Innovationsdynamik in der EU: Konvergenz oder Divergenz? - EIIW

eiiw.eu

Innovationsdynamik in der EU: Konvergenz oder Divergenz? - EIIW

Lqkdowvyhu}hlfkqlv Lqqrydwlrqvg|qdpln lq ghu HX= Nrqyhujhq} rghu Glyhujhq}B Hlqh ]hlwuhlkhq0Txhuvfkqlwwvdqdo|vh Gu1 Dqguh Mxqjplwwdj Ohkuvwxko iÿu Zluwvfkdiwvsrolwln2 Lqwhuqdwlrqdoh Zluwvfkdiwveh}lhkxqjhq Xqlyhuvlwçw Srwvgdp Dxjxvw0Eheho0Vwud h;< 477;5 Srwvgdp mxqjpCu}1xql0srwvgdp1gh Iheuxdu 5335 4 Hlqohlwxqj 4 5 Qdwlrqdoh Lqqrydwlrqviçkljnhlw= Ehjul vgh qlwlrq xqg Ph nrq0 }hsw 4 6Dqvçw}h }xu Nrqyhujhq}phvvxqj 8 614 Txhuvfkqlwwvwhvwv ghu Nrqyhujhq}k|srwkhvh 1 1 1 1 1 1 1 1 1 1 1 1 : 615 ]hlwuhlkhq0 xqg Sdqhogdwhqwhvwv ghu Nrqyhujhq}k|srwkhvh 1 1 1 1 43 7 Hujheqlvvh ghu hpslulvfkhq Dqdo|vh 4: 714 Whvwv dxi 0xqg 0Nrqyhujhq} 1111111111111111111 4: 715 ]hlwuhlkhq0 xqg Sdqhogdwhqwhvwv ghu Nrqyhujhq}k|srwkhvh 1 1 1 1 54 8 ]xvdpphqidvvxqj xqg Vfkox irojhuxqjhq 57 Olwhudwxu 59


]xvdpphqidvvxqj= Glhvhu Ehlwudj ehvfkçiwljw vlfk plw ghu Iudjh/ re hv lp ]hlwdeodxi }x hlqhu Dqjohlfkxqj +Nrqyhujhq}, rghu Glyhujhq} ghu qdwlrqdohq Lqqrydwlrqviçkljnhlwhq ghu 48 HX0Vwddwhq nrppw1 Glh Ehdqwzruwxqj glhvhu Iudjh huodxew dxfk xqplwwhoeduh Uÿfnvfkoÿvvh eh}ÿjolfk ghu Huirojvdxvvlfkwhq hlqhu Dqjohlfkxqj ghu Sur0Nrsi0Hlqnrpphq xqg Duehlwvsurgxnwlylwçwhq lq0 qhukdoe ghu HX1 ]xu hpslulvfkhq Dqdo|vh dxi ghu Edvlv ghu Sdwhqwhuwhloxqjhq dp XV0Sdwhqwdpw yrq 4


4 Hlqohlwxqj Ehl doohu Yhuvfklhghqkhlw ghu wkhruhwlvfkhq Ixqglhuxqj xqg nrqnuhwhq Dxvjh0 vwdowxqj ghu }dkouhlfkhq Hunoçuxqjvdqvçw}h ghu qhrnodvvlvfkhq Zdfkvwxpvwkhr0 ulh/ ghu hyroxwrulvfkhq Ùnrqrpln xqg hlqhv Kdxsw}zhljv ghu qhxhq Zdfkv0 wxpvwkhrulh hujlew vlfk dxv lkqhq glh jhphlqvdph Txlqwhvvhq}/ gd ghu whfk0 qlvfkh Iruwvfkulww xqg Lqqrydwlrqhq }hqwudoh wuhlehqgh Nuçiwh ghv zluwvfkdiw0 olfkhq Zdfkvwxpv vlqg +Djklrq2Krzlww/ 4


gxqj hlqvfkolh w1 5 Plw Eolfn dxi glh ùnrqrplvfkhq Wkhrulh ehuxkw glh Lqqryd0 wlrqviçkljnhlw hlqhv Odqghv juxqgvçw}olfk dxi guhl Idnwruhq= vhlqhu doojhphlqhq Lqqrydwlrqvlqiudvwuxnwxu/ vhlqhu whfkqrorjlvfkhq xqg zluwvfkdiwolfkhq Vsh}ldol0 vlhuxqj xqg ghu Txdolwçw ghu Yhuelqgxqjhq }zlvfkhq ghu doojhphlqhq Lqqryd0 wlrqvlqiudvwuxnwxu xqg ghq Zluwvfkdiwv}zhljhq/ glh lq ghp mhzhloljhq Odqg hlq ehvrqghuhv Jhzlfkw kdehq1 6 Glh Idnwruhq/ glh glh doojhphlqh Lqqrydwlrqvlqiudvwuxnwxu hlqhv Odqghv dxv0 pdfkhq/ vlqg vrzrko }hqwudohu Ehvwdqgwhlo ghu IxH0edvlhuwhq Prghooh ghu qhx0 hq Zdfkvwxpvwkhrulh dov dxfk ghu Olwhudwxu }xp Nrq}hsw ghu qdwlrqdohq Lqqr0 ydwlrqvv|vwhph +}1 E1 Urphu/ 4


Glhvh uhodwly jureh Guhlwhloxqj }hljw ehuhlwv/ gd glh Lqsxwidnwruhq/ glh Hlq0 x dxi glh Lqqrydwlrqviçkljnhlw hlqhv Odqghv kdehq/ ylhoiçowlj xqg nrpsoh{ vlqg xqg gxufk hlqh hlq}hoqh ph eduh Juù h zlh ghq IxH0Dxvjdehq rghu gdv IxH0 Shuvrqdo qxu xq}xuhlfkhqg huid w zhughq nùqqhq1 8 ]xghp zhlvhq glh ehlghq jhudgh jhqdqqwhq Ph juù hq qrfk hlqljh lppdqhqwh Vfkzdfkvwhoohq dxi1 ]xp hlqhq ehwuhlehq nohlqhuh Xqwhuqhkphq riw nhlqh iruphooh IxH/ glh lq hqwvsuh0 fkhqghq Vwdwlvwlnhq huid w zlug/ vr gd ghuhq whfkqrorjlvfkh xqg dxi Lqqrydwlr0 qhq }lhohqgh Dnwlylwçwhq qxu vhku xq}xuhlfkhqg jhphvvhq zhughq +yjo1 }1 E1 Sd0 who2Sdylww/ 4


}hq/ lq ghp Odqg yhundxihq +Hdwrq2Nruwxp/ 4


ghw/ zhlo }xu uhfkwolfkhq Devlfkhuxqj yrq Hu qgxqjhq dxfk dqghuh Vfkxw}uhfk0 wh/ zlh }1 E1 Jheudxfkvpxvwhu/ Zduhq}hlfkhq xqg Jhvfkpdfnvpxvwhu jhqxw}w zhughq nùqqhq rghu zhlo ùnrqrplvfkh Yruwhloh dxfk gxufk ghq ]hlwyruvsuxqj dp Pdunw/ Jhkhlpkdowxqj/ jxwh Vhuylfhohlvwxqjhq rghu Nrvwhqyruwhloh hukdo0 whq zhughq nùqqhq1 Mhgrfk zhughq huvwhqv ylhoh glhvhu Vfkxw}pùjolfknhlwhq qlfkw dowhuqdwly/ vrqghuq nrpsohphqwçu }xp Sdwhqwvfkxw} yhuzhqghw +Vfkprfk/ 4


zlug +H lvw ghu Huzduwxqjvrshudwru,/ gd ghu Devwdqg }zlvfkhq glhvhq orjd0 ulwkplhuwhq Juù hq lq ghp ehwudfkwhwhq ]hlwudxp deqlppw1 P1 d1 Z1 zçfkvw gdv }xuÿfnolhjhqgh Odqg vfkqhoohu dov gdv Odqg/ gd ehl ghu lqwhuhvvlhuhqghq Juù h hlq kùkhuhv Dxvjdqjvqlyhdx dxizhlvw1 Ghu }zhlwh Whlo lpsol}lhuw klqjhjhq ehuhlwv gdv Huuhlfkhq hlqhv Johlfkjh0 zlfkwv}xvwdqgv1 Vhlqh irupdoh Gh qlwlrq huirughuw/ gd glh odqjiulvwljhq Sur0 jqrvhq ghu Xqwhuvfklhgh }zlvfkhq ghq ehlghq Oçqghuq plw }xqhkphqghq Sur0 jqrvhkrul}rqw jhjhq hlqh Nrqvwdqwh e}z1 jhjhq Qxoo whqglhuhq/ g1 k1= olp &


Ehl hlqhu wkhruhwlvfkhq Ehwudfkwxqj plw xqhqgolfkhp ]hlwkrul}rqw idoohq glh pxowlyduldwh Yduldqwh ghu }zhlwhq Gh qlwlrq yrq Ehuqdug2Gxuodxi xqg glh Gh qlwlrq yrq Hydqv2Nduudv qdwÿuolfk }xvdpphq1 < Ehl hpslulvfkhq Xqwhu0 vxfkxqjhq plw ehjuhq}whp Vwlfksurehqxpidqj nùqqhq vlfk mh qdfk Zdko ghu Eh}xjvjuù h +}1 E1 gdv iÿkuhqgh Odqg rghu ghu Plwwhozhuw, mhgrfk xqwhuvfklhg0 olfkh Hujheqlvvh hlqvwhoohq +yjo1 Ehuqdug2Mrqhv/ 4


zhuw zçuhq +Hydqv/ 4Q iÿu hlqhq {lhuwhq ]hlwudxp yrq 3 elv W dov j? @ +oq |?A oq |?f, @W jheloghw xqg glh Uhjuhvvlrqvjohlfkxqj j? @ . oq |?f . %? +:, plwwhov ghv Nohlqvwh0Txdgudwh0Yhuidkuhqv jhvfkçw}w1 Dxi hlqh Nrqyhujhq} ghu lqwhuhvvlhuhqghq Juù h zlug gdqq jhvfkorvvhq/ zhqq ghu Zhuw ghv Uhjuhvvlrqv0 nrh!hqwhq vljql ndqw nohlqhu dov Qxoo lvw1 Dqdorj zlug }xu Phvvxqj ehglqjwhu Nrqyhujhq} dxi hlqh Uhjuhvvlrqvjohlfkxqj j? @ . oq |?f . {? . %? +;, }xuÿfnjhjul hq/ zrehl {? hlq Yhnwru yrq Nrqwurooyduldeohq lvw/ yrq ghqhq dq0 jhqrpphq zlug/ gd vlh iÿu gdv Huuhlfkhq xqwhuvfklhgolfkhu Johlfkjhzlfkwv}x0 vwçqgh yhudqwzruwolfk vlqg/ xqg ghq Yhnwru ghu gd}xjhkùuljhq Uhjuhvvlrqv0 nrh!}lhqwhq uhsuçvhqwlhuw/ glh vljql ndqw yrq Qxoo yhuvfklhghq vlqg1 Ghu dxjhqiçooljh Eh}xj glhvhv Nrqyhujhq}ph nrq}hswv }xu huvwhq Nrqyhu0 jhq}gh qlwlrq zlug lq Ehuqdug2Gxuodxi +4


Vfkçw}zhuw yrq xp hlqhq jhzlfkwhwhq Gxufkvfkqlww kdqghow/ ehghxwhw dxfk/ gd vlfk ehl hlqhp qhjdwlyhq a glh Xqwhuvfklhgh }zlvfkhq hlqljhq Sdduhq yrq Oçqghuq dehu qlfkw xqehglqjw doohq yhuulqjhuw kdehq1 Hv ndqq dovr dxi0 juxqg glhvhv Whvwv qlfkw hqwvfklhghq zhughq/ re dooh Oçqghu nrqyhujlhuhq/ vlfk Nrqyhujhq}foxev eloghq rghu qxu hlqljh Oçqghu nrqyhujlhuhq xqg dqghuh qlfkw1 Iÿu ghq Idoo/ gd wdwvçfkolfk qxu hlqh ehglqjwh 0Nrqyhujhq} lp Vlqqh ghu Johlfkxqj +;, yruolhjw/ dehu dxi hlqh devroxwh 0Nrqyhujhq} jhwhvwhw zlug/ olhjw }xghp gdv lq ghu Ùnrqrphwulh doojhphlq ehndqqwh Sureohp dxvjhodvvhqhu Yd0 uldeohq yru +yjo1 }1 E1 Kduyh|/ 4


jhxgxqj yrq yhuiÿjeduhq ]hlwuhlkhqlqirupdwlrqhq gdu +Erko/ 4


Sur}h hlqhq Plwwhozhuw yrq Qxoo/ zçkuhqg vhlq Plwwhozhuw ehl hlqhu ehglqjwhq Nrqyhujhq} yrq Qxoo yhuvfklhghq lvw1 Glh ßehusuÿixqj ghu Iudjh/ re hlqhu ]hlwuhlkh hlq vwdwlrqçuhu/ wuhqgvwdwlr0 qçuhu rghu qlfkwvwdwlrqçuhu gdwhqjhqhulhuhqghu Sur}h }xjuxqgh olhjw/ ndqq plw0 whov yhuvfklhghqhu Hlqkhlwvzxu}howhvwv huirojhq146 ]zhl Ndqglgdwhq/ glh lq glh0 vhu Xqwhuvxfkxqj }xu Dqzhqgxqj nrpphq vlqg ghu Dxjphqwhg Glfnh|0Ixoohu0 xqg ghu Skloolsv2Shuurq0Whvw +Glfnh|2Ixoohu/ 4


hlqhp dqghuhq Odqg/ gdv dov Yhujohlfkvjuù h yhuzhqghw zlug/ rghu jhjhq0 ÿehu ghp Plwwhozhuw ghu ehwudfkwhwhq Oçqghu1 51 Vlqg glh Gl huhq}hq vwdwlrqçu/ g1 k1 ? ? 3/ vr nùqqhq }xqçfkvw hlqpdo glh ehlghq Içooh xqwhuvfklhghq zhughq/ glh plw ghu }zhlwhq Nrqyhujhq}gh0 qlwlrq yrq Ehuqdug2Gxuodxi +4


ndqq/ px qrfk hlqpdo dxi glh juxqgvçw}olfkhq Xqwhuvfklhgh klqjhzlhvhq zhu0 ghq1 Glh ehlghq Nrq}hswh jhkhq qçpolfk yrq xqwhuvfklhgolfkhq Dqqdkphq klq0 vlfkwolfk ghu vwdwlvwlvfkhq Hljhqvfkdiwhq ghv Gdwhqpdwhuldov dxv +Erko/ 4


dejhohkqw zÿugh/ ndxp vlqqyroo zçuh1 4: Glhvh Nulwln dxijuhlihqg vlqg lq mÿqjhuhu ]hlw }zhl Whvwyhuidkuhq iÿu Sd0 qhogdwhq yrujhvfkodjhq zrughq/ glh vhku h{leho lq eh}xj dxi dxi glh g|qdpl0 vfkh Vsh}l ndwlrq iÿu glh hlq}hoqhq Txhuvfkqlwwvhlqkhlwhq vlqg xqg hlqh uljl0 gh Irupxolhuxqj ghu Dowhuqdwlyk|srwkhvh yhuphlghq +Lp2Shvdudq2Vklq/ 4


Nrqvlvwhq} glhvhv Whvwv gdqq jhzçkuohlvwhw/ zhqq ehl Jÿowljnhlw ghu Dowhuqd0 wlyk|srwkhvh ghu Dqwhlo ghu vwdwlrqçuhq ]hlwuhlkhq juù hu dov qxoo lvw/ qçpolfk gdqq/ zhqq olp


irojhqghq PZ0Whvw jhqdqqw,1 Doohuglqjv zhughq qxq glh Vljql ndq}qlyhdxv ghu Hlqkhlwvzxu}howhvwv iÿu glh hlq}hoqhq ]hlwuhlkhq xqplwwhoedu plwhlqdqghu nrp0 elqlhuw1 Plw Uÿfnjul dxi Ilvkhu +4 +4:, ?' glh hlqhu " 2 0Yhuwhloxqj plw 5Q Iuhlkhlwvjudghq jhkrufkw1 Gxufk glhvh hlqidfkh Nrpelqdwlrq ghu Vljql ndq}qlyhdxv lvw ghu PZ0Whvw krfkjudglj h{leho1 Dq0 ghuv dov ehlp LSV0Whvw ndqq lkp mhghu eholheljh Hlqkhlwvzxu}howhvw }xjuxqgh jhohjw zhughq1 Jhqdxvr zlh ehlp LSV0Whvw lvw hv iÿu glh Ydolglwçw ghv PZ0Whvwv huirughu0 olfk/ gd glh Vwùujuù hq ghu Whvwjohlfkxqjhq iÿu glh hlq}hoqhq ]hlwuhlkhq qlfkw nrqwhpsruçu plwhlqdqghu nruuholhuw vlqg1 Ghvkdoe elhwhw vlfk klhu dxfk glh johl0 fkh Ehuhlqljxqj ghu xuvsuÿqjolfkhq ]hlwuhlkhq zlh ehlp LSV0Whvw dq1 Qdwÿuolfk vwhoow vlfk ehl ghq Hlqkhlwvzxu}howhvwv iÿu Sdqhogdwhq/ glh zhlwjh0 khqg dxi dv|pswrwlvfkhq Hljhqvfkdiwhq edvlhuhq/ glh Iudjh qdfk lkuhq Hljhq0 vfkdiwhq xqg lkuhu Pdfkw lq hqgolfkhq Vwlfksurehq1 Hlqh Dqwzruw gdudxi nùq0 qhq qxu h{whqvlyh Vlpxodwlrqvvwxglhq olhihuq1 Vrzrko Lp2Shvdudq2Vklq +4


Devfkolh hqg px qrfk gdudxi klqjhzlhvhq zhughq/ gd ehl ghu Lqwhusuh0 wdwlrq yrq Hlqkhlwvzxu}howhvwv iÿu Sdqhogdwhq plw hlqhu Gxufkvfkqlwwvelogxqj hlqh jhzlvvh Yruvlfkw jherwhq lvw/ zhqq gdv Hujheqlv iÿu hlqh ]hlwuhlkh ghq jhvdpwhq Whvw grplqlhuw1 Pdggdod +4


Standardabweichung Variationskoeffizient 45 40 35 30 25 20 15 10 1,05 1 0,95 0,9 0,85 0,8 0,75 0,7 0,65 0,6 y = 0,333x + 22,825 R 2 = 0,4016 1963 1968 1973 1978 1983 1988 1993 1998 y = -0,0087x + 1,0068 R 2 = 0,9082 1963 1968 1973 1978 1983 1988 1993 1998 Deelogxqj 4= Whvw dxi 0Nrqyhujhq} iÿu glh dp XVSWR huwhlowhq Sdwhqwh sur hlqhu Ploolrq Hlqzrkqhu Glhvhv Hujheqlv vwhkw lp Hlqnodqj plw ghp Ehixqg lq Sdwho2Sdylww +4


Mhgrfk lvw zlh ehuhlwv lp yruljhq Devfkqlww dqjhvsurfkhq hlq lqwhuwhpsr0 udohu Yhujohlfk yrq devroxwhq Vwuhxxqjvpd hq qxu zhqlj dxvvdjhnuçiwlj/ zhqq ghu Plwwhozhuw ghu ehwudfkwhwhq Juù h lp ]hlwdeodxi dqvwhljw1 Glhv lvw ehl ghq XV0Sdwhqwhuwhloxqjhq ghu HX0Oçqghu ghu Idoo/ vr gd hlq uhodwlyhv Vwuhxxqjv0 pd zlh ghu Yduldwlrqvnrh!}lhqw }xu ßehusuÿixqj dxi 0Nrqyhujhq} jhhljqhwhu lvw1 55 Deelogxqj 4 }hljw/ gd ghu Yduldwlrqvnrh!}lhqw iÿu ghq jhvdpwhq Ehre0 dfkwxqjv}hlwudxp yrq 4


Durchschnittswachstum 1963 - 1998 Trendwachstum 1963 - 1998 0,1 0,08 0,06 0,04 0,02 0 0,1 0,08 0,06 0,04 0,02 PT ES IE GR AT DK IT FR LU Anmerkung: Zur Berechnung der t-Werte wurden Whites heteroskastizitätskonsistente Schätzer der Varianz-Kovarianzmatrix verwendet. Signifikanznivaeus in Klammern. FI BE y = -0,005x + 0,0519 R 2 = 0,1153 t=-1,179 (0,259) NL DE UK -2 -1 0 1 2 3 4 5 ln(P 1963) 0 -0,02 PT ES IE GR FI IT BE AT FR DK LU SE y = -0,0042x + 0,0372 R 2 = 0,0736 t=-0,944 (0,363) NL UK DE SE -2 -1 0 1 2 3 4 5 ln(P 1963) Deelogxqj 5= Whvw dxi 0Nrqyhujhq} iÿu glh dp XVSWR huwhlowhq Sdwhqwh sur hlqhu Ploolrq Hlqzrkqhu Dqdorj hujlew vlfk ehl ghu Vfkçw}xqj iÿu glh Wuhqgzdfkvwxpvudwhq= e a! ? @ 3> 3;3 +8> 93;, 3> 34< + 7> 57;, oq sf> U 2 @3> 978= Lq ehlghq Içoohq lvw qxq ghu 0Nrh!}lhqw krfk vljql ndqw nohlqhu dov qxoo1 Nodp0 phuw pdq iÿu hlqhq Prphqw gdv Sureohp ghu dxvjhodvvhqhq Yduldeohq dxv/ vr ndqq iÿu glh yhueohlehqghq HX0Oçqghu yrq hlqhu devroxwhq 0Nrqyhujhq} ehl ghu Lqqrydwlrqvwçwljnhlw dxvjhjdqjhq zhughq1 56 Doohuglqjv huirojw glhvh Nrqyhu0 jhq} plw hlqhu Udwh yrq 4/< ( sur Mdku zdv huvwdxqolfkhuzhlvh ghu ehglqjwhq Nrqyhujhq}udwh yrq 5 ( lq }dkouhlfkhq Txhuvfkqlwwvxqwhuvxfkxqjhq iÿu glh Sur0 Nrsi0Hlqnrpphq lq yhuvfklhghqhq Vwlfksurehq hqwvsulfkw qxu uhfkw odqjvdp +yjo1 }1 E1 Eduur2Vdod0l0Pduwlq/ 4


715 ]hlwuhlkhq0 xqg Sdqhogdwhqwhvwv ghu Nrqyhujhq}k|srwkhvh Glh ]hlwuhlkhqwhvwv zxughq mhzhlov iÿu ghq ]hlwudxp yrq 4


Wdehooh 4= Hlqkhlwvzxu}howhvwv iÿu glh dp XVSWR huwhlowhq Sdwhqwh eh}rjhq dxi ghq Plwwhozhuw ghu 48 HX0Oçqghu Odqg SS0Vwdwlvwln Vlj10qlyhdx DGI0Vwdwlvwln Vljq10qlyhdx Odjv Juxssh 4= Nhlqh e}z1 qlfkwvljql ndqwh Nrqvwdqwh/ nhlq Wuhqg EH 3/437 3/;3< 04/94: 3/795 3 GH 04/639 3/4:3 03/9


Wdehooh 5= Hlqkhlwvzxu}howhvwv iÿu glh dp XVSWR huwhlowhq Sdwhqwh eh}rjhq dxi gdv 4


glh Dowhuqdwlyk|srwkhvh iÿu Ghxwvfkodqg de/ gdv qlhguljh Vljql ndq}qlyhdx lvw dehu yru doohp ghu Wdwvdfkh jhvfkxoghw/ gd glh Whvwjohlfkxqj hlqh qlfkwvljql0 ndqwh Nrqvwdqwh hqwkçow/ glh ghq nulwlvfkhq Zhuw lq glhvhp Idoo xqjhuhfkwihu0 wljw lq glh Kùkh guÿfnw1 ]xghp lvw gdyrq dxv}xjhkhq/ gd gdehlghWhvw0 johlfkxqjhq nhlqh ]hlwyhu}ùjhuxqjhq hqwkdowhq glh lq glhvhp Idoo jÿqvwljhuh Skloolsv0Shuurq0Whvwvwdwlvwln yhueohlehqgh Uhvwh yrq Dxwrnruuhodwlrq xqg jji1 dxfk Khwhurvnhgdvwl}lwçw khudxv owhuw1 Ghvkdoe ndqq pdq gdyrq dxvjhkhq/ gd }zlvfkhq Ghxwvfkodqg xqg Vfkzhghq hlqh devroxwh Nrqyhujhq} ehl ghq jhvdp0 whq Sdwhqwhuwhloxqjhq vwdww qghw1 Iÿu glh dqghuhq ehlghq Juxsshq idoohq glh Hujheqlvvh klqjhjhq vhku ghxwolfk dxv1 Lq ghu }zhlwhq Juxssh ndqq qxu iÿu Julhfkhqodqg xqg Sruwxjdo yrq hlqhu ehglqjwhq Nrqyhujhq} ghu Lqqrydwlrqvwçwljnhlw plw ghp 4


Ehuÿfnvlfkwljw pdq doohuglqjv/ gd glh lq ghq Txhuvfkqlwwvuhjuhvvlrqhq jh0 vfkçw}whq 0Nrh!}lhqwhq jhzlfkwhwh Gxufkvfkqlwwh vlqg/ glh plwklq qlfkwv gd0 uÿehu dxvvdjhq/ }zlvfkhq zhofkhq Oçqghuq vlfk glh Xqwhuvfklhgh yhuulqjhuw kd0 ehq/ xqg juhliw xqplwwhoedu dxi glh vlfk dxv ghu huvwhq Nrqyhujhq}gh qlwlrq hujhehqgh K|srwkhvh }xuÿfn/ gd glh Plwwhozhuwh ghu vwrfkdvwlvfkhq Sur}hvvh/ glh ghq Zdfkvwxpvudwhq }xjuxqgh olhjhq/ iÿu dqiçqjolfk dxi qlhguljhp xqg kr0 khp Qlyhdx eh qgolfkh Oçqghu xqwhuvfklhgolfk vhlq pÿvvhq/ vr hujlew vlfk hlq gl huhq}lhuwhuhv Elog1 Ehl vrofk hlqhp Yhujohlfk vlqg glh Zdfkvwxpvudwhq ehl Julhfkhqodqg/ ghq Qlhghuodqgh xqg Sruwxjdo qlfkw yrq ghu odqjiulvwljhq Wuhqg0 zdfkvwxpvudwh ghv 4


Olwhudwxu Djklrq/ S12Krzlww/ S1 +4


Hydqv/ S12Nduudv/ J1 +4


Olfkwhqehuj/ I1 U1 +4


Txdk/ G1 W1 +4

More magazines by this user
Similar magazines