<br />

specifically looking at stochastic processes occurring <strong>on</strong> random graphs, and also<br />

by investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>e accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> predicti<strong>on</strong>s made by deterministic approximati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic processes <strong>on</strong> networks.<br />

References.<br />

[1] D. Schmidt, J. Best, M.S. Blumberg, Random graph and stochastic process c<strong>on</strong>tributi<strong>on</strong>s to<br />

network dynamics (submitted).<br />

[2] M.S. Blumberg et al., Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> sleep-wake cyclicity in developing rats PNAS 102 14860–<br />

14864.<br />

867


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological processes in patients <strong>on</strong> dialysis;<br />

Saturday, July 2, 11:00<br />

Daniel Schneditz<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology, Medical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Graz, Graz, Austria<br />

e-mail: daniel.schneditz@medunigraz.at<br />

Physiology-based approach to modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> dialysis<br />

Physiologically based pharmacokinetic models attempt to utilize basic physiological,<br />

biochemical, biophysical, and physicochemical informati<strong>on</strong> to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

distributi<strong>on</strong>, dispositi<strong>on</strong>, c<strong>on</strong>versi<strong>on</strong>, and eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a given substance. More<br />

specifically, such models require informati<strong>on</strong> about organ volumes, physiological<br />

blood flow rates, solute generati<strong>on</strong> rates, enzymatic reacti<strong>on</strong>s, as well as informati<strong>on</strong><br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ermodynamic characteristics such as solubilities, dissociati<strong>on</strong> c<strong>on</strong>stants, partiti<strong>on</strong><br />

coefficients, diffusivities, and membrane permeabilities. Teorell was am<strong>on</strong>g<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e first to present a physiologically based pharmacokinetic model more <str<strong>on</strong>g>th</str<strong>on</strong>g>an 70<br />

years ago [1].<br />

The distributi<strong>on</strong> volume, <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> compartments, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> solute<br />

between compartments are important comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> a kinetic model. Models<br />

for hemodialysis are characteristic for assuming a change in compartment volume<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> ultrafiltrati<strong>on</strong>. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, rate c<strong>on</strong>stants describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e exchange<br />

between compartments, <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solute are<br />

generally assumed as c<strong>on</strong>stant.<br />

Parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> physiologically based models have an important meaning. For example,<br />

transport wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in and between compartments is described by c<strong>on</strong>vecti<strong>on</strong> and<br />

diffusi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiovascular system. Two limiting cases <str<strong>on</strong>g>of</str<strong>on</strong>g> transport may<br />

be distinguished: Flow-limited transport for solutes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high diffusivity and membrane<br />

permeability such as urea, and diffusi<strong>on</strong>-limited transport for solutes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low<br />

membrane permeability such as creatinine. Notice <str<strong>on</strong>g>th</str<strong>on</strong>g>at transport <str<strong>on</strong>g>of</str<strong>on</strong>g> solutes between<br />

organs is determined by c<strong>on</strong>vecti<strong>on</strong> irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> solute diffusivity. The importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> organ perfusi<strong>on</strong> for solute kinetics in hemodialysis was first recognized by<br />

Dedrick [2]. Thus, even if diffusi<strong>on</strong> across cell membranes is almost instantaneous<br />

for substances such as urea, <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole body during<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e typical post-dialysis urea rebound takes about 30 min because <str<strong>on</strong>g>of</str<strong>on</strong>g> differences<br />

in regi<strong>on</strong>al perfusi<strong>on</strong> [3]. Surprisingly, a similar time course is observed for o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

solutes such as creatinine which, unlike urea, have much reduced membrane permeability.<br />

The kinetics for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> urea and creatinine (and possibly o<str<strong>on</strong>g>th</str<strong>on</strong>g>er solutes)<br />

can be described by a unified model combining flow-limited transport between organs<br />

and diffusi<strong>on</strong>-limited transport wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in organs [4]. The assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stant<br />

exchange rates between compartments must be questi<strong>on</strong>ed when hemodialysis and<br />

ultrafiltrati<strong>on</strong>-induced changes in blood volume are known to affect cardiovascular<br />

c<strong>on</strong>trol and regi<strong>on</strong>al blood flow distributi<strong>on</strong> [5, 6].<br />

Indicator diluti<strong>on</strong> has a l<strong>on</strong>g traditi<strong>on</strong> in physiology to model characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

solute transport and to identify important model parameters inaccessible to direct<br />

measurement [7, 8]. In hemodialysis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e focus <str<strong>on</strong>g>of</str<strong>on</strong>g> indicator diluti<strong>on</strong> is <strong>on</strong> measuring<br />

blood flows such as access blood flow and cardiac output, and distributi<strong>on</strong> volumes<br />

such as central blood volume and lung water [9, 10]. A variant <str<strong>on</strong>g>of</str<strong>on</strong>g> indicator diluti<strong>on</strong><br />

868


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> ultrafiltrati<strong>on</strong>-induced changes in blood volume and vascular refilling<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e microcirculati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> understanding fluid balance during<br />

hemodialysis [11, 12].<br />

Physiologic models are more complex and require more data <str<strong>on</strong>g>th</str<strong>on</strong>g>at usually cannot<br />

be obtained in <str<strong>on</strong>g>th</str<strong>on</strong>g>e single experiment. It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten impossible to analyze various<br />

tissues relating to specific compartments, especially in man, and <strong>on</strong>e has to rely<br />

<strong>on</strong> in-vitro or animal data. In additi<strong>on</strong> to data acquisiti<strong>on</strong> problems, <str<strong>on</strong>g>th</str<strong>on</strong>g>e models<br />

are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten composed <str<strong>on</strong>g>of</str<strong>on</strong>g> complex sets <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear differential equati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at must<br />

be solved numerically. Also, <str<strong>on</strong>g>th</str<strong>on</strong>g>e expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> compartments has been criticized as<br />

an additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> arbitrary parameters to artificially improve <str<strong>on</strong>g>th</str<strong>on</strong>g>e model fit whereas<br />

in reality each additi<strong>on</strong>al compartment represents a c<strong>on</strong>straint <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be checked<br />

against real data should <str<strong>on</strong>g>th</str<strong>on</strong>g>ey become available [13].<br />

Physiologically based kinetic models can be used to identify meaningful physiological<br />

parameters inaccessible to direct measurements such as volumes, flows,<br />

and permeabilities. Unlike statistical models extrapolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanistic models<br />

outside <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> data is possible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some c<strong>on</strong>fidence. In hemodialysis <str<strong>on</strong>g>th</str<strong>on</strong>g>is is<br />

important when scaling <str<strong>on</strong>g>th</str<strong>on</strong>g>e treatment wi<str<strong>on</strong>g>th</str<strong>on</strong>g> regard to treatment durati<strong>on</strong>, treatment<br />

frequency, and body size [14, 15].<br />

References.<br />

[1] Teorell T. Kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> substances administered to <str<strong>on</strong>g>th</str<strong>on</strong>g>e body. Arch Int Pharmacodyn<br />

Therap 1937; 57: 205-240<br />

[2] Dedrick RL, Gabelnick HL, Bisch<str<strong>on</strong>g>of</str<strong>on</strong>g>f KB. Kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> urea distributi<strong>on</strong>. Proc XXI EMBS 1968;<br />

10: 36.1<br />

[3] Schneditz D, Van St<strong>on</strong>e JC, Daugirdas JT. A regi<strong>on</strong>al blood circulati<strong>on</strong> alternative to in-series<br />

two compartment urea kinetic modeling. ASAIO J 1993; 39: M573-M577<br />

[4] Schneditz D, Platzer D, Daugirdas JT. A diffusi<strong>on</strong>-adjusted regi<strong>on</strong>al blood flow model to<br />

predict solute kinetics during haemodialysis. Nephrol Dial Transplant 2009; 24: 2218-2224<br />

[5] George TO, Priester-Coary A, Dunea G, et al. Cardiac output and urea kinetics in dialysis<br />

patients: Evidence supporting <str<strong>on</strong>g>th</str<strong>on</strong>g>e regi<strong>on</strong>al blood flow model. Kidney Int 1996; 50: 1273-1277<br />

[6] Kanagasundaram NS, Greene T, Larive AB, et al. Dosing intermittent haemodialysis in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

intensive care unit patient wi<str<strong>on</strong>g>th</str<strong>on</strong>g> acute renal failure–estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urea removal and evidence<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e regi<strong>on</strong>al blood flow model. Nephrol Dial Transplant 2008; 23: 2286-2298<br />

[7] Bassing<str<strong>on</strong>g>th</str<strong>on</strong>g>waighte JB, Ackerman FH, Wood EH. Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lagged normal density<br />

curve as a model for arterial diluti<strong>on</strong> curves. Circ Res 1966; 18: 398-415<br />

[8] Krejcie TC, Hen<str<strong>on</strong>g>th</str<strong>on</strong>g>orn TK, Niemann CU, et al. Recirculatory pharmacokinetic models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

markers <str<strong>on</strong>g>of</str<strong>on</strong>g> blood, extracellular fluid and total body water administered c<strong>on</strong>comitantly. J<br />

Pharmacol Exp Ther 1996; 278: 1050-1057<br />

[9] Depner TA, Krivitski NM. Clinical measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> blood flow in hemodialysis access fistulae<br />

and grafts by ultrasound diluti<strong>on</strong>. ASAIO J 1995; 41: M745-M749<br />

[10] Krivitski NM, Depner TA. Cardiac output and central blood volume during hemodialysis:<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology. Adv Ren Replace Ther 1999; 6: 225-232<br />

[11] Schneditz D, Roob JM, Oswald M, et al. Nature and rate <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular refilling during hemodialysis<br />

and ultrafiltrati<strong>on</strong>. Kidney Int 1992; 42: 1425-1433<br />

[12] Chamney PW, Johner C, Aldridge C, et al. Fluid balance modelling in patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> kidney<br />

failure. J Med Eng Technol 1999; 23: 45-52<br />

[13] Alquist M, Thysell H, Ungerstedt U, Hegbrant J. Urea c<strong>on</strong>centrati<strong>on</strong> gradient between muscle<br />

interstitium and plasma develops during hemodialysis. In: J Am Soc Nephrol, 1996, p. 1505<br />

[14] Daugirdas JT, Tattersall J. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment spacing and frequency <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree measures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

equivalent clearance, including standard Kt/V. Nephrol Dial Transplant 2010; 25: 558-561<br />

[15] Daugirdas JT, Levin NW, Kotanko P, et al. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proposed alternative me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

for rescaling dialysis dose: resting energy expenditure, high metabolic rate organ mass, liver<br />

size, and body surface area. Semin Dialysis 2008; 21: 377-384<br />

869


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Kristan Schneider<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

e-mail: kristan.schneider@univie.ac.at<br />

Speciati<strong>on</strong>; Wednesday, June 29, 08:30<br />

Can dominance prevent <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> assortative mating<br />

and sympatric speciati<strong>on</strong>?<br />

C<strong>on</strong>sider a quantitative trait <str<strong>on</strong>g>th</str<strong>on</strong>g>at is under a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> frequency-independent<br />

stabilizing selecti<strong>on</strong> and density- and frequency-dependent selecti<strong>on</strong> caused by intraspecific<br />

competiti<strong>on</strong> for a c<strong>on</strong>tinuum <str<strong>on</strong>g>of</str<strong>on</strong>g> resources. The trait is determined by a<br />

single (ecological) locus and expresses intermediate dominance, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

mates assortatively wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>is trait.<br />

We study wea<str<strong>on</strong>g>th</str<strong>on</strong>g>er mutati<strong>on</strong>s at modifier loci can invade, which ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er increase<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> dominance or <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> assortment. From a naïve point <str<strong>on</strong>g>of</str<strong>on</strong>g> view,<br />

complete dominance and complete assortative mating seem to be two alternative<br />

mechanisms to eliminate unfit <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring wi<str<strong>on</strong>g>th</str<strong>on</strong>g> intermediate traits. However, we will<br />

see <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> assortative mating and dominance is ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er complex. The<br />

two evoluti<strong>on</strong>ary resp<strong>on</strong>ses can promote each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er or hinder each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. Overall,<br />

we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at dominance might be <str<strong>on</strong>g>th</str<strong>on</strong>g>e more likely evoluti<strong>on</strong>ary outcome, and <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> assortative mating in small steps leading to sympatric speciati<strong>on</strong><br />

seems unlikely.<br />

870


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Structure and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Reacti<strong>on</strong> Networks II; Tuesday, June<br />

28, 17:00<br />

Santiago Schnell<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan Medical School<br />

e-mail: schnells@umich.edu<br />

A model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold behavior reveals rescue mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bystander proteins in c<strong>on</strong>formati<strong>on</strong>al diseases<br />

C<strong>on</strong>formati<strong>on</strong>al diseases result from <str<strong>on</strong>g>th</str<strong>on</strong>g>e failure <str<strong>on</strong>g>of</str<strong>on</strong>g> a speci<br />

c protein to fold into its correct functi<strong>on</strong>al state. The misfolded proteins can<br />

lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e toxic aggregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins. Protein misfolding in c<strong>on</strong>formati<strong>on</strong>al diseases<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>ten displays a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold behavior characterized by a sudden shift between<br />

n<strong>on</strong>toxic to toxic levels <str<strong>on</strong>g>of</str<strong>on</strong>g> protein misfolds. In some c<strong>on</strong>formati<strong>on</strong>al diseases, evidence<br />

suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at misfolded proteins interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> bystander proteins (unfolded<br />

and native folded proteins), eliciting a misfolded phenotype. These bystander isomers<br />

would follow <str<strong>on</strong>g>th</str<strong>on</strong>g>eir normal physiological pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways in absence <str<strong>on</strong>g>of</str<strong>on</strong>g> misfolded<br />

proteins. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper we present a general mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> bystander and misfolded<br />

protein interacti<strong>on</strong> which we have used to investigate how <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold behavior<br />

in protein misfolding is triggered in c<strong>on</strong>formati<strong>on</strong>al diseases. Using a c<strong>on</strong>tinuous<br />

flow reactor model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e endoplasmic reticulum, we found <str<strong>on</strong>g>th</str<strong>on</strong>g>at slight changes in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e bystander protein residence time in <str<strong>on</strong>g>th</str<strong>on</strong>g>e endoplasmic reticulum or <str<strong>on</strong>g>th</str<strong>on</strong>g>e ratio <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

basal misfolded to bystander protein in ow rates can trigger <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold behavior<br />

in protein misfolding. Our analysis reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>ree mechanisms to rescue bystander<br />

proteins in c<strong>on</strong>formati<strong>on</strong>al diseases. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> our model can now help direct<br />

experiments to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold behavior and develop <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic strategies<br />

targeting <str<strong>on</strong>g>th</str<strong>on</strong>g>e modulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>formati<strong>on</strong>al diseases.<br />

871


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis II; Wednesday, June<br />

29, 11:00<br />

Richard Schugart<br />

Western Kentucky University<br />

e-mail: richard.schugart@wku.edu<br />

Jennifer Flegg<br />

Queensland University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: j.flegg@qut.edu.au<br />

D.L.S. McElwain<br />

Queensland University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: s.mcelwain@qut.edu.au<br />

Using ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling to assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oxygen for problem wounds: use <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperbaric or topical<br />

oxygen <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies<br />

We extend a previously developed ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model [1] for acute wound healing<br />

to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hyperbaric and topical oxygen <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies to treat<br />

acute, delayed, and chr<strong>on</strong>ic wounds. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, I will present <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, a sensitivity<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, and simulati<strong>on</strong> results for treating <str<strong>on</strong>g>th</str<strong>on</strong>g>e wound wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

hyperbaric and topical oxygen <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies.<br />

References.<br />

[1] R.C. Schugart, A. Friedman, R. Zhao, C.K. Sen, Wound angiogenesis as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue<br />

oxygen tensi<strong>on</strong>: a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model PNAS USA 105 2628–33.<br />

872


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Anna Schulze<br />

German Cancer Research Center (DKFZ)<br />

e-mail: anna.schulze@dkfz.de<br />

Luca Sime<strong>on</strong>i<br />

Otto-v<strong>on</strong>-Guericke-University Magdeburg<br />

Thomas Hoefer<br />

German Cancer Research Center (DKFZ)<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> T-Cell Signaling: Anergy versus Proliferati<strong>on</strong><br />

T-cells are activated by interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e T-cell receptor (TCR) and peptides<br />

bound to <str<strong>on</strong>g>th</str<strong>on</strong>g>e major histocompatibility complex (MHC). The activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

TCRs initiates several signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways <str<strong>on</strong>g>th</str<strong>on</strong>g>at are necessary for <str<strong>on</strong>g>th</str<strong>on</strong>g>e proper cellular<br />

resp<strong>on</strong>se to <str<strong>on</strong>g>th</str<strong>on</strong>g>e presented peptides. We investigated <str<strong>on</strong>g>th</str<strong>on</strong>g>e activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Erk<br />

Protein by means <str<strong>on</strong>g>of</str<strong>on</strong>g> a data-based ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model, focusing <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback<br />

mechanisms wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way <str<strong>on</strong>g>th</str<strong>on</strong>g>at could explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed kinetics. T-cells<br />

were stimulated by antibodies cross-linked in soluti<strong>on</strong> (sAbs) as well as by antibodies<br />

immobilized <strong>on</strong> microbeads (iAbs). The stimulati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> sAbs shows a str<strong>on</strong>g,<br />

but transient signal whereas <str<strong>on</strong>g>th</str<strong>on</strong>g>e iAbs stimulus leads to a sustained signal <str<strong>on</strong>g>th</str<strong>on</strong>g>at results<br />

in a str<strong>on</strong>g activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Erk. The str<strong>on</strong>ger stimulus (sAbs) results in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

weaker activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Erk, which indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Erk is regulated by<br />

feedback. We developed a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model based <strong>on</strong> ordinary differential equati<strong>on</strong>s,<br />

which promotes LAT as an important element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e feedback mechanisms.<br />

Depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e input signal LAT reaches different states <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphorylati<strong>on</strong>. By<br />

splitting <str<strong>on</strong>g>th</str<strong>on</strong>g>e signal at LAT level feedback can be regulated by <str<strong>on</strong>g>th</str<strong>on</strong>g>ose different states<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> LAT. First simulati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental-observed<br />

dynamics can be explained much better <str<strong>on</strong>g>th</str<strong>on</strong>g>an wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a simpler model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at also includes feedback, but no signal splitting at LAT.<br />

873


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Noisy Cells; Saturday, July 2, 14:30<br />

Tilo Schwalger<br />

Max Planck Institute for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Systems<br />

e-mail: tilo@pks.mpg.de<br />

How stochastic adaptati<strong>on</strong> currents shape interspike interval<br />

statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>s - <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and experiment<br />

Trial-to-trial variability and irregular spiking is an ubiquitous phenomen<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e nervous system. In many cases, <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is neural noise is not known<br />

and difficult to access experimentally. Here, we explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility to distinguish<br />

between two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> intrinsic noise solely from <str<strong>on</strong>g>th</str<strong>on</strong>g>e interspike interval (ISI)<br />

statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> a neur<strong>on</strong>. To <str<strong>on</strong>g>th</str<strong>on</strong>g>is end, we c<strong>on</strong>sider an integrate-and-fire model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

spike-frequency adaptati<strong>on</strong> in which fluctuati<strong>on</strong>s (channel noise) are ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er associated<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fast i<strong>on</strong>ic currents or wi<str<strong>on</strong>g>th</str<strong>on</strong>g> slow adaptati<strong>on</strong> currents. We show by means<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> analytical techniques <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ISI histograms and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ISI correlati<strong>on</strong>s<br />

are markedly different in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cases: for a deterministic adaptati<strong>on</strong> current,<br />

ISIs are distributed according to an inverse Gaussian density and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ISI correlati<strong>on</strong>s<br />

are negative. In c<strong>on</strong>trast, for stochastic adaptati<strong>on</strong> currents, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ISI density<br />

is more peaked <str<strong>on</strong>g>th</str<strong>on</strong>g>an an inverse Gaussian density and <str<strong>on</strong>g>th</str<strong>on</strong>g>e serial correlati<strong>on</strong>s are<br />

positive. We applied <str<strong>on</strong>g>th</str<strong>on</strong>g>ese measures to intracellular recordings <str<strong>on</strong>g>of</str<strong>on</strong>g> locust auditory<br />

receptor cells in vivo. By varying <str<strong>on</strong>g>th</str<strong>on</strong>g>e stimulus intensity, we observed intriguingly<br />

similar statistics corresp<strong>on</strong>ding to bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model. The results suggest<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at stochasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> slow adaptati<strong>on</strong> currents may c<strong>on</strong>tribute to neural variability<br />

in sensory neur<strong>on</strong>s.<br />

References.<br />

[1] Schwalger T, Fisch K, Benda J, Lindner B: How noisy adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>s shapes interspike<br />

interval histograms and correlati<strong>on</strong>s. PLoS Comput Biol 2010, 6(12): e1001026<br />

874


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Genetics and Genomics; Wednesday, June 29, 08:30<br />

Veit Schwämmle<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry and Molecular Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sou<str<strong>on</strong>g>th</str<strong>on</strong>g>ern Denmark, Campusvej 55, DK-5230 Odense M, Denmark<br />

e-mail: veits@bmb.sdu.dk<br />

Kim Sneppen<br />

Center for Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Life, Niels Bohr Institute, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen,<br />

Blegdamsvej 17, 2100 Copenhagen Ø, Denmark<br />

Ole Nørregaard Jensen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemistry and Molecular Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Sou<str<strong>on</strong>g>th</str<strong>on</strong>g>ern Denmark, Campusvej 55, DK-5230 Odense M, Denmark<br />

The formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e modificati<strong>on</strong> domains<br />

Hist<strong>on</strong>es proteins are key players in <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eukaryotes. Many <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir wi<str<strong>on</strong>g>th</str<strong>on</strong>g> post-translati<strong>on</strong>al modificati<strong>on</strong>s decorated is<str<strong>on</strong>g>of</str<strong>on</strong>g>orms are organized in spatial<br />

domains al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA string <str<strong>on</strong>g>of</str<strong>on</strong>g> a chromosome. For instance, a large part <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e transcripti<strong>on</strong>ally inactive genome is densely packed and forms large domains.<br />

This heterochromatin has its hist<strong>on</strong>es modified by me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nin<str<strong>on</strong>g>th</str<strong>on</strong>g> amino<br />

acid (a lysine) <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e type H3 (H3K9me). We propose a simple computer model<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at simulates <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heterochromatin over <str<strong>on</strong>g>th</str<strong>on</strong>g>e human chromosomes<br />

by assuming a competiti<strong>on</strong> between H3K9 me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong> and H3K4 me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

latter being an abundant activating modificati<strong>on</strong>. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> marks are related to nucleati<strong>on</strong><br />

sites <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome and spread from <str<strong>on</strong>g>th</str<strong>on</strong>g>ese sites due to simple mechanisms.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> marks are mutually exclusive [2] and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore compete against<br />

each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, we are able to explain why heterochromatin does<br />

not occupy <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire chromosomes and could reproduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> measured<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ChIP-seq experiments from [1]. The fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to a<br />

large number <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e modificati<strong>on</strong>s allows <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complex switch-like<br />

behavior.<br />

References.<br />

[1] A. Barski et al., High-resoluti<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iling <str<strong>on</strong>g>of</str<strong>on</strong>g> hist<strong>on</strong>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ylati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e human genome. Cell,<br />

129 823–837 2007.<br />

[2] K. Nishioka et al., Set9, a novel hist<strong>on</strong>e H3 me<str<strong>on</strong>g>th</str<strong>on</strong>g>yltransferase <str<strong>on</strong>g>th</str<strong>on</strong>g>at facilitates transcripti<strong>on</strong> by<br />

precluding hist<strong>on</strong>e tail modificati<strong>on</strong>s required for heterochromatin formati<strong>on</strong>. Genes Dev. 16<br />

479–489 2002.<br />

875


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent advances in infectious disease modelling I; Saturday, July 2, 11:00<br />

Elissa Schwartz<br />

Washingt<strong>on</strong> State University<br />

e-mail: ejs@wsu.edu<br />

Immune Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Equine Infectious Anemia Virus<br />

Equine Infectious Anemia Virus (EIAV) is a retrovirus <str<strong>on</strong>g>th</str<strong>on</strong>g>at establishes a persistent<br />

infecti<strong>on</strong> in horses and p<strong>on</strong>ies. The virus is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e same lentivirus subgroup <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

includes human immunodeficiency virus (HIV). The similarities between <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two<br />

viruses make <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se to EIAV relevant to research <strong>on</strong><br />

HIV. We developed a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> in-host EIAV infecti<strong>on</strong> dynamics <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

c<strong>on</strong>tains bo<str<strong>on</strong>g>th</str<strong>on</strong>g> humoral and cell-mediated immune resp<strong>on</strong>ses. The model is parameterized<br />

using clinical, virological, and immunological data from horses infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

EIAV. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model yields results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>resholds <str<strong>on</strong>g>th</str<strong>on</strong>g>at would be necessary<br />

for a combined immune resp<strong>on</strong>se to successfully c<strong>on</strong>trol infecti<strong>on</strong>. Numerical simulati<strong>on</strong>s<br />

are presented to illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e results. These findings have <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential to<br />

lead to immunological c<strong>on</strong>trol measures for retroviral infecti<strong>on</strong>.<br />

876


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multi-scale ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver: From intracellular signaling to<br />

intercellular interacti<strong>on</strong>; Wednesday, June 29, 08:30<br />

Lars Ole Schwen<br />

Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er MEVIS, Bremen, Germany<br />

e-mail: ole.schwen@mevis.fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er.de<br />

Tobias Preusser<br />

Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er MEVIS, Bremen, Germany<br />

C<strong>on</strong>structive Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms for Modeling Realistic Vascular<br />

Structures<br />

The liver is <str<strong>on</strong>g>th</str<strong>on</strong>g>e major metabolic organ in <str<strong>on</strong>g>th</str<strong>on</strong>g>e human body as it fulfills a huge variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vital metabolic tasks. The most important link between <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver and <str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e organism is <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood flow <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree vascular systems (hepatic artery,<br />

portal vein, hepatic vein). In order to properly model <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver, it<br />

is crucial to have an appropriate model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood transportati<strong>on</strong> systems.<br />

In vivo 3D CT imaging and subsequent image processing provides <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vascular systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> limited resoluti<strong>on</strong> far from <str<strong>on</strong>g>th</str<strong>on</strong>g>e scale <str<strong>on</strong>g>of</str<strong>on</strong>g> individual lobule,<br />

sinusoids and liver cells <strong>on</strong> which <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e liver take place.<br />

To bridge <str<strong>on</strong>g>th</str<strong>on</strong>g>is gap in resoluti<strong>on</strong>, models for vascular structures can be used. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e talk, we present an extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e C<strong>on</strong>strained C<strong>on</strong>structive Optimizati<strong>on</strong><br />

(Schreiner et al.) and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Global C<strong>on</strong>structive Optimizati<strong>on</strong> (Georg et al.) approach<br />

for hepatic blood vessels. Based <strong>on</strong> topological and geometrical analyses<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> many different human hepatic vascular structures, we evaluate <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms.<br />

We introduce parameters and adapt <str<strong>on</strong>g>th</str<strong>on</strong>g>em such <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e generated vascular<br />

systems geometrically closely resemble natural <strong>on</strong>es. This resemblance is quantified<br />

by a statistical comparis<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e geometric properties <str<strong>on</strong>g>of</str<strong>on</strong>g> real human hepatic<br />

vascular structures.<br />

877


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanical Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Movement and Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cells and Tissues II;<br />

Wednesday, June 29, 17:00<br />

Marco Scianna<br />

Politecnico di Torino<br />

e-mail: marcosci1@alice.it<br />

Multiscale model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor-derived capillary-like network<br />

formati<strong>on</strong><br />

Solid tumors must recruit and form new blood vessels for maintenance, grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

and detachments <str<strong>on</strong>g>of</str<strong>on</strong>g> metastases [1]. Vascularizati<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>us a pivotal switch in cancer<br />

malignancy and an accurate analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> its driving processes is a big issue for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> pharmacological treatments, giving rise to multiple experimental<br />

models. In particular, tubulogenic assays have dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at tumor-derived<br />

endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells (TECs), cultured in Matrigel (a commercial gelatinous protein mixture<br />

acting as basement membrane matrix), are able to aut<strong>on</strong>omously organize in a<br />

c<strong>on</strong>nected network, which mimics an in vivo capillary plexus [3]. Such a process is<br />

promoted by <str<strong>on</strong>g>th</str<strong>on</strong>g>e activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluble peptide vascular endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor<br />

(VEGF, [2]) as well as by <str<strong>on</strong>g>th</str<strong>on</strong>g>e induced intracellular calcium signals [5]. We here<br />

propose and discuss a multilevel hybrid model which reproduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e main features<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental system: it incorporates a c<strong>on</strong>tinuous model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic<br />

VEGF-induced calcium-dependent regulatory cascades, and a discrete mesoscopic<br />

Cellular Potts Model (CPM, [4]) describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomenological evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

single cells. The two comp<strong>on</strong>ents are unified and interfaced, and produce a multiscale<br />

framework characterized by a c<strong>on</strong>stant flux <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> from finer to<br />

coarser levels: in particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular sub-cellular events realistically regulate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mesoscopic biophysical properties, behaviors and interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulated<br />

TECs. The model results are in good agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis performed in<br />

published experimental data, allowing to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e key mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> network<br />

formati<strong>on</strong> as well as to characterize its topological properties [7]. Moreover, by<br />

varying important model parameters, we are able to simulate some pharmacological<br />

interventi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are currently in use, c<strong>on</strong>firming <str<strong>on</strong>g>th</str<strong>on</strong>g>eir efficiency, and, more<br />

interestingly, to propose some new <str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic approaches, <str<strong>on</strong>g>th</str<strong>on</strong>g>at are counter intuitive<br />

but potentially effective [6].<br />

References.<br />

[1] Carmeliet, P., Jain, R. K., 2000. Angiogenesis in cancer and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er diseases. Nature, 407,<br />

249–257.<br />

[2] Carmeliet, P., 2005. VEGF as a key mediator <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis in cancer. Oncology, 69, 4 –<br />

10.<br />

[3] Fiorio Pla, A., Grange, C., Ant<strong>on</strong>iotti, S., Tomatis, C., Merlino, A., Bussolati, B., Munar<strong>on</strong>,<br />

L., 2008. Arachid<strong>on</strong>ic acid-induced Ca2+ entry is involved in early steps <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor angiogenesis.<br />

Mol Cancer Res, 6 (4), 535–545.<br />

[4] Graner, F., Glazier, J. A., 1992. Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological cell sorting using a two dimensi<strong>on</strong>al<br />

extended Potts model. Phys Rev Lett, 69, 2013–2017.<br />

[5] Munar<strong>on</strong>, L., Tomatis, C., Fiorio Pla, A., 2008. The secret marriage between calcium and<br />

tumor angiogenesis. Technol Cancer Res Treat, 7 (4), 335–339.<br />

[6] Scianna, M., Munar<strong>on</strong>, L., Preziosi, L., 2010. A multiscale hybrid approach for<br />

vasculogenesis and related potential blocking <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies. Prog Biophys Mol Biol, doi:<br />

10.1016/j.pbiomolbio.2011.01.004, in press.<br />

878


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[7] Scianna, M., Munar<strong>on</strong>, L., 2010. Multiscale model <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor-derived capillary-like network<br />

formati<strong>on</strong>. Submitted for publicati<strong>on</strong>.<br />

879


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Friday, July 1, 14:30<br />

Jacob Scott<br />

Integrative Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, H. Lee M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center<br />

e-mail: jacob.g.scott@gmail.com<br />

David Basanta<br />

Integrative Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, H. Lee M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center<br />

Alexander Anders<strong>on</strong><br />

Integrative Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Oncology, H. Lee M<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt Cancer Center<br />

Choose your neighbourhood wisely: <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

neighbourhood geometry in spatial agent based models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biological systems<br />

Agent based spatial models are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e best known ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical tools to model<br />

biological systems. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart <str<strong>on</strong>g>of</str<strong>on</strong>g> most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models is a lattice which <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

agents inhabit and where <str<strong>on</strong>g>th</str<strong>on</strong>g>ey behave depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

agents in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir neighbourhood. Despite its importance, <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice <str<strong>on</strong>g>of</str<strong>on</strong>g> nearestneighbor<br />

geometry is usually arbitrarily made wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out regard to <str<strong>on</strong>g>th</str<strong>on</strong>g>e bias <str<strong>on</strong>g>th</str<strong>on</strong>g>at it<br />

might introduce into <str<strong>on</strong>g>th</str<strong>on</strong>g>e results from <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is abstract we explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> nearest neighbor geometry <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

propagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>ary strategies wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e help <str<strong>on</strong>g>of</str<strong>on</strong>g> a cellular automat<strong>on</strong> in<br />

which cells play <str<strong>on</strong>g>th</str<strong>on</strong>g>e pris<strong>on</strong>er’s dilemma game. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is CA we compare several<br />

2-dimensi<strong>on</strong>al architectures (v<strong>on</strong> Neumann and Moore neighbourhoods as well as a<br />

regular hexag<strong>on</strong>al lattice). We also explore how <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcomes change as we move<br />

from 2 to 3 dimensi<strong>on</strong>s.<br />

Our research highlights <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbourhood architecture in agent<br />

based spatial ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models and suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at some models will have to<br />

c<strong>on</strong>sider different neighbourhood geometries as <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological system being modeled<br />

evolves. This work has implicati<strong>on</strong>s in many areas <str<strong>on</strong>g>of</str<strong>on</strong>g> biological modeling where<br />

tissue architecture changes <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout development, but is most germane to cancer,<br />

microbiology and developmental biology.<br />

880


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Megan Selbach-Allen<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Liverpool<br />

e-mail: mesa@liv.ac.uk<br />

Dr. Kieran Sharkey<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Liverpool<br />

Epidemics; Wednesday, June 29, 11:00<br />

An investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold phenomen<strong>on</strong> in<br />

complex networks<br />

Classic mean-field models <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics are well known to exhibit <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold phenomena<br />

which are typically characterised by <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive ratio R0. A<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical results can be obtained for <str<strong>on</strong>g>th</str<strong>on</strong>g>ese simple systems regarding<br />

aspects such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e final epidemic size and <str<strong>on</strong>g>th</str<strong>on</strong>g>e likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics occurring.<br />

Here we make an investigati<strong>on</strong> into <str<strong>on</strong>g>th</str<strong>on</strong>g>ese quantities for more complex epidemic<br />

systems. In particular, we c<strong>on</strong>sider epidemics propagated <strong>on</strong> c<strong>on</strong>tact networks. By<br />

using stochastic simulati<strong>on</strong>, we make an investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold phenomen<strong>on</strong><br />

and generate some novel insights wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some potential significance in real, heterogeneous<br />

systems. Additi<strong>on</strong>ally, by relating <str<strong>on</strong>g>th</str<strong>on</strong>g>ese quantities to steady state systems,<br />

we potentially gain a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical handle <strong>on</strong> analysing <str<strong>on</strong>g>th</str<strong>on</strong>g>ese systems.<br />

881


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Tuesday, June 28, 17:00<br />

Lorenzo Sella † ‡ , Sander Hille † , Michael Emmerich ‡<br />

† Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Leiden University,<br />

‡ Leiden Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Computer Science<br />

e-mail: lsella@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.leidenuniv.nl, shille@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.leidenuniv.nl,<br />

emmerich@liacs.nl<br />

Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> signaling and regulatory networks in B. subtilis<br />

B. subtilis is a Gram-positive bacterium comm<strong>on</strong>ly found in <str<strong>on</strong>g>th</str<strong>on</strong>g>e soil. This bacterium<br />

has been studied extensively especially for <str<strong>on</strong>g>th</str<strong>on</strong>g>e way it manages to induce<br />

itself to sporulate [1-4]. Sporulati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a spore is a last resort alternative<br />

a bacterium chooses to undertake when <str<strong>on</strong>g>th</str<strong>on</strong>g>e resources in <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment<br />

are not compatible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> maintaining a normal metabolism, especially when <str<strong>on</strong>g>th</str<strong>on</strong>g>ere<br />

is shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose, <str<strong>on</strong>g>th</str<strong>on</strong>g>e input <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular respirati<strong>on</strong>.<br />

In such c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> an isogenic populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B.subtilis is not<br />

uniform. Some bacteria sporulate, some faster <str<strong>on</strong>g>th</str<strong>on</strong>g>an o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers, some do not. This kind<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> behaviour is called bet hedging, and it is understood as a differentiati<strong>on</strong> strategy<br />

which maximize <str<strong>on</strong>g>th</str<strong>on</strong>g>e survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e col<strong>on</strong>y. In facts if <str<strong>on</strong>g>th</str<strong>on</strong>g>e shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> resources is<br />

l<strong>on</strong>g lasting, sporulati<strong>on</strong> truly gives an advantage to individuals producing spores.<br />

Spores have very str<strong>on</strong>g endurance and almost a frozen metabolism. These spores<br />

can reactivate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir metabolism when <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s turn to be more favourable.<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand if <str<strong>on</strong>g>th</str<strong>on</strong>g>e shortage <str<strong>on</strong>g>of</str<strong>on</strong>g> resource is <strong>on</strong>ly temporary <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

producing a spore is not advantageous because it is energetically expensive and<br />

it is not reversible; from an early stage <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong> any quick reappearance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

resources would have not been exploited by <str<strong>on</strong>g>th</str<strong>on</strong>g>e new born spore.<br />

Sporulati<strong>on</strong> is a quite complex process which entails <str<strong>on</strong>g>th</str<strong>on</strong>g>e activity <str<strong>on</strong>g>of</str<strong>on</strong>g> more <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

500 genes in a period <str<strong>on</strong>g>of</str<strong>on</strong>g> about 10 hours.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we want to c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e phase which trigger <str<strong>on</strong>g>th</str<strong>on</strong>g>e sporulati<strong>on</strong>, a<br />

phase where <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell produces <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein σ H , a sigma factor which plays a key role<br />

in triggering sporulati<strong>on</strong> in B. subtilis.<br />

Few parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is regulatory network are available in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

are mostly <str<strong>on</strong>g>th</str<strong>on</strong>g>e leng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network. Statistical<br />

descripti<strong>on</strong> about chemical reacti<strong>on</strong>s rates, spatial dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules and syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis<br />

producti<strong>on</strong> are almost totally unknown.<br />

Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> some parameters can be made by looking<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>dent parameters in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er species like E. choli.<br />

We combine <str<strong>on</strong>g>th</str<strong>on</strong>g>is comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a rigorous approach. We have developed a<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware which perform a stochastic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network which produces σ H .<br />

We <str<strong>on</strong>g>th</str<strong>on</strong>g>en identify unknown parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network by comparing <str<strong>on</strong>g>th</str<strong>on</strong>g>e output <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

our simulati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental data.<br />

The available experimental data is in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> time series <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins KinA,<br />

Spo0A, Spo0B, Spo0F and sigmaH in arbitrary unit. The measurement has been<br />

performed in bacterial col<strong>on</strong>ies by using green fluorescent protein (GFP). The measurement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> each protein occurred in different experiments (<strong>on</strong>e for protein) where<br />

a gene <str<strong>on</strong>g>of</str<strong>on</strong>g> GFP was insert in a suitable locati<strong>on</strong> to keep track <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e protein. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> luminescence is proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> GFP<br />

882


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

present in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell which can be assumed proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e protein.<br />

The simulati<strong>on</strong> produces as output time series for each protein in a form homogeneous<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data. We compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e two time series wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

root square mean error. We use evoluti<strong>on</strong>ary strategies [5] to perform a black box<br />

optimizati<strong>on</strong> in order to find <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters which minimize <str<strong>on</strong>g>th</str<strong>on</strong>g>is error.<br />

In our talk we are going to discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e results we obtained and we compare<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>em wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e present literature.<br />

References.<br />

[1] D. Schultz, P. Wolynes, E. Jacob, J. Onuchic Deciding fate in adverse times: sporulati<strong>on</strong> and<br />

competence in Bacillus subtilis PNAS Vol. 106 No. 50.<br />

[2] A. Chastanet, D. Vitkup, G. Yuan, T. Norman, J. Liu, R. Losick Broadly heterogeneous<br />

activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e master regulator for sporulati<strong>on</strong> in Bacillus subtilis PNAS 107:8486–8491.<br />

[3] Hoch, J.A. Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e phosphorelay and <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sporulati<strong>on</strong> in bacillus subtilis<br />

Annu Rev Microbiol 47 (1993) 441-65<br />

[4] I. G. de J<strong>on</strong>g, J. Veening, and O. P. Kuipers Heterochr<strong>on</strong>ic Phosphorelay Gene Expressi<strong>on</strong> as<br />

a Source <str<strong>on</strong>g>of</str<strong>on</strong>g>Heterogeneity in Bacillus subtilis Spore Formati<strong>on</strong> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Bacterelology, Vol.<br />

192, No. 8<br />

[5] T. Bäck, Evoluti<strong>on</strong>ary algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms in <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and practice: evoluti<strong>on</strong> strategies, evoluti<strong>on</strong>ary<br />

programming, genetic algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. Oxford University Press, Oxford,UK (1996).<br />

883


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 08:30<br />

Hiromi Seno<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Life Sciences, Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Science, Hiroshima University, Higashi-hiroshima, 739-8526, Japan<br />

e-mail: seno@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.sci.hiroshima-u.ac.jp<br />

Ayaka Terada<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Hiroshima University,<br />

Higashi-hiroshima, 739-8526, Japan<br />

A simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e annual variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epidemic outbreak wi<str<strong>on</strong>g>th</str<strong>on</strong>g> preventi<strong>on</strong> level affected by<br />

incidence size in <str<strong>on</strong>g>th</str<strong>on</strong>g>e last seas<strong>on</strong><br />

Annual or seas<strong>on</strong>al fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence size has been observed for a variety<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases, for example, influenza, measles, rubella, mumps, chickenpox<br />

etc. Here <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence size in <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic seas<strong>on</strong> means <str<strong>on</strong>g>th</str<strong>on</strong>g>e final size <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epidemic at <str<strong>on</strong>g>th</str<strong>on</strong>g>e seas<strong>on</strong>, which gives <str<strong>on</strong>g>th</str<strong>on</strong>g>e fracti<strong>on</strong> or <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> infected populati<strong>on</strong><br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic seas<strong>on</strong>. Such fluctuati<strong>on</strong>s have been attracting many researchers in<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical biology, and giving discussi<strong>on</strong>s about its driving factors. It would be<br />

taken natural <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e important factors is seas<strong>on</strong>ally varying envir<strong>on</strong>ment,<br />

caused by <str<strong>on</strong>g>th</str<strong>on</strong>g>e temporal variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tact rate, infecti<strong>on</strong> rate, or recruitment rate,<br />

for example due to social aggregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hosts or seas<strong>on</strong>ally restricted breeding seas<strong>on</strong>.<br />

In our work, in c<strong>on</strong>trast to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese factors <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> dynamics, we c<strong>on</strong>sider<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a change <str<strong>on</strong>g>of</str<strong>on</strong>g> social behavior which determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e preventi<strong>on</strong> level for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

c<strong>on</strong>sidered infectious disease. In case when <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence size in <str<strong>on</strong>g>th</str<strong>on</strong>g>e last epidemic<br />

seas<strong>on</strong> is large, <str<strong>on</strong>g>th</str<strong>on</strong>g>e people in <str<strong>on</strong>g>th</str<strong>on</strong>g>e community would tend to increase <str<strong>on</strong>g>th</str<strong>on</strong>g>e preventi<strong>on</strong><br />

level against <str<strong>on</strong>g>th</str<strong>on</strong>g>e infectious disease, for instance, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> promoting washing hands,<br />

gargling, wearing a mask, and available vaccinati<strong>on</strong>. Such increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e preventi<strong>on</strong><br />

level is reflected to <str<strong>on</strong>g>th</str<strong>on</strong>g>e reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> rate or recovery rate according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

disease. Differently from <str<strong>on</strong>g>th</str<strong>on</strong>g>ose factors potentially causing <str<strong>on</strong>g>th</str<strong>on</strong>g>e annual or seas<strong>on</strong>al<br />

fluctuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence size, <str<strong>on</strong>g>th</str<strong>on</strong>g>is social factor is what is affected by <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence<br />

size in <str<strong>on</strong>g>th</str<strong>on</strong>g>e last seas<strong>on</strong> or <str<strong>on</strong>g>th</str<strong>on</strong>g>e past seas<strong>on</strong>s.<br />

To c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e essential effect <str<strong>on</strong>g>of</str<strong>on</strong>g> such social factor <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e potentiality <str<strong>on</strong>g>of</str<strong>on</strong>g> incidence<br />

size fluctuati<strong>on</strong>, we c<strong>on</strong>struct and analyze a simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete<br />

dynamical system, which is derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>e final-size equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kermack–<br />

McKendrick SIR model. We dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at such social factor could potentially<br />

or partially c<strong>on</strong>tribute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e driving force causing <str<strong>on</strong>g>th</str<strong>on</strong>g>e annual or seas<strong>on</strong>al fluctuati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e incidence size for some infectious diseases.<br />

884


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 11:00<br />

Anne Seppänen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, FI-20014 University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, Finland<br />

e-mail: anne.seppanen@utu.fi<br />

Kalle Parvinen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, FI-20014 University <str<strong>on</strong>g>of</str<strong>on</strong>g> Turku, Finland<br />

e-mail: kalparvi@utu.fi<br />

John Nagy<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Life Sciences, Scottsdale Community College, Scottsdale,<br />

AZ 85256-2626, USA<br />

e-mail: john.nagy@sccmail.maricopa.edu<br />

Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dispersal and Global Climate Change<br />

Global climate change (GCC) can challenge species’ survival by shifting and<br />

(or) shrinking suitable habitats, leading to habitat fragmentati<strong>on</strong>. American pikas<br />

(Ochot<strong>on</strong>a princeps)—small, talus-dwelling, m<strong>on</strong>tane lagomorphs physiologically<br />

adapted to cold climates—are <str<strong>on</strong>g>th</str<strong>on</strong>g>ought to face precisely <str<strong>on</strong>g>th</str<strong>on</strong>g>is sort to <str<strong>on</strong>g>th</str<strong>on</strong>g>reat from<br />

GCC. Recent climate changes appear to have decreased suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> pika habitat<br />

in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Great Basin and adjacent Sierra Nevada[1,2]. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand,<br />

pika populati<strong>on</strong>s in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese regi<strong>on</strong>s appear robust[3]. One hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis explaining<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>tradictory observati<strong>on</strong>s suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at pikas may adapt to climate change by<br />

evolving compensatory dispersal strategies <str<strong>on</strong>g>th</str<strong>on</strong>g>at blunt <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong>.<br />

Here we address <str<strong>on</strong>g>th</str<strong>on</strong>g>is hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis using adaptive dynamics[4] to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal strategies in pikas. Inspired by <str<strong>on</strong>g>th</str<strong>on</strong>g>e models <str<strong>on</strong>g>of</str<strong>on</strong>g> Metz and Gyllenberg[5]<br />

and Parvinen[6], we c<strong>on</strong>struct a novel model <str<strong>on</strong>g>of</str<strong>on</strong>g> pika metapopulati<strong>on</strong><br />

dynamics and derive a fitness measure <str<strong>on</strong>g>of</str<strong>on</strong>g> a rare mutant in an envir<strong>on</strong>ment set by<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e resident. We use a semi-discrete time approach wi<str<strong>on</strong>g>th</str<strong>on</strong>g> discrete phases defined<br />

by sequential breeding seas<strong>on</strong>s and c<strong>on</strong>tinuous wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-phase processes (e.g. emigrati<strong>on</strong>,<br />

immigrati<strong>on</strong>). Local catastrophes occur wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a rate which can depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

patch populati<strong>on</strong> size. We c<strong>on</strong>sider climate change as shifts in model parameters,<br />

including fecundity, survival and catastrophe rates al<strong>on</strong>g wi<str<strong>on</strong>g>th</str<strong>on</strong>g> dispersal cost, and<br />

analyze how such changes affect evoluti<strong>on</strong>arily stable dispersal strategies.<br />

References.<br />

[1] D. K. Grays<strong>on</strong>, A brief history <str<strong>on</strong>g>of</str<strong>on</strong>g> Great Basin pikas, J. Biogeogr. 32 2103–2111, 2005<br />

[2] C. Moritz and J. L. Patt<strong>on</strong> and C. J. C<strong>on</strong>roy and J. L. Parra and G. C. White and S. R.<br />

Beissinger, Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> a century <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> small-mammal communities in Yosemite<br />

Nati<strong>on</strong>al Park, USA, Science, 322 261–264, 2008<br />

[3] C. I. Millar and R. D. Westfall, Distributi<strong>on</strong> and climatic relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e American pika<br />

(Ochot<strong>on</strong>a princeps) in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Sierra Nevada and western Great Basin, U.S.A.; periglacial landforms<br />

as refugia in warming climates, Arctic, Antarctic Alpine Res. 42 76–88, 2010<br />

[4] S. A. H. Geritz and É. Kisdi and G. Meszéna and J. A. J. Metz, Evoluti<strong>on</strong>arily singular<br />

strategies and <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and branching <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary tree, Evol. Ecol. 12<br />

35–57, 1998<br />

[5] J. A. J. Metz and M. Gyllenberg, How should we define fitness in structured metapopulati<strong>on</strong><br />

models? Including an applicati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ES dispersal strategies, Proc. Royal<br />

Soc. L<strong>on</strong>d<strong>on</strong> B, 268 499–508, 2001<br />

[6] K. Parvinen, Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal in a structured metapopulati<strong>on</strong> model in discrete time,<br />

Bull. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 68 655–678, 2006<br />

885


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Raffaello Seri<br />

Università degli Studi dell’Insubria<br />

e-mail: raffaello.seri@uninsubria.it<br />

Bioimaging; Tuesday, June 28, 11:00<br />

C<strong>on</strong>fidence sets for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Aumann mean <str<strong>on</strong>g>of</str<strong>on</strong>g> a random closed set<br />

The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk is to develop a set <str<strong>on</strong>g>of</str<strong>on</strong>g> reliable me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to build c<strong>on</strong>fidence<br />

sets for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Aumann mean <str<strong>on</strong>g>of</str<strong>on</strong>g> a random closed set (RACS) as estimated<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e Minkowski empirical mean. In order to do so, we introduce a procedure<br />

to build a c<strong>on</strong>fidence set based <strong>on</strong> an asymptotic distributi<strong>on</strong>al result for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Hausdorff distance between <str<strong>on</strong>g>th</str<strong>on</strong>g>e Minkowski empirical and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Aumann means; <str<strong>on</strong>g>th</str<strong>on</strong>g>en,<br />

we introduce ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er procedure based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e support functi<strong>on</strong>.<br />

The me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods are based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wid<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RACS <strong>on</strong> a<br />

set <str<strong>on</strong>g>of</str<strong>on</strong>g> directi<strong>on</strong>s and are <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore suitable for computerized tomography, tactile<br />

sensing and laser-radar systems. Some M<strong>on</strong>te Carlo results show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods<br />

work in practice.<br />

This c<strong>on</strong>tributi<strong>on</strong> is joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Christine Choirat (Universidad de Navarra,<br />

Spain).<br />

886


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Semigroups <str<strong>on</strong>g>of</str<strong>on</strong>g> Operators in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology I; Wednesday, June 29, 08:30<br />

Robert Service<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics<br />

e-mail: robert.service@helsinki.fi<br />

Finite populati<strong>on</strong>s c<strong>on</strong>diti<strong>on</strong>ed <strong>on</strong> n<strong>on</strong>-extincti<strong>on</strong><br />

It is well known <str<strong>on</strong>g>th</str<strong>on</strong>g>at stochastic models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> finite populati<strong>on</strong>s tend to<br />

fall into two categories (when <str<strong>on</strong>g>th</str<strong>on</strong>g>e system is closed): <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow for unlimited<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> positive probability and <str<strong>on</strong>g>th</str<strong>on</strong>g>ose for which extincti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g run is certain.<br />

In practice <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g>ten expects extincti<strong>on</strong> times to be sufficiently l<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>at useful<br />

c<strong>on</strong>clusi<strong>on</strong>s such as stabilisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> structure can be drawn from deterministic<br />

populati<strong>on</strong> models. The talk is about work, old and new, aiming to justify<br />

such c<strong>on</strong>clusi<strong>on</strong>s rigorously.<br />

887


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Crowd Dynamics: Modeling, Analysis and Simulati<strong>on</strong> (Part 2); Wednesday,<br />

June 29, 14:30<br />

Armin Seyfried<br />

Jülich Supercomputing Centre, Forschungszentrum Jülich<br />

e-mail: a.seyfried@fz-juelich.de<br />

Quantitative descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pedestrian dynamics:<br />

Experiments and Modeling<br />

The first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lecture gives an introducti<strong>on</strong> to empirical results in pedestrian<br />

dynamics. Basic quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> pedestrian streams (density, flow and velocity) are<br />

introduced al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e measurement me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. But density and flow are c<strong>on</strong>cepts<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fluid mechanics where <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e particles is much smaller <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e size<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e measurement area. Thus standard me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in pedestrian dynamics suffer<br />

from large scatter when local measurements are needed. A c<strong>on</strong>cept for measuring<br />

microscopic characteristics <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> trajectories is introduced. Assigning a<br />

pers<strong>on</strong>al space to every pedestrian via a Vor<strong>on</strong>oi diagram reduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e scatter and<br />

allows analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e fine structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data.<br />

The sec<strong>on</strong>d part focuses <strong>on</strong> a model c<strong>on</strong>tinuous in space. Basic ideas <str<strong>on</strong>g>of</str<strong>on</strong>g> a force<br />

model representing pedestrians as self driven particles interacting via a repulsive<br />

force are outlined. To get precise volume exclusi<strong>on</strong> in two dimensi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e velocity dependent shape <str<strong>on</strong>g>of</str<strong>on</strong>g> pedestrians by ellipses changing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir semiaxis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> speed. In additi<strong>on</strong> routing strategies are modeled to<br />

incorporate certain intelligence to <str<strong>on</strong>g>th</str<strong>on</strong>g>e self driven particles. The particles perceive<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir envir<strong>on</strong>ment and take <str<strong>on</strong>g>th</str<strong>on</strong>g>eir decisi<strong>on</strong> based <strong>on</strong> an observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e current<br />

situati<strong>on</strong>.<br />

888


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

A Finite Element simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lamellipodial actin<br />

cytoskelet<strong>on</strong><br />

Nikolaos Sfakianakis<br />

Johannes Gutenberg-University, Mainz, Germany<br />

Dietmar Oelz<br />

RICAM (Rad<strong>on</strong> Institute for Computati<strong>on</strong>al and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics),<br />

Vienna/Linz, Austria<br />

Christian Schmeiser<br />

RICAM and Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Vienna, Vienna,<br />

Austria<br />

e-mail: sfakiana@uni-mainz.de<br />

This poster presents a Finite Element me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lamellipodial<br />

part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> living cells.<br />

The numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od resolves a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>th</str<strong>on</strong>g>at has been developed<br />

by Ch.Schmeiser and his collaborators (V. Small, D. Oelz, N. Sfakianakis, A. Manhart,<br />

V. Milisic) in Vienna. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e model several properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> are<br />

included: polymerizati<strong>on</strong> and bending <str<strong>on</strong>g>of</str<strong>on</strong>g> actin filaments, stretching and twisting <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crosslink proteins, adhesi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e substrate and myosin c<strong>on</strong>tractile forces.<br />

We present simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e previously mechanical characteristic<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong>. Special emphasis is given in <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulati<strong>on</strong> results propagating<br />

lamellipodia under <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> an external force and/or variable filament<br />

polymerizati<strong>on</strong> rate.<br />

889


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Nazgol Shahbandi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Waterloo<br />

e-mail: nshahban@uwaterloo.ca<br />

Mohammad Kohandel<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Waterloo<br />

Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Brain Cancer Stem Cells and Tumour<br />

Microenvir<strong>on</strong>ment: A Computati<strong>on</strong>al Study<br />

Glioblastoma Multiforme (GBM) is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most comm<strong>on</strong> and aggressive primary<br />

brain tumors, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a median patient survival time <str<strong>on</strong>g>of</str<strong>on</strong>g> 6-12 m<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g>s in adults. It<br />

has been recently suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at a typically small subpopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> brain tumour<br />

cells, in possessi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certain defining properties <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cells, is resp<strong>on</strong>sible for<br />

initiating and maintaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour. More recent experiments have studied <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>is subpopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> brain cancer cells and tumour microenvir<strong>on</strong>mental<br />

factors such as hypoxia, in additi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>tributi<strong>on</strong> to angiogenesis<br />

and vasculogenesis. We propose a computati<strong>on</strong>al model <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes a heterogeneous<br />

populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells and investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> tumour grow<str<strong>on</strong>g>th</str<strong>on</strong>g> as<br />

well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumour microenvir<strong>on</strong>ment. The model is compared wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

available experimental data.<br />

References.<br />

[1] PB. Dirks, Brain tumor stem cells: <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer stem cell hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis writ large. Mol Oncol. 2010<br />

420-30.<br />

[2] SK. Singh et al., Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human brain tumour initiating cells. Nature. 2004 432(7015)<br />

396-401.<br />

[3] RE McLend<strong>on</strong>, JN. Rich, Glioblastoma Stem Cells: A Neuropa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologist’s View. J Oncol. 2011<br />

397195.<br />

[4] AB Hjelmeland et al., Acidic stress promotes a glioma stem cell phenotype. Cell Dea<str<strong>on</strong>g>th</str<strong>on</strong>g> Differ.<br />

2010; doi: 10.1038/cdd.2010.150<br />

[5] L. Ricci-Vitiani et al., Tumour vascularizati<strong>on</strong> via endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glioblastoma<br />

stem-like cells. Nature. 2010 468(7325) 824-8.<br />

[6] R. Wang et al., Glioblastoma stem-like cells give rise to tumour endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elium. Nature. 2010<br />

468(7325) 829-33.<br />

890


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemic models: Networks and stochasticity I; Wednesday, June 29, 14:30<br />

Kieran Sharkey<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Liverpool<br />

e-mail: kjs@liv.ac.uk<br />

Towards understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e correlati<strong>on</strong>s in epidemic<br />

dynamics <strong>on</strong> c<strong>on</strong>tact networks via <str<strong>on</strong>g>th</str<strong>on</strong>g>e master equati<strong>on</strong><br />

It is well-known <str<strong>on</strong>g>th</str<strong>on</strong>g>at deterministic epidemic models such as mean-field or pairapproximati<strong>on</strong><br />

models can fail <strong>on</strong> c<strong>on</strong>tact networks because <str<strong>on</strong>g>th</str<strong>on</strong>g>ey ignore correlati<strong>on</strong>s<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at occur between populati<strong>on</strong>s. While <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a substantial amount <str<strong>on</strong>g>of</str<strong>on</strong>g> intuiti<strong>on</strong><br />

about <str<strong>on</strong>g>th</str<strong>on</strong>g>ese correlati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature lacks a more analytic approach to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

effects.<br />

Here, by directly relating <str<strong>on</strong>g>th</str<strong>on</strong>g>ese epidemic models to <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying master equati<strong>on</strong>s<br />

we can understand precisely where and why <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models fail. In particular,<br />

comm<strong>on</strong> models such as mean-field and pair-approximati<strong>on</strong> models are shown to<br />

c<strong>on</strong>tain implicit anomalous terms describing unbiological processes whereby individuals<br />

can be bo<str<strong>on</strong>g>th</str<strong>on</strong>g> susceptible and infectious at <str<strong>on</strong>g>th</str<strong>on</strong>g>e same time. This c<strong>on</strong>tradicts<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a compartmental model. It is <str<strong>on</strong>g>th</str<strong>on</strong>g>ese implicit terms which lead to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e observed inaccuracies in <str<strong>on</strong>g>th</str<strong>on</strong>g>e models.<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese terms enables us to gain a more analytic perspective <strong>on</strong> correlati<strong>on</strong>s<br />

in epidemic models and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> network clustering <strong>on</strong> epidemic<br />

propagati<strong>on</strong>.<br />

891


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ryan Sharp<br />

Ro<str<strong>on</strong>g>th</str<strong>on</strong>g>amsted Research<br />

e-mail: rtsharp@live.co.uk<br />

Frank van den Bosch<br />

Ro<str<strong>on</strong>g>th</str<strong>on</strong>g>amsted Research<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen emergence under temporal heterogeneity<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e key factors driving <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> disease is changes to climate.<br />

Climate change is expected to not <strong>on</strong>ly alter <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean <str<strong>on</strong>g>of</str<strong>on</strong>g> various envir<strong>on</strong>mental<br />

variables but also <str<strong>on</strong>g>th</str<strong>on</strong>g>eir variability. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> changes to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>mental<br />

mean <strong>on</strong> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen emergence has received c<strong>on</strong>siderable attenti<strong>on</strong>.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we propose a <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical approach to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

changes to envir<strong>on</strong>mental variability <strong>on</strong> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen emergence and develop a multitype<br />

branching process incorporating temporal heterogeneity and pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen adaptati<strong>on</strong>.<br />

Previous studies have found <str<strong>on</strong>g>th</str<strong>on</strong>g>at increases to envir<strong>on</strong>mental variability cause<br />

a decrease to pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen emergence in a n<strong>on</strong>-evoluti<strong>on</strong>ary system. Our results agree<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is finding and find <str<strong>on</strong>g>th</str<strong>on</strong>g>is is also true when pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens must adapt to survive<br />

and cause an epidemic. It has also been shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> incorporating<br />

evoluti<strong>on</strong> can <str<strong>on</strong>g>of</str<strong>on</strong>g>ten outweigh o<str<strong>on</strong>g>th</str<strong>on</strong>g>er effects, we find however even in an evoluti<strong>on</strong>ary<br />

system temporal heterogeneity can significantly affect pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen emergence. The<br />

greatest effect being <strong>on</strong> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens whose survival is not str<strong>on</strong>gly dependent <strong>on</strong> its<br />

need to adapt and pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens already adapted to its envir<strong>on</strong>ment but wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low<br />

infectivity.<br />

892


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Eunha Shim<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Epidemiology, Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Pittsburgh<br />

e-mail: eshim@pitt.edu<br />

Steven M. Albert<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Behavioral & Community Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, Sciences Graduate<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pittsburgh<br />

John Grefenstette<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biostatistics, Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Pittsburgh<br />

D<strong>on</strong>ald S. Burke<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Public Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pittsburgh<br />

Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccine refusal <strong>on</strong> vaccine-preventable disease<br />

outbreaks<br />

The MMR scare and resulting measles outbreak in <str<strong>on</strong>g>th</str<strong>on</strong>g>e UK and US in 2008 prove<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> mass vaccinati<strong>on</strong> program can be hampered by <str<strong>on</strong>g>th</str<strong>on</strong>g>e public<br />

percepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccine risk. By coupling game models and epidemic models, we<br />

examined vaccinati<strong>on</strong> choice for populati<strong>on</strong> stratified into two behavioral groups,<br />

pro-vaccinators and vaccine hesitators. Two behavioral groups are assumed to be<br />

heterogeneous wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir percepti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccine and infecti<strong>on</strong> risks. We<br />

dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e pursuit <str<strong>on</strong>g>of</str<strong>on</strong>g> self-interest am<strong>on</strong>g vaccine-hesitators <str<strong>on</strong>g>of</str<strong>on</strong>g>ten leads to<br />

vaccinati<strong>on</strong> levels <str<strong>on</strong>g>th</str<strong>on</strong>g>at are suboptimal for a community, even if complete coverage is<br />

achieved am<strong>on</strong>g pro-vaccinators. The demand for MMR vaccine across populati<strong>on</strong><br />

driven by individual self-interest was found to be more sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vaccine hesitators <str<strong>on</strong>g>th</str<strong>on</strong>g>an to <str<strong>on</strong>g>th</str<strong>on</strong>g>e extent to which vaccine hesitators misperceive <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vaccine. Our results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrepancy between <str<strong>on</strong>g>th</str<strong>on</strong>g>e MMR coverages <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

are driven by self-interest and populati<strong>on</strong> interest becomes larger when <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vaccinati<strong>on</strong> increases. This research illustrates <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> public educati<strong>on</strong><br />

<strong>on</strong> vaccine safety and infecti<strong>on</strong> risk in order to maintain vaccinati<strong>on</strong> levels <str<strong>on</strong>g>th</str<strong>on</strong>g>at are<br />

sufficient to derive herd immunity.<br />

893


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stochastic models in computati<strong>on</strong>al neuroscience I; Wednesday, June 29, 14:30<br />

Shigeru Shinomoto<br />

Dept Physics, Kyoto University, Kyoto 606-8502, JAPAN<br />

e-mail: shinomoto@scphys.kyoto-u.ac.jp<br />

A state space me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for decoding neur<strong>on</strong>al spiking signals<br />

Cortical neur<strong>on</strong>s in vivo have <str<strong>on</strong>g>of</str<strong>on</strong>g>ten been approximated as Poiss<strong>on</strong> spike generators<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>vey no informati<strong>on</strong> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> random firing. Recently, it has<br />

been revealed by using a metric for analyzing local variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interspike intervals<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at individual neur<strong>on</strong>s express specific patterns in generating spikes, which may<br />

symbolically be termed regular, random or bursty [1,2]. Two hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses have been<br />

proposed for potential advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> using n<strong>on</strong>-Poiss<strong>on</strong> spike trains in transmitting<br />

informati<strong>on</strong>; neur<strong>on</strong>s may signal <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing irregularity by changing it in additi<strong>on</strong><br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> firing [3], or alternatively, <str<strong>on</strong>g>th</str<strong>on</strong>g>e receiver may estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing rate<br />

accurately by making <str<strong>on</strong>g>th</str<strong>on</strong>g>e most <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Poiss<strong>on</strong> inter-spike dependency in <str<strong>on</strong>g>th</str<strong>on</strong>g>e received<br />

signals [4-6]. In order to determine which hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis is more plausible for<br />

a given spike train, we have implemented a state space me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for simultaneously<br />

estimating firing irregularity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing rate moment by moment [7,8]. I review<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e recent development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e state space analysis and dem<strong>on</strong>strate new results<br />

obtained for a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> electrophysiological data.<br />

References.<br />

[1] S. Shinomoto, K. Shima, & J. Tanji (2003), Differences in spiking patterns am<strong>on</strong>g cortical<br />

neur<strong>on</strong>s. Neural Computati<strong>on</strong> 15 2823–2842.<br />

[2] S. Shinomoto et al. (2009), Relating neur<strong>on</strong>al firing patterns to functi<strong>on</strong>al differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cerebral cortex. PLoS Computati<strong>on</strong>al Biology 5 e1000433.<br />

[3] R.M. Davies, G.L. Gerstein, & S.N. Baker (2006) Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> time-dependent changes in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e irregularity <str<strong>on</strong>g>of</str<strong>on</strong>g> neural spiking. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Neurophysiology 96 906–918.<br />

[4] R. Barbieri et al., C<strong>on</strong>structi<strong>on</strong> and analysis <strong>on</strong> n<strong>on</strong>-Poiss<strong>on</strong> stimulus-resp<strong>on</strong>se models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

neural spiking activity. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Neuroscience Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods 105 25–37.<br />

[5] J.P. Cunningham et al. (2008), Inferring neural firing rates from spike trains using Gaussian<br />

processes. Advances in Neural Informati<strong>on</strong> Processing Systems 20.<br />

[6] S. Koyama, & S. Shinomoto (2005) Empirical Bayes interpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> random point events.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics A - Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and General 38 L531–L537.<br />

[7] T. Shimokawa & S. Shinomoto (2009) Estimating instantaneous irregularity <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>al firing.<br />

Neural Computati<strong>on</strong> 21 1931–1951.<br />

[8] T. Shimokawa, S. Koyama, & S. Shinomoto (2010) A characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-rescaled<br />

gamma process as a model for spike trains. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Computati<strong>on</strong>al Neuroscience 29 183–<br />

191.<br />

894


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

B and T cell immune resp<strong>on</strong>ses; Wednesday, June 29, 11:00<br />

Andrey Shuvaev<br />

Inserm U897, University Bordeaux 2, France<br />

e-mail: andrey.n.shuvaev@gmail.com<br />

Thea Hogan<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Child Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, UCL, UK<br />

Daniel Commenges<br />

Inserm U897, University Bordeaux 2, France<br />

Bennedict Sedd<strong>on</strong><br />

Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Research, MRC, UK<br />

Robin Callard<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Child Heal<str<strong>on</strong>g>th</str<strong>on</strong>g>, UCL, UK<br />

Rodolphe Thiébaut<br />

Inserm U897, University Bordeaux 2, France<br />

Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e T-cells dynamics in lymphopenic c<strong>on</strong>diti<strong>on</strong>s<br />

We investigated divisi<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> two types <str<strong>on</strong>g>of</str<strong>on</strong>g> CD8 T-cells (OT1 and F5) in<br />

lymphopenic c<strong>on</strong>diti<strong>on</strong>s. We used two markers: 1) CFSE (Carboxyfluorescein succinimidyl<br />

ester) – to calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> divisi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells have made at<br />

a given time, 2) 7AAD (7-Aminoactinomycin D) – to determine in what period <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cell cycle cells were at a given time.<br />

A modified Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>-Martin model was used [1, 2] for <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed data. This<br />

model assume a cell cycle c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> two parts: A-phase wi<str<strong>on</strong>g>th</str<strong>on</strong>g> stochastic durati<strong>on</strong><br />

and following after it B-phase wi<str<strong>on</strong>g>th</str<strong>on</strong>g> deterministic durati<strong>on</strong>. There were four main<br />

parameters: transfer rate from A to B-phase λ, durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B-phase ∆, time <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

triggering to divisi<strong>on</strong> T0 and dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rate δ. To estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>em we used a minimizati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sum <str<strong>on</strong>g>of</str<strong>on</strong>g> weighted squared residuals wi<str<strong>on</strong>g>th</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>: 1) predicted and<br />

observed frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> given number <str<strong>on</strong>g>of</str<strong>on</strong>g> divisi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at was made to a<br />

given time, 2) predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells in B-phase wi<str<strong>on</strong>g>th</str<strong>on</strong>g> observed fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

7AAD+ cells. Comparis<strong>on</strong>s between models were performed using a cross-validati<strong>on</strong><br />

criteri<strong>on</strong>.<br />

It was found <str<strong>on</strong>g>th</str<strong>on</strong>g>at OT1 cells divides faster (higher transfer rate λ and earlier<br />

triggering to divisi<strong>on</strong>) <str<strong>on</strong>g>th</str<strong>on</strong>g>an F5 cells. Durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> B-phase ∆ was slightly higher<br />

for OT1 cells. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> from 7AAD marker toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> CFSE data<br />

improved parameters identifiability.<br />

References.<br />

[1] J. Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>, and L. Martin, Do cells cycle?, PNAS, 70, 1263–1267, 1963.<br />

[2] A. Yates, and M. Saini, A. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>iot, B. Sedd<strong>on</strong>, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling Reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>e Biological<br />

Program Regulating Lymphopenia-Induced Proliferati<strong>on</strong>, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Immunology, 1800, 1414–<br />

1422, 2008.<br />

895


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models in Eco-epidemiology I; Wednesday, June 29, 08:30<br />

Michael Sieber<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Systems Research, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

and Computer Science, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Osnabrück, 49069 Osnabrück,<br />

Germany<br />

e-mail: msieber@uni-osnabrueck.de<br />

Intraguild predati<strong>on</strong> or not? Taking a different perspective<br />

<strong>on</strong> some eco-epidemiological models<br />

The field <str<strong>on</strong>g>of</str<strong>on</strong>g> eco-epidemiology has integrated epidemiology wi<str<strong>on</strong>g>th</str<strong>on</strong>g> community ecology<br />

and similarities between host-parasitoid and host-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

classical intraguild predati<strong>on</strong> (IGP) have been noticed. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I want to show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at certain eco-epidemiological scenarios not <strong>on</strong>ly fit into <str<strong>on</strong>g>th</str<strong>on</strong>g>e IGP framework, but<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey may suggest a different perspective <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying community structure.<br />

After an appropriate transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> variables particular cases <str<strong>on</strong>g>of</str<strong>on</strong>g> IGP are<br />

found to be structurally similar to “simpler” community modules and <str<strong>on</strong>g>th</str<strong>on</strong>g>is structural<br />

similarity also translates into remarkably similar community dynamics.<br />

References.<br />

[1] Sieber, M. and Hilker, F. M. (2011). Prey, predators, parasites: intraguild predati<strong>on</strong> or simpler<br />

community modules in disguise? Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Animal Ecology, 80:414-421.<br />

896


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Neurosciences; Wednesday, June 29, 08:30<br />

Justyna Signerska<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warszawa, Poland<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Technical Physics, Gdańsk University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Gdańsk, Poland<br />

e-mail: j.signerska@impan.pl<br />

Wacław Marzantowicz<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Sci., Adam Mickiewicz University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Poznań, Poznań, Poland<br />

e-mail: marzan@amu.edu.pl<br />

Firing map for integrate–and–fire models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> almost<br />

periodic stimulus<br />

In integrate–and–fire systems <str<strong>on</strong>g>th</str<strong>on</strong>g>e sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>secutive spikes can be recovered<br />

via iterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e so–called firing map. Until now analytical approaches<br />

mainly c<strong>on</strong>centrated <strong>on</strong> models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e type ˙x = f(t, x) when <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> f was<br />

c<strong>on</strong>tinuous and periodic in <str<strong>on</strong>g>th</str<strong>on</strong>g>e time variable ([1],[2],[3]). We analyze firing maps<br />

and firing sequences for <str<strong>on</strong>g>th</str<strong>on</strong>g>e class <str<strong>on</strong>g>of</str<strong>on</strong>g> integrate–and–fire models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stimulus<br />

functi<strong>on</strong> almost periodic in time (ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er uniformly almost periodic or in a Stepanov<br />

sense) and prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at many required properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing map still hold for<br />

leaky integrate-and fire ˙x = −σx + f(t) or Perfect Integrator ˙x = f(t) models when<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> f is <strong>on</strong>ly locally integrable. We prepare a formal framework for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

study <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing map arising from almost periodically driven<br />

integrate–and–fire systems. In particular, results c<strong>on</strong>cerning almost periodic displacement<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing map and regularity properties (semi–/almost periodicity) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> interspike intervals will be shown.<br />

References.<br />

[1] R. Brette, Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e–dimensi<strong>on</strong>al spiking neur<strong>on</strong> model, J.Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.Biol., 48 (2004), 38–<br />

56.<br />

[2] H. Carrillo, F. A. Ongay, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing maps <str<strong>on</strong>g>of</str<strong>on</strong>g> a general class <str<strong>on</strong>g>of</str<strong>on</strong>g> forced integrate and fire<br />

neur<strong>on</strong>s, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci., 172 (2001), 33–53.<br />

[3] S. Coombes, P. C. Bressl<str<strong>on</strong>g>of</str<strong>on</strong>g>f, Mode locking and Arnold t<strong>on</strong>gues in integrate–and–fire neural<br />

oscillators, Phys. Rev. E, 60 (1999), 2086–2096.<br />

[4] W. Marzantowicz, J.Signerska, Firing map <str<strong>on</strong>g>of</str<strong>on</strong>g> an almost periodic input functi<strong>on</strong>, AIMS Proceedings<br />

2011, in print.<br />

897


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Wer<strong>on</strong>ika Sikora-Wohlfeld<br />

Biotechnology Center, TU Dresden, Germany<br />

e-mail: wer<strong>on</strong>ika.sikora@biotec.tu-dresden.de<br />

Andreas Beyer<br />

Biotechnology Center, TU Dresden, Germany<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> protein complexes maintaining Oct4<br />

expressi<strong>on</strong> in mouse ES cells<br />

Octamer binding transcripti<strong>on</strong> factor-4 (Oct4) is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e key factors c<strong>on</strong>trolling<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e fate <str<strong>on</strong>g>of</str<strong>on</strong>g> embry<strong>on</strong>ic stem (ES) cells. Oct4 expressi<strong>on</strong> at a specific level is<br />

required to maintain <str<strong>on</strong>g>th</str<strong>on</strong>g>e ES cells’ capability for self-renewal, i.e. ability to replicate<br />

indefinitely wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out loss <str<strong>on</strong>g>of</str<strong>on</strong>g> pluripotency. Whereas numerous studies focused <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

target genes or direct protein interactors <str<strong>on</strong>g>of</str<strong>on</strong>g> Oct4, <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oct4 expressi<strong>on</strong><br />

itself is less explored.<br />

Our work aims at finding <str<strong>on</strong>g>th</str<strong>on</strong>g>e genes and protein complexes involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oct4 expressi<strong>on</strong>. The study is based <strong>on</strong> two independent genomewide<br />

siRNA screens [1, 2] c<strong>on</strong>ducted in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse ES cell line, Oct4-GiP, which<br />

allows to measure <str<strong>on</strong>g>th</str<strong>on</strong>g>e change <str<strong>on</strong>g>of</str<strong>on</strong>g> Oct4 expressi<strong>on</strong> up<strong>on</strong> siRNA knock-down <str<strong>on</strong>g>of</str<strong>on</strong>g> query<br />

genes.<br />

Direct comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results from bo<str<strong>on</strong>g>th</str<strong>on</strong>g> screens at <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene level did not<br />

show a statistically significant c<strong>on</strong>sistency between <str<strong>on</strong>g>th</str<strong>on</strong>g>e screens. Possible causes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is disagreement include variati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental setup (different siRNA<br />

libraries), variability related to high-<str<strong>on</strong>g>th</str<strong>on</strong>g>roughput experiments and drawbacks <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

siRNA screening me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology (false discoveries resulting e.g. from <str<strong>on</strong>g>of</str<strong>on</strong>g>f-target effects).<br />

We reas<strong>on</strong>ed <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al or<str<strong>on</strong>g>th</str<strong>on</strong>g>og<strong>on</strong>al informati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

analysis might remove noise and improve <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sistency between screens. We<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erefore mapped <str<strong>on</strong>g>th</str<strong>on</strong>g>e genes tested in siRNA screens to known protein complexes,<br />

assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at genes participating in <str<strong>on</strong>g>th</str<strong>on</strong>g>e same complex should cause similar phenotypes.<br />

To identify complexes enriched wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high-scoring genes, we tested several set<br />

enrichment me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods (hypergeometric test, weighted Kolmogorov-Smirnov statistic,<br />

Bayesian network and regularized linear regressi<strong>on</strong>). The resulting scoring <str<strong>on</strong>g>of</str<strong>on</strong>g> protein<br />

complexes showed c<strong>on</strong>siderably greater c<strong>on</strong>sistency between screens <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

original gene scores. Subsequently we combined <str<strong>on</strong>g>th</str<strong>on</strong>g>e results from bo<str<strong>on</strong>g>th</str<strong>on</strong>g> screens in<br />

order to obtain a single set <str<strong>on</strong>g>of</str<strong>on</strong>g> high-c<strong>on</strong>fidence complexes enriched for genes causing<br />

Oct4-related phenotypes. Thereby we obtained several complexes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> known functi<strong>on</strong>s<br />

related to cell-cycle or stem cell maintenance. Importantly, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese complexes<br />

c<strong>on</strong>tain many genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at were not identified as significant “hit genes” in <str<strong>on</strong>g>th</str<strong>on</strong>g>e original<br />

screens.<br />

The performed analysis reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>at combining results <str<strong>on</strong>g>of</str<strong>on</strong>g> siRNA screens and<br />

adding external data helps to extract more comprehensive informati<strong>on</strong> from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

experiments. Our analysis identifies a catalogue <str<strong>on</strong>g>of</str<strong>on</strong>g> protein complexes critically<br />

involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oct4 expressi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>us important for ES cells maintenance.<br />

898<br />

References.


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] L. Ding et al., A genome-scale RNAi screen for Oct4 modulators defines a role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Paf1<br />

complex for embry<strong>on</strong>ic stem cell identity Cell Stem Cell. 4(5) 403–415.<br />

[2] G. Hu et al., A genome-wide RNAi screen identifies a new transcripti<strong>on</strong>al module required for<br />

self-renewal Genes Dev. 23(7) 837–848.<br />

899


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemic models: Networks and stochasticity I; Wednesday, June 29, 14:30<br />

Peter Sim<strong>on</strong><br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Eotvos Lorand University, Budapest<br />

e-mail: sim<strong>on</strong>p@cs.elte.hu<br />

Exact and approximate epidemic models <strong>on</strong> networks<br />

The rigorous linking <str<strong>on</strong>g>of</str<strong>on</strong>g> exact stochastic models to mean-field pair and triple approximati<strong>on</strong>s<br />

is studied. Using a c<strong>on</strong>tinuous time Markov Chain, we start from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

exact formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a simple epidemic model <strong>on</strong> a completely c<strong>on</strong>nected network<br />

and rigorously derive <str<strong>on</strong>g>th</str<strong>on</strong>g>e well-known mean-field pair approximati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at is usually<br />

justified under <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at infected nodes are distributed randomly.<br />

In additi<strong>on</strong>, we propose a new approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at is based <strong>on</strong> deriving a countable<br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary differential equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e moments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> infected nodes. We show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e usual mean-field pair approximati<strong>on</strong><br />

can be derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>is countable system, and prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>verges to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

exact soluti<strong>on</strong> given by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Kolmogorov equati<strong>on</strong>s as order 1/N. We discuss how<br />

our new approach relates to <str<strong>on</strong>g>th</str<strong>on</strong>g>e generally cited results by Kurtz.<br />

Finally, <str<strong>on</strong>g>th</str<strong>on</strong>g>e performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e triple closure approximati<strong>on</strong> is investigated<br />

numerically. It will be shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e usual triple closure yields a soluti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

also c<strong>on</strong>verges as order 1/N to <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact soluti<strong>on</strong>, and we propose a novel triple<br />

closure where <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vergence is <str<strong>on</strong>g>of</str<strong>on</strong>g> order 1/N2.<br />

900


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

C<strong>on</strong>necting microscale and macroscale models <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular migrati<strong>on</strong>;<br />

Tuesday, June 28, 17:00<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew Simps<strong>on</strong><br />

Queensland University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew.simps<strong>on</strong>@qut.edu.au<br />

Models <str<strong>on</strong>g>of</str<strong>on</strong>g> collective cell spreading wi<str<strong>on</strong>g>th</str<strong>on</strong>g> variable cell aspect<br />

ratio: A motivati<strong>on</strong> for degenerate diffusi<strong>on</strong> models<br />

C<strong>on</strong>tinuum diffusi<strong>on</strong> models are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used to represent <str<strong>on</strong>g>th</str<strong>on</strong>g>e collective moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cell populati<strong>on</strong>s. Most previous studies have simply used linear diffusi<strong>on</strong> to represent<br />

collective cell spreading, while o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers found <str<strong>on</strong>g>th</str<strong>on</strong>g>at degenerate n<strong>on</strong>linear diffusi<strong>on</strong><br />

provides a better match to experimental cell density pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell modeling<br />

literature <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no guidance available wi<str<strong>on</strong>g>th</str<strong>on</strong>g> regard to which approach is more appropriate<br />

for representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e spreading <str<strong>on</strong>g>of</str<strong>on</strong>g> cell populati<strong>on</strong>s. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is<br />

no knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> particular experimental measurements <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be made to distinguish<br />

between situati<strong>on</strong>s where <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two models are appropriate. Here we provide<br />

a link between individual-based and c<strong>on</strong>tinuum models using a multi-scale approach<br />

in which we analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e collective moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting agents in a<br />

generalized lattice-based exclusi<strong>on</strong> process. For round agents <str<strong>on</strong>g>th</str<strong>on</strong>g>at occupy a single<br />

lattice site, we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevant c<strong>on</strong>tinuum descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system is a linear<br />

diffusi<strong>on</strong> equati<strong>on</strong>, whereas for el<strong>on</strong>gated rod-shaped agents <str<strong>on</strong>g>th</str<strong>on</strong>g>at occupy L adjacent<br />

lattice sites we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e relevant c<strong>on</strong>tinuum descripti<strong>on</strong> is c<strong>on</strong>nected to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

porous media equati<strong>on</strong> (pme). The exp<strong>on</strong>ent in <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>linear diffusivity functi<strong>on</strong> is<br />

related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e aspect ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e agents. Our work provides a physical c<strong>on</strong>necti<strong>on</strong><br />

between modeling collective cell spreading and <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear diffusi<strong>on</strong><br />

equati<strong>on</strong> or <str<strong>on</strong>g>th</str<strong>on</strong>g>e pme to represent cell density pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. Results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at when<br />

using c<strong>on</strong>tinuum models to represent cell populati<strong>on</strong> spreading, we should take care<br />

to account for variati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell aspect ratio because different aspect ratios lead<br />

to different c<strong>on</strong>tinuum models.<br />

901


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell migrati<strong>on</strong> during development: modelling and experiment; Saturday,<br />

July 2, 08:30<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew Simps<strong>on</strong><br />

Queensland University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew.simps<strong>on</strong>@qut.edu.au<br />

Modelling cell invasi<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> proliferati<strong>on</strong> mechanisms<br />

motivated by time-lapse data<br />

Cell invasi<strong>on</strong> involves a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells which are motile and proliferative.<br />

Traditi<strong>on</strong>al lattice-based discrete models <str<strong>on</strong>g>of</str<strong>on</strong>g> cell proliferati<strong>on</strong> involve agents depositing<br />

daughter agents <strong>on</strong> nearest neighbour lattice sites. Our new work is motivated<br />

by time-lapse images <str<strong>on</strong>g>of</str<strong>on</strong>g> cell invasi<strong>on</strong> associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e enteric<br />

nervous system where a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> precursor neural crest cells invades <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing<br />

gut tissues. Using time-lapse data, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e traditi<strong>on</strong>al proliferati<strong>on</strong><br />

model is inappropriate and we propose a new proliferati<strong>on</strong> model c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

time-lapse observati<strong>on</strong>s. Using simulati<strong>on</strong> and analysis, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete<br />

model is related to a family <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s and can be used to make<br />

predicti<strong>on</strong>s over a range <str<strong>on</strong>g>of</str<strong>on</strong>g> scales appropriate for interpreting experimental data<br />

902


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemic models: Networks and stochasticity I; Wednesday, June 29, 14:30<br />

David Sirl<br />

Loughborough University<br />

e-mail: d.sirl@lboro.ac.uk<br />

Household epidemic models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> variable infecti<strong>on</strong> severity<br />

We explore SIR (Susceptible → Infective → Removed) epidemic models wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

household structure and <str<strong>on</strong>g>th</str<strong>on</strong>g>e feature <str<strong>on</strong>g>th</str<strong>on</strong>g>at infectives can be ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er mildly or severely<br />

infective. We analyse two different models which describe such behaviour, <strong>on</strong>e where<br />

individual’s severities are pre-determined (perhaps due to prior partial immunity)<br />

and <strong>on</strong>e where <str<strong>on</strong>g>th</str<strong>on</strong>g>e an individual’s severity is influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

individual <str<strong>on</strong>g>th</str<strong>on</strong>g>at infects it and whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>is infecti<strong>on</strong> resulted from a wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in- or<br />

between-household c<strong>on</strong>tact. The aim is to determine whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er it is possible to find<br />

which <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two models best explains <str<strong>on</strong>g>th</str<strong>on</strong>g>e varying resp<strong>on</strong>se when given final size<br />

household outbreak data c<strong>on</strong>taining mild and severe cases. We c<strong>on</strong>duct numerical<br />

studies from which we c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is discriminati<strong>on</strong> usually is possible.<br />

This is joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Frank Ball (University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham) and Tom Britt<strong>on</strong><br />

(Stockholm University).<br />

903


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stochastic models in computati<strong>on</strong>al neuroscience I; Wednesday, June 29, 14:30<br />

Roberta Sirovich<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Torino<br />

e-mail: roberta.sirovich@unito.it<br />

About a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing time definiti<strong>on</strong> in<br />

stochastic leaky integrate–and–fire neur<strong>on</strong> models<br />

The integrate-and-fire neur<strong>on</strong> model is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most widely used models for<br />

studies <str<strong>on</strong>g>of</str<strong>on</strong>g> neural coding [1,2]. It describes <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane potential <str<strong>on</strong>g>of</str<strong>on</strong>g> a neur<strong>on</strong><br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e synaptic inputs and <str<strong>on</strong>g>th</str<strong>on</strong>g>e injected current <str<strong>on</strong>g>th</str<strong>on</strong>g>at it receives. An acti<strong>on</strong><br />

potential (spike) is generated whenever <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane potential crosses some<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold level from below. In integrate-and-fire models <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> an acti<strong>on</strong> potential<br />

is not described explicitly. Spikes are formal events fully characterized by<br />

a ‘firing time’ after which <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane potential is reset and <str<strong>on</strong>g>th</str<strong>on</strong>g>e process starts<br />

from scratch.<br />

The observati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental intracellular recordings seems to suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane potential may cross <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold level several times before an acti<strong>on</strong><br />

potential is detected [3]. We study a modified versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e leaky integrate-and-fire<br />

neur<strong>on</strong> model where a spike is generated whenever <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane potential remains<br />

above <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold level for a ‘sufficiently’ l<strong>on</strong>g time. Hence <str<strong>on</strong>g>th</str<strong>on</strong>g>e firing time is not<br />

defined by an instantaneous crossing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level, but depends <strong>on</strong> a l<strong>on</strong>ger history <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

fluctuati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane potential. Comparis<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics exhibited<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical models are presented.<br />

References.<br />

[1] A. N. Burkitt, A review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e integrate–and–fire neur<strong>on</strong> model: I. Homogeneous synaptic<br />

input Biol Cybern (2006) 95 1–19.<br />

[2] A. N. Burkitt, A review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e integrate–and–fire neur<strong>on</strong> model: II. Inhomogeneous synaptic<br />

input and network properties Biol Cybern (2006) 95 97–112.<br />

[3] P. Lansky, P. Sanda and J. He The parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic leaky integrate–and–fire<br />

neur<strong>on</strong>al model J Comput Neurosci 21 211.<br />

904


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Immunology; Wednesday, June 29, 17:00<br />

Vladas Skakauskas<br />

Naugarduko 24, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Informatics, Vilnius University,<br />

Vilnius, Li<str<strong>on</strong>g>th</str<strong>on</strong>g>uania<br />

e-mail: vladas.skakauskas@maf.vu.lt<br />

Pranas Katauskis<br />

Naugarduko 24, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Informatics, Vilnius University,<br />

Vilnius, Li<str<strong>on</strong>g>th</str<strong>on</strong>g>uania<br />

e-mail: pranas.katauskis@mif.vu.lt<br />

Alex Skvortsov<br />

DSTO, Fishermans Bend, Vic 3207, Australia<br />

e-mail: alex.skvortsov@dsto.defence.gov.au<br />

Numerical study <str<strong>on</strong>g>of</str<strong>on</strong>g> Receptor-Toxin-Antibody Interacti<strong>on</strong><br />

Problem<br />

The successful bio-medical applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> antibodies is well-documented and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere is increasing interest in <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> antibodies for mitigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

toxins associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e various biological <str<strong>on</strong>g>th</str<strong>on</strong>g>reats. Such toxins are an important<br />

potential target for designing <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies against <str<strong>on</strong>g>th</str<strong>on</strong>g>ese <str<strong>on</strong>g>th</str<strong>on</strong>g>reats and a brood range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

approaches has been taken to develop inhibitors <str<strong>on</strong>g>th</str<strong>on</strong>g>at may be <str<strong>on</strong>g>of</str<strong>on</strong>g> prophylactic or<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic use. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e progress in bio-engineering many antibodies have been<br />

generated for <str<strong>on</strong>g>th</str<strong>on</strong>g>is purpose wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different affinity parameters and, as a result, different<br />

properties. However affinity, by itself, is a poor predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> protective or<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erapeutic potential which is determined by a new c<strong>on</strong>solidated kinetic parameter<br />

Receptor-Toxin-Antibody (RTA) kinetics and relative c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species.<br />

Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any new antibody necessitates development <str<strong>on</strong>g>of</str<strong>on</strong>g> a high fidelity model<br />

for RTA interacti<strong>on</strong>.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e important step in improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong> fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> species. Incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> toxin,<br />

antibody, and associated complex into <str<strong>on</strong>g>th</str<strong>on</strong>g>e RTA model leads to a PDEs model.<br />

Numerical study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protective efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> antibody against a given toxin<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>of</str<strong>on</strong>g> cells placed into a toxin-antibody soluti<strong>on</strong> will be discussed.<br />

References.<br />

[1] A. Skvortsov, P. Gray, Modelling and simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> receptor-toxin-antibody interacti<strong>on</strong>, in:<br />

18<str<strong>on</strong>g>th</str<strong>on</strong>g> World IMACS/MODSIM C<strong>on</strong>gress, Australia, 2009, 185-191.<br />

[2] B. Goldstein, M. Dembo, Approximating <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> reversible reacti<strong>on</strong>s at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cell surface: Ligand-receptor kinetics, Biophys. J. 68 (1995) 1222-1230.<br />

[3] M. Coppey, A.M. Berezhkovskii, S.C. Sealf<strong>on</strong>, S.Y. Shvartsman, Time and lenght scales <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

autocrine signals in <str<strong>on</strong>g>th</str<strong>on</strong>g>ree dimensi<strong>on</strong>s, Biophys. J. 93 (2007) 1917-1922.<br />

905


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Noisy Cells; Saturday, July 2, 14:30<br />

Alexander Skupin<br />

Luxembourg Centre for Systems Biomedicine, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Luxembourg,<br />

Luxembourg<br />

e-mail: alexander.skupin@uni.lu<br />

Moritz Schütte<br />

MPI <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular Plant Physiology, Potsdam-Golm, Germany<br />

e-mail: schuette@mpimp-golm.mpg.de<br />

Oliver Ebenhöh<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Systems and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Aberdeen, U.K.<br />

e-mail: ebenhoeh@abdn.ac.uk<br />

Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme-pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way coevoluti<strong>on</strong><br />

Metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways must have coevolved wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding enzyme gene<br />

sequences. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary dynamics ensuing from <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between<br />

metabolic networks and genomes is still poorly understood. Here, we present<br />

a computati<strong>on</strong>al model <str<strong>on</strong>g>th</str<strong>on</strong>g>at generates putative evoluti<strong>on</strong>ary walks <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic<br />

network using a parallel evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic reacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir catalyzing<br />

enzymes. Starting from an initial set <str<strong>on</strong>g>of</str<strong>on</strong>g> compounds and enzymes, we expand <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

metabolic network iteratively by adding new enzymes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a probability <str<strong>on</strong>g>th</str<strong>on</strong>g>at depends<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir sequence-based similarity to already present enzymes. Thus, we<br />

obtain simulated time courses <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical evoluti<strong>on</strong> in which we can m<strong>on</strong>itor <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> new metabolites, enzyme sequences, or even entire organisms. We<br />

observe <str<strong>on</strong>g>th</str<strong>on</strong>g>at new enzymes do not appear gradually but ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er in clusters which corresp<strong>on</strong>d<br />

to enzyme classes. A comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Brownian moti<strong>on</strong> dynamics indicates<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at our system displays biased random walks similar to diffusi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic<br />

network wi<str<strong>on</strong>g>th</str<strong>on</strong>g> l<strong>on</strong>g range correlati<strong>on</strong>s. This suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at a quantitative molecular<br />

principle may underlie <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> punctuated equilibrium as enzymes occur in<br />

bursts ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an by phyletic gradualism. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e simulated time courses<br />

lead to a putative time-order <str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme and organism appearance. Am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

patterns we detect in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese evoluti<strong>on</strong>ary trends is a significant correlati<strong>on</strong> between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e time <str<strong>on</strong>g>of</str<strong>on</strong>g> appearance and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir enzyme repertoire size. Hence, our approach to<br />

metabolic evoluti<strong>on</strong> may help understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e rise in complexity at <str<strong>on</strong>g>th</str<strong>on</strong>g>e biochemical<br />

and genomic levels.<br />

906


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling III; Wednesday, June 29,<br />

17:00<br />

Alexander Skupin<br />

Luxembourg Centre for Systems Biomedicine, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Luxembourg,<br />

Luxembourg<br />

e-mail: alexander.skupin@uni.lu<br />

How spatial cell properties shape Ca 2+ signals<br />

Ca 2+ plays a major role in many physiological processes including muscle c<strong>on</strong>tracti<strong>on</strong><br />

and gene regulati<strong>on</strong>. The versatility is achieved by a wide spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+<br />

signals ranging from fast local events to cell wide repetitive spiking and plateau<br />

resp<strong>on</strong>ses. It is still a challenge to understand how cells generate reliable cellular<br />

signals wi<str<strong>on</strong>g>th</str<strong>on</strong>g> microscopic noisy Ca 2+ release channels like IP3Rs. We have recently<br />

shown in experiments <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic fluctuati<strong>on</strong>s are carried <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cell by <str<strong>on</strong>g>th</str<strong>on</strong>g>e hierarchical organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ca 2+ pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way. Here we use our<br />

detailed modelling approach to analyze how Ca 2+ signals depend <strong>on</strong> physiological<br />

parameters. The model describes individual release channels by Markov chains <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

states <str<strong>on</strong>g>of</str<strong>on</strong>g> which act as stochastic source terms in a reacti<strong>on</strong> diffusi<strong>on</strong> system representing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. This allows for following <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ca 2+ signal from its local triggering<br />

event to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell wide resp<strong>on</strong>se. In extensive simulati<strong>on</strong>s we analyzed how <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

spatial properties shape Ca 2+ signals. The simulati<strong>on</strong>s can quantitatively describe<br />

experiments in which Ca 2+ diffusi<strong>on</strong> is reduced by additi<strong>on</strong>al buffer. In fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

simulati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e temperature dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca 2+ signals could be mapped to a<br />

change in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SERCA pump streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>at determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial coupling between<br />

release sites. All <str<strong>on</strong>g>th</str<strong>on</strong>g>ese modelled and experimental data are in additi<strong>on</strong> analyzed<br />

and compared by a moment based approach <str<strong>on</strong>g>th</str<strong>on</strong>g>at points to a functi<strong>on</strong>al robustness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ca 2+ pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way.<br />

907


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Urszula Skwara<br />

Maria Curie Skłodowska University<br />

e-mail: uskwara@o2.pl<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 11:00<br />

Asymptotic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic symbiosis model<br />

We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> various stochastic perturbati<strong>on</strong>s <strong>on</strong> symbiosis system.<br />

We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e following system <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic equati<strong>on</strong>s<br />

<br />

dX(t) = ((a1 + b1Y (t) − c1X(t)) dt + ρ11 dW1(t) + ρ12 dW2(t)) X(t)<br />

(1)<br />

dY (t) = ((a2 + b2X(t) − c2Y (t)) dt + ρ21 dW1(t) + ρ22 dW2(t)) Y (t),<br />

which describes relati<strong>on</strong>s between two populati<strong>on</strong>s living in symbiosis. We assume<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at ai, bi, ci > 0 (i = 1, 2) are positive c<strong>on</strong>stants, W1(t), W2(t) are two independent<br />

standard Wiener processes, X(t), Y (t) are stochastic processes which represent, respectively,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e first and <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d populati<strong>on</strong>. We c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>ree kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> stochastic<br />

perturbati<strong>on</strong>s:<br />

(i) weakly correlated, i.e. ρ11ρ22 − ρ12ρ21 = 0;<br />

(ii) str<strong>on</strong>gly correlated, i.e. ρ11 > 0, ρ21 > 0, ρ12 = 0, ρ22 = 0;<br />

(iii) <strong>on</strong>ly <strong>on</strong>e populati<strong>on</strong> is stochastically perturbed, by symmetry we assume<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d populati<strong>on</strong> is perturbed, i.e. ρ11 = 0, ρ21 > 0, ρ12 = 0,<br />

ρ22 = 0.<br />

First we show <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence, uniqueness, positivity and n<strong>on</strong>-extincti<strong>on</strong> property <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> system (1) <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at b1b2 < c1c2. Next we prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e probability distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process (X(t), Y (t)) are absolutely c<strong>on</strong>tinuous<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Lebesgue measure. Let U(x, y, t) be <str<strong>on</strong>g>th</str<strong>on</strong>g>e density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> (X(t), Y (t)). We give a sufficient and a necessary c<strong>on</strong>diti<strong>on</strong> for asymptotic<br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> system (1), i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> U(x, y, t) to an invariant density<br />

U∗(x, y). In <str<strong>on</strong>g>th</str<strong>on</strong>g>e case when <str<strong>on</strong>g>th</str<strong>on</strong>g>is system is not asymptotically stable, we prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

limt→∞ Y (t) = 0 a.e. We also show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>is case limt→∞ X(t) = 0 a.e. or <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

probability distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process X(t) c<strong>on</strong>verge weakly to some probability<br />

measure. We give a biological interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results.<br />

References.<br />

[1] U. Skwara, A stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> symbiosis Ann. Pol<strong>on</strong>. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.97.3 257–272 .<br />

[2] U. Skwara, A stochastic model <str<strong>on</strong>g>of</str<strong>on</strong>g> symbiosis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> degenerate difussi<strong>on</strong> process Ann. Pol<strong>on</strong>.<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. 98.2 111–128.<br />

908


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Saturday, July 2, 11:00<br />

Jaroslaw Smieja<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: Jaroslaw.Smieja@polsl.pl<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Puszynski<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Coupled sensitivity and frequency analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> signalling<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways has gained large popularity recently.<br />

The models <str<strong>on</strong>g>th</str<strong>on</strong>g>at have been developed describe dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> NFkB, JAK/STAT,<br />

p53/Mdm2 and many o<str<strong>on</strong>g>th</str<strong>on</strong>g>er pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important advantages<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models in <str<strong>on</strong>g>th</str<strong>on</strong>g>is field is <str<strong>on</strong>g>th</str<strong>on</strong>g>eir flexibility and ability to<br />

check certain aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics if <str<strong>on</strong>g>th</str<strong>on</strong>g>e investigated systems before committing<br />

large resources into experimental work.<br />

Complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models <str<strong>on</strong>g>th</str<strong>on</strong>g>at are under development varies, depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

particular goals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling. Never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> model complexity, <strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e key issues is proper choice <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters. As a result, in such work sensitivity<br />

analysis is a necessary stages in analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong> results.<br />

Two main categories <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivity analysis me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods can be distinguished: local<br />

and global. Local sensitivity analysis provides informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

small deviati<strong>on</strong> a single parameter from its nominal value <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system output.<br />

Global sensitivities, in turn, describe how <str<strong>on</strong>g>th</str<strong>on</strong>g>e system output changes when multiple<br />

parameters change in a relatively wide range.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work several sensitivity indices will be applied to find out which parameter<br />

subsets have <str<strong>on</strong>g>th</str<strong>on</strong>g>e greatest impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> several signaling<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. However, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> using <str<strong>on</strong>g>th</str<strong>on</strong>g>em wi<str<strong>on</strong>g>th</str<strong>on</strong>g> reference to steady states, which<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most frequent approaches, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey will be coupled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> frequency<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models dynamics. That way, it is possible to answer <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

most important questi<strong>on</strong>s c<strong>on</strong>cerning some signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. There is an <strong>on</strong>going<br />

dispute about oscillati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir importance in cellular resp<strong>on</strong>ses to external<br />

inputs. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> main frequencies in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model outputs will push<br />

forward research in <str<strong>on</strong>g>th</str<strong>on</strong>g>is field. If it is <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are crucial for proper cell<br />

behavior, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese frequencies should be relatively insensitive to parameter changes.<br />

Moreover, sensitivity analysis will indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>e stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

are <str<strong>on</strong>g>th</str<strong>on</strong>g>e most pr<strong>on</strong>e to disturbances, providing clues for experimental work.<br />

The work was partially supported by The Fundati<strong>on</strong> for Polish Science.<br />

909


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Neurosciences; Thursday, June 30, 11:30<br />

Mamiko Arai<br />

Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Program, Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina State Univ., Box 8203.Raleigh,<br />

NC 27695<br />

e-mail: marai@ncsu.edu<br />

Charles Eugene Smi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Program, Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> Carolina State<br />

Univ., Box 8203.Raleigh, NC 27695<br />

e-mail: bmasmi<str<strong>on</strong>g>th</str<strong>on</strong>g>@ncsu.edu<br />

Distinguishing <str<strong>on</strong>g>th</str<strong>on</strong>g>e Type <str<strong>on</strong>g>of</str<strong>on</strong>g> Input Noise in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Fitzhugh-Nagumo Neur<strong>on</strong>al Model<br />

A n<strong>on</strong>linear system <str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s known as <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fitzhugh-Nagumo (FN)<br />

is used to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological state <str<strong>on</strong>g>of</str<strong>on</strong>g> a nerve membrane. Several different<br />

kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> noise are added to <str<strong>on</strong>g>th</str<strong>on</strong>g>e FN model to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> noise <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e membrane. They are Gaussian white noise, O-U process and Poiss<strong>on</strong> noise.<br />

Gaussian white noise represents many small synaptic inputs and Poiss<strong>on</strong> noise represents<br />

a few large synaptic inputs. The n<strong>on</strong>-oscillatory regi<strong>on</strong> before and after <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

bifurcati<strong>on</strong> regi<strong>on</strong> is used to distinguish between Wiener vs. Poiss<strong>on</strong> inputs by a<br />

hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis test about <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> level crossings. The null hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e expected level crossings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium state by a time sampled linearized<br />

FN set <str<strong>on</strong>g>of</str<strong>on</strong>g> differential equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Wiener input. The test performs well in rejecting<br />

n<strong>on</strong> Wiener inputs in simulati<strong>on</strong> studies, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearized and n<strong>on</strong>linear<br />

F-N model. A res<strong>on</strong>ance type phenomena was also observed.<br />

Key Words: Neur<strong>on</strong>; First passage time; level crossings; Poiss<strong>on</strong> process; stochastic<br />

differential equati<strong>on</strong><br />

910


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent advances in infectious disease modelling II; Saturday, July 2, 14:30<br />

Robert Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>?<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ottawa<br />

e-mail: rsmi<str<strong>on</strong>g>th</str<strong>on</strong>g>43@uottawa.ca<br />

The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> media coverage <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> human influenza<br />

There is an urgent need to understand how <str<strong>on</strong>g>th</str<strong>on</strong>g>e provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> influences<br />

individual risk percepti<strong>on</strong> and how <str<strong>on</strong>g>th</str<strong>on</strong>g>is in turn shapes <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics.<br />

Individuals are influenced by informati<strong>on</strong> in complex and unpredictable<br />

ways. Emerging infectious diseases, such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e recent swine flu epidemic, may<br />

be particular hotspots for a media-fueled rush to vaccinati<strong>on</strong> c<strong>on</strong>versely, seas<strong>on</strong>al<br />

diseases may receive little media attenti<strong>on</strong>, despite <str<strong>on</strong>g>th</str<strong>on</strong>g>eir high mortality rate, due<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir perceived lack <str<strong>on</strong>g>of</str<strong>on</strong>g> newness. We formulate a deterministic transmissi<strong>on</strong> and<br />

vaccinati<strong>on</strong> model to invetigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> media coverage <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong><br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza. The populati<strong>on</strong> is subdivided into different classes according<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir disease status. The compartmental model includes <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> media<br />

coverage <strong>on</strong> reporting <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong>s as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals<br />

successfully vaccinated. A <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold parameter (<str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproductive ratio) is<br />

analytically derived and used to discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e local stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease-free steady<br />

state. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> costs <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be incurred, which include vaccinati<strong>on</strong>, educati<strong>on</strong>,<br />

implementati<strong>on</strong> and campaigns <strong>on</strong> media coverage, are also investigated using<br />

optimal c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>eory. A simplified versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> pulse vaccinati<strong>on</strong><br />

shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e media can trigger a vaccinating panic if <str<strong>on</strong>g>th</str<strong>on</strong>g>e vaccine is imperfect<br />

and simplified messages result in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vaccinated mixing wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infectives wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out<br />

regard to disease risk. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> media <strong>on</strong> an outbreak are complex. Simplified<br />

understandings <str<strong>on</strong>g>of</str<strong>on</strong>g> disease epidemiology, propogated <str<strong>on</strong>g>th</str<strong>on</strong>g>rough media soundbites,<br />

may make <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease significantly worse.<br />

911


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Oksana Sorokina<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Edinburgh<br />

e-mail: oksana.sorokina@ed.ac.uk<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Rule based modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways in<br />

synapse.<br />

Synaptic transmissi<strong>on</strong> depends <strong>on</strong> a very well orchestrated sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> proteinprotein<br />

interacti<strong>on</strong>s <strong>on</strong> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> sides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e neur<strong>on</strong>al synapse. The aggregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

protein complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> different sizes and compositi<strong>on</strong> underpins synapse functi<strong>on</strong>,<br />

and disrupti<strong>on</strong>s at <str<strong>on</strong>g>th</str<strong>on</strong>g>is level account for many neuropsychiatric and neurodegenerative<br />

diseases.<br />

The postsynaptic compartment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e excitatory glutamatergic synapse c<strong>on</strong>tains<br />

hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> distinct polypeptides wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s (signalling,<br />

trafficking, cell-adhesi<strong>on</strong>, etc). Structural dynamics in <str<strong>on</strong>g>th</str<strong>on</strong>g>e PSD (post synaptic density)<br />

are believed to resp<strong>on</strong>d for <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial steps <str<strong>on</strong>g>of</str<strong>on</strong>g> signalling cascades <str<strong>on</strong>g>th</str<strong>on</strong>g>at result in<br />

l<strong>on</strong>g-term synaptic plasticity. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough functi<strong>on</strong>ally and morphologically diverse,<br />

PSD proteins are generally enriched wi<str<strong>on</strong>g>th</str<strong>on</strong>g> specific domains, which precisely define<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mode <str<strong>on</strong>g>of</str<strong>on</strong>g> clustering essential for signal processing.<br />

We apply a stochastic calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> domain binding provided by <str<strong>on</strong>g>th</str<strong>on</strong>g>e rule-based<br />

modelling (e.g. Kappa) approach to formalise <str<strong>on</strong>g>th</str<strong>on</strong>g>e highly combinatorial signalling<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way in PSD and perform <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> protein complexes and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir sizes (Danos and Schumacher, 2008, Danos et al,<br />

2009). We specify <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> PSD by rules, taking into account protein domain<br />

structure, specific domain affinity and relative protein availability. Resulting<br />

model has a hierarchical structure, composed <str<strong>on</strong>g>of</str<strong>on</strong>g> generic agents and generic rules<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>crete variants. This allows interrogate <str<strong>on</strong>g>th</str<strong>on</strong>g>e critical c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

protein aggregati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e large complexes al<strong>on</strong>g wi<str<strong>on</strong>g>th</str<strong>on</strong>g> simultaneous study <str<strong>on</strong>g>of</str<strong>on</strong>g> effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> mutated polypeptides and protein splice variants <strong>on</strong> structure and<br />

relative stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose complexes.<br />

912


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Saturday, July 2, 11:00<br />

Max O. Souza<br />

Departamento de Matemática Aplicada, Universidade Federal Fluminense,<br />

R. Mário Santos Braga, s/n, Niterói - RJ, 24020-140, Brazil<br />

e-mail: msouza@mat.uff.br<br />

Multiscaling Modelling in Evoluti<strong>on</strong>ary Dynamics<br />

We start from a family <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous approximati<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability density<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a frequency dependent Moran process studied by Chalub & Souza in [1]. These<br />

approximati<strong>on</strong>, depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e scalings, can be <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusive or n<strong>on</strong>-diffusive type,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e latter being equivalent to <str<strong>on</strong>g>th</str<strong>on</strong>g>e Replicator Dynamics. We <str<strong>on</strong>g>th</str<strong>on</strong>g>en study <str<strong>on</strong>g>th</str<strong>on</strong>g>e small<br />

diffusi<strong>on</strong> limit, and show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e Replicator Dynamics can be c<strong>on</strong>sistenly fitted in<br />

a diffusive approximati<strong>on</strong>. Some additi<strong>on</strong>al results c<strong>on</strong>cerning <str<strong>on</strong>g>th</str<strong>on</strong>g>e fixati<strong>on</strong> probabilites<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>is limit are also presented. This is joint work wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Fabio Chalub.<br />

References.<br />

[1] Fabio A. C. C. Chalub & Max O. Souza, From discrete to c<strong>on</strong>tinuous evoluti<strong>on</strong> models: A<br />

unifying approach to drift-diffusi<strong>on</strong> and replicator dynamics, Theoretical Populati<strong>on</strong> Biology,<br />

76 (4) 268–277, 2009.<br />

913


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

E.N. Spanou<br />

Democritus University <str<strong>on</strong>g>of</str<strong>on</strong>g> Thrace, Xan<str<strong>on</strong>g>th</str<strong>on</strong>g>i, Greece<br />

e-mail: ispanou@ee.du<str<strong>on</strong>g>th</str<strong>on</strong>g>.gr<br />

A.G. Rigas<br />

Democritus University <str<strong>on</strong>g>of</str<strong>on</strong>g> Thrace, Xan<str<strong>on</strong>g>th</str<strong>on</strong>g>i, Greece<br />

e-mail: rigas@ee.du<str<strong>on</strong>g>th</str<strong>on</strong>g>.gr<br />

V.G. Vassiliadis<br />

Democritus University <str<strong>on</strong>g>of</str<strong>on</strong>g> Thrace, Xan<str<strong>on</strong>g>th</str<strong>on</strong>g>i, Greece<br />

e-mail: bvasil@ee.du<str<strong>on</strong>g>th</str<strong>on</strong>g>.gr<br />

Neurosciences; Friday, July 1, 14:30<br />

The identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a neuroelectric system in <str<strong>on</strong>g>th</str<strong>on</strong>g>e time and<br />

frequency domain when an alpha stimulati<strong>on</strong> is present<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a neuroelectric system, called muscle spindle,<br />

is studied when it is affected by an alpha mot<strong>on</strong>eur<strong>on</strong> (alpha stimulati<strong>on</strong>). The<br />

muscle spindle is an element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e neuromuscular system and plays an important<br />

role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e initiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> movement and in <str<strong>on</strong>g>th</str<strong>on</strong>g>e maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e posture. The<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e muscle spindle and <str<strong>on</strong>g>th</str<strong>on</strong>g>e stimulus imposed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e mot<strong>on</strong>eur<strong>on</strong> are<br />

sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong> potentials and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are c<strong>on</strong>sidered as realizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stati<strong>on</strong>ary point processes. A frequency and a time domain approach has been<br />

employed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency domain, <str<strong>on</strong>g>th</str<strong>on</strong>g>e muscle spindle can be described by a Volterra<br />

- type model involving <strong>on</strong>e input and <strong>on</strong>e output. Spectral analysis techniques <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

stati<strong>on</strong>ary point processes are applied in order to estimate two important functi<strong>on</strong>s,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e coherence coefficient and <str<strong>on</strong>g>th</str<strong>on</strong>g>e impulse resp<strong>on</strong>se. The linear relati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system and <str<strong>on</strong>g>th</str<strong>on</strong>g>e input is described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e coherence<br />

coefficient, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impulse resp<strong>on</strong>se functi<strong>on</strong> provides <str<strong>on</strong>g>th</str<strong>on</strong>g>e best<br />

linear predictor for <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e input.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e time domain approach <str<strong>on</strong>g>th</str<strong>on</strong>g>e input and <str<strong>on</strong>g>th</str<strong>on</strong>g>e output <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system can<br />

also be c<strong>on</strong>sidered as binary time series and <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> generalized<br />

linear models (GLM) can be applied. The advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach is based <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system’s parameters can be obtained by using <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

maximum likelihood functi<strong>on</strong>. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximum<br />

likelihood estimates since <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-complete separati<strong>on</strong> occurs.<br />

To overcome <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem an approach based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e penalized likelihood functi<strong>on</strong><br />

is used, which provides an ideal soluti<strong>on</strong> and it is computati<strong>on</strong>ally much faster<br />

compared to <str<strong>on</strong>g>th</str<strong>on</strong>g>e M<strong>on</strong>te Carlo me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>th</str<strong>on</strong>g>at has been already used. The stochastic<br />

model which is proposed for <str<strong>on</strong>g>th</str<strong>on</strong>g>e descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system involves <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e summati<strong>on</strong> functi<strong>on</strong>. The estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e summati<strong>on</strong> functi<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g> great<br />

interest as it describes whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e system is excitatory or inhibitory. A validity<br />

test for <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitted model based <strong>on</strong> randomized quantile residuals is proposed. The<br />

validity test is transformed to a goodness <str<strong>on</strong>g>of</str<strong>on</strong>g> fit test and <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> Q-Q plot is also<br />

discussed.<br />

The estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e impulse resp<strong>on</strong>se functi<strong>on</strong> indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e system accelerates<br />

for 1–2 ms shortly after <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e alpha mot<strong>on</strong>eur<strong>on</strong>, is blocked for<br />

about 30 ms and after <str<strong>on</strong>g>th</str<strong>on</strong>g>at does not change. Similar results are obtained by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e summati<strong>on</strong> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e GLM.<br />

914


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

References.<br />

[1] D.R. Brillinger, K.A. Lindsay, J.R. Rosenberg, 2009. Combining frequency and time domain<br />

approaches to systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple spike train input Biological Cybernetics 100 459–474.<br />

[2] D. Fir<str<strong>on</strong>g>th</str<strong>on</strong>g>, 1993. Bias reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maximum likelihood estimates Biometrika 80(1) 27–38.<br />

[3] G. Heinze, M. Schemper, 2003. A soluti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> separati<strong>on</strong> in logistic regressi<strong>on</strong><br />

Statistics in Medicine 21(16) 2409–2419.<br />

[4] V.K. Kotti, A.G. Rigas, 2003. Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a complex neurophysiological system using <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

maximum likelihood J. Biological Systems 11(2) 189–243.<br />

[5] V.K. Kotti, A.G. Rigas, 2008. A M<strong>on</strong>te Carlo Me<str<strong>on</strong>g>th</str<strong>on</strong>g>od Used for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Muscle<br />

Spindle In: A. Deutsch et al. (Eds) Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Systems, Volume II,<br />

Birkhauser, Bost<strong>on</strong>, 237–243.<br />

[6] A.G. Rigas, P. Liatsis, 2000. Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a neuroelectric system involving a single input<br />

and a single output Signal Processing 80(9) 1883–1894.<br />

915


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> physiological processes in patients <strong>on</strong> dialysis;<br />

Saturday, July 2, 11:00<br />

Joanna Stachowska-Piętka<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biocybernetics and Biomedical Engineering<br />

e-mail: jstachowska@ibib.waw.pl<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> perit<strong>on</strong>eal dialysis<br />

Perit<strong>on</strong>eal dialysis (PD) is a treatment opti<strong>on</strong> for patients wi<str<strong>on</strong>g>th</str<strong>on</strong>g> kidney failure <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

is available in most countries around <str<strong>on</strong>g>th</str<strong>on</strong>g>e world. Its main goal is to remove waste<br />

metabolic product and excess water to <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid infused into <str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal cavity<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at is finally drained out. The increasing usage <str<strong>on</strong>g>of</str<strong>on</strong>g> PD required special tools <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

would allow for <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment efficiency. In particular, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

models allow for <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantitative descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bidirecti<strong>on</strong>al water and solute<br />

perit<strong>on</strong>eal transport.<br />

Three types <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models can be used for <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal<br />

transport: <str<strong>on</strong>g>th</str<strong>on</strong>g>e classical membrane model, <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-pore model, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributed<br />

model. The first two models (typically applied in clinical and experimental<br />

research) use phenomenologically derived parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at characterize perit<strong>on</strong>eal<br />

transport. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir relative simplicity does not allow for <str<strong>on</strong>g>th</str<strong>on</strong>g>e derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fundamental physiological processes <str<strong>on</strong>g>th</str<strong>on</strong>g>at govern fluid and<br />

solute transport during perit<strong>on</strong>eal dialysis. Therefore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributed approach is<br />

used to provide detailed informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal physiology and more realistic<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal anatomy and transport system.<br />

This approach is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e local tissue and microcirculatory physiology and its<br />

parameters are derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>e local structure and properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue and<br />

microvasculature.<br />

In order to describe bidirecti<strong>on</strong>al fluid and solute transport, <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-phase<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interstitium was taken into account, based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e previous experimental<br />

findings (Guyt<strong>on</strong> et al, 1969). The two-phase system c<strong>on</strong>tains a water-rich,<br />

colloid-poor regi<strong>on</strong> (Fluid Phase, F), where fluid transport is driven by <str<strong>on</strong>g>th</str<strong>on</strong>g>e hydrostatic<br />

pressure, and a colloid-rich, water-poor regi<strong>on</strong> (Colloid Phase, C). In general,<br />

Phase C corresp<strong>on</strong>ds to <str<strong>on</strong>g>th</str<strong>on</strong>g>e matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> macromolecules <str<strong>on</strong>g>th</str<strong>on</strong>g>at makes up <str<strong>on</strong>g>th</str<strong>on</strong>g>e interstitial<br />

ground substance. The system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear partial differential equati<strong>on</strong> was<br />

solved numerically for <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue layer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e muscle <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 cm wid<str<strong>on</strong>g>th</str<strong>on</strong>g> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> uniformly<br />

distributed capillary and lymphatic beds and an interstitial layer (0.015 cm) <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal surface free from cells and blood vessels using a distributed model.<br />

The model parameters were adjusted to provide a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a typical single<br />

exchange wi<str<strong>on</strong>g>th</str<strong>on</strong>g> hypert<strong>on</strong>ic glucose 3.86% soluti<strong>on</strong>. Diffusive and c<strong>on</strong>vective solute<br />

transport was analyzed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e example <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma protein (albumin) and glucose<br />

(osmotic agent).<br />

Numerical results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e developed model described <str<strong>on</strong>g>th</str<strong>on</strong>g>e bidirecti<strong>on</strong>al water and<br />

protein transport in agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e data about flows and clearances from clinical<br />

studies. Computer simulati<strong>on</strong> suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at two-phase structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue<br />

allows for <str<strong>on</strong>g>th</str<strong>on</strong>g>e separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> opposite fluid flows: fluid transport from <str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal<br />

cavity into <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue (absorpti<strong>on</strong>) occurs mainly <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fluid Phase, whereas<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Colloid Phase is used for <str<strong>on</strong>g>th</str<strong>on</strong>g>e water transport in <str<strong>on</strong>g>th</str<strong>on</strong>g>e opposite directi<strong>on</strong> (ultrafiltrati<strong>on</strong>).<br />

Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model predicted <str<strong>on</strong>g>th</str<strong>on</strong>g>at glucose transport (mainly diffusive),<br />

916


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

occurs across bo<str<strong>on</strong>g>th</str<strong>on</strong>g> phases. In c<strong>on</strong>trast, <str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal transport <str<strong>on</strong>g>of</str<strong>on</strong>g> albumin, which<br />

leaks by c<strong>on</strong>vecti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e perit<strong>on</strong>eal cavity, occurs mainly <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e Colloid<br />

Phase.<br />

917


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Saturday, July 2, 11:00<br />

Jörn Starruß<br />

Center for Infromati<strong>on</strong> Services and High Performance computing,<br />

TU-Dresden<br />

Fernando Peruani<br />

Max Planck Institute for Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Systems, Dresden<br />

Andreas Deutsch<br />

Center for Infromati<strong>on</strong> Services and High Performance computing,<br />

TU-Dresden<br />

Collective migrati<strong>on</strong> in myxobacteria driven by adventurous<br />

motility and el<strong>on</strong>gated cell shape<br />

Myxococcus xan<str<strong>on</strong>g>th</str<strong>on</strong>g>us is a soil living bacterium <str<strong>on</strong>g>th</str<strong>on</strong>g>at is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> forming multicellular<br />

fruiting bodies. Thus, M. xan<str<strong>on</strong>g>th</str<strong>on</strong>g>us may serve as an attractive model system<br />

for studying organizati<strong>on</strong>al principles <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow individual cells to organize into<br />

and behave like a multicellular organism.<br />

I will present our latest experimental insights <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cluster formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adventurous<br />

myxobacteria wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main focus <strong>on</strong> statistical analysis [3]. Interestingly,<br />

initially unstructured col<strong>on</strong>ies restructure into collectively migrating clusters and<br />

finally c<strong>on</strong>verge into a characteristic distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster sizes.<br />

We envisage a simple mechanism for clustering based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic<br />

rod cell shape and cell motility. We made use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree modelling approaches,<br />

including a cellular Potts model, to elucidate <str<strong>on</strong>g>th</str<strong>on</strong>g>eir implicati<strong>on</strong>s <strong>on</strong> multicellular<br />

organizati<strong>on</strong> [1,2]. Recently we have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at self-propelled rods interacting just<br />

by volume exclusi<strong>on</strong> exhibit a n<strong>on</strong>-equilibrium transiti<strong>on</strong> to clustering [1]. Using<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g>, statistical analysis and a mean field approach, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e models<br />

resemble <str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental cluster size distributi<strong>on</strong>s, including<br />

a clustering transiti<strong>on</strong> at a critical cell density.<br />

References.<br />

[1] Peruani, F., Deutsch, A., & Bär, M. (2006) N<strong>on</strong>-equilibrium clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> self-propelled rods.<br />

Phys. Rev. E, 74(3), 030904.<br />

[2] Starruß, Jörn, Bley, Thomas, Søgaard-Andersen, Lotte and Deutsch, Andreas (2007) A new<br />

mechanism for collective migrati<strong>on</strong> in M. xan<str<strong>on</strong>g>th</str<strong>on</strong>g>us, in: J. Stat. Phys., 128, pp 269-286<br />

[3] Manuscript in preparati<strong>on</strong><br />

918


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Michał Startek<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

e-mail: michal.startek@duch.mimuw.edu.pl<br />

Anna Gambin<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

Dariusz Grzebelus<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture in Krakow<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transpos<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

envir<strong>on</strong>mental stress<br />

Transposable elements (TEs) are DNA segments capable <str<strong>on</strong>g>of</str<strong>on</strong>g> changing <str<strong>on</strong>g>th</str<strong>on</strong>g>eir positi<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome. Until recently, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey have been c<strong>on</strong>sidered to be selfish,<br />

parasitic DNA. As <str<strong>on</strong>g>of</str<strong>on</strong>g> late, however, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey have been acknownledged to be a major<br />

driving force <str<strong>on</strong>g>of</str<strong>on</strong>g> genome evoluti<strong>on</strong>. The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> TE proliferati<strong>on</strong> in living<br />

organisms is not understood well. It is usually modelled wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

so-called ’transpositi<strong>on</strong>-selecti<strong>on</strong> equilibrium’ (TSE) a balance between <str<strong>on</strong>g>th</str<strong>on</strong>g>e TE’s<br />

selfish drive to multiply inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e host, increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>eir numbers, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e deleterious<br />

influence <str<strong>on</strong>g>of</str<strong>on</strong>g> high TE copy number <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e host, causing selective pressure<br />

against hosts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high TE counts. TSE models, however, fail to adequately explain<br />

certain behaviours observed in nature, such as explosive bursts <str<strong>on</strong>g>of</str<strong>on</strong>g> TE activity,<br />

dramatically varied TE counts between closely-related species, and increase <str<strong>on</strong>g>of</str<strong>on</strong>g> TE<br />

counts in domesticated variants <str<strong>on</strong>g>of</str<strong>on</strong>g> plants. I will present a n<strong>on</strong> TSE-based, stochastic<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> TE amplificati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e stress exerted <strong>on</strong> host<br />

organisms by changing envir<strong>on</strong>ment. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>is model, I will show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e various<br />

dynamics observed in nature (and not in TSE models) can be explained to be a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> between envir<strong>on</strong>mental pressure, <str<strong>on</strong>g>th</str<strong>on</strong>g>e organism’s phenotype,<br />

and TE-driven adaptati<strong>on</strong>.<br />

919


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Tracy Stepien<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pittsburgh<br />

e-mail: tls52@pitt.edu<br />

David Swig<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pittsburgh<br />

Cell and Tissue Biophysics; Thursday, June 30, 11:30<br />

Stretch-dependent proliferati<strong>on</strong> in a <strong>on</strong>e-dimensi<strong>on</strong>al elastic<br />

c<strong>on</strong>tinuum model <str<strong>on</strong>g>of</str<strong>on</strong>g> cell layer migrati<strong>on</strong><br />

Collective cell migrati<strong>on</strong> plays an important role in maintaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e cohesi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cell layers and wound healing. Disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell migrati<strong>on</strong> can cause<br />

disease such as necrotizing enterocolitis, an intestinal inflammatory disease <str<strong>on</strong>g>th</str<strong>on</strong>g>at is<br />

a major cause <str<strong>on</strong>g>of</str<strong>on</strong>g> dea<str<strong>on</strong>g>th</str<strong>on</strong>g> in premature infants. A recently developed ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> cell layer migrati<strong>on</strong> during experimental necrotizing enterocolitis based <strong>on</strong><br />

an assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elastic deformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell layer leads to a generalized Stefan<br />

problem. The model is here extended to incorporate stretch-dependent proliferati<strong>on</strong>,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting PDE system is solved analytically and numerically. The<br />

efficiency and accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive finite difference and MOL schemes for numerical<br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem are compared. We find a large class <str<strong>on</strong>g>of</str<strong>on</strong>g> assumpti<strong>on</strong>s about<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferati<strong>on</strong> <strong>on</strong> stretch <str<strong>on</strong>g>th</str<strong>on</strong>g>at lead to traveling wave soluti<strong>on</strong>s.<br />

920


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stem cells and cancer; Wednesday, June 29, 14:30<br />

Thomas Stiehl<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Heidelberg<br />

e-mail: tstiehl@ix.urz.uni-heidelberg.de<br />

Models <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cell differentiati<strong>on</strong> in hematopoiesis and<br />

leukemia<br />

Cancers and hematologic malignancies differ wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to interindividual symptomatology,<br />

course <str<strong>on</strong>g>of</str<strong>on</strong>g> disease, treatment susceptibility and prognosis. Over <str<strong>on</strong>g>th</str<strong>on</strong>g>e last<br />

decades <strong>on</strong>cological treatment strategies have been elaborated and optimized, never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless<br />

important aspects remain unknown. A systematic ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical approach<br />

may help to better understand treatment failures and clinical heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

cancers. Based <strong>on</strong> a model <str<strong>on</strong>g>of</str<strong>on</strong>g> cell differentiati<strong>on</strong> and signal feedback possible<br />

scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer development and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir impact <strong>on</strong> c<strong>on</strong>sequences for treatment<br />

c<strong>on</strong>cepts will be compared. A calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to <str<strong>on</strong>g>th</str<strong>on</strong>g>e hematopoietic system<br />

will serve to transfer <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical results to <str<strong>on</strong>g>th</str<strong>on</strong>g>e understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> leukemias and<br />

myelodysplastic syndromes.<br />

921


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioengineering; Tuesday, June 28, 14:30<br />

Yv<strong>on</strong>ne Stokes<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Adelaide, SA<br />

5005, Australia.<br />

e-mail: Yv<strong>on</strong>ne.Stokes@adelaide.edu.au<br />

Alys Clark<br />

Auckland Bioengineering Institute, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Auckland, Auckland,<br />

New Zealand.<br />

e-mail: alys.clark@auckland.ac.nz<br />

Improving success rates <str<strong>on</strong>g>of</str<strong>on</strong>g> assisted reproducti<strong>on</strong> technology<br />

by ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling<br />

Assisted reproducti<strong>on</strong> technology (ART) involves support <str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes (eggs) and<br />

embryos in <str<strong>on</strong>g>th</str<strong>on</strong>g>e laboratory for some period <str<strong>on</strong>g>of</str<strong>on</strong>g> time, and success rates are known to be<br />

highly dependent <strong>on</strong> laboratory c<strong>on</strong>diti<strong>on</strong>s. It is believed <str<strong>on</strong>g>th</str<strong>on</strong>g>at better reproducti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> normal in-vivo c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e laboratory will bring improved success rates. At<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e very least knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>diti<strong>on</strong>s provides valuable guidance for setting<br />

laboratory c<strong>on</strong>diti<strong>on</strong>s. Because measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> in-vivo c<strong>on</strong>diti<strong>on</strong>s is difficult, if<br />

not impossible in some circumstances, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling is a valuable tool<br />

for gaining understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> in-vivo envir<strong>on</strong>ments.<br />

We report <strong>on</strong> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling for gaining a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e nutriti<strong>on</strong>al envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> mammalian oocytes in antral follicles. In particular<br />

reacti<strong>on</strong>-diffusi<strong>on</strong> models have been used in c<strong>on</strong>juncti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experiments to investigate<br />

oxygen and glucose c<strong>on</strong>centrati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e bovine follicle. Unlike oxygen<br />

which diffuses readily <str<strong>on</strong>g>th</str<strong>on</strong>g>rough cell walls, glucose molecules pass <str<strong>on</strong>g>th</str<strong>on</strong>g>rough via facilitated<br />

transport mechanisms. The model for glucose transport must reflect <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

fact and is, c<strong>on</strong>sequently, more complicated <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>at for oxygen. Experimental<br />

validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our models is challenging and will be discussed.<br />

The ultimate aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is to improve <str<strong>on</strong>g>th</str<strong>on</strong>g>e developmental competence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oocytes <str<strong>on</strong>g>th</str<strong>on</strong>g>at have been harvested at an immature stage and matured in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

laboratory, a procedure known as in-vitro maturati<strong>on</strong>. The ability to successfully<br />

use such oocytes in an IVF program reduces <str<strong>on</strong>g>th</str<strong>on</strong>g>e need for stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ovary<br />

to yield multiple mature oocytes for harvest and use in a traditi<strong>on</strong>al IVF program.<br />

This, in turn, makes ART available to women for whom ovarian stimulati<strong>on</strong> drugs,<br />

as used in traditi<strong>on</strong>al IVF me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, are likely to cause life <str<strong>on</strong>g>th</str<strong>on</strong>g>reatening illnesses.<br />

Reducing <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese drugs also has <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential to reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost <str<strong>on</strong>g>of</str<strong>on</strong>g> IVF.<br />

922


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanical Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Movement and Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cells and Tissues I;<br />

Wednesday, June 29, 14:30<br />

Magdalena A. Stolarska<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> St. Thomas, Saint Paul, MN, USA<br />

e-mail: mastolarska@st<str<strong>on</strong>g>th</str<strong>on</strong>g>omas.edu<br />

A mechanical model <str<strong>on</strong>g>of</str<strong>on</strong>g> cell motility and cell-subtrate<br />

interacti<strong>on</strong><br />

Mechanical interacti<strong>on</strong>s between a cell and <str<strong>on</strong>g>th</str<strong>on</strong>g>e substrate are vital for cell migrati<strong>on</strong><br />

and are involved in various cellular processes, such as wound healing, embry<strong>on</strong>ic<br />

development, a metastasis <str<strong>on</strong>g>of</str<strong>on</strong>g> cancerous tumors. In additi<strong>on</strong>, experiments<br />

have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at inter-cellular and cell-substrate mechanical interacti<strong>on</strong>s affect signal<br />

transducti<strong>on</strong> pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. As a result, understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> force generati<strong>on</strong> by single cells and mechanical interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

substrate is extremely important.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk, I will present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> cell motility and cellsubstrate<br />

interacti<strong>on</strong> where <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell and substrate are modeled as elastic twodimensi<strong>on</strong>al<br />

c<strong>on</strong>tinua. The spatially and temporally dynamics cell-substrate attachments<br />

are treated as discrete spring-dashpot systems. A finite element implementati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>of</str<strong>on</strong>g> cell and substrate deformati<strong>on</strong> is coupled to <str<strong>on</strong>g>th</str<strong>on</strong>g>e equati<strong>on</strong>s<br />

governing <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesi<strong>on</strong>s. The resulting simulati<strong>on</strong>s are used to better<br />

understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillatory nature <str<strong>on</strong>g>of</str<strong>on</strong>g> amoeboid cell motility.<br />

923


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemiology, Eco-Epidemiology and Evoluti<strong>on</strong>; Saturday, July 2, 11:00<br />

Nico Stollenwerk<br />

Centro de Matemática e Aplicações Fundamentais da Universidade de<br />

Lisboa,<br />

Avenida Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Gama Pinto 2,1649-003 Lisboa, Portugal<br />

e-mail: nico@ptmat.fc.ul.pt<br />

Chaos and noise in populati<strong>on</strong> biology<br />

In several epidemiological and ecological case studies, <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>ten subtle interplay<br />

between typical n<strong>on</strong>-linear structures like co-existing attractors or dynamical saddles<br />

attracting in some state space directi<strong>on</strong>s and repelling in o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers and <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> noise in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese case will be investigated. Examples are dengue fever, seas<strong>on</strong>al<br />

influenza and retrospective measles studies as well as from classical predator-prey<br />

models. The findings in part come from empirical data analysis, here mainly from<br />

epidemiology due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e better data situati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>an in ecology, and also have impact<br />

<strong>on</strong> parameter estimati<strong>on</strong> in such epidemiological systems.<br />

References.<br />

[1] Drepper, F.R., Engbert, R., & Stollenwerk, N. (1994) N<strong>on</strong>linear time series analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> empirical<br />

populati<strong>on</strong> dynamics, Ecological Modelling 75/76, 171–181.<br />

[2] Aguiar, M., Kooi, B., & Stollenwerk, N. (2008) Epidemiology <str<strong>on</strong>g>of</str<strong>on</strong>g> dengue fever: A model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

temporary cross-immunity and possible sec<strong>on</strong>dary infecti<strong>on</strong> shows bifurcati<strong>on</strong>s and chaotic<br />

behaviour in wide parameter regi<strong>on</strong>s, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Model. Nat. Phenom. 3, 48–70.<br />

[3] Aguiar, M., Stollenwerk, N., & Kooi, B. (2009) Torus bifurcati<strong>on</strong>s, isolas and chaotic attractors<br />

in a simple dengue fever model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ADE and temporary cross immunity, Intern. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Computer Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics 86, 1867–77.<br />

[4] S. van Noort, N. Stollenwerk and L. St<strong>on</strong>e, “Analytic likelihood functi<strong>on</strong> for data analysis in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

starting phase <str<strong>on</strong>g>of</str<strong>on</strong>g> an influenza outbreak”, Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> 9<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Computati<strong>on</strong>al and<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in Science and Engineering, CMMSE 2009, ISBN 978-84-612-9727-6,<br />

edited by Jesus Vigo Aguiar et al., Salamanca, 2009, pp. 1072–1080.<br />

924


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modelling dengue fever epidemiology; Saturday, July 2, 08:30<br />

Nico Stollenwerk<br />

CMAF, Universidade de Lisboa, Portugal<br />

e-mail: nico@ptmat.fc.ul.pt<br />

Maira Aguiar<br />

Sebastien Ballesteros<br />

Bob W. Kooi<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e irregularity <str<strong>on</strong>g>of</str<strong>on</strong>g> DHF epidemics<br />

By using an estimated parameter set for <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimalistic multi-strain dengue model<br />

we analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model investigating <str<strong>on</strong>g>th</str<strong>on</strong>g>e interplay between<br />

stochasticity, seas<strong>on</strong>ality and import.<br />

925


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Beatriz Stransky<br />

Centre <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, Modelling and Applied Social Sciences - Federal<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> ABC, Brazil<br />

e-mail: beatriz.stransky@ufabc.edu.br<br />

Lucas Amaral da Silva<br />

Federal University od ABC<br />

Luana Regina Aff<strong>on</strong>so<br />

Federal University od ABC<br />

Luiz Rozante<br />

Centre <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Cogniti<strong>on</strong> and Computati<strong>on</strong> - Federal University<br />

od ABC<br />

Fabiana Santana<br />

Centre <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Cogniti<strong>on</strong> and Computati<strong>on</strong> - Federal University<br />

od ABC<br />

Modelling populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> human epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cell<br />

lines: <str<strong>on</strong>g>th</str<strong>on</strong>g>e differential expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c-erbB2 <strong>on</strong>cogene and<br />

breast tumour development<br />

The comprehensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanisms underlying cancer development depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> processes underlying tissue formati<strong>on</strong>. In physiological c<strong>on</strong>diti<strong>on</strong>,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tissues are maintained in a dynamic equilibrium, called homeostasis, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cell number is kept essentially c<strong>on</strong>stant and is regulated based <strong>on</strong> reproducti<strong>on</strong>,<br />

dea<str<strong>on</strong>g>th</str<strong>on</strong>g> and half-life rates <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular populati<strong>on</strong>. Molecular alterati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at disturb<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e homeostasis can be potentially dangerous. Mutati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at would permit selective<br />

advantages, like a faster cell divisi<strong>on</strong>, could lead to <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cl<strong>on</strong>e<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuous grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Repeated cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> mutati<strong>on</strong>, competiti<strong>on</strong> and natural selecti<strong>on</strong><br />

form <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer development. The c-erbB2 <strong>on</strong>cogene is a membrane<br />

receptor wi<str<strong>on</strong>g>th</str<strong>on</strong>g> tyrosine kinase activity <str<strong>on</strong>g>th</str<strong>on</strong>g>at bel<strong>on</strong>gs to <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidermal grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor<br />

receptor family. C-erbB2 over-expressi<strong>on</strong> is observed in 25-30% <str<strong>on</strong>g>of</str<strong>on</strong>g> breast tumours<br />

and is an adverse prognostic factor. To study <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> c-erbB2,<br />

Harris at al. (1999) developed a model <str<strong>on</strong>g>of</str<strong>on</strong>g> c-erbB2 over-expressi<strong>on</strong> in c<strong>on</strong>diti<strong>on</strong>ally<br />

immortalized mammary luminal epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells. Two new lines, HB4a-C3.6<br />

and HB4a-C5.2, expressing different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> c-erbB2, were derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>e immortalized<br />

cell line HB4a. This work presents a computati<strong>on</strong>al model designed to<br />

mimic <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data obtained from <str<strong>on</strong>g>th</str<strong>on</strong>g>e in vitro culture <str<strong>on</strong>g>of</str<strong>on</strong>g> HB4a-C3.6 and<br />

HB4a-C5.2 lineages. A discrete agent-based model, c<strong>on</strong>trolled by a dynamic system<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at represents c-erbB2 expressi<strong>on</strong>, simulates <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell culture dynamics. In order<br />

to validate <str<strong>on</strong>g>th</str<strong>on</strong>g>e results, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey were compared to experimental data, regarding cell<br />

cycle and populati<strong>on</strong> dynamics. The model will be applied to evaluate differential<br />

expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 transcripts positively regulated by c-erbB2 tumours, evaluated by<br />

Real Time PCR in HB4a and HB4a-C5.2 cell lines. Their functi<strong>on</strong>al characterizati<strong>on</strong><br />

will allow a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular mechanisms behind c-erbB2<br />

over-expressi<strong>on</strong> and breast tumour development.<br />

926<br />

References.


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[1] R.A. Harris, T.J. Eichholtz, I.D. Hiles, M.J. Page, M.J. Ohare. New model <str<strong>on</strong>g>of</str<strong>on</strong>g> erbB-2 overexpressi<strong>on</strong><br />

in human mammary luminal epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells. Int. J. Cancer: 80, 477484 (1999).<br />

927


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling viral hepatitis dynamics in-vivo and in-vitro in <str<strong>on</strong>g>th</str<strong>on</strong>g>e era <str<strong>on</strong>g>of</str<strong>on</strong>g> direct<br />

anti-viral agents I; Tuesday, June 28, 17:00<br />

Lior Strauss<br />

Bar-Ilan University, Ramat-Gan, Israel<br />

e-mail: liorstr1@gmail.com<br />

Avidan U. Neumann<br />

Bar-Ilan University, Ramat-Gan, Israel<br />

Distributed Intra-Cellular Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Hepatitis C Viral<br />

Replicati<strong>on</strong> and Resistance Evoluti<strong>on</strong><br />

The new generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> direct acting anti-viral (DAA) drugs for HCV led to <str<strong>on</strong>g>th</str<strong>on</strong>g>e need<br />

for ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>th</str<strong>on</strong>g>at take in c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intra-cellular drug effects<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in clinical virology data. We have recently introduced <str<strong>on</strong>g>th</str<strong>on</strong>g>e ICCI model <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

integrated <str<strong>on</strong>g>th</str<strong>on</strong>g>e intra-cellular level <str<strong>on</strong>g>of</str<strong>on</strong>g> replicati<strong>on</strong> and resistance evoluti<strong>on</strong> processes<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular infecti<strong>on</strong> level (Guedj and Neumann, 2010). However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ICCI<br />

model used a mean-field approach to treat all infected cell as <str<strong>on</strong>g>th</str<strong>on</strong>g>e same dynamics,<br />

which we know is not accurate. Here, we present a new model (DIC) <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e intra-cellular level dynamics integrated into <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell infecti<strong>on</strong> level whle taking<br />

into c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infected cells as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

replicati<strong>on</strong> complexes in each cell. The DIC model shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at main novel findings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ICCI model hold even when <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean-field assumpti<strong>on</strong> is released. Most<br />

importantly, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model allows for 2 modes <str<strong>on</strong>g>of</str<strong>on</strong>g> viral decline: ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e delta model,<br />

where l<strong>on</strong>g term viral decline slope is governed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e loss <str<strong>on</strong>g>of</str<strong>on</strong>g> infected cells, or <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

gamma mode, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral decline is more rapid and related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e intra-cellular<br />

loss <str<strong>on</strong>g>of</str<strong>on</strong>g> replicati<strong>on</strong> complexes. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>e DIC model shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at while <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

delta mode <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different number <str<strong>on</strong>g>of</str<strong>on</strong>g> replicati<strong>on</strong> complexes<br />

is held stable, <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gamma mode <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells is shifting towards<br />

intra-cellular clearance. We have also established <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infected cell<br />

distributi<strong>on</strong> at steady state. The model was able to show a good fit for a wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> results observed in real patients treated ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> IFN based <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy<br />

or DAA combinati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. In a sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e work we have established<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e various resistance evoluti<strong>on</strong> patterns observed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ICCI model hold also<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out <str<strong>on</strong>g>th</str<strong>on</strong>g>e mean-field assumpti<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we show how <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different number and identity, wild-type versus resistant, <str<strong>on</strong>g>of</str<strong>on</strong>g> replicati<strong>on</strong><br />

complexes follows specific patterns during evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance. These results<br />

are important for our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e DAA <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy effect and allowing us to<br />

optimize treatment and prevent resistance evoluti<strong>on</strong>.<br />

928


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective phenomena in biological systems; Saturday, July 2,<br />

08:30<br />

Zbigniew Struzik<br />

The University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

e-mail: zbigniew.struzik@p.u-tokyo.ac.jp<br />

Measures <str<strong>on</strong>g>of</str<strong>on</strong>g> heart rate complexity<br />

For nearly <str<strong>on</strong>g>th</str<strong>on</strong>g>ree decades, human heart rate variability (HRV) has been c<strong>on</strong>sistently<br />

shown to display intriguing and puzzling characteristics, to a large degree defying<br />

satisfactory explanati<strong>on</strong> and posing challenges for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> modelling and clinical<br />

treatment. Recent findings c<strong>on</strong>firm <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e HRV regulatory system represents a<br />

prominent example <str<strong>on</strong>g>of</str<strong>on</strong>g> a biological complex system and remains a benchmark <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biocomplexity.<br />

C<strong>on</strong>tinued <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical and experimental effort is required to achieve a <str<strong>on</strong>g>th</str<strong>on</strong>g>orough<br />

understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is systems complexity. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol<br />

engineering, such an understanding should be capable <str<strong>on</strong>g>of</str<strong>on</strong>g> explaining regulatory<br />

mechanisms. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a physics approach, it should reveal striking properties <str<strong>on</strong>g>of</str<strong>on</strong>g> universality.<br />

From a clinical perspective, it should dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e utility <str<strong>on</strong>g>of</str<strong>on</strong>g> prognostic<br />

and predictive algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms.<br />

In my talk, I will provide a review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e measures <str<strong>on</strong>g>of</str<strong>on</strong>g> complexity utilised in<br />

various aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> HRV signal processing, focusing <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose providing a unifying<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>read for <str<strong>on</strong>g>th</str<strong>on</strong>g>e challenges above. Particular stress will be laid <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most up-to-date<br />

multi-time and multiscale evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-Gaussian properties <str<strong>on</strong>g>of</str<strong>on</strong>g> HRV.<br />

929


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> and cortical actin at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular level;<br />

Saturday, July 2, 08:30<br />

Wanda Strychalski<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis<br />

e-mail: wanda@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ucdavis.edu<br />

Robert D. Guy<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis<br />

Computati<strong>on</strong>al explorati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular blebbing<br />

Blebbing occurs when <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> detaches from <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane, resulting<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pressure-driven flow <str<strong>on</strong>g>of</str<strong>on</strong>g> cytosol towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e area <str<strong>on</strong>g>of</str<strong>on</strong>g> detachment and <str<strong>on</strong>g>th</str<strong>on</strong>g>e local<br />

expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane. Recent interest has focused <strong>on</strong> cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at use<br />

blebbing for migrating <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>ree dimensi<strong>on</strong>al fibrous matrices. In particular,<br />

metastatic cancer cells have been shown to use blebs for motility. A dynamic<br />

computati<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell is presented <str<strong>on</strong>g>th</str<strong>on</strong>g>at includes mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

interacti<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e intracellular fluid, <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane, <str<strong>on</strong>g>th</str<strong>on</strong>g>e actin cortex,<br />

and internal cytoskelet<strong>on</strong>. The Immersed Boundary Me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is modified to account<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative moti<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e fluid. The computati<strong>on</strong>al<br />

model is used to explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative roles in bleb formati<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> cytoplasmic<br />

viscosity and drag between <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytosol. A regime <str<strong>on</strong>g>of</str<strong>on</strong>g> values for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e drag coefficient and cytoplasmic viscosity values <str<strong>on</strong>g>th</str<strong>on</strong>g>at match bleb formati<strong>on</strong> time<br />

scales is presented. The model results are used to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e Darcy permeability<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cortex. Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model to blebbing-based<br />

cell motility are discussed.<br />

930


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Student Sebastian<br />

Biosystems Group, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, 44-100 Gliwice, Poland<br />

e-mail: sebastian.student@polsl.pl<br />

Cichońska Anna<br />

Student <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Faculty Of Automatic C<strong>on</strong>trol, Electr<strong>on</strong>ics And Computer<br />

Science, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Gliwice, Poland<br />

e-mail: anna.cich<strong>on</strong>ska@gmail.com<br />

Sk<strong>on</strong>ieczna Magdalena<br />

Biosystems Group, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, 44-100 Gliwice, Poland<br />

e-mail: magdalena.sk<strong>on</strong>ieczna@polsl.pl<br />

Joanna Rzeszowska-Wolny<br />

Biosystems Group, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Automatic C<strong>on</strong>trol, Silesian University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, 44-100 Gliwice, Poland<br />

e-mail: jrzeszowskawolny@yahoo.com<br />

Microarray gene expressi<strong>on</strong> studies and real time RT-PCR<br />

validati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA damage and repair pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way<br />

Different low-level preprocessing me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for Affymetrix microarrays data were<br />

evaluated based <strong>on</strong> c<strong>on</strong>cordance wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a real time RT-PCR me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> lowlevel<br />

analysis is to measure gene expressi<strong>on</strong> levels, and to allow comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

results from more <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong>e array. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper <str<strong>on</strong>g>th</str<strong>on</strong>g>ree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most popular preprocessing<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods: MAS5, RMA and GCRMA, were used. Expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA damage and repair pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way were analyzed <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e MAS5 - single<br />

array analysis algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m, <str<strong>on</strong>g>th</str<strong>on</strong>g>e GCRMA - probe-specific background correcti<strong>on</strong> and<br />

multiple array analysis, or RMA - mismatch probes ignored and multiple array<br />

analysis.<br />

The data were derived from experiments c<strong>on</strong>ducted wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Affymetrix platform<br />

U133A. For biological testing <str<strong>on</strong>g>th</str<strong>on</strong>g>e colorectal carcinoma HCT 116 cell line was chosen.<br />

The cells were irradiated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> 4 Gy <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>izing radiati<strong>on</strong>, and n<strong>on</strong>-irradiated<br />

cells used as a c<strong>on</strong>trol group. After microarray data analysis, real time RT-PCR<br />

was c<strong>on</strong>ducted. As an indicator for c<strong>on</strong>cordance between microarray experiments<br />

and real time RT-PCR, <str<strong>on</strong>g>th</str<strong>on</strong>g>e percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> genes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> changes<br />

in irradiated and n<strong>on</strong>-irradiated cells was used. The computati<strong>on</strong>al analysis was<br />

finished wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e PLS-based (partial least squares-based) gene selecti<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od,<br />

which enables assignment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological meanings for <str<strong>on</strong>g>th</str<strong>on</strong>g>e genes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e highest<br />

weights in <str<strong>on</strong>g>th</str<strong>on</strong>g>e PLS model. The PLS me<str<strong>on</strong>g>th</str<strong>on</strong>g>od, in c<strong>on</strong>trast to <str<strong>on</strong>g>th</str<strong>on</strong>g>e PCA (principal<br />

comp<strong>on</strong>ent analysis) criteri<strong>on</strong> based <strong>on</strong> maximizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear<br />

combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes, extracts comp<strong>on</strong>ents by maximizing <str<strong>on</strong>g>th</str<strong>on</strong>g>e sample covariance<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e class variable and linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genes. The informati<strong>on</strong> for<br />

genes included in comp<strong>on</strong>ents described by PLS can be directly related to <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological<br />

meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is analysis.<br />

The results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at data preprocessed wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RMA me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for microarray data<br />

has <str<strong>on</strong>g>th</str<strong>on</strong>g>e best c<strong>on</strong>cordance wi<str<strong>on</strong>g>th</str<strong>on</strong>g> real time RT-PCR assays. The biological validati<strong>on</strong><br />

931


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e best 10 genes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e highest weights in <str<strong>on</strong>g>th</str<strong>on</strong>g>e PLS model proved its applicability<br />

in systems biology. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese genes (MSH2, RAD9A, XP) are sensors<br />

for nucleic acid damage, and o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers (NTHL1, TDP1 DCLRE1A, ERCC2, POLI,<br />

MPG, TREX2) are engaged in mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA repair. Obviously, <str<strong>on</strong>g>th</str<strong>on</strong>g>e best<br />

score was obtained for genes resp<strong>on</strong>sible for signaling cellular stress after i<strong>on</strong>izing<br />

radiati<strong>on</strong>.<br />

This work was supported by grants No. N N 518497639 from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Polish Ministry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong> and Science and BK 221/Rau1/20 from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Technology<br />

References.<br />

[1] Affymetrix, New Statistical Algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms for M<strong>on</strong>itoring Gene Expressi<strong>on</strong> <strong>on</strong> GeneChip Probe<br />

Arrays2001.<br />

[2] R. Irizarry et al, Explorati<strong>on</strong>, normalizati<strong>on</strong>, and summaries <str<strong>on</strong>g>of</str<strong>on</strong>g> high density olig<strong>on</strong>ucleotide<br />

array probe level data Biostatistics 4 249-264.<br />

[3] Z. Wu et al, A Model Based Background Adjustment for Olig<strong>on</strong>ucleotide Expressi<strong>on</strong> Arrays<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e American Statistical Associati<strong>on</strong> 99 909-917.<br />

[4] A. Boulesteix, PLS dimensi<strong>on</strong> reducti<strong>on</strong> for classificati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> microarray data. Statistical<br />

Applicati<strong>on</strong>s in Genetics and Molecular Biology 3 Article33.<br />

932


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Marc Sturrock<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

e-mail: msturrock@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk<br />

Cancer; Tuesday, June 28, 11:00<br />

Spatio-temporal modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Hes1 and p53 pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways<br />

The correct localisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> factors is vitally important for <str<strong>on</strong>g>th</str<strong>on</strong>g>e proper<br />

functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> many intracellular signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. Experimental data has revealed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at many pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways exhibit oscillati<strong>on</strong>s, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> temporally and spatially, in<br />

resp<strong>on</strong>se to certain external stimuli. Negative feedback loops are important comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese oscillati<strong>on</strong>s, providing fine regulati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e factors involved. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> two such pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways–Hes1 and p53–are presented.<br />

Building <strong>on</strong> previous ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling approaches, we derive systems <str<strong>on</strong>g>of</str<strong>on</strong>g> partial<br />

differential equati<strong>on</strong>s to capture <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> in space and time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e variables<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Hes1 and p53 systems. Through computati<strong>on</strong>al simulati<strong>on</strong>s we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at our<br />

reacti<strong>on</strong>-diffusi<strong>on</strong> models are able to produce sustained oscillati<strong>on</strong>s bo<str<strong>on</strong>g>th</str<strong>on</strong>g> spatially<br />

and temporally, accurately reflecting experimental evidence and advancing previous<br />

models. The simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our models also allow us to calculate a diffusi<strong>on</strong> coefficient<br />

range for <str<strong>on</strong>g>th</str<strong>on</strong>g>e variables in each mRNA and protein system, as well as ranges<br />

for o<str<strong>on</strong>g>th</str<strong>on</strong>g>er key parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e models, where sustained oscillati<strong>on</strong>s are observed.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, by exploiting <str<strong>on</strong>g>th</str<strong>on</strong>g>e explicitly spatial nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e partial differential<br />

equati<strong>on</strong>s, we are also able to manipulate ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ribosomes, <str<strong>on</strong>g>th</str<strong>on</strong>g>us c<strong>on</strong>trolling where <str<strong>on</strong>g>th</str<strong>on</strong>g>e proteins are syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esized wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoplasm.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese simulati<strong>on</strong>s predict an optimal distance outside <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

nucleus where protein syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis should take place in order to generate sustained<br />

oscillati<strong>on</strong>s.<br />

Using partial differential equati<strong>on</strong> models, new informati<strong>on</strong> can be gained about <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

precise spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> mRNA and proteins. The ability to determine<br />

spatial localisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell is likely to yield fresh insight into a<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular diseases such as diabetes and cancer.<br />

References.<br />

[1] M. Sturrock, A. J. Terry, D. P. Xirodimas, A. M. Thomps<strong>on</strong>, M. A. J. Chaplain, Spatiotemporal<br />

modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Hes1 and p53-Mdm2 intracellular signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Theoretical Biology 273 15–31.<br />

933


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Lisa Sundqvist<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Marine Ecology<br />

e-mail: lisa.sundqvist@gu.se<br />

Measures <str<strong>on</strong>g>of</str<strong>on</strong>g> generati<strong>on</strong> time problems and clarificati<strong>on</strong>s<br />

Generati<strong>on</strong> time is a frequently used term in biology it is for example used in<br />

estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong>. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er it is an important parameter for evaluati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> extincti<strong>on</strong> risks <str<strong>on</strong>g>of</str<strong>on</strong>g> species and populati<strong>on</strong>s in c<strong>on</strong>servati<strong>on</strong> biology. Generati<strong>on</strong><br />

time is used by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Internati<strong>on</strong>al Uni<strong>on</strong> for C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nature (IUCN) to<br />

scale time based-measures <str<strong>on</strong>g>of</str<strong>on</strong>g> extincti<strong>on</strong> risk in species where <str<strong>on</strong>g>th</str<strong>on</strong>g>ree generati<strong>on</strong>s<br />

is l<strong>on</strong>ger <str<strong>on</strong>g>th</str<strong>on</strong>g>en 10 years. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e term is frequently used <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is no clear<br />

definiti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree main ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods to estimate generati<strong>on</strong> time<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s are incoherent. Which leads to c<strong>on</strong>fusi<strong>on</strong> when generati<strong>on</strong> time is<br />

to be calculated for <str<strong>on</strong>g>th</str<strong>on</strong>g>reatened species. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> papers have pointed out <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ambiguity c<strong>on</strong>nected to generati<strong>on</strong> time. However an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong>s<br />

and usage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e term is lacking in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature. This work aims to bring some<br />

clarity into <str<strong>on</strong>g>th</str<strong>on</strong>g>e measures <str<strong>on</strong>g>of</str<strong>on</strong>g> generati<strong>on</strong> time especially in <str<strong>on</strong>g>th</str<strong>on</strong>g>e area <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong>.<br />

It is <str<strong>on</strong>g>of</str<strong>on</strong>g> great c<strong>on</strong>cern <str<strong>on</strong>g>th</str<strong>on</strong>g>at already <str<strong>on</strong>g>th</str<strong>on</strong>g>reatened species are not disfavored according<br />

to inadequate calculati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system meant to save <str<strong>on</strong>g>th</str<strong>on</strong>g>em.<br />

934


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Moving Organisms: From Individuals to Populati<strong>on</strong>s; Wednesday, June 29, 17:00<br />

Christina Surulescu<br />

ICAM, WWU Münster, Einsteinstr. 62, 48149 Münster, Germany<br />

e-mail: christina.surulescu@uni-muenster.de<br />

Nico Surulescu<br />

IMS, WWU Münster, Einsteinstr. 62, 48149 Münster, Germany<br />

e-mail: nicolae.surulescu@uni-muenster.de<br />

Cell dispersal: some n<strong>on</strong>parametric and multiscale aproaches<br />

We provide a short overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e current approaches to modeling cell moti<strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>rough various media, <str<strong>on</strong>g>th</str<strong>on</strong>g>ereby focussing <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model scales, ranging from <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic,<br />

intracellular level <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e mesoscale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong><br />

c<strong>on</strong>stituents toward <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire populati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic level.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>text we propose and analyze a multiscale model for bacterial motility<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential equati<strong>on</strong>s. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er we present an alternative<br />

approach which relies <strong>on</strong> stochastic processes accounting for <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying moti<strong>on</strong><br />

phenotype and uses a n<strong>on</strong>parametric statistical technique in order to directly assess<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscpic cell populati<strong>on</strong> density from data (if available) or numerical<br />

simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell trajectories. This n<strong>on</strong>parametric approach allows to handle<br />

detailed multiscale models in a complexity which in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> PDEs is still<br />

prohibitive for <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerics.<br />

We will also provide an outlook <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

interesting biomedical problems.<br />

935


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Tuesday, June 28, 14:30<br />

Maciej Swat<br />

Biocomplexity Institute, Indiana University, Bloomingt<strong>on</strong> ,IN, USA<br />

e-mail: mswat@indiana.edu<br />

Abbas Shirinifard<br />

Biocomplexity Institute, Indiana University, Bloomingt<strong>on</strong> ,IN, USA<br />

Multi-Cell Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> Modeling Using CompuCell3D<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and computer simulati<strong>on</strong> have become crucial to biological<br />

fields from genomics to ecology. However, multi-cell, tissue-level simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

development and disease have lagged behind o<str<strong>on</strong>g>th</str<strong>on</strong>g>er areas because <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically<br />

more complex and lacked easy-to-use s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware tools <str<strong>on</strong>g>th</str<strong>on</strong>g>at allow building<br />

and running in-silico experiments wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out requiring in-dep<str<strong>on</strong>g>th</str<strong>on</strong>g> knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> programming.<br />

Recent advances in development <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-scale, multi-cell simulati<strong>on</strong><br />

envir<strong>on</strong>ments allow broad range <str<strong>on</strong>g>of</str<strong>on</strong>g> researchers to develop relatively easily sophisticated<br />

simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> development or disease. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will present Glazier<br />

Graner Hogeweg (GGH) model, its extensi<strong>on</strong>s to support subcellular Reacti<strong>on</strong>-<br />

Kinetics(RK) models and CompuCell3D a simulati<strong>on</strong> envir<strong>on</strong>ment supporting GGH<br />

and RK modeling. To dem<strong>on</strong>strate CompuCell3D [1] capabilities I will present a<br />

3D multi-cell simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a generic simplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> [2]<br />

which can be easily extended and adapted to describe more specific vascular tumor<br />

types and host tissues. Initially, tumor cells proliferate as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey take up <str<strong>on</strong>g>th</str<strong>on</strong>g>e oxygen<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>e pre-existing vasculature supplies. The tumor grows exp<strong>on</strong>entially. When<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e oxygen level drops below a <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold, <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor cells become hypoxic and start<br />

secreting pro-angiogenic factors. At <str<strong>on</strong>g>th</str<strong>on</strong>g>is stage, <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor reaches a maximum diameter<br />

characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> an avascular tumor spheroid. The endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pre-existing vasculature resp<strong>on</strong>d to <str<strong>on</strong>g>th</str<strong>on</strong>g>e pro-angiogenic factors bo<str<strong>on</strong>g>th</str<strong>on</strong>g> by chemotaxing<br />

towards higher c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pro-angiogenic factors and by forming new blood<br />

vessels via angiogenesis. The tumor-induced vasculature increases <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting vascularized solid tumor compared to an avascular tumor, allowing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor to grow bey<strong>on</strong>d <str<strong>on</strong>g>th</str<strong>on</strong>g>e spheroid in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese linear-grow<str<strong>on</strong>g>th</str<strong>on</strong>g> phases. In c<strong>on</strong>trast<br />

to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er simulati<strong>on</strong>s in which avascular tumors remain spherical, our simulated<br />

avascular tumors form cylinders following <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood vessels, leading to a different<br />

distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hypoxic cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor. Our simulati<strong>on</strong>s cover time periods<br />

which are l<strong>on</strong>g enough to produce a range <str<strong>on</strong>g>of</str<strong>on</strong>g> biologically reas<strong>on</strong>able complex morphologies,<br />

allowing us to study how tumor-induced angiogenesis affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate, size and. morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> simulated tumors. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e talk I will<br />

show a live demo (5-10 minutes) <str<strong>on</strong>g>of</str<strong>on</strong>g> CompuCell3D and dem<strong>on</strong>strate how, starting<br />

from relatively simple toy-models <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-sorting, c<strong>on</strong>tact-inhibited chemotaxis and<br />

nutrient-dependent cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g>/cell divisi<strong>on</strong>, we can build a fairly realistic simulati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> vascularized tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Such simulati<strong>on</strong> can be fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er improved to<br />

produce simulati<strong>on</strong> equivalent to <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e published in [2].<br />

References.<br />

[1] Multi-Cell Simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Development and Disease Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e CompuCell3D Simulati<strong>on</strong> Envir<strong>on</strong>ment,<br />

Maciej Swat, Susan D. Hester, Randy W. Heiland, Benjamin L. Zaitlen, James<br />

A. Glazier. In Ivan V. Maly ed., Systems Biology Series: Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in Molecular Biology, pp.<br />

138-190<br />

936


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] 3D Multi-Cell Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Angiogenesis, Abbas Shirinifard, John S.<br />

Gens, Benjamin L. Zaitlen, Nikodem J. Poplawski, Maciej Swat, James A. Glazier, PLoS<br />

ONE 4: e7190, doi:10.1371/journal.p<strong>on</strong>e.0007190 (2009).<br />

937


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Computati<strong>on</strong>al toxicology and pharmacology - in silico drug activity and<br />

safety assessment; Saturday, July 2, 11:00<br />

Maciej Swat<br />

Medical Biochemistry Academic Medical Center University <str<strong>on</strong>g>of</str<strong>on</strong>g> Amsterdam<br />

e-mail: m.j.swat@amc.uva.nl<br />

Systems Biology driven Pharmacokinetics and<br />

Pharmacodynamics<br />

Pharmacokinetics is probably <str<strong>on</strong>g>th</str<strong>on</strong>g>e most neglected field in <str<strong>on</strong>g>th</str<strong>on</strong>g>e medically relevant<br />

biosimulati<strong>on</strong>s. It is a science about <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug fate in a living organism and embraces<br />

in broader sense four main domains: absorpti<strong>on</strong>, distributi<strong>on</strong>, metabolism,<br />

and excreti<strong>on</strong>, in short ADME. It is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten combined and c<strong>on</strong>sidered toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

pharmacodynamics, a science branch dealing wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e drug has <strong>on</strong><br />

its target and eventually <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole body and disease progressi<strong>on</strong>. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e same<br />

time, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism based but in most cases drugfree models and simulati<strong>on</strong>s<br />

are highly appreciated and developed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Systems Biology community. There<br />

is no doubt <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e full understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying phenomena like physiological<br />

regulati<strong>on</strong> and c<strong>on</strong>trol, phenotypes, mutati<strong>on</strong>s and in general diseases is<br />

essential for <str<strong>on</strong>g>th</str<strong>on</strong>g>e progress in medicine. However, much has been achieved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

last decades wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out sophisticated algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms and supercomputers. Semimechanistic<br />

models or even simple phenomenological formulas and models are in use since<br />

beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e 20<str<strong>on</strong>g>th</str<strong>on</strong>g> century providing useful insights in e.g. physiology and pharmacokinetics<br />

related issues. We are c<strong>on</strong>vinced, <str<strong>on</strong>g>th</str<strong>on</strong>g>at parallel applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

two seemingly unc<strong>on</strong>nected approaches can eventually c<strong>on</strong>verge into more effective<br />

treatments me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods now or in near future. We are making an attempt to introduce<br />

a new platform combining standard phenomenological models used in <str<strong>on</strong>g>th</str<strong>on</strong>g>e PK/PD<br />

field wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mechanistically based Systems Biology models and approaches. There<br />

are many examples <str<strong>on</strong>g>of</str<strong>on</strong>g> wellknown 1, 2 or more compartmental models providing<br />

valuable initial guesses and insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolism, and ADME processes<br />

in general, <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular drug. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir use is limited due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>mechanistic<br />

nature <str<strong>on</strong>g>of</str<strong>on</strong>g> such models. We c<strong>on</strong>sider Systems Biology driven models<br />

as complementary to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir phenomenological counterparts. The ultimate goal <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

wholebody full mechanistic model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e combined PKPDADME is doable <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

scale <str<strong>on</strong>g>of</str<strong>on</strong>g> next few decades, but to support modern drug development now, we need<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e imperfect but useful phenomenological models in combinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mechanistic<br />

models under development.<br />

938


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 17:00<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Świder<br />

Rzeszow University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: kswider@prz-rzeszow.pl<br />

Bartosz Jędrzejec<br />

Rzeszow University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Modeling and Integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

BiNArr<br />

The investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological networks for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir better understanding and making<br />

available for practical use is currently an important task in systems biology.<br />

The au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors developed an integrated envir<strong>on</strong>ment BiNArr (Biological Network Arranger)<br />

aimed to perform a number <str<strong>on</strong>g>of</str<strong>on</strong>g> practically useful operati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network<br />

data stored in biological databases. Dissimilar to <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing tools like Cytoscape<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> our applicati<strong>on</strong> is ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er limited and strictly oriented for transforming<br />

structured data from real databases into graphs. This allows its fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

processing e.g. wi<str<strong>on</strong>g>th</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> graph mining algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. We proposed <str<strong>on</strong>g>th</str<strong>on</strong>g>e unified<br />

graph representati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e structures extracted from original resources and developed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e modules for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir visualizati<strong>on</strong> and editi<strong>on</strong>. Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er wor<str<strong>on</strong>g>th</str<strong>on</strong>g>y features are:<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e automatic coding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting graphs in several formats, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to generate<br />

graphic files for presentati<strong>on</strong> purposes and an open architecture enabling to<br />

cooperate wi<str<strong>on</strong>g>th</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> existing biological databases. In order to present capabilities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> BiNArr we used <str<strong>on</strong>g>th</str<strong>on</strong>g>e biological structures representing metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways<br />

extracted from KEGG (Kyoto Encyclopedia <str<strong>on</strong>g>of</str<strong>on</strong>g> Genes and Genomes) as well as<br />

protein-protein interacti<strong>on</strong>s provided in DIP (Database <str<strong>on</strong>g>of</str<strong>on</strong>g> Interacting Proteins).<br />

939


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Structure and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Reacti<strong>on</strong> Networks I; Tuesday, June<br />

28, 14:30<br />

David Swig<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Pittsburgh<br />

e-mail: swig<strong>on</strong>@pitt.edu<br />

Decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical reacti<strong>on</strong> networks<br />

I will outline <str<strong>on</strong>g>th</str<strong>on</strong>g>e ideas behind a novel <str<strong>on</strong>g>th</str<strong>on</strong>g>eory for analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g term dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> chemical reacti<strong>on</strong> networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> mass acti<strong>on</strong> kinetics based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e combinati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Deficiency Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Horn, Johns<strong>on</strong>, and Feinberg, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

networks into extreme subnetworks, pi<strong>on</strong>eered by Clarke. This is a work in progress,<br />

but am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>th</str<strong>on</strong>g>at have been obtained are <str<strong>on</strong>g>th</str<strong>on</strong>g>e formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new sufficient<br />

c<strong>on</strong>diti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e existence <str<strong>on</strong>g>of</str<strong>on</strong>g> a unique asymptotically stable positive equilibrium<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at generalize <str<strong>on</strong>g>th</str<strong>on</strong>g>e Deficiency Zero Theorem.<br />

940


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Structure and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Biochemical Reacti<strong>on</strong> Networks I; Tuesday, June<br />

28, 14:30<br />

Gábor Szederkényi<br />

Computer and Automati<strong>on</strong> Research Institute, Hungarian Acad. Sci.<br />

Kende u. 13-17, H-1111 Budapest, Hungary<br />

e-mail: szeder@scl.sztaki.hu<br />

Dynamically equivalent reacti<strong>on</strong> networks: a computati<strong>on</strong>al<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> view<br />

It has been known from <str<strong>on</strong>g>th</str<strong>on</strong>g>e ’fundamental dogma <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical kinetics’ <str<strong>on</strong>g>th</str<strong>on</strong>g>at different<br />

mass acti<strong>on</strong> type reacti<strong>on</strong> networks can give rise to <str<strong>on</strong>g>th</str<strong>on</strong>g>e same ordinary differential<br />

equati<strong>on</strong>s describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specie c<strong>on</strong>centrati<strong>on</strong>s. Finding<br />

dynamically equivalent network structures wi<str<strong>on</strong>g>th</str<strong>on</strong>g> preferred properties can significantly<br />

enhance <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e known and c<strong>on</strong>tinuously developing<br />

str<strong>on</strong>g results <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong> between network structure and qualitative dynamical<br />

properties (deficiency <str<strong>on</strong>g>th</str<strong>on</strong>g>eorems, structural c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> multiple<br />

steady states, Global Attractor and Persistency C<strong>on</strong>jectures etc.). It is also known<br />

primarily from systems and c<strong>on</strong>trol <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

existence and design problems can <str<strong>on</strong>g>of</str<strong>on</strong>g>ten be checked via appropriately formulated<br />

optimizati<strong>on</strong> tasks even if <str<strong>on</strong>g>th</str<strong>on</strong>g>e original problem is algebraically complex to treat.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> linear programming (LP) and mixed integer linear<br />

programming (MILP) techniques will be given for <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> networks<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> prescribed properties. This includes <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> structures wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e minimal/maximal number <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>s/complexes, detailed/complex balanced,<br />

and fully/weakly reversible realizati<strong>on</strong>s.<br />

941


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling III; Wednesday, June 29,<br />

17:00<br />

Piotr Szopa<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research<br />

Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw<br />

e-mail: pszopa@ippt.gov.pl<br />

Bogdan Kazmierczak<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research<br />

Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences, Warsaw<br />

e-mail: bkazmier@ippt.gov.pl<br />

Bifurcati<strong>on</strong> phenomena in spatially extended kinase-receptor<br />

interacti<strong>on</strong> model<br />

We c<strong>on</strong>sider a reacti<strong>on</strong>-diffusi<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> mutual interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane receptors<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> kinases proposed in [1]. It is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at membrane receptors and<br />

cytosolic kinases activate each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er, which establishes <str<strong>on</strong>g>th</str<strong>on</strong>g>e positive feedback. The<br />

kinases and <str<strong>on</strong>g>th</str<strong>on</strong>g>e receptors are dephosphorylated by uniformly distributed phosphatases.<br />

The existence <str<strong>on</strong>g>of</str<strong>on</strong>g> positive feedback leads to bifurcati<strong>on</strong> at which <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

positive stable soluti<strong>on</strong> appears.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study we c<strong>on</strong>sider, unlike <str<strong>on</strong>g>th</str<strong>on</strong>g>e au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors in [1], <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>uniformly<br />

distributed membrane receptors. We apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e Steklov eigenproblem <str<strong>on</strong>g>th</str<strong>on</strong>g>eory [2] to<br />

analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearized model and find <str<strong>on</strong>g>th</str<strong>on</strong>g>e analytic form <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s. This approach<br />

allows us to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e critical value <str<strong>on</strong>g>of</str<strong>on</strong>g> phospahatase activity at which cell<br />

activati<strong>on</strong> is possible as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> kinase diffusi<strong>on</strong> coeffcient and anisotropy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

receptor distributi<strong>on</strong> using <strong>on</strong>ly algebraic me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods.<br />

We showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at cell sensitivity grows wi<str<strong>on</strong>g>th</str<strong>on</strong>g> decreasing kinase diffusi<strong>on</strong> and increasing<br />

polarity <str<strong>on</strong>g>of</str<strong>on</strong>g> receptor distributi<strong>on</strong>. Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two effects are cooperating.<br />

The soluti<strong>on</strong>s to <str<strong>on</strong>g>th</str<strong>on</strong>g>e original n<strong>on</strong>linear system close to <str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcati<strong>on</strong><br />

point can be approximated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e soluti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e linearized <strong>on</strong>e. Moreover <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

approximati<strong>on</strong> can be improved by using <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <str<strong>on</strong>g>of</str<strong>on</strong>g> successive approximati<strong>on</strong>s.<br />

References.<br />

[1] B. Kazmierczak, T. Lipniacki Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> kinase activity by diffusi<strong>on</strong> and feedback J. Theor.<br />

Biol. 259 291–296.<br />

[2] G. Auchmuty Steklov eigenproblems and <str<strong>on</strong>g>th</str<strong>on</strong>g>e representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> elliptic boundary<br />

value problems Numer. Funct. Anal. Optim. 25 321–348 .<br />

942


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Saturday, July 2, 11:00<br />

Joanna Szymanowska-Pułka<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biophysics and Plant Morphogenesis, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Silesia, Katowice<br />

e-mail: jsp@us.edu.pl<br />

Jerzy Karczewski<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biophysics and Plant Morphogenesis, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Silesia, Katowice<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Lateral Root Morphology wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Fast Fourier Transform<br />

During <str<strong>on</strong>g>th</str<strong>on</strong>g>e lateral root (LR) development bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e size and <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e organ<br />

change c<strong>on</strong>tinuously since <str<strong>on</strong>g>th</str<strong>on</strong>g>e moment <str<strong>on</strong>g>of</str<strong>on</strong>g> its initiati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pericycle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

root until it reaches its mature form. Subsequent stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e LR formati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

typical changes <str<strong>on</strong>g>of</str<strong>on</strong>g> its form and cell pattern are known [1]. However, our observati<strong>on</strong>s<br />

[2] prove <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e early stages, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e LR promordia push <str<strong>on</strong>g>th</str<strong>on</strong>g>rough<br />

tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er root, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey show a great diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir surface morphology.<br />

Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e forms are repeatable, few occur as single cases. From mechanical point<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>th</str<strong>on</strong>g>e LR formati<strong>on</strong> may be interpreted as a bucling and <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed changes<br />

in shape as local deflecti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root apex surface resulting from a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er root. This irregularity in form may suggest<br />

changeable mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e LR apex.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> our study is to analyze atypicaly formed LRs in comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

apices <str<strong>on</strong>g>of</str<strong>on</strong>g> typical morhology as well as to estimate mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e LR<br />

apex basing <strong>on</strong> deflecti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir structures. The LR primordia forming in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana roots were photographed in Nomarski c<strong>on</strong>trast microscopic<br />

technique in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir axial secti<strong>on</strong>s. The outlines <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e chosen LRs showing typical<br />

and atypical shapes were digitized. The coordinates were introduced as initial data<br />

to a program analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e apices. The basic assumti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our model<br />

were <str<strong>on</strong>g>th</str<strong>on</strong>g>e following: (i) a surface <str<strong>on</strong>g>of</str<strong>on</strong>g> a typicaly shaped LR is a circular paraboloid<br />

[3]; (ii) trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> principal directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stress form a pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> paraboloids<br />

[3]; (iii) deflecti<strong>on</strong>s (irregularities) <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e organ surface are local and small in comparis<strong>on</strong><br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e apex size. The LR formati<strong>on</strong> was analyzed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical<br />

buckling. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e model we applied <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fast Fourier Transform me<str<strong>on</strong>g>th</str<strong>on</strong>g>od a standard<br />

tool adopted to descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> buckling [4, 5]. This allowed determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e deflecti<strong>on</strong><br />

curves <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e trig<strong>on</strong>ometric series. Our results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e outline <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

each LR apex <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e unchanged geometry (independently <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stage <str<strong>on</strong>g>of</str<strong>on</strong>g> development)<br />

may be described by <strong>on</strong>e parabolic curve, which in <str<strong>on</strong>g>th</str<strong>on</strong>g>e parabolic coordinates<br />

refers <str<strong>on</strong>g>th</str<strong>on</strong>g>e line 1.2. Thus <str<strong>on</strong>g>th</str<strong>on</strong>g>e curves representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e outlines <str<strong>on</strong>g>of</str<strong>on</strong>g> atypicaly formed<br />

LRs where in <str<strong>on</strong>g>th</str<strong>on</strong>g>e first step adjusted to <str<strong>on</strong>g>th</str<strong>on</strong>g>at line. For each studied curve <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fourier<br />

spectrum (amplitude and phase) was calculated . On <str<strong>on</strong>g>th</str<strong>on</strong>g>is basis we were able to<br />

classify atypicaly shaped LR apices. Then applying <str<strong>on</strong>g>th</str<strong>on</strong>g>e Euler formula to <str<strong>on</strong>g>th</str<strong>on</strong>g>e elastic<br />

buckling we estimated basic mechanical moduli for <str<strong>on</strong>g>th</str<strong>on</strong>g>e studied cases. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results <str<strong>on</strong>g>th</str<strong>on</strong>g>e following c<strong>on</strong>nclusi<strong>on</strong>s can be drawn: (i) <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fourier Transform<br />

may be a useful tool to a shape annalisys <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e living structures; (ii) mechanical<br />

moduli <str<strong>on</strong>g>of</str<strong>on</strong>g> a growing plant organ tissues can be estimated <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e organ<br />

shape and its deformati<strong>on</strong>s; (iii) <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> growing plant tissues<br />

943


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

may be regulated by biological factors like plant grow<str<strong>on</strong>g>th</str<strong>on</strong>g> horm<strong>on</strong>es as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

cell wall achitecture. The last needs additi<strong>on</strong>al studies.<br />

References.<br />

[1] J.E. Malamy, P.N. Benfey, 1997. Organizati<strong>on</strong> and cell differentiati<strong>on</strong> in lateral roots <str<strong>on</strong>g>of</str<strong>on</strong>g> Arabidopsis<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>aliana. Development, 124, 33-44.<br />

[2] J. Szymanowska-Pułka, I. Potocka, L. Feldman, J. Karczewski. Principal directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir manifestati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> a developing lateral root in Arabidopsis <str<strong>on</strong>g>th</str<strong>on</strong>g>aliana<br />

poster. The EMBO Meeting 2010, Barcel<strong>on</strong>a Sept 27, 2010.<br />

[3] Z. Hejnowicz, 1984. Trajectories <str<strong>on</strong>g>of</str<strong>on</strong>g> principal directi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, natural coordinate system<br />

in growing plant organ. Acta Soc. Bot. Pol., 53(1), 29-42.<br />

[4] S.P.Timoshenko, J.M Gere, 1985. Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> elastic stability. McGraw-Hill Int. Book Com,<br />

1-45.<br />

[5] R. Vandiver , A. Goriely, 2009. Differential grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and residual stress in cylindrical elastic<br />

structures. Phil. Trans. R. Soc. A, 367, 3607-3630.<br />

944


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling IV; Saturday, July 2, 08:30<br />

Paulina Szymanska<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics and Mechanics<br />

e-mail: p.szymanska@gmail.com<br />

Jacek Miekisz<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Informatics and Mechanics<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> self-regulating gene<br />

We study <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins produced in a self-regulating<br />

gene in a steady state wi<str<strong>on</strong>g>th</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>e and two copies <str<strong>on</strong>g>of</str<strong>on</strong>g> gene. Master equati<strong>on</strong>s and<br />

differential equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e first and sec<strong>on</strong>d moments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e variable describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> proteins are formulated in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> models. Various approximati<strong>on</strong> schemes<br />

are used in order to close <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e moments. Specifically, we<br />

examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adiabaticity parameter measuring<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e relative rate <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA-protein unbinding and protein degradati<strong>on</strong>. We compare<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e variance obtained in models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>e and two gene copies.<br />

945


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Zuzanna Szymańska<br />

ICM, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

e-mail: Z.Szymanska@icm.edu.pl<br />

Mark A. J. Chaplain<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Dundee<br />

Mirosław Lachowicz<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

Dariusz Wrzosek<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

Cancer; Tuesday, June 28, 17:00<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong>: distinguishing<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-cell adhesi<strong>on</strong> and<br />

cell-matrix adhesi<strong>on</strong><br />

The process <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tissue by cancer cells is crucial for metastasis – <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary tumours – which is <str<strong>on</strong>g>th</str<strong>on</strong>g>e main cause <str<strong>on</strong>g>of</str<strong>on</strong>g> mortality in patients<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cancer. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> process itself, adhesi<strong>on</strong>, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cell-cell and cell-matrix,<br />

plays an extremely important role. In our talk we present a novel ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cell invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix taking into account cellcell<br />

adhesi<strong>on</strong> as well as cell-matrix adhesi<strong>on</strong>. C<strong>on</strong>sidering <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s between<br />

cancer cells, extracellular matrix and matrix degrading enzymes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model c<strong>on</strong>sists<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>-diffusi<strong>on</strong> partial integro-differential equati<strong>on</strong>s, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> n<strong>on</strong>-local<br />

(integral) terms describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e adhesive interacti<strong>on</strong>s between cancer cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

host tissue, i.e. cell-cell adhesi<strong>on</strong> and cell-matrix adhesi<strong>on</strong>. We first describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

main results <str<strong>on</strong>g>th</str<strong>on</strong>g>at we obtained from a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

existence and uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> global in time classical soluti<strong>on</strong>s which are uniformly<br />

bounded. Then, using computati<strong>on</strong>al simulati<strong>on</strong>s we investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-cell adhesi<strong>on</strong> and cell-matrix adhesi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong><br />

process. In particular we examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e roles <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-cell adhesi<strong>on</strong> and cell-matrix<br />

adhesi<strong>on</strong> in generating heterogeneous spatio-temporal soluti<strong>on</strong>s.<br />

References.<br />

[1] M. A. J. Chaplain, M. Lachowicz, Z. Szymańska and D. Wrzosek (2011) Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cancer invasi<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> cell-cell adhesi<strong>on</strong> and cell-matrix adhesi<strong>on</strong>, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

Models Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods Appl. Sci., 21, 1-25.<br />

946


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Medical Physiology; Saturday, July 2, 08:30<br />

Masoomeh Taghipoor 1<br />

e-mail: masoomeh.taghipoor@lmpt.univ-tours.fr<br />

Philippe Lescoat 2<br />

e-mail: Philippe.Lescoat@tours.inra.fr<br />

Jean-René Licois 1<br />

e-mail: licois@lmpt.univ-tours.fr<br />

Christine Georgelin 1<br />

e-mail: Christine.Georgelin@lmpt.univ-tours.fr<br />

Guy Barles 1<br />

e-mail: barles@lmpt.univ-tours.fr<br />

1 Laboratoire de Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ématiques et Physique Théorique (CNRS UMR-<br />

6083), Denis Poiss<strong>on</strong> Federati<strong>on</strong> (CNRS FR-2964), François Rabelais<br />

University, Parc de Grandm<strong>on</strong>t, 37200 Tours, France<br />

2 INRA, UR83 Recherches Avicoles, 37380 Nouzilly, France,<br />

A New Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Model for combining Transport and<br />

Degradati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Small Intestine<br />

The small intestine is resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e major part <str<strong>on</strong>g>of</str<strong>on</strong>g> feedstuffs digesti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

gastrointestinal tract. Several models have been developed for representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

digesti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a bolus in <str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine ([1], [2], [3]). This work tries to go fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

in modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>ese phenomena by representing a simultaneous model for degradati<strong>on</strong><br />

and absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feedstuffs and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir transport in <str<strong>on</strong>g>th</str<strong>on</strong>g>e intestinal lumen. Specifically,<br />

we determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bolus and <str<strong>on</strong>g>th</str<strong>on</strong>g>e proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stituents at<br />

each time. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we present four successive models which<br />

reflect <str<strong>on</strong>g>th</str<strong>on</strong>g>e modeling process at its different stages wi<str<strong>on</strong>g>th</str<strong>on</strong>g> our attempts to make it more<br />

realistic by inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more relevant biological phenomena. The small intestine is<br />

assumed to be a <strong>on</strong>e-dimensi<strong>on</strong>al interval and <str<strong>on</strong>g>th</str<strong>on</strong>g>e bolus moves <str<strong>on</strong>g>th</str<strong>on</strong>g>rough its lumen due<br />

to migrating myoelectric complex. The bolus is treated as a homogeneous cylinder<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a fixed leng<str<strong>on</strong>g>th</str<strong>on</strong>g> ℓ and variable radius R(t). The degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feedstuffs is <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> volumic and surfacic transformati<strong>on</strong>s. This model is based <strong>on</strong> a system <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coupled ordinary differential equati<strong>on</strong>s. These equati<strong>on</strong>s are solved by a classical<br />

numerical integrati<strong>on</strong> using Runge-Kutta me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong> are<br />

c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental works in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature (e.g. in <str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> purified<br />

starch [5]), al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough more analysis and experimentati<strong>on</strong>s are needed to represent<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e reality more closely.<br />

The sec<strong>on</strong>d part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work c<strong>on</strong>sists in using <str<strong>on</strong>g>th</str<strong>on</strong>g>e homogenizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to<br />

simplify <str<strong>on</strong>g>th</str<strong>on</strong>g>e transport equati<strong>on</strong> and justify <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> by<br />

intestinal wall [4].<br />

The transport <str<strong>on</strong>g>of</str<strong>on</strong>g> bolus inside <str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine is induced by high frequency<br />

pulses. These pulses cause rapid variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e bolus’ velocity in <str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine.<br />

We show ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematically <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e pulses can be averaged out in an appropriate<br />

way <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore <str<strong>on</strong>g>th</str<strong>on</strong>g>e rapidly varying velocity can be replaced by a slowly varying <strong>on</strong>e.<br />

Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lack <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> about <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine<br />

wall, <str<strong>on</strong>g>th</str<strong>on</strong>g>e local absorpti<strong>on</strong> rate is not precisely defined. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough, an effective or<br />

averaged rate <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> is determined by help <str<strong>on</strong>g>of</str<strong>on</strong>g> homogenizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods [6].<br />

To <str<strong>on</strong>g>th</str<strong>on</strong>g>is aim, a 3-D transport-diffusi<strong>on</strong> PDE in <str<strong>on</strong>g>th</str<strong>on</strong>g>e domain Ωɛ wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a Neumann<br />

947


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

boundary c<strong>on</strong>diti<strong>on</strong> (reflecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fourier’s law) is defined. The domain Ωɛ describes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine. It is a 3-D domain wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a small radius rɛ and a highly<br />

oscillating boundary. The oscillati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its boundary is justified by <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fingerlike villi which cover <str<strong>on</strong>g>th</str<strong>on</strong>g>e inner surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e small intestine. The unknown<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem being <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>e absorbable nutrients, <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary c<strong>on</strong>diti<strong>on</strong><br />

represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e absorpti<strong>on</strong> rate by intestinal wall. To justify <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>stant<br />

absorpti<strong>on</strong> rate, our me<str<strong>on</strong>g>th</str<strong>on</strong>g>od c<strong>on</strong>sists in a passage to <str<strong>on</strong>g>th</str<strong>on</strong>g>e limit from <str<strong>on</strong>g>th</str<strong>on</strong>g>is equati<strong>on</strong><br />

to obtain a 1-D transport equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a c<strong>on</strong>stant averaged rate <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong> .<br />

References.<br />

[1] J.D. Logan, A. Joern, W. Wolesensky , Locati<strong>on</strong>, Time, and Temperature Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Digesti<strong>on</strong> in Simple Animal Tracts, J. Theoretical Biology, (2002), Issue 1, 216 5–18.<br />

[2] D. Bastianelli, D. Sauvant, A. Rerat, A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> digesti<strong>on</strong> and nutrient<br />

absorpti<strong>on</strong> in pigs, J. Anim. Sci. (1996) Issue 8, 74 1873–1887.<br />

[3] R. Miftah<str<strong>on</strong>g>of</str<strong>on</strong>g>, N. Akhmadeev, Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> intestinal propulsi<strong>on</strong>, J. Theoretical Biology, (2007),<br />

Issue 2, 246 377–393.<br />

[4] Piccinini, Livio C. Homogenizati<strong>on</strong> problems for ordinary differential equati<strong>on</strong>s, Rend. Circ.<br />

Mat. Palermo (2), (1978),27 no. 1, 95–112.<br />

[5] B. Darcy, J.P. Laplace, P.A. Villiers, Digesti<strong>on</strong> dans l’intestin grele chez le porc, Ann.zootech,<br />

(1981), 30 31–62.<br />

[6] G. Barles, F.Da Lio, P-L Li<strong>on</strong>s, P. E. SouganidisErgodic problems and periodic homogenizati<strong>on</strong><br />

for fully n<strong>on</strong>linear equati<strong>on</strong>s in half-space type domains wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Neumann boundary c<strong>on</strong>diti<strong>on</strong>s,<br />

Indiana University Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Journal, (2008), 57 5 2355–2376<br />

948


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Takenori Takada<br />

Hokkaido University<br />

e-mail: takada@ees.hokudai.ac.jp<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> yearly transiti<strong>on</strong> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> land-use dynamics<br />

and its applicati<strong>on</strong>s<br />

Transiti<strong>on</strong> matrices have <str<strong>on</strong>g>of</str<strong>on</strong>g>ten been used in landscape ecology and GIS studies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

land-use to quantitatively estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change. When transiti<strong>on</strong> matrices<br />

for different observati<strong>on</strong> periods are compared, <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong> intervals <str<strong>on</strong>g>of</str<strong>on</strong>g>ten differ<br />

because satellite images or photographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e research site taken at c<strong>on</strong>stant<br />

time intervals may not be available. For such calculati<strong>on</strong>, several previous studies<br />

have utilized a linear algebra formula <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e power root <str<strong>on</strong>g>of</str<strong>on</strong>g> matrices. However,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree difficulties may arise when applying <str<strong>on</strong>g>th</str<strong>on</strong>g>is formula to a practical dataset from<br />

photographs <str<strong>on</strong>g>of</str<strong>on</strong>g> a research site. We examined <str<strong>on</strong>g>th</str<strong>on</strong>g>e first difficulty, namely <str<strong>on</strong>g>th</str<strong>on</strong>g>at plural<br />

soluti<strong>on</strong>s could exist for a yearly transiti<strong>on</strong> matrix, which implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere could<br />

be multiple scenarios for <str<strong>on</strong>g>th</str<strong>on</strong>g>e same transiti<strong>on</strong> in land-use change. Using data for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Abukuma Mountains in Japan, we <str<strong>on</strong>g>th</str<strong>on</strong>g>en looked at <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d difficulty, in which we<br />

may obtain no positive Markovian matrix and <strong>on</strong>ly a matrix partially c<strong>on</strong>sisting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> negative numbers. We propose a way to calibrate a matrix wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some negative<br />

transiti<strong>on</strong> elements and to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong> error. Finally, we discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ird difficulty <str<strong>on</strong>g>th</str<strong>on</strong>g>at arises when a new land-use category appears at <str<strong>on</strong>g>th</str<strong>on</strong>g>e end <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong> period and how to solve it. We developed a computer program to<br />

calculate and calibrate <str<strong>on</strong>g>th</str<strong>on</strong>g>e yearly matrices and to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicti<strong>on</strong> error.<br />

949


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Daisuke Takahashi<br />

Center for Ecological Research, Kyoto University, Japan<br />

e-mail: dtakahashi@ecology.kyoto-u.ac.jp<br />

Åke Brännström<br />

Evoluti<strong>on</strong> and Ecology Program, Internati<strong>on</strong>al Institute for Applied<br />

Systems Analysis, Austria<br />

e-mail: brnstrom@iiasa.ac.at<br />

Rupert Mazzucco<br />

Evoluti<strong>on</strong> and Ecology Program, Internati<strong>on</strong>al Institute for Applied<br />

Systems Analysis, Austria<br />

e-mail: mazzucco@iiasa.ac.at<br />

Atsushi Yamauchi<br />

Center for Ecological Research, Kyoto University, Japan<br />

e-mail: a-yama@ecology.kyoto-u.ac.jp<br />

Ulf Dieckmann<br />

Evoluti<strong>on</strong> and Ecology Program, Internati<strong>on</strong>al Institute for Applied<br />

Systems Analysis, Austria<br />

e-mail: dieckmann@iiasa.ac.at<br />

Meta-stable states and macro-evoluti<strong>on</strong>ary transiti<strong>on</strong>s in an<br />

eco-evoluti<strong>on</strong>ary food-web model<br />

Eco-evoluti<strong>on</strong>ary food-web models help elucidate <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

emergence and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> complex community structures. However, most existing<br />

community-evoluti<strong>on</strong> models are based <strong>on</strong> random speciati<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us do<br />

not c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e gradual evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trophic traits. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, intermittent<br />

bursts <str<strong>on</strong>g>of</str<strong>on</strong>g> evoluti<strong>on</strong> associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> punctuated equilibria highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> describing not <strong>on</strong>ly an evolved community’s structure, but also <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying<br />

evoluti<strong>on</strong>ary dynamics. While models based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> self-organized criticality<br />

help understand n<strong>on</strong>-equilibrium community dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey have so far been<br />

based <strong>on</strong> str<strong>on</strong>gly simplified assumpti<strong>on</strong>s about ecological interacti<strong>on</strong>s. Using an<br />

individual-based model, here we incorporate <str<strong>on</strong>g>th</str<strong>on</strong>g>e gradual evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> key traits for<br />

foraging and interference interacti<strong>on</strong> into a model <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-equilibrium community<br />

evoluti<strong>on</strong>. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at our model communities quickly diversify into autotrophs<br />

(plants) and c<strong>on</strong>sumers (herbvivores), wi<str<strong>on</strong>g>th</str<strong>on</strong>g> distinctive phenotypic clusters resulting<br />

from successive speciati<strong>on</strong> driven by plant-herbivore coevoluti<strong>on</strong>. Occasi<strong>on</strong>ally, all<br />

herbivores go extinct in sudden macroevoluti<strong>on</strong>ary transiti<strong>on</strong>s, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e remaining<br />

community primarily featuring plants. Our findings <str<strong>on</strong>g>th</str<strong>on</strong>g>us reveal a pattern <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

community macroevoluti<strong>on</strong> involving two meta-stable states, corresp<strong>on</strong>ding to a<br />

plant–herbivore community and a plant community, respectively. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary<br />

timescale, our model community switches stochastically and rapidly between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese two alternative community states. We explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e processes resp<strong>on</strong>sible for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> plant–herbivore communities in our model, as well as for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

subsequent reestablishment <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivore diversity. Our model <str<strong>on</strong>g>th</str<strong>on</strong>g>us helps us understand<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e eco-evoluti<strong>on</strong>ary mechanisms underlying <str<strong>on</strong>g>th</str<strong>on</strong>g>ese recurrent dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rapid community breakdown and regenerati<strong>on</strong>, which terminate intermittent periods<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> near-stasis or punctuated equilibrium.<br />

950


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Genetics; Wednesday, June 29, 14:30<br />

Satoshi Takahashi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> and Computer Sciences, Nara Women’s<br />

University<br />

e-mail: takahasi@lisboa.ics.nara-wu.ac.jp<br />

Rika Okamoto, Sayaka Noguchi, Yumiko Inoue, Tomoko Kawasaki<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> and Computer Sciences, Nara Women’s<br />

University<br />

Michio Hori<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, Kyoto University<br />

e-mail: hori@terra.zool.kyoto-u.ac.jp<br />

From Populati<strong>on</strong> Dynamics to Evoluti<strong>on</strong>: Oscillati<strong>on</strong> in<br />

Lateral Asymmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish Induces <str<strong>on</strong>g>th</str<strong>on</strong>g>e Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Homozygote Incompatibility<br />

Lateral asymmetry, originally found in scale eating cichlid fish in Lake Tanganyika,<br />

was first c<strong>on</strong>sidered to follow <str<strong>on</strong>g>th</str<strong>on</strong>g>e simple Mendelian genetics. Later, more c<strong>on</strong>trolled<br />

mating experiments <strong>on</strong> scale eaters and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er fish reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey lack lefty<br />

(dominant) homozygote. Le<str<strong>on</strong>g>th</str<strong>on</strong>g>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> lefty homozygote explains F1 ratio, but not<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e high hatchability <str<strong>on</strong>g>of</str<strong>on</strong>g> lefty pairs. We c<strong>on</strong>struct models <str<strong>on</strong>g>of</str<strong>on</strong>g> incompatibilities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

lefty homozygote and investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e invasi<strong>on</strong> and fixati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

incompatibility gene. Laterality morph frequencies in many fish oscillate due to<br />

cross-predati<strong>on</strong> am<strong>on</strong>g prey and predators: predators feed <strong>on</strong> prey <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same<br />

laterality wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em more <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> different laterality. Incompatibility gene,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at prevents eggs <str<strong>on</strong>g>of</str<strong>on</strong>g> lefty gene from fertilizing sperm <str<strong>on</strong>g>of</str<strong>on</strong>g> lefty gene, spreads in case<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> group spawning, as l<strong>on</strong>g as laterality morph frequencies oscillates. Under pair<br />

spawning c<strong>on</strong>diti<strong>on</strong>, however, incompatibility gene does not spread, as incompatibility<br />

gene prevents part <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs to fertilize in some genotype combinati<strong>on</strong>s. We<br />

c<strong>on</strong>sider partial incompatibility where eggs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e incompatibility gene and <str<strong>on</strong>g>th</str<strong>on</strong>g>e lefty<br />

gene fertilize wi<str<strong>on</strong>g>th</str<strong>on</strong>g> sperm <str<strong>on</strong>g>of</str<strong>on</strong>g> lefty gene in smaller ratio <str<strong>on</strong>g>th</str<strong>on</strong>g>an sperm <str<strong>on</strong>g>of</str<strong>on</strong>g> righty gene.<br />

The incompatibility gene spreads even under pair spawning c<strong>on</strong>diti<strong>on</strong> if its incompatibility<br />

is partial. We also study <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> incompatibility<br />

by simulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> two incompatibility genes <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

incompatibility levels bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in prey and predator. Str<strong>on</strong>ger cross predati<strong>on</strong>, large<br />

predati<strong>on</strong> coefficient, as well as larger survival rate lead to larger level <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e lefty<br />

homozygote incompatibility.<br />

951


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Recent developments in <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> Lotka-Volterra and Kolmogorov<br />

systems; Saturday, July 2, 14:30<br />

Yasuhiro Takeuchi<br />

Graduate School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology, Shizuoka University<br />

e-mail: takeuchi@sys.eng.shizuoka.ac.jp<br />

Global stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Lotka-Volterra equati<strong>on</strong>s<br />

This presentati<strong>on</strong> will review some c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> global stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Lotka-Volterra<br />

equati<strong>on</strong>s and discuss <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability and <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e systems.<br />

Y. Takeuchi; Global Dynamical Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Lotka-Volterra Systems, World Scientific<br />

1996.<br />

952


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Neurosciences; Friday, July 1, 14:30<br />

Massimiliano Tamborrino<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Universitetsparken<br />

5, DK 2100, Copenhagen, Denmark.<br />

e-mail: mt@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ku.dk<br />

Susanne Ditlevsen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Copenhagen, Universitetsparken<br />

5, DK 2100, Copenhagen, Denmark.<br />

e-mail: susanne@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ku.dk<br />

Petr Lansky<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology, Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Czech Republic,<br />

142 20 Prague 4, Czech Republic<br />

e-mail: lansky@biomed.cas.cz<br />

Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first-spike latency<br />

Resp<strong>on</strong>se latency is <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e delivery <str<strong>on</strong>g>of</str<strong>on</strong>g> a stimulus and <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se.<br />

In neurosciences, it is <str<strong>on</strong>g>of</str<strong>on</strong>g> interest to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e first-spike latency, i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

intertime between <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> a stimulus and <str<strong>on</strong>g>th</str<strong>on</strong>g>e first-resp<strong>on</strong>se spike. However,<br />

when sp<strong>on</strong>taneous activity is observed, <str<strong>on</strong>g>th</str<strong>on</strong>g>is task becomes more complicated. To<br />

deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is problem, we apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od introduced recently by Lansky<br />

et al. [1]. Some preliminary analysis <strong>on</strong> real data as well as some <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical<br />

results <strong>on</strong> Wiener processes are here presented.<br />

References.<br />

[1] P. Lansky et al. (2010), First-spike latency in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous activity, Neural<br />

Computati<strong>on</strong> 22, 1675–1697.<br />

953


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Saturday, July 2, 11:00<br />

S<str<strong>on</strong>g>of</str<strong>on</strong>g>ia Tapani<br />

Dep. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Statistics,<br />

Chalmers University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology and Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg University<br />

e-mail: s<str<strong>on</strong>g>of</str<strong>on</strong>g>ia.tapani@chalmers.se<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<strong>on</strong>uclei migrati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mammalian egg<br />

At <str<strong>on</strong>g>th</str<strong>on</strong>g>is time it remains unanswered how <str<strong>on</strong>g>th</str<strong>on</strong>g>e embry<strong>on</strong>ic-abembry<strong>on</strong>ic axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

mouse blastocyst is first established. Cell-fate is flexible in <str<strong>on</strong>g>th</str<strong>on</strong>g>e sense <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

development can recover from perturbati<strong>on</strong>s. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e early mouse embryo is<br />

not merely a uniform ball. The cells show some preferences for adopting certain<br />

positi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at will in turn govern <str<strong>on</strong>g>th</str<strong>on</strong>g>eir developmental decisi<strong>on</strong>s. Our main questi<strong>on</strong><br />

is: When are <str<strong>on</strong>g>th</str<strong>on</strong>g>ese preferences established? Cell-fates could be decided completely<br />

at random but it is also possible <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese decisi<strong>on</strong>s are guided by even as early<br />

c<strong>on</strong>tributing factors as <str<strong>on</strong>g>th</str<strong>on</strong>g>e first cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e egg. The orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e opposing<br />

pr<strong>on</strong>uclei plays most likely a decisive role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e polarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing embryo.<br />

Earlier studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse embryo development show deviating results <str<strong>on</strong>g>of</str<strong>on</strong>g> when<br />

patterning is initiated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e egg, [1]-[4], [6], [7]. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese studies <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>clude<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern formati<strong>on</strong> starts later in <str<strong>on</strong>g>th</str<strong>on</strong>g>e embryo have however been c<strong>on</strong>ducted<br />

in 2D. We <str<strong>on</strong>g>th</str<strong>on</strong>g>ink it is important to see <str<strong>on</strong>g>th</str<strong>on</strong>g>is as a <str<strong>on</strong>g>th</str<strong>on</strong>g>ree dimensi<strong>on</strong>al problem to reduce<br />

bias in <str<strong>on</strong>g>th</str<strong>on</strong>g>e results. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> introducing our model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> is to<br />

easier visualize <str<strong>on</strong>g>th</str<strong>on</strong>g>e fertilizati<strong>on</strong> process to answer <str<strong>on</strong>g>th</str<strong>on</strong>g>ese questi<strong>on</strong>s. The usefulness<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> is not <strong>on</strong>ly a case for visualizati<strong>on</strong>, but<br />

could also be used to predict outcomes by simulating different scenarios, such as<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e point <str<strong>on</strong>g>of</str<strong>on</strong>g> sperm entry. Also, values <str<strong>on</strong>g>of</str<strong>on</strong>g> model parameters can<br />

be used to quantify <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> standard treatment or measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilized<br />

eggs in <str<strong>on</strong>g>th</str<strong>on</strong>g>e lab. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e model we can make simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> process<br />

and plot <str<strong>on</strong>g>th</str<strong>on</strong>g>e meeting positi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e pr<strong>on</strong>uclei. As data we use stacks <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>focal<br />

microscopy time-lapse images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pr<strong>on</strong>uclei migrati<strong>on</strong>, and realistic parameters in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e models are identified by statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. Given different distances between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e sperm entry and <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d polar body, <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimated models are<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>en used to produce distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> orientati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e meeting plane between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pr<strong>on</strong>uclei. Parameter values corresp<strong>on</strong>ding to <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese forces are estimated<br />

from data <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> eggs treated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a microtubule inhibitor and untreated eggs.<br />

The centralizati<strong>on</strong> force is modelled by two mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> pushing and pulling <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e microtubule exerted forces. The model is essentially based <strong>on</strong> two forces <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

attracti<strong>on</strong>, a general migrati<strong>on</strong> directed towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell, and a sec<strong>on</strong>d<br />

attracti<strong>on</strong> force towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er pr<strong>on</strong>ucleus. From <str<strong>on</strong>g>th</str<strong>on</strong>g>is we have for example an<br />

indicati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e pulling mechanism is more significant <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>e pushing.<br />

References.<br />

[1] Hiiragi, T., Solter, D. , (2005). Mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> first cleavage specificati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse egg. Is<br />

our body plan set at day 0? Cell Cycle 4 661–664.<br />

[2] Motosugi, N., Bauer, T., Polanski, Z., Solter, D., Hiiragi, T. (2005). Polarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse<br />

embryo is established at blastocyst and is not prepatterned Genes Dev. 19 1081–1092.<br />

954


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] Plusa B, Hadjant<strong>on</strong>akis AK, Gray D, Piotrowska-Nitsche K, Jedrusik A, Papaioannou VE,<br />

Glover DM, Zernicka-Goetz M, (2005). The first cleavage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse zygote predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

blastocyst axis. Nature 434 391–5.<br />

[4] Schatten G., D<strong>on</strong>ovan P., (2004). Embryology: Plane talk Nature 430 301–2.<br />

[5] Tapani, S., Udagawa, J., Plusa, B., Zernicka-Goetz, M., Lundh, T., (2008). Three dimensi<strong>on</strong>al<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> pr<strong>on</strong>uclei migrati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse. <str<strong>on</strong>g>European</str<strong>on</strong>g> C<strong>on</strong>gress <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Stereology and Image Analysis, Nor<str<strong>on</strong>g>th</str<strong>on</strong>g> America.<br />

[6] Zernicka-Goetz M. (2006). The first cell-fate decisi<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse embryo: destiny is a<br />

matter <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> chance and choice. Curr Opin Genet Dev. 16(4) 406–12.<br />

[7] Zernicka-Goetz M. (2005). Developmental cell biology: cleavage pattern and emerging asymmetry<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mouse embryo. Nat Rev Mol Cell Biol. 6 919–28.<br />

955


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemic models: Networks and stochasticity II; Thursday, June 30, 11:30<br />

Michael Taylor<br />

Universuty <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex<br />

e-mail: mt264@sussex.ac.uk<br />

From Markovian to pairwise epidemic models and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

performance <str<strong>on</strong>g>of</str<strong>on</strong>g> moment closure approximati<strong>on</strong>s<br />

Many if not all models <str<strong>on</strong>g>of</str<strong>on</strong>g> disease transmissi<strong>on</strong> <strong>on</strong> networks can be linked to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

exact state-based Markovian formulati<strong>on</strong>. However <str<strong>on</strong>g>th</str<strong>on</strong>g>e large number <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s<br />

for any system <str<strong>on</strong>g>of</str<strong>on</strong>g> realistic size limits <str<strong>on</strong>g>th</str<strong>on</strong>g>eir applicability to small populati<strong>on</strong>s. As<br />

a result, most modelling work relies <strong>on</strong> simulati<strong>on</strong> and pairwise models. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

paper, for a simple SIS dynamics <strong>on</strong> an arbitrary network, we formalise <str<strong>on</strong>g>th</str<strong>on</strong>g>e link<br />

between a well known pairwise model and <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact Markovian formulati<strong>on</strong>. This<br />

involves <str<strong>on</strong>g>th</str<strong>on</strong>g>e rigorous derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact ODE model at <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected number <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs and triples. The exact system is <str<strong>on</strong>g>th</str<strong>on</strong>g>en closed<br />

using two different closures, <strong>on</strong>e well established and <strong>on</strong>e <str<strong>on</strong>g>th</str<strong>on</strong>g>at has been recently<br />

proposed. A new interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> closures is presented, which explains several<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir previously observed properties. The closed dynamical systems are solved<br />

numerically and <str<strong>on</strong>g>th</str<strong>on</strong>g>e results are compared to output from individual-based stochastic<br />

simulati<strong>on</strong>s. This is d<strong>on</strong>e for a range <str<strong>on</strong>g>of</str<strong>on</strong>g> networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same average degree and<br />

clustering coefficient but generated using different algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms. It is shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e pairwise system to accurately model an epidemic is fundamentally<br />

dependent <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying large-scale network structure. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

existing pairwise models are a good t for certain types <str<strong>on</strong>g>of</str<strong>on</strong>g> network but have to<br />

be used wi<str<strong>on</strong>g>th</str<strong>on</strong>g> cauti<strong>on</strong> as higher-order network structures may compromise <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

effectiveness.<br />

956


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mickael Teixeira Alves<br />

UR880 - URIH / INRA Sophia Antipolis FRANCE<br />

e-mail: mteixeira@sophia.inra.fr<br />

Ludovic Mailleret<br />

UR880 - URIH / INRA Sophia Antipolis FRANCE<br />

e-mail: ludovic.mailleret@sophia.inra.fr<br />

Frédéric Grognard<br />

BIOCORE / INRIA Sophia Antipolis FRANCE<br />

e-mail: frederic.grognard@inria.fr<br />

Populati<strong>on</strong> Dynamics; Tuesday, June 28, 14:30<br />

Optimal foraging predators in Leslie Gower models wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

alternative prey<br />

Optimal foraging <str<strong>on</strong>g>th</str<strong>on</strong>g>eory defines <str<strong>on</strong>g>th</str<strong>on</strong>g>e diet choice <str<strong>on</strong>g>of</str<strong>on</strong>g> a predator by imposing <str<strong>on</strong>g>th</str<strong>on</strong>g>at it<br />

chooses <str<strong>on</strong>g>th</str<strong>on</strong>g>e prey <str<strong>on</strong>g>th</str<strong>on</strong>g>at is instantaneously <str<strong>on</strong>g>th</str<strong>on</strong>g>e most beneficial for him [1]. It has been<br />

shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong> leads to a switching diet and to <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

prey and predators in generalized Lokta-Volterra models [2, 3]. This framework can<br />

be useful to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> an introduced alternative prey <strong>on</strong> a <strong>on</strong>e-prey<strong>on</strong>e-predator<br />

system. In a Lokta-Volterra model, <str<strong>on</strong>g>th</str<strong>on</strong>g>is introducti<strong>on</strong> can enhance<br />

predator grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and have negative effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main prey, which is called apparent<br />

competiti<strong>on</strong> [4].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we focus <strong>on</strong> a Leslie-Gower model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> two dynamic prey, where<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e preyed populati<strong>on</strong> determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e carrying capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e predator populati<strong>on</strong>.<br />

Optimal foraging aiming at <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e per capita grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

predator populati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>en leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its instantaneous carrying<br />

capacity. This optimizati<strong>on</strong> defines two main regi<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> state space,<br />

separated by a dividing plane, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us <str<strong>on</strong>g>th</str<strong>on</strong>g>ree diet strategies. The predator populati<strong>on</strong><br />

will have <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice between eating <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e main prey, or <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e alternative<br />

prey, or following a mixed diet. In each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese <str<strong>on</strong>g>th</str<strong>on</strong>g>ree regi<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics which<br />

are relevant to <str<strong>on</strong>g>th</str<strong>on</strong>g>e predator reduce to a Leslie-Gower model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a stable positive<br />

equilibrium.<br />

Depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system, different global behaviors arise.<br />

However, in all cases, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is <strong>on</strong>ly a single positive stable equilibrium, which can<br />

potentially lie <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dividing plane; <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium is such <str<strong>on</strong>g>th</str<strong>on</strong>g>at its predator populati<strong>on</strong><br />

is larger or equal <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e alternative prey. Also,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an alternative prey is never detrimental to <str<strong>on</strong>g>th</str<strong>on</strong>g>e main prey; so <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

apparent competiti<strong>on</strong> does not hold.<br />

References.<br />

[1] W. W. Murdoch, Switching in General Predators: Experiments <strong>on</strong> Predator Specificity and<br />

Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Prey Populati<strong>on</strong>s Ecological M<strong>on</strong>ographs 1969 335–354.<br />

[2] M. van Baalen, V. Krivan, P. C.J. van Rijn and M. W. Sabelis, Alternative food, switching<br />

predators, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> predator-prey systems. The American Naturalist 2001 512–<br />

524.<br />

[3] V. Krivan and J. Eisner, Optimal Foraging and predator-prey dynamics III Theoretical Populati<strong>on</strong><br />

Biology 2003 269–279.<br />

[4] R. D. Holt, Predati<strong>on</strong>, Apparent Competiti<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Prey Communities Theoretical<br />

Populati<strong>on</strong> Biology 1977 197–229.<br />

957


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Atsushi Tero<br />

Kyusyu University<br />

e-mail: tero.atsushi@gmail.com<br />

Toshiyuki Nakagaki<br />

Future University Hakodate<br />

Ryo Kobayashi<br />

Hiroshima University<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Adaptive Network <str<strong>on</strong>g>of</str<strong>on</strong>g> True Slime Mold<br />

We describe here a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> a transport<br />

network <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e true slime mold Physarum polycephalum, an amoeboid organism<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at exhibits pa<str<strong>on</strong>g>th</str<strong>on</strong>g>-finding behavior in a maze. This organism possesses a network<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tubular elements, by means <str<strong>on</strong>g>of</str<strong>on</strong>g> which nutrients and signals circulate <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Physarum. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e organism is put in a maze, <str<strong>on</strong>g>th</str<strong>on</strong>g>e network changes its shape<br />

to c<strong>on</strong>nect two exits by <str<strong>on</strong>g>th</str<strong>on</strong>g>e shortest pa<str<strong>on</strong>g>th</str<strong>on</strong>g>. By reproducing <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong> we<br />

introduce new me<str<strong>on</strong>g>th</str<strong>on</strong>g>od to solve shortest pa<str<strong>on</strong>g>th</str<strong>on</strong>g> problem. In additi<strong>on</strong>, Physarum<br />

makes various optimal network for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>. It is similar to<br />

human transportati<strong>on</strong> network. We will talk about <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Physarum which can apply to various adaptive network.<br />

References.<br />

[1] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker, K. Yumiki, R. Kobayashi,<br />

T. Nakagaki, Rules for Biologically Inspired Adaptive Network Design. Science 2010/1/22 Vol.<br />

327, No.5964 P.439-442<br />

[2] A. Tero, R. Kobayashi, T. Nakagaki, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for adaptive transport network<br />

in pa<str<strong>on</strong>g>th</str<strong>on</strong>g> finding by <str<strong>on</strong>g>th</str<strong>on</strong>g>e true slime mold. J. Theor. Biol, ELSEVIER 244(2007)553-564<br />

958


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

B and T cell immune resp<strong>on</strong>ses; Wednesday, June 29, 11:00<br />

Emmanuelle Terry<br />

Institut Camille Jordan, UMR CNRS 5208, Université Claude Bernard<br />

Ly<strong>on</strong> 1, 21 avenue Claude Bernard, 69622 Villeurbanne Cedex, France;<br />

INRIA Team Dracula, INRIA Center Grenoble Rhône-Alpes<br />

e-mail: terry@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.univ-ly<strong>on</strong>1.fr<br />

Modelling CD8 T-Cell Immune Resp<strong>on</strong>se<br />

This work has been made in collaborati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Christophe Arpin (IN-<br />

SERM U851, Ly<strong>on</strong>), Fabien Crauste (Univ. Ly<strong>on</strong> 1), Clarisse Dubois<br />

(INSERM U851, Ly<strong>on</strong>), Olivier Gandrill<strong>on</strong> (Univ. Ly<strong>on</strong> 1), Stéphane<br />

Genieys (Univ. Ly<strong>on</strong> 1), Isabelle Lemercier (INSERM U851, Ly<strong>on</strong>),<br />

Jacqueline Marvel (INSERM U851, Ly<strong>on</strong>)<br />

The primary CD8 T-cell resp<strong>on</strong>se, due to a first encounter wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen,<br />

happens in two phases: an expansi<strong>on</strong> phase, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a fast increase <str<strong>on</strong>g>of</str<strong>on</strong>g> T-cell count,<br />

followed by a c<strong>on</strong>tracti<strong>on</strong> phase. This c<strong>on</strong>tracti<strong>on</strong> phase is followed by <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> memory cells. These latter are specific <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e antigen and will allow a<br />

faster and str<strong>on</strong>ger resp<strong>on</strong>se when encountering <str<strong>on</strong>g>th</str<strong>on</strong>g>e antigen for <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d time.<br />

Several works recently proposed models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CD8 immune resp<strong>on</strong>se [1, 2, 3, 4].<br />

Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese works do not c<strong>on</strong>sider any regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se [1, 2,<br />

4], whereas o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers propose very detailed and complex models [3].<br />

We will present two models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e primary resp<strong>on</strong>se, in which n<strong>on</strong>linearities account<br />

for molecular regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell dynamics. The first <strong>on</strong>e, inspired by [2], is<br />

based <strong>on</strong> ordinary differential equati<strong>on</strong>s. The sec<strong>on</strong>d <strong>on</strong>e, inspired by [1], is based<br />

<strong>on</strong> partial delay differential equati<strong>on</strong>s, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e delay takes into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e time<br />

cells take to differentiate from <strong>on</strong>e state to <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er <strong>on</strong>e. We will discuss in particular<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e roles and relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> feedback c<strong>on</strong>trols <str<strong>on</strong>g>th</str<strong>on</strong>g>at could regulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e resp<strong>on</strong>se.<br />

Then, we will show some simulati<strong>on</strong>s we can get from <str<strong>on</strong>g>th</str<strong>on</strong>g>e models and c<strong>on</strong>fr<strong>on</strong>t <str<strong>on</strong>g>th</str<strong>on</strong>g>em<br />

to experimental data. Finally, we will c<strong>on</strong>sider <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem at <str<strong>on</strong>g>th</str<strong>on</strong>g>e molecular scale,<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a model describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e network <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular regulati<strong>on</strong>s in a T-cell during <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

immune resp<strong>on</strong>se.<br />

References.<br />

[1] R. Antia, V.V. Ganusov and R. Ahmed, The role <str<strong>on</strong>g>of</str<strong>on</strong>g> models in understanding CD8+ T-cell<br />

memory Nature Reviews 5 101–111.<br />

[2] R.J. De Boer, M. Oprea, R. Antia, K. Murali-Krishna, R. Ahmed and A.S. Perels<strong>on</strong>, Recruitment<br />

Times, Proliferati<strong>on</strong>, and Apoptosis Rates during <str<strong>on</strong>g>th</str<strong>on</strong>g>e CD8 T-Cell Resp<strong>on</strong>se to<br />

Lymphocytic Choriomeningitis Virus J. Virology 75 10663–10669.<br />

[3] P.S. Kim, P.P. Lee and D. Levy, Modeling regulati<strong>on</strong> mechanisms in <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune system J.<br />

Theor. Biol. 246 33–69.<br />

[4] I.M. Rouzine, K. Murali-Krishna and R. Ahmed, Generals die in friendly fire, or modeling<br />

immune resp<strong>on</strong>se to HIV J. Computati<strong>on</strong>al and Appl. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. 184 258–274.<br />

959


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Jeremy Thibodeaux<br />

Loyola University New Orleans<br />

e-mail: <str<strong>on</strong>g>th</str<strong>on</strong>g>ibodea@loyno.edu<br />

Timo<str<strong>on</strong>g>th</str<strong>on</strong>g>y P. Schlittenhardt<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Central Oklahoma<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 14:30<br />

Optimal Treatment Strategies for Malaria Infecti<strong>on</strong><br />

We develop a numerical me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for estimating optimal parameters in a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-host dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> malaria infecti<strong>on</strong>. The model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a quasilinear system <str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential equati<strong>on</strong>s. We present several numerical<br />

simulati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at periodic treatments <str<strong>on</strong>g>th</str<strong>on</strong>g>at are in synchr<strong>on</strong>izati<strong>on</strong><br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e periodic bursting rate <str<strong>on</strong>g>of</str<strong>on</strong>g> infected ery<str<strong>on</strong>g>th</str<strong>on</strong>g>rocytes are <str<strong>on</strong>g>th</str<strong>on</strong>g>e most productive<br />

strategies.<br />

960


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Semigroups <str<strong>on</strong>g>of</str<strong>on</strong>g> Operators in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology I; Wednesday, June 29, 08:30<br />

Horst Thieme<br />

Ariz<strong>on</strong>a State University<br />

e-mail: <str<strong>on</strong>g>th</str<strong>on</strong>g>ieme@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.asu.edu<br />

Iterative approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spectral radius <str<strong>on</strong>g>of</str<strong>on</strong>g> a positive<br />

operator<br />

In populati<strong>on</strong> models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> infinite dimensi<strong>on</strong>al structure, <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic reproducti<strong>on</strong><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g>ten is <str<strong>on</strong>g>th</str<strong>on</strong>g>e spectral radius <str<strong>on</strong>g>of</str<strong>on</strong>g> an appropriate positive linear operator <strong>on</strong> an<br />

infinite-dimensi<strong>on</strong>al ordered Banach space. This operator is called next generati<strong>on</strong><br />

operator in case a biological interpretati<strong>on</strong> is available. Since a closed expressi<strong>on</strong> for<br />

its spectral radius can <strong>on</strong>ly be obtained in special cases, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is renewed interest<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e approximati<strong>on</strong> and estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spectral radius. Quite a few results are<br />

available in <str<strong>on</strong>g>th</str<strong>on</strong>g>e operator <str<strong>on</strong>g>th</str<strong>on</strong>g>eory and and computati<strong>on</strong>al/numerical literature. It is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk to review some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese and give <str<strong>on</strong>g>th</str<strong>on</strong>g>em a new twist.<br />

961


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioimaging; Tuesday, June 28, 11:00<br />

K<strong>on</strong>stantin Thierbach<br />

Institute for Medical Informatics and Biometry , Medical Faculty<br />

Carl Gustav Carus, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: k<strong>on</strong>stantin.phil@googlemail.com<br />

Nico Scherf<br />

IMB, Medical Faculty, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Ingmar Glauche<br />

IMB, Medical Faculty, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Ingo Roeder<br />

IMB, Medical Faculty, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>al shape models in single cell<br />

tracking<br />

The analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> single cells provides valuable insights into ex vivo cell assays. This<br />

is achieved by taking time series <str<strong>on</strong>g>of</str<strong>on</strong>g> images <str<strong>on</strong>g>of</str<strong>on</strong>g> cell cultures and analyzing <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to migrati<strong>on</strong>, divisi<strong>on</strong>, mitosis and cell-cell<br />

interacti<strong>on</strong>.<br />

However, due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> data complete manual rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cell trajectories is not feasible, which indicates a urgent need for automated<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods. As computerized approaches lack <str<strong>on</strong>g>th</str<strong>on</strong>g>e highly optimized features <str<strong>on</strong>g>of</str<strong>on</strong>g> human<br />

percepti<strong>on</strong>, it is especially <str<strong>on</strong>g>th</str<strong>on</strong>g>e reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> cell detecti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e tracking in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

presence <str<strong>on</strong>g>of</str<strong>on</strong>g> object occlusi<strong>on</strong> and large displacements between single images which<br />

represent <str<strong>on</strong>g>th</str<strong>on</strong>g>e major difficulties for individual cell tracking.<br />

We present an essentially novel approach to mitigate <str<strong>on</strong>g>th</str<strong>on</strong>g>ese problems using recently<br />

developed me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods in image processing incorporating prior shape knowledge<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> objects. In particular, <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> object occlusi<strong>on</strong>s and<br />

blurry object outlines due to noise in <str<strong>on</strong>g>th</str<strong>on</strong>g>e data can be handled by <str<strong>on</strong>g>th</str<strong>on</strong>g>is extensi<strong>on</strong>. We<br />

adapted <str<strong>on</strong>g>th</str<strong>on</strong>g>e active c<strong>on</strong>tour framework wi<str<strong>on</strong>g>th</str<strong>on</strong>g> prior shape informati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> robust cell detecti<strong>on</strong>. The me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is able to detect cell shapes more accurately<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>us allows for <str<strong>on</strong>g>th</str<strong>on</strong>g>e utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> refined tracking algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms using more robust<br />

object features for <str<strong>on</strong>g>th</str<strong>on</strong>g>e mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> cells between images. We fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er present a direct<br />

applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e active c<strong>on</strong>tour models to <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint detecti<strong>on</strong> and tracking <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

moving, deformable cells.<br />

962


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stochastic models in computati<strong>on</strong>al neuroscience I; Wednesday, June 29, 14:30<br />

Michele Thieullen<br />

Universite Pierre et Marie Curie<br />

e-mail: michele.<str<strong>on</strong>g>th</str<strong>on</strong>g>ieullen@upmc.jussieu.fr<br />

Piecewise Deterministic Markov Processes and detailed<br />

neur<strong>on</strong> models.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk I will introduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e family <str<strong>on</strong>g>of</str<strong>on</strong>g> Piecewise Deterministic Markov Processes.<br />

Systems described by <str<strong>on</strong>g>th</str<strong>on</strong>g>ese processes undergo deterministic evoluti<strong>on</strong> <strong>on</strong><br />

random intervals. I will present some results about <str<strong>on</strong>g>th</str<strong>on</strong>g>ese processes including limit<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eorems and diffusi<strong>on</strong> approximati<strong>on</strong>. Models <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>s taking into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

stochasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> channels make a natural example.<br />

963


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>luids, Solute Transport, and Hemodynamics; Wednesday, June 29, 11:00<br />

S. Randall Thomas<br />

IR4M UMR8081 CNRS, France<br />

e-mail: stephen-randall.<str<strong>on</strong>g>th</str<strong>on</strong>g>omas@u-psud.fr<br />

Robert G. Moss<br />

IR4M UMR8081 CNRS, France<br />

Thibault Grosse<br />

IR4M UMR8081 CNRS, France<br />

François Gueyffier<br />

Université Ly<strong>on</strong> 1; CNRS, UMR 5558; INSERM, CIC 201; Service de<br />

Pharmacologie Clinique, L. Pradel Hospital, Ly<strong>on</strong>, France<br />

Na<str<strong>on</strong>g>th</str<strong>on</strong>g>alie Lassau<br />

IR4M UMR8081 CNRS, France<br />

Patrick Hannaert<br />

Inserm U927, CHU La Milétrie, Poitiers, France<br />

Towards integrative multiscale models <str<strong>on</strong>g>of</str<strong>on</strong>g> whole kidney<br />

structure and functi<strong>on</strong><br />

Existing models <str<strong>on</strong>g>of</str<strong>on</strong>g> renal functi<strong>on</strong> have generally focused <strong>on</strong> open questi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ’local’<br />

(i.e., intrarenal) physiology ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an <strong>on</strong> providing an overall descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

renal functi<strong>on</strong> relevant to its role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e body and incorporating sufficient detail<br />

to address <str<strong>on</strong>g>th</str<strong>on</strong>g>e roles <str<strong>on</strong>g>of</str<strong>on</strong>g> transporters and channels in each nephr<strong>on</strong> segment We will<br />

present our current efforts towards a multi-organ systems model <str<strong>on</strong>g>of</str<strong>on</strong>g> blood pressure<br />

regulati<strong>on</strong>. The resulting open-source platform will be oriented towards interactive<br />

explorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> targeted pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ologies and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir pharmacology. Our approach will<br />

be: (1) to complete an integrated endocrine/paracrine RAAS (renin-angiotensinaldoster<strong>on</strong>e<br />

system) model, (2) to build a whole-kidney model representing essential<br />

nephrovascular relati<strong>on</strong>ships in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ree kidney z<strong>on</strong>es and operati<strong>on</strong>al descripti<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> specific transport processes in each nephr<strong>on</strong> segment and to build up a multinephr<strong>on</strong><br />

model capable <str<strong>on</strong>g>of</str<strong>on</strong>g> addressing progressive renal failure, (3) to combine <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

renal and RAAS models in our modular core-model (based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e classic Guyt<strong>on</strong><br />

model), (4) to calibrate and validate <str<strong>on</strong>g>th</str<strong>on</strong>g>e models <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> pre-clinical and<br />

clinical data related to physiological and pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ological c<strong>on</strong>diti<strong>on</strong>s, and finally (5)<br />

to produce a large populati<strong>on</strong> (>100 000) <str<strong>on</strong>g>of</str<strong>on</strong>g> ’virtual individuals’ wi<str<strong>on</strong>g>th</str<strong>on</strong>g> randomized<br />

model parameters (analogous to genetic polymorphisms) for comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data<br />

from cohorts <str<strong>on</strong>g>of</str<strong>on</strong>g> real patients from our partner clinicians (and published clinical<br />

trials). These new tools, based <strong>on</strong> virtual physiopa<str<strong>on</strong>g>th</str<strong>on</strong>g>ological models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e kidney<br />

and RAAS, will be useful to investigate dysfuncti<strong>on</strong>s at <str<strong>on</strong>g>th</str<strong>on</strong>g>e clinical level as well as<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific research and educati<strong>on</strong>.<br />

964


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling V; Saturday, July 2, 11:00<br />

Ruediger Thul<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Nottingham<br />

e-mail: ruediger.<str<strong>on</strong>g>th</str<strong>on</strong>g>ul@nottingham.ac.uk<br />

Calcium alternans in a piecewise linear model <str<strong>on</strong>g>of</str<strong>on</strong>g> cardiac<br />

myocytes<br />

Cardiac alternans is a beat-to-beat alternati<strong>on</strong> in acti<strong>on</strong> potential durati<strong>on</strong> and<br />

intracellular calcium cycling seen in cardiac myocytes under rapid pacing <str<strong>on</strong>g>th</str<strong>on</strong>g>at is<br />

believed to be a precursor to fibrillati<strong>on</strong>. The cellular mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling between cellular calcium and voltage dynamics have been extensively<br />

studied leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> a class <str<strong>on</strong>g>of</str<strong>on</strong>g> physiologically detailed<br />

models, which are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten expressed as coupled n<strong>on</strong>linear differential equati<strong>on</strong>s. Here<br />

we establish <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e key dynamical behaviours <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model developed by Shiferaw<br />

and Karma are arranged around a set <str<strong>on</strong>g>of</str<strong>on</strong>g> switches. Exploiting <str<strong>on</strong>g>th</str<strong>on</strong>g>is observati<strong>on</strong> we<br />

show <str<strong>on</strong>g>th</str<strong>on</strong>g>at a piecewise linear caricature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Shiferaw-Karma model can be c<strong>on</strong>structed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at preserves <str<strong>on</strong>g>th</str<strong>on</strong>g>e physiological interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e original model whilst<br />

being amenable to a systematic ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis. We compute <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> periodic orbits wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out approximati<strong>on</strong> and show <str<strong>on</strong>g>th</str<strong>on</strong>g>at alternans emerge via a<br />

period-doubling instability. We also dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at when coupled to a spatially<br />

extended descripti<strong>on</strong> for calcium transport <str<strong>on</strong>g>th</str<strong>on</strong>g>e model supports spatially varying<br />

patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> alternans. We analyse <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is instability wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a generalisati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e master stability approach to accommodate <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-smoo<str<strong>on</strong>g>th</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> our<br />

system.<br />

965


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling V; Saturday, July 2, 11:00<br />

Kevin Thurley<br />

Max-Delbrück-Center Berlin<br />

e-mail: kevin.<str<strong>on</strong>g>th</str<strong>on</strong>g>urley@mdc-berlin.de<br />

Martin Falcke<br />

Max-Delbrück-Center Berlin<br />

Hierachic stochastic modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> intracellular Ca(2+)<br />

signals - a new c<strong>on</strong>cept based <strong>on</strong> emergent behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biomolecules<br />

Biological systems <str<strong>on</strong>g>of</str<strong>on</strong>g>ten exhibit complex spatio-temporal dynamics and are stochastic<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e same time. That is a challenge for ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling, since<br />

standard techniques <str<strong>on</strong>g>th</str<strong>on</strong>g>en ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er apply rude assumpti<strong>on</strong>s like mean-field <str<strong>on</strong>g>th</str<strong>on</strong>g>eories, or<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ey lead to astr<strong>on</strong>omic numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> system states. As a new c<strong>on</strong>cept, we formulate<br />

a <str<strong>on</strong>g>th</str<strong>on</strong>g>eory in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> interevent interval distributi<strong>on</strong>s describing mesoscopic cluster<br />

states.<br />

Here we c<strong>on</strong>sider intracellular Ca(2+) dynamics, where channel clusters are<br />

known to evoke local Ca(2+) release events <str<strong>on</strong>g>th</str<strong>on</strong>g>at eventually induce cellular c<strong>on</strong>centrati<strong>on</strong><br />

spikes by diffusive coupling. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e new modeling framework<br />

can potentially also be applied to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er systems c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled clusters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

biomolecules, like T cell receptor clusters or chemotaxis. Describing system dynamics<br />

in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> probability distributi<strong>on</strong>s instead <str<strong>on</strong>g>of</str<strong>on</strong>g> rate-laws implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

model becomes n<strong>on</strong>-Markovian, but it has <str<strong>on</strong>g>th</str<strong>on</strong>g>e advantage <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

distributi<strong>on</strong>s reflects <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscopic dynamics wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out c<strong>on</strong>sidering <str<strong>on</strong>g>th</str<strong>on</strong>g>em in detail.<br />

Moreover, probability distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cluster state-changes can <str<strong>on</strong>g>of</str<strong>on</strong>g>ten be measured<br />

in vivo or calculated from known c<strong>on</strong>straints, in c<strong>on</strong>trast to kinetic parameters <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

state-changes <str<strong>on</strong>g>of</str<strong>on</strong>g> individual proteins.<br />

Despite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er complicated integral equati<strong>on</strong>s appearing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e complete<br />

descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics, we arrive at simple expressi<strong>on</strong>s for stati<strong>on</strong>ary statistics<br />

at regular cluster arrangements, and stochastic simulati<strong>on</strong>s run quite efficiently.<br />

For Ca(2+) dynamics, we verify data input and output by fluorescence microscopy<br />

in HEK cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>us provide str<strong>on</strong>g support for <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed stochastic model.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we find valuable robustness properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic mechanism,<br />

which might be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reas<strong>on</strong>s for ubiquity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ca(2+) signalling toolkit in<br />

cell signalling.<br />

Publicati<strong>on</strong>s: Thurley and Falcke, PNAS 108:427-32 (2011); Thul, Thurley and<br />

Falcke, Chaos 19:037108 (2009).<br />

966


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell and Tissue Biophysics; Thursday, June 30, 11:30<br />

Sara Tiburtius<br />

TU Darmstadt<br />

e-mail: tiburtius@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik.tu-darmstadt.de<br />

Quentin Grimal<br />

Laboratoire d’Imagerie Paramétrique, Université Paris 6<br />

e-mail: quentin.grimal@upmc.fr<br />

Ferenc Molnar<br />

Charité - Universitätsmedizin Berlin<br />

e-mail: ferenc-lajos.molnar@charite.de<br />

Kay Raum<br />

Charité - Universitätsmedizin Berlin<br />

e-mail: kay.raum@charite.de<br />

Alf Gerisch<br />

TU Darmstadt<br />

e-mail: gerisch@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik.tu-darmstadt.de<br />

A multiscale model <str<strong>on</strong>g>of</str<strong>on</strong>g> mineralized fibril bundles - a<br />

homogenizati<strong>on</strong> approach<br />

Modeling complex biological tissues like musculoskeletal mineralized tissues (e.g<br />

b<strong>on</strong>e or tend<strong>on</strong>) is a challenging task. These tissues are characterized by <strong>on</strong>e comm<strong>on</strong><br />

building block, <str<strong>on</strong>g>th</str<strong>on</strong>g>e so called mineralized collagen fibril (MCF). Depending<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue type <str<strong>on</strong>g>th</str<strong>on</strong>g>e fibrils are organized in different pattern across many leng<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

scales. One important aim is to predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e elastic behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue at a coarser<br />

leng<str<strong>on</strong>g>th</str<strong>on</strong>g> scale (effective stiffness) based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure and <str<strong>on</strong>g>th</str<strong>on</strong>g>e material properties<br />

at a finer scale. This can be achieved using homogenizati<strong>on</strong>.<br />

Most homogenizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e effective stiffness based <strong>on</strong> different<br />

structural assumpti<strong>on</strong>s at <str<strong>on</strong>g>th</str<strong>on</strong>g>e finer scale and achieve hence different estimates. The<br />

choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods is <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore a crucial part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model definiti<strong>on</strong>. We analyze<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g> different homogenizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, i.e. self-c<strong>on</strong>sistent me<str<strong>on</strong>g>th</str<strong>on</strong>g>od,<br />

Mori-Tanaka and asymptotic homogenizati<strong>on</strong>, <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e effective stiffness estimates<br />

using a simple collagen-mineral material. Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results we build up a<br />

multiscale model for mineralized fibril bundles as present in mineralized tend<strong>on</strong>.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese fibril bundles <str<strong>on</strong>g>th</str<strong>on</strong>g>e MCFs are aligned in parallel and additi<strong>on</strong>al stiffness is<br />

achieved by extrafibrillar mineralizati<strong>on</strong>. We apply <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to experimental data<br />

from circumferential tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mineralized turkey leg tend<strong>on</strong> (MTLT) assessed<br />

by Scanning Acoustic Microscopy.<br />

Our stiffness estimates are in very good agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental data.<br />

The experimental studies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e MTLT also revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is tissue exhibits (besides<br />

circumferential tissue) ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er fine structure: loosely packed fibril bundles<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> high porosity (interstitial tissue). Its specific porous structure needs to be<br />

incorporated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er homogenizati<strong>on</strong> step.<br />

967


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Marcus Tindall<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Reading<br />

e-mail: m.tindall@reading.ac.uk<br />

B.S. Bhattacharya<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Reading<br />

P.K. Sweby<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Reading<br />

A. Minihane<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> East Anglia<br />

K.G. Jacks<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Reading<br />

Cellular Systems Biology; Thursday, June 30, 11:30<br />

Genetic Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cholesterol Biosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis<br />

The regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol producti<strong>on</strong> is fundamental to maintaining good human<br />

heal<str<strong>on</strong>g>th</str<strong>on</strong>g>. Sterol regulatory element binding protein (SREBP) is a key regulatory<br />

transcripti<strong>on</strong> factor for lipid syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we present a n<strong>on</strong>linear ordinary<br />

differential equati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> SREBP transcripti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e HMGR<br />

cholesterol biosyn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way. SREBP transcripti<strong>on</strong> is regulated by forming an<br />

inactive complex wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its end product, cholesterol, to c<strong>on</strong>trol homeostatic c<strong>on</strong>centrati<strong>on</strong><br />

levels <str<strong>on</strong>g>of</str<strong>on</strong>g> cholesterol wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical<br />

system <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong>s shows it admits <str<strong>on</strong>g>th</str<strong>on</strong>g>ree distinct types <str<strong>on</strong>g>of</str<strong>on</strong>g> behaviour: (i) oscillati<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mRNA, HMGR protein and cholesterol expressi<strong>on</strong> levels; (ii) oscillati<strong>on</strong>s in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mRNA, HMGR protein and cholesterol expressi<strong>on</strong> levels which decay in time;<br />

and (iii) n<strong>on</strong>-oscillatory soluti<strong>on</strong>s. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> binding sites between cholesterol<br />

and SREBP and SREBP and <str<strong>on</strong>g>th</str<strong>on</strong>g>e genes are shown to be crucial factors in determining<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e system behaviour. We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> our work and show how<br />

our results provide a receipe for syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic biology in <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> homeostasis.<br />

968


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Jaakko Toiv<strong>on</strong>en<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: jaakko.toiv<strong>on</strong>en@helsinki.fi<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 14:30<br />

An adaptive trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between seed size and germinati<strong>on</strong><br />

time<br />

I c<strong>on</strong>sider a model <str<strong>on</strong>g>of</str<strong>on</strong>g> an annual plant where seedlings compete for patches <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

are just big enough to support <strong>on</strong>e plant each. The seeds are characterized by two<br />

qualities, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir size and <str<strong>on</strong>g>th</str<strong>on</strong>g>e time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir germinati<strong>on</strong>. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> qualities affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e competitive<br />

ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e seedlings: big seeds produce more competitive seedlings and<br />

early seedlings are more competitive <str<strong>on</strong>g>th</str<strong>on</strong>g>an seedlings <str<strong>on</strong>g>th</str<strong>on</strong>g>at emerge later. I do not assume<br />

any physiological trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between seed size and germinati<strong>on</strong> time. However,<br />

I show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a Nash equilibrium strategy such <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere emerges never<str<strong>on</strong>g>th</str<strong>on</strong>g>eless<br />

a correlati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e two. If we assume a large resident populati<strong>on</strong> and<br />

an initially rare mutant populati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e Nash equilibrium is also an Evoluti<strong>on</strong>arily<br />

Stable Strategy (ESS).<br />

References.<br />

[1] Bishop, T.D. and Cannings, C. (1978) A generalized war <str<strong>on</strong>g>of</str<strong>on</strong>g> attriti<strong>on</strong> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical<br />

Biology 70 85–124.<br />

[2] Geritz, S. A. H. (1995) Evoluti<strong>on</strong>ary stable seed polymorphism and small-scale spatial variati<strong>on</strong><br />

in seedling density The American Naturalist 146 685–707.<br />

[3] Maynard-Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>, J. (1974) The <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> games and <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> animal c<strong>on</strong>flicts Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 47 209–221.<br />

[4] Norden, N., Daws, M.I., Antoine, C., G<strong>on</strong>zalez, M.A., Garwood, N.C. and Chave, J. (2009)<br />

The relati<strong>on</strong>ship between seed mass and mean time to germinati<strong>on</strong> for 1037 tree species across<br />

five tropical forests Functi<strong>on</strong>al Ecology 23 203–210.<br />

[5] Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>, C. C. and Fretwell, S. D. (1974) The optimal balance between size and number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fspring American Naturalist 108 499–506.<br />

969


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

C. Tokarski 1 , S. Hummert 1,2 , A. Schroeter 1 , S. Schuster 1<br />

1 Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioinformatics, Friedrich Schiller University Jena, Ernst-<br />

Abbe-Platz 2, D-07743 Jena<br />

2 Leibniz Institute for Natural Product Research and Infecti<strong>on</strong> Biology<br />

- Hans-Knöll-Institute (HKI), Beutenbergstr. 11a, D-07745 Jena<br />

e-mail: {christian.tokarski, sabine.hummert, an.schroeter, stefan.schu}<br />

@uni-jena.de<br />

Interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunistic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenic fungi and human<br />

phagocytes: A multi-agent-based modeling approach<br />

The fungal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen Aspergillus fumigatus causes severe systemic diseases in<br />

immunocompromised patients [1,2]. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>is fungus is found worldwide and<br />

its small c<strong>on</strong>idia are present in air and food [2] it is almost harmless to heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y<br />

people, since inhaled c<strong>on</strong>idia are phagocytosed by macrophages and neutrophil<br />

granulocytes [1]. However, nei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e per-cell efficiency, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is interacti<strong>on</strong>, nor <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>mental impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is process are known<br />

[3]. Live imaging shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phagocytes and fungal c<strong>on</strong>idia is a<br />

dynamic process <str<strong>on</strong>g>of</str<strong>on</strong>g> touching, dragging and phagocytosis [3].<br />

Using multi-agent-based modeling, <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> human neutrophil granulocytes<br />

and Aspergillus fumigatus are simulated to gain knowledge about different<br />

behavioral strategies by optimizing parameter settings such as velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> cells,<br />

dragging and phagocytosis efficiency as well as movement directi<strong>on</strong>s. Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

simulated cells is compared to <str<strong>on</strong>g>th</str<strong>on</strong>g>ose <str<strong>on</strong>g>of</str<strong>on</strong>g> living cells in liquid cultures gained by live<br />

imaging data.<br />

Implemented in <str<strong>on</strong>g>th</str<strong>on</strong>g>e multi-agent modeling envir<strong>on</strong>ment NetLogo [4], neutrophil<br />

granulocytes and c<strong>on</strong>idia <str<strong>on</strong>g>of</str<strong>on</strong>g> Aspergillus fumigatus are modeled as distinct agents,<br />

whose individual behavior is determined by spatial settings, e. g., density <str<strong>on</strong>g>of</str<strong>on</strong>g> cells,<br />

communicati<strong>on</strong> between cells, individual states and is influenced by random effects.<br />

Moreover, chemotaxis and random movement <str<strong>on</strong>g>of</str<strong>on</strong>g> immune cells are compared to get<br />

insight into advantages in regard to phagocytosis efficiency.<br />

References.<br />

[1] Richards<strong>on</strong>, Changing patterns and trends in systemic fungal infecti<strong>on</strong>s. J Antimicrob<br />

Chemo<str<strong>on</strong>g>th</str<strong>on</strong>g>er 56 Suppl 1 i5–i11. 2005.<br />

[2] Karkowska-Kuleta et al., Fungi pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenic to humans: molecular bases <str<strong>on</strong>g>of</str<strong>on</strong>g> virulence <str<strong>on</strong>g>of</str<strong>on</strong>g> Candida<br />

albicans, Cryptococcus ne<str<strong>on</strong>g>of</str<strong>on</strong>g>ormans and Aspergillus fumigatus. Acta Biochim Pol 56 211–224.<br />

2009.<br />

[3] Behnsen et al., Envir<strong>on</strong>mental dimensi<strong>on</strong>ality c<strong>on</strong>trols <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phagocytes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogenic fungi Aspergillus fumigatus and Candida albicans PLoS Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>og 3 e13. 2007.<br />

[4] Wilensky, NetLogo http://ccl.nor<str<strong>on</strong>g>th</str<strong>on</strong>g>western.edu/netlogo/. Center for C<strong>on</strong>nected Learning and<br />

Computer-Based Modeling, Nor<str<strong>on</strong>g>th</str<strong>on</strong>g>western University. Evanst<strong>on</strong>, IL. 1999.<br />

970


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell and Tissue Biophysics; Friday, July 1, 14:30<br />

Alina Toma<br />

Andreas Mang<br />

Tina A. Schütz<br />

Stefan Becker<br />

Thorsten M. Buzug<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Engineering, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Luebeck, Ratzeburger<br />

Allee 160, 23538 Lübeck, Germany<br />

e-mail: {toma,buzug}@imt.uni-luebeck.de<br />

Philipp-Niclas Pfenning, Wolfgang Wick<br />

Clinical Cooperati<strong>on</strong> Unit Neuro<strong>on</strong>cology, German Cancer Research<br />

Center Heidelberg and Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Neuro<strong>on</strong>cology, University<br />

Hospital Heidelberg, Germany<br />

A Nutrient-Quided Chemotaxis-Haptotaxis Approach for<br />

Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Cells<br />

We propose a hybrid c<strong>on</strong>tinuum-discrete model to simulate nutrient-guided malignant<br />

brain tumor cell invasi<strong>on</strong>. The lattice-based spatio-temporal model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree reacti<strong>on</strong>–diffusi<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at describe interacti<strong>on</strong>s between cancer cells,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix (ECM) and nutrients. In additi<strong>on</strong> to random diffusi<strong>on</strong> and<br />

haptotactic movement, <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells is directed towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e gradient<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusible nutrients as oxygen and glucose [3], which is referred to as<br />

chemotaxis. As for <str<strong>on</strong>g>th</str<strong>on</strong>g>e descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial migratory resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial<br />

cells to <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor angiogenic factors and <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix macromolecule<br />

fibr<strong>on</strong>ectin [2], we model a system <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear partial differential equati<strong>on</strong>s. While<br />

[1] focuses <strong>on</strong> tumor cell adhesi<strong>on</strong>, we model bo<str<strong>on</strong>g>th</str<strong>on</strong>g>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e migrati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells by <str<strong>on</strong>g>th</str<strong>on</strong>g>e ECM and, additi<strong>on</strong>ally, by <str<strong>on</strong>g>th</str<strong>on</strong>g>e attracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> higher nutrient<br />

c<strong>on</strong>centrati<strong>on</strong>s. Moreover, we assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at every cell is able to push a neighboring<br />

cell <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same size towards an empty site.<br />

Simulati<strong>on</strong> studies show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental invitro<br />

invasi<strong>on</strong> results as regards <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor interacting<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ECM. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e flexibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model realizing<br />

simulati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> varying arrangements <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient delivering blood vessels.<br />

References.<br />

[1] A.R.A. Anders<strong>on</strong>, A hybrid ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> solid tumour invasi<strong>on</strong>: <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cell adhesi<strong>on</strong>, 2005 Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Med. and Biol. 22(2) 163–186.<br />

[2] A.R.A. Anders<strong>on</strong>, M.A.J. Chaplain, C<strong>on</strong>tinuous and Discrete Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Tumour-Induced Angiogenesis, 1998 Bull. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol. 60 857–899.<br />

[3] Y. Mansury, M. Kimura, J. Lobo, T.S. Deisboeck, Emerging Patterns in Tumor Systems:<br />

Simulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Multicellular Clusters wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an Agent-based Spatial Agglomerati<strong>on</strong><br />

Model, 2002 J. <str<strong>on</strong>g>th</str<strong>on</strong>g>eor. Biol. 219 343–370.<br />

971


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Stem cells and cancer; Wednesday, June 29, 14:30<br />

Cristian Tomasetti<br />

Harvard University & Dana-Farber Cancer Institute<br />

e-mail: cristian@jimmy.harvard.edu<br />

The role <str<strong>on</strong>g>of</str<strong>on</strong>g> symmetric and asymmetric divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer<br />

stem cells in developing drug resistance for various types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Often, resistance to drugs is an obstacle to a successful treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer. Many<br />

attempts to study drug resistance have been made in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling<br />

literature. Clearly, in order to understand drug resistance, it is imperative to have a<br />

good model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main ingredients<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at has been recently introduced into <str<strong>on</strong>g>th</str<strong>on</strong>g>e rapidly growing pool <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

cancer models is stem cells. Surprisingly, <str<strong>on</strong>g>th</str<strong>on</strong>g>is all-so-important subset <str<strong>on</strong>g>of</str<strong>on</strong>g> cells has<br />

not been fully integrated into existing ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> drug resistance. In<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is work we incorporate <str<strong>on</strong>g>th</str<strong>on</strong>g>e various possible ways in which a stem cell may divide<br />

into <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> drug resistance. We derive a new estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

developing drug resistance by <str<strong>on</strong>g>th</str<strong>on</strong>g>e time a tumor is detected, and calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> resistant cancer stem cells at <str<strong>on</strong>g>th</str<strong>on</strong>g>e time <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor detecti<strong>on</strong>. We<br />

are also able to obtain analytical results for cases where <str<strong>on</strong>g>th</str<strong>on</strong>g>e average exp<strong>on</strong>ential<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer has been replaced by o<str<strong>on</strong>g>th</str<strong>on</strong>g>er, arguably more realistic types <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Finally, to dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>e significance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach, we combine our<br />

new ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical estimates wi<str<strong>on</strong>g>th</str<strong>on</strong>g> clinical data to show <str<strong>on</strong>g>th</str<strong>on</strong>g>at leukemic stem cells<br />

must tend to renew symmetrically as opposed to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir heal<str<strong>on</strong>g>th</str<strong>on</strong>g>y counterparts <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

predominantly appear to divide asymmetrically. (Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is work is joint wi<str<strong>on</strong>g>th</str<strong>on</strong>g> D.<br />

Levy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maryland)<br />

References.<br />

[1] C. Tomasetti, On <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability <str<strong>on</strong>g>of</str<strong>on</strong>g> random genetic mutati<strong>on</strong>s for various types <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, submitted.<br />

[2] C. Tomasetti & D. Levy, Role <str<strong>on</strong>g>of</str<strong>on</strong>g> symmetric and asymmetric divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cells in developing<br />

drug resistance, Proc Natl Acad Sci USA, 107(39):16766–16771.<br />

972


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanical Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Movement and Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cells and Tissues II;<br />

Wednesday, June 29, 17:00<br />

Paweł Topa<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Geological Sciences, Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science, AGH University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology<br />

e-mail: topa@agh.edu.pl<br />

Jarosław Tyszka<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Geological Science, Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: ndtyszka@cyf-kr.edu.pl<br />

The particle-based model <str<strong>on</strong>g>of</str<strong>on</strong>g> foraminiferal morphogenesis<br />

Foraminifera are a large group <str<strong>on</strong>g>of</str<strong>on</strong>g> single cellular organisms. About 275,000<br />

species are recognized, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> living and fossil. They produce shells made <str<strong>on</strong>g>of</str<strong>on</strong>g> calcium<br />

carb<strong>on</strong>ate, agglutinated sediment grains and/or organic compounds. Shells<br />

are typically built from several chambers organized in very elaborated way. The<br />

questi<strong>on</strong> what govern <str<strong>on</strong>g>th</str<strong>on</strong>g>eir morphology to produce such great weal<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> forms was<br />

unanswered for decades. Early suggesti<strong>on</strong>s come from D’Arcy Thoms<strong>on</strong> (1919) who<br />

rec<strong>on</strong>gnised <str<strong>on</strong>g>th</str<strong>on</strong>g>at simple physical forces associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fluid dynamics are resp<strong>on</strong>sible<br />

for cell morphogenesis. First <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical morphospace was defined over 40 year<br />

ago by Berger. His model included <strong>on</strong>ly simple geometrical operati<strong>on</strong> (rotati<strong>on</strong>,<br />

translati<strong>on</strong>) and produced simple spiral form. Subsequent models used a similar<br />

approach and were able reproduce <strong>on</strong>ly narrow group <str<strong>on</strong>g>of</str<strong>on</strong>g> forms.<br />

We showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at diversed shell patterns forms can be produced by using a simple<br />

optimizati<strong>on</strong> process. It is assumed <str<strong>on</strong>g>th</str<strong>on</strong>g>at foraminifera locally optimizes <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

intracellular transport between <str<strong>on</strong>g>th</str<strong>on</strong>g>e chambers. When every new chamber is formed,<br />

a new aperture is located at <str<strong>on</strong>g>th</str<strong>on</strong>g>e shortest distance from <str<strong>on</strong>g>th</str<strong>on</strong>g>e previous aperture. This<br />

simple formula produced several diversed forms. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model works well<br />

<strong>on</strong>ly for spheroidal chambers, it does not work for o<str<strong>on</strong>g>th</str<strong>on</strong>g>er shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> chambers.<br />

The next stage in research <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> foraminiferal shells is to build a<br />

low-level emergent model <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be able explained why “local optimizati<strong>on</strong> rule”<br />

was so accurate. We are searching for a model <str<strong>on</strong>g>of</str<strong>on</strong>g> processes <str<strong>on</strong>g>th</str<strong>on</strong>g>at occur just before a<br />

new chamber is formed. Foraminifera create a “bubble” <str<strong>on</strong>g>of</str<strong>on</strong>g> cytoplasm attached to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

shell which is mineralized preserving its shape. The ”bubble” is not <strong>on</strong>ly deformed<br />

by external factors but mainly by internal organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong>. We<br />

want to reflect <str<strong>on</strong>g>th</str<strong>on</strong>g>is processes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e computer model and present its impact <strong>on</strong> final<br />

shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> chambers. The cytoplasmic ”bubble” is sourrounded by <str<strong>on</strong>g>th</str<strong>on</strong>g>in membrane<br />

made <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid bilayer.<br />

Lipid bilayer is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> complex fluid phenomena so we employed <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

DPD (Dissipative Particle Dynamics) me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is simulati<strong>on</strong> technique a set<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> interacting particles is c<strong>on</strong>sidered and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir time evoluti<strong>on</strong> is governed by Newt<strong>on</strong>’s<br />

equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong>. In our model lipid bilayer is modelled by two types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

DPD particles: “A” which reflects hydrophilic heads and “B” for hydrophobic tails.<br />

Additi<strong>on</strong>al two types <str<strong>on</strong>g>of</str<strong>on</strong>g> particles denote extracellular fluid (water) and intracellular<br />

fluid (cytoplasm). Particles “A” and “B” are arranged into chained amphiphilic<br />

molecules by establishing c<strong>on</strong>stant “spring” c<strong>on</strong>necti<strong>on</strong>s. In order to avoid bending<br />

in chains <str<strong>on</strong>g>of</str<strong>on</strong>g> particles we apply force <str<strong>on</strong>g>th</str<strong>on</strong>g>at streighten each triplet <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>nected “A”<br />

973


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

and “B“ particles. Depending <strong>on</strong> types <str<strong>on</strong>g>of</str<strong>on</strong>g> particles <str<strong>on</strong>g>th</str<strong>on</strong>g>at interact in pair we choose<br />

different potentials <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>. In our simulati<strong>on</strong> we study <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

planar membranes affected by external forces.<br />

Acknowldgements This research is supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Polish Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science<br />

and Higher Educati<strong>on</strong>, project no. 0573/B/P01/2008/34.<br />

References.<br />

[1] J. Tyszka, P. Topa, A new approach to modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> morphogenesis <str<strong>on</strong>g>of</str<strong>on</strong>g> foraminiferal shells,<br />

Paleobiology, vol. 31, nr 3, pp. 526-541, Pale<strong>on</strong>tological Society, 2005.<br />

[2] P. Topa, J. Tyszka, Local Minimizati<strong>on</strong> Paradigm in Numerical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Foraminiferal<br />

Shells, LNCS 2329, vol I, pp. 97-106, Springer-Verlag, 2002.<br />

[3] L. Gao, J. Shilcock, R. Lipowsky, Improved dissipative particle dynamics simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid<br />

bilayers, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Physics 126, 2007.<br />

[4] S. Yamamoto, Y. Maruyama, Sh. Hyodo, Dissipative particle dynamics study <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>tanous<br />

vesicle formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amphiphilic molecules, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Physics, vol. 116, no. 13,<br />

2002.<br />

974


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Nadine Töpfer<br />

Zoran Nikoloski<br />

Systems Biology and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling<br />

Max-Planck-Institute for Molecular Plant Physiology<br />

Am Mühlenberg 1<br />

14476 Potsdam, Germany<br />

e-mail: toepfer@mpimp-golm.mpg.de<br />

e-mail: nikoloski@mpimp-golm.mpg.de<br />

Time-resolved integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Flux Balance Analysis,<br />

Elementary Flux Modes, and transcriptomics data for<br />

characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e temporal metabolic resp<strong>on</strong>se to<br />

temperature stress in S. cerevisiae<br />

The increased availability <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale metabolic network models and <str<strong>on</strong>g>th</str<strong>on</strong>g>e improved<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> high-<str<strong>on</strong>g>th</str<strong>on</strong>g>roughput data provide <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis for system-wide network<br />

analysis. Flux Balance Analysis (FBA) [2] and its extensi<strong>on</strong>s have been successfully<br />

applied to determine steady-state systemic characteristics from <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>stituent elements.<br />

In additi<strong>on</strong>, FBA has recently been extended to facilitate <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transient behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic networks. While FBA-based me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods, due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical programming formulati<strong>on</strong>, can readily be applied to large-scale metabolic<br />

networks, <str<strong>on</strong>g>th</str<strong>on</strong>g>e applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> approaches relying <strong>on</strong> Elementary Flux Modes<br />

(EFMs) [1] is hindered by large computati<strong>on</strong>al demands. Here we address <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time-resolved integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FBA and EFMs based <strong>on</strong> transcriptomics data<br />

capturing <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic networks to stress c<strong>on</strong>diti<strong>on</strong>s.<br />

Our approach integrates time-resolved transcriptomics data wi<str<strong>on</strong>g>th</str<strong>on</strong>g> large-scale<br />

metabolic networks to identify active subnetworks by using a novel FBA-based<br />

optimizati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. To perform <str<strong>on</strong>g>th</str<strong>on</strong>g>e integrati<strong>on</strong>, <str<strong>on</strong>g>th</str<strong>on</strong>g>e results from a statistical<br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> differential gene expressi<strong>on</strong>, translated into carefully tailored weights, are<br />

employed to extract temporal subnetworks <str<strong>on</strong>g>th</str<strong>on</strong>g>at not <strong>on</strong>ly show significant changes<br />

in expressi<strong>on</strong> values in resp<strong>on</strong>se to stress c<strong>on</strong>diti<strong>on</strong>s, but also represent a minimal<br />

subset <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole metabolic network. We present <str<strong>on</strong>g>th</str<strong>on</strong>g>ree possible ways in which<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such minimal active temporal subnetworks can be achieved. The<br />

found subnetworks are <str<strong>on</strong>g>th</str<strong>on</strong>g>en used to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> EFMs for each time point,<br />

reflecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e temporal stress resp<strong>on</strong>se. We show empirically <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e objective <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

minimality allows <str<strong>on</strong>g>th</str<strong>on</strong>g>e identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> all EFMs for each time point in a feasible<br />

time frame. Finally, <str<strong>on</strong>g>th</str<strong>on</strong>g>e sets <str<strong>on</strong>g>of</str<strong>on</strong>g> EFMs are used in a comparative analysis based <strong>on</strong><br />

set-similarity measures to identify putative transiti<strong>on</strong>s.<br />

We apply <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed approach to time-resolved transcriptomics data sets<br />

from temperature shock experiments in S. cerevisiae. The results dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

FBA-based optimizati<strong>on</strong> approaches can be used in c<strong>on</strong>juncti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> EFMs-based<br />

analysis and high-<str<strong>on</strong>g>th</str<strong>on</strong>g>roughput data to reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>e temporal behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale<br />

networks in an integrative and systematic manner.<br />

References.<br />

[1] C. Trinh, A. Wlaschin, F. Srienc, Elementary mode analysis: a useful metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way<br />

analysis tool for characterizing cellular metabolism. Applied Microbiology and Biotechnology<br />

81 (5) 813–826.<br />

975


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] J. Or<str<strong>on</strong>g>th</str<strong>on</strong>g>, I. Thiele, B. Palss<strong>on</strong>, What is flux balance analysis? Nature Biotechnology 28 (3)<br />

245–248.<br />

976


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Crowd Dynamics: Modeling, Analysis and Simulati<strong>on</strong> (Part 1); Wednesday,<br />

June 29, 11:00<br />

Andrea Tosin<br />

INDAM-Compagnia di San Paolo postdoctoral fellow<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Politecnico di Torino – Torino, Italy<br />

e-mail: andrea.tosin@polito.it<br />

A multiscale look at crowd dynamics by time-evolving<br />

measures<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> particle-like living systems, such as human crowds, are mainly<br />

ruled by mutual interacti<strong>on</strong>s am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e individuals. This is because <str<strong>on</strong>g>th</str<strong>on</strong>g>e latter have<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to express different behavioral strategies depending <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

o<str<strong>on</strong>g>th</str<strong>on</strong>g>er individuals in <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment. For instance, pedestrians heading for a certain<br />

destinati<strong>on</strong> deviate from <str<strong>on</strong>g>th</str<strong>on</strong>g>eir preferred pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s when encountering o<str<strong>on</strong>g>th</str<strong>on</strong>g>er pedestrians.<br />

Remarkably, interacti<strong>on</strong>s are usually n<strong>on</strong>-cooperative, i.e., walkers do not pursue a<br />

goal collectively.<br />

Due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e intrinsic granularity (discreteness) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system (<str<strong>on</strong>g>th</str<strong>on</strong>g>e number N <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pedestrians is possibly large, yet <str<strong>on</strong>g>th</str<strong>on</strong>g>e approximati<strong>on</strong> N → ∞ may not be acceptable),<br />

interacti<strong>on</strong>s are better described at an individual-based level. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

hand, an ensemble representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e crowd is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten preferable over an agentbased<br />

<strong>on</strong>e, in order to catch <str<strong>on</strong>g>th</str<strong>on</strong>g>e average group behavior sp<strong>on</strong>taneously emerging<br />

from interacti<strong>on</strong>s (self-organizati<strong>on</strong>) and also in view <str<strong>on</strong>g>of</str<strong>on</strong>g> fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er analysis, numerics,<br />

and optimizati<strong>on</strong> issues. Measure-<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic stochastic approaches, such as <str<strong>on</strong>g>th</str<strong>on</strong>g>ose<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at will be discussed in <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, <str<strong>on</strong>g>of</str<strong>on</strong>g>fer useful c<strong>on</strong>ceptual tools to <str<strong>on</strong>g>th</str<strong>on</strong>g>is purpose.<br />

Indeed, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey make possible an Eulerian particle-free representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e crowd,<br />

in which single pedestrians are blurred into <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir<br />

spatial positi<strong>on</strong>s. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e same time, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey allow <str<strong>on</strong>g>th</str<strong>on</strong>g>e descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s<br />

to stem from (stochastic) individual-based reas<strong>on</strong>ings. Finally, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey enable <strong>on</strong>e to<br />

treat discrete and c<strong>on</strong>tinuous models under a comm<strong>on</strong> framework, as well as to<br />

deduce models at intermediate scales wi<str<strong>on</strong>g>th</str<strong>on</strong>g> interesting implicati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e predicted<br />

dynamics.<br />

References.<br />

[1] L. Bruno, A. Tosin, P. Tricerri, F. Venuti. N<strong>on</strong>-local first-order modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> crowd dynamics:<br />

A multidimensi<strong>on</strong>al framework wi<str<strong>on</strong>g>th</str<strong>on</strong>g> applicati<strong>on</strong>s, Appl. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Model., 35, 426–445, 2011.<br />

[2] E. Cristiani, B. Piccoli, A. Tosin. Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> granular flows wi<str<strong>on</strong>g>th</str<strong>on</strong>g> applicati<strong>on</strong> to<br />

crowd dynamics, Multiscale Model. Simul., 9, 155–182, 2011.<br />

[3] B. Piccoli, A. Tosin. Time-evolving measures and macroscopic modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> pedestrian flow,<br />

Arch. Rati<strong>on</strong>. Mech. Anal., 199, 707–738, 2011.<br />

[4] A. Tosin, P. Frasca. Existence and approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> probability measure soluti<strong>on</strong>s to models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> collective behaviors, Netw. Heterog. Media, 2011 (to appear).<br />

[5] E. Cristiani, B. Piccoli, A. Tosin. Modeling self-organizati<strong>on</strong> in pedestrians and animal groups<br />

from macroscopic and microscopic viewpoints, in G. Naldi, L. Pareschi, G. Toscani (Eds.),<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> Collective Behavior in Socio-Ec<strong>on</strong>omic and Life Sciences, 337–364,<br />

Brikäuser, 2010.<br />

[6] B. Piccoli, A. Tosin. Pedestrian flows in bounded domains wi<str<strong>on</strong>g>th</str<strong>on</strong>g> obstacles, C<strong>on</strong>tin. Mech. Termodyn.,<br />

21, 85–107, 2009.<br />

977


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Suzanne Touzeau<br />

UR341 MIA, INRA, F-78350 Jouy-en-Josas, France<br />

e-mail: Suzanne.Touzeau@jouy.inra.fr<br />

Caroline Bidot<br />

UR341 MIA, INRA, F-78350 Jouy-en-Josas, France<br />

e-mail: Caroline.Bidot@jouy.inra.fr<br />

Epidemics; Wednesday, June 29, 17:00<br />

Estimating scrapie epidemiological parameters: comparis<strong>on</strong><br />

between a populati<strong>on</strong> dynamic model and an<br />

individual-based model<br />

Classical scrapie is a transmissible sp<strong>on</strong>giform encephalopa<str<strong>on</strong>g>th</str<strong>on</strong>g>y <str<strong>on</strong>g>th</str<strong>on</strong>g>at affects small<br />

ruminants (pri<strong>on</strong> disease) and is submitted to eradicati<strong>on</strong> measures. Transmissi<strong>on</strong><br />

mechanisms are still incompletely understood and difficult to quantify. Scrapie is<br />

characterised in sheep by a genetic susceptibility factor. Its l<strong>on</strong>g infectious and undetectable<br />

incubati<strong>on</strong> period makes direct data analyses difficult, hence <str<strong>on</strong>g>th</str<strong>on</strong>g>e interest<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a modelling approach to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiological parameters.<br />

Two models were developed to represent <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a<br />

sheep flock: a realistic structured populati<strong>on</strong> model (PDE) and an individual-based<br />

model. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> take into account <str<strong>on</strong>g>th</str<strong>on</strong>g>e same epidemiological processes, based <strong>on</strong> similar<br />

assumpti<strong>on</strong>s, including seas<strong>on</strong>ality in transmissi<strong>on</strong>, genetic and age-dependent<br />

susceptibilities, l<strong>on</strong>g and variable incubati<strong>on</strong> periods. To focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiological parameters, demographic processes c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al lambings,<br />

routine culling and reform, directly derive from <str<strong>on</strong>g>th</str<strong>on</strong>g>e flock data. The data used<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>is study originate from <str<strong>on</strong>g>th</str<strong>on</strong>g>e Langlade experimental sheep flock (SAGA, INRA,<br />

Toulouse, France), in which a natural scrapie outbreak occured.<br />

The criteri<strong>on</strong> implemented to estimate <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemiological parameters is based<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e scrapie incidence observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Langlade data and simulated by <str<strong>on</strong>g>th</str<strong>on</strong>g>e two<br />

models. As <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are quite many parameters to estimate (23, <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be reduced<br />

to 11 wi<str<strong>on</strong>g>th</str<strong>on</strong>g> simplifying assumpti<strong>on</strong>s), an optimisati<strong>on</strong> me<str<strong>on</strong>g>th</str<strong>on</strong>g>od based <strong>on</strong> a randomsearch<br />

minimisati<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m was chosen.<br />

The parameter values obtained for bo<str<strong>on</strong>g>th</str<strong>on</strong>g> models are comparable and realistic,<br />

i.e. c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g> what is known from <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease and expert opini<strong>on</strong>. The<br />

robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese results was tested by a sensitivity analysis, which showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

some parameters are highly sensitive and need to be identified wi<str<strong>on</strong>g>th</str<strong>on</strong>g> care.<br />

978


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Hiroshi Toyoizumi<br />

Waseda University<br />

e-mail: toyoizumi@waseda.jp<br />

Jeremy Field<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sussex<br />

e-mail: j.field@sussex.ac.uk<br />

Populati<strong>on</strong> Dynamics; Thursday, June 30, 11:30<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> social queues<br />

A wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> animals are known to form simple hierarchical groups called<br />

social queues, where individuals inherit resources or social status in a predictable<br />

order. Queues are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten age-based, so <str<strong>on</strong>g>th</str<strong>on</strong>g>at a new individual joins <str<strong>on</strong>g>th</str<strong>on</strong>g>e end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

queue <strong>on</strong> reaching adul<str<strong>on</strong>g>th</str<strong>on</strong>g>ood, and must wait for older individuals to die in order<br />

to reach <str<strong>on</strong>g>th</str<strong>on</strong>g>e fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e queue. While waiting, an individual may work for her<br />

group, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g>ten risking her own survival and hence her chance <str<strong>on</strong>g>of</str<strong>on</strong>g> inheritance.<br />

Eventually, she may survive to reach <str<strong>on</strong>g>th</str<strong>on</strong>g>e head <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e queue and becomes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e group. Queueing has been particularly well-studied in hover<br />

wasps (Hymenoptera: Stenogastrinae). In hover wasp social groups, <strong>on</strong>ly <strong>on</strong>e female<br />

lays eggs, and <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a strict, age-based queue to inherit <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproductive<br />

positi<strong>on</strong>. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant individual (queen) c<strong>on</strong>centrates <strong>on</strong> breeding, subordinate<br />

helpers risk dea<str<strong>on</strong>g>th</str<strong>on</strong>g> by foraging outside <str<strong>on</strong>g>th</str<strong>on</strong>g>e nest, but have a slim chance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> eventually inheriting dominance. Some explanati<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>is altruistic behavior<br />

and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> social queues have been proposed and analyzed [1, 2]. Since<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nest and <str<strong>on</strong>g>th</str<strong>on</strong>g>e chance to inherit <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant positi<strong>on</strong><br />

depend critically <strong>on</strong> group size, queueing dynamics are crucial for understanding<br />

social queues, but detailed analysis is lacking. Here, using hover wasps as an example,<br />

we dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at some basic queueing <str<strong>on</strong>g>th</str<strong>on</strong>g>eory[3] and n<strong>on</strong>-homogeneous<br />

bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and dea<str<strong>on</strong>g>th</str<strong>on</strong>g> processes are useful for analyzing queueing dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong><br />

demographics <str<strong>on</strong>g>of</str<strong>on</strong>g> social queues. Our work leads to better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

how envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s and strategic decisi<strong>on</strong>-making by individuals interact<br />

to produce <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed group dynamics; and in turn, how group dynamics affects<br />

individual decisi<strong>on</strong>-making.<br />

References.<br />

[1] J. Field, A. Cr<strong>on</strong>in, and C. Bridge. Future fitness and helping in social queues. Nature, 441:214–<br />

217, 2006.<br />

[2] H. Kokko and R. A. Johnst<strong>on</strong>e. Social queuing in animal societies: a dynamic model <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive<br />

skew. Proc. R. Soc. L<strong>on</strong>d. B, 266:571–578, 1999.<br />

[3] H. Toyoizumi. Sample pa<str<strong>on</strong>g>th</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> and reward in cooperative groups. Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology, 2008.<br />

979


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cancer; Saturday, July 2, 14:30<br />

Arne Traulsen<br />

Evoluti<strong>on</strong>ary Theory Group, Max Planck Institute for Evoluti<strong>on</strong>ary<br />

Biology, Plön, Germany<br />

e-mail: traulsen@evolbio.mpg.de<br />

Jorge M. Pacheco<br />

Departamento de Matemática e Aplicações, Universidade do Minho,Braga,<br />

Portugal<br />

David Dingli<br />

Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hematology, Mayo Clinic, Rochester, MN, USA<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> blood diseases and <str<strong>on</strong>g>th</str<strong>on</strong>g>e hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hematopoiesis<br />

Hematopoiesis is a process <str<strong>on</strong>g>th</str<strong>on</strong>g>at is based <strong>on</strong> a hierarchical organizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell<br />

types, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> stem cells at <str<strong>on</strong>g>th</str<strong>on</strong>g>e very basis <str<strong>on</strong>g>th</str<strong>on</strong>g>at differentiate into more specialized<br />

cells. A simple ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>is process has been proposed<br />

[1]. This hierarchical structure has important effects <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases,<br />

including blood cancers [2]. For example, it is becoming increasingly clear <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

our bodies harbor numerous mutant cl<strong>on</strong>es <str<strong>on</strong>g>th</str<strong>on</strong>g>at do not give rise to no disease at<br />

all, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong>s are typically associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> diseases. The fate <str<strong>on</strong>g>of</str<strong>on</strong>g> any<br />

mutant cl<strong>on</strong>e will depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e target cell and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fitness advantage, if any,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong> c<strong>on</strong>fers <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell [3]. In general, we can expect <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>ly a<br />

mutati<strong>on</strong> in a hematopoietic stem cell will give l<strong>on</strong>g-term disease; <str<strong>on</strong>g>th</str<strong>on</strong>g>e same mutati<strong>on</strong><br />

taking place in a cell located more downstream may produce just a ripple in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

hematopoietic ocean [4].<br />

References.<br />

[1] D. Dingli, A. Traulsen, and J.M. Pacheco, Compartmental Architecture and Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Hematopoiesis PLoS One 4 345 (2007).<br />

[2] T. Lenaerts, J.M. Pacheco, A. Traulsen, and D. Dingli, Tyrosine kinase inhibitor <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy can<br />

cure chr<strong>on</strong>ic myeloid leukemia wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out hitting leukemic stem cells Haematologica 95, 900-907<br />

(2010).<br />

[3] A. Traulsen, J.M. Pacheco, D. Dingli, Reproductive fitness advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> BCR-ABL expressing<br />

leukemia cells, Cancer Letters 294 43-48 (2010).<br />

[4] A. Traulsen, J.M. Pacheco, L. Luzzatto, D. Dingli, Somatic mutati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e hierarchy <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hematopoiesis, BioEssays 32 1003-1008 (2010).<br />

980


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling III; Wednesday, June 29,<br />

17:00<br />

Je-Chiang Tsai<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Nati<strong>on</strong>al Chung Cheng University, 168,<br />

University Road, Min-Hsiung, Chia-Yi 621, Taiwan<br />

e-mail: tsaijc@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ccu.edu.tw<br />

Traveling Waves in <str<strong>on</strong>g>th</str<strong>on</strong>g>e Buffered FitzHugh-Nagumo Model<br />

In many physiologically important excitable systems, such as intracellular calcium<br />

dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusing variable is highly buffered. In additi<strong>on</strong>, all physiological<br />

buffered excitable systems c<strong>on</strong>tain multiple buffers, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different affinities.<br />

We will discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> wave soluti<strong>on</strong>s in excitable systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple<br />

buffers, and how multiple buffers interact.<br />

981


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> Macromolecules and Molecular Aggregates;<br />

Saturday, July 2, 14:30<br />

Reidun Twarock<br />

York Centre for Complex Systems Analysis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> York, UK<br />

e-mail: rt507@york.ac.uk<br />

Eric Dykeman<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> York<br />

Nick Grays<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> York<br />

Tom Keef<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> York<br />

Jess Wardman<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> York<br />

Neil Rans<strong>on</strong> and Peter Stockley<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Leeds<br />

Genome Organisati<strong>on</strong> and Assembly <str<strong>on</strong>g>of</str<strong>on</strong>g> RNA Viruses:<br />

Where Geometry Meets Functi<strong>on</strong><br />

Cryo-electr<strong>on</strong> microscopy and X-ray crystallography have revealed ordered features<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome organisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> ssRNA viruses. These include a dodecahedral<br />

RNA cage in Pariacoto virus and a double-shell organisati<strong>on</strong> in bacteriophage<br />

MS2. We show here <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese ordered features are due to symmetry c<strong>on</strong>straints<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e overall organisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese particles.<br />

We moreover show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical results can be used to better understand<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms underlying <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> (assembly) <str<strong>on</strong>g>of</str<strong>on</strong>g> viruses. In particular,<br />

we dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e geometric c<strong>on</strong>straints <strong>on</strong> genome organisati<strong>on</strong> result in a<br />

str<strong>on</strong>g reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e combinatorially possible pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways <str<strong>on</strong>g>of</str<strong>on</strong>g> assembly and hence<br />

c<strong>on</strong>tribute to <str<strong>on</strong>g>th</str<strong>on</strong>g>e remarkable assembly efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese viruses. Since assembly<br />

efficiency is important for viruses in order to outcompete <str<strong>on</strong>g>th</str<strong>on</strong>g>eir hosts immune system,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese results provide important insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e strategies and mechanisms<br />

underlying <str<strong>on</strong>g>th</str<strong>on</strong>g>e viral infecti<strong>on</strong> process.<br />

References.<br />

[1] T. Keef, J. Wardman, N. A. Rans<strong>on</strong>, P.G. Stockley & R. Twarock (2010) Viruses measure up<br />

to ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical predicti<strong>on</strong> 3D Geometry imposes fundamental c<strong>on</strong>straints <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> simple viruses, submitted to Current Biology<br />

[2] Twarock R, Keef T (2010) Viruses and geometry where symmetry meets functi<strong>on</strong>, Micobiology<br />

Today 37: 24-27.<br />

[3] Dykeman EC, Stockley PG, Twarock R (2010) Dynamic allostery c<strong>on</strong>trols coat protein c<strong>on</strong>former<br />

switching during MS2 phage assembly, J Mol. Biol. 395: 916-23<br />

[4] Dykeman EC, Twarock R (2010) All-atom normal-mode analysis reveals a dynamic RNAinduced<br />

allostery in a bacteriophage coat protein, Physical Review E. 81, 031908.<br />

[5] ElSawy KM, Caves L, Twarock R (2010) The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> viral RNA <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e associati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

capsid protein assembly: bacteriophage MS2 as a case study, J. Mol. Biol. 400(4):935-47.<br />

[6] Victoria L. Mort<strong>on</strong>, Eric C. Dykeman, Nicola J. St<strong>on</strong>ehouse, Alis<strong>on</strong> E. Ashcr<str<strong>on</strong>g>of</str<strong>on</strong>g>t, Reidun<br />

Twarock and Peter G. Stockley (2010) The Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Viral RNA <strong>on</strong> Assembly Pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way Selecti<strong>on</strong>,<br />

J. Mol. Biol. 401(2):298-308.<br />

[7] E.C. Dykeman, N. Grays<strong>on</strong>, N. A. Rans<strong>on</strong>, P.G.Stockley & R. Twarock, Simple rules for<br />

efficient assembly predict <str<strong>on</strong>g>th</str<strong>on</strong>g>e layout <str<strong>on</strong>g>of</str<strong>on</strong>g> a packaged viral RNA (2011), to appear in J. Mol.<br />

Biol. (selected as research highlight)<br />

982


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Z. Burda<br />

Jagiell<strong>on</strong>ian University, Marian Smoluchowski Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics<br />

and Mark Kac Complex System Research Center<br />

e-mail: zdzislaw.burda@uj.edu.pl<br />

J. Kornelsen<br />

Nati<strong>on</strong>al Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, Institute for Biodiagnostics,<br />

Winnipeg, Calgary, Canada<br />

e-mail: Jennifer.Kornelsen@nrc-cnrc.gc.ca<br />

M. A. Nowak<br />

Jagiell<strong>on</strong>ian University, Marian Smoluchowski Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics<br />

and Mark Kac Complex System Research Center<br />

e-mail: nowak@<str<strong>on</strong>g>th</str<strong>on</strong>g>.if.uj.edu.pl<br />

U. Sboto-Frankenstein<br />

Nati<strong>on</strong>al Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, Institute for Biodiagnostics,<br />

Winnipeg, Calgary, Canada<br />

e-mail: Uta.Sboto-Frankenstein@nrc-cnrc.gc.ca<br />

B. Tomanek<br />

Nati<strong>on</strong>al Research Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, Institute for Biodiagnostics,<br />

Winnipeg, Calgary, Canada<br />

e-mail: Boguslaw.Tomanek@nrc-cnrc.gc.ca<br />

J. Tyburczyk<br />

Jagiell<strong>on</strong>ian University, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics, Astr<strong>on</strong>omy and Applied<br />

Computer Science<br />

e-mail: jacek.tyburczyk@uj.edu.pl<br />

Random Matrix approach to fMRI data<br />

We apply random matrix techniques to analyse correlati<strong>on</strong>s in Human Brain<br />

fMRI data. We rec<strong>on</strong>struct correlati<strong>on</strong>s between different regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> brain. These<br />

regi<strong>on</strong>s are selected ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er by purely geometrical voxel positi<strong>on</strong> or by physiological<br />

a classificati<strong>on</strong> given by Brodmann’s areas. We analyse spectral properties for<br />

covariance matrices and compare <str<strong>on</strong>g>th</str<strong>on</strong>g>e results to some classical results from random<br />

matrix <str<strong>on</strong>g>th</str<strong>on</strong>g>eory including Marcenko-Pastur eigenvalue density for Wishart matrices.<br />

These result provide us wi<str<strong>on</strong>g>th</str<strong>on</strong>g> reference points - a sort <str<strong>on</strong>g>of</str<strong>on</strong>g> a null hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis. We<br />

also perform graph <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong> matrices applying ideas <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold graphs. Such graphs are c<strong>on</strong>structed using <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea <str<strong>on</strong>g>of</str<strong>on</strong>g> metric space <str<strong>on</strong>g>th</str<strong>on</strong>g>at is<br />

c<strong>on</strong>structed from <str<strong>on</strong>g>th</str<strong>on</strong>g>e correlati<strong>on</strong> matrix for <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> vertices representing different<br />

voxels or Bordmann’s areas. A <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold graph is a graph between vertices whose<br />

distance in <str<strong>on</strong>g>th</str<strong>on</strong>g>is metric space is smaller <str<strong>on</strong>g>th</str<strong>on</strong>g>an a given <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold.<br />

983


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Michelle D. Leach 1∗ , Katarzyna Tyc 2∗ , Rebecca S. Shapiro 3 , Leah E.<br />

Cowen 3 , Edda Klipp 2 and Alistair J.P. Brown 1<br />

1. School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Aberdeen, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, United Kingdom;<br />

2. Theoretische Biophysik, Humboldt-Universität zu Berlin, Invalidenstraße<br />

42, 10115 Berlin, Germany; 3. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Molecular<br />

Genetics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tor<strong>on</strong>to, Tor<strong>on</strong>to, ON M5S 1A8, Canada<br />

e-mail: edda.klipp@rz.hu-berlin.de<br />

e-mail: al.brown@abdn.ac.uk<br />

Modelling <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ermal adaptati<strong>on</strong> by Hsf1 and<br />

Hsp90 in Candida albicans, a major fungal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen <str<strong>on</strong>g>of</str<strong>on</strong>g> humans<br />

The heat shock resp<strong>on</strong>se is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e most highly c<strong>on</strong>served and well studied networks<br />

in eukaryotic cells. Up<strong>on</strong> sensing a sudden temperature upshift, <str<strong>on</strong>g>th</str<strong>on</strong>g>e heat<br />

shock transcripti<strong>on</strong> factor is rapidly activated, leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e inducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> numerous<br />

genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at mediate <str<strong>on</strong>g>th</str<strong>on</strong>g>ermal adaptati<strong>on</strong>, including heat shock genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at encode<br />

molecular chaper<strong>on</strong>es. We have shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e major fungal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen <str<strong>on</strong>g>of</str<strong>on</strong>g> humans,<br />

Candida albicans, has retained a b<strong>on</strong>a fide heat shock resp<strong>on</strong>se even <str<strong>on</strong>g>th</str<strong>on</strong>g>ough it is<br />

obligatorily associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> warm blooded mammals [1]. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>ermal<br />

adaptati<strong>on</strong> is essential for <str<strong>on</strong>g>th</str<strong>on</strong>g>e virulence <str<strong>on</strong>g>of</str<strong>on</strong>g> C. albicans. We have predicted <str<strong>on</strong>g>th</str<strong>on</strong>g>at interacti<strong>on</strong>s<br />

between Hsf1 and <str<strong>on</strong>g>th</str<strong>on</strong>g>e essential chaper<strong>on</strong>e Heat shock protein 90 (Hsp90)<br />

play critical roles in <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ermal adaptati<strong>on</strong> in C. albicans [2]. We<br />

have now tested <str<strong>on</strong>g>th</str<strong>on</strong>g>is predicti<strong>on</strong> using a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling and<br />

experimental dissecti<strong>on</strong>. Our model predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>at chr<strong>on</strong>ic exposure to heat leads to<br />

protein unfolding, which in turn sequesters Hsp90, <str<strong>on</strong>g>th</str<strong>on</strong>g>ereby releasing Hsf1 from inactive<br />

Hsp90-Hsf1 complexes. This allows Hsf1 to become activated leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

transcripti<strong>on</strong>al activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heat shock genes including HSP90. Our model, which<br />

predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamic molecular resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> C. albicans wi<str<strong>on</strong>g>th</str<strong>on</strong>g> reas<strong>on</strong>able accuracy,<br />

has yielded a number <str<strong>on</strong>g>of</str<strong>on</strong>g> novel predicti<strong>on</strong>s. For example, Hsf1 activati<strong>on</strong> appears to<br />

be acutely sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> unfolded proteins. Also, Hsp90 levels<br />

appear to be regulated at post-transcripti<strong>on</strong>al as well as transcripti<strong>on</strong>al levels. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore,<br />

our model provides an explanati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e observati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at C. albicans<br />

cells retain a ‘molecular memory’, rendering <str<strong>on</strong>g>th</str<strong>on</strong>g>em more resistant to subsequent heat<br />

shocks. Therefore our ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling has provided novel insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is evoluti<strong>on</strong>arily c<strong>on</strong>served envir<strong>on</strong>mental resp<strong>on</strong>se.<br />

References.<br />

[1] S. Nicholls, M.D. Leach, C.L. Priest, A.J. Brown, Role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heat shock transcripti<strong>on</strong> factor,<br />

Hsf1, in a major fungal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogen <str<strong>on</strong>g>th</str<strong>on</strong>g>at is obligately associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> warm-blooded animals Mol<br />

Microbiol. 74 844–61.<br />

[2] A.J. Brown, M.D. Leach, S. Nicholls, The relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> heat shock regulati<strong>on</strong> in fungal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ogens<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> humans Virulence 1 330–2.<br />

984


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Saturday, July 2, 11:00<br />

Elpida Tzafestas<br />

Cognitive Science Lab., Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Hist. & Philosophy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Univ.<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A<str<strong>on</strong>g>th</str<strong>on</strong>g>ens, GREECE<br />

e-mail: etzafestas@phs.uoa.gr<br />

Modeling horm<strong>on</strong>ally dependent genetic networks<br />

Usual approaches to regulatory genetic network modeling follow a feed-forward<br />

me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology, where <str<strong>on</strong>g>th</str<strong>on</strong>g>e network represents a black-box wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell. The operati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e black box is modeled as an input-output relati<strong>on</strong> and research tries<br />

to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e proper relati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at holds for several observed cases; <str<strong>on</strong>g>th</str<strong>on</strong>g>is relati<strong>on</strong><br />

may be expressed in various formalisms (typically boolean networks [1], but also<br />

Bayesian networks, etc.).<br />

Our proposal follows a developmental perspective and borrows <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically<br />

from modern accounts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene as an informati<strong>on</strong>-carrier and as a complex entity<br />

and c<strong>on</strong>cept [2-5]. These <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical developments bel<strong>on</strong>g to <str<strong>on</strong>g>th</str<strong>on</strong>g>e broad evo-devo<br />

trend and attempt to use <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene as a functi<strong>on</strong>al biological entity or as a developmental<br />

molecular process instead <str<strong>on</strong>g>of</str<strong>on</strong>g> a well-delimited structural entity encoding for<br />

a specific trait.<br />

Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical c<strong>on</strong>text, it is wor<str<strong>on</strong>g>th</str<strong>on</strong>g>while to study enhanced relati<strong>on</strong>s<br />

between genetic network and cellular behavior <str<strong>on</strong>g>th</str<strong>on</strong>g>at include c<strong>on</strong>trol in <str<strong>on</strong>g>th</str<strong>on</strong>g>e loop in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> memory : in regulatory networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> memory, subsequent activati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e same input vector will yield different output vectors, i.e.<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e transfer functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole network will be itself dynamic. From an external<br />

point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, <str<strong>on</strong>g>th</str<strong>on</strong>g>is may be seen as <str<strong>on</strong>g>th</str<strong>on</strong>g>e network prefering some inputs already seen, or<br />

dismissing <str<strong>on</strong>g>th</str<strong>on</strong>g>em, or in general specializing to certain activity pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways. We expect<br />

a cell to behave in such a way so as to resist to abrupt changes and to external<br />

manipulati<strong>on</strong>, for example by viruses. In a medium term, a genetic network wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

memory will behave in a more aut<strong>on</strong>omous and prudent manner and it will be less<br />

dependent <strong>on</strong> quick changes in its envir<strong>on</strong>ment.<br />

From a technical point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, <strong>on</strong>e way to introduce a sort <str<strong>on</strong>g>of</str<strong>on</strong>g> memory is to<br />

define individual gene functi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are not uniquely defined but <str<strong>on</strong>g>th</str<strong>on</strong>g>at vary for<br />

different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. One such c<strong>on</strong>trolling c<strong>on</strong>diti<strong>on</strong> may be <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> an horm<strong>on</strong>e [6]. This model represents <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> various genes<br />

<strong>on</strong> external factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at change slowly in comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene. We have studied gene functi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at differ according to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

level <str<strong>on</strong>g>of</str<strong>on</strong>g> an external horm<strong>on</strong>e <str<strong>on</strong>g>th</str<strong>on</strong>g>at follows its own dynamics. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case, l<strong>on</strong>g<br />

complex (irregular) attractors emerge wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic network. We have also<br />

studied genetic networks <str<strong>on</strong>g>th</str<strong>on</strong>g>at interact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>e in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e following<br />

ways: <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>e does not have intrinsic dynamics but its producti<strong>on</strong> is triggered<br />

or hindered ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er by each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene functi<strong>on</strong>s per horm<strong>on</strong>al level, or by each <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at may be in <strong>on</strong> or <str<strong>on</strong>g>of</str<strong>on</strong>g>f state. In bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cases, <str<strong>on</strong>g>th</str<strong>on</strong>g>e networks reach<br />

a co-attractor wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>e (<str<strong>on</strong>g>th</str<strong>on</strong>g>at is, <str<strong>on</strong>g>th</str<strong>on</strong>g>e network state and <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>al level<br />

reach coupled attractors). In <str<strong>on</strong>g>th</str<strong>on</strong>g>e first case, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese attractors are very <str<strong>on</strong>g>of</str<strong>on</strong>g>ten irregular<br />

and l<strong>on</strong>ger <str<strong>on</strong>g>th</str<strong>on</strong>g>at usual attractors <str<strong>on</strong>g>of</str<strong>on</strong>g> RBNs, while in <str<strong>on</strong>g>th</str<strong>on</strong>g>e sec<strong>on</strong>d case <str<strong>on</strong>g>th</str<strong>on</strong>g>ey resemble<br />

more <str<strong>on</strong>g>th</str<strong>on</strong>g>e short point and periodic attractors <str<strong>on</strong>g>of</str<strong>on</strong>g> RBNs. A few higher c<strong>on</strong>nectivity<br />

studies (K = number <str<strong>on</strong>g>of</str<strong>on</strong>g> inputs per gene > 2) and perturbati<strong>on</strong> studies have been<br />

985


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

performed, <str<strong>on</strong>g>th</str<strong>on</strong>g>at are indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> enhanced robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models: for example<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic-horm<strong>on</strong>al systems appear robust to <str<strong>on</strong>g>th</str<strong>on</strong>g>e exact ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e horm<strong>on</strong>al<br />

levels c<strong>on</strong>sidered per gene but not to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir number.<br />

References.<br />

[1] S.A.Kauffman. The origins <str<strong>on</strong>g>of</str<strong>on</strong>g> order: Self-organizati<strong>on</strong> and selecti<strong>on</strong> in evoluti<strong>on</strong>, Oxford University<br />

Press, 1993.<br />

[2] P.Beurt<strong>on</strong>, R.Falk, H-J.Rheinberger. The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene in development and evoluti<strong>on</strong>,<br />

Cambridge University Press, 2000.<br />

[3] P.Portin. Historical development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine and Philosophy,<br />

27(3):257-286, 2002.<br />

[4] J.Marks, R.B.Lyles. Re<str<strong>on</strong>g>th</str<strong>on</strong>g>inking genes, Evoluti<strong>on</strong>ary An<str<strong>on</strong>g>th</str<strong>on</strong>g>ropology, 3(4):139-146, 1994.<br />

[5] D.Cassill. The social gene, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Bioec<strong>on</strong>omics, 7(1):73-84, 2005.<br />

[6] A.Q.Chen, S.D.Yu, Z.G.Wang, Z.R.Hu, Z.G.Yang. Stage-specific expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>on</strong>e morphogenetic<br />

protein type I and type II receptor genes: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> follicle-stimulating horm<strong>on</strong>e <strong>on</strong><br />

ovine antral follicles, Animal Reproducti<strong>on</strong> Science, 111:391-399, 2009.<br />

986


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>negative Rad<strong>on</strong> measure spaces wi<str<strong>on</strong>g>th</str<strong>on</strong>g> metric structure<br />

to populati<strong>on</strong> dynamic models; Wednesday, June 29, 17:00<br />

Agnieszka Ulikowska<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

e-mail: aulikowska@mimuw.edu.pl<br />

Two-sex, age-structured populati<strong>on</strong> model<br />

The subject <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e presentati<strong>on</strong> is a two-sex, age-structured populati<strong>on</strong> model introduced<br />

first by A.Fredricks<strong>on</strong> and F.Hoppensteadt. The model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree PDE’s describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> males and females populati<strong>on</strong>s and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

process <str<strong>on</strong>g>of</str<strong>on</strong>g> couples formati<strong>on</strong>. The age structure plays here a crucial role, because<br />

individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> different ages usually have different preferences for entering into a<br />

marriage. Also envir<strong>on</strong>mental limitati<strong>on</strong>s and influences are taken into c<strong>on</strong>siderati<strong>on</strong><br />

- a bir<str<strong>on</strong>g>th</str<strong>on</strong>g> rate, dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rate, divorce rate and marriage functi<strong>on</strong> depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e whole system.<br />

Existence and uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e weak soluti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e space <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>negative<br />

finite Rad<strong>on</strong> measures equipped wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a flat metric is proved. The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> bases <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e operator splitting algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m. Splitting transport terms (which describe aging<br />

and dea<str<strong>on</strong>g>th</str<strong>on</strong>g>) and boundary terms (which describe an influx <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e new individuals)<br />

allows for obtaining necessary estimates. Hence, <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>tinuous dependence wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

respect to time, initial data and model coefficients is proved.<br />

References.<br />

[1] R.M. Colombo G. Guerra, Differential equati<strong>on</strong>s in metric spaces wi<str<strong>on</strong>g>th</str<strong>on</strong>g> applicati<strong>on</strong>s, Discrete<br />

C<strong>on</strong>tin. Dyn. Syst., 23 733–753, 2009.<br />

[2] A. Fredricks<strong>on</strong>, A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> age structure in sexual populati<strong>on</strong>s: random mating<br />

and m<strong>on</strong>ogamous models, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biosci., 10 117–143, 1971.<br />

[3] F. Hoppensteadt, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Populati<strong>on</strong>s: Demographics, Genetics and Epidemics,<br />

Society for Industrial and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Philadelphia, 1975.<br />

987


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Thursday, June 30, 11:30<br />

Margarete Utz<br />

Ludwig-Maximilians-University Munich, Department Biology II, Evoluti<strong>on</strong>ary<br />

Ecology<br />

e-mail: utz@bio.lmu.de<br />

Eva Kisdi, Mats Gyllenberg<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics<br />

e-mail: eva.kisdi@helsinki.fi, mats.gyllenberg@helsinki.fi<br />

Body C<strong>on</strong>diti<strong>on</strong> Dependent Dispersal in a Heterogeneous<br />

Envir<strong>on</strong>ment<br />

Body c<strong>on</strong>diti<strong>on</strong> dependent dispersal is a widely evident but barely understood<br />

phenomen<strong>on</strong>. Empirical data display diverse relati<strong>on</strong>ships between individual body<br />

c<strong>on</strong>diti<strong>on</strong> and dispersal between as well as wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in species.<br />

I develop models <str<strong>on</strong>g>th</str<strong>on</strong>g>at study <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal strategies <str<strong>on</strong>g>th</str<strong>on</strong>g>at depend<br />

<strong>on</strong> individual body c<strong>on</strong>diti<strong>on</strong>. In a patchy envir<strong>on</strong>ment where patches differ in<br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s, individuals born in rich (e.g. nutritious) patches are <strong>on</strong><br />

average str<strong>on</strong>ger <str<strong>on</strong>g>th</str<strong>on</strong>g>an <str<strong>on</strong>g>th</str<strong>on</strong>g>eir c<strong>on</strong>specifics <str<strong>on</strong>g>th</str<strong>on</strong>g>at are born in poorer patches. Body c<strong>on</strong>diti<strong>on</strong><br />

(streng<str<strong>on</strong>g>th</str<strong>on</strong>g>) determines competitive ability such <str<strong>on</strong>g>th</str<strong>on</strong>g>at str<strong>on</strong>ger individuals win<br />

competiti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> higher probability <str<strong>on</strong>g>th</str<strong>on</strong>g>an weak individuals. Individuals compete for<br />

patches such <str<strong>on</strong>g>th</str<strong>on</strong>g>at kin competiti<strong>on</strong> selects for dispersal. Survival probability during<br />

dispersal may depend <strong>on</strong> body c<strong>on</strong>diti<strong>on</strong>.<br />

I determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>arily stable strategy (ESS) for different ecological<br />

scenarios. In a fixed envir<strong>on</strong>ment, patches are aband<strong>on</strong>ed <str<strong>on</strong>g>th</str<strong>on</strong>g>at are too unsafe or <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

would not produce enough successful dispersers in <str<strong>on</strong>g>th</str<strong>on</strong>g>e future so <str<strong>on</strong>g>th</str<strong>on</strong>g>at all <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring<br />

disperse from <str<strong>on</strong>g>th</str<strong>on</strong>g>ese patches. In a fluctuating envir<strong>on</strong>ment where patch qualities<br />

change randomly from year to year, all patches are equally wor<str<strong>on</strong>g>th</str<strong>on</strong>g> keeping so <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

all families keep <str<strong>on</strong>g>th</str<strong>on</strong>g>e same competitive weight in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir natal patch and disperse <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

rest.<br />

From families <str<strong>on</strong>g>th</str<strong>on</strong>g>at invest in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> retaining <str<strong>on</strong>g>th</str<strong>on</strong>g>eir natal patch and gaining o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

patches <str<strong>on</strong>g>th</str<strong>on</strong>g>rough successful dispersers, <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e highest survival probability<br />

during dispersal disperse whereas individuals <str<strong>on</strong>g>th</str<strong>on</strong>g>at are less suitable for dispersal<br />

defend <str<strong>on</strong>g>th</str<strong>on</strong>g>eir natal patch. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>is clear wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in-family pattern is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten not<br />

reflected in <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>-wide body c<strong>on</strong>diti<strong>on</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersers or n<strong>on</strong>dispersers.<br />

This may be an explanati<strong>on</strong> why empirical data do not show any general<br />

relati<strong>on</strong>ship between body c<strong>on</strong>diti<strong>on</strong> and dispersal.<br />

When all individuals are equally good dispersers, <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exist equivalence<br />

classes <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal strategies <str<strong>on</strong>g>th</str<strong>on</strong>g>at are defined by <str<strong>on</strong>g>th</str<strong>on</strong>g>e competitive weight <str<strong>on</strong>g>th</str<strong>on</strong>g>at remains<br />

in a patch. An equivalence class c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> infinitely many dispersal strategies<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at are selectively neutral. This provides an explanati<strong>on</strong> why very diverse<br />

patterns found in body c<strong>on</strong>diti<strong>on</strong> dependent dispersal data can all be equally evoluti<strong>on</strong>arily<br />

stable.<br />

References.<br />

[1] M. Gyllenberg, E. Kisdi, M. Utz, Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>-dependent dispersal under kin competiti<strong>on</strong><br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology 57 258–307.<br />

988


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[2] M. Gyllenberg, E. Kisdi, M. Utz, Variability wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in families and <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> body c<strong>on</strong>diti<strong>on</strong><br />

dependent dispersal Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Dynamics (in press).<br />

[3] M. Gyllenberg, E. Kisdi, M. Utz, Body c<strong>on</strong>diti<strong>on</strong> dependent dispersal in a heterogeneous envir<strong>on</strong>ment<br />

(submitted).<br />

989


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Asher Uziel<br />

Tel-Aviv University, BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Unit<br />

e-mail: asher.uziel@gmail.com<br />

Lewi St<strong>on</strong>e<br />

Tel-Aviv University, BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Unit<br />

Epidemics; Wednesday, June 29, 11:00<br />

Predicting <str<strong>on</strong>g>th</str<strong>on</strong>g>e period in seas<strong>on</strong>ally driven epidemics<br />

Seas<strong>on</strong>ality str<strong>on</strong>gly affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e transmissi<strong>on</strong> and spatio-temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

infectious diseases, and is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten an important cause for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir recurrence. However,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ere are many open questi<strong>on</strong>s regarding <str<strong>on</strong>g>th</str<strong>on</strong>g>e intricate relati<strong>on</strong>ship between seas<strong>on</strong>ality<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases it gives rise to. For example, in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g-term time-series <str<strong>on</strong>g>of</str<strong>on</strong>g> childhood diseases, it is not clear why <str<strong>on</strong>g>th</str<strong>on</strong>g>ere<br />

are transiti<strong>on</strong>s from regimes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> regular annual dynamics, to regimes in which<br />

epidemics occur every two or more years, and vice-versa. The classical seas<strong>on</strong>allyforced<br />

SIR epidemic model gives insights into <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomena but due to its intrinsic<br />

n<strong>on</strong>linearity and complex dynamics, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is rarely amenable to detailed<br />

ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical analysis. Making sensible approximati<strong>on</strong>s we analytically study <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>reshold (bifurcati<strong>on</strong>) point <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e forced SIR model where <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a switch from<br />

annual to biennial epidemics. We derive, for <str<strong>on</strong>g>th</str<strong>on</strong>g>e first time, a simple equati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

predicts <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong>ship between key epidemiological parameters near <str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcati<strong>on</strong><br />

point. The relati<strong>on</strong>ship makes clear <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic period will decrease if<br />

ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e bir<str<strong>on</strong>g>th</str<strong>on</strong>g>-rate () or basic reproductive ratio (R0) is increased sufficiently, or if<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>ality () is reduced sufficiently. These effects are c<strong>on</strong>firmed in<br />

simulati<strong>on</strong> studies and are also in accord wi<str<strong>on</strong>g>th</str<strong>on</strong>g> empirical observati<strong>on</strong>s. For example,<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e pre-vaccinati<strong>on</strong> era, <str<strong>on</strong>g>th</str<strong>on</strong>g>e increase in bir<str<strong>on</strong>g>th</str<strong>on</strong>g>-rate in <str<strong>on</strong>g>th</str<strong>on</strong>g>e United States and in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e United Kingdom was <str<strong>on</strong>g>th</str<strong>on</strong>g>e factor resp<strong>on</strong>sible for driving measles dynamics from<br />

biennial to annual oscillati<strong>on</strong>s. Moreover, it is argued <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e str<strong>on</strong>g seas<strong>on</strong>ality in<br />

India (high ) may be resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>e erratic polio outbreaks. Corresp<strong>on</strong>dingly,<br />

our equati<strong>on</strong> identifies <str<strong>on</strong>g>th</str<strong>on</strong>g>e first bifurcati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected period-doubling route<br />

to chaos <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tinues as seas<strong>on</strong>ality increases.<br />

990


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Thursday, June 30, 11:30<br />

Milan J.A. van Hoek<br />

Centrum Wiskunde & Informatica<br />

and Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands C<strong>on</strong>sortium for Systems Biology<br />

Science Park 123, 1098 XG, Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: Milan.van.Hoek@cwi.nl<br />

Roeland M.H. Merks<br />

Centrum Wiskunde & Informatica<br />

and Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands C<strong>on</strong>sortium for Systems Biology<br />

Science Park 123, 1098 XG, Amsterdam, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: Roeland.Merks@cwi.nl<br />

Protein Cost and Metabolic Network Structure Underlie<br />

Different Modes <str<strong>on</strong>g>of</str<strong>on</strong>g> Metabolic Efficiency<br />

When grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate increases, many unicellular organisms shift from an energetically<br />

efficient to an energetically inefficient metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way to break down<br />

glucose. An example is baker’s yeast Saccharomyces cerivisiae, which ferments glucose<br />

to e<str<strong>on</strong>g>th</str<strong>on</strong>g>anol if <str<strong>on</strong>g>th</str<strong>on</strong>g>e glucose c<strong>on</strong>centrati<strong>on</strong> is high, even in aerobic envir<strong>on</strong>ments<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at allow for more efficient catabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> glucose [1]. Recently, a new explanati<strong>on</strong><br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>is paradoxical behaviour has been proposed: because cells can <strong>on</strong>ly pack a limited<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> metabolic enzymes, inefficient metabolism can maximise <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell, because efficient metabolic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways require more enzymes <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

inefficient pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways [2,3]. Indeed, Vazquez et al. [2] explained <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>current use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e efficient and inefficient pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way by Escherichia coli in <str<strong>on</strong>g>th</str<strong>on</strong>g>is way. However, it is<br />

unknown why, at high grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates, some microbes <strong>on</strong>ly use efficient metabolism,<br />

while o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers <strong>on</strong>ly use inefficient metabolism and again o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers use bo<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>currently.<br />

Here we apply Vazquez’ me<str<strong>on</strong>g>th</str<strong>on</strong>g>od <strong>on</strong> genome-scale metabolic models <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree<br />

organisms <str<strong>on</strong>g>th</str<strong>on</strong>g>at use different modes <str<strong>on</strong>g>of</str<strong>on</strong>g> inefficient metabolism, E. coli, S. cerevisiae<br />

and Lactococcus lactis: E. coli does not downregulate its efficient pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way at high<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates, while S. cerevisiae and L. lactis do. The Vazquez me<str<strong>on</strong>g>th</str<strong>on</strong>g>od incorporates<br />

a protein cost for each reacti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e genome-scale metabolic network. This<br />

cost is proporti<strong>on</strong>al to enzyme volume divided by enzyme turnover number (kcat).<br />

Because <str<strong>on</strong>g>th</str<strong>on</strong>g>ese protein costs are not known for each reacti<strong>on</strong> individually, we created<br />

1000 networks, each wi<str<strong>on</strong>g>th</str<strong>on</strong>g> protein costs for each reacti<strong>on</strong> drawn randomly from an<br />

experimentally-obtained distributi<strong>on</strong>. For <strong>on</strong>ly a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese networks inefficient<br />

metabolism is <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal strategy. This allowed us to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein costs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is inefficient subset in more detail.<br />

We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at for cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> low glycolytic protein cost, inefficient metabolism<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal strategy, in all <str<strong>on</strong>g>th</str<strong>on</strong>g>ese organisms. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, for S. cerevisiae and<br />

L. lactis optimal grow<str<strong>on</strong>g>th</str<strong>on</strong>g> yield is bimodally distributed over <str<strong>on</strong>g>th</str<strong>on</strong>g>ese 1000 networks:<br />

metabolism is ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er efficient or inefficient. In c<strong>on</strong>trast, for E. coli we observed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at optimal grow<str<strong>on</strong>g>th</str<strong>on</strong>g> yield varies c<strong>on</strong>tinuously over <str<strong>on</strong>g>th</str<strong>on</strong>g>ese 1000 networks. This could<br />

explain why S. cerevisiae and L. lactis truly switch <str<strong>on</strong>g>of</str<strong>on</strong>g>f efficient metabolism, while<br />

E. coli uses inefficient and efficient metabolism c<strong>on</strong>currently. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at differences<br />

in metabolic network structure underlie <str<strong>on</strong>g>th</str<strong>on</strong>g>is qualitative difference between<br />

991


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

E. coli <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>e hand and S. cerevisiae and L. lactis <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand. C<strong>on</strong>cluding,<br />

protein costs determine whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er inefficient metabolism is optimal, while<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic network structure determines <str<strong>on</strong>g>th</str<strong>on</strong>g>e mode <str<strong>on</strong>g>of</str<strong>on</strong>g> inefficient metabolism.<br />

References.<br />

[1] Hoek PV, Dijken JPV, Pr<strong>on</strong>k JT (1998). Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> specific grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate <strong>on</strong> fermentative capacity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> baker’s yeast. Appl Envir<strong>on</strong> Microbiol 64 4226–4233.<br />

[2] Vazquez A, Beg QK, Demenezes MA, Ernst J, Bar-Joseph Z, et al (2008). Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solvent<br />

capacity c<strong>on</strong>straint <strong>on</strong> E. coli metabolism. BMC Syst Biol 2: 7.<br />

[3] Molenaar D, van Berlo R, de Ridder D, Teusink B (2009). Shifts in grow<str<strong>on</strong>g>th</str<strong>on</strong>g> strategies reflect<br />

trade<str<strong>on</strong>g>of</str<strong>on</strong>g>fs in cellular ec<strong>on</strong>omics. Mol Syst Biol5: 323.<br />

992


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Regulatory Networks; Saturday, July 2, 11:00<br />

Sim<strong>on</strong> van Mourik<br />

Kerstin Kaufmann<br />

Richard Immink<br />

Gerco Angenent<br />

Jaap Molenaar<br />

Wageningen University, Wageningen, The Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: Sim<strong>on</strong>.vanmourik@wur.nl<br />

Quantitative modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> in Arabidopsis<br />

flowers<br />

Flowers have a complex structure in which tissues and organs obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>eir identities<br />

and arrangements in a very special way. According to <str<strong>on</strong>g>th</str<strong>on</strong>g>e so-called ABC(DE) model<br />

[1], <str<strong>on</strong>g>th</str<strong>on</strong>g>e different floral organs in Arabidopsis are specified by <str<strong>on</strong>g>th</str<strong>on</strong>g>e expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> five<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> MADS box genes. During development, <str<strong>on</strong>g>th</str<strong>on</strong>g>e floral meristem gets divided<br />

into four c<strong>on</strong>centric areas (whorls) in which different combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> MADS gene<br />

expressi<strong>on</strong>s are observed: A+E in <str<strong>on</strong>g>th</str<strong>on</strong>g>e sepal whorl, A+B+E in <str<strong>on</strong>g>th</str<strong>on</strong>g>e petal whorl,<br />

B+C+E in <str<strong>on</strong>g>th</str<strong>on</strong>g>e stamen whorl, and C+E in <str<strong>on</strong>g>th</str<strong>on</strong>g>e carpel whorl.<br />

In [2] we proposed an ODE model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e gene regulatory network<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at underlies <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e MADS domain proteins. We showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

model type is well suited for testing hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses <strong>on</strong> formati<strong>on</strong> and functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

higher order complexes, transcripti<strong>on</strong> activati<strong>on</strong> and DNA binding.<br />

For <str<strong>on</strong>g>th</str<strong>on</strong>g>e predictive power <str<strong>on</strong>g>of</str<strong>on</strong>g> such a model, accurate estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameter values<br />

plays an essential role. To <str<strong>on</strong>g>th</str<strong>on</strong>g>is end, we developed a spatiotemporal data set <str<strong>on</strong>g>of</str<strong>on</strong>g> in<br />

vivo protein c<strong>on</strong>centrati<strong>on</strong>s, using a state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e art protein tagging procedure. We<br />

used a novel image analysis technique to estimate relative protein c<strong>on</strong>centrati<strong>on</strong>s<br />

from <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting c<strong>on</strong>focal images [3].<br />

We also developed a novel parameter estimati<strong>on</strong> procedure <str<strong>on</strong>g>th</str<strong>on</strong>g>at explicitly incorporates<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e temporal expressi<strong>on</strong> development, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e measured standard<br />

deviati<strong>on</strong>s. The estimati<strong>on</strong> results will give a direct feedback <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses,<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>ey will be presented at <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>ference.<br />

References.<br />

[1] Causier B, Schwarz-Sommer Z, Davies B: Floral organ identity: 20 years <str<strong>on</strong>g>of</str<strong>on</strong>g> ABCs. Seminars<br />

in Cell & Developmental Biology 2010, 21(1):73-79.<br />

[2] van Mourik S, van Dijk AD, de Gee M, Immink RG, Kaufmann K, Angenent GC, van Ham<br />

RC, Molenaar J: C<strong>on</strong>tinuous-time modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> cell fate determinati<strong>on</strong> in Arabidopsis flowers.<br />

BMC Syst Biol 2010, 4:101.<br />

[3] Quelhas P, Mend<strong>on</strong>ca, A, Campilho, A: 3D cell nuclei fluorescence quantificati<strong>on</strong> using sliding<br />

band filter. In: Internati<strong>on</strong>al <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Pattern Recogniti<strong>on</strong>: 2010: IEEE Press -<br />

Computer Society; 2010: 2508-2511.<br />

993


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biomechanical regulati<strong>on</strong> in b<strong>on</strong>e tissue (Sessi<strong>on</strong><br />

I); Wednesday, June 29, 08:30<br />

Bert van Rietbergen<br />

Eindhoven Universty <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Eindhoven, Ne<str<strong>on</strong>g>th</str<strong>on</strong>g>erlands<br />

e-mail: b.v.rietbergen@tue.nl<br />

A <str<strong>on</strong>g>th</str<strong>on</strong>g>eory for load-adaptive b<strong>on</strong>e remodeling at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular<br />

level<br />

It is well known <str<strong>on</strong>g>th</str<strong>on</strong>g>at b<strong>on</strong>e tissue can adapt its shape and density to <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanical<br />

demands it is subjected to. However, how, exactly, <str<strong>on</strong>g>th</str<strong>on</strong>g>is process is regulated is not<br />

well known. Over <str<strong>on</strong>g>th</str<strong>on</strong>g>e last decade we have developed a <str<strong>on</strong>g>th</str<strong>on</strong>g>eory for load adaptive b<strong>on</strong>e<br />

remodeling <str<strong>on</strong>g>th</str<strong>on</strong>g>at is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>th</str<strong>on</strong>g>at osteocyte cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e b<strong>on</strong>e tissue can<br />

sense local loading c<strong>on</strong>diti<strong>on</strong>s and based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is informati<strong>on</strong> regulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e activity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

b<strong>on</strong>e forming cells (osteoblast) and b<strong>on</strong>e resorbing cell (osteoclasts) [1]. We tested<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis using computati<strong>on</strong>al models <str<strong>on</strong>g>th</str<strong>on</strong>g>at included finite element models<br />

to represent trabecular b<strong>on</strong>e architectures and to calculate loading c<strong>on</strong>diti<strong>on</strong>s at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> osteocytes, In <str<strong>on</strong>g>th</str<strong>on</strong>g>e earlier <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese studies [2], <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e net result <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

b<strong>on</strong>e formati<strong>on</strong> and resorpti<strong>on</strong> was represented by changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model geometry.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese studies we dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>eory can explain many aspects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

b<strong>on</strong>e remodeling <str<strong>on</strong>g>th</str<strong>on</strong>g>at could not be explained before. First, it was shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eory can explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> typical trabecular architectures (osteogenesis).<br />

Sec<strong>on</strong>d, it was shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory can explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptati<strong>on</strong> and alignment <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trabecular b<strong>on</strong>e as <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>of</str<strong>on</strong>g> a local adaptati<strong>on</strong> process. Third, it was shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory could explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoporosis as <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in<br />

cell activity or loading magnitude. In later studies [3] we increased <str<strong>on</strong>g>th</str<strong>on</strong>g>e resoluti<strong>on</strong> to<br />

also represent individual cells. In <str<strong>on</strong>g>th</str<strong>on</strong>g>ese studies we dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>eory can<br />

explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling between osteoclast and osteoblast cells in basic multicellular<br />

units as <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in local loading c<strong>on</strong>diti<strong>on</strong> sensed by osteocytes. It<br />

could also explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oste<strong>on</strong>s in cortical b<strong>on</strong>e and why <str<strong>on</strong>g>th</str<strong>on</strong>g>ese are<br />

oriented in <str<strong>on</strong>g>th</str<strong>on</strong>g>e loading directi<strong>on</strong>. Finally, al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough <str<strong>on</strong>g>th</str<strong>on</strong>g>e biochemical pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way by<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>e osteocytes regulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cells was never specified, we were ble to<br />

dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> a stimulatory pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way, in which inicreased loading leads to<br />

increased stimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoblast, and an inhibitory pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way, in which increased<br />

loading leads to decreased inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> osteoblast (typically for sclerostin) could<br />

work. Presently it is investigated if <str<strong>on</strong>g>th</str<strong>on</strong>g>is <str<strong>on</strong>g>th</str<strong>on</strong>g>eory can be transformed into a clinical<br />

tool to predict b<strong>on</strong>e remodeling in patients as expected due to changes in cell<br />

metabolism or loading c<strong>on</strong>diti<strong>on</strong>s.<br />

References.<br />

[1] Huiskes R, Ruimerman R, van Len<str<strong>on</strong>g>th</str<strong>on</strong>g>e GH, Janssen JD. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical forces <strong>on</strong> maintenance<br />

and adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> form in trabecular b<strong>on</strong>e. Nature. 2000 Jun 8;405(6787):704-6.<br />

[2] Ruimerman R, Hilbers PAJ, van Rietbergen B, Huiskes R. A <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical ramework for strainrelated<br />

trabecular b<strong>on</strong>e maintenance and adaptati<strong>on</strong>. J Biomech,2005;38:931-41.<br />

[3] van Oers RFM, Ruimerman R, Tanck E, Hilbers PAJ, Huiskes R. A unified <str<strong>on</strong>g>th</str<strong>on</strong>g>eory for oste<strong>on</strong>al<br />

and hemi-oste<strong>on</strong>al remodeling. B<strong>on</strong>e 2008;42:250-9.<br />

994


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Informati<strong>on</strong>, human behaviour and disease; Saturday, July 2, 11:00<br />

Raffaele Vardavas<br />

RAND Corporati<strong>on</strong><br />

e-mail: Raffaele_Vardavas@rand.org<br />

Modeling Adaptive Behavior in Influenza Vaccinati<strong>on</strong><br />

Decisi<strong>on</strong>s<br />

Classic game-<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretic approaches, whereby individuals are assumed to evaluate<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir opti<strong>on</strong>s deductively based up<strong>on</strong> available informati<strong>on</strong> and percepti<strong>on</strong>s, have<br />

previously been used to model vaccinati<strong>on</strong>-related decisi<strong>on</strong> making. However, for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza, individuals may rely <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir memories and past experiences<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> having vaccinated. They <str<strong>on</strong>g>th</str<strong>on</strong>g>us use adaptati<strong>on</strong> by evaluating <str<strong>on</strong>g>th</str<strong>on</strong>g>eir vaccinati<strong>on</strong><br />

opti<strong>on</strong>s inductively. We explore <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>cept by c<strong>on</strong>structing an individual-level<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive-decisi<strong>on</strong> making. Here, individuals are characterized by two<br />

biological attributes (memory and adaptability) <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ey use when making vaccinati<strong>on</strong><br />

decisi<strong>on</strong>s. We couple <str<strong>on</strong>g>th</str<strong>on</strong>g>is model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a populati<strong>on</strong>-level model <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at includes vaccinati<strong>on</strong> dynamics. The coupled models allow individual-level decisi<strong>on</strong>s<br />

to influence influenza epidemiology and, c<strong>on</strong>versely, influenza epidemiology<br />

to influence individual-level decisi<strong>on</strong>s. By including <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive-decisi<strong>on</strong><br />

making wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in an epidemic model we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at severe influenza epidemics could<br />

occur due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavioral dynamics in vaccinati<strong>on</strong> uptake wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a pandemic strain. These severe epidemics can be prevented if vaccinati<strong>on</strong> programs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>fer incentives. We find <str<strong>on</strong>g>th</str<strong>on</strong>g>at when a family-based incentive is <str<strong>on</strong>g>of</str<strong>on</strong>g>fered, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> severe epidemics is increased. Instead, <str<strong>on</strong>g>th</str<strong>on</strong>g>is frequency could be reduced<br />

if programs provide several years <str<strong>on</strong>g>of</str<strong>on</strong>g> free vaccines to individuals who pay for <strong>on</strong>e<br />

year <str<strong>on</strong>g>of</str<strong>on</strong>g> vaccinati<strong>on</strong>. We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at individuals memories and flexibility in adaptive<br />

decisi<strong>on</strong>-making can be extremely important factors in influenza and voluntary<br />

vaccinati<strong>on</strong> determining <str<strong>on</strong>g>th</str<strong>on</strong>g>e success <str<strong>on</strong>g>of</str<strong>on</strong>g> influenza vaccinati<strong>on</strong> programs. Finally, we<br />

discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e implicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our results in success <str<strong>on</strong>g>of</str<strong>on</strong>g> a universal flu vaccine and for<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> a pandemic, and discuss some extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

References.<br />

[1] Raffaele Vardavas, Romulus Breban, and Sally Blower. Can influenza epidemics be prevented<br />

by voluntary vaccinati<strong>on</strong>? PLoS Comput Biol, 3(5):e85, May 2007.<br />

[2] Romulus Breban, Raffaele Vardavas, and Sally Blower. Mean-field analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an inductive reas<strong>on</strong>ing<br />

game: Applicati<strong>on</strong> to influenza vaccinati<strong>on</strong>. Physical Review E (Statistical, N<strong>on</strong>linear,<br />

and S<str<strong>on</strong>g>of</str<strong>on</strong>g>t Matter Physics), 76(3):031127, 2007.<br />

[3] Raffaele Vardavas, Romulus Breban, and Sally Blower. A universal l<strong>on</strong>g-term flu vaccine may<br />

not prevent severe epidemics. BMC Res Notes, 3:92, 2010.<br />

995


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecosystems Dynamics; Tuesday, June 28, 17:00<br />

M. Vela-Pérez<br />

Departamento de Arquitectura, IE University, C/ Zúñiga 12, 40003<br />

Segovia, Spain<br />

e-mail: mvp_es@yahoo.es<br />

M. A. F<strong>on</strong>telos and J. J. L. Velázquez<br />

Instituto de Ciencias Matemáticas, (ICMAT, CSIC-UAM-UC3M-UCM),<br />

C/ Nicolás Cabrera 15, 28049 Madrid, Spain<br />

e-mail: marco.f<strong>on</strong>telos@icmat.es, jj_velazquez@icmat.es<br />

Geodesic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s in simple graphs for some social insects<br />

Social insects are an important example <str<strong>on</strong>g>of</str<strong>on</strong>g> complex collective behavior. In particular,<br />

ant col<strong>on</strong>ies develop different tasks as foraging, building and allocati<strong>on</strong> [1].<br />

While <str<strong>on</strong>g>th</str<strong>on</strong>g>ey search for food <str<strong>on</strong>g>th</str<strong>on</strong>g>ey deposit a pherom<strong>on</strong>e <str<strong>on</strong>g>th</str<strong>on</strong>g>at it is c<strong>on</strong>sidered as a<br />

crucial element in <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism for finding minimal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s. The experimental<br />

observati<strong>on</strong>s suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model should include <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> pherom<strong>on</strong>e and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence (tendency to follow straight pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er effects).<br />

In our study, we will c<strong>on</strong>sider ants as random walkers where <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability to<br />

move in <strong>on</strong>e or ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er directi<strong>on</strong> is influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pherom<strong>on</strong>e<br />

near <str<strong>on</strong>g>th</str<strong>on</strong>g>em (reinforced random walks). We are mainly interested not in an individual<br />

random walker but ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <strong>on</strong> a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> random walkers, <str<strong>on</strong>g>th</str<strong>on</strong>g>eir collective<br />

behavior, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e possibility for <str<strong>on</strong>g>th</str<strong>on</strong>g>em to aggregate forming geodesic pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s between<br />

two points in some simple networks.<br />

We investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> ants in a two node network and in a <str<strong>on</strong>g>th</str<strong>on</strong>g>ree node<br />

network (wi<str<strong>on</strong>g>th</str<strong>on</strong>g> and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out directi<strong>on</strong>ality c<strong>on</strong>straint). Our analytical and computati<strong>on</strong>al<br />

results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at in order for <str<strong>on</strong>g>th</str<strong>on</strong>g>e ants to follow shortest pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s between nest<br />

and food, it is necessary to superimpose to <str<strong>on</strong>g>th</str<strong>on</strong>g>e ants’ random walk <str<strong>on</strong>g>th</str<strong>on</strong>g>e chemotactic<br />

reinforcement. It is also needed a certain degree <str<strong>on</strong>g>of</str<strong>on</strong>g> persistence so <str<strong>on</strong>g>th</str<strong>on</strong>g>at ants tend<br />

to move preferably wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out changing <str<strong>on</strong>g>th</str<strong>on</strong>g>eir directi<strong>on</strong> much. Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er important fact<br />

is <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> ants, since we will show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e speed for finding minimal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s<br />

increases very fast wi<str<strong>on</strong>g>th</str<strong>on</strong>g> it.<br />

References.<br />

[1] B. Hölldobler and K. Wils<strong>on</strong>, The ants, Berlin: Springer, 1990<br />

[2] M. Vela-Pérez, M. A. F<strong>on</strong>telos and J. J. L. Velázquez,Ant foraging and minimal pa<str<strong>on</strong>g>th</str<strong>on</strong>g>s in<br />

simple graphs, Submitted for publicati<strong>on</strong><br />

996


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemiology, Eco-Epidemiology and Evoluti<strong>on</strong>; Saturday, July 2, 11:00<br />

Ezio Venturino, Alessandro Castellazzo, Andrea Mauro, Claudia Volpe<br />

Dipartimento di Matematica “Giuseppe Peano”,<br />

Università di Torino, Italy.<br />

e-mail: ezio.venturino@unito.it<br />

On an age- and stage-dependent epidemic model.<br />

A very general epidemic model will be introduced in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease spreads<br />

by c<strong>on</strong>tact am<strong>on</strong>g a populati<strong>on</strong> which is age-dependent. A stage structure is introduced<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease, to describe its progressi<strong>on</strong>. The model formulati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>us hinges<br />

<strong>on</strong> a system <str<strong>on</strong>g>of</str<strong>on</strong>g> highly n<strong>on</strong>linear hyperbolic partial differential equati<strong>on</strong>s. The wellposedness<br />

is discussed. Numerical simulati<strong>on</strong>s reveal <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> recurrent<br />

epidemic outbreaks, under suitable circumstances.<br />

997


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models in Eco-epidemiology I; Wednesday, June 29, 08:30<br />

Ezio Venturino, Fabio Roman, Federica Rossotto<br />

Dipartimento di Matematica “Giuseppe Peano”,<br />

Università di Torino, Italy.<br />

e-mail: ezio.venturino@unito.it<br />

A two-strain ecoepidemic model<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we present a model in which two strains are c<strong>on</strong>sidered. In a<br />

predator-prey demographic model, two c<strong>on</strong>tagious diseases are assumed to spread<br />

am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e predators. Under <str<strong>on</strong>g>th</str<strong>on</strong>g>e relatively str<strong>on</strong>g assumpti<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e individual<br />

cannot be affected by bo<str<strong>on</strong>g>th</str<strong>on</strong>g>, we analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e system to determine its l<strong>on</strong>g term<br />

behavior. While in some o<str<strong>on</strong>g>th</str<strong>on</strong>g>er already published models bo<str<strong>on</strong>g>th</str<strong>on</strong>g> populati<strong>on</strong>s have<br />

been c<strong>on</strong>sidered subject to a disease, or <str<strong>on</strong>g>th</str<strong>on</strong>g>e same disease is able to cross <str<strong>on</strong>g>th</str<strong>on</strong>g>e species<br />

barrier, to our knowledge <str<strong>on</strong>g>th</str<strong>on</strong>g>is is <str<strong>on</strong>g>th</str<strong>on</strong>g>e first ecoepidemic model accounting for two<br />

diseases affecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e same populati<strong>on</strong>.<br />

998


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Undergraduate Bioma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Educati<strong>on</strong> Bey<strong>on</strong>d BIO 2010 (Part II);<br />

Saturday, July 2, 08:30<br />

Paola Vera-Lic<strong>on</strong>a<br />

Institut Curie<br />

e-mail: paola.vera-lic<strong>on</strong>a@curie.fr<br />

Ana Martins<br />

Virginia Bioinformatics Institute<br />

Reinhard Laubenbacher<br />

Virginia Bioinformatics Institute<br />

Computati<strong>on</strong>al Systems Biology: Discrete Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Gene<br />

Regulatory Networks<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we will describe a hands-<strong>on</strong> project in computati<strong>on</strong>al systems biology for<br />

students and <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be used in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> settings, from high school to college,<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a particular focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> discrete ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics. The biological focus is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Escherichia coli lactose oper<strong>on</strong>, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first known intracellular regulatory<br />

networks. The modeling approach uses <str<strong>on</strong>g>th</str<strong>on</strong>g>e framework <str<strong>on</strong>g>of</str<strong>on</strong>g> Boolean networks and<br />

tools from discrete ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics for model simulati<strong>on</strong> and analysis.<br />

The talk is based <strong>on</strong> materials from a workshop for high school teachers described<br />

in Martins et al. [1] and c<strong>on</strong>ducted as a collaborati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e Virginia<br />

Bioinformatics Institute (VBI) at Virginia Tech and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Institute for Advanced<br />

Learning & Research (IALR) in Danville, VA. The workshop structure simulated<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e team science approach comm<strong>on</strong> in today practice in computati<strong>on</strong>al molecular<br />

biology and <str<strong>on</strong>g>th</str<strong>on</strong>g>us represents a social case study in collaborative research.<br />

During <str<strong>on</strong>g>th</str<strong>on</strong>g>e workshop <str<strong>on</strong>g>th</str<strong>on</strong>g>e participants were provided wi<str<strong>on</strong>g>th</str<strong>on</strong>g> all <str<strong>on</strong>g>th</str<strong>on</strong>g>e necessary background<br />

in molecular biology and discrete ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics required to complete <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

project, and developed activities intended to show students <str<strong>on</strong>g>th</str<strong>on</strong>g>e value <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

modeling in understanding biochemical network mechanisms and dynamics.<br />

References.<br />

[1] A. Martins, P. Vera Lic<strong>on</strong>a, R. Laubenbacher. Computati<strong>on</strong>al systems biology: Discrete models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulati<strong>on</strong> networks. To appear in MAA Notes volume: Undergraduate Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Life Sciences: Processes, Models, Assessment, and Directi<strong>on</strong>s. 2011.<br />

999


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 11:00<br />

Maurício Vieira Kritz<br />

LNCC/MCT, Av. Getúlio Vargas 333, 25651-075 Petrópolis, Brazil<br />

e-mail: kritz@lncc.br<br />

Biological Informati<strong>on</strong>, Biological Interacti<strong>on</strong> and<br />

Anticipati<strong>on</strong><br />

Understanding biological organisati<strong>on</strong>s and interacti<strong>on</strong>s is becoming ever more<br />

important. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, a c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> designed to handle informati<strong>on</strong><br />

c<strong>on</strong>veyed by organizati<strong>on</strong>s is introduced. This c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> may be used<br />

at all biological scales: from molecular and intracellular to multi-cellular organisms<br />

and human beings, and fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er <strong>on</strong> into collectivities, societies and culture.<br />

This c<strong>on</strong>cept is based <strong>on</strong> whole-part graphs, a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for biological<br />

organizati<strong>on</strong> introduced earlier [1]. This model supports <str<strong>on</strong>g>th</str<strong>on</strong>g>e formal investigati<strong>on</strong><br />

about properties <str<strong>on</strong>g>of</str<strong>on</strong>g> biological organisati<strong>on</strong>s, allowing for ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organisati<strong>on</strong> transformati<strong>on</strong>s [2].<br />

Ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er c<strong>on</strong>cept, necessary for developing <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong>, will also be introduced.<br />

It is <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> synexi<strong>on</strong>s, or organisati<strong>on</strong>s immersed in space-time.<br />

The definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> also formalizes percepti<strong>on</strong>, observers and interpretati<strong>on</strong>;<br />

al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough observers appear just as acknowledgers <str<strong>on</strong>g>of</str<strong>on</strong>g> changes. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is setting,<br />

informati<strong>on</strong> and interpretati<strong>on</strong> stand as seminal elements <str<strong>on</strong>g>of</str<strong>on</strong>g> (biological) interacti<strong>on</strong><br />

and <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organisati<strong>on</strong>s. Some aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese c<strong>on</strong>cepts will be<br />

clarified while arguing why <str<strong>on</strong>g>th</str<strong>on</strong>g>e immersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> whole-part graphs in (<str<strong>on</strong>g>th</str<strong>on</strong>g>e physical)<br />

space-time is needed. This immersi<strong>on</strong> c<strong>on</strong>nects <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> to<br />

issues related to anticipati<strong>on</strong>.<br />

Me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for identifying organisati<strong>on</strong>s in biological data may be derived based<br />

<strong>on</strong> whole-part graphs. However, me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for inspecting and identifying organisati<strong>on</strong>s<br />

in bio-chemical networks grounded solely <strong>on</strong> network informati<strong>on</strong> and not<br />

c<strong>on</strong>sidering interacti<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment do not work satisfactorily [4] for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

following reas<strong>on</strong>. It can be proved <str<strong>on</strong>g>th</str<strong>on</strong>g>at de-organizing <str<strong>on</strong>g>th</str<strong>on</strong>g>ings into <str<strong>on</strong>g>th</str<strong>on</strong>g>eir interc<strong>on</strong>nected<br />

parts is a deterministic process, while re-organizing associated parts into<br />

wholes is a n<strong>on</strong>-deterministic process. This implies <str<strong>on</strong>g>th</str<strong>on</strong>g>at raw relati<strong>on</strong>al data [6],<br />

like bio-chemical networks, is insufficient to determine <str<strong>on</strong>g>th</str<strong>on</strong>g>eir natural organisati<strong>on</strong><br />

and how biological organisati<strong>on</strong>s come to be, indicating <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> neatly<br />

c<strong>on</strong>sidering interacti<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e organisati<strong>on</strong> process.<br />

It has been suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at informati<strong>on</strong> exchange is <str<strong>on</strong>g>th</str<strong>on</strong>g>e distinctive mode <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

interacti<strong>on</strong> in biological phenomena [5]. The arguments presented in support to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is claim are grounded <strong>on</strong> Shann<strong>on</strong>’s informati<strong>on</strong>, what keeps informati<strong>on</strong> more<br />

as an investigatory aid <str<strong>on</strong>g>th</str<strong>on</strong>g>an as some<str<strong>on</strong>g>th</str<strong>on</strong>g>ing intrinsically entailing <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomen<strong>on</strong>.<br />

Shann<strong>on</strong> himself called attenti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at his definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong>c<strong>on</strong>tend<br />

precludes meaning and interpretati<strong>on</strong>, addressing <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e communicati<strong>on</strong><br />

(signal transmissi<strong>on</strong>) aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> exchange [7].<br />

The present definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> ties interpretati<strong>on</strong> to changes in organisati<strong>on</strong><br />

[3]. Therefore, informati<strong>on</strong>-grounded biological interacti<strong>on</strong>s mold organisati<strong>on</strong>s.<br />

The fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e definiti<strong>on</strong> is grounded <strong>on</strong> synexi<strong>on</strong>s ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an whole-part<br />

graphs intertwines anticipati<strong>on</strong> to informati<strong>on</strong> recogniti<strong>on</strong>. Indeed, <str<strong>on</strong>g>th</str<strong>on</strong>g>e percepti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> an interpretati<strong>on</strong> event relies <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e violati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e anticipati<strong>on</strong> by an observer<br />

1000


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

about propensities in <str<strong>on</strong>g>th</str<strong>on</strong>g>e behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interpreter <str<strong>on</strong>g>of</str<strong>on</strong>g> a signal. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is sense, biological<br />

informati<strong>on</strong> and anticipati<strong>on</strong> are at <str<strong>on</strong>g>th</str<strong>on</strong>g>e very core <str<strong>on</strong>g>of</str<strong>on</strong>g> biological interacti<strong>on</strong>s<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>sequent formati<strong>on</strong> and transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological organisati<strong>on</strong>s.<br />

References.<br />

[1] M.V. Kritz, Biological Organizati<strong>on</strong>. In Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e IV Brazilian Symposium <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

and Computati<strong>on</strong>al Biology — BIOMAT IV, R. Modaini, ed. e-papers Editora, Rio<br />

de Janeiro, 2005.<br />

[2] M.V. Kritz, Organizing biological observati<strong>on</strong>s: a model and some properties. Book<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Abstracts</str<strong>on</strong>g>. ECMTB08, Edinburg, June 29<str<strong>on</strong>g>th</str<strong>on</strong>g> – July 4<str<strong>on</strong>g>th</str<strong>on</strong>g>. Available <strong>on</strong>line at<br />

http://www.ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.dundee.ac.uk/ecmtb08, last access <strong>on</strong> .<br />

[3] M. V. Kritz, Biological informati<strong>on</strong> and knowledge. P&D Report #23/2009, LNCC/MCT,<br />

Petrópolis, December 2009.<br />

[4] M. V. Kritz, M. T. dos Santos, S. Urrutia and J.-M. Schwartz, Organizing metabolic networks:<br />

Cycles in flux distributi<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology, 265(3):250–260, August 2010.<br />

doi:10.1016/j.jtbi.2010.04.026<br />

[5] J. G. Roederer, The Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Informati<strong>on</strong> in Nature. The Fr<strong>on</strong>tiers Collecti<strong>on</strong>. Springer Verlag,<br />

Berlin, 2005.<br />

[6] R. Rosen, Life Itself: A Comprehesive Inquiry into <str<strong>on</strong>g>th</str<strong>on</strong>g>e Nature, Origin, and Fabricati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Life. Complexity in Ecological Systems Series. Columbia University Press, New York, NY,<br />

1991.<br />

[7] C. E. Shann<strong>on</strong> and W. Weaver, The Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Theory <str<strong>on</strong>g>of</str<strong>on</strong>g> Communicati<strong>on</strong>. University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Illinois Press, Urbana, 1949.<br />

1001


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Irene Vign<strong>on</strong>-Clementel<br />

INRIA Paris-Rocquencourt, France<br />

e-mail: irene.vign<strong>on</strong>-clementel@inria.fr<br />

G. Troiwanowski<br />

Stanford University, USA<br />

W. Yang<br />

UCSD, USA<br />

J. Feinstein<br />

Stanford University, USA<br />

A. Marsden<br />

UCSD, USA<br />

F. Migliavacca<br />

Politecnico Di Milano, Italy<br />

Medical Physiology; Tuesday, June 28, 11:00<br />

Towards predictive modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> patient-specific<br />

Glenn-to-F<strong>on</strong>tan c<strong>on</strong>versi<strong>on</strong>s: boundary c<strong>on</strong>diti<strong>on</strong>s and<br />

design issues.<br />

Single-ventricle defects are a class <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>genital heart diseases <str<strong>on</strong>g>th</str<strong>on</strong>g>at leave <str<strong>on</strong>g>th</str<strong>on</strong>g>e child<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e operati<strong>on</strong>al pump, requiring <str<strong>on</strong>g>th</str<strong>on</strong>g>e systemic and <str<strong>on</strong>g>th</str<strong>on</strong>g>e pulm<strong>on</strong>ary circulati<strong>on</strong>s<br />

to be placed in series <str<strong>on</strong>g>th</str<strong>on</strong>g>rough several operati<strong>on</strong>s performed during young<br />

childhood. The last procedure (<str<strong>on</strong>g>th</str<strong>on</strong>g>e F<strong>on</strong>tan palliati<strong>on</strong>) artificially c<strong>on</strong>nects bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

venae cavae to <str<strong>on</strong>g>th</str<strong>on</strong>g>e pulm<strong>on</strong>ary arteries, which improves oxygenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e baby<br />

at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cost <str<strong>on</strong>g>of</str<strong>on</strong>g> blood flowing passively into <str<strong>on</strong>g>th</str<strong>on</strong>g>e lungs. Numerical simulati<strong>on</strong>s may<br />

be used to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e flow and its c<strong>on</strong>necti<strong>on</strong> to post-operative<br />

failures and sources <str<strong>on</strong>g>of</str<strong>on</strong>g> morbidity. However <str<strong>on</strong>g>th</str<strong>on</strong>g>ey heavily rely <strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong><br />

prescripti<strong>on</strong>. We present our recent work <strong>on</strong> predictive patient-specific modeling<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Glenn-to-F<strong>on</strong>tan c<strong>on</strong>versi<strong>on</strong>. Three-dimensi<strong>on</strong>al patient-specific preoperative<br />

models are developed based <strong>on</strong> clinical data. Results include a sensitivity analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

several hemodynamics factors to <str<strong>on</strong>g>th</str<strong>on</strong>g>e input data. In additi<strong>on</strong>, previous studies have<br />

dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e geometry plays an important role in F<strong>on</strong>tan hemodynamics.<br />

A novel Y-shaped design was recently proposed to improve up<strong>on</strong> traditi<strong>on</strong>al designs,<br />

and results showed promising hemodynamics. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we show how geometry<br />

and boundary c<strong>on</strong>diti<strong>on</strong>s affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese virtual surgical designs.<br />

In particular, we investigate if and how <str<strong>on</strong>g>th</str<strong>on</strong>g>e inferior vena cava flow (which c<strong>on</strong>tains<br />

an important biological hepatic factor) can be optimally distributed amoung bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

lungs. Finally, we present a multiscale (<str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al to reduced model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

entire circulati<strong>on</strong>) predictive framework for <str<strong>on</strong>g>th</str<strong>on</strong>g>is Glenn-to-F<strong>on</strong>tan c<strong>on</strong>versi<strong>on</strong>, which<br />

provides a means to relate global resp<strong>on</strong>se to local changes in geometry and hemodynamics<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e circulatory system. Results illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e local graft geometry<br />

plays essentially no role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e workload <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e heart. While <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fset and Y-graft<br />

designs result in reduced energy loss, <str<strong>on</strong>g>th</str<strong>on</strong>g>is does not appear to have any significant<br />

impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cardiac dynamics. This result suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at future work should focus<br />

not just <strong>on</strong> energy loss, but <strong>on</strong> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er clinical relevant parameters, such as hepatic<br />

flow distributi<strong>on</strong>.<br />

1002


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fernão Vistulo de Abreu<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Aveiro<br />

e-mail: fva@ua.pt<br />

Patricia Mostardinha<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Aveiro<br />

Immunology; Saturday, July 2, 08:30<br />

Self-N<strong>on</strong>self discriminati<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> Costimulati<strong>on</strong><br />

and Anergy<br />

The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> self-n<strong>on</strong>self discriminati<strong>on</strong> is a l<strong>on</strong>g standing problem in immunology.<br />

So far, it has been unclear whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er T cells can perform perfect and efficient<br />

self-n<strong>on</strong>self discriminati<strong>on</strong>, in populati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> arbitrary diversity. I will discuss a<br />

mechanism <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows performing perfect self-n<strong>on</strong>self discriminati<strong>on</strong> if bo<str<strong>on</strong>g>th</str<strong>on</strong>g> positive<br />

and negative repertoire educati<strong>on</strong> processes are used, and fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore if costimulati<strong>on</strong><br />

and anergy mechanisms are afterwards c<strong>on</strong>sidered during cellular activati<strong>on</strong>.<br />

These results provide compiling evidence <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e main driving force shaping <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

adaptive immune could be <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability to perform prompt and accurate self-n<strong>on</strong>self<br />

discriminati<strong>on</strong>. They also provide insights <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible role <str<strong>on</strong>g>of</str<strong>on</strong>g> positive selecti<strong>on</strong>,<br />

costimulati<strong>on</strong> and anergy in <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive immune system.<br />

1003


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mechanical Models <str<strong>on</strong>g>of</str<strong>on</strong>g> Movement and Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cells and Tissues I;<br />

Wednesday, June 29, 14:30<br />

Guido Vitale<br />

Politecnico di Torino<br />

e-mail: guido.vitale@polito.it<br />

Cellular Tracti<strong>on</strong> as an Optimal C<strong>on</strong>trol Problem<br />

Force Tracti<strong>on</strong> Microscopy is <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stress exerted by a cell <strong>on</strong><br />

a planar deformable substrate <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> pointwise measured displacement.<br />

This classical inverse problem in biophysics is typically addressed inverting <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

displacement field using <str<strong>on</strong>g>th</str<strong>on</strong>g>e Green functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> linear elasticity, under suitable<br />

regularizing c<strong>on</strong>diti<strong>on</strong>s.<br />

An alternative me<str<strong>on</strong>g>th</str<strong>on</strong>g>od formulates an adjoint problem for <str<strong>on</strong>g>th</str<strong>on</strong>g>e direct two-dimensi<strong>on</strong>al<br />

plain stress operator by minimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>venient functi<strong>on</strong>al. The resulting coupled<br />

systems <str<strong>on</strong>g>of</str<strong>on</strong>g> elliptic partial dfferential equati<strong>on</strong>s (<str<strong>on</strong>g>th</str<strong>on</strong>g>e forward and <str<strong>on</strong>g>th</str<strong>on</strong>g>e adjoint<br />

problem) can <str<strong>on</strong>g>th</str<strong>on</strong>g>en be solved by a finite element me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. One advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

an approach is <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be extended to <str<strong>on</strong>g>th</str<strong>on</strong>g>ree dimensi<strong>on</strong>al case, including inhomogeneity<br />

and anisotropy and even finite displacements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e material.<br />

This work deals wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rigorous statement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inverse problem Some results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> well posedness for <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear case are first given, using standard techniques.<br />

The <str<strong>on</strong>g>th</str<strong>on</strong>g>eory is <str<strong>on</strong>g>th</str<strong>on</strong>g>en extended to <str<strong>on</strong>g>th</str<strong>on</strong>g>e less trivial case <str<strong>on</strong>g>of</str<strong>on</strong>g> pointwise observati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

boundary c<strong>on</strong>trol in 2D and 3D. The model is numerically approximated in 2D and a<br />

critical discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e results is addressed. Early results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e major biophysical<br />

problem <str<strong>on</strong>g>of</str<strong>on</strong>g> pointiwise observati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> boundary c<strong>on</strong>trol will be shown.<br />

item Ambrosi D. et al. em Tracti<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells, J Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biol (2007)<br />

item Ambrosi D. em Cellular tracti<strong>on</strong> as an inverse problem, SIAM J Appl Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> 66:<br />

2049-2060 (2006) item Li<strong>on</strong>s J.L. em Optimal c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> systems, Springer Verlag<br />

(1971) item Casas E. em Boundary C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> a Semilinear Elliptic Equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

Pointwise state C<strong>on</strong>straint, SIAM J. Opt. C<strong>on</strong>tr. (1996)<br />

1004


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cellular Systems Biology; Thursday, June 30, 11:30<br />

Evgenii Volkov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Physics, Lebedev Physical Inst., Leninskii<br />

53, Moscow, Russia<br />

e-mail: volkov@td.lpi.ru<br />

Ilya Potapov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Signal Processing, Tampere University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

Korkeakoulunkatu 10, Tampere, Finland and Biophysics Department,<br />

Lom<strong>on</strong>osov Moscow State University, GSP-1, Leninskie Gory, Moscow,<br />

Russia<br />

e-mail: ilya.potapov@tut.fi<br />

Alexey Kuznetsov<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences and Center for Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

Biosciences, IUPUI, 402 N. Blackford St., Indianapolis, IN 46202, USA.<br />

e-mail: alexey@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.iupui.edu<br />

Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> coupled repressilators: <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> mRNA<br />

kinetics and transcripti<strong>on</strong> cooperativity<br />

Regulatory molecular networks are collecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting molecules in a cell.<br />

One particular kind, oscillatory networks, has been discovered in many pa<str<strong>on</strong>g>th</str<strong>on</strong>g>ways.<br />

Well-known examples are <str<strong>on</strong>g>th</str<strong>on</strong>g>e circadian clock [1] and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle [2], where <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

oscillatory nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process plays a central role.<br />

These natural regulatory networks are very complex and include many types<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> molecules, from genes to small messengers. It is necessary to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory<br />

mechanisms by means <str<strong>on</strong>g>of</str<strong>on</strong>g> highly simplified models. These models are particularly<br />

valuable because artificial regulatory networks can be engineered experimentally<br />

[3, 4, 5]. Our computati<strong>on</strong>al study [6] suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillatory mechanisms<br />

implemented in regulatory oscillators are qualitatively different. Comparing various<br />

artificial networks helps revealing general principles <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular regulati<strong>on</strong>.<br />

We study an artificial oscillatory network called <str<strong>on</strong>g>th</str<strong>on</strong>g>e repressilator [4], which<br />

borrows <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea <str<strong>on</strong>g>of</str<strong>on</strong>g> a ring oscillator coming from engineering. The oscillatory<br />

mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e repressilator is based <strong>on</strong> c<strong>on</strong>necting an odd number <str<strong>on</strong>g>of</str<strong>on</strong>g> inverters<br />

(negative c<strong>on</strong>trol elements) in a ring. Its genetic implementati<strong>on</strong> uses <str<strong>on</strong>g>th</str<strong>on</strong>g>ree proteins<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at cyclically repress <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er by inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> corresp<strong>on</strong>ding<br />

mRNA producti<strong>on</strong>.<br />

A challenging area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e research is communicati<strong>on</strong> am<strong>on</strong>g cells in a populati<strong>on</strong><br />

or organism. It has been proposed <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically to design artificial interacti<strong>on</strong><br />

am<strong>on</strong>g cellular oscillators using quorum sensing [7, 8]. A small molecule, autoinducer<br />

(AI), carries out <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling functi<strong>on</strong>. Synchr<strong>on</strong>izati<strong>on</strong> is <strong>on</strong>ly <strong>on</strong>e and<br />

simplest outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> such interacti<strong>on</strong>. It is suggested <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e outcome depends<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network. A phase-attractive (synchr<strong>on</strong>izing) and phaserepulsive<br />

coupling structures were distinguished for regulatory oscillators. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

paper, we questi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is separati<strong>on</strong>.<br />

We study an example <str<strong>on</strong>g>of</str<strong>on</strong>g> two interacting repressilators. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at increasing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cooperativity <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> repressi<strong>on</strong> (Hill coefficient) and changing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

reacti<strong>on</strong> time-scales dramatically alter synchr<strong>on</strong>izati<strong>on</strong> properties. The network<br />

1005


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

dem<strong>on</strong>strates in- and anti-phase oscillatory regimes and can be birhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mic, choosing<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>ose two types <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong>, in a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters. In<br />

some regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parametric space <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are whole cascades <str<strong>on</strong>g>of</str<strong>on</strong>g> complex anti-phase<br />

oscillatory soluti<strong>on</strong>s, which coexist wi<str<strong>on</strong>g>th</str<strong>on</strong>g> in-phase regime. Thus, <str<strong>on</strong>g>th</str<strong>on</strong>g>e type <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>izati<strong>on</strong><br />

is not characteristic for <str<strong>on</strong>g>th</str<strong>on</strong>g>e network structure. However, we c<strong>on</strong>clude<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e specific scenario <str<strong>on</strong>g>of</str<strong>on</strong>g> emergence and stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> synchr<strong>on</strong>ous soluti<strong>on</strong>s<br />

is much more characteristic.<br />

In particular, anti-phase oscillati<strong>on</strong>s emerge at elevated cooperativity values.<br />

We choose <str<strong>on</strong>g>th</str<strong>on</strong>g>e maximal syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate for <str<strong>on</strong>g>th</str<strong>on</strong>g>e mRNA as <str<strong>on</strong>g>th</str<strong>on</strong>g>e main c<strong>on</strong>trol parameter<br />

for our analysis. We calculate bifurcati<strong>on</strong> diagrams wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to <str<strong>on</strong>g>th</str<strong>on</strong>g>is parameter<br />

and study how regimes found in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese diagrams depend <strong>on</strong> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er parameters. At<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e initial cooperativity value <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.0, <str<strong>on</strong>g>th</str<strong>on</strong>g>e in-phase synchr<strong>on</strong>izati<strong>on</strong> remains stable<br />

and anti-phase remains unstable at any syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e cooperativity is<br />

elevated <strong>on</strong>ly to 2.6, <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-phase soluti<strong>on</strong> becomes stable at a sufficiently high<br />

syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate. In c<strong>on</strong>trast, <str<strong>on</strong>g>th</str<strong>on</strong>g>e in-phase soluti<strong>on</strong> loses its stability at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese elevated<br />

cooperativity and high syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate.<br />

Additi<strong>on</strong>ally, fast mRNA kinetics provides birhy<str<strong>on</strong>g>th</str<strong>on</strong>g>micity in a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate. Initially, <str<strong>on</strong>g>th</str<strong>on</strong>g>e time-scales <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e protein and mRNA kinetics were<br />

identical. We make mRNA kinetics much faster <str<strong>on</strong>g>th</str<strong>on</strong>g>an protein, which is a more<br />

natural case. The sequence in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e oscillatory soluti<strong>on</strong>s emerge from Hopf<br />

bifurcati<strong>on</strong>s changes — <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-phase emerges first. As a result, <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-phase<br />

soluti<strong>on</strong> emerges stable, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e in-phase emerges unstable. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e birhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mic<br />

parameter regime, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> soluti<strong>on</strong>s must be stable. Three bifurcati<strong>on</strong>s always precede<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e birhy<str<strong>on</strong>g>th</str<strong>on</strong>g>mic parameter regime when <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate increases. The in-phase<br />

soluti<strong>on</strong> becomes stable as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> a repelling invariant torus emanating from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e limit cycle. The o<str<strong>on</strong>g>th</str<strong>on</strong>g>er two bifurcati<strong>on</strong>s are unexpected: The anti-phase limit<br />

cycle first loses its stability, and <str<strong>on</strong>g>th</str<strong>on</strong>g>en regains it. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> transiti<strong>on</strong>s are pitchfork<br />

bifurcati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> limit cycles. The sec<strong>on</strong>d bifurcati<strong>on</strong> cancels <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e first<br />

<strong>on</strong>e <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e anti-phase soluti<strong>on</strong>. Thus, bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in-phase and anti-phase<br />

soluti<strong>on</strong>s are stable in a very wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis rate.<br />

Our work presents a novel scenario <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging birhy<str<strong>on</strong>g>th</str<strong>on</strong>g>micity and switching<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e in- and anti-phase soluti<strong>on</strong>s in regulatory oscillators. Since <str<strong>on</strong>g>th</str<strong>on</strong>g>e types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

synchr<strong>on</strong>izati<strong>on</strong> coexist in <strong>on</strong>e network, <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are not characteristic for <str<strong>on</strong>g>th</str<strong>on</strong>g>e network<br />

structure. However, <str<strong>on</strong>g>th</str<strong>on</strong>g>e bifurcati<strong>on</strong> scenario may be much more characteristic. This<br />

may help to address a central questi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> regulatory networks —<br />

how to c<strong>on</strong>nect structural characteristics to dynamical and functi<strong>on</strong>al properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a network.<br />

References.<br />

[1] J. Dunlap, Molecular bases for circadian clocks Cell 96 271–290.<br />

[2] P. Nurse, A l<strong>on</strong>g twentie<str<strong>on</strong>g>th</str<strong>on</strong>g> century <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle and bey<strong>on</strong>d Cell 100 71–78.<br />

[3] T.S. Gardner, C.R. Cantor and J.J. Collins, C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a genetic toggle switch in Escherichia<br />

coli Nature 403 339–342.<br />

[4] M. Elowitz and S. Leibler, A syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic oscillatory network <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong>al regulators Nature<br />

403 335–338.<br />

[5] M. Atkins<strong>on</strong>, M. Savageau, J. Myers and A. Ninfa, Development <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic circuitry exhibiting<br />

toggle switch or oscillatory behavior in Escherichia coli Cell 113 597–607.<br />

[6] D. Yang, Y. Li and A. Kuznetsov, Characterizati<strong>on</strong> and merger <str<strong>on</strong>g>of</str<strong>on</strong>g> oscillatory mechanisms in<br />

an artificial genetic regulatory network Chaos 19 033115.<br />

[7] D. McMillen, N. Kopell, J. Hasty and J. Collins, Synchr<strong>on</strong>izing genetic relaxati<strong>on</strong> oscillators<br />

by intercell signalling Proc. Natl. Acad. Sci. U.S.A. 99 679–684.<br />

1006


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[8] J. García-Ojalvo, M. Elowitz and S. Strogatz, Modeling a syn<str<strong>on</strong>g>th</str<strong>on</strong>g>etic multicellular clock: Repressilators<br />

coupled by quorum sensing Proc. Natl. Acad. Sci. U.S.A. 101 10955–10960.<br />

1007


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> biological systems: from physical tools to<br />

applicati<strong>on</strong>s in cancer modeling I; Saturday, July 2, 08:30<br />

Vitaly Volpert<br />

CNRS, University Ly<strong>on</strong> 1, France<br />

e-mail: volpert@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.univ-ly<strong>on</strong>1.fr<br />

Hybrid models <str<strong>on</strong>g>of</str<strong>on</strong>g> normal and leukemic hematopoiesis<br />

We develop hybrid models <str<strong>on</strong>g>of</str<strong>on</strong>g> cell populati<strong>on</strong> dynamics where cells are c<strong>on</strong>sidered as<br />

individual objects, intracellular regulatory networks are described by ordinary differential<br />

equati<strong>on</strong>s while biochemical species in <str<strong>on</strong>g>th</str<strong>on</strong>g>e extracellular matrix by partial<br />

differential equati<strong>on</strong>s. We use <str<strong>on</strong>g>th</str<strong>on</strong>g>is approach to various biological and medical applicati<strong>on</strong>.<br />

In particular, to model normal and leukemic hematopoiesis and leukemia<br />

treatment.<br />

1008


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Plants, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and transport processes II; Tuesday, June 28, 14:30<br />

Vitaly Volpert<br />

CNRS, UNiversity Ly<strong>on</strong> 1<br />

e-mail: volpert@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.univ-ly<strong>on</strong>1.fr<br />

N<strong>on</strong>linear dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> plant grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

We model plant grow<str<strong>on</strong>g>th</str<strong>on</strong>g> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> free boundary problems where <str<strong>on</strong>g>th</str<strong>on</strong>g>e moving boundary<br />

corresp<strong>on</strong>ds to <str<strong>on</strong>g>th</str<strong>on</strong>g>e mersitem, a narrow layer <str<strong>on</strong>g>of</str<strong>on</strong>g> proliferating cells. Cell cycle<br />

progressi<strong>on</strong> and transport <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient and metabolites are taken into account. N<strong>on</strong>linear<br />

dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> plant grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, endogeneous rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>ms and branching patterns are<br />

discussed.<br />

1009


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Epidemics; Wednesday, June 29, 11:00<br />

Max v<strong>on</strong> Kleist<br />

Freie Universität Berlin, Germany<br />

e-mail: vkleist@zedat.fu-berlin.de<br />

M<strong>on</strong>ika Frank<br />

Martin-Lu<str<strong>on</strong>g>th</str<strong>on</strong>g>er Universität Halle-Wittenberg, Germany<br />

Charlotte Kl<str<strong>on</strong>g>of</str<strong>on</strong>g>t<br />

Martin-Lu<str<strong>on</strong>g>th</str<strong>on</strong>g>er Universität Halle-Wittenberg, Germany<br />

Christ<str<strong>on</strong>g>of</str<strong>on</strong>g> Schütte<br />

Freie Universität Berlin, Germany<br />

A Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling Framework to Assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e Impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Antiviral Strategies <strong>on</strong> HIV Transmissi<strong>on</strong><br />

Stopping <str<strong>on</strong>g>th</str<strong>on</strong>g>e AIDS epidemic c<strong>on</strong>stitutes a major challenge to mankind. Up to now,<br />

HIV infected individuals cannot be cured. However, <strong>on</strong>e possible way <str<strong>on</strong>g>of</str<strong>on</strong>g> stopping<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic is to disrupt its transmissi<strong>on</strong>. In 2009, approximately 370,000 infants<br />

became infected wi<str<strong>on</strong>g>th</str<strong>on</strong>g> HIV during pregnancy, delivery and breastfeeding [1]. A single<br />

dose <str<strong>on</strong>g>of</str<strong>on</strong>g> nevirapine (NVP) can reduce HIV transmissi<strong>on</strong> by half, when administered<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e mo<str<strong>on</strong>g>th</str<strong>on</strong>g>ers before bir<str<strong>on</strong>g>th</str<strong>on</strong>g> and to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir newborns shortly after bir<str<strong>on</strong>g>th</str<strong>on</strong>g>. This simple<br />

and cost-efficient me<str<strong>on</strong>g>th</str<strong>on</strong>g>od is widely applied in resource-c<strong>on</strong>strained settings.<br />

Based <strong>on</strong> a ugandan program for <str<strong>on</strong>g>th</str<strong>on</strong>g>e preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er-to-child transmissi<strong>on</strong>,<br />

we assessed <str<strong>on</strong>g>th</str<strong>on</strong>g>e pharmacokinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> NVP in HIV infected pregnant women<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir newborns. The derived pharmacokinetic parameters were used in a stochastic<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV dynamics and -transmissi<strong>on</strong>. Subsequently, we used <str<strong>on</strong>g>th</str<strong>on</strong>g>e model<br />

to predict HIV transmissi<strong>on</strong> rates during <str<strong>on</strong>g>th</str<strong>on</strong>g>e first two years after bir<str<strong>on</strong>g>th</str<strong>on</strong>g> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different<br />

alterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basic NVP scheme. The model predicti<strong>on</strong>s were in excellent<br />

agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> data from seven independent HIV preventi<strong>on</strong> trials. We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e maternal NVP c<strong>on</strong>stitutes a major risk for resistance development and subsequent<br />

treatment success in <str<strong>on</strong>g>th</str<strong>on</strong>g>e HIV infected mo<str<strong>on</strong>g>th</str<strong>on</strong>g>er [2]. However, maternal NVP<br />

decreases HIV transmissi<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e newborn substantially. Our model revealed a<br />

perplexing mechanism: Maternal NVP does not reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> viral particles<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at come into c<strong>on</strong>tact wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e child during bir<str<strong>on</strong>g>th</str<strong>on</strong>g>. Instead, maternal NVP<br />

reduces HIV transmissi<strong>on</strong> by providing NVP trans-placental to <str<strong>on</strong>g>th</str<strong>on</strong>g>e child, so <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

protective NVP levels are available at <str<strong>on</strong>g>th</str<strong>on</strong>g>e moment <str<strong>on</strong>g>of</str<strong>on</strong>g> viral c<strong>on</strong>tact during delivery.<br />

Our model also revealed, <str<strong>on</strong>g>th</str<strong>on</strong>g>at extended newborn NVP administrati<strong>on</strong> can protect<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e infant from acquiring HIV during <str<strong>on</strong>g>th</str<strong>on</strong>g>e breastfeeding period wi<str<strong>on</strong>g>th</str<strong>on</strong>g>out fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er risk<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> resistance selecti<strong>on</strong>.<br />

Extended newborn NVP, as well as single-dose maternal NVP protect <str<strong>on</strong>g>th</str<strong>on</strong>g>e newborn<br />

from HIV acquisiti<strong>on</strong> by a mechanism, which could best be termed ’preexposure<br />

prophylaxis’ (PrEP). In view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e predictive power <str<strong>on</strong>g>of</str<strong>on</strong>g> our model, we<br />

are encouraged <str<strong>on</strong>g>th</str<strong>on</strong>g>at a very similar modeling framework may be useful to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

impact <str<strong>on</strong>g>of</str<strong>on</strong>g> PrEP <strong>on</strong> sexual transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HIV, which could become a central tool<br />

to curb <str<strong>on</strong>g>th</str<strong>on</strong>g>e HIV epidemic in <str<strong>on</strong>g>th</str<strong>on</strong>g>e near future [3].<br />

References.<br />

[1] UNAIDS. Report <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e global aids epidemic. http://www.unaids.org/globalreport/ (2010).<br />

[2] Jourdain, G. et al. Intrapartum exposure to nevirapine and subsequent maternal resp<strong>on</strong>ses to<br />

nevirapine-based antiretroviral <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy. N Engl J Med 351, 229–240 (2004).<br />

1010


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] Grant, R. M. et al. Preexposure chemoprophylaxis for HIV preventi<strong>on</strong> in men who have sex<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> men. N Engl J Med 363, 2587–2599 (2010).<br />

1011


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Genetics; Friday, July 1, 14:30<br />

Ute v<strong>on</strong> Wangenheim<br />

Technische Fakultät, Universität Bielefeld, 335011 Bielefeld<br />

e-mail: uv<strong>on</strong>wang@techfak.uni-bielefeld.de<br />

Single–crossover recombinati<strong>on</strong> and ancestral recombinati<strong>on</strong><br />

trees<br />

Modeling <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s under recombinati<strong>on</strong> leads to a large coupled<br />

n<strong>on</strong>-linear dynamical system <str<strong>on</strong>g>th</str<strong>on</strong>g>at is notoriously difficult to treat. In my talk, I will<br />

present a model <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes recombinati<strong>on</strong> in an ’infinite‘ populati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> single<br />

crossovers <strong>on</strong>ly.<br />

The comm<strong>on</strong> way to solve <str<strong>on</strong>g>th</str<strong>on</strong>g>ese systems relies <strong>on</strong> a certain n<strong>on</strong>linear transformati<strong>on</strong><br />

from (gamete or haplotype) frequencies to suitable correlati<strong>on</strong> functi<strong>on</strong>s.<br />

This provides an elegant soluti<strong>on</strong> in principle, but <str<strong>on</strong>g>th</str<strong>on</strong>g>e price to be paid is <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficients<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transformati<strong>on</strong> must be c<strong>on</strong>structed via recursi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at involve <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e recombinati<strong>on</strong> model [1], i.e. an explicit soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics<br />

cannot be stated.<br />

I will describe a new approach to infer an explicit soluti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics. To<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is end, I use <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying stochastic process to trace recombinati<strong>on</strong> backwards<br />

in time, i.e. by backtracking <str<strong>on</strong>g>th</str<strong>on</strong>g>e ancestry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e various independent segments each<br />

type is composed <str<strong>on</strong>g>of</str<strong>on</strong>g>. This results in binary tree structures, which can be used as a<br />

tool to formulate an explicit soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics.<br />

References.<br />

[1] v<strong>on</strong> Wangenheim, U., Baake, E., Baake, M. Single–crossover recombinati<strong>on</strong> in discrete time<br />

J. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Biol 60 727–760 (2010).<br />

1012


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cell systems: from intercellular interacti<strong>on</strong><br />

to tissue-level traits II; Wednesday, June 29, 17:00<br />

Anja Voss-Boehme<br />

Technical University Dresden, Center for High Performance Computing,<br />

01062 Dresden, Germany<br />

e-mail: anja.voss-boehme@tu-dresden.de<br />

Interacting cell system models for cell sorting and collective<br />

moti<strong>on</strong><br />

Biological structure and functi<strong>on</strong> in cell populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>ten result from <str<strong>on</strong>g>th</str<strong>on</strong>g>e complex<br />

interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> comp<strong>on</strong>ents. In particular when cells <str<strong>on</strong>g>th</str<strong>on</strong>g>at are in<br />

direct physical c<strong>on</strong>tact or located close to each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er are known to interact, possibly<br />

in a type-specific manner, <strong>on</strong>e is interested in c<strong>on</strong>cluding characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

global, collective behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell c<strong>on</strong>figurati<strong>on</strong>s from <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>e details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e intercellular interacti<strong>on</strong>. To understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese processes and to c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue level traits, it is necessary<br />

to design and analyze appropriate ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models.<br />

It is argued <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model class <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting particle systems is well-suited<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>is task. For two exemplary problems, cell sorting and collective moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oriented cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> ferromagnetic alignment, cell based lattice models are developed<br />

which describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e major details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e respective intercellular interacti<strong>on</strong>.<br />

If suitably simplified, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese models are analytically tractable. Several results c<strong>on</strong>cerning<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g-time behavior and <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> structure are presented and<br />

interpreted in biological terms. Challenging ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical problems <str<strong>on</strong>g>th</str<strong>on</strong>g>at require<br />

fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical developments are identified.<br />

1013


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Joe Yuichiro Wakano<br />

Meiji University<br />

e-mail: joe@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.meiji.ac.jp<br />

Kota Ikeda<br />

Meiji University<br />

Takeshi Miki<br />

Nati<strong>on</strong>al Taiwan University<br />

Masayasu Mimura<br />

Meiji University<br />

Ecosystems Dynamics; Tuesday, June 28, 14:30<br />

Reducti<strong>on</strong> from reacti<strong>on</strong>-diffusi<strong>on</strong> model to two-patch<br />

compartment model<br />

Two-patch compartment models have been explored to understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial<br />

processes <str<strong>on</strong>g>th</str<strong>on</strong>g>at promote species coexistence. However, a phenomenological definiti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inter-patch dispersal rate has limited <str<strong>on</strong>g>th</str<strong>on</strong>g>e quantitative predictability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ese models to community dynamics in spatially c<strong>on</strong>tinuous habitats. Here, we<br />

mechanistically rederived a two-patch Lotka-Volterra competiti<strong>on</strong> model for a spatially<br />

c<strong>on</strong>tinuous reacti<strong>on</strong>-diffusi<strong>on</strong> system where a narrow corridor c<strong>on</strong>nects two<br />

large habitats. We provide a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical formula <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dispersal rate appearing<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-patch compartment model as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat size, corridor shape<br />

(ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> its wid<str<strong>on</strong>g>th</str<strong>on</strong>g> to its leng<str<strong>on</strong>g>th</str<strong>on</strong>g>), and organism diffusi<strong>on</strong> coefficients. For most<br />

reas<strong>on</strong>able settings, <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-patch compartment model successfully approximated<br />

not <strong>on</strong>ly <str<strong>on</strong>g>th</str<strong>on</strong>g>e steady states, but also <str<strong>on</strong>g>th</str<strong>on</strong>g>e transient dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e reacti<strong>on</strong>-diffusi<strong>on</strong><br />

model. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er numerical simulati<strong>on</strong>s indicated <str<strong>on</strong>g>th</str<strong>on</strong>g>e general applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> our formula<br />

to o<str<strong>on</strong>g>th</str<strong>on</strong>g>er types <str<strong>on</strong>g>of</str<strong>on</strong>g> community dynamics, e.g. driven by resource-competiti<strong>on</strong>, in<br />

spatially homogeneous and heterogeneous envir<strong>on</strong>ments. Our results suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats plays a central role in community dynamics<br />

in space. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, our new framework will help to improve experimental designs<br />

for quantitative test <str<strong>on</strong>g>of</str<strong>on</strong>g> metacommunity <str<strong>on</strong>g>th</str<strong>on</strong>g>eories and reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e gaps am<strong>on</strong>g<br />

modeling, empirical studies, and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir applicati<strong>on</strong> to landscape management.<br />

1014


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fractals and Complexity I; Wednesday, June 29, 14:30<br />

Przemyslaw Waliszewski<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Urology, Philipps University, Baldingerstrasse 1, 35043<br />

Marburg, Germany<br />

e-mail: complexityresearch@yahoo.com<br />

On dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> prostate cancer; Towards <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

objective fractal system <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grading<br />

Cellular grow<str<strong>on</strong>g>th</str<strong>on</strong>g> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e fundamental biological phenomen<strong>on</strong>. A ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model<br />

shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> simplistic macroscopic dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, such as<br />

Gompertzian dynamics results from a coupling <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> events at <str<strong>on</strong>g>th</str<strong>on</strong>g>e microscale<br />

level. The coupling is associated wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> at least <str<strong>on</strong>g>th</str<strong>on</strong>g>ree<br />

features, i.e. fractal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> space-time, in which grow<str<strong>on</strong>g>th</str<strong>on</strong>g> occurs, c<strong>on</strong>diti<strong>on</strong>al<br />

probability <str<strong>on</strong>g>of</str<strong>on</strong>g> events, which eliminates sensitivity to <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial c<strong>on</strong>diti<strong>on</strong>s, and a<br />

temporal functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> entropy. The latter <strong>on</strong>e is dependent <strong>on</strong> macroscopic dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, and determines a capability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e supramolecular system for coding<br />

or transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> biologically relevant informati<strong>on</strong>. Indeed, experiments wi<str<strong>on</strong>g>th</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> prostate cancer spheroids suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> intra- and intercellular interacti<strong>on</strong>s<br />

play a significant role in fractal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

The pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> during tumor angiogenesis changes. Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> in space<br />

results in formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial fractal tissue structures as reflected by <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial<br />

fractal dimensi<strong>on</strong>. The spatial fractal dimensi<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e normal-appearing prostate<br />

epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elium was 1.451 (018) (n=18 cases), for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gleas<strong>on</strong> 3 pattern 1.469 (022)<br />

(n = 15 cases), for <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gleas<strong>on</strong> 4 pattern 1.601 (019) (n=18 cases), and for <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Gleas<strong>on</strong> 5 pattern 1.769 (011) (n=10 cases). In additi<strong>on</strong>, different areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

same tumor possessed a similar value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial fractal dimensi<strong>on</strong>. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g> regards<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e morphometric cell analysis, <str<strong>on</strong>g>th</str<strong>on</strong>g>e minimal cell radius, aspect ratio, cell<br />

roundness and compactness were all statistically different across all Gleas<strong>on</strong> score<br />

cases (ANOVA p<br />

0.95 and <str<strong>on</strong>g>th</str<strong>on</strong>g>e Poiss<strong>on</strong> probability distributi<strong>on</strong>, in which p(t) stands for PSA c<strong>on</strong>centrati<strong>on</strong>,<br />

p0 is <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial PSA c<strong>on</strong>centrati<strong>on</strong> in time t0, b stands for <str<strong>on</strong>g>th</str<strong>on</strong>g>e coefficient,<br />

t denotes scalar time. Such evoluti<strong>on</strong> suggests a decay <str<strong>on</strong>g>of</str<strong>on</strong>g> intercellular interacti<strong>on</strong>s.<br />

Those results define clinically relevant prostate cancer as <str<strong>on</strong>g>th</str<strong>on</strong>g>e first order dynamic<br />

system. The novel approach based up<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parameters p0, p’ and b can be used to<br />

compare objectively dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> different prostate cancers or to identify<br />

1015


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

cancer recurrence. The spatial fractal dimensi<strong>on</strong> allows <str<strong>on</strong>g>th</str<strong>on</strong>g>e objective and numerical<br />

grading <str<strong>on</strong>g>of</str<strong>on</strong>g> prostate cancer.<br />

1016


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y Wallace<br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College, USA<br />

e-mail: doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y.wallace@dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g>.edu<br />

Erin Daus<strong>on</strong><br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>erine Pini<strong>on</strong><br />

Dartmou<str<strong>on</strong>g>th</str<strong>on</strong>g> College<br />

Evoluti<strong>on</strong>ary Ecology; Friday, July 1, 14:30<br />

Sexually differentiated dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rates in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

efficient mating strategy<br />

Darwin noted <str<strong>on</strong>g>th</str<strong>on</strong>g>at some sexually differentiated genetic traits, such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e bright<br />

plumage <str<strong>on</strong>g>of</str<strong>on</strong>g> male birds <str<strong>on</strong>g>th</str<strong>on</strong>g>at seems to make <str<strong>on</strong>g>th</str<strong>on</strong>g>em more visible to predators, appear<br />

to c<strong>on</strong>tradict <str<strong>on</strong>g>th</str<strong>on</strong>g>e main assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural selecti<strong>on</strong>. Darwin proposed <str<strong>on</strong>g>th</str<strong>on</strong>g>e noti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sexual selecti<strong>on</strong> to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong>, and o<str<strong>on</strong>g>th</str<strong>on</strong>g>er explanati<strong>on</strong>s have<br />

been <str<strong>on</strong>g>of</str<strong>on</strong>g>fered. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study, we use a system <str<strong>on</strong>g>of</str<strong>on</strong>g> four n<strong>on</strong>linear ordinary differential<br />

equati<strong>on</strong>s to model male and female populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> two species <str<strong>on</strong>g>th</str<strong>on</strong>g>at have identical,<br />

efficient mating strategies but do not interbreed. One species has a higher dea<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

rate for males <str<strong>on</strong>g>th</str<strong>on</strong>g>an for females. These o<str<strong>on</strong>g>th</str<strong>on</strong>g>erwise identical species are placed in competiti<strong>on</strong>,<br />

resulting in a system wi<str<strong>on</strong>g>th</str<strong>on</strong>g> multiple fixed points and str<strong>on</strong>g dependence <strong>on</strong><br />

initial c<strong>on</strong>diti<strong>on</strong>s. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> some choices <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters, increasing <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

dea<str<strong>on</strong>g>th</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e male in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two species enlarges <str<strong>on</strong>g>th</str<strong>on</strong>g>e basin <str<strong>on</strong>g>of</str<strong>on</strong>g> attracti<strong>on</strong> in<br />

which <str<strong>on</strong>g>th</str<strong>on</strong>g>at species survives and <str<strong>on</strong>g>th</str<strong>on</strong>g>e competitor is driven to extincti<strong>on</strong>, and <str<strong>on</strong>g>th</str<strong>on</strong>g>us is<br />

an adaptive resp<strong>on</strong>se. We also <str<strong>on</strong>g>of</str<strong>on</strong>g>fer a heuristic argument as to why <str<strong>on</strong>g>th</str<strong>on</strong>g>is should be<br />

so.<br />

1017


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Georg R. Wal<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

Computati<strong>on</strong>al and Systems Biology, John Innes Centre, Norwich Research<br />

Park, Norwich NR4 7UH, UK<br />

e-mail: georg.wal<str<strong>on</strong>g>th</str<strong>on</strong>g>er@bbsrc.ac.uk<br />

Verônica A. Grieneisen<br />

Computati<strong>on</strong>al and Systems Biology, John Innes Centre, Norwich Research<br />

Park, Norwich NR4 7UH, UK<br />

e-mail: ver<strong>on</strong>ica.grieneisen@bbsrc.ac.uk<br />

A<str<strong>on</strong>g>th</str<strong>on</strong>g>anasius F. M. Marée<br />

Computati<strong>on</strong>al and Systems Biology, John Innes Centre, Norwich Research<br />

Park, Norwich NR4 7UH, UK<br />

e-mail: stan.maree@bbsrc.ac.uk<br />

Leah Edelstein-Keshet<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Department, The University <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia, Vancouver,<br />

BC V6T 1Z2, Canada<br />

e-mail: keshet@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>.ubc.ca<br />

Cell Polarizati<strong>on</strong> by Wave-Pinning: C<strong>on</strong>diti<strong>on</strong>s, Stochastic<br />

Behaviour, and Relevance to Plant Development<br />

Cell polarizati<strong>on</strong> is an important resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> eukaryotic cells to external cues, which<br />

allow cells to sense and react to signals in <str<strong>on</strong>g>th</str<strong>on</strong>g>eir envir<strong>on</strong>ment.<br />

Members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e family <str<strong>on</strong>g>of</str<strong>on</strong>g> Rho GTPases have emerged as important comp<strong>on</strong>ents<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e polarizati<strong>on</strong> machinery <str<strong>on</strong>g>of</str<strong>on</strong>g> cells: <str<strong>on</strong>g>th</str<strong>on</strong>g>ese switch-like proteins have a distinct<br />

active (membrane-bound, low diffusivity) and inactive form (mostly cytoplasmic,<br />

high diffusivity), and localizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e active form (accumulati<strong>on</strong> in a small porti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell) has been shown to act as a necessary cue for cell polarizati<strong>on</strong> (e.g.<br />

rearrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cytoskelet<strong>on</strong>). To <str<strong>on</strong>g>th</str<strong>on</strong>g>is end, Rho localizati<strong>on</strong> (short timescale)<br />

signals <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell where its fr<strong>on</strong>t and back are and <str<strong>on</strong>g>th</str<strong>on</strong>g>is informati<strong>on</strong> is usually imprinted<br />

in more committed processes such as cytoskelet<strong>on</strong> remodelling (l<strong>on</strong>g timescale).<br />

Mori et al. [1] established a reacti<strong>on</strong>-diffusi<strong>on</strong> system as a model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Rho GTPases and derived c<strong>on</strong>diti<strong>on</strong>s under which <str<strong>on</strong>g>th</str<strong>on</strong>g>eir model predicts Rho<br />

localizati<strong>on</strong>. These c<strong>on</strong>diti<strong>on</strong>s include mass c<strong>on</strong>servati<strong>on</strong>, uniformity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inactive<br />

form, and an invasi<strong>on</strong> criteri<strong>on</strong> <strong>on</strong> a local pulse in <str<strong>on</strong>g>th</str<strong>on</strong>g>e active form. Mori et al.<br />

named <str<strong>on</strong>g>th</str<strong>on</strong>g>is mechanism wave-pinning due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e nature <str<strong>on</strong>g>of</str<strong>on</strong>g> how <str<strong>on</strong>g>th</str<strong>on</strong>g>e Rho localizati<strong>on</strong><br />

pattern forms over time.<br />

We provide a short overview <str<strong>on</strong>g>of</str<strong>on</strong>g> Rho localizati<strong>on</strong> due to wave-pinning, c<strong>on</strong>dti<strong>on</strong>s<br />

for wave-pinning, and discuss biological properties and phenomena <str<strong>on</strong>g>th</str<strong>on</strong>g>at wavepinning<br />

is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducing. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we introduce local pulse analysis<br />

(LPA) as a useful tool for determining c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at meet an invasi<strong>on</strong> criteri<strong>on</strong><br />

necessary for wave-pinning.<br />

In a recent effort, [4], we studied a stochastic versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wave-pinning mechanism<br />

(spatial Gillespie algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m, [2], [3]) which models Rho localizati<strong>on</strong> in a low<br />

copy-number regime <str<strong>on</strong>g>of</str<strong>on</strong>g> Rho: <str<strong>on</strong>g>th</str<strong>on</strong>g>is model includes biologically relevant stochastic<br />

noise, and behaves markedly different from <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic model established by<br />

Mori et al. We discuss differences between <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinstic model, [1], and our<br />

1018


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

stochastic model, and reas<strong>on</strong> about c<strong>on</strong>diti<strong>on</strong>s under which wave-pinning is lost in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e latter.<br />

Relevant to plant science, our current work focuses <strong>on</strong> plant homologues <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Rho GTPase family, Rho <str<strong>on</strong>g>of</str<strong>on</strong>g> Plants (ROP), and a model <str<strong>on</strong>g>of</str<strong>on</strong>g> ROP localizati<strong>on</strong> due<br />

to wave-pinning established by Grieneisen et al. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is effort we attempt to find<br />

links between ROP localizati<strong>on</strong> as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin gradients (external signal), and<br />

localizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> auxin efflux carriers (PINOID, PIN) as a readout <str<strong>on</strong>g>of</str<strong>on</strong>g> cell polarizati<strong>on</strong>.<br />

We hope <str<strong>on</strong>g>th</str<strong>on</strong>g>at linking short-timescale ROP localizati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> l<strong>on</strong>g-timescale PIN<br />

localizati<strong>on</strong> will reveal biologically relevant feedback loops between external auxin<br />

gradients, internal cell polarizati<strong>on</strong>, and eventual modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e external auxin<br />

gradient. We argue <str<strong>on</strong>g>th</str<strong>on</strong>g>at feedback loops <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is kind may be relevant for <str<strong>on</strong>g>th</str<strong>on</strong>g>e development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e plant embryo and establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> biological phenomena such as <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

auxin maximum in <str<strong>on</strong>g>th</str<strong>on</strong>g>e quiescent centre <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e root.<br />

References.<br />

[1] Y. Mori, A. Jilkine, and L. Edelstein-Keshet Wave-pinning and cell polarity from a bistable<br />

reacti<strong>on</strong>-diffusi<strong>on</strong> system Biophysical Journal, 2008, 94 3684–97<br />

[2] D. T. Gillespie, A general me<str<strong>on</strong>g>th</str<strong>on</strong>g>od for numerically simulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coupled chemical reacti<strong>on</strong>s, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Computati<strong>on</strong>al Physics, 1976, 22 403–434<br />

[3] R. Erban, J. Chapman, and P. Maini, A practical guide to stochastic simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong>diffusi<strong>on</strong><br />

processes, http://arxiv.org/abs/0704.1908, 2007<br />

[4] G.R. Wal<str<strong>on</strong>g>th</str<strong>on</strong>g>er, A.F.M. Marée, V.A. Grieneisen, and L. Edelstein-Keshet, Deterministic Versus<br />

Stochastic Cell Polarizati<strong>on</strong> by Wave Pinning Submitted for Publicati<strong>on</strong>, 2011<br />

1019


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Xiaojing Wang<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Beijing University <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering and Architecture<br />

e-mail: wangxj857@sohu.com<br />

Guohua S<strong>on</strong>g<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, Beijing University <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering and Architecture<br />

Junqing Li<br />

Key Laboratory for Silviculture and C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong><br />

Stability Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a Kind <str<strong>on</strong>g>of</str<strong>on</strong>g> Three-Species Food System<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Time Delay<br />

A kind <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree-dimensi<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> food system including Giant Panda , bamboo<br />

and arbor wi<str<strong>on</strong>g>th</str<strong>on</strong>g> delay is c<strong>on</strong>sidered. Absolute stability and Hopf bifurcati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

model are studied by using systematic analysis me<str<strong>on</strong>g>th</str<strong>on</strong>g>od. Sufficient c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

absolute stability are obtained, it is shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e delay is locally harmless. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore,<br />

it is proved <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e time delay may destabilize <str<strong>on</strong>g>th</str<strong>on</strong>g>e positive equilibrium,<br />

and Hopf bifurcati<strong>on</strong> occurs under certain c<strong>on</strong>diti<strong>on</strong>s.<br />

1020


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

John Ward<br />

Loughborough University<br />

e-mail: john.ward@lboro.ac.uk<br />

Najida Begum<br />

Loughborough University<br />

e-mail: nbegum@pharmerit.com<br />

Medical Physiology; Tuesday, June 28, 11:00<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> wound healing and <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic wounds<br />

Epidermal wound healing is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten described in broad terms as a 3 stage process,<br />

1) inflammati<strong>on</strong> (initial resp<strong>on</strong>ses to <str<strong>on</strong>g>th</str<strong>on</strong>g>e trauma), 2) granulati<strong>on</strong> and reepi<str<strong>on</strong>g>th</str<strong>on</strong>g>eliasati<strong>on</strong><br />

(leading to wound closure) and 3) remodelling (streng<str<strong>on</strong>g>th</str<strong>on</strong>g>ening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

new skin at <str<strong>on</strong>g>th</str<strong>on</strong>g>e wound site). Progressi<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e granulati<strong>on</strong> phase is crucial<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e wound healing process and it is <str<strong>on</strong>g>th</str<strong>on</strong>g>is stage <str<strong>on</strong>g>th</str<strong>on</strong>g>at is typically arrested in chr<strong>on</strong>ic<br />

wounds. Factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at can lead to such an arrest include locally poor circulati<strong>on</strong><br />

(particularly for ulcers and pressure sores in <str<strong>on</strong>g>th</str<strong>on</strong>g>e elderly and diabetic patients) and<br />

bacterial infecti<strong>on</strong>. The costs involved in patient care is a significant burden to<br />

heal<str<strong>on</strong>g>th</str<strong>on</strong>g> services <str<strong>on</strong>g>th</str<strong>on</strong>g>roughout <str<strong>on</strong>g>th</str<strong>on</strong>g>e world.<br />

Presented in <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk is a spatio-temporal model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e healing processes during<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e granulati<strong>on</strong> phase, <str<strong>on</strong>g>th</str<strong>on</strong>g>at incorporates tissue grow<str<strong>on</strong>g>th</str<strong>on</strong>g> (granular and epi<str<strong>on</strong>g>th</str<strong>on</strong>g>elial)<br />

and migrati<strong>on</strong>, immune resp<strong>on</strong>se, fibroblast activity and angiogenesis, all <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

dependent <strong>on</strong> nutrients and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> factor levels. Simulati<strong>on</strong>s highlighting <str<strong>on</strong>g>th</str<strong>on</strong>g>e key<br />

factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at influence normal and abnormal healing will be presented. For larger<br />

wounds, normal healing is characterised by <str<strong>on</strong>g>th</str<strong>on</strong>g>e formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> travelling wave soluti<strong>on</strong>s<br />

towards wound closure. Results assessing <str<strong>on</strong>g>th</str<strong>on</strong>g>e effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> bolus<br />

and topical <str<strong>on</strong>g>th</str<strong>on</strong>g>erapies will also be discussed.<br />

1021


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Michael Wats<strong>on</strong><br />

Heriot-Watt University, Edinburgh<br />

e-mail: michael.wats<strong>on</strong>@pet.hw.ac.uk<br />

Dr Steven McDougall<br />

Heriot-Watt University, Edinburgh<br />

Developmental Biology; Wednesday, June 29, 17:00<br />

Development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Murine Retinal Vasculature:<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Modelling and Numerical Simulati<strong>on</strong><br />

Tumour-induced angiogenesis has been extensively explored by <str<strong>on</strong>g>th</str<strong>on</strong>g>e ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

community. However, despite <str<strong>on</strong>g>th</str<strong>on</strong>g>e availability <str<strong>on</strong>g>of</str<strong>on</strong>g> animal models wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimentally<br />

accesible and highly ordered vascular topologies, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere have been few attempts to<br />

model angiogenesis during normal development. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we present a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e developing retinal vasculature, based <strong>on</strong> a coupled experimental<br />

program <str<strong>on</strong>g>of</str<strong>on</strong>g> investigati<strong>on</strong> in ne<strong>on</strong>atal mice. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e superficial retinal<br />

vascular plexus (RVP) occurs in a spatio-temporally defined pattern. Prior to bir<str<strong>on</strong>g>th</str<strong>on</strong>g>,<br />

astrocytes migrate away from <str<strong>on</strong>g>th</str<strong>on</strong>g>e optic nerve over <str<strong>on</strong>g>th</str<strong>on</strong>g>e surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e inner retina<br />

in resp<strong>on</strong>se to a chemotactic gradient. Astrocytes express fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er chemotactic, and<br />

haptotactic, signals which induce endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cell sprouting and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e RVP.<br />

Adopting a hybrid PDE-discrete approach, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model allows tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> individual<br />

astrocytes and endo<str<strong>on</strong>g>th</str<strong>on</strong>g>elial cells in resp<strong>on</strong>se to <str<strong>on</strong>g>th</str<strong>on</strong>g>ese migratory cues. The simulati<strong>on</strong>s<br />

provide an excellent correlati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e extent and pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> astrocyte<br />

migrati<strong>on</strong> and vascular network formati<strong>on</strong> observed in vivo. The model is extended<br />

to include simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> blood flow <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e nascent vessel networks, and oxygen<br />

delivery to <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding tissues. Dynamic remodelling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vasculature is <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

performed, again producing excellent agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental observati<strong>on</strong>s.<br />

1022


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Agata Wawrzkiewicz<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry and Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymers, Secti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Physics and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

44-100 Gliwice, Ks. M. Strzody 9, Poland<br />

e-mail: agata.wawrzkiewicz@gmail.com<br />

K. Pawelek<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry and Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymers, Secti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Physics and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

44-100 Gliwice, Ks. M. Strzody 9, Poland<br />

P Borys<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry and Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymers, Secti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Physics and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

44-100 Gliwice, Ks. M. Strzody 9, Poland<br />

Z. J. Grzywna<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry and Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymers, Secti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Physics and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,<br />

44-100 Gliwice, Ks. M. Strzody 9, Poland<br />

The random walk and Langevin approaches to diffusive<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e BKCa i<strong>on</strong> channel kinetics.<br />

Up to date, several different <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical approaches were introduced to describe<br />

open and closed states <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> channels. They describe correctly dwell-time distributi<strong>on</strong>s,<br />

however many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em are incapable <str<strong>on</strong>g>of</str<strong>on</strong>g> predicting and explaining l<strong>on</strong>g-term<br />

correlati<strong>on</strong>s between <str<strong>on</strong>g>th</str<strong>on</strong>g>e dwelling times <str<strong>on</strong>g>of</str<strong>on</strong>g> subsequent states <str<strong>on</strong>g>of</str<strong>on</strong>g> a channel, found<br />

in experimental patch clamp time series. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work, we have proposed a new<br />

diffusive model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> voltage and Ca2+-activated potassium channels<br />

(BKCa). We have c<strong>on</strong>sidered and compared two <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical approaches towards<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modeled states: <str<strong>on</strong>g>th</str<strong>on</strong>g>e random walk and Langevin <strong>on</strong>es. Our<br />

results show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinetic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental time series and <str<strong>on</strong>g>th</str<strong>on</strong>g>e corresp<strong>on</strong>ding<br />

simulated data obtained from <str<strong>on</strong>g>th</str<strong>on</strong>g>e model, turn out to be quite c<strong>on</strong>current.<br />

Moreover, <str<strong>on</strong>g>th</str<strong>on</strong>g>e rescaled range analysis (R/S analysis, Hurst analysis), which in our<br />

investigati<strong>on</strong>s measures <str<strong>on</strong>g>th</str<strong>on</strong>g>e correlati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e time series <str<strong>on</strong>g>of</str<strong>on</strong>g> adjacent openings and<br />

closings dwell times <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e BK channel, gives close results for experimental and<br />

modeled data.<br />

1023


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical modeling and simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis I; Wednesday, June 29,<br />

08:30<br />

Rafał Wcisło<br />

AGH University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology<br />

e-mail: wcislo@agh.edu.pl<br />

Witold Dźwinel<br />

AGH University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology<br />

e-mail: dzwinel@agh.edu.pl<br />

Complex Cellular Automata based <strong>on</strong> particle dynamics as a<br />

framework for modeling solid tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and angiogenesis<br />

To simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> its avascular and angiogenic<br />

phases we propose a novel computati<strong>on</strong>al paradigm based <strong>on</strong>, so called, complex<br />

automata approach (CxA). It combines <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular automata modeling (CA) wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f-grid particle dynamics coupled by c<strong>on</strong>tinuum reacti<strong>on</strong>-diffusi<strong>on</strong> equati<strong>on</strong>s. The<br />

particles represent bo<str<strong>on</strong>g>th</str<strong>on</strong>g> tissue cells and fragments <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular network. They interact<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir closest neighbors via semi-harm<strong>on</strong>ic central forces simulating mechanical<br />

resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell walls. The particle dynamics is governed by bo<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e Newt<strong>on</strong>ian laws <str<strong>on</strong>g>of</str<strong>on</strong>g> moti<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular automata rules. The rules represent<br />

cell life-cycle stimulated by various biological processes such as carcinogenesis and<br />

diffusi<strong>on</strong>-reacti<strong>on</strong> processes involving nutrients and tumor angiogenic factors. We<br />

discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e main advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> CxA model such as its ability <str<strong>on</strong>g>of</str<strong>on</strong>g> simulating mechanical<br />

interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tissue. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at our model can<br />

reproduce realistic 3-D dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e entire system c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor, normal<br />

tissue cells, blood vessels and blood flow. We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e CxA paradigm<br />

can serve as an efficient and elegant general framework <str<strong>on</strong>g>of</str<strong>on</strong>g> more advanced multiplescale<br />

models <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor coupling microscopic in-cell processes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> its macroscopic<br />

evoluti<strong>on</strong>. Finally, we discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e main requirements and design comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> an<br />

interactive visualizati<strong>on</strong> engine based <strong>on</strong> CxA paradigm. Such <str<strong>on</strong>g>th</str<strong>on</strong>g>e system can be<br />

used as a valuable tool for educati<strong>on</strong>al purposes and, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e nearest future, for in<br />

silico experiments, which can play <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> angiogenesis assays in planning cancer<br />

treatment.<br />

1024


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

William Weens<br />

INRIA<br />

e-mail: william.weens@inria.fr<br />

Sabine Colnot<br />

INSERM<br />

Dirk Drasdo<br />

INRIA<br />

Jan G. Hengstler<br />

IFADO<br />

Stefan Hoehme<br />

IZBI<br />

Bioinformatics and System Biology; Wednesday, June 29, 08:30<br />

Modeling tumor development in liver<br />

As recently dem<strong>on</strong>strated for liver regenerati<strong>on</strong> after drug-induced damage, organizati<strong>on</strong><br />

and grow<str<strong>on</strong>g>th</str<strong>on</strong>g> processes can be systematically analysed by a process chain <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

experiments, image analysis and modeling [1]. In <str<strong>on</strong>g>th</str<strong>on</strong>g>at paper our group was able to<br />

quantitatively characterize <str<strong>on</strong>g>th</str<strong>on</strong>g>e architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> liver lobules, <str<strong>on</strong>g>th</str<strong>on</strong>g>e repetitive functi<strong>on</strong>al<br />

building blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> liver, and turn <str<strong>on</strong>g>th</str<strong>on</strong>g>is into a quantitative ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model capable<br />

to predict a previously unrecognized order mechanism. The model predicti<strong>on</strong><br />

could subsequently be experimentally validated. Here, we extend <str<strong>on</strong>g>th</str<strong>on</strong>g>is model to <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

multi-lobular scale and study, guided by experimental findings, cancerogenesis in<br />

liver. We explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e possible scenarios leading to <str<strong>on</strong>g>th</str<strong>on</strong>g>e different tumor phenotypes<br />

experimentally observed in mouse. Our model c<strong>on</strong>siders <str<strong>on</strong>g>th</str<strong>on</strong>g>e hepatocytes, <str<strong>on</strong>g>th</str<strong>on</strong>g>e main<br />

cell type in liver, as individual units wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a single cell based model and <str<strong>on</strong>g>th</str<strong>on</strong>g>e blood<br />

vessel system as a network <str<strong>on</strong>g>of</str<strong>on</strong>g> extensible objects. The model is parameterized by<br />

measurable values <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell and tissue scale and its results are directly compared<br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental findings.<br />

References.<br />

[1] Hoehme, et al. (2010) Predicti<strong>on</strong> and validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell alignment al<strong>on</strong>g microvessels as order<br />

principle to restore tissue architecture in liver regenerati<strong>on</strong>. Proc. Natl. Acad. Sci (USA) vol.<br />

107 no. 23 10371-10376<br />

1025


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 17:00<br />

Sebastian Weitz<br />

Richard Fournier<br />

Stéphane Blanco<br />

Laboratoire Plasma et C<strong>on</strong>versi<strong>on</strong> d’Energie, UMR-CNRS 5213, Université<br />

Paul Sabatier, Bât 3R1, 118 Route de Narb<strong>on</strong>ne, F-31062 Toulouse<br />

cedex 9, France<br />

e-mail: weitz@laplace.univ-tlse.fr<br />

Jacques Gautrais<br />

Christian Jost<br />

Guy Theraulaz<br />

Centre de Recherches sur la Cogniti<strong>on</strong> Animale, UMR-CNRS 5169,<br />

Université Paul Sabatier, Bât 4R3, 118 Route de Narb<strong>on</strong>ne, F-31062<br />

Toulouse cedex 9, France<br />

A model <str<strong>on</strong>g>of</str<strong>on</strong>g> self-induced <str<strong>on</strong>g>th</str<strong>on</strong>g>igmotactism in ants<br />

Ants display <str<strong>on</strong>g>th</str<strong>on</strong>g>igmotactic behaviour which is a tendency to align wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a border<br />

and move al<strong>on</strong>g it for some time. In many cases, ants’ activity results in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental heterogeneities <str<strong>on</strong>g>th</str<strong>on</strong>g>at in turn modify <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ants<br />

and trigger a <str<strong>on</strong>g>th</str<strong>on</strong>g>igmotactic behaviour as <str<strong>on</strong>g>th</str<strong>on</strong>g>ey reach a critical size. We have analyzed<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong> during object clustering experiments in <str<strong>on</strong>g>th</str<strong>on</strong>g>e ant Messor Sanctus.<br />

The experimental investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ants in presence <str<strong>on</strong>g>of</str<strong>on</strong>g> objects (Casellas<br />

et al. [1] and subsequent experimental work) leads to a new <str<strong>on</strong>g>th</str<strong>on</strong>g>igmotactic random<br />

walk model, in which ants tend to walk around <str<strong>on</strong>g>th</str<strong>on</strong>g>e emerging piles ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an<br />

crossing <str<strong>on</strong>g>th</str<strong>on</strong>g>em. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is c<strong>on</strong>tributi<strong>on</strong> we analyze <str<strong>on</strong>g>th</str<strong>on</strong>g>e properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model and show<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at its predicti<strong>on</strong>s are in quantitive agreement wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental observati<strong>on</strong>s.<br />

We <str<strong>on</strong>g>th</str<strong>on</strong>g>en show <str<strong>on</strong>g>th</str<strong>on</strong>g>e essential role played by <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupling between <str<strong>on</strong>g>th</str<strong>on</strong>g>e clustering<br />

dynamics and <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ants in <str<strong>on</strong>g>th</str<strong>on</strong>g>e object clustering experiments. We<br />

finally discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e nest building<br />

process in ants, and for understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e shape transiti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e clustered items<br />

observed when ants are facing low-speed air currents.<br />

References.<br />

[1] E. Casellas, J. Gautrais, R. Fournier, S. Blanco, M. Combe, V. Fourcassié, G. Theraulaz, and<br />

C. Jost, From individual to collective displacements in heterogeneous envir<strong>on</strong>ments Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology 250 424–434.<br />

1026


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Friday, July 1, 14:30<br />

Bernt Wennberg<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, Chalmers university <str<strong>on</strong>g>of</str<strong>on</strong>g> technolgy<br />

and<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: wennberg@chalmers.se<br />

Philip Gerlee<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, Chalmers university <str<strong>on</strong>g>of</str<strong>on</strong>g> technolgy<br />

and<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: gerlee@chalmers.se<br />

Johan Henrikss<strong>on</strong><br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biosciences at Novum, Karolinska Institutet<br />

e-mail: johan.henrikss<strong>on</strong>@ki.se<br />

Torbjörn Lundh<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, Chalmers university <str<strong>on</strong>g>of</str<strong>on</strong>g> technolgy<br />

and<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Go<str<strong>on</strong>g>th</str<strong>on</strong>g>enburg<br />

e-mail: torbjorn.lundh@chalmers.se<br />

Sympatric speciati<strong>on</strong> and its dependence <strong>on</strong> competiti<strong>on</strong> and<br />

streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> reinforcement<br />

Sympatric speciati<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary split <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e species into two or more<br />

species in <str<strong>on</strong>g>th</str<strong>on</strong>g>e same envir<strong>on</strong>ment. We c<strong>on</strong>sider a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>is phenomen<strong>on</strong>,<br />

in which reinforcement plays an important role. By reinforcement we<br />

mean a phenotypic trait <str<strong>on</strong>g>th</str<strong>on</strong>g>at influences <str<strong>on</strong>g>th</str<strong>on</strong>g>e choice <str<strong>on</strong>g>of</str<strong>on</strong>g> mating partner, but has no<br />

impact <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment. The model is individual based,<br />

implemented as a discrete time Markov process in a space Z N , where Z is <str<strong>on</strong>g>th</str<strong>on</strong>g>e phenotype<br />

space <str<strong>on</strong>g>of</str<strong>on</strong>g> an individual and N is <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals. Reproducti<strong>on</strong> is<br />

modelled as <str<strong>on</strong>g>th</str<strong>on</strong>g>e result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals, but does not involve<br />

different genders, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parents’s adaptati<strong>on</strong><br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment. The basic model is presented in [1], where simulati<strong>on</strong>s simulati<strong>on</strong><br />

results are presented <str<strong>on</strong>g>th</str<strong>on</strong>g>at show <str<strong>on</strong>g>th</str<strong>on</strong>g>at reinforcement is essential for speciati<strong>on</strong><br />

to take place. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper <str<strong>on</strong>g>th</str<strong>on</strong>g>e model is fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er developed, and in particular we<br />

investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact <str<strong>on</strong>g>of</str<strong>on</strong>g> specializati<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>ment <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e rate <str<strong>on</strong>g>of</str<strong>on</strong>g> speciati<strong>on</strong><br />

events, and <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g term survival <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e decendants <str<strong>on</strong>g>of</str<strong>on</strong>g> a species.<br />

References.<br />

[1] J. Henrikss<strong>on</strong>, T. Lundh and B. Wennberg, A model <str<strong>on</strong>g>of</str<strong>on</strong>g> sympatric speciati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>rough reinforcement,<br />

Kinetic and related models 3 no 1, 143–163.<br />

1027


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Signals II; Saturday, July 2, 11:00<br />

Aleksander Wer<strong>on</strong><br />

Wroclaw University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: aleksander.wer<strong>on</strong>@pwr.wroc.pl<br />

Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>al subdiffusive dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> mRNA<br />

molecules<br />

Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong>al subdiffusive dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> mRNA molecules<br />

Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g> Burnecki and Aleksander Wer<strong>on</strong><br />

Hugo Steinhaus Center, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Computer Science, Wroclaw<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we propose a statistical me<str<strong>on</strong>g>th</str<strong>on</strong>g>odology how to distinguish between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>ree mechanisms leading to single molecule subdiffusi<strong>on</strong>, [1-2]. Namely, fracti<strong>on</strong>al<br />

Brownian moti<strong>on</strong>, fracti<strong>on</strong>al Levy stable moti<strong>on</strong> and Fracti<strong>on</strong>al Fokker-Planck<br />

equati<strong>on</strong>. We illustrate step by step <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> sample mean-squared<br />

displacement and p-variati<strong>on</strong> can be successfully applied for infinite and c<strong>on</strong>fined<br />

systems. We already identified fracti<strong>on</strong>al subdiffusive dynamics <strong>on</strong> biological data<br />

describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e moti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual fluorescently labeled mRNA molecules inside<br />

live E. coli cells [3-5], but it may c<strong>on</strong>cern also many o<str<strong>on</strong>g>th</str<strong>on</strong>g>er biological experimental<br />

data.<br />

References.<br />

[1] I. Golding and E.C. Cox, Phys. Rev. Lett. 96, 098102 (2006).<br />

[2] G. Guigas, C. Kalla, and M. Weiss, Biophys. J. 93, 316 (2007).<br />

[3] M. Magdziarz, A. Wer<strong>on</strong>, K. Burnecki, and J. Klafter, Phys Rev. Lett. 103, 180602 (2009).<br />

[4] K. Burnecki, A. Wer<strong>on</strong>, Phys. Rev. E 82, 021130 (2010).<br />

[5] M. Magdziarz and J. Klafter, Phys. Rev. E 82, 011129 (2010).<br />

1028


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Sergiusz Wesolowski<br />

Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Computer Science, Mechanics; Warsaw University,<br />

Poland<br />

e-mail: wesserg@gmail.com<br />

Piotr Kraj<br />

Cancer Center, Medical College <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgia, Georgia Heal<str<strong>on</strong>g>th</str<strong>on</strong>g> Science<br />

University, USA<br />

e-mail: pkraj@georgiaheal<str<strong>on</strong>g>th</str<strong>on</strong>g>.edu<br />

Improving statistical models for discovering cell type specific<br />

genes<br />

Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fundamental me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> characterizing<br />

cell populati<strong>on</strong>s. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e major cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune system are "helper" T cells<br />

expressing CD4 surface marker. The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese cells c<strong>on</strong>stitutes a populati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al CD4+ T cells which supports functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>th</str<strong>on</strong>g>er cells <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e adaptive<br />

and innate immune system. A smaller populati<strong>on</strong>, called regulatory CD4+ T cells<br />

(Treg), has opposite functi<strong>on</strong> and suppresses immune resp<strong>on</strong>se and is resp<strong>on</strong>sible<br />

for <str<strong>on</strong>g>th</str<strong>on</strong>g>e homeostasis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune system. The most characteristic gene expressed<br />

by Treg cells is a transcripti<strong>on</strong> factor Foxp3. Bo<str<strong>on</strong>g>th</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong>al and Treg cells are<br />

generated in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus from b<strong>on</strong>e marrow-derived progenitors. Treg cells produced<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ymus are called natural Treg cells. Under certain c<strong>on</strong>diti<strong>on</strong>s, c<strong>on</strong>venti<strong>on</strong>al<br />

CD4 T cells can express Foxp3 and acquire suppressor functi<strong>on</strong>. These Treg cells<br />

are called adaptive Treg.<br />

One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> investigating different subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> CD4 T cells is to compare<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir gene expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles. This approach allows insight into cellular functi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> individual cell subsets and allows for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> differentially<br />

expressed genes. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e global expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles is comm<strong>on</strong>ly d<strong>on</strong>e using<br />

microarrays.<br />

To reveal genetic c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> various subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> CD4 T cells we compared gene<br />

expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> resting and activated c<strong>on</strong>venti<strong>on</strong>al CD4 T cells, resting and<br />

activated natural Treg cells and adaptive Treg cells. RNA was isolated from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

respective T cell populati<strong>on</strong>s and hybridized to Affymetrix GeneChip M430 2.0<br />

Plus microarrays. Three individual samples <str<strong>on</strong>g>of</str<strong>on</strong>g> each kind were processed.<br />

In order to make our data set more representative, followin a similar approach<br />

described in [1], we included microarrays from <str<strong>on</strong>g>th</str<strong>on</strong>g>e respective CD4 T cell subsets<br />

from o<str<strong>on</strong>g>th</str<strong>on</strong>g>er laboratories. These data were obtained from <str<strong>on</strong>g>th</str<strong>on</strong>g>e GEO database:<br />

www.ncbi.nlm.nih.gov/geo.<br />

To deal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem we produced a framework combined from several<br />

available statistical approaches: Linear models for Microarray data, Bayesian approach,<br />

N<strong>on</strong>-Negative Matrix Factorisati<strong>on</strong> [2].<br />

Comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> data from multiple laboratories introduces additi<strong>on</strong>al levels <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

variability which need to be accounted for during data normalizati<strong>on</strong>.<br />

Normalizati<strong>on</strong> attempts <str<strong>on</strong>g>th</str<strong>on</strong>g>at adjusted mean values and standard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

gene expressi<strong>on</strong> resulted in <str<strong>on</strong>g>th</str<strong>on</strong>g>e sets <str<strong>on</strong>g>of</str<strong>on</strong>g> differentially expressed genes <str<strong>on</strong>g>th</str<strong>on</strong>g>at differed<br />

1029


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

between laboratories instead <str<strong>on</strong>g>of</str<strong>on</strong>g> between different T cell populati<strong>on</strong>s. Our computati<strong>on</strong>s<br />

indicated <str<strong>on</strong>g>th</str<strong>on</strong>g>at lab origin has more influence <strong>on</strong> gene expressi<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>en<br />

investigated cell types am<strong>on</strong>g laboratories.<br />

To account for multi-dimensi<strong>on</strong>ality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e normalizati<strong>on</strong> problem we developed<br />

a heuristic approach.<br />

References.<br />

[1] Jean-Philippe Brunet, Pablo Tamayo, Todd R. Golub, Jill P. Mesirov, Metagenes and molecular<br />

pattern discovery using matrix factorizati<strong>on</strong> PNAS 12 4164–4169.<br />

[2] Franz-Josef Müller, Louise C. Laurent, Dennis Kostka, Igor Ulitsky, Roy Williams, Christina<br />

Lu, In-Hyun Park, Mahendra S. Rao, R<strong>on</strong> Shamir, Philip H. Schwartz, Nils O. Schmidt Loring,<br />

Jeanne F. Loring, Regulatory networks define phenotypic classes <str<strong>on</strong>g>of</str<strong>on</strong>g> human stem cell lines<br />

Nature (18 September 2008) 455 401–405.<br />

1030


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Fractals and Complexity I; Wednesday, June 29, 14:30<br />

Bruce J. West<br />

Informati<strong>on</strong> Science Directorate, US Army Research Office<br />

e-mail: bruce.j.west@us.army.mil<br />

Origins <str<strong>on</strong>g>of</str<strong>on</strong>g> Allometric Grow<str<strong>on</strong>g>th</str<strong>on</strong>g>: A C<strong>on</strong>temporary Perspective<br />

The <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical allometry relati<strong>on</strong> (AR) between <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> an organism Y<br />

and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>of</str<strong>on</strong>g> an organ wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e organism X is <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e form X = aY b and has<br />

been known for nearly two centuries. The allometry coefficient a and allometry<br />

exp<strong>on</strong>ent b have been fit by various data sets over <str<strong>on</strong>g>th</str<strong>on</strong>g>at time. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e last century<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e phenomenological field <str<strong>on</strong>g>of</str<strong>on</strong>g> allometry has found its way into almost every scientific<br />

discipline and <str<strong>on</strong>g>th</str<strong>on</strong>g>e ARs have been reinterpreted wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Y still being <str<strong>on</strong>g>th</str<strong>on</strong>g>e size <str<strong>on</strong>g>of</str<strong>on</strong>g> a host<br />

network and X a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network. For example, in biology <str<strong>on</strong>g>th</str<strong>on</strong>g>e measure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

size is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten taken to be <str<strong>on</strong>g>th</str<strong>on</strong>g>e total body mass and <str<strong>on</strong>g>th</str<strong>on</strong>g>e functi<strong>on</strong> is <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolic rate,<br />

or heart rate, brea<str<strong>on</strong>g>th</str<strong>on</strong>g>ing rate, or l<strong>on</strong>gevity <str<strong>on</strong>g>of</str<strong>on</strong>g> animals. Most <str<strong>on</strong>g>th</str<strong>on</strong>g>eories purporting to<br />

explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin <str<strong>on</strong>g>of</str<strong>on</strong>g> ARs focus <strong>on</strong> establishing <str<strong>on</strong>g>th</str<strong>on</strong>g>e proper value <str<strong>on</strong>g>of</str<strong>on</strong>g> b entailed by<br />

reducti<strong>on</strong>ist models, whereas a few o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers use statistical arguments to emphasize<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> a.<br />

On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er hand, statistical data analysis indicates <str<strong>on</strong>g>th</str<strong>on</strong>g>at empirical ARs are<br />

obtained wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e replacements X → 〈X〉 and Y → 〈Y 〉 and <str<strong>on</strong>g>th</str<strong>on</strong>g>e brackets denote an<br />

average over an ensemble <str<strong>on</strong>g>of</str<strong>on</strong>g> realizati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network and its functi<strong>on</strong>. Networks<br />

in which <str<strong>on</strong>g>th</str<strong>on</strong>g>ese empirical ARs are established include <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> animals,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e grow<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants, species abundance in ec<strong>on</strong>etworks, <str<strong>on</strong>g>th</str<strong>on</strong>g>e geomorphology <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rivers, and many more. The resulting empirical AR can <strong>on</strong>ly be derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical <strong>on</strong>e by averaging under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at are incompatible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> real data.<br />

C<strong>on</strong>sequently ano<str<strong>on</strong>g>th</str<strong>on</strong>g>er strategy for finding <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin <str<strong>on</strong>g>of</str<strong>on</strong>g> ARs is required and for <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

we turn to <str<strong>on</strong>g>th</str<strong>on</strong>g>e probability calculus and fracti<strong>on</strong>al derivatives.<br />

We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> living networks can be described by fracti<strong>on</strong>al<br />

diffusi<strong>on</strong> equati<strong>on</strong>s (FDEs) and hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esize <str<strong>on</strong>g>th</str<strong>on</strong>g>at FDEs can explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ARs. We obtain <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fourier-Laplace transform <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e general soluti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>e FDE<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>tains bo<str<strong>on</strong>g>th</str<strong>on</strong>g> historical informati<strong>on</strong> and n<strong>on</strong>local influences <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamic<br />

variables, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is, fracti<strong>on</strong>al derivatives in bo<str<strong>on</strong>g>th</str<strong>on</strong>g> time and phase space, complexity<br />

comm<strong>on</strong>ly found in living networks. The scaling properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting soluti<strong>on</strong><br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e FDE enable us to interrelate <str<strong>on</strong>g>th</str<strong>on</strong>g>e network’s size and functi<strong>on</strong> by means <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>g anticipati<strong>on</strong>. The analysis shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at str<strong>on</strong>g anticipati<strong>on</strong><br />

and scaling taken toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er support <str<strong>on</strong>g>th</str<strong>on</strong>g>e hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis and is sufficient to explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

origin <str<strong>on</strong>g>of</str<strong>on</strong>g> empirical ARs.<br />

1031


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecology and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infectious diseases; Friday, July 1, 14:30<br />

Andy White<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Heriot Watt University, Edinburgh, EH14 4AS.<br />

e-mail: A.R.White@hw.ac.uk<br />

Alex Best<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sheffield<br />

Eva Kisdi<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

Janis Ant<strong>on</strong>ovics<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Virginia<br />

Mike Brockhurst<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Liverpool<br />

Mike Boots<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Sheffield<br />

The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> host-parasite range<br />

Understanding <str<strong>on</strong>g>th</str<strong>on</strong>g>e coevoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hosts and parasites is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e key challenges<br />

for evoluti<strong>on</strong>ary biology. Adaptive dynamics techniques have examined coevoluti<strong>on</strong>ary<br />

outcomes in classical infectious disease model frameworks in which<br />

infecti<strong>on</strong> depends <strong>on</strong> absolute rates <str<strong>on</strong>g>of</str<strong>on</strong>g> transmissi<strong>on</strong> and defence [1]. These models<br />

typically predict ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>at <strong>on</strong>e strain dominates or <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is evoluti<strong>on</strong>ary<br />

branching, where disruptive selecti<strong>on</strong> around a fitness minimum causes <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> two distinct strains. This may <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore provide insight into <str<strong>on</strong>g>th</str<strong>on</strong>g>e <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diversity but does not fully explain <str<strong>on</strong>g>th</str<strong>on</strong>g>e generati<strong>on</strong> and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e wide<br />

range <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> in host and parasite strains observed in natural systems. Here<br />

we present a fully coevoluti<strong>on</strong>ary host-parasite model using <str<strong>on</strong>g>th</str<strong>on</strong>g>e assumpti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

adaptive dynamics, but ra<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>an assuming <str<strong>on</strong>g>th</str<strong>on</strong>g>at transmissibility and defence are<br />

absolute we approximate an ‘all or no<str<strong>on</strong>g>th</str<strong>on</strong>g>ing’ infecti<strong>on</strong> process where <str<strong>on</strong>g>th</str<strong>on</strong>g>e success <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

infecti<strong>on</strong> depends up<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e relative ‘range’ <str<strong>on</strong>g>of</str<strong>on</strong>g> host resistance and parasite infectivity.<br />

A parasite <str<strong>on</strong>g>th</str<strong>on</strong>g>at can infect a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> host strains will pay a cost in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> disease transmissi<strong>on</strong> compared to parasites <str<strong>on</strong>g>th</str<strong>on</strong>g>at infect a narrower range <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

hosts. A similar trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f exists in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> parasite strains a host can<br />

resist and <str<strong>on</strong>g>th</str<strong>on</strong>g>e host reproductive rate. Infecti<strong>on</strong> success <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore depends <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

specific characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e parasite and <str<strong>on</strong>g>th</str<strong>on</strong>g>e host. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at c<strong>on</strong>siderable<br />

diversity can be generated and maintained due to epidemiological feedbacks, wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

strains differing in <str<strong>on</strong>g>th</str<strong>on</strong>g>e range <str<strong>on</strong>g>of</str<strong>on</strong>g> host and parasite types <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can respectively infect<br />

or resist [2]. The patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance and infectivity are also in close agreement<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> laboratory results <str<strong>on</strong>g>th</str<strong>on</strong>g>at assess <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary behaviour in a bacteria-phage<br />

system.<br />

References.<br />

[1] Best, A., White, A. and Boots, M. 2009. The implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coevoluti<strong>on</strong>ary dynamics to<br />

host-parasite interacti<strong>on</strong>s. American Naturalist, 173: 779-791.<br />

[2] Best, A., White, A., Kisdi, E., Ant<strong>on</strong>ovics, J., Brockhurst, M. A. and Boots, M. 2010. The<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> host-parasite range. American Naturalist, 176: 63-71.<br />

1032


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Reports from US - African BioMa<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Initiative: C<strong>on</strong>servati<strong>on</strong><br />

Biology; Saturday, July 2, 14:30<br />

Ruscena Wiederholt<br />

USGS Patuxent Wildlife Research Center<br />

e-mail: rpw143@psu.edu<br />

Chris Guerney<br />

University California Berkeley<br />

L<strong>on</strong>gt<strong>on</strong>g Turshak<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Jos<br />

Adel Ferchichi<br />

Tunis University<br />

The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance, fire, and elephants <strong>on</strong> savanna<br />

woodlands<br />

The extent to which ecological systems are experiencing disturbance and change in<br />

functi<strong>on</strong> and structure is critical for <str<strong>on</strong>g>th</str<strong>on</strong>g>e l<strong>on</strong>g-term c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological diversity.<br />

The savanna, <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant ecosystem <str<strong>on</strong>g>of</str<strong>on</strong>g> sub-Saharan Africa, is characterized<br />

by <str<strong>on</strong>g>th</str<strong>on</strong>g>e coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> woody plants and grasses. Vegetati<strong>on</strong> modificati<strong>on</strong><br />

from woodland to grassland has most <str<strong>on</strong>g>of</str<strong>on</strong>g>ten been attributed to <str<strong>on</strong>g>th</str<strong>on</strong>g>e coupled effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> elephant herbivory and fire. Therefore, to better inform management strategies<br />

for woodland savanna ecosystems, <str<strong>on</strong>g>th</str<strong>on</strong>g>e objective <str<strong>on</strong>g>of</str<strong>on</strong>g> our study was to model <str<strong>on</strong>g>th</str<strong>on</strong>g>e impact<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> fire and herbivory <strong>on</strong> tree survival. We used density-dependent, stochastic<br />

Lefkovitch matrix models to simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> woody plants in<br />

Kruger Nati<strong>on</strong>al Park, Mpumalanga, Sou<str<strong>on</strong>g>th</str<strong>on</strong>g> Africa. Our model was run <strong>on</strong> biannual<br />

time steps, including wet and dry seas<strong>on</strong>s, for 50 years. Elephant herbivory was<br />

assumed to occur every dry seas<strong>on</strong>, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> fire was stochastic. We<br />

tested different frequencies and intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> fire and herbivory in our model, and<br />

also altered <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e fire parameters. Preliminary results indicated an<br />

average fire return interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 3-4 years produced an approximately stable populati<strong>on</strong><br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. Our sensitivity analysis showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at under baseline c<strong>on</strong>diti<strong>on</strong>s adult<br />

tree survival was <str<strong>on</strong>g>th</str<strong>on</strong>g>e most important factor affecting populati<strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates. We<br />

also found <str<strong>on</strong>g>th</str<strong>on</strong>g>at different fire regimes, varying intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance, and even<br />

altering <str<strong>on</strong>g>th</str<strong>on</strong>g>e variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese parameters can pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> savanna<br />

structure over time. Therefore, our results indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at savanna woodland<br />

structure is sensitive to bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e frequency and intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance which has<br />

important management implicati<strong>on</strong>s.<br />

1033


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Ka<str<strong>on</strong>g>th</str<strong>on</strong>g>leen Wilkie and Philip Hahnfeldt<br />

Center <str<strong>on</strong>g>of</str<strong>on</strong>g> Cancer Systems Biology<br />

Steward St. Elizabe<str<strong>on</strong>g>th</str<strong>on</strong>g>’s Medical Center,<br />

Tufts University School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Bost<strong>on</strong>, MA 02135 USA<br />

e-mail: ka<str<strong>on</strong>g>th</str<strong>on</strong>g>leen.wilkie@steward.org<br />

Modelling Immunomodulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

The physical presence and activities <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells elicit an immune resp<strong>on</strong>se<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e host. In turn, <str<strong>on</strong>g>th</str<strong>on</strong>g>is immune resp<strong>on</strong>se has been shown to be bo<str<strong>on</strong>g>th</str<strong>on</strong>g> stimulatory<br />

and inhibitory to tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. This interplay <str<strong>on</strong>g>th</str<strong>on</strong>g>erefore has complex implicati<strong>on</strong>s<br />

for tumor development. To explore <str<strong>on</strong>g>th</str<strong>on</strong>g>ese, we have developed a system <str<strong>on</strong>g>of</str<strong>on</strong>g> differential<br />

equati<strong>on</strong>s to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se in tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. The<br />

two-compartment model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> bo<str<strong>on</strong>g>th</str<strong>on</strong>g> cancer and immune cells: <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells<br />

proliferate <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir own and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir grow<str<strong>on</strong>g>th</str<strong>on</strong>g> can ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er be inhibited or stimulated by<br />

immune cells in a manner dependent <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e states <str<strong>on</strong>g>of</str<strong>on</strong>g> each, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune cells<br />

are recruited to <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor site by ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells or by <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune cells. Cancer cells, innate immune cells (such as<br />

platelets, dendritic cells, macrophages, and natural killer cells) and adaptive immune<br />

cells (such as T and B lymphocytes) communicate wi<str<strong>on</strong>g>th</str<strong>on</strong>g> each o<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>rough<br />

cytokine and chemokine producti<strong>on</strong> which c<strong>on</strong>trols and shapes tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>. The<br />

cummulative result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese diverse cells determines whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

tumor-promoting inflammati<strong>on</strong> or antitumor immunity occurs, and it is <str<strong>on</strong>g>th</str<strong>on</strong>g>is wholistic<br />

resp<strong>on</strong>se <str<strong>on</strong>g>th</str<strong>on</strong>g>at we attempt to capture in our model. Most ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune resp<strong>on</strong>se to cancer focus <strong>on</strong> single immune cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir specific<br />

functi<strong>on</strong> in cancer cell killing. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e main advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is model is <str<strong>on</strong>g>th</str<strong>on</strong>g>at it<br />

combines <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> all immune cell types and <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical process <str<strong>on</strong>g>of</str<strong>on</strong>g> inflammati<strong>on</strong><br />

into <strong>on</strong>e quantitative model setting. Thus, it is better positi<strong>on</strong>ed to predict<br />

immunomodulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, and to assist in <str<strong>on</strong>g>th</str<strong>on</strong>g>e design <str<strong>on</strong>g>of</str<strong>on</strong>g> novel treatment<br />

approaches <str<strong>on</strong>g>th</str<strong>on</strong>g>at exploit immune resp<strong>on</strong>se to improve tumor suppressi<strong>on</strong>.<br />

References.<br />

[1] S.I. Grivennikov, F.R. Greten, M. Karin, Immunity, Inflammati<strong>on</strong>, and Cancer Cell 2010 140<br />

883–899.<br />

[2] V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perels<strong>on</strong>, N<strong>on</strong>linear Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Immunogenic<br />

Tumors: Parameter Estimati<strong>on</strong> and Global Bifurcati<strong>on</strong> Analysis Bull Ma<str<strong>on</strong>g>th</str<strong>on</strong>g> Biol 1994<br />

56(2) 295–321.<br />

[3] R.T. Prehn The Immune Reacti<strong>on</strong> as a Stimulator <str<strong>on</strong>g>of</str<strong>on</strong>g> Tumor Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> Science 1972 176 170–<br />

171.<br />

1034


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Lisa Willis<br />

CoMPLEX, University College L<strong>on</strong>d<strong>on</strong><br />

e-mail: l.willis@ucl.ac.uk<br />

Developmental Biology; Saturday, July 2, 11:00<br />

Biosilica nanoscale pattern formati<strong>on</strong> in diatoms<br />

Over <str<strong>on</strong>g>th</str<strong>on</strong>g>e last 200 milli<strong>on</strong> years, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic unicellular eukaryotic organisms<br />

have evolved mechanisms to sequester and assemble biominerals into exogenous<br />

structures. The results seen today are high-fidelity, mineralized shells featuring patterned<br />

complex nanoscale ornamentati<strong>on</strong>s <str<strong>on</strong>g>th</str<strong>on</strong>g>at defy syn<str<strong>on</strong>g>th</str<strong>on</strong>g>esis in vitro. Am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

organisms, diatoms are topical owing to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir fundamental role in <str<strong>on</strong>g>th</str<strong>on</strong>g>e carb<strong>on</strong> cycle,<br />

in food chains ascending to fish, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e potential uses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir biosilica shells in<br />

developing nanotechnologies. Their species-specific mineralized shells have diverse<br />

morphologies, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> structures <str<strong>on</strong>g>th</str<strong>on</strong>g>at span scales from 5 nm to 0.5 mm. At <str<strong>on</strong>g>th</str<strong>on</strong>g>e finest<br />

scale are structures called pore occlusi<strong>on</strong>s, which in a matter <str<strong>on</strong>g>of</str<strong>on</strong>g> minutes assemble<br />

and solidify under ambient physiological c<strong>on</strong>diti<strong>on</strong>s into roughly deterministic<br />

patterns <str<strong>on</strong>g>th</str<strong>on</strong>g>at are c<strong>on</strong>served wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in species, but which vary between species. Very<br />

little is known about <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical processes governing <str<strong>on</strong>g>th</str<strong>on</strong>g>is biosilica patterned assembly.<br />

In an attempt to identify <str<strong>on</strong>g>th</str<strong>on</strong>g>e physical processes governing pore occlusi<strong>on</strong><br />

formati<strong>on</strong>, we are investigating new pattern forming probabilistic (spin-like) lattice<br />

models in coordinati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> diatom culturing experiments, which have produced<br />

some promising results.<br />

1035


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 14:30<br />

Christian Winkel<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Analysis and Numerical Simulati<strong>on</strong> · University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Stuttgart · Pfaffenwaldring 57 · D-70569 Stuttgart<br />

e-mail: christian.winkel@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematik.uni-stuttgart.de<br />

Christina Surulescu<br />

Institut <str<strong>on</strong>g>of</str<strong>on</strong>g> Numerical and Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics · University <str<strong>on</strong>g>of</str<strong>on</strong>g> Münster<br />

· Einsteinstraße 62 · D-48149 Münster<br />

e-mail: christina.surulescu@uni-muenster.de<br />

Peter Scheurich<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cell Biology and Immunology · University <str<strong>on</strong>g>of</str<strong>on</strong>g> Stuttgart<br />

· Allmandring 31 · D-70569 Stuttgart<br />

e-mail: peter.scheurich@izi.uni-stuttgart.de<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model(s) for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> (TNF-)<br />

Receptor Clustering<br />

Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e immune system are coordinated by immune horm<strong>on</strong>es, called<br />

cytokines. Tumor necrosis factor (TNF) is a cytokine regulating <str<strong>on</strong>g>th</str<strong>on</strong>g>e innate immune<br />

system, including cells like dendritic cells, macrophages and neutrophils.<br />

Disregulated TNF has been recognized as <str<strong>on</strong>g>th</str<strong>on</strong>g>e main factor in progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many<br />

autoimmune diseases, like Rheumatoid Ar<str<strong>on</strong>g>th</str<strong>on</strong>g>ritis and Morbus Crohn. TNF is a homotrimeric<br />

protein capable to bind <str<strong>on</strong>g>th</str<strong>on</strong>g>ree receptors. But also unligated receptors<br />

occur <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell surface as homomultimers due to a homophilic interacti<strong>on</strong> domain.<br />

Based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese two interacti<strong>on</strong> motivs (ligand/receptor and receptor/receptor) we<br />

present two different modelling and simulati<strong>on</strong> strategies.<br />

Firstly, we use a mass acti<strong>on</strong> kinetics approach to propose an ordinary differential<br />

equati<strong>on</strong>s model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> subsequent formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> signal clusters <strong>on</strong><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane. Thereby, we focus our attenti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e essential comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e system <str<strong>on</strong>g>of</str<strong>on</strong>g> elementary ligand/receptor complexes <str<strong>on</strong>g>th</str<strong>on</strong>g>at can initiate intracellular<br />

signaling processes eventually leading to caspase mediated cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g>. Therefore we<br />

develop our model in a way <str<strong>on</strong>g>th</str<strong>on</strong>g>at not <strong>on</strong>ly receptor cross-linking by ligand but also<br />

homophilic interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> receptors leading to homodimer formati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e absence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ligand is encompassed.<br />

It turns out <str<strong>on</strong>g>th</str<strong>on</strong>g>at using parameter values for binding affinities c<strong>on</strong>sistent wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

experimentally determined values <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> our model suggests <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> high ligand and low receptor c<strong>on</strong>centrati<strong>on</strong> no substrate inhibiti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

receptor cross-linking can be observed. In c<strong>on</strong>trast, our model shows <str<strong>on</strong>g>th</str<strong>on</strong>g>at an increasing<br />

ligand c<strong>on</strong>centrati<strong>on</strong> leads to a saturati<strong>on</strong> in receptor cross-linking and<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>erewi<str<strong>on</strong>g>th</str<strong>on</strong>g> illustrating <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e downstream signaling events even in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e case <str<strong>on</strong>g>of</str<strong>on</strong>g> ligand excess. These results are underlined by numerical simulati<strong>on</strong>s,<br />

which are c<strong>on</strong>firmed by experimental data.<br />

Sec<strong>on</strong>dly, we apply a populati<strong>on</strong> balance model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> simultaneous grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and<br />

breakage processes in order to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e forming <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e signaling clusters al<strong>on</strong>g<br />

1036


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cluster sizes and couple <str<strong>on</strong>g>th</str<strong>on</strong>g>is wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er equati<strong>on</strong> characterising<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> free receptors. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e numerical soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is system<br />

in its integro-differential form we use several discretizati<strong>on</strong> techniques including<br />

finite differences and semi-discrete moment preserving finite volume schemes which<br />

can be extended to incorporate fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er spatial effects <strong>on</strong> cell surfaces. Thereby we<br />

examine <str<strong>on</strong>g>th</str<strong>on</strong>g>e results obtained not <strong>on</strong>ly wi<str<strong>on</strong>g>th</str<strong>on</strong>g> regard to biological relevance but also<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to stability and robustness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e discretizati<strong>on</strong>.<br />

1037


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Annelene Wittenfeld, Martin Bock and Wolfgang Alt<br />

Universität B<strong>on</strong>n, IZMB, Theoretische Biologie, Kirschallee 1–3, 53115<br />

B<strong>on</strong>n, Germany<br />

e-mail: a.wittenfeld@uni-b<strong>on</strong>n.de<br />

Surfactant dynamics in lung alveoli<br />

During brea<str<strong>on</strong>g>th</str<strong>on</strong>g>ing, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mammalian lung exchanges oxygen and carb<strong>on</strong> dioxide in<br />

bubble-like structures called lung alveoli. Their interior is covered by a <str<strong>on</strong>g>th</str<strong>on</strong>g>in film<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> water <strong>on</strong> which lipids act as surfactant. The surfactant ensures <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e inner<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e alveoli remains wetted in spite <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>tinuing expansi<strong>on</strong> and compressi<strong>on</strong>.<br />

Atomic force microscopy has revealed, <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e lipid surfactant undergoes<br />

phase seperati<strong>on</strong> into a high- and a low-density phase. In order to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial<br />

separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two lipid phases, we have c<strong>on</strong>structed a phase field c<strong>on</strong>tinuum<br />

model. Thereby, <str<strong>on</strong>g>th</str<strong>on</strong>g>e free energy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system seperates <str<strong>on</strong>g>th</str<strong>on</strong>g>e two phases by a barrier<br />

depending <strong>on</strong> overall lipid density and volume fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e low-density phase.<br />

The equati<strong>on</strong>s for transiti<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles and resulting interface speed can be reduced<br />

to a set <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>linear degenerated ODEs, which we solve numerically. For fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

insights elucidating <str<strong>on</strong>g>th</str<strong>on</strong>g>e microsopic scale, we additi<strong>on</strong>ally perform computer simulati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rod-like lipids <strong>on</strong> a rigid water surface. The lipid-water interacti<strong>on</strong> arises<br />

from a varying submersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrophilic head- and hydrophobic tail-parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

model lipids. Toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> explicit, polar interacti<strong>on</strong> forces between pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> lipid<br />

rods, we obtain phases seperati<strong>on</strong> and spatial cluster aggregates.<br />

References.<br />

[1] H. W. Alt and W. Alt, Phase boundary dynamics: transiti<strong>on</strong> between ordered and disordered<br />

lipid m<strong>on</strong>olayer, Interfaces and Free Boundaries 11, 1–36 (2009).<br />

[2] J. Ding, D. Y. Takamoto, A. v<strong>on</strong> Nahmen, M. M. Lipp, K. Y. C. Lee A. J. Waning and<br />

J. A. Zasadzinski, Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> lung surfactant proteins, SP-B and SP-C, and palmitic acid <strong>on</strong><br />

m<strong>on</strong>olayer stability, Biophys. J. 80, 2262–2272 (2001).<br />

[3] A. Wittenfeld, Order phenomena wi<str<strong>on</strong>g>th</str<strong>on</strong>g> polar rods, manuscript (2011).<br />

1038


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Genetics; Wednesday, June 29, 14:30<br />

Meike Wittmann<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology II, Ludwig-Maximilians University Munich<br />

e-mail: wittmann@bio.lmu.de<br />

Wilfried Gabriel<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology II, Ludwig-Maximilians University Munich<br />

e-mail: wilfried.gabriel@lmu.de<br />

Dirk Metzler<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology II, Ludwig-Maximilians University Munich<br />

e-mail: metzler@bio.lmu.de<br />

Genetic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced species <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir native<br />

competitors in habitats wi<str<strong>on</strong>g>th</str<strong>on</strong>g> different spatial structures<br />

When a new species is introduced to a habitat where it did not occur before, it<br />

interacts wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e local community and influences <str<strong>on</strong>g>th</str<strong>on</strong>g>em in many<br />

ways. Most empirical and <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical work so far has focused <strong>on</strong> how introduced<br />

species cause changes in populati<strong>on</strong> sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting native species. However, little<br />

is known <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic effect <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced species <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>eir native competitors,<br />

predators, or prey species. Using analytical arguments and computer simulati<strong>on</strong>s,<br />

we aim to understand how <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount and spatial structure <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic variati<strong>on</strong> in<br />

a native species changes after <str<strong>on</strong>g>th</str<strong>on</strong>g>e introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an ecologically similar competitor.<br />

Genetic variati<strong>on</strong> measured in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e expected heterozygosity at a neutral locus<br />

declines after <str<strong>on</strong>g>th</str<strong>on</strong>g>e introducti<strong>on</strong> event, reaches a minimum, and eventually rises<br />

again provided <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e native species does not go extinct. The severity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>is<br />

reducti<strong>on</strong> as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e time scale <strong>on</strong> which it occurs depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

introduced individuals, <str<strong>on</strong>g>th</str<strong>on</strong>g>e size, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e native populati<strong>on</strong>.<br />

The expected impacts differ between single homogeneous populati<strong>on</strong>s, subdivided<br />

populati<strong>on</strong>s, and metapopulati<strong>on</strong>s subject to local extincti<strong>on</strong> and recol<strong>on</strong>izati<strong>on</strong>.<br />

These results for neutral loci suggest <str<strong>on</strong>g>th</str<strong>on</strong>g>at also variati<strong>on</strong> at loci for ecologically<br />

important traits may be affected by competiti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> introduced species, <str<strong>on</strong>g>th</str<strong>on</strong>g>us influencing<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e species ability to adapt to new envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s.<br />

1039


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Carsten Wiuf<br />

Bioinformatics Research Centre<br />

e-mail: wiuf@cs.au.dk<br />

Cancer; Wednesday, June 29, 11:00<br />

Stochastic Modeling and Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA Sequence Data<br />

from Heterogeneous Tumors<br />

Many cancers are believed to have cl<strong>on</strong>al origin, starting from a single cell wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

a defining mutati<strong>on</strong> and fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er acquiring <strong>on</strong>e or more additi<strong>on</strong>al mutati<strong>on</strong>s before<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e first cancerous cell is established. For example, in Follicular Lymphoma, a blood<br />

cancer, <str<strong>on</strong>g>th</str<strong>on</strong>g>e total number <str<strong>on</strong>g>of</str<strong>on</strong>g> required mutati<strong>on</strong>s M is believed to be two <str<strong>on</strong>g>of</str<strong>on</strong>g> which<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e first is a translocati<strong>on</strong> called t(14;18).<br />

A populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cancer cells evolves fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er over time and accumulates genetic<br />

changes, many <str<strong>on</strong>g>of</str<strong>on</strong>g> which are random and o<str<strong>on</strong>g>th</str<strong>on</strong>g>ers potentially beneficial for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cancer.<br />

C<strong>on</strong>sequently, cells in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> a tumor might show differences in<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>eir genomes, or DNA. This phenomen<strong>on</strong> is referred to as genetic tumor heterogeneity<br />

and is comparable to <str<strong>on</strong>g>th</str<strong>on</strong>g>e genetic heterogeneity observed in individuals in a<br />

populati<strong>on</strong>.<br />

Here, I address <str<strong>on</strong>g>th</str<strong>on</strong>g>e problem <str<strong>on</strong>g>of</str<strong>on</strong>g> modeling how <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor evolves over time and<br />

accumulates changes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e DNA, starting from <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial cell wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e defining<br />

mutati<strong>on</strong>. The model is stochastic and relies <strong>on</strong> bir<str<strong>on</strong>g>th</str<strong>on</strong>g>-dea<str<strong>on</strong>g>th</str<strong>on</strong>g> processes; it allows <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

first required M mutati<strong>on</strong>s to be under selective pressure, while <str<strong>on</strong>g>th</str<strong>on</strong>g>e subsequent mutati<strong>on</strong>s<br />

are neutral. I show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a simple descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how <str<strong>on</strong>g>th</str<strong>on</strong>g>e (stochastic)<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> tumor cells in <str<strong>on</strong>g>th</str<strong>on</strong>g>e system changes over time and <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e model imposes<br />

c<strong>on</strong>straints <strong>on</strong> parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>at determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproducibility and <str<strong>on</strong>g>th</str<strong>on</strong>g>e survival <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cells; <str<strong>on</strong>g>th</str<strong>on</strong>g>us <str<strong>on</strong>g>th</str<strong>on</strong>g>e model leads to biological insight.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model leads to a simple way <str<strong>on</strong>g>of</str<strong>on</strong>g> simulating tumor evoluti<strong>on</strong>. Based<br />

<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>is, I show how a sample <str<strong>on</strong>g>of</str<strong>on</strong>g> DNA sequences taken from distinct parts <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

heterogeneous tumor might be used to draw inference <strong>on</strong> model parameters and<br />

date <str<strong>on</strong>g>th</str<strong>on</strong>g>e origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tumor, as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e defining and subsequent mutati<strong>on</strong>s.<br />

The latter might have clinical importance as it provides an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e time<br />

from tumor initiati<strong>on</strong> to diagnosis.<br />

Finally, I show a simple applicati<strong>on</strong> to DNA sequence data from Follicular<br />

Lymphoma patients and outlining some fur<str<strong>on</strong>g>th</str<strong>on</strong>g>er ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and statistical work<br />

to be d<strong>on</strong>e.<br />

1040


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Tomasz Wojdyla<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: tpwojdyla@polsl.pl<br />

Marek Kimmel<br />

Rice University and Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

e-mail: kimmel@stat.rice.edu<br />

Adam Bobrowski<br />

Polish Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences and Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Lublin<br />

e-mail: a.bobrowski@pollub.pl<br />

Computati<strong>on</strong>al Model <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetic Demographic Networks<br />

Demographic network is defined as a set <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s evolving from a single<br />

ancestral populati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a beginning at <str<strong>on</strong>g>th</str<strong>on</strong>g>e time 0. The structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e network is<br />

described by two types <str<strong>on</strong>g>of</str<strong>on</strong>g> events: split <str<strong>on</strong>g>of</str<strong>on</strong>g> a single populati<strong>on</strong> into two populati<strong>on</strong>s<br />

and merger <str<strong>on</strong>g>of</str<strong>on</strong>g> two populati<strong>on</strong>s. Additi<strong>on</strong>ally, we incorporate migrati<strong>on</strong> between<br />

populati<strong>on</strong>s coexisting in <str<strong>on</strong>g>th</str<strong>on</strong>g>e model.<br />

There are several models available in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature <str<strong>on</strong>g>th</str<strong>on</strong>g>at can be used to analyze<br />

data from such demographic networks. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>em are based <strong>on</strong> backward-time<br />

coalescent simulati<strong>on</strong>s and require c<strong>on</strong>siderable computati<strong>on</strong>al power. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is paper<br />

we introduce a forward-time and time-c<strong>on</strong>tinuous model <str<strong>on</strong>g>th</str<strong>on</strong>g>at allows to calculate <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

exact values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e entries <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e infinite matrixes Rij(t) being <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint distributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> alleles sampled at <str<strong>on</strong>g>th</str<strong>on</strong>g>e time t from populati<strong>on</strong>s i (first allele from a<br />

pair) and j (sec<strong>on</strong>d allele). We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at individuals in each populati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

network are described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e same allelic space model and we introduce mutati<strong>on</strong><br />

to <str<strong>on</strong>g>th</str<strong>on</strong>g>e model using intensity matrices Qi <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Markov chain <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e mutati<strong>on</strong> process<br />

in populati<strong>on</strong> i. Mutati<strong>on</strong> model is assumed unchanged between two adjacent<br />

demographic events. Populati<strong>on</strong> size grow<str<strong>on</strong>g>th</str<strong>on</strong>g> can be specified for each populati<strong>on</strong>.<br />

Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint distributi<strong>on</strong>s between network events is described by Lyapunov<br />

differential equati<strong>on</strong>s.<br />

In our work we present ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model and a computer<br />

program implementing <str<strong>on</strong>g>th</str<strong>on</strong>g>is model al<strong>on</strong>g wi<str<strong>on</strong>g>th</str<strong>on</strong>g> several applicati<strong>on</strong>s. We also discuss<br />

some improvements to our model, such as optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e computati<strong>on</strong>al complexity<br />

for some comm<strong>on</strong> mutati<strong>on</strong> models and calculating <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint distributi<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a sample <str<strong>on</strong>g>of</str<strong>on</strong>g> size greater <str<strong>on</strong>g>th</str<strong>on</strong>g>at 2.<br />

References.<br />

[1] Bobrowski A., Kimmel M., Arino O. and Chakraborty R., A Semigroup Representati<strong>on</strong> and<br />

Asymptotic Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Certain Statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fisher-Wright-Moran Coalescent Handbook<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Statistics, Vol. 19, 2001.<br />

[2] Gajic Z. and Qureshi MTJ, Lyapunov Matrix Equati<strong>on</strong> in System Stability and C<strong>on</strong>trol Academic<br />

Press New York 1995.<br />

1041


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Carina Wollnik and Wolfgang Alt<br />

Theoretische Biologie, Universität B<strong>on</strong>n<br />

Kirschallee 1-3<br />

53115 B<strong>on</strong>n<br />

Germany<br />

e-mail: cwollnik@uni-b<strong>on</strong>n.de<br />

Poster Sessi<strong>on</strong>; Friday, July 1, 20:00<br />

Qualitative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> lamella and cell body shape during<br />

cell migrati<strong>on</strong><br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> our work is to investigate migrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> single cells <strong>on</strong> two-dimensi<strong>on</strong>al<br />

substrata. To <str<strong>on</strong>g>th</str<strong>on</strong>g>is end, we label adhesi<strong>on</strong> sites and <str<strong>on</strong>g>th</str<strong>on</strong>g>e interior keratinocyte cell<br />

body by staining vinculin and tubulin wi<str<strong>on</strong>g>th</str<strong>on</strong>g> fluorescence dyes. This enables us to<br />

reliably distinguish between cell body and <str<strong>on</strong>g>th</str<strong>on</strong>g>e surrounding lamella.<br />

For time-lapse image processing we quantitatively determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e lamella edge<br />

as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell body outline by an adaptive stochastic chain algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m [1], also<br />

known as active c<strong>on</strong>tour model [2, 3]. The stochastic chain adapts to <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell<br />

outline by interpreting <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> given by phase c<strong>on</strong>trast micrographs or<br />

corresp<strong>on</strong>ding fluorescence images. Chain adapti<strong>on</strong> follows from different “image<br />

forces”, which involve (i) chain stiffness, (ii) retrograde centripetal pulling and (iii)<br />

gradients in picture brightness. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e chain stops when <str<strong>on</strong>g>th</str<strong>on</strong>g>e stochastic<br />

fluctuati<strong>on</strong>s have become stati<strong>on</strong>ary.<br />

Our statistical analysis investigates cell body and lamella shape, which are<br />

independently quantified by <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e interior body chain and <str<strong>on</strong>g>th</str<strong>on</strong>g>e exterior<br />

edge chain, respectively. Spatio-temperal auto- and cross-correlati<strong>on</strong>s reveal<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e time-lag relati<strong>on</strong> between mean protrusi<strong>on</strong> vector and cell migrati<strong>on</strong> velocity.<br />

Moreover, we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell body has an elliptic shape during forward migrati<strong>on</strong>,<br />

whereas up<strong>on</strong> turning it becomes almost circular. The overall lamella dynamics is<br />

mainly influenced by <str<strong>on</strong>g>th</str<strong>on</strong>g>e underlying cell body shape. Significant deviati<strong>on</strong>s from<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>is protrusi<strong>on</strong> pattern appear, particularly when <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell changes its migrati<strong>on</strong><br />

directi<strong>on</strong>.<br />

References.<br />

[1] Wolfgang Alt, Oana Brosteanu, Boris Hinz and Hans Wilhelm Kaiser, Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous<br />

motility in videomicrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> human epidermal keratinocytes (HEK) Biochemistry and Cell<br />

Biology (1995) 73 441–459<br />

[2] Frederic Leymarie and Martin D. Levine, Tracking deformable objects in <str<strong>on</strong>g>th</str<strong>on</strong>g>e plane using an<br />

active c<strong>on</strong>tour model IEEE Transacti<strong>on</strong>s <strong>on</strong> Pattern Analysis and Machine Intelligence (1993)<br />

15 617–633.<br />

[3] K. Zhang, H. Xi<strong>on</strong>g, X. Zhou, L. Yang, Y. L. Wang and S. T. C. W<strong>on</strong>g, A c<strong>on</strong>fident scalespace<br />

shape reprensentati<strong>on</strong> framework for cell migrati<strong>on</strong> detecti<strong>on</strong> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Microscopy<br />

(2008) 231 395–407<br />

1042


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Semigroups <str<strong>on</strong>g>of</str<strong>on</strong>g> Operators in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Biology I; Wednesday, June 29, 08:30<br />

Dariusz Wrzosek<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Mechanics,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw<br />

e-mail: darekw@mimuw.edu.pl<br />

Do <str<strong>on</strong>g>th</str<strong>on</strong>g>e aggregating cells attain a tight packing state?<br />

We c<strong>on</strong>sider models <str<strong>on</strong>g>of</str<strong>on</strong>g> chemotaxis which take into account volume-filling effects<br />

such <str<strong>on</strong>g>th</str<strong>on</strong>g>at an a priori <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold for <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell density corresp<strong>on</strong>ding to a tight packing<br />

state is taken into account (for more informati<strong>on</strong> we refer to a survey [2]). Our study<br />

c<strong>on</strong>cerns quasilinear parabolic systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> singular or degenerate diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells<br />

which include recent models by Wang and Hillen(2007) and Lushnikov (2008). It is<br />

proved in [3] <str<strong>on</strong>g>th</str<strong>on</strong>g>at for some range <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e relati<strong>on</strong> between <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

diffusive and <str<strong>on</strong>g>th</str<strong>on</strong>g>e taxis part <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell flux <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are global-in-time classical soluti<strong>on</strong>s<br />

which in some cases are separated from <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold uniformly in time. Existence<br />

and uniqueness <str<strong>on</strong>g>of</str<strong>on</strong>g> global in time weak soluti<strong>on</strong>s as well as <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> stati<strong>on</strong>ary<br />

states are studied as well. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e recent preprint [1] it is proved for parabolicelliptic<br />

versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e model <str<strong>on</strong>g>th</str<strong>on</strong>g>at if <str<strong>on</strong>g>th</str<strong>on</strong>g>e taxis force is str<strong>on</strong>g enough wi<str<strong>on</strong>g>th</str<strong>on</strong>g> respect to<br />

self-diffusi<strong>on</strong> and <str<strong>on</strong>g>th</str<strong>on</strong>g>e initial data are chosen properly <str<strong>on</strong>g>th</str<strong>on</strong>g>en <str<strong>on</strong>g>th</str<strong>on</strong>g>ere exists a classical<br />

soluti<strong>on</strong> which reaches <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold in finite time provided <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cells is<br />

n<strong>on</strong>-degenerate.<br />

References.<br />

[1] Z.-A. Wang, M. Winkler and D.Wrzosek Singularity formati<strong>on</strong> in chemotaxis systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

volume-filling effect submitted.<br />

[2] D. Wrzosek. Volume filling effect in modelling chemotaxis. Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>. Model. Nat. Phenom., 5,<br />

123-147 (2010).<br />

[3] D. Wrzosek. Model <str<strong>on</strong>g>of</str<strong>on</strong>g> chemotaxis wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>reshold density and singular diffusi<strong>on</strong>. N<strong>on</strong>linear<br />

Anal. TMA.,73, 338-349 (2010).<br />

1043


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Cell migrati<strong>on</strong> during development: modelling and experiment; Saturday,<br />

July 2, 08:30<br />

Michelle Wynn<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan Medical School<br />

e-mail: mlwynn@umich.edu<br />

Paul M. Kulesa<br />

Stowers Institute for Medical Research<br />

Santiago Schnell<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Michigan Medical School<br />

A computati<strong>on</strong>al model <str<strong>on</strong>g>of</str<strong>on</strong>g> neural crest chain migrati<strong>on</strong><br />

provides mechanistic insight into cellular follow-<str<strong>on</strong>g>th</str<strong>on</strong>g>e-leader<br />

behavior<br />

Follow-<str<strong>on</strong>g>th</str<strong>on</strong>g>e-leader chain migrati<strong>on</strong> is a striking cell migratory behavior observed<br />

during vertebrate development, adult neurogenesis, and some cancer metastases.<br />

An example <str<strong>on</strong>g>of</str<strong>on</strong>g> chain migrati<strong>on</strong> is found in <str<strong>on</strong>g>th</str<strong>on</strong>g>e embry<strong>on</strong>ic neural crest (NC), a<br />

multipotent, invasive cell populati<strong>on</strong>. Al<str<strong>on</strong>g>th</str<strong>on</strong>g>ough some aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> chain migrati<strong>on</strong><br />

have been well described, <str<strong>on</strong>g>th</str<strong>on</strong>g>e mechanisms involved in <str<strong>on</strong>g>th</str<strong>on</strong>g>e persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> NC cell<br />

chain migrati<strong>on</strong> are unclear. We developed a quantitative agent based modeling<br />

framework to investigate <str<strong>on</strong>g>th</str<strong>on</strong>g>ree distinct model mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> chain migrati<strong>on</strong>. The<br />

models relied <strong>on</strong> biological data from <str<strong>on</strong>g>th</str<strong>on</strong>g>e NC and involved extracellular matrix and<br />

cell c<strong>on</strong>tact mediated promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> chain migrati<strong>on</strong>. Sensitivity analysis revealed<br />

specific criteria for high chain migrati<strong>on</strong> persistence and suggested possible mechanism<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at may sustain follow-<str<strong>on</strong>g>th</str<strong>on</strong>g>e-leader behavior. Our approach <str<strong>on</strong>g>of</str<strong>on</strong>g>fers a means<br />

to test mechanistic hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>eses <str<strong>on</strong>g>of</str<strong>on</strong>g> collective NC cell chain migrati<strong>on</strong> in an in silico<br />

framework <str<strong>on</strong>g>th</str<strong>on</strong>g>at is applicable to studying collective chain migrati<strong>on</strong> in o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

biological systems.<br />

1044


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Norio Yamamura<br />

Research Institute for Humanity and Nature<br />

e-mail: yamamura@chikyu.ac.jp<br />

Ecosystems Dynamics; Tuesday, June 28, 17:00<br />

Different Social-ecological Networks in Grassland and Forest<br />

SystemsImplicati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>eir sustainable management<br />

Many ecosystems have been seriously degraded by human activities in <str<strong>on</strong>g>th</str<strong>on</strong>g>e world.<br />

In order to c<strong>on</strong>sider management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ose systems, we should grasp <str<strong>on</strong>g>th</str<strong>on</strong>g>e systems as<br />

social-ecological networks as a whole. Remarking specially <str<strong>on</strong>g>th</str<strong>on</strong>g>e network structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> social-ecological systems, we are executing a project titled Collapse and Restorati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Ecosystem Networks wi<str<strong>on</strong>g>th</str<strong>on</strong>g> Human Activity (http//www.chikyu.ac.jp/rihn<br />

e/project/D-04.html) in Research Institute for Humanity and Nature (http//www.chikyu.ac.jp/index<br />

e.html).<br />

We found <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e networks have remarkable difference between grassland<br />

and forest systems, by analyzing data from grassland in M<strong>on</strong>golia and forests in<br />

Sarawak, Malaysia. In M<strong>on</strong>golia, <str<strong>on</strong>g>th</str<strong>on</strong>g>e vegetati<strong>on</strong> itself (grasses) has no direct value<br />

for humans <str<strong>on</strong>g>th</str<strong>on</strong>g>e value is stored in livestock <str<strong>on</strong>g>th</str<strong>on</strong>g>at feeds <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grasses. Therefore,<br />

global ec<strong>on</strong>omy affects <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> inhabitants, leading to overuse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e vegetati<strong>on</strong><br />

and degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e grassland. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is case, <str<strong>on</strong>g>th</str<strong>on</strong>g>e effective soluti<strong>on</strong> to<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e problem should involve changing <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> inhabitants. On <str<strong>on</strong>g>th</str<strong>on</strong>g>e o<str<strong>on</strong>g>th</str<strong>on</strong>g>er<br />

hand, in Sarawak, <str<strong>on</strong>g>th</str<strong>on</strong>g>e ec<strong>on</strong>omic value is stored in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vegetati<strong>on</strong> (trees). Therefore,<br />

enterprises and governments tend to severely develop <str<strong>on</strong>g>th</str<strong>on</strong>g>e forests, causing bo<str<strong>on</strong>g>th</str<strong>on</strong>g> reducti<strong>on</strong>s<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>e amount <str<strong>on</strong>g>of</str<strong>on</strong>g> forest available to inhabitants and biodiversity loss. The<br />

effective soluti<strong>on</strong> here should involve regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> enterprises and governments.<br />

We here explore <str<strong>on</strong>g>th</str<strong>on</strong>g>e model representing <str<strong>on</strong>g>th</str<strong>on</strong>g>e difference <str<strong>on</strong>g>of</str<strong>on</strong>g> networks, and examine<br />

effective strategies for sustainable management <str<strong>on</strong>g>of</str<strong>on</strong>g> each type <str<strong>on</strong>g>of</str<strong>on</strong>g> systems, using<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e model. In M<strong>on</strong>golian social-ecological system, <str<strong>on</strong>g>th</str<strong>on</strong>g>e equilibrium is always stable<br />

even if price <str<strong>on</strong>g>of</str<strong>on</strong>g> livestock products increases because <str<strong>on</strong>g>of</str<strong>on</strong>g> negative feedback between<br />

grassland quality and livestock biomass. However, c<strong>on</strong>sidering climate fluctuati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> grassland quality, <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk <str<strong>on</strong>g>of</str<strong>on</strong>g> system collapse is lower for <str<strong>on</strong>g>th</str<strong>on</strong>g>e higher equilibrium<br />

value. In Sarawak social-ecological system, when logging rate reflecting global<br />

ec<strong>on</strong>omy exceeds a critical level, usable forests for habitants rapidly decreases to 0<br />

because <str<strong>on</strong>g>of</str<strong>on</strong>g> positive feedback between decreases <str<strong>on</strong>g>of</str<strong>on</strong>g> such forests and inhabitant utilizati<strong>on</strong><br />

activity for forests. The system has <str<strong>on</strong>g>th</str<strong>on</strong>g>e essential nature <str<strong>on</strong>g>of</str<strong>on</strong>g> instability. We<br />

discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>at general social-ecological systems wi<str<strong>on</strong>g>th</str<strong>on</strong>g> envir<strong>on</strong>mental problems can be<br />

placed at some positi<strong>on</strong>s between two types <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>golia and Sarawak networks.<br />

1045


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Evoluti<strong>on</strong>ary Ecology; Wednesday, June 29, 14:30<br />

Atsushi Yamauchi<br />

Center for Ecological Research, Kyoto University<br />

e-mail: a-yama@ecology.kyoto-u.ac.jp<br />

Yutaka Kobayashi<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Science, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tokyo<br />

Joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sex ratio and reproductive group size<br />

under local mate competiti<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> inbreeding depressi<strong>on</strong><br />

Local mate competiti<strong>on</strong> (LMC) may involve some amount <str<strong>on</strong>g>of</str<strong>on</strong>g> inbreeding between<br />

siblings. Because sib-mating is generally accompanied by inbreeding depressi<strong>on</strong>,<br />

natural selecti<strong>on</strong> may favor a reduced rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sib-mating, possibly affecting <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sex ratio and reproductive group size. The present study <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretically<br />

investigated <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese traits under LMC in <str<strong>on</strong>g>th</str<strong>on</strong>g>e presence <str<strong>on</strong>g>of</str<strong>on</strong>g> inbreeding<br />

depressi<strong>on</strong>. When <str<strong>on</strong>g>th</str<strong>on</strong>g>e reproductive group size evolves, <str<strong>on</strong>g>th</str<strong>on</strong>g>e determinati<strong>on</strong> mechanism<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sex ratio is important because <str<strong>on</strong>g>th</str<strong>on</strong>g>e time scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e sex ratio resp<strong>on</strong>se to<br />

reproductive group size can affect <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>ary process. We c<strong>on</strong>sider a spectrum<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> sex ratio determinati<strong>on</strong> mechanisms from purely unc<strong>on</strong>diti<strong>on</strong>al to purely<br />

c<strong>on</strong>diti<strong>on</strong>al, including intermediate modes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> various relative streng<str<strong>on</strong>g>th</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> unc<strong>on</strong>diti<strong>on</strong>al<br />

and c<strong>on</strong>diti<strong>on</strong>al effects. This analysis revealed <str<strong>on</strong>g>th</str<strong>on</strong>g>at bo<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong>arily<br />

stable reproductive group size and ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> males increase wi<str<strong>on</strong>g>th</str<strong>on</strong>g> higher inbreeding<br />

depressi<strong>on</strong> and wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a larger relative streng<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> an unc<strong>on</strong>diti<strong>on</strong>al effect in sex ratio<br />

determinati<strong>on</strong>. Unexpectedly, when <str<strong>on</strong>g>th</str<strong>on</strong>g>e sex ratio is c<strong>on</strong>trolled purely c<strong>on</strong>diti<strong>on</strong>ally,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e reproductive group size cannot exceed <str<strong>on</strong>g>th</str<strong>on</strong>g>ree even under <str<strong>on</strong>g>th</str<strong>on</strong>g>e severest level <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

inbreeding depressi<strong>on</strong> (i.e., le<str<strong>on</strong>g>th</str<strong>on</strong>g>al effect). The present study reveals <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>diti<strong>on</strong>s<br />

for LMC to evolve <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e joint evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reproductive group<br />

size and sex ratio.<br />

1046


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ecosystems Dynamics; Tuesday, June 28, 17:00<br />

Mats Gyllenberg<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: mats.gyllenberg@helsinki.fi<br />

Yi Wang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> China<br />

e-mail: wangyi@ustc.edu.cn<br />

Ping Yan<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Statistics, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki<br />

e-mail: ping.yan@helsinki.fi<br />

Global asymptotic stability <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>aut<strong>on</strong>omous<br />

master equati<strong>on</strong>s<br />

We discuss <str<strong>on</strong>g>th</str<strong>on</strong>g>e master equati<strong>on</strong> dx<br />

dt = A(t)x, here A(t) is an nxn matrix whose<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f-diag<strong>on</strong>al entries are <str<strong>on</strong>g>th</str<strong>on</strong>g>e transiti<strong>on</strong> rates aij(t) and whose columns sum to zero.<br />

These c<strong>on</strong>diti<strong>on</strong>s ensure <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e entries <str<strong>on</strong>g>of</str<strong>on</strong>g> a soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e master<br />

equati<strong>on</strong> is c<strong>on</strong>served and <str<strong>on</strong>g>th</str<strong>on</strong>g>at n<strong>on</strong>negative soluti<strong>on</strong>s remain n<strong>on</strong>negative. Such<br />

matrices are called W-matrices by van Kampen. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk, we give some new<br />

results for <str<strong>on</strong>g>th</str<strong>on</strong>g>e master equati<strong>on</strong> c<strong>on</strong>cerning Earnshaw and Keener’s c<strong>on</strong>jecture.<br />

1047


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Friday, July 1, 14:30<br />

Xuxin Yang<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Helsinki (visiting) and Hunan First Normal University<br />

e-mail: xuxin.yang@helsinki.fi<br />

Permanence <str<strong>on</strong>g>of</str<strong>on</strong>g> a logistic type impulsive equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

infinite delay<br />

Many evoluti<strong>on</strong> processes are characterized by <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at at certain moments<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>th</str<strong>on</strong>g>ey experience a change <str<strong>on</strong>g>of</str<strong>on</strong>g> state abruptly. Theses processes are subject to<br />

short-time perturbati<strong>on</strong>s whose durati<strong>on</strong> is negligible in comparis<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e process. C<strong>on</strong>sequently, it is natural to assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ese perturbati<strong>on</strong>s<br />

act instantaneously, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is, in <str<strong>on</strong>g>th</str<strong>on</strong>g>e form <str<strong>on</strong>g>of</str<strong>on</strong>g> impulses. It is known, for example,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at many biological phenomena involving <str<strong>on</strong>g>th</str<strong>on</strong>g>resholds, bursting rhy<str<strong>on</strong>g>th</str<strong>on</strong>g>m models in<br />

medicine and biology, optimal c<strong>on</strong>trol models in ec<strong>on</strong>omics, pharmacokinetics and<br />

frequency modulated systems, do exhibit impulsive effects.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is presentati<strong>on</strong> we give an introducti<strong>on</strong> to <str<strong>on</strong>g>th</str<strong>on</strong>g>eory <str<strong>on</strong>g>of</str<strong>on</strong>g> impulsive differential<br />

equati<strong>on</strong>s. Impulsive differential equati<strong>on</strong>s, <str<strong>on</strong>g>th</str<strong>on</strong>g>at is, differential equati<strong>on</strong>s involving<br />

impulse effects, appear as a natural descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> observed evoluti<strong>on</strong> phenomena<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> several real world problems. We investigate a n<strong>on</strong>-aut<strong>on</strong>omous Logistic type<br />

impulsive equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> infinite delay. For <str<strong>on</strong>g>th</str<strong>on</strong>g>e general n<strong>on</strong>-aut<strong>on</strong>omous case, some<br />

sufficient c<strong>on</strong>diti<strong>on</strong>s which guarantee <str<strong>on</strong>g>th</str<strong>on</strong>g>e permanence <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s are obtained.<br />

Our results extend a known result <str<strong>on</strong>g>of</str<strong>on</strong>g> Seifert [1]. This presentati<strong>on</strong> is based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

paper [2].<br />

References.<br />

[1] G. Seifert, Almost periodic soluti<strong>on</strong>s for delay Logistic equati<strong>on</strong>s wi<str<strong>on</strong>g>th</str<strong>on</strong>g> almost periodic time<br />

dependence Differential and Integral Equati<strong>on</strong>s 9 (2) (1996) 335–342.<br />

[2] X. Yang, W. Wang and J. Shen, Permanence <str<strong>on</strong>g>of</str<strong>on</strong>g> a logistic type impulsive equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> infinite<br />

delay Applied Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics Letters 24 (2011) 420–427.<br />

1048


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 14:30<br />

Je<strong>on</strong>g-Mi Yo<strong>on</strong><br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Houst<strong>on</strong>-Downtown<br />

e-mail: yo<strong>on</strong>j@uhd.edu<br />

Lisa Morano<br />

Vlad Hrynkiv<br />

Anh Tuan Nguyen ∗<br />

Sara Wilder ∗<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Houst<strong>on</strong>-Downtown; *: undergraduate students<br />

e-mail: Moranol@uhd.edu,Hrynkivv@uhd.edu<br />

Populati<strong>on</strong> Dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Glassy-winged Sharpshooter in<br />

Texas Vineyards<br />

Pierce’s Disease (PD) is a bacterial disease <str<strong>on</strong>g>of</str<strong>on</strong>g> grapevines wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e capacity to kill an<br />

entire vineyard in <strong>on</strong>e year. Outbreaks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e disease <str<strong>on</strong>g>th</str<strong>on</strong>g>reaten California vineyards<br />

and are a chr<strong>on</strong>ic problem in Texas, particularly al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gulf Coast. The disease<br />

is caused by a bacterium, Xylella fastidiosa and is transmitted by xylem-feeding<br />

insects comm<strong>on</strong>ly called sharpshooters. To understand <str<strong>on</strong>g>th</str<strong>on</strong>g>e role <str<strong>on</strong>g>of</str<strong>on</strong>g> sharpshooter<br />

ecology <strong>on</strong> PD epidemiology, <str<strong>on</strong>g>th</str<strong>on</strong>g>e USDA-APHIS has funded sharpshooter trap data<br />

from 50 Texas vineyards from 2003-to present under <str<strong>on</strong>g>th</str<strong>on</strong>g>e directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Dr. Forrest<br />

Mitchell, Texas A&M University. Am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e insects m<strong>on</strong>itored, Homolodisca<br />

vitripennis (Glassy-winged sharpshooter-GWSS) is <str<strong>on</strong>g>th</str<strong>on</strong>g>e most abundant insect captured<br />

across all vineyards in Texas. Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e enormous GWSS data set is<br />

an excellent opportunity to have bo<str<strong>on</strong>g>th</str<strong>on</strong>g> biology and ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics students and apply<br />

modeling techniques to temporal changes in insect populati<strong>on</strong>s in order to predict<br />

future PD risk and determine <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal management protocols.<br />

This collaborative research has been funded by <str<strong>on</strong>g>th</str<strong>on</strong>g>e NSF Grant: The Interdisciplinary<br />

Training for Undergraduates in Biology and Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Sciences (UBM).<br />

During year 2009-2010, our group has developed a populati<strong>on</strong> model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

time-delayed logistic equati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e dominant single species in <str<strong>on</strong>g>th</str<strong>on</strong>g>e central Texas<br />

hill regi<strong>on</strong>s (Ecoregi<strong>on</strong> 7: Edwards Plateau) for <str<strong>on</strong>g>th</str<strong>on</strong>g>e years 2003-2009. The chosen<br />

model was transformed as <strong>on</strong>e-parameter delayed equati<strong>on</strong> by <str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-dimensi<strong>on</strong>al<br />

technique. The existence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e periodic cyclic soluti<strong>on</strong> was explained by <str<strong>on</strong>g>th</str<strong>on</strong>g>e local<br />

stability analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e linear model near <str<strong>on</strong>g>th</str<strong>on</strong>g>e carrying capacity analytically. Undergraduate<br />

students worked <strong>on</strong> obtaining <str<strong>on</strong>g>th</str<strong>on</strong>g>e optimal values <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters which<br />

could guarantee <str<strong>on</strong>g>th</str<strong>on</strong>g>e periodic soluti<strong>on</strong> numerically using s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware, MATLAB and<br />

compared it to <str<strong>on</strong>g>th</str<strong>on</strong>g>e experimental histogram. From <str<strong>on</strong>g>th</str<strong>on</strong>g>e fall <str<strong>on</strong>g>of</str<strong>on</strong>g> 2010 we have been<br />

working <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e revisi<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g> harvesting and immigrati<strong>on</strong> terms which could<br />

include <str<strong>on</strong>g>th</str<strong>on</strong>g>e envir<strong>on</strong>mental factors such as insecticide use, informati<strong>on</strong> campaigns,<br />

weeds cleaning, and temperature changes. We will test <str<strong>on</strong>g>th</str<strong>on</strong>g>e aut<strong>on</strong>omous and also<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e n<strong>on</strong>-aut<strong>on</strong>omous harvesting terms. In <str<strong>on</strong>g>th</str<strong>on</strong>g>e future, <str<strong>on</strong>g>th</str<strong>on</strong>g>e model will be extended<br />

to a spatio-temporal model based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fisher’s equati<strong>on</strong> wi<str<strong>on</strong>g>th</str<strong>on</strong>g> delayed logistic<br />

populati<strong>on</strong> grow<str<strong>on</strong>g>th</str<strong>on</strong>g>.<br />

1049


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Developmental Biology; Thursday, June 30, 11:30<br />

Hiroshi Yoshida<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Kyushu University, Itou, Motouoka 744, Nishiku,<br />

FUKUOKA 819-0395 Japan.<br />

e-mail: youshida.p@gmail.com<br />

A c<strong>on</strong>diti<strong>on</strong> for regenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a cell chain based <strong>on</strong><br />

Dachsous:Fat heterodimer system<br />

Regenerati<strong>on</strong> phenomena have been studied <str<strong>on</strong>g>th</str<strong>on</strong>g>rough various models. Taking<br />

cockroach leg regenerati<strong>on</strong> for instance, it has been studied <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e positi<strong>on</strong>al<br />

informati<strong>on</strong> model [6], <str<strong>on</strong>g>th</str<strong>on</strong>g>e polar coordinate model [3], and <str<strong>on</strong>g>th</str<strong>on</strong>g>e boundary model [5].<br />

Bey<strong>on</strong>d <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical models, recent studies have led to models at <str<strong>on</strong>g>th</str<strong>on</strong>g>e single<br />

cellular level [1]. Wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in a cell, Dachsous (Ds) and Fat molecules, and between<br />

cells, Ds:Fat heterodimers, are c<strong>on</strong>sidered to facilitate regenerati<strong>on</strong>. The Ds:Fat<br />

signaling system looks like an entity to realize <str<strong>on</strong>g>th</str<strong>on</strong>g>e steepness hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis where <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

leg size and regenerati<strong>on</strong> are regulated <str<strong>on</strong>g>th</str<strong>on</strong>g>rough a gradient across cells [4].<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is work we modeled a cell chain based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ds:Fat system. It has been<br />

said <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e heterodimer is produced from free active Ds and Fat molecules wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in<br />

cells. Ds and Fat molecules are redistributed when a cell divides into two, so <str<strong>on</strong>g>th</str<strong>on</strong>g>at<br />

Ds:Fat heterodimers become redistributed accordingly. Little is, however, known<br />

about <str<strong>on</strong>g>th</str<strong>on</strong>g>e way <str<strong>on</strong>g>th</str<strong>on</strong>g>ey are redistributed because <str<strong>on</strong>g>th</str<strong>on</strong>g>e metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Ds:Fat signaling<br />

and heterodimers remains obscure [2]. We hence modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>is redistributi<strong>on</strong> and<br />

calculated a c<strong>on</strong>diti<strong>on</strong> for regenerati<strong>on</strong>. The derived equati<strong>on</strong>s show <str<strong>on</strong>g>th</str<strong>on</strong>g>at some degenerated<br />

redistributi<strong>on</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> heterodimers provides a cell chain wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e ability<br />

to regenerate.<br />

References.<br />

[1] Agata, K. et al. (2003) Intercalary regenerati<strong>on</strong> in Planarians. Dev. Dyn., 226 308–316.<br />

[2] Bando, T. et al. (2009) Regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leg size and shape by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Dachsous/Fat signalling pa<str<strong>on</strong>g>th</str<strong>on</strong>g>way<br />

during regenerati<strong>on</strong>. Development, 136(13) 2235–2245.<br />

[3] French, V. et al. (1976) Pattern regulati<strong>on</strong> in epimorphic fields. Science, 193 969–981.<br />

[4] Lawrence, P. A. et al. (2008) Do <str<strong>on</strong>g>th</str<strong>on</strong>g>e protocadherins fat and dachsous link up to determine<br />

bo<str<strong>on</strong>g>th</str<strong>on</strong>g> planar cell polarity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> organs? Nat. Cell. Biol., 10(12) 1379–1382.<br />

[5] Meinhardt, H. (1983) A boundary model for pattern formati<strong>on</strong> in vertebrate limbs. J. Embryol.<br />

Exp. Morph., 76 115–137.<br />

[6] Wolpert, L. (1994) Positi<strong>on</strong>al informati<strong>on</strong> and pattern formati<strong>on</strong> in development. Dev. Genet.,<br />

15 485–490.<br />

1050


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Marcin Zagórski<br />

Jagiell<strong>on</strong>ian University, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics<br />

e-mail: marcin.zagorski@uj.edu.pl<br />

Regulatory Networks; Saturday, July 2, 11:00<br />

Model gene regulatory networks under mutati<strong>on</strong>-selecti<strong>on</strong><br />

balance<br />

Gene regulatory networks typically have low in-degrees, whereby any given gene<br />

is regulated by few <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e genes in <str<strong>on</strong>g>th</str<strong>on</strong>g>e network. They also tend to have broad<br />

distributi<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e out-degree. What mechanisms might be resp<strong>on</strong>sible for <str<strong>on</strong>g>th</str<strong>on</strong>g>ese<br />

degree distributi<strong>on</strong>s? Starting wi<str<strong>on</strong>g>th</str<strong>on</strong>g> an accepted framework <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e binding <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong><br />

factors to DNA, we c<strong>on</strong>sider a simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulatory dynamics.<br />

There, we show <str<strong>on</strong>g>th</str<strong>on</strong>g>at selecti<strong>on</strong> for a target expressi<strong>on</strong> pattern leads to <str<strong>on</strong>g>th</str<strong>on</strong>g>e emergence<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> minimum c<strong>on</strong>nectivities compatible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e selective c<strong>on</strong>straint. As a<br />

c<strong>on</strong>sequence, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese gene networks have low in-degree, and “functi<strong>on</strong>ality” is parsim<strong>on</strong>ious,<br />

i.e., is c<strong>on</strong>centrated <strong>on</strong> a sparse number <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s as measured for<br />

instance by <str<strong>on</strong>g>th</str<strong>on</strong>g>eir essentiality. Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore, we find <str<strong>on</strong>g>th</str<strong>on</strong>g>at mutati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e transcripti<strong>on</strong><br />

factors drive <str<strong>on</strong>g>th</str<strong>on</strong>g>e networks to have broad out-degrees. Finally, <str<strong>on</strong>g>th</str<strong>on</strong>g>ese classes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

models are evolvable, i.e., significantly different genotypes can emerge gradually<br />

under mutati<strong>on</strong>-selecti<strong>on</strong> balance.<br />

1051


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> collective phenomena in biological systems; Saturday, July 2,<br />

08:30<br />

M. Zagorski<br />

Marian Smoluchowski Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics and Mark Kac Complex<br />

Systems Research Centre, Jagell<strong>on</strong>ian University, Reym<strong>on</strong>ta 4, 30-059<br />

Krakow, Poland<br />

e-mail: Marcin.Zagorskii@gmail.com<br />

Z. Burda<br />

Marian Smoluchowski Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics and Mark Kac Complex<br />

Systems Research Centre, Jagell<strong>on</strong>ian University, Reym<strong>on</strong>ta 4, 30-059<br />

Krakow, Poland<br />

e-mail: zdzislaw.burda@uj.edu.pl<br />

A. Krzywicki<br />

Univ Paris-Sud, LPT ; CNRS, UMR8627, Orsay, F-91405, France<br />

e-mail: Andre.Krzywicki@<str<strong>on</strong>g>th</str<strong>on</strong>g>.u-psud.fr<br />

O.C. Martin<br />

Univ Paris-Sud, LPTMS ; CNRS, UMR8626, F-91405, Orsay, France,<br />

INRA, CNRS, UMR0320 / UMR 8120 Génétique Végétale, F-91190 Gifsur-Yvette,<br />

France<br />

e-mail: olivier.martin@u-psud.fr<br />

Emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> sparsity and motifs in gene regulatory<br />

networks<br />

We c<strong>on</strong>sider a simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> gene regulatory dynamics derived from <str<strong>on</strong>g>th</str<strong>on</strong>g>e statistical<br />

framework describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e binding <str<strong>on</strong>g>of</str<strong>on</strong>g> transcripti<strong>on</strong> factors to DNA. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

networks representing essential interacti<strong>on</strong>s in gene regulati<strong>on</strong> have a minimal c<strong>on</strong>nectivity<br />

compatible wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a given functi<strong>on</strong>. We discuss statistical properties using<br />

M<strong>on</strong>te Carlo sampling. We show <str<strong>on</strong>g>th</str<strong>on</strong>g>at functi<strong>on</strong>al networks have a specific motifs statistics.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e case where <str<strong>on</strong>g>th</str<strong>on</strong>g>e regulatory networks are to exhibit multi-stability, we<br />

find a high frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> gene pairs <str<strong>on</strong>g>th</str<strong>on</strong>g>at are mutually inhibitory and self-activating.<br />

In c<strong>on</strong>trast, networks having periodic gene expressi<strong>on</strong> patterns (mimicking for instance<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e cell cycle) have a high frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> bifan-like motifs involving four genes<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g> at least <strong>on</strong>e activating and <strong>on</strong>e inhibitory interacti<strong>on</strong>.<br />

1052


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting cell systems: from intercellular interacti<strong>on</strong><br />

to tissue-level traits II; Wednesday, June 29, 17:00<br />

Thomas Zerjatke, Nico Scherf, Ingmar Glauche, Ingo Roeder<br />

Institute for Medical Informatics and Biometry<br />

Medical Faculty C. G. Carus, Dresden University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology<br />

Fetscherstrasse 74, D-01307 Dresden, Germany<br />

e-mail: <str<strong>on</strong>g>th</str<strong>on</strong>g>omas.zerjatke@tu-dresden.de<br />

Knowing <str<strong>on</strong>g>th</str<strong>on</strong>g>eir neighbours - correlati<strong>on</strong> structures in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

development <str<strong>on</strong>g>of</str<strong>on</strong>g> related stem cells<br />

Time lapse video microscopy enables <str<strong>on</strong>g>th</str<strong>on</strong>g>e tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cell development in bioengineered<br />

culture c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> a single cell level. The resulting cellular genealogies<br />

retain informati<strong>on</strong> <strong>on</strong> cellular characteristics, divisi<strong>on</strong>al history, and differentiati<strong>on</strong>.<br />

Analysing <str<strong>on</strong>g>th</str<strong>on</strong>g>e topology, <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamical features, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e correlati<strong>on</strong> structure<br />

wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese pedigree-like genealogies provides informati<strong>on</strong> about underlying processes<br />

such as migrati<strong>on</strong>, cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g>, and differentiati<strong>on</strong>.<br />

For a systematic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular genealogies we compare experimental data<br />

for different hematopoietic stem cell cultures wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a single- cell based, ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical<br />

model <str<strong>on</strong>g>of</str<strong>on</strong>g> hematopoietic stem cell organisati<strong>on</strong>. In particular we illustrate how<br />

ancestral relati<strong>on</strong> between cells influences <str<strong>on</strong>g>th</str<strong>on</strong>g>eir current behaviour and decisi<strong>on</strong> making.<br />

Fur<str<strong>on</strong>g>th</str<strong>on</strong>g>ermore we derive emerging c<strong>on</strong>tact networks based <strong>on</strong> spatial positi<strong>on</strong>ing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cells wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e time lapse video data. In particular we analyse whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er ancestral<br />

informati<strong>on</strong> is c<strong>on</strong>served wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e community structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ese networks and<br />

whe<str<strong>on</strong>g>th</str<strong>on</strong>g>er <str<strong>on</strong>g>th</str<strong>on</strong>g>ese mutual interacti<strong>on</strong>s between cells correlate wi<str<strong>on</strong>g>th</str<strong>on</strong>g> sec<strong>on</strong>dary read-outs<br />

such as cell cycle distributi<strong>on</strong> or <str<strong>on</strong>g>th</str<strong>on</strong>g>e occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> cell dea<str<strong>on</strong>g>th</str<strong>on</strong>g> events.<br />

The presented framework for a comprehensive descripti<strong>on</strong> and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular<br />

development <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e level <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cells and <str<strong>on</strong>g>th</str<strong>on</strong>g>eir progeny is an important<br />

advancement to support experimental single cell tracking approaches. By combining<br />

experimental and modeling data our results dem<strong>on</strong>strate <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cellular genealogies and corresp<strong>on</strong>ding interacti<strong>on</strong> networks can provide valuable<br />

insights into processes <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular development and differentiati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at can not be<br />

obtained <strong>on</strong> a populati<strong>on</strong> level.<br />

References.<br />

[1] N. Scherf, JP. Kuska et al. (2009) Spatio-temporal Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Unstained Cells in vitro Proceedings<br />

BVM 2009, 292- 296.<br />

[2] N. Scherf, I. Roeder, and I. Glauche (2008) Correlati<strong>on</strong> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular genealogies Proceedings<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Fif<str<strong>on</strong>g>th</str<strong>on</strong>g> Internati<strong>on</strong>al Workshop <strong>on</strong> Computati<strong>on</strong>al Systems Biology, WCSB 2008,<br />

Leipzig, Germany, 161-164.<br />

1053


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Populati<strong>on</strong> Dynamics; Wednesday, June 29, 11:00<br />

Lai Zhang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark<br />

e-mail: L.Zhang@mat.dtu.dk<br />

K.H. Andersen<br />

Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Resources, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Denmark<br />

U.H. Thygesen<br />

Nati<strong>on</strong>al Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Resources, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Denmark<br />

K. Knudsen<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Technical University <str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark<br />

Trait diversity promotes to stabilize community dynamics<br />

The dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> marine communities are generally modeled <str<strong>on</strong>g>th</str<strong>on</strong>g>rough <str<strong>on</strong>g>th</str<strong>on</strong>g>e McKendrickv<strong>on</strong><br />

Foerster equati<strong>on</strong>s describing <str<strong>on</strong>g>th</str<strong>on</strong>g>e biomass flow al<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e size spectrum. This<br />

modeling disregards <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate am<strong>on</strong>g different<br />

species due to <str<strong>on</strong>g>th</str<strong>on</strong>g>e ignorance <str<strong>on</strong>g>of</str<strong>on</strong>g> species identities. The potential c<strong>on</strong>sequence is<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>at predicti<strong>on</strong>s from <str<strong>on</strong>g>th</str<strong>on</strong>g>is model might deviate from <str<strong>on</strong>g>th</str<strong>on</strong>g>e reality by ei<str<strong>on</strong>g>th</str<strong>on</strong>g>er being<br />

overestimated or underestimated. Using <str<strong>on</strong>g>th</str<strong>on</strong>g>e novel size- and trait-based species<br />

model where <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individual grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate is explicitly included, <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

community size spectrum can be represented as an output <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e total species size<br />

spectra. A significant stabilizing mechanism is recognized for <str<strong>on</strong>g>th</str<strong>on</strong>g>e first time. It is<br />

dem<strong>on</strong>strated <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e distributed individual grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate tends to smoo<str<strong>on</strong>g>th</str<strong>on</strong>g>en out <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

fluctuati<strong>on</strong>s in <str<strong>on</strong>g>th</str<strong>on</strong>g>e resulting community spectrum and <str<strong>on</strong>g>th</str<strong>on</strong>g>us individual experiences<br />

less variable prey and predator fields. Effectively, trophic waves are smoo<str<strong>on</strong>g>th</str<strong>on</strong>g>ed out<br />

due to different grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rates am<strong>on</strong>g <str<strong>on</strong>g>th</str<strong>on</strong>g>e individuals at a given point in <str<strong>on</strong>g>th</str<strong>on</strong>g>e wave.<br />

The finding infers <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e traditi<strong>on</strong>al community modeling is to some extent oversimplified.<br />

1054


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Models in Eco-epidemiology I; Wednesday, June 29, 08:30<br />

Qingguo Zhang<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Anhui Agricultural University, Hefei,<br />

Anhui 230036, China<br />

e-mail: qgzhang@ahau.edu.cn<br />

Li Xu<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics, Anhui Agricultural University, Hefei,<br />

Anhui 230036, China<br />

Cellular automata modeling applied in eco-epidemiology -<br />

Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial spread <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> individual<br />

c<strong>on</strong>tact<br />

The spread <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics should be complex phenomena. As <str<strong>on</strong>g>th</str<strong>on</strong>g>e exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omics<br />

and culture am<strong>on</strong>g different countries and areas become much closer in recent<br />

years, it has been an ecological issue <str<strong>on</strong>g>th</str<strong>on</strong>g>at influences public heal<str<strong>on</strong>g>th</str<strong>on</strong>g> for invading<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics to new areas. Generally, <str<strong>on</strong>g>th</str<strong>on</strong>g>ere are two types <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models<br />

to describe <str<strong>on</strong>g>th</str<strong>on</strong>g>e spread <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics, determinate models and network dynamics<br />

models. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e existing ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> simulating epidemics are<br />

built <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> ordinary and partial differential equati<strong>on</strong>s traditi<strong>on</strong>ally. These<br />

determinate models have an obviously weakness <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e local characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

transmissi<strong>on</strong> were neglected. In particularly ,<str<strong>on</strong>g>th</str<strong>on</strong>g>ey could not simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e problems<br />

properly as following: <str<strong>on</strong>g>th</str<strong>on</strong>g>e process <str<strong>on</strong>g>of</str<strong>on</strong>g> individual c<strong>on</strong>tact<str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e individual<br />

behavior<str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial problems <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemical transmissi<strong>on</strong><str<strong>on</strong>g>th</str<strong>on</strong>g>e effects <str<strong>on</strong>g>of</str<strong>on</strong>g> mixed pattern<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> individual.<br />

As a typical representative <str<strong>on</strong>g>of</str<strong>on</strong>g> network dynamics models, cellular automata<br />

model has provided a useful and powerful tool for <str<strong>on</strong>g>th</str<strong>on</strong>g>e research <str<strong>on</strong>g>of</str<strong>on</strong>g> complex systems.<br />

According to <str<strong>on</strong>g>th</str<strong>on</strong>g>e definite <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular automata model, it can be represented<br />

as an array <str<strong>on</strong>g>of</str<strong>on</strong>g> four elements, A=(Ld,S,N,f),where A is <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular automata system;<br />

Ld is <str<strong>on</strong>g>th</str<strong>on</strong>g>e cellular space; S is set <str<strong>on</strong>g>of</str<strong>on</strong>g> states; N is <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbors <str<strong>on</strong>g>of</str<strong>on</strong>g> cell,<br />

N=(S1,S2,S3„Sn),n is <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbors <str<strong>on</strong>g>of</str<strong>on</strong>g> cell; f is <str<strong>on</strong>g>th</str<strong>on</strong>g>e map <str<strong>on</strong>g>of</str<strong>on</strong>g> state transfer<br />

from Sn to S. Based <strong>on</strong> cellular automata, a simple <str<strong>on</strong>g>th</str<strong>on</strong>g>eoretical model was presented<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>is work to simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial spread <str<strong>on</strong>g>of</str<strong>on</strong>g> epidemics wi<str<strong>on</strong>g>th</str<strong>on</strong>g> individual c<strong>on</strong>tact.<br />

Populati<strong>on</strong> is divided into <str<strong>on</strong>g>th</str<strong>on</strong>g>ree classes: infected, immunized and susceptible. Each<br />

state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell stands for <strong>on</strong>e class <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e populati<strong>on</strong>s. The epidemic model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> vertical transmissi<strong>on</strong> and c<strong>on</strong>tact was c<strong>on</strong>sidered particularly.<br />

The model, moreover, is extended to include <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> vaccinati<strong>on</strong>.<br />

This kind <str<strong>on</strong>g>of</str<strong>on</strong>g> effect can reduce <str<strong>on</strong>g>th</str<strong>on</strong>g>e epidemic propagati<strong>on</strong>. The proposed model can<br />

serve as a basis for <str<strong>on</strong>g>th</str<strong>on</strong>g>e development <str<strong>on</strong>g>of</str<strong>on</strong>g> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms to simulate <str<strong>on</strong>g>th</str<strong>on</strong>g>e spatial spread <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

epidemics using real data.<br />

Keywords: Cellular Automata; Epidemics; Spatial Spread; Computer Simulati<strong>on</strong><br />

References.<br />

[1] G.C.Sirakoulis, I.Karafyllidis, and A.Thanailakis, A cellular automat<strong>on</strong> model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> movement and vaccinati<strong>on</strong> <strong>on</strong> epidemic propagati<strong>on</strong>. Ecological Modelling, 2000,<br />

133(3):209-223<br />

[2] A.Johansen, A simple model <str<strong>on</strong>g>of</str<strong>on</strong>g> recurrent epidemics, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Biology, 1996,<br />

178(1):45-51<br />

1055


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

[3] C.Beauchemin, J.Samuel, and J.Tuszynski, A simple cellular automat<strong>on</strong> models for influenza<br />

A viral infecti<strong>on</strong>s. Theoretical Biology, 2005, 232:223-234<br />

[4] R.Willox, B.Grammaticos, A.S.Carstea, and A.Ramani, Epidemic dynamics: discrete-time<br />

and cellular automat<strong>on</strong> models, Physica A, 2003, 328:13-22<br />

1056


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 17:00<br />

Michał Zientek<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology. Faculty Of Automatic C<strong>on</strong>trol,<br />

Electr<strong>on</strong>ics And Computer Science. Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science<br />

e-mail: michal.zientek@gmail.com<br />

Paweł Foszner<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology. Faculty Of Automatic C<strong>on</strong>trol,<br />

Electr<strong>on</strong>ics And Computer Science. Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science<br />

Andrzej Polański<br />

Silesian University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology. Faculty Of Automatic C<strong>on</strong>trol,<br />

Electr<strong>on</strong>ics And Computer Science. Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science<br />

Improving functi<strong>on</strong>al coherence <str<strong>on</strong>g>of</str<strong>on</strong>g> gene signatures by using<br />

Gene Ontology terms<br />

Molecular classifiers based <strong>on</strong> gene expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles obtained in DNA microarray<br />

expreriments are very extensively studied due to <str<strong>on</strong>g>th</str<strong>on</strong>g>eir potential to be apllied in a<br />

variety <str<strong>on</strong>g>of</str<strong>on</strong>g> areas, such as diagnosis, predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>erapy results etc. The secific<br />

property <str<strong>on</strong>g>of</str<strong>on</strong>g> classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gene expressi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles is <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e feature<br />

selecti<strong>on</strong> step. This stems from <str<strong>on</strong>g>th</str<strong>on</strong>g>e fact <str<strong>on</strong>g>th</str<strong>on</strong>g>at in DNA microarray experiments very<br />

large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> genes expressi<strong>on</strong>s are obtained for relatively small number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> samples.<br />

Therefore in recent years significant effort has been paid to development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

feature selecti<strong>on</strong> algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms leading to choosing appropriate subsets <str<strong>on</strong>g>of</str<strong>on</strong>g> genes, called<br />

gene signatures, which are <str<strong>on</strong>g>th</str<strong>on</strong>g>en used as arguments for discriminant functi<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

molecular classifier.<br />

Am<strong>on</strong>g me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods for gene selecti<strong>on</strong>, proposed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature, an interesting<br />

group are algori<str<strong>on</strong>g>th</str<strong>on</strong>g>ms using <str<strong>on</strong>g>th</str<strong>on</strong>g>e idea <str<strong>on</strong>g>of</str<strong>on</strong>g> combining <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> <strong>on</strong> expressi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

genes wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e informati<strong>on</strong> <strong>on</strong> functi<strong>on</strong>al coherence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e set <str<strong>on</strong>g>of</str<strong>on</strong>g> selected genes. Several<br />

papers in <str<strong>on</strong>g>th</str<strong>on</strong>g>e literature showed <str<strong>on</strong>g>th</str<strong>on</strong>g>at such an approach can lead to improvement<br />

in classificati<strong>on</strong> quality.<br />

In our study we propose an algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Steiner tree metrics, which<br />

was recently proposed as a tool for measuring functi<strong>on</strong>al coherence <str<strong>on</strong>g>of</str<strong>on</strong>g> subsets <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

genes. The proposed me<str<strong>on</strong>g>th</str<strong>on</strong>g>od uses a recursive procedure for signature slimming<br />

by removing least coherent genes. The obtained signature has largest measures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

functi<strong>on</strong>al coherence. We present <str<strong>on</strong>g>th</str<strong>on</strong>g>e use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e proposed algoritm for classificati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> several publicly available DNA microarra datasets.<br />

This work was financially supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Polish Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science under<br />

Grant No. N516 441938 Efficient me<str<strong>on</strong>g>th</str<strong>on</strong>g>ods <str<strong>on</strong>g>of</str<strong>on</strong>g> genome browsing based <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Burrows<br />

Wheeler Transform.<br />

1057


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Bioinformatics and System Biology; Wednesday, June 29, 17:00<br />

Ulyana Zubairova<br />

The Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Cytology and Genetics The Siberian Branch <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

Russian Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences<br />

e-mail: ulyanochka@bi<strong>on</strong>et.nsc.ru<br />

The Cell Grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and Divisi<strong>on</strong> Can Destroy Stem Cell Niche<br />

in a Reacti<strong>on</strong>-Diffusi<strong>on</strong> Model<br />

A minimal 1D-model <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cell niche structure regulati<strong>on</strong> al<strong>on</strong>g vertical axis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM was developed <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e basis <str<strong>on</strong>g>of</str<strong>on</strong>g> a qualitative hypo<str<strong>on</strong>g>th</str<strong>on</strong>g>esis <str<strong>on</strong>g>of</str<strong>on</strong>g> interplay between<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e CLV and WUS genes. Previously it was shown <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>ere is a set <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters<br />

supplying a stati<strong>on</strong>ary soluti<strong>on</strong> in qualitative corresp<strong>on</strong>dence wi<str<strong>on</strong>g>th</str<strong>on</strong>g> experimental<br />

observati<strong>on</strong>s. But <str<strong>on</strong>g>th</str<strong>on</strong>g>e questi<strong>on</strong> arises what will be <str<strong>on</strong>g>th</str<strong>on</strong>g>e model dynamics under cell<br />

grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and divisi<strong>on</strong>.<br />

Using DL-system formalism we developed a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model <str<strong>on</strong>g>of</str<strong>on</strong>g> stem cell<br />

niche structure regulati<strong>on</strong> <strong>on</strong> 1D-array <str<strong>on</strong>g>of</str<strong>on</strong>g> growing and dividing cells. A number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

computer simulati<strong>on</strong>s were performed to study <str<strong>on</strong>g>th</str<strong>on</strong>g>e model dynamics.<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>e issue <str<strong>on</strong>g>th</str<strong>on</strong>g>e dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> probability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e stem cell niche destructi<strong>on</strong><br />

<strong>on</strong> cell cycle durati<strong>on</strong> relative to diffusi<strong>on</strong> time scale was obtained. Increase <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e specific cell grow<str<strong>on</strong>g>th</str<strong>on</strong>g> rate results in m<strong>on</strong>ot<strong>on</strong>ic increase <str<strong>on</strong>g>of</str<strong>on</strong>g> system destructi<strong>on</strong><br />

probability and in decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> its mean lifetime.<br />

Cell divisi<strong>on</strong>s account for relevant perturbati<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e SAM structure and may<br />

result in destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it. The stem cell niche survivability depends <strong>on</strong> relati<strong>on</strong>s<br />

between model parameters.<br />

1058


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Vladimir Zubkov<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: vladimir.s.zubkov@gmail.com<br />

Chris Breward<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Eam<strong>on</strong>n Gaffney<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

Cell and Tissue Biophysics; Thursday, June 30, 11:30<br />

Hyperosmolarity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e tear film in dry eye syndrom.<br />

The biophysical factors <str<strong>on</strong>g>th</str<strong>on</strong>g>at dictate hyperosmolarity and <str<strong>on</strong>g>th</str<strong>on</strong>g>e observed patterns<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tear film break-up in dry eye are poorly understood and are difficult to interrogate<br />

experimentally, highlighting <str<strong>on</strong>g>th</str<strong>on</strong>g>e need for ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and computati<strong>on</strong>al<br />

modelling in <str<strong>on</strong>g>th</str<strong>on</strong>g>is field. We have examined a model incorporating <str<strong>on</strong>g>th</str<strong>on</strong>g>e influence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

polar lipids overlying an aqueous layer, while tracking <str<strong>on</strong>g>th</str<strong>on</strong>g>e evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> osmolarity.<br />

Our strategic objective was to identify factors which may influence <str<strong>on</strong>g>th</str<strong>on</strong>g>e risk<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> developing or exacerbating dry eye as well as exploring how such factors differ<br />

between evaporative dry eye and aqueous tear deficient dry eye. In particular, we<br />

focus <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solute c<strong>on</strong>centrati<strong>on</strong> for <str<strong>on</strong>g>th</str<strong>on</strong>g>e durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a single blink<br />

and interblink. Our ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model tracks <str<strong>on</strong>g>th</str<strong>on</strong>g>e <str<strong>on</strong>g>th</str<strong>on</strong>g>ickness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e aqueous layer,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e polar lipid, toge<str<strong>on</strong>g>th</str<strong>on</strong>g>er wi<str<strong>on</strong>g>th</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e solute.<br />

Firstly, we have observed <str<strong>on</strong>g>th</str<strong>on</strong>g>at tear film osmolarity is very sensitive to <str<strong>on</strong>g>th</str<strong>on</strong>g>e evaporati<strong>on</strong><br />

rate, wi<str<strong>on</strong>g>th</str<strong>on</strong>g> salt c<strong>on</strong>centrati<strong>on</strong>s readily exceeding irritati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>resholds when using<br />

dry eye parameters. The results also highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> in reducing<br />

osmolar stress in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> black lines during <str<strong>on</strong>g>th</str<strong>on</strong>g>e interblink. N<strong>on</strong>e<str<strong>on</strong>g>th</str<strong>on</strong>g>eless,<br />

in <str<strong>on</strong>g>th</str<strong>on</strong>g>ese regi<strong>on</strong>s diffusi<strong>on</strong> is not sufficient to prevent potentially damaging osmolarities,<br />

especially as <str<strong>on</strong>g>th</str<strong>on</strong>g>e evaporati<strong>on</strong> rate is increased (c<strong>on</strong>stituting evaporative dry<br />

eye) or <str<strong>on</strong>g>th</str<strong>on</strong>g>e tear volume is decreased (i.e. aqueous deficient dry eye). Simulati<strong>on</strong>s<br />

also indicate <str<strong>on</strong>g>th</str<strong>on</strong>g>at saccades (rapid eye movements) could have a positive effect <strong>on</strong><br />

osmolarities in <str<strong>on</strong>g>th</str<strong>on</strong>g>e vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e black lines.<br />

1059


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> immune resp<strong>on</strong>ses and calcium signaling II; Wednesday, June 29,<br />

14:30<br />

Paweł Żuk<br />

College <str<strong>on</strong>g>of</str<strong>on</strong>g> Inter-Faculty Individual Studies in Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematics and Natural<br />

Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Warsaw, Poland<br />

e-mail: pzuk@ippt.gov.pl<br />

Marek Kochańczyk<br />

Jagiell<strong>on</strong>ian University, Krakow, Poland<br />

e-mail: marek.kochanczyk@uj.edu.pl<br />

Tomasz Lipniacki<br />

Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Fundamental Technological Research, Warsaw, Poland<br />

e-mail: tlipnia@ippt.gov.pl<br />

Stochastic switching in a spatially extended,<br />

bistable kinase autoactivati<strong>on</strong> model<br />

In <str<strong>on</strong>g>th</str<strong>on</strong>g>is study we c<strong>on</strong>sider a spatially extended kinase autoactivati<strong>on</strong> model wi<str<strong>on</strong>g>th</str<strong>on</strong>g><br />

underlying bistability. We assume <str<strong>on</strong>g>th</str<strong>on</strong>g>at kinases may diffuse <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e cell membrane<br />

(or its restricted domain) and can be in <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>ree states: unphosphorylated,<br />

single or doubly phosphorylated. Catalitic activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e kinase is regulated by its<br />

phosphorylati<strong>on</strong> level; unphosphorylated kinases have <str<strong>on</strong>g>th</str<strong>on</strong>g>e lowest activity, doubly<br />

phosphorylated – <str<strong>on</strong>g>th</str<strong>on</strong>g>e highest. The emerging reacti<strong>on</strong>s are following:<br />

d<br />

d<br />

Kp −→ K, Kpp −→ Kp – dephosphorylati<strong>on</strong>,<br />

K + K c1<br />

c1<br />

−→ K + Kp, K + Kp −→ K + Kpp – phosphorylati<strong>on</strong> by K,<br />

Kp + K c2<br />

c2<br />

−→ Kp + Kp, Kp + Kp −→ Kp + Kpp – phosphorylati<strong>on</strong> by Kp,<br />

Kpp + K c3<br />

c3<br />

−→ Kpp + Kp, Kpp + Kp −→ Kpp + Kpp – phosphorylati<strong>on</strong> by Kpp,<br />

where d and c3 > c2 > c1 are dephosphorylati<strong>on</strong> and phosphorylati<strong>on</strong>s coefficients.<br />

Let us notice <str<strong>on</strong>g>th</str<strong>on</strong>g>at for c1 = 0 <str<strong>on</strong>g>th</str<strong>on</strong>g>e state in which all kinases are unphosphorylated is<br />

absorbing.<br />

We c<strong>on</strong>sider two limits:<br />

(1) infinite diffusi<strong>on</strong> for which <str<strong>on</strong>g>th</str<strong>on</strong>g>e system can be c<strong>on</strong>sidered as perfectly mixed<br />

and its dynamics is described by <str<strong>on</strong>g>th</str<strong>on</strong>g>e two-dimensi<strong>on</strong>al Markov process, and<br />

simulated using <str<strong>on</strong>g>th</str<strong>on</strong>g>e Gillespie algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m,<br />

(2) c<strong>on</strong>tinuous limit in which evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong>s is given by <str<strong>on</strong>g>th</str<strong>on</strong>g>e system<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> partial differential equati<strong>on</strong>s.<br />

We numerically investigated <str<strong>on</strong>g>th</str<strong>on</strong>g>e activati<strong>on</strong> process in <str<strong>on</strong>g>th</str<strong>on</strong>g>e original model in<br />

SpatKin, a program designed to simulate reacti<strong>on</strong>-diffusi<strong>on</strong> processes <strong>on</strong> a triangular<br />

lattice. We observed <str<strong>on</strong>g>th</str<strong>on</strong>g>at for biologically justified values <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters <str<strong>on</strong>g>th</str<strong>on</strong>g>e behavior<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e system cannot be described in any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e two limits even qualitatively. In<br />

particular, we found <str<strong>on</strong>g>th</str<strong>on</strong>g>at probability density distributi<strong>on</strong>s depend <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e diffusi<strong>on</strong><br />

coefficient: bimodal distributi<strong>on</strong>s observed in <str<strong>on</strong>g>th</str<strong>on</strong>g>e infinite diffusi<strong>on</strong> limit become<br />

unimodal wi<str<strong>on</strong>g>th</str<strong>on</strong>g> decreasing diffusivity. We also found <str<strong>on</strong>g>th</str<strong>on</strong>g>at in <str<strong>on</strong>g>th</str<strong>on</strong>g>e bistable case <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

expected extincti<strong>on</strong> time (i.e. <str<strong>on</strong>g>th</str<strong>on</strong>g>e time in which <str<strong>on</strong>g>th</str<strong>on</strong>g>e absorbing state is reached when<br />

c1 = 0) grows wi<str<strong>on</strong>g>th</str<strong>on</strong>g> diffusivity and <strong>on</strong>ly in <str<strong>on</strong>g>th</str<strong>on</strong>g>e infinite diffusi<strong>on</strong> limit it becomes<br />

exp<strong>on</strong>entially proporti<strong>on</strong>al to <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> molecules.<br />

1060


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

We c<strong>on</strong>clude <str<strong>on</strong>g>th</str<strong>on</strong>g>at <str<strong>on</strong>g>th</str<strong>on</strong>g>e original Gillespie algori<str<strong>on</strong>g>th</str<strong>on</strong>g>m is not appropriate for simulati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> spatially extended systems.<br />

This study was supported by <str<strong>on</strong>g>th</str<strong>on</strong>g>e Polish Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Higher Educati<strong>on</strong><br />

grant N N501 132936 and Foundati<strong>on</strong> for Polish Science grant TEAM/2009-<br />

3/6.<br />

1061


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Plants, grow<str<strong>on</strong>g>th</str<strong>on</strong>g> and transport processes I; Tuesday, June 28, 11:00<br />

K<strong>on</strong>stantinos Zygalakis<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: zygalakis@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

G.J.D. Kirk<br />

Nati<strong>on</strong>al Soil Resources Institute, Cranfield University<br />

D.L. J<strong>on</strong>es<br />

School <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, Natural Resources & Geography, Bangor<br />

University<br />

M. Wissuwa<br />

Crop Producti<strong>on</strong> and Envir<strong>on</strong>ment Divisi<strong>on</strong>, Japan Internati<strong>on</strong>al Research<br />

Center for Agricultural Sciences<br />

T. Roose<br />

Bioengineering, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering and Envir<strong>on</strong>ment, University<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Sou<str<strong>on</strong>g>th</str<strong>on</strong>g>ampt<strong>on</strong><br />

A dual porosity model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients by root<br />

hairs<br />

Root hairs are <str<strong>on</strong>g>th</str<strong>on</strong>g>ought to play an important role in mediating nutrient uptake by<br />

plants. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we develop a ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical model for <str<strong>on</strong>g>th</str<strong>on</strong>g>e nutrient transport<br />

and uptake <strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>e scale <str<strong>on</strong>g>of</str<strong>on</strong>g> a single root. We treat soil as a double porous material,<br />

since nutrients are assumed to diffuse bo<str<strong>on</strong>g>th</str<strong>on</strong>g> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e soil fluid phase and wi<str<strong>on</strong>g>th</str<strong>on</strong>g>in <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

soil particles, while <str<strong>on</strong>g>th</str<strong>on</strong>g>ey can also bind to <str<strong>on</strong>g>th</str<strong>on</strong>g>e soil particle surfaces by reversible<br />

reacti<strong>on</strong>s. Using homogenizati<strong>on</strong> techniques we derive a macroscopic model for<br />

nutrient diffusi<strong>on</strong> and reacti<strong>on</strong> in <str<strong>on</strong>g>th</str<strong>on</strong>g>e soil which includes <str<strong>on</strong>g>th</str<strong>on</strong>g>e effect <str<strong>on</strong>g>of</str<strong>on</strong>g> all root hair<br />

surfaces. Various numerical simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a simplified versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e macroscopic<br />

model highlight <str<strong>on</strong>g>th</str<strong>on</strong>g>e importance <str<strong>on</strong>g>of</str<strong>on</strong>g> root hairs for <str<strong>on</strong>g>th</str<strong>on</strong>g>e uptake <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients by <str<strong>on</strong>g>th</str<strong>on</strong>g>e<br />

plant in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> different soil moisture scenarios.<br />

1062


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Multiscale modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> kinetics in biology; Tuesday, June 28, 14:30<br />

K<strong>on</strong>stantinos Zygalakis<br />

Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical Institute, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

e-mail: zygalakis@ma<str<strong>on</strong>g>th</str<strong>on</strong>g>s.ox.ac.uk<br />

K. Burrage<br />

Computing Laboratory, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Oxford<br />

B. Melykuti<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical Engineering, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Santa<br />

Barbara<br />

Alternative formulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e Chemical Langevin Equati<strong>on</strong><br />

The Chemical Langevin Equati<strong>on</strong> is a Stochastic Differential Equati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>at describes<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>e time evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> molecular counts <str<strong>on</strong>g>of</str<strong>on</strong>g> reacting chemical species D. Gillespie,<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Physics, 113(1), pp 297-306 (2000)). It stands as a bridge<br />

between <str<strong>on</strong>g>th</str<strong>on</strong>g>e deterministic ODE model and <str<strong>on</strong>g>th</str<strong>on</strong>g>e discrete probabilistic chemical Master<br />

equati<strong>on</strong>.<br />

Suppose n chemical species react <str<strong>on</strong>g>th</str<strong>on</strong>g>rough m reacti<strong>on</strong> channels, and <str<strong>on</strong>g>th</str<strong>on</strong>g>e n x<br />

m stoichiometry matrix is denoted by S. Gillespie formulated <str<strong>on</strong>g>th</str<strong>on</strong>g>e CLE wi<str<strong>on</strong>g>th</str<strong>on</strong>g> m<br />

independent standard Brownian moti<strong>on</strong>s. In <str<strong>on</strong>g>th</str<strong>on</strong>g>is talk we describe an alternative<br />

formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>th</str<strong>on</strong>g>e CLE which in general leads to a SDE wi<str<strong>on</strong>g>th</str<strong>on</strong>g> a smaller number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Brownian moti<strong>on</strong>s. For example if r is <str<strong>on</strong>g>th</str<strong>on</strong>g>e number <str<strong>on</strong>g>of</str<strong>on</strong>g> pairs <str<strong>on</strong>g>of</str<strong>on</strong>g> reversible reacti<strong>on</strong>s,<br />

<str<strong>on</strong>g>th</str<strong>on</strong>g>en in Gillespie’s formulati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ere would be 2r Brownian moti<strong>on</strong>s for <str<strong>on</strong>g>th</str<strong>on</strong>g>e reversible<br />

reacti<strong>on</strong>s, while in our formulati<strong>on</strong> <str<strong>on</strong>g>th</str<strong>on</strong>g>ere would <strong>on</strong>ly be r. We illustrate <str<strong>on</strong>g>th</str<strong>on</strong>g>at such<br />

a reacti<strong>on</strong> leads to significant computati<strong>on</strong>al savings.<br />

1063


Abreu, Fernão Vistulo de, 678, 1003<br />

Achim, Cristian V., 24<br />

Adachi, Taiji, 470<br />

Adams, Ben, 25, 26, 393, 734<br />

Afenya, Evans, 27<br />

Aff<strong>on</strong>so, Luana Regina, 926<br />

Af<strong>on</strong>nikov, Dmitry, 238<br />

Agaranovich, Alexandra, 595<br />

Aguiar, Maíra, 28<br />

Aguiar, Maira, 925<br />

Ahammer, Helmut, 30<br />

Ajelli, Marco, 31<br />

Akberdin, Ilya, 32<br />

Akerman, Ada, 33, 141<br />

Akhmetzhanov, Andrei R., 372<br />

Akhobadze, Vladimer, 494<br />

Akiyama, Masakazu, 34<br />

Akutsu, T., 690<br />

Alam-Nazki, Aiman, 539<br />

Alarcón, Tomás, 768, 770<br />

Alarc<strong>on</strong>, Tomas, 36<br />

Alber, Mark, 457<br />

Albert, Steven M., 893<br />

Alf<strong>on</strong>so, Juan Carlos López, 588<br />

Al-husari, Maym<strong>on</strong>a, 37<br />

Aliz<strong>on</strong>, Samuel, 38<br />

Allgower, Frank, 863<br />

Al<strong>on</strong>so, Juan Ant<strong>on</strong>io, 854<br />

Alt, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Wolfgang, 76<br />

Alt, Wolfgang, 39, 106, 1038, 1042<br />

Alvarez, Juan Manuel Cordovez, 53<br />

Alvarez-Martinez, Teresa, 414<br />

Amaku, Marcos, 637<br />

Amann, Ant<strong>on</strong>, 499<br />

Ambroch, Krystyna, 40<br />

Amigó, Jose, 41<br />

Ammunét, Tea, 42<br />

Anandanadesan, Anan<str<strong>on</strong>g>th</str<strong>on</strong>g>i, 44<br />

Anazawa, Masahiro, 46<br />

Ancliff, Mark, 755<br />

Andersen, K.H., 1054<br />

Anders<strong>on</strong>, Alexandar R. A., 833<br />

Anders<strong>on</strong>, Alexander, 47, 880<br />

Anders<strong>on</strong>, Alexander R. A., 330, 496<br />

Index <str<strong>on</strong>g>of</str<strong>on</strong>g> au<str<strong>on</strong>g>th</str<strong>on</strong>g>ors<br />

1065<br />

Anders<strong>on</strong>, Alexander R. M., 307<br />

Anders<strong>on</strong>, A. R. A., 830<br />

Anders<strong>on</strong>, Matt S., 689<br />

André, N., 428<br />

Andreasen, Viggo, 48<br />

Andriv<strong>on</strong>, Didier, 156<br />

Andrzej, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. dr hab. inż. Polaski, 621<br />

Angenent, Gerco, 993<br />

Anguelov, Roumen, 49<br />

Angulo, O., 590<br />

Antes, Iris, 50<br />

Ant<strong>on</strong>ovics, Janis, 1032<br />

Apreutesei, Narcisa, 51<br />

Apri, Mochamad, 52<br />

Arai, Mamiko, 910<br />

Arbelaez Alvarado, Daniel, 53<br />

Argasinski, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 54<br />

Arnaud, Jacques-Damien, 414<br />

Arndts, Julian, 55<br />

Arnold, Anne, 56<br />

Artalejo, Jesus R., 57<br />

Artzy-Randrup, Yael, 58<br />

Asakawa, Takeshi, 59<br />

Ascolani, Gianluca, 60<br />

Astola, Laura, 62<br />

Atac, Irem, 63<br />

Avilov, K.K., 64<br />

Azevedo, Franciane, 66<br />

Bachar, Mostafa, 67<br />

Back, Walter de, 215<br />

Badoual, M., 344<br />

Badoual, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ilde, 224<br />

Baeumer, Boris, 334<br />

Baigent, S., 713<br />

Baigent, Stephen, 68, 426<br />

Baird, Austin, 387<br />

Bajpai, Archana, 69<br />

Baker, Ru<str<strong>on</strong>g>th</str<strong>on</strong>g>, 70, 71, 258, 550<br />

Baker, Ru<str<strong>on</strong>g>th</str<strong>on</strong>g> E., 688<br />

Baklouti, Melika, 284<br />

Bakshi, Suruchi, 71<br />

Bal, Wojciech, 359<br />

Balbus, Joanna, 72


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ballesta, Annabelle, 73<br />

Ballesteros, Sebastien, 28, 925<br />

Banaji, Murad, 74<br />

Band, Leah, 686<br />

Band, L. R., 75<br />

Bandura, Jörg, 76<br />

Banerjee, Malay, 77, 237<br />

Banks, H. T., 474<br />

Baranowski, R., 351<br />

Baranowski, Rafał, 773<br />

Barbarossa, Maria, 78<br />

Barbolosi, D., 428<br />

Barbosa, Susana, 79<br />

Barles, Guy, 947<br />

Barreira, Raquel, 613<br />

Barreto, F.R., 301<br />

Barry, J. D., 356<br />

Bartl, M., 517<br />

Bartoszek, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 80, 544<br />

Bartoszek, Wojciech, 81<br />

Barua, Dipak, 582<br />

Baruch-Mordo, Shar<strong>on</strong>, 413<br />

Basanta, David, 47, 82, 83, 496, 880<br />

Basler, K<strong>on</strong>rad, 203<br />

Bate, Andrew, 84<br />

Batel, Jerry, 85<br />

Bauer, Robert, 87<br />

Beauchemin, Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>erine, 439<br />

Becker, S., 88<br />

Becker, Stefan, 971<br />

Becskei, Attila, 221<br />

Begum, Najida, 1021<br />

Belm<strong>on</strong>te, Julio, 90<br />

Belm<strong>on</strong>te-Beitia, J., 764<br />

Benabdallah, A., 428<br />

Bennett, Malcolm, 686<br />

Bennett, M. J., 75<br />

Benoit, Eric, 813<br />

Benzekry, S., 91, 428<br />

Berbert, Juliana Militão, 92<br />

Berec, Luděk, 93<br />

Beretta, Edoardo, 152<br />

Berezovskaya, Faina, 475<br />

Bergmann, Sven, 203<br />

Berkhout, Jan, 122<br />

Bernard, Samuel, 95, 303<br />

Bernhard, Pierre, 372<br />

Bertolusso, Roberto, 97<br />

Bertrand, Maury, 641<br />

Bertuzzi, Alessandro, 293<br />

Berven, Kei<str<strong>on</strong>g>th</str<strong>on</strong>g> A., 49<br />

Besl<strong>on</strong>, Guillaume, 303<br />

Best, Alex, 98, 1032<br />

Best, Janet, 867<br />

Be<str<strong>on</strong>g>th</str<strong>on</strong>g>ge, Anja, 99<br />

Beyer, Andreas, 898<br />

Bhattacharya, B.S., 968<br />

Bhinder, Arvinder, 449<br />

1066<br />

Bidot, Caroline, 978<br />

Bielczyk, N., 111<br />

Bielecki, Andrzej, 100<br />

Bier, Ben, 208<br />

Binder, Hans, 331<br />

Binder, Sebastian, 102<br />

Bisseling, T., 218<br />

Blair, Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew W., 189<br />

Blanco, Stéphane, 1026<br />

Błażej, Paweł, 103<br />

Bley, Th., 573<br />

Bloomfield, Jenny, 104<br />

Blumberg, Mark S., 867<br />

Bobrowski, Adam, 105, 112, 1041<br />

Bock, Martin, 39, 106, 1038<br />

Bode, Nikolai, 107<br />

Bodenstein, C., 108<br />

Bodnar, M., 109, 111<br />

Bodyl, Andrzej, 326<br />

Bogucki, Radosław, 112<br />

Bohmann, Ansgar, 113<br />

Bohn, Andreas, 114, 205<br />

Bois, Justin, 694<br />

Boldin, Barbara, 115, 501<br />

Bolz<strong>on</strong>i, Luca, 837<br />

B<strong>on</strong>, Dimitra, 116<br />

B<strong>on</strong>ewald, Lynda, 779<br />

B<strong>on</strong>ino, Ferruccio, 182<br />

Boots, Mike, 98, 1032<br />

Boová, Katarína, 119, 521<br />

Borina, Maria Yu., 787<br />

Borkowski, Wojciech, 120<br />

Borowska, Marta, 121, 726<br />

Borys, P, 1023<br />

Borys, P., 377<br />

Bosch, Frank van den, 892<br />

Bosdriesz, Evert, 122<br />

Boudaoud, Arezki, 541<br />

Bowers, Roger, 123<br />

Bradham, Cyn<str<strong>on</strong>g>th</str<strong>on</strong>g>ia, 390<br />

Brainard, Diana M., 689<br />

Brännström, Åke, 580, 715, 950<br />

Brasier, Allan, 97<br />

Bratus, Alexander S., 124<br />

Braumann, Carlos A., 126<br />

Breban, Romulus, 127, 128<br />

Breindl, Christian, 863<br />

Breña–Medina, Víctor F., 129<br />

Breward, Chris, 1059<br />

Briët, Olivier, 173<br />

Brites, Nuno M., 126<br />

Britt<strong>on</strong>, Nicholas F., 130<br />

Britt<strong>on</strong>, Tom, 131<br />

Brockhurst, Mike, 1032<br />

Brook, B.S., 197, 417<br />

Brooks-Pollock, Ellen, 132<br />

Broom, dr Mark, 54<br />

Broom, Mark, 133, 384


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Brown, Alistair J.P., 984<br />

Brown, Ian H., 849<br />

Brown, Sam, 335<br />

Bruggeman, Frank, 122<br />

Brulport, Marc, 243<br />

Brunetto, Maurizia Rossana, 182<br />

Brusch, Lutz, 134, 135, 159, 215<br />

Buchner, Teodor, 137<br />

Buenzli, Pascal, 779<br />

Bunimovich, Svetlana, 138<br />

Bu<strong>on</strong>omo, Bruno, 139<br />

Burda, Z., 140, 983<br />

Bürger, Reinhard, 33, 141<br />

Burie, J.-B., 142<br />

Burke, D<strong>on</strong>ald S., 893<br />

Burrage, K., 1063<br />

Bushmelev, Eugene, 846<br />

Buske, Peter, 144<br />

Buszko, K., 145<br />

Buzug, Thorsten M., 971<br />

Buzug, T.M., 88<br />

Byrne, Helen, 241, 245, 448, 686<br />

Byrne, Helen M., 768, 770<br />

Byrne, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Helen, 184<br />

Cai, Anna, 146<br />

Cai, Yin, 147<br />

Callard, Robin, 895<br />

Calle, Eusebi, 827<br />

Callender, Hannah, 148<br />

Calvo, G. F., 635, 647, 764<br />

Camara, Baba Issa, 149<br />

Campanella, Mario, 150<br />

Capasso, Vincenzo, 152, 153<br />

Cardoso, M.Z., 646<br />

Carlos, Clara, 126<br />

Carrillo, Jose A., 155<br />

Carroll, David, 519<br />

Castel, Magda, 156, 616<br />

Castellazzo, Alessandro, 997<br />

Castillo-Chavez, Carlos, 222, 709<br />

Catterall, Stephen, 634<br />

Cebrat, Stanisław, 103, 606<br />

Cer<strong>on</strong>e, Luca, 703<br />

Chairez Hernández, Isaias, 157<br />

Chalub, Fabio, 158<br />

Champneys, Alan R., 129<br />

Chandrashaker, Akhila, 468<br />

Chaplain, Mark, 44, 792, 864<br />

Chaplain, Mark A. J., 946<br />

Chara, Osvaldo, 159<br />

Charles, Sandrine, 175<br />

Chauviere, Arnaud, 160, 162<br />

Chavarría-Krauser, Andrés, 163<br />

Chavarría-Krauser, Andres, 802<br />

Chaves, Luis Fernando, 165<br />

Chaves, Madalena, 365<br />

Cheddadi, Ibrahim, 166<br />

Cheng, Yiming, 230<br />

Cherniha, Roman, 167<br />

Cherstvy, Andrey, 168<br />

Chettaoui, Chadha, 170<br />

Chiam, Keng-Hwee, 171<br />

Chiam, K.-H., 558<br />

Chickarmane, Vijay, 543<br />

Chisholm, Ryan, 172<br />

Chitnis, Nakul, 173, 602, 629<br />

Choi, Ye<strong>on</strong>taek, 174<br />

Ch<strong>on</strong>, Tae-Soo, 174<br />

Choserot, Victoria, 62<br />

Chowell, Gerardo, 709<br />

Christodoulou, Zoe, 711<br />

Chrobak, Joanna M. Rodríguez, 836<br />

Ciccorossi, Pietro, 182<br />

Cichońska, Anna, 931<br />

Cieutat, P., 267<br />

Ciffroy, Philippe, 175<br />

Ciribilli, Yari, 685<br />

Ciric, Catalina, 175<br />

Ciupe, Stanca, 310<br />

Ciupe, Stanca M., 177<br />

Civitano, Luigi, 182<br />

Clairambault, Jean, 178<br />

Clark, Alys, 922<br />

Clarke, James, 179<br />

Clement, J., 298<br />

Clenden<strong>on</strong>, Sherry, 90<br />

Clint<strong>on</strong>, Steven, 449<br />

Cobbold, Christina, 180<br />

Cobbold, Christina A., 356<br />

Colijn, Caroline, 666<br />

Collinet, Claudio, 468<br />

Colnot, Sabine, 1025<br />

Colombatto, Piero, 182<br />

Cominetti, Ornella, 184<br />

Commenges, Daniel, 895<br />

C<strong>on</strong>de, Ignacio Ramis, 245<br />

C<strong>on</strong>duit, Paul, 71<br />

C<strong>on</strong>radi, Carsten, 185<br />

C<strong>on</strong>way, Jessica, 186<br />

C<strong>on</strong>way, Jessica M., 526<br />

Cook, Alex R., 634<br />

Coolen, A. C. C., 828<br />

Coombes, S., 197<br />

Coombs, Daniel, 526<br />

Coombs, Dr. Daniel, 186<br />

Cordoleani, Flora, 187<br />

Cordovez, Juan, 94<br />

Cornell, Stephen, 188, 272<br />

Cornish, J., 298<br />

Corso, G., 646<br />

Cortes, Andres, 189<br />

Coster, Adelle, 190<br />

Cotter, Sim<strong>on</strong>, 191<br />

Coutinho, Francisco Ant<strong>on</strong>io Bezerra, 637<br />

Coutinho, R. M., 535<br />

1067


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Coutinho, 646<br />

Covert, Markus, 192<br />

Cowen, Leah E., 984<br />

Craciun, Gheorghe, 193<br />

Crauste, Fabien, 95, 194<br />

Cressman, Ross, 540<br />

Cristini, Vittorio, 160, 162, 196, 609, 611<br />

Croisier, H., 197<br />

Crowell, Valerie, 173<br />

Cruz-Pacheco, Gustavo, 279<br />

Csikasz-Nagy, A., 69<br />

Csikasz-Nagy, Attila, 198, 685<br />

Cui, Jing-an, 199<br />

Cummings, Peter, 200<br />

Curk, Tine, 640<br />

Czarnołęski, Macrin, 265<br />

Czirok, Andras, 201<br />

Daamen, Winnie, 150<br />

Dads, E.Ait, 267<br />

Dahari, Harel, 202, 379<br />

Dahmen, Uta, 824<br />

Dalessi, Sascha, 203<br />

Damineli, Daniel, 205<br />

Danek, Agnieszka, 206<br />

Das, R., 298<br />

Daus<strong>on</strong>, Erin, 208, 1017<br />

Davids<strong>on</strong>, Fordyce A., 209, 210<br />

Davids<strong>on</strong>, Ross, 211<br />

Davis, Lisa, 337<br />

Dawidowicz, Ant<strong>on</strong>i Le<strong>on</strong>, 212<br />

Day, Troy, 213<br />

Deakin, Niall, 214<br />

Debowska, Malgorzata, 216<br />

Dehghany, Jaber, 217<br />

Deinum, E.E., 218<br />

Delgado-Eckert, Edgar, 219<br />

de los Reyes V, Aurelio, 221<br />

Delsanto, Pier Paolo, 380<br />

Dengel, Bernd-Sim<strong>on</strong>, 223<br />

de Oliveira, Paulo Murilo Castro, 606<br />

de Oliveira, Suzana Moss, 606<br />

Deroulers, C., 344<br />

Deroulers, Christophe, 224<br />

Deutsch, Andreas, 135, 159, 215, 225, 226,<br />

420, 651, 918<br />

Dhirasakdan<strong>on</strong>, Thanate, 227<br />

Díaz Herrera, Edgar, 228<br />

Dieckmann, Ulf, 580, 950<br />

Diego, D., 647, 764<br />

Diekman, Casey O., 312<br />

Dillilngham, Mark, 484<br />

Dimitriu, Gabriel, 229<br />

Dingli, David, 980<br />

Dirsch, Olaf, 824<br />

Diserens, Gaelle, 230<br />

Ditlevsen, Susanne, 231, 852, 953<br />

Dixit, Narendra, 232<br />

1068<br />

Doblare, Manuel, 591<br />

Dobnikar, Jure, 640<br />

Dobrescu, Radu, 233<br />

Dobrota, Dušan, 615<br />

Dolfin, Marina, 234<br />

Domijan, Mirela, 235<br />

Domingo, Esteban, 437<br />

D<strong>on</strong>nelly, Ruairi, 489<br />

d’On<str<strong>on</strong>g>of</str<strong>on</strong>g>rio, Alberto, 236, 237, 333<br />

Doroshkov, Alexey, 238<br />

Drake, Christiana, 240<br />

Drasdo, Dirk, 166, 170, 241, 243, 245, 419,<br />

447, 1025<br />

Drossel, Barbara, 338<br />

Drubi, Fátima, 247<br />

Drulis-Kawa, Zuzanna, 608<br />

Dshalalow, Eugene, 519<br />

Du, Yejie, 163<br />

Duan, Wen, 248<br />

Duarte, Jorge, 249<br />

Ducray, François, 823<br />

Ducrot, A., 142<br />

Dufourd, Claire, 250<br />

Dulla, G., 766<br />

Dum<strong>on</strong>t, Yves, 250, 252<br />

Dunn, Sara-Jane, 254<br />

Dunt<strong>on</strong>, Thomas A., 255<br />

Dup<strong>on</strong>t, Geneviève, 256<br />

Düring, Bertram, 257<br />

Dushek, Omer, 71<br />

Dykeman, Eric, 982<br />

Dys<strong>on</strong>, Louise, 258, 550<br />

Dys<strong>on</strong>, R. J., 75<br />

Dys<strong>on</strong>, R.J., 259<br />

Dyzma, Michal, 260<br />

Dźwinel, Witold, 1024<br />

Eames, Ken, 261<br />

Ebenhöh, Oliver, 906<br />

Eberl, Hermann, 262<br />

Edelstein-Keshet, Leah, 1018<br />

Edgert<strong>on</strong>, Mary E., 609, 611<br />

Edmunds, W.J., 459<br />

Eftimie, Raluca, 263<br />

Eid, Rasha Abu, 22<br />

Eisenberg, Marisa, 264<br />

Ejsm<strong>on</strong>d, Maciej Jan, 265<br />

Elaiw, A. M., 266<br />

Elbert, Benjamin, 464<br />

Elias Wolff, Federico, 269<br />

Ellert, J., 270<br />

Elliott, Charlie M., 613<br />

Elliott, Elizabe<str<strong>on</strong>g>th</str<strong>on</strong>g>, 272<br />

Ellner, Steve, 758<br />

Enciso, German A., 274<br />

Enderling, Heiko, 275, 276<br />

Erban, Radek, 277, 396<br />

Erikss<strong>on</strong>, Anders, 269


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Erikss<strong>on</strong>, Olivia, 444, 626<br />

Erm<strong>on</strong>, Stefano, 278<br />

Escobar, Adriana Bernal, 94<br />

Essen, Steve C., 849<br />

Esteva, L., 301<br />

Esteva, Lourdes, 279<br />

Esteve, François, 574<br />

Eunok, Jung, 280<br />

Evans, Roger, 281<br />

Evers, Joep, 283<br />

Eynaud, Yoan, 284<br />

Fackeldey, K<strong>on</strong>stantin, 286<br />

Faeder, James R., 287<br />

Fae<str<strong>on</strong>g>th</str<strong>on</strong>g>, Stanley H., 227<br />

Falcke, Martin, 289, 290, 966<br />

Fang, Chun, 291<br />

Farkas, József Z., 416<br />

Farkas, Jozsef, 292<br />

Fasano, A., 406<br />

Fasano, Ant<strong>on</strong>io, 293<br />

Fauci, Lisa, 731<br />

Fedorenko, Inna, 307<br />

Fedotov, Sergei, 295<br />

Feinstein, J., 1002<br />

Feliu, Elisenda, 296, 511<br />

Ferchichi, Adel, 1033<br />

Fernandez, J., 298<br />

Ferreira, C.P., 301<br />

Ferreira Jr., Wils<strong>on</strong>, 302<br />

Field, Jeremy, 979<br />

Filipe, Patrícia A., 126<br />

Findeisen, Rolf, 623<br />

Fischer, Stephan, 303<br />

Fister, K. Renee, 305<br />

Fitzpatrick, Ben, 306<br />

Flach, Edward H., 307<br />

Fleck, Christian, 660<br />

Flegg, Jennifer, 872<br />

Fletcher, Dr Alexander, 308<br />

Flint, Harry, 489<br />

Flockerzi, Dietrich, 185<br />

F<strong>on</strong>telos, M. A., 996<br />

F<strong>on</strong>tes, Pascaline, 414<br />

Foo, Jasmine, 309<br />

Forde, J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an, 310, 311<br />

Forger, Daniel, 312<br />

Fornasier, Massimo, 395<br />

Fortmann-Roe, Scott, 313<br />

Foryś, U., 111<br />

Foryś, Urszula, 786<br />

Foryś, Urszula, 777<br />

Foszner, Pawel, 314<br />

Foszner, Paweł, 1057<br />

Fournier, Richard, 1026<br />

Fozard, John, 316<br />

Frank, M<strong>on</strong>ika, 1010<br />

Franz, Benjamin, 317<br />

Franz<strong>on</strong>e, P. Colli, 859<br />

Fricker, Mark, 723<br />

Friedman, Avner, 318, 319, 449, 587<br />

Fuhrmann, Jan, 320<br />

Fujita Yashima, Hisao, 386<br />

Funk, Sebastian, 321<br />

Gabriel, Wilfried, 1039<br />

Gaff, Holly, 322, 323, 845<br />

Gaffney, Eam<strong>on</strong>n, 71, 1059<br />

Gaffney, Eam<strong>on</strong>n A., 325<br />

Gagat, Przemyslaw, 326<br />

Gajecka-Mirek, Elżbieta, 327<br />

Galach, Magda, 328<br />

Gallaher, Jill, 330<br />

Galle, Jörg, 798<br />

Galle, Joerg, 144, 245, 331<br />

Gallenberger, Martina, 332<br />

Galliot, Brigitte, 159<br />

Galvez, Thierry, 468<br />

Gambin, Anna, 919<br />

Gandolfi, Alberto, 293, 333<br />

Ganesh, Ayalvadi, 666<br />

García, José A., 334<br />

Garcia Lopez, Diana, 335<br />

Gardiner, Bruce S., 281<br />

Gasselhuber, Astrid, 336<br />

Gatenby, R. A., 830<br />

Gauduch<strong>on</strong>, Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ias, 187<br />

Gautrais, Jacques, 1026<br />

Gavaghan, David, 723<br />

Gavaghan, David J., 255<br />

Gede<strong>on</strong>, Tomas, 337<br />

Gee, Maarten de, 52<br />

Gehrmann, Eva, 338<br />

Gejji, Richard, 339, 601<br />

Genaev, Mikhail, 238<br />

Gens, J. Scott, 90<br />

George, Uduak, 340<br />

Georgelin, Christine, 947<br />

Gerdes, Sebastian, 342<br />

Gerin, C., 344<br />

Gerisch, Alf, 967<br />

Gerlee, Philip, 345, 1027<br />

Gerrish, Philip, 346<br />

Gerstner, Wulfram, 347<br />

Getto, Philipp, 348, 697<br />

Getz, Wayne, 313<br />

Getz, Wayne M., 349<br />

Geurts, R., 218<br />

Ghosh, Atiyo, 350<br />

Gierałtowski, J., 351<br />

Gillies, R. J., 830<br />

Gilliland, D. Gary, 385<br />

Gillot-From<strong>on</strong>t, E., 560<br />

Gin, Elan, 134<br />

Giorgakoudi, Kyriaki, 353<br />

Giverso, Chiara, 355<br />

1069


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Gjini, Erida, 356<br />

Glauche, Ingmar, 342, 962, 1053<br />

Glazier, James, 357<br />

Glazier, James A., 90<br />

Glimm, Tilmann, 358<br />

Glinka, Anna, 649<br />

Gliozzi, Ant<strong>on</strong>io S., 380<br />

Goch, Wojciech, 359<br />

Gog, Julia, 360, 547<br />

Gog, Julia R., 849<br />

Gölgeli, Meltem, 362<br />

Goman, Mikhail, 676<br />

Gomes, Gabriela, 363<br />

G<strong>on</strong>zález, M., 679<br />

G<strong>on</strong>ze, Didier, 364<br />

Gopi, D., 593<br />

Gouzé, Jean-Luc, 365<br />

Graf, Isabell, 366<br />

Graff, Beata, 367, 465<br />

Graff, Grzegorz, 367, 465<br />

Grammaticos, B., 344<br />

Grammaticos, Basile, 224<br />

Gramotnev, Dmitri K., 368<br />

Gramotnev, Galina, 368<br />

Grau, Vicente, 723<br />

Grays<strong>on</strong>, Nick, 982<br />

Greenman, J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an, 369<br />

Greenwood, Priscilla, 231, 370, 842<br />

Grefenstette, John, 893<br />

Grenfell, Bryan T., 849<br />

Grieneisen, Verônica A., 1018<br />

Grieneisen, Ver<strong>on</strong>ica, 853<br />

Grill, Stephan W., 694<br />

Grima, Ram<strong>on</strong>, 660<br />

Grimal, Quentin, 967<br />

Grizzi, Fabio, 371<br />

Groenenboom, Marian, 62<br />

Grognard, Frédéric, 372, 957<br />

Groh, C. M., 373<br />

Grosse, Thibault, 964<br />

Gruca, Aleksandra, 314<br />

Grün, S<strong>on</strong>ja, 375<br />

Grüning, Dr André, 803<br />

Grzebelus, Dariusz, 919<br />

Grzywna, Z. J., 1023<br />

Grzywna, Z.J., 377<br />

Guaraldo, Irene, 371<br />

Gubbins, Sim<strong>on</strong>, 353<br />

Gubernov, Vladimir V., 522<br />

Gudowska-Nowak, Ewa, 584<br />

Guedj, Jeremie, 379<br />

Guerney, Chris, 1033<br />

Gueyffier, François, 964<br />

Guillomot, Michel, 170<br />

Guiot, Caterina, 380, 381<br />

Gutiérrez, C., 679<br />

Guy, Robert D., 930<br />

Guzik, P., 270, 778<br />

1070<br />

Gwiazda, Piotr, 382, 383<br />

Gyllenberg, Mats, 291, 988, 1047<br />

Haccou, Patsy, 247<br />

Hadeler, Karl P., 227<br />

Hadjichrysan<str<strong>on</strong>g>th</str<strong>on</strong>g>ou, Christ<str<strong>on</strong>g>of</str<strong>on</strong>g>oros, 384<br />

Haemmerich, Dieter, 336<br />

Haeno, Hiroshi, 385<br />

Hahnfeldt, Philip, 1034<br />

Hall, I., 417<br />

Hall, I.P., 197<br />

Hamant, Olivier, 541<br />

Hamdous, Saliha, 386<br />

Hamelin, Frédéric, 616<br />

Hamelin, Frederic M., 156<br />

Hamlet, Christina, 387<br />

Handelman, Samuel, 388<br />

Hänel, Sven-Erik, 599<br />

Hanin, Le<strong>on</strong>id, 389<br />

Hanke, Thomas, 559<br />

Hannaert, Patrick, 964<br />

Hansen, Thomas, 80<br />

Hardway, Hea<str<strong>on</strong>g>th</str<strong>on</strong>g>er, 390<br />

Hardy, Diggory, 173<br />

Harel, Roi, 313<br />

Harezlak, Jaroslaw, 391<br />

Harigua, Emna, 692<br />

Harris, Andrew, 392<br />

Harris<strong>on</strong>, Eleanor, 393<br />

Hashemi, S.Naser, 394<br />

Haskovec, Jan, 395, 396<br />

Hat-Plewinska, Beata, 397<br />

Hatzikirou, Haralambos, 160, 162<br />

Hatzikirou, Haralampos, 398, 674<br />

Hatzopoulos, Vasilis, 502<br />

Hayashida, M., 690<br />

Hayd<strong>on</strong>, Daniel T., 356<br />

Hbid, M.L., 399<br />

Head<strong>on</strong>, Denis, 400<br />

Heil, Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>leen, 135<br />

Heiland, Ines, 862<br />

Heimburger, Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>, 328<br />

Heinemann, Sascha, 559<br />

Heise, Robert, 401<br />

Heisler, Marcus, 541<br />

Hellander, Andreas, 592<br />

Hellander, Stefan, 592<br />

Hellmich, Christian, 402, 779<br />

Hengstler, Jan, 419<br />

Hengstler, Jan G., 241, 243, 1025<br />

Henkel, Annett, 684<br />

Henrikss<strong>on</strong>, Johan, 1027<br />

Hense, B. A., 766<br />

Hense, Burkhard A., 332, 362<br />

Herbis<strong>on</strong>, Allan E., 248<br />

Herman, Dorota, 403<br />

Hermiss<strong>on</strong>, Joachim, 404<br />

Hernandez, Ana, 405


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Herrera, Alejandra, 526<br />

Herrero, Dr. Miguel A., 588<br />

Herrero, Henar, 836<br />

Herrero, Miguel A., 406, 407<br />

Herrmann, Eva, 116, 408<br />

Hertz, John, 409<br />

Hester, Susan D., 90<br />

He<str<strong>on</strong>g>th</str<strong>on</strong>g>cote, Herbert W., 222<br />

Hicks<strong>on</strong>, R.I., 411<br />

Hilhorst, Danielle, 412<br />

Himes Boor, Gina, 413<br />

Hingant, Erwan, 414<br />

Hinow, 416<br />

Hiorns, J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an E., 417<br />

Hirt, Bar<str<strong>on</strong>g>th</str<strong>on</strong>g>olomäus, 418<br />

Hlavacek, Wiliam, 582<br />

Hoefer, Thomas, 873<br />

Hoehme, Stefan, 241, 243, 419, 1025<br />

Hoek, Milan J.A. van, 991<br />

Hoeng, Julia, 230<br />

Höfer, Thomas, 147<br />

Hogan, Thea, 895<br />

Hohmann, Nadine, 420<br />

Holmes, William, 421<br />

Holst, Klaus Kähler, 422<br />

Holstein-Ra<str<strong>on</strong>g>th</str<strong>on</strong>g>lou, Niels-Henrik, 423<br />

Holtrop, Grietje, 489<br />

Holzhuetter, Hermann-Georg, 424<br />

Hoogendoorn, Serge, 150<br />

Hori, Michio, 951<br />

Horn, Mary Ann, 425<br />

Hössjer, Ola, 626<br />

Hou, Zhanyuan, 426<br />

House, Thomas, 427<br />

Hoyle, Andy, 123, 825<br />

Hrynkiv, Vlad, 1049<br />

Hu, Bei, 319<br />

Hubbard, M. E., 373<br />

Hubbard, Steven, 44<br />

Hubert, F., 428<br />

Huds<strong>on</strong>, Andrew, 484<br />

Hue, Isabelle, 170<br />

Hui, C., 811<br />

Hulme, Philip E., 634<br />

Hulsh<str<strong>on</strong>g>of</str<strong>on</strong>g>, J., 714<br />

Hunt, C. An<str<strong>on</strong>g>th</str<strong>on</strong>g><strong>on</strong>y, 430<br />

Hunter, P., 298<br />

Hunter, Peter, 431<br />

Hurtado, Paul, 432<br />

Hustedt, Thiemo, 433<br />

Hutchings, Mike, 211<br />

Hyman, James M., 222<br />

Hyman, Mac, 629<br />

Iber, Dagmar, 434<br />

Iftikhar, Afifa, 492<br />

Igarashi, Tatsuhiko, 439<br />

Iino, Satomi, 435<br />

Ikeda, Kota, 1014<br />

Immink, Richard, 993<br />

Imran, Mudassar, 492<br />

Indelicato, Giuliana, 436<br />

Inga, Alberto, 685<br />

Innocentini, Guilherme, 808<br />

Inoue, Yumiko, 951<br />

Iranzo, Jaime, 437<br />

Ito, Kentaro, 480<br />

Iwami, Shingo, 439<br />

Iwanaszko, Marta, 440<br />

Iwasa, Yoh, 848<br />

Jabbari, Sara, 441<br />

Jabłoński, Jędrzej, 442<br />

Jacks<strong>on</strong>, Ian J., 748<br />

Jacks<strong>on</strong>, K.G., 968<br />

Jaeger, Johannes, 443<br />

Jafari-Mamaghani, Mehrdad, 444<br />

Jaffar, Mai, 209<br />

Jagers, Peter, 446<br />

Jagiella, Nick, 447<br />

Jagodič, Marko, 640<br />

Jain, Harsh, 448, 449<br />

Jain, Kavita, 756<br />

Jaksik, Roman, 314, 450, 632<br />

Jalan, R., 713<br />

Jalilzadeh, Aidin, 334<br />

Jamróz, Grzegorz, 452<br />

Janies, D. A., 388<br />

Janoušová, Eva, 789<br />

Jaroszewska, Joanna, 453<br />

Jaruszewicz, Joanna, 454<br />

Jarząb, Barbara, 775<br />

Jarząb, Michał, 775<br />

Jelinek, Herbert, 455<br />

Jensen, O. E., 75<br />

Jensen, O.E., 417<br />

Jensen, Ole Nørregaard, 875<br />

Je<strong>on</strong>, W<strong>on</strong>ju, 456<br />

Jiang, Yi, 457<br />

Jędrzejec, Bartosz, 939<br />

Joanny, Jean-François, 458<br />

Johns<strong>on</strong>*, H.C., 459<br />

J<strong>on</strong>es, D.L., 1062<br />

J<strong>on</strong>es, P. F., 373<br />

J<strong>on</strong>es, Z<str<strong>on</strong>g>of</str<strong>on</strong>g>ia, 461<br />

J<strong>on</strong>ss<strong>on</strong>, Henrik, 541<br />

Jordan, F., 69<br />

Jost, Christian, 1026<br />

Jr., Daniel C<str<strong>on</strong>g>of</str<strong>on</strong>g>field, 181<br />

Jung, Eunok, 568<br />

Just, Winfried, 463, 464<br />

Kaczkowska, Agnieszka, 367, 465<br />

Kahm, Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ias, 466<br />

Kaiser, Dale, 457<br />

Kalaidzidis, Yannis, 468<br />

Kaleta, C., 517<br />

1071


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Kalita, Piotr, 100<br />

Kamei, Hiroko, 469<br />

Kameo, Yoshitaka, 470<br />

Kamimura, Atsushi, 472, 707<br />

Kamp, Christel, 473<br />

Kapan, Durrell D., 25<br />

Kaper, Tasso, 390<br />

Kappel, Franz, 67, 474<br />

Kapustka, Filip, 265<br />

Karczewski, Jerzy, 943<br />

Karev, Georgy, 475<br />

Kareva, Irina, 475<br />

Karkach, Arseny S., 476<br />

Karley, Alis<strong>on</strong>, 44<br />

Kar<strong>on</strong>en, Ilmari, 477<br />

Karperien, Audrey, 455<br />

Kassa, Semu Mitiku, 744<br />

Kassara, Khalid, 478<br />

Katauskis, Pranas, 905<br />

Kaufmann, Kerstin, 993<br />

Kawasaki, Tomoko, 951<br />

Kawka, Joanna, 479<br />

Kazama, Toshiya, 480<br />

Kazantsev, Fedor, 32<br />

Kazmierczak, Bogdan, 260, 397, 481, 942<br />

Keef, T., 482<br />

Keef, Tom, 982<br />

Kelkel, Jan, 483<br />

Kelly, David, 484<br />

Kelly, Hea<str<strong>on</strong>g>th</str<strong>on</strong>g>, 653<br />

Kempf, Harald, 485, 659<br />

Kerner, Richard, 487<br />

Kettle, Helen, 489<br />

Khain, Evgeniy, 490, 491<br />

Khan, Adnan, 492<br />

Khan, Amjad, 493<br />

Khan, Rahmat Ali, 493<br />

Khatiashvili, Nino, 494<br />

Khayyeri, Hanifeh, 495<br />

Khlebodarova, Tamara M., 32<br />

Kieber, Joseph, 686<br />

Kim, Do-Wan, 568<br />

Kim, Eunjung, 496<br />

Kim, Jaejik, 820<br />

Kim, Yangjin, 497, 498<br />

Kim, Yung Sam, 280<br />

Kimmel, Marek, 97, 747, 1041<br />

King, John, 686<br />

King, J. R., 75<br />

King, Julian, 499<br />

Kirk, G.J.D., 1062<br />

Kisdi, Eva, 501, 988, 1032<br />

Kiss, István, 427<br />

Kiss, Istvan, 502<br />

Kitlas, Agnieszka, 503, 726<br />

Kleczkowski, Adam, 505, 730<br />

Kleessen, Sabrina, 506<br />

Klemola, Tero, 42<br />

1072<br />

Klepac, Kristen, 578<br />

Klika, Václav, 507<br />

Klipp, Edda, 984<br />

Kl<str<strong>on</strong>g>of</str<strong>on</strong>g>t, Charlotte, 1010<br />

Kl<strong>on</strong>owski, Wlodzimierz, 508<br />

Klu<str<strong>on</strong>g>th</str<strong>on</strong>g>, Sandra, 509<br />

Knappitsch, Markus P., 510<br />

Knibbe, Carole, 303<br />

Knudsen, K., 1054<br />

Knudsen, Michael, 511<br />

Kobayashi, Ryo, 34, 480, 958<br />

Kobayashi, Ryota, 512<br />

Kobayashi, Tetsuya J., 472, 513<br />

Kobayashi, Yutaka, 1046<br />

Koç, Helin, 499<br />

Kochańczyk, Marek, 514, 1060<br />

Kocieniewski, Pawel, 516<br />

Koetzing, M., 517<br />

K<str<strong>on</strong>g>of</str<strong>on</strong>g>f, David, 531<br />

Kohandel, Mohammad, 890<br />

Kohda, Masanori, 435<br />

Köhn-Luque, Alvaro, 518<br />

Koinuma, Satoshi, 59<br />

Koksal, Semen, 519<br />

Kolev, Mikhail, 520<br />

Kollár, Richard, 119, 521<br />

Kolobov, Andrey V., 522<br />

Kolomeisky, A., 168<br />

Komorowski, Michał 523<br />

K<strong>on</strong>, Ryusuke, 524<br />

K<strong>on</strong>do, Shigeru, 525<br />

K<strong>on</strong>rad, Bernhard, 526<br />

K<strong>on</strong>rad, Wilfried, 527, 838<br />

Kooi, Bob W., 28, 925<br />

Korb, Mas<strong>on</strong>, 464<br />

Kornelsen, J., 983<br />

Kornyshev, A., 168<br />

Kostal, Lubomir, 529<br />

Kotanko, Peter, 67<br />

Koumoutsakos, Petros, 664<br />

Kowalik-Urbaniak, Il<strong>on</strong>a Anna, 531<br />

Kozłowski, Jan, 265<br />

Kozubowski, T., 533<br />

Kraenkel, R.A., 646<br />

Kraenkel, Roberto, 534, 535<br />

Kraj, Piotr, 1029<br />

Krasowska, M., 377<br />

Krauze, T., 270<br />

Kravchuk, K.G., 536<br />

Krinner, Axel, 245, 537<br />

Krishnan, J., 539<br />

Kritz, Maurício Vieira, 1000<br />

Krivan, Vlastimil, 540<br />

Kropinski, Andrew M., 608<br />

Krug, Joachim, 756<br />

Krupinski, Pawel, 541, 543<br />

Krzemiński, Michał 544<br />

Krzywicki, A., 140


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Krzyzanski, Wojciech, 545<br />

Kschischo, Maik, 466<br />

Kuang, Yang, 311<br />

Kubo, Akisato, 546<br />

Kucharski, Adam, 360, 547<br />

Kücken, Michael, 548<br />

Kühl, Peter, 549<br />

Kulesa, Paul, 258, 550<br />

Kulesa, Paul M., 1044<br />

Kumar, S. B., 388<br />

Kuniya, Toshikazu, 551<br />

Kuttler, C., 766<br />

Kuttler, Christina, 78, 332, 362, 552<br />

Kuznetsov, Alexey, 1005<br />

Kwiek, J. J., 388<br />

Kyes, Sue A., 711<br />

Kzhyshkowska, Julia, 553<br />

L., Hannah, 425<br />

Lachapelle, Aitana Mort<strong>on</strong> de, 203<br />

Lachor, Paweł, 554<br />

Lachowicz, Mirosław, 556, 557, 946<br />

Lai, Tanny, 558<br />

Landini, Gabriel, 22<br />

Landsberg, Christoph, 559<br />

Langlais, Michel, 560<br />

Lansky, Petr, 529, 561, 784, 953<br />

Lapin, A., 562<br />

Lapin, Alexei, 768<br />

Laporta, G. Z., 535<br />

Lassau, Na<str<strong>on</strong>g>th</str<strong>on</strong>g>alie, 964<br />

Laubenbacher, Reinhard, 999<br />

Laudański, Tadeusz, 503<br />

Lavrova, Anastasia, 563<br />

Layt<strong>on</strong>, Anita, 564<br />

Layt<strong>on</strong>, Anita T., 565<br />

Layt<strong>on</strong>, Harold E., 565<br />

Leach, Michelle D., 984<br />

LeDuc, Philip R., 558<br />

Ledzewicz, Urszula, 566, 861<br />

Lee, Chang Hye<strong>on</strong>g, 567<br />

Lee, Junggul, 568<br />

Lee, Kiho, 248<br />

Lee, Nam-Kyung, 569<br />

Lee, Sang-Hee, 174, 456<br />

Lee, S. Seirin, 570<br />

Lee, Wanho, 280<br />

Leiderman, Karin, 572<br />

Lélu, M., 560<br />

Lenk, Felix, 573<br />

Lesart, Anne-Cécile, 574<br />

Lescoat, Philippe, 947<br />

Leśkow, Jacek, 575<br />

Levine, Ross L., 385<br />

Leviyang, Sivan, 576<br />

Lhachimi, L., 267<br />

Li, H. L., 752<br />

Li, J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an F., 577<br />

Li, Junqing, 1020<br />

Liautard, Jean-Pierre, 414<br />

Lichius, Alexander, 723<br />

Licois, Jean-René, 947<br />

Liddell, Chelsea, 578<br />

Liebscher, Volkmar, 579<br />

Likhoshvai, Vitaly, 670, 717<br />

Likhoshvai, Vitaly A., 32<br />

Lim, F<strong>on</strong>g Yin, 171<br />

Lin, Y. T., 490<br />

Lindh, Magnus, 580<br />

Lindholm, Bengt, 328<br />

Lio, Pietro, 581<br />

Li<strong>on</strong>, Sébastien, 38<br />

Lipniacki, Tomasz, 97, 397, 454, 514, 516,<br />

582, 761, 1060<br />

Lisowski, Bartosz, 584<br />

Lloyd, Alun, 586<br />

Loadman, P. M., 373<br />

Lock, John, 444, 626<br />

Loeffler, Markus, 144<br />

Löffler, Markus, 798<br />

Lokuge, K.M., 411<br />

Lolas, Georgios, 587<br />

Lopez, Luis F., 300<br />

Lopez-Herrero, M. J., 589<br />

López-Marcos, J. C., 590<br />

López-Marcos, M. A., 590<br />

Lopez-Menendez, Horacio, 591<br />

Lötstedt, Per, 592<br />

Louis, Kavi<str<strong>on</strong>g>th</str<strong>on</strong>g>a, 593<br />

Louis, Petra, 489<br />

Lourenço, José, 594<br />

Loux, Travis, 240<br />

Louzoun, Yoram, 595<br />

Lowengrub, John, 160, 162, 577, 596, 597,<br />

674<br />

Lozoya, Oswaldo, 598<br />

Lubkin, Shar<strong>on</strong>, 598<br />

Lundh, Torbjörn, 599, 1027<br />

Lunelli, Ant<strong>on</strong>ella, 804<br />

Luo, Jamie, 600<br />

Lutambi, Angelina Mageni, 602<br />

Lutter, Petra, 682<br />

Maciaszczyk-Dziubinska, Ewa, 608<br />

Maciejewski, Wes, 603<br />

Mackey, Michael C., 604, 605<br />

Mackiewicz, Dorota, 606<br />

Mackiewicz, Paweł, 103, 326, 608<br />

Macklin, Paul, 609, 611<br />

Madriñán, Santiago, 189<br />

Madzvamuse, Anotida, 340, 613<br />

Magnus, Carsten, 614<br />

Mahadevan, L., 171<br />

Maharaj, Savi, 505<br />

Mahmood, 615<br />

Mahmood, Silvia, 615<br />

1073


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Mailleret, Ludovic, 156, 372, 616, 957<br />

Maini, Philip, 71, 258, 550<br />

Maini, Philip K., 688, 768, 770<br />

Maini, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Philip, 184<br />

Maire, Nicolas, 173<br />

Makowiec, Danuta, 617, 619<br />

Makuchowski, Adam, 621<br />

Makuchowski, mgr Adam, 621<br />

Malchow, Horst, 622<br />

Mald<strong>on</strong>ado, Solvey, 623<br />

Malmros, Jens, 626<br />

Małogrosz, Marcin, 627<br />

Maman, Yaacov, 595<br />

Manca, Luigi, 386<br />

Manfredi, Piero, 628<br />

Mang, A., 88<br />

Mang, Andreas, 971<br />

Manore, Carrie, 629<br />

Manrubia, Susanna C., 437<br />

Manzano, Marc, 827<br />

Marciniak-Czochra, Anna, 630, 631<br />

Marczyk, Michał, 450, 632<br />

Marée, A<str<strong>on</strong>g>th</str<strong>on</strong>g>anasius F. M., 1018<br />

Maree, Stan, 853<br />

Marhl, M., 108<br />

Marinovic, Axel B<strong>on</strong>acic, 118<br />

Mari<strong>on</strong>, Glenn, 211, 489, 634<br />

Marlewski, A., 593<br />

Marsden, A., 1002<br />

Marsh, D<strong>on</strong>ald J., 423<br />

Martin, Clyde, 208<br />

Martin, O.C., 140<br />

Martínez, R., 679<br />

Martínez-G<strong>on</strong>zález, A., 647<br />

Martínez-G<strong>on</strong>zález, A., 635<br />

Martínez-Rodríguez, J., 590<br />

Martins, Ana, 999<br />

Martins, Nuno, 249<br />

Maršík, František, 507<br />

Marzantowicz, Wacław, 897<br />

Massad, Eduardo, 300, 637<br />

Massey, Susan, 833<br />

Massey, Susan Christine, 638<br />

Masumoto, Koh-hei, 59<br />

Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>äus, Franziska, 640<br />

Mauro, Andrea, 997<br />

Maxin, Daniel, 93<br />

Mayer, Jiří, 789<br />

Mazzucco, Rupert, 950<br />

McCauley, John W., 849<br />

McDougall, Dr Steven, 1022<br />

McElwain, D.L.S., 872<br />

McGillen, Jessica B., 642<br />

McKane, Alan, 335, 643<br />

McLennan, Rebecca, 550<br />

McPhers<strong>on</strong>, Nicola, 644<br />

Mehlig, Bernhard, 269<br />

Melgar, P., 647<br />

1074<br />

Melnichenko, O.A., 645<br />

Melykuti, B., 1063<br />

Mendoza-Juez, B., 647<br />

Mendyk, Aleksander, 649<br />

Mensi, Skander, 347<br />

Mente, Carsten, 651<br />

Meral, Gülnihal, 652<br />

Mercer, Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>fry N., 653<br />

Mercer, G.N., 411<br />

Merelli, Emanuela, 581<br />

Merks, Roeland M. H., 654, 655<br />

Merks, Roeland M.H., 751, 991<br />

Merler, Stefano, 31<br />

Meszéna, Géza, 656<br />

Metze, K<strong>on</strong>radin, 657<br />

Metzler, Dirk, 1039<br />

Meyer-Hermann, Michael, 102, 217, 485,<br />

659, 866<br />

Meyerowitz, Elliot, 541<br />

Meyers, Rachel, 468<br />

Michor, Franziska, 385<br />

Middlet<strong>on</strong>, Alistair, 660<br />

Middlet<strong>on</strong>, A. M., 75<br />

Miekisz, Jacek, 661, 662, 945<br />

Mierczyński, Janusz, 663<br />

Migliavacca, F., 1002<br />

Miki, Takeshi, 1014<br />

Milde, Florian, 664<br />

Miller, Judi<str<strong>on</strong>g>th</str<strong>on</strong>g>, 665<br />

Miller, Laura, 758<br />

Miller, Laura A., 387<br />

Mills, Harriet, 666<br />

Milosevic, Nebojsa, 455, 667<br />

Mimura, Masayasu, 412, 1014<br />

Mincheva, Maya, 668<br />

Minihane, A., 968<br />

Mir<strong>on</strong>, Rachelle, 669<br />

Mir<strong>on</strong>ova, Victoria, 670, 717<br />

Mittag, Maria, 862<br />

Miura, Tomoyuki, 439<br />

Moldovan, Nicanor, 448<br />

Molenaar, Douwe, 122<br />

Molenaar, Jaap, 52, 62, 993<br />

Molenda, Mariola, 672<br />

Molnar, Ferenc, 967<br />

Mommer, Mario S., 640<br />

M<strong>on</strong>daini, Rubem P., 673<br />

M<strong>on</strong>serrate, Fredy, 189<br />

M<strong>on</strong>teiro, M. Teresa T., 835<br />

Moobedmehdiabadi, Shabnam, 674<br />

Morale, Daniela, 153<br />

Morano, Lisa, 1049<br />

Morishita, Yoshihiro, 675<br />

Moroz, Adam, 676<br />

Morozov, Andrew, 187<br />

Morozova, Nadya, 152<br />

Mort, Richard L., 748<br />

Mort<strong>on</strong>, Charles, 677


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Moss, Robert G., 964<br />

Mostad, Petter, 80<br />

Mostardinha, Patricia, 678, 1003<br />

Mota, M., 679<br />

Mou, Chunyan, 400<br />

Mourik, Sim<strong>on</strong> van, 993<br />

Moustafid, Amine, 478<br />

Moustaid, Fadoua El, 273<br />

Mroz, Iw<strong>on</strong>a, 681<br />

Mrozek, Kalina, 682<br />

Mrugala, Maciej M., 833<br />

Mueller, Thomas, 230<br />

Mueller–Roeber, Bernd, 735<br />

Mulder, B.M., 218<br />

Müller, Benedikt, 447<br />

Müller, J., 766<br />

Müller, Johannes 684<br />

Müller, Johannes, 362<br />

Müller, Margareta, 447<br />

Munir, M., 474<br />

Muniyappan, A., 593<br />

Munoz-Garcia, Javier, 703<br />

Muppirisetty, Sreeharish, 685<br />

Muraro, Daniele, 686<br />

Murray, Philip J., 688<br />

Nachbar, Robert B., 689<br />

Nacher, J.C., 690<br />

Nadolny, Robyn, 692<br />

Naef, Felix, 693<br />

Nagana<str<strong>on</strong>g>th</str<strong>on</strong>g>an, Sundar, 694<br />

Nagano, Mamoru, 59<br />

Nagy, John, 885<br />

Nakabayashi, Jun, 695<br />

Nakagaki, Toshiyuki, 480, 958<br />

Nakamura, Tetsuya, 696<br />

Nakata, Yukihiko, 697<br />

Namba, Toshiyuki, 698<br />

Na<str<strong>on</strong>g>th</str<strong>on</strong>g>an, Ran, 313<br />

Naud, Richard, 347<br />

Navarrete, Clara, 466<br />

Nawrot, Martin Paul, 700<br />

Nedorezov, L.V., 701<br />

Nedorezova, Bakhyt, 701<br />

Neigenfind, Jost, 702<br />

Nelander, Sven, 345<br />

Nerini, David, 187<br />

Neufeld, Zoltan, 703<br />

Neuhauser, Claudia, 704<br />

Neumann, Avidan U., 705, 928<br />

Newbold, Chris I., 711<br />

Nguyen, Anh Tuan, 1049<br />

Nguyen, H., 411<br />

Nie, Qing, 146<br />

Niehaus, Karsten, 682<br />

Nikolaev, Sergey, 706<br />

Nikoloski, Zoran, 56, 401, 506, 702, 735,<br />

850, 975<br />

Nishi, Ryosuke, 707<br />

Nishinari, Katsuhiro, 707<br />

Nishiura, Hiroshi, 709<br />

Noble, Robert, 711<br />

Noguchi, Sayaka, 951<br />

Noiret, L., 713<br />

Nolet, Robert, 714<br />

N<strong>on</strong>aka, Etsuko, 715<br />

Norman, Dr. Rachel, 644<br />

Norman, Rachel, 728, 825<br />

Nosek, Jozef, 119, 521<br />

Nosova, Ekaterina A., 716<br />

Novoselova, Ekaterina, 670<br />

Novoselova, Ka<str<strong>on</strong>g>th</str<strong>on</strong>g>erine, 717<br />

Novozhilov, Artem S., 124, 719<br />

Nowak, Ewa Gudowska -, 730<br />

Nowak, M.A., 983<br />

Nowakowski, A., 720<br />

Nunes, Ana, 363<br />

Nunez, Dr. Luis, 588<br />

Nurmi, Tuomas, 722<br />

Obara, Boguslaw, 723<br />

Ochab-Marcinek, Anna, 725<br />

O’C<strong>on</strong>nor, Paul M., 281<br />

Oczeretko, Edward, 121, 503, 726<br />

Oczko-Wojciechowska, Małgorzata, 775<br />

O’Dea, Reuben, 727<br />

Oduro, Bismark, 464<br />

Oelz, Dietmar, 733, 889<br />

Ogg, Eryll, 728<br />

Ohira, Toru, 707<br />

Ohno, Carolyn, 541<br />

Okamoto, Rika, 951<br />

Okuno, Takuya, 480<br />

Olczak, Łukasz, 729<br />

Oleś, Katarzyna, 730<br />

Olshak, Tal, 705<br />

Ols<strong>on</strong>, Sarah, 731<br />

Olufsen, Mette, 732<br />

Omelyanchuk, Nadezda, 717<br />

Omelyanchuk, Nadya, 670<br />

Omori, Ryosuke, 734<br />

Omranian, Nooshin, 735<br />

Orita, Natsuki, 737<br />

Osborne, Dr James, 739<br />

Osborne, James M., 255<br />

Otake, Yo-Hey, 740<br />

Otani, Hiroki, 599<br />

O<str<strong>on</strong>g>th</str<strong>on</strong>g>mer, Hans G, 742<br />

O<str<strong>on</strong>g>th</str<strong>on</strong>g>mer, Hans G., 741<br />

Ottesen, Johnny, 743<br />

Ouhinou, A., 811<br />

Ouhinou, Aziz, 744<br />

Ouhinou, Dr. Aziz, 273, 810<br />

Overgaard, Niels Chr, 745<br />

Owen, Markus R., 768, 770<br />

Owusu-Brackett, Nicci, 578<br />

1075


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Pacheco, Jorge M., 980<br />

Pacholczyk, Marcin, 747<br />

Packer, Aar<strong>on</strong>, 311<br />

Padmanabhan, Pranesh, 232<br />

Painter, Kevin, 400, 748, 749<br />

Palk, Laurence, 750<br />

Pallud, J., 344<br />

Palm, Margriet M., 751<br />

Pamuk, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dr. Serdal, 63<br />

Pang, Peter, 752<br />

Panorchan, Paul, 689<br />

Panorska, A., 753<br />

Pantea, Casian, 754<br />

Paoletti, Nicola, 581<br />

Paraiso, Kim, 307<br />

Parisi, Andrea, 363<br />

Park, Je<strong>on</strong>g-Man, 755<br />

Park, Su-Chan, 756<br />

Parvinen, Kalle, 42, 715, 757, 885<br />

Pasour, Virginia, 369, 758<br />

Paszek, Pawel, 759<br />

Pásztor, Liz, 656<br />

Pavarino, L. F., 859<br />

Pavlík, Tomáš, 789<br />

Pawelek, K., 1023<br />

Pawelek, Kasia, 760<br />

Pawełek, P., 377<br />

Pawlas, Zbynek, 561<br />

Payan, Esteban, 94<br />

Pekalski, Jakub, 761<br />

Penny, Melissa, 173, 602<br />

Pepper, Michael, 587<br />

Peradzynski, Zbigniew, 763<br />

Perales, Celia, 437<br />

Perc, M., 108<br />

Perels<strong>on</strong>, Alan, 177, 379<br />

Pérez-García, Víctor M., 764<br />

Pérez-García, V. M., 647<br />

Pérez-García, V. M., 635<br />

Pérez-Velázquez, J., 766<br />

Perfahl, Holger, 223, 768, 770<br />

Periasamy, N., 373<br />

Perminov, Valeriy, 771<br />

Per<str<strong>on</strong>g>th</str<strong>on</strong>g>ame, Benoît, 166<br />

Peruani, Fernando, 772, 918<br />

Petelczyc, M<strong>on</strong>ika, 773<br />

Peters<strong>on</strong>, Carsten, 543<br />

Pfeifer, Aleksandra, 775<br />

Pfenning, Philipp-Niclas, 971<br />

Pham, Kara, 160<br />

Phillips, R. M., 373<br />

Pienaar, Jas<strong>on</strong>, 80<br />

Pieruschka, Roland, 776<br />

Pierzchalski, Michal, 508<br />

Pinches, Robert, 711<br />

Pinho, S.T.R., 301<br />

Pini<strong>on</strong>, Ca<str<strong>on</strong>g>th</str<strong>on</strong>g>erine, 1017<br />

Piotrowska, M<strong>on</strong>ika, 777<br />

1076<br />

Piotrowska, M<strong>on</strong>ika Joanna, 786<br />

Pirumova, Christina, 494<br />

Piskorski, J., 270, 778<br />

Piv<strong>on</strong>ka, P., 298<br />

Piv<strong>on</strong>ka, Peter, 779<br />

Płatkowski, T., 111<br />

Pluciński, Mateusz M., 780<br />

Podgorski, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 533<br />

Podziemski, Piotr, 781<br />

Poggi, Sylvain, 156<br />

Poggiale, J.-C., 783<br />

Poggiale, Jean-Christophe, 187, 284<br />

Pokora, Ondrej, 529, 784<br />

Pokrzywa, Rafał, 206<br />

Pokrzywa, Rafał, 729<br />

Polak, Miłosz, 649<br />

Polak, Sebastian, 649, 785<br />

Polanska, Joanna, 314<br />

Polańska, Joanna, 450, 632<br />

Polański, Andrzej, 554, 1057<br />

Polanski, Andrzej, 314<br />

Polański, Andrzej, 632<br />

Polaski, Andrzej, 729<br />

Poleszczuk, J., 111<br />

Poleszczuk, Jan, 786<br />

Poletti, Piero, 31<br />

Polezhaev, Andrey A., 522, 787<br />

Popa, A., 720<br />

Porter, Rosalyn, 788<br />

Poskrobko, Anna, 212<br />

Pospíšil, Zdeněk, 789<br />

Posvyanskii, Vladimir P., 124<br />

Potapov, Ilya, 790, 1005<br />

Pötzsche, Christian, 684<br />

Powa<str<strong>on</strong>g>th</str<strong>on</strong>g>il, Gibin, 792<br />

Pozzorini, Christian, 347<br />

Prado, P. I., 535<br />

Praetorius, Sim<strong>on</strong>, 793<br />

Pra<str<strong>on</strong>g>th</str<strong>on</strong>g>er, Kate, 550<br />

Prendergast, Patrick J., 495<br />

Prentice, Jamie, 794<br />

Preusser, Tobias, 877<br />

Preziosi, Luigi, 795<br />

Priano, Lorenzo, 381<br />

Prokert, G., 714<br />

Proulx, Stephen, 797<br />

Przybilla, Jens, 798<br />

Przymus, Piotr, 799, 843<br />

Pshenichnikova, Tatyana, 238<br />

Psiuk-Maksymowicz, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 801<br />

Ptashnyk, Mariya, 802<br />

Puddicombe, Robert, 803<br />

Pugliese, Andrea, 804, 837<br />

Pujo-Menjouet, Laurent, 414<br />

Pułka, Małgorzata, 805<br />

Puszyński, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 554<br />

Puszynski, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 909<br />

Přiklopil, Tadeáš, 796


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Pyrzowski, Jan, 806<br />

Quigley, Ben, 335<br />

Quintanilla, Rodrigo Huerta, 405<br />

Qutub, Amina, 807<br />

Radszuweit, Markus, 245<br />

Radtke, Kelly, 146<br />

Radulescu, Ovidiu, 808<br />

Rafajlovic, Marina, 809<br />

Rafał, dr inż. Pokrzywa, 621<br />

Raff, Jordan, 71<br />

Raharinirina, Nomenjanahary Alexia, 810<br />

Rajkovic, Katarina, 667<br />

Ramanantoanina, A., 811<br />

Ramis-C<strong>on</strong>de, Ignacio, 864<br />

Ramos, José, 466<br />

Rans<strong>on</strong>, Neil, 982<br />

Rault, J<strong>on</strong>a<str<strong>on</strong>g>th</str<strong>on</strong>g>an, 813<br />

Raum, Kay, 967<br />

Read, Nick, 723<br />

Recker, Mario, 594, 711, 814<br />

Regoes, Roland R., 614<br />

Reichhardt, Charles, 815<br />

Reimann, Peter, 865<br />

Rejniak, Katarzyna, 816<br />

Rejniak, Katarzyna A., 817, 818<br />

Reluga, Timo<str<strong>on</strong>g>th</str<strong>on</strong>g>y, 819<br />

Rempala, Grzegorz A., 820<br />

Repsys, Sarunas, 821<br />

Reuss, M., 562<br />

Reuss, Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ias, 223, 768, 770<br />

Reynolds, Jennifer, 822<br />

Ri, Maxim, 32<br />

Ri, Natalya, 32<br />

Ribba, Benjamin, 823<br />

Ribeiro, Ruy, 177<br />

Ricken, Tim, 824<br />

Rider, Rachel, 825<br />

Rieger, Heiko, 826<br />

Rietbergen, Bert van, 994<br />

Rigas, A.G., 914<br />

Ripoll, Jordi, 827<br />

Ristanovic, Dusan, 667<br />

Rizzoli, Annapaola, 837<br />

Roberts, E. S., 828<br />

Roberts, Mick, 829<br />

Roberts<strong>on</strong>-Tessi, Mark, 830<br />

Robeva, Raina, 831<br />

Röblitz, Susanna, 832<br />

Rockne, Russell, 638, 833<br />

Rodrigo, M. R., 406<br />

Rodrigues, Helena S<str<strong>on</strong>g>of</str<strong>on</strong>g>ia, 835<br />

Rodriguez, Jose Felix, 591<br />

Rodriguez, Terry, 387<br />

Roeder, Ingo, 342, 537, 962, 1053<br />

Romagnoli, Ver<strong>on</strong>ica, 182<br />

Roman, Fabio, 998<br />

Romanyukha, Alexei A., 476, 716<br />

Roose, T., 1062<br />

Roquete, Carlos J., 126<br />

Rosà, Roberto, 837<br />

Ross, Amanda, 173<br />

Rosso, Fausta, 837<br />

Rossotto, Federica, 998<br />

Rost, Fabian, 135<br />

Ro<str<strong>on</strong>g>th</str<strong>on</strong>g>-Nebelsick, Anita, 527, 838<br />

Roto, Elina, 840<br />

Roudi, Yasser, 409<br />

Rovetti, Robert, 841<br />

Rowat, Peter, 370, 842<br />

Rozante, Luiz, 926<br />

Ryan, Sadie, 323, 845<br />

Rychtar, Jan, 133, 384<br />

Rykaczewski, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 799, 843<br />

Rynkiewicz, A., 619<br />

Rzeszowska-Wolny, Joanna, 931<br />

Sacerdote, Laura, 844<br />

Sadovsky, Michael, 846<br />

Saeki, Koichi, 848<br />

Saenz, Roberto, 849<br />

Sajitz-Hermstein, Max, 850<br />

Saku, Takashi, 22<br />

Sala<str<strong>on</strong>g>th</str<strong>on</strong>g>é, Marcel, 321<br />

Salbreux, Guillaume, 694, 851<br />

Sal<str<strong>on</strong>g>th</str<strong>on</strong>g>ouse, D., 482<br />

Saltzman, Jeffrey S., 689<br />

Sams<strong>on</strong>, Adeline, 852<br />

Sanchez Corrales, Yara Elena, 853<br />

Sanchez-Prieto, P., 647<br />

Sander, Le<strong>on</strong>ard, 491<br />

Sander, L. M., 490<br />

Sander, Martin, 135<br />

Sanogo, Chata, 278<br />

Sansom, Mark S.P., 255<br />

Santana, Fabiana, 926<br />

Sanz, Luis, 854<br />

Sapoukhina, Natalia, 149<br />

Sardanyés, Josep, 249<br />

Sasaki, Akira, 856<br />

Satake, Akiko, 857<br />

Savory, Andrew, 858<br />

Sawair, Faleh, 22<br />

Sboto-Frankenstein, U., 983<br />

Scacchi, S., 859<br />

Schadschneider, Andreas, 860<br />

Schaettler, Heinz, 566, 861<br />

Schäuble, Sascha, 862<br />

Scheiner, Stefan, 779<br />

Scherf, Nico, 962, 1053<br />

Scheurich, Peter, 1036<br />

Schilling, Thomas F., 146<br />

Schimansky-Geier, L., 563<br />

Schittler, Daniella, 863<br />

Schley, David, 353<br />

Schlicht, R., 766<br />

1077


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Schlitt, T., 828<br />

Schlittenhardt, Timo<str<strong>on</strong>g>th</str<strong>on</strong>g>y P., 960<br />

Schlüter, Daniela, 864<br />

Schmal, Christoph, 865<br />

Schmeiser, Christian, 889<br />

Schmeitz, Christine, 866<br />

Schmidt, Deena, 867<br />

Schneditz, Daniel, 328, 868<br />

Schneider, Kristan, 870<br />

Schnell, Santiago, 871, 1044<br />

Schoell, Eckehard, 245<br />

Sch<str<strong>on</strong>g>of</str<strong>on</strong>g>ield, Pietá, 44<br />

Scholz, Markus, 537<br />

Schroeter, A., 970<br />

Schugart, Richard, 872<br />

Schulze, Anna, 873<br />

Schuster, S., 108, 517, 862, 970<br />

Schütte, Christ<str<strong>on</strong>g>of</str<strong>on</strong>g>, 1010<br />

Schütte, Moritz, 906<br />

Schütz, T.A., 88<br />

Schütz, Tina A., 971<br />

Schwämmle, Veit, 875<br />

Schwank, Gerald, 203<br />

Schwartz, Elissa, 876<br />

Schwen, Lars Ole, 877<br />

Scianna, Marco, 878<br />

Scott, Jacob, 880<br />

Sedd<strong>on</strong>, Bennedict, 895<br />

Sedivy, Roland, 30<br />

Selbach-Allen, Megan, 881<br />

Sella, Lorenzo, 882<br />

Seno, Hiromi, 884<br />

Seppänen, Anne, 885<br />

Seri, Raffaello, 886<br />

Service, Robert, 887<br />

Seyfried, Armin, 888<br />

Sfakianakis, Nikolaos, 889<br />

Shahbandi, Nazgol, 890<br />

Shapiro, Michael, 219<br />

Shapiro, Rebecca S., 984<br />

Sharkey, Dr. Kieran, 881<br />

Sharkey, Kieran, 891<br />

Sharp, Ryan, 892<br />

Sheikh-Bahaei, Shahab, 430<br />

Shifflet, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Angela, 184<br />

Shifflet, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. George, 184<br />

Shigeyoshi, Yasufumi, 59<br />

Shillor, Meir, 49<br />

Shim, Eunha, 893<br />

Shinomoto, Shigeru, 512, 894<br />

Shirinifard, Abbas, 357, 936<br />

Shuvaev, Andrey, 895<br />

Sieber, Michael, 896<br />

Signerska, Justyna, 897<br />

Sikora-Wohlfeld, Wer<strong>on</strong>ika, 898<br />

Silva, Lucas Amaral da, 926<br />

Silva, V.C.M., 301<br />

Sime<strong>on</strong>i, Luca, 873<br />

1078<br />

Sim<strong>on</strong>, Peter, 900<br />

Sim<strong>on</strong>, Peter L., 502<br />

Simps<strong>on</strong>, Dr Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew, 70<br />

Simps<strong>on</strong>, Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew, 901, 902<br />

Sinden, Richard, 519<br />

Sinisgalli, Carmela, 293<br />

Sirl, David, 903<br />

Sirovich, Roberta, 904<br />

Skakauskas, Vladas, 821, 905<br />

Sk<strong>on</strong>ieczna, Magdalena, 931<br />

Skupin, Alexander, 906, 907<br />

Skvortsov, Alex, 905<br />

Skwara, Urszula, 908<br />

Sleeman, B. D., 373<br />

Smalley, Keiran S., 496<br />

Smalley, Keiran S. M., 307<br />

Smieja, Jaroslaw, 909<br />

Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>, Charles Eugene, 910<br />

Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>, David W., 281, 779<br />

Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>?, Robert, 911<br />

Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>, Thomas, 173<br />

Smi<str<strong>on</strong>g>th</str<strong>on</strong>g>, Tom, 602<br />

S.M.Salehi, Fazeleh, 394<br />

Smye, S. W., 373<br />

Sneppen, Kim, 875<br />

Sneyd, James, 248<br />

S<strong>on</strong>g, Guohua, 199, 1020<br />

Sorokina, Oksana, 912<br />

Sosnovtseva, Olga, 423<br />

Souai, Oussama, 692<br />

Souza, Max, 158<br />

Souza, Max O., 913<br />

Spanou, E.N., 914<br />

Spiegel, Orr, 313<br />

Stachowska-Piętka, Joanna, 916<br />

Staiger, Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>ee, 865<br />

Stanley-Wall, Nicola, 210<br />

Starruß, Jörn, 918<br />

Startek, Michał, 919<br />

Stefański, K., 145<br />

Steiner, Lydia, 331<br />

Steingroewer, J., 573<br />

Stekel, Dov J., 403<br />

Stéphanou, Angélique, 340<br />

Stephanou, Angélique, 574<br />

Stepien, Pawel, 508<br />

Stepien, Robert, 508<br />

Stepien, Tracy, 920<br />

Stevens, Angela, 113, 320<br />

Stiehl, Thomas, 921<br />

Stockley, Peter, 982<br />

Stokes, Yv<strong>on</strong>ne, 922<br />

Stolarska, Magdalena A., 923<br />

Stollenwerk, Nico, 28, 924, 925<br />

St<strong>on</strong>e, Lewi, 990<br />

Stransky, Beatriz, 926<br />

Strauss, Lior, 928<br />

Strömblad, Staffan, 444


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Struzik, Zbigniew, 929<br />

Strychalski, Wanda, 930<br />

Student, Sebastian, 931<br />

Stura, Ilaria, 381<br />

Sturrock, Marc, 933<br />

Suarez, Susan, 731<br />

Sumpter, David J. T., 715<br />

Sundqvist, Lisa, 934<br />

Surulescu, Christina, 652, 935, 1036<br />

Surulescu, Nico, 935<br />

Suzuki, Sayaki U., 856<br />

Swans<strong>on</strong>, Kristin R., 638, 833<br />

Swat, Maciej, 936, 938<br />

Sweby, P.K., 968<br />

Świątek, Michał, 584<br />

Świder, Krzyszt<str<strong>on</strong>g>of</str<strong>on</strong>g>, 939<br />

Świerniak, Michał, 775<br />

Swig<strong>on</strong>, David, 920, 940<br />

Szederkényi, Gábor, 941<br />

Szilágyi, András, 656<br />

Szlęk, Jakub, 649<br />

Szopa, Piotr, 260, 942<br />

Szymanowska-Pułka, Joanna, 943<br />

Szymanska, Paulina, 945<br />

Szymańska, Zuzanna, 946<br />

Tabaka, Marcin, 725<br />

Tada, Tetsuko, 439<br />

Taghipoor, Masoomeh, 947<br />

Takada, Takenori, 493, 949<br />

Takahashi, Daisuke, 950<br />

Takahashi, Lucy T., 302<br />

Takahashi, Satoshi, 435, 951<br />

Takasu, Fugo, 737<br />

Takeuchi, Yasuhiro, 952<br />

Talikka, Marja, 230<br />

Tamborrino, Massimiliano, 844, 953<br />

Tanaka, Elly M., 134<br />

Tanase, Mihai, 233<br />

Tang, Min, 166<br />

Tapani, S<str<strong>on</strong>g>of</str<strong>on</strong>g>ia, 954<br />

Tay, Savas, 761<br />

Taylor, Michael, 502, 956<br />

Taylor, Nick, 728<br />

Teixeira, M.G.L., 301<br />

Teixeira Alves, Mickael, 957<br />

Telschow, Arndt, 102<br />

Terada, Ayaka, 884<br />

Tero, Atsushi, 34, 958<br />

Terry, Emmanuelle, 959<br />

Teschl, Gerald, 499<br />

Teschl, Susanne, 499<br />

Teusink, Bas, 122<br />

Thanh, Ngo van, 174<br />

Theraulaz, Guy, 1026<br />

Thibodeaux, Jeremy, 960<br />

Thiébaut, Rodolphe, 895<br />

Thieme, Horst, 961<br />

Thieme, Horst R., 227<br />

Thierbach, K<strong>on</strong>stantin, 962<br />

Thieullen, Michele, 963<br />

Thober, Stephan, 579<br />

Thomas, Christopher M., 403<br />

Thomas, D., 298<br />

Thomas, S. R., 713<br />

Thomas, S. Randall, 964<br />

Thul, R., 197<br />

Thul, Ruediger, 965<br />

Thurley, Kevin, 289, 290, 966<br />

Thygesen, U.H., 1054<br />

Tiburtius, Sara, 967<br />

Tim<strong>on</strong>ov, Vladimir, 32<br />

Tindall, Marcus, 968<br />

Tobin, Frank, 230<br />

Toiv<strong>on</strong>en, Jaakko, 969<br />

Tokarski, C., 970<br />

Toma, A., 88<br />

Toma, Alina, 971<br />

Tomanek, B., 983<br />

Tomas, Susana Ubeda, 686<br />

Tomasetti, Cristian, 972<br />

Tomáška,<br />

[Pleaseinsertintopreamble]ubomír, 119<br />

Tomáška, Ľubomír, 521<br />

Tomba, Gianpaolo Scalia, 804<br />

Topa, Paweł, 973<br />

Töpfer, Nadine, 975<br />

Torres, Delfim F. M., 835<br />

Tosin, Andrea, 977<br />

Touzeau, Suzanne, 978<br />

Toyoizumi, Hiroshi, 979<br />

Traas, Jan, 541<br />

Tracht, Saman<str<strong>on</strong>g>th</str<strong>on</strong>g>a M., 222<br />

Traulsen, Arne, 980<br />

Traulsen, Chaitanya S. Gokhale and Arne,<br />

361<br />

Trněný, Marek, 789<br />

Troiwanowski, G., 1002<br />

Trubuil, Alain, 170<br />

Tsaban, Lea, 595<br />

Tsai, Je-Chiang, 981<br />

Tsubo, Yasuhiro, 512<br />

Turner, Dr. Katy, 179<br />

Turner, Mat<str<strong>on</strong>g>th</str<strong>on</strong>g>ew, 600<br />

Turshak, L<strong>on</strong>gt<strong>on</strong>g, 1033<br />

Twarock, R., 482<br />

Twarock, Reidun, 982<br />

Tyburczyk, J., 983<br />

Tyc, Katarzyna, 984<br />

Tyran-Kamińska, Marta, 605<br />

Tyrcha, Joanna, 409, 444, 626<br />

Tyszka, Jarosław, 973<br />

Tzafestas, Elpida, 985<br />

Úbeda-Tomás, S., 75<br />

Udagawa, Jun, 599<br />

1079


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Ulikowska, Agnieszka, 987<br />

Unterk<str<strong>on</strong>g>of</str<strong>on</strong>g>ler, Karl, 499<br />

Utz, Margarete, 988<br />

Uys, Dr. Lafras, 273, 810<br />

Uyttewaal, Magalie, 541<br />

Uziel, Asher, 990<br />

Vaggi, F., 69<br />

Vaggi, Federico, 685<br />

Valentine, Jack L., 689<br />

Valle, Sara Y. Del, 222<br />

van der Sanden, Boudewijn, 574<br />

Vardavas, Raffaele, 995<br />

Vargas, Cristobal, 279<br />

Vassilevska, Tanya Kostova, 530<br />

Vassiliadis, V.G., 914<br />

Vauchelet, Nicolas, 166<br />

Vela-Pérez, M., 996<br />

Velázquez, J. J. L., 996<br />

Velazquez, J.J.L., 109<br />

Venturino, Ezio, 381, 997, 998<br />

Vera-Lic<strong>on</strong>a, Paola, 999<br />

Verducci, J. S., 388<br />

Vider, Tal, 595<br />

Vidybida, A.K., 536<br />

Vign<strong>on</strong>-Clementel, Irene, 447, 1002<br />

Vign<strong>on</strong>-Clémentel, Irène, 166<br />

Vitale, Guido, 795, 1004<br />

Volkov, Evgenii, 790, 1005<br />

Volpe, Claudia, 997<br />

Volpert, Vitaly, 1008, 1009<br />

v<strong>on</strong> Kleist, Max, 1010<br />

Voß, Ute, 686<br />

Voss-Boehme, Anja, 1013<br />

Voß-Böhme, Anja, 420<br />

Voytsekh, Olga, 862<br />

Vrscay, Edward R., 531<br />

Vuillaume, Gregory, 230<br />

Vybiral, Jan, 395<br />

Wakano, Joe Yuichiro, 1014<br />

Waliszewski, Przemyslaw, 22, 1015<br />

Wallace, Doro<str<strong>on</strong>g>th</str<strong>on</strong>g>y, 578, 1017<br />

Wal<str<strong>on</strong>g>th</str<strong>on</strong>g>er, Georg R., 1018<br />

Wang, Juhui, 170<br />

Wang, M. X., 752<br />

Wang, Xiaojing, 1020<br />

Wang, Yi, 291, 1047<br />

Wang, Zhou, 531<br />

Wangenheim, Ute v<strong>on</strong>, 1012<br />

Waniewski, Jacek, 167, 216, 328<br />

Ward, John, 353, 1021<br />

Wardman, Jess, 982<br />

Wats<strong>on</strong>, Michael, 1022<br />

Wawrzkiewicz, Agata, 1023<br />

Wcisło, Rafał, 1024<br />

Wdowczyk-Szulc, J., 619<br />

Webb, Dr Steven, 37<br />

Webb, Steve, 98<br />

1080<br />

Weens, William, 1025<br />

Weitz, Sebastian, 1026<br />

Welter, Michael, 826<br />

Wennberg, Bernt, 1027<br />

Wer<strong>on</strong>, Aleksander, 1028<br />

Werynski, Andrzej, 328<br />

Wesolowski, Sergiusz, 1029<br />

West, Bruce J., 1031<br />

White, Andy, 98, 123, 1032<br />

White, Dr. K.A. Jane, 179<br />

White, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Michael, 759<br />

White, R.G., 459<br />

Wick, Wolfgang, 971<br />

Wiederholt, Ruscena, 1033<br />

Wiesner, Karoline, 484<br />

Wilder, Sara, 1049<br />

Wilkie, Ka<str<strong>on</strong>g>th</str<strong>on</strong>g>leen, 1034<br />

Willis, Lisa, 1035<br />

Wimpenny, David I., 676<br />

Winkel, Christian, 1036<br />

Wiśniowska, Barbara, 649, 785<br />

Wissuwa, M., 1062<br />

Wittenfeld, Annelene, 1038<br />

Wittmann, Meike, 1039<br />

Wiuf, Carsten, 296, 511, 1040<br />

Woesik, Robert van, 519<br />

Wojdyla, Tomasz, 1041<br />

Wollnik, Carina, 1042<br />

Wrzosek, Dariusz, 946, 1043<br />

Wu, Yilin, 457<br />

Wylie, Karen, 692<br />

Wynn, Michelle, 1044<br />

Xu, Li, 1055<br />

Yamamura, Norio, 1045<br />

Yamauchi, Atsushi, 950, 1046<br />

Yan, Ping, 1047<br />

Yanchukov, Alexey, 797<br />

Yang, W., 1002<br />

Yang, Xuxin, 1048<br />

Yi, Chung-Se<strong>on</strong>, 210<br />

Yo<strong>on</strong>, Je<strong>on</strong>g-Mi, 1049<br />

Yoshida, Hiroshi, 1050<br />

Young, Todd R., 464<br />

Yvinec, Romain, 605<br />

Żabicki, Michał, 584<br />

Zagorski, M., 140<br />

Zagórski, Marcin, 1051<br />

Zalasiński, Jerzy Leszek, 212<br />

Żarczyńska-Buchowiecka, M., 619<br />

Zdravković, S., 593<br />

Żebrowski, Jan Jacek, 773<br />

Zebrowski, Jan J. ˙ , 781<br />

Żebrowski, J. J., 351<br />

Zeng, Yukai, 558<br />

Zerial, Marino, 468<br />

Zerjatke, Thomas, 1053


<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Ma<str<strong>on</strong>g>th</str<strong>on</strong>g>ematical and Theoretical Biology 2011<br />

Zhang, Lai, 1054<br />

Zhang, Qingguo, 1055<br />

Zhang, Zhid<strong>on</strong>g, 353<br />

Zientek, Michał, 1057<br />

Zijerveld, Leo, 211<br />

Zubairova, Ulyana, 1058<br />

Zubik-Kowal, Barbara, 520<br />

Zubkov, Vladimir, 1059<br />

Żuk, Paweł, 1060<br />

Żuk, Paweł, 761<br />

Zuk, Pawel, 454<br />

Zygalakis, K<strong>on</strong>stantinos, 1062, 1063<br />

1081

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!