Technical guide Heat is our element - Buderus
Technical guide Heat is our element - Buderus
Technical guide Heat is our element - Buderus
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<strong>Technical</strong> <strong>guide</strong><br />
Logasol solar technology<br />
for domestic hot water heating<br />
and central heating backup<br />
<strong>Heat</strong> <strong>is</strong> <strong>our</strong> <strong>element</strong><br />
<strong>Technical</strong> <strong>guide</strong><br />
Issue 06/2007
Contents<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Contents<br />
1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />
1.1 Free solar energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2<br />
1.2 Energy supplied by solar collector systems in relation to the energy demand . . . . . . . . . . . . . . . . . . . . . 3<br />
2 <strong>Technical</strong> description of system components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />
2.1 Solar collectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />
2.2 Logalux solar cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />
2.3 Solar control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />
2.4 Logasol KS... complete station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />
2.5 Other system components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />
3 Notes regarding solar heating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />
3.1 General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57<br />
3.2 Regulations and <strong>guide</strong>lines for designing/engineering a solar collector system . . . . . . . . . . . . . . . . . . . 59<br />
4 Sample systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />
4.1 Solar heating systems for domestic hot water heating with conventional<br />
oil/gas fired boilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />
4.2 Solar heating systems for DHW heating and central heating backup with<br />
conventional oil/gas fired boilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br />
4.3 Solar heating systems for DHW heating with solid fuel-boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70<br />
4.4 Solar heating systems for DHW heating and central heating backup with solid fuel boiler . . . . . . . . . 73<br />
4.5 Solar heating systems for DHW heating and swimming pool heating with<br />
conventional oil/gas-fired boilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76<br />
4.6 Detailed hydraulic scheme for wall mounted boilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br />
5 Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />
5.1 Sizing principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />
5.2 Sizing the collector array and solar heating cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br />
5.3 Space requirements for solar collectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92<br />
5.4 Hydraulic system engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br />
5.5 Sizing of the diaphragm expansion vessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110<br />
6 Design/engineering information regarding the installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />
6.1 Pipework, thermal insulation and collector temperature sensor extension cable . . . . . . . . . . . . . . . . . 118<br />
6.2 Air vent valve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119<br />
6.3 Information regarding the different flat-plate collector installation systems . . . . . . . . . . . . . . . . . . . . 121<br />
6.4 Flat roof installation for vacuum tube collectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140<br />
6.5 Lightning protection and earth bonding for solar heating systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />
7 Regulations and Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />
Questionnaire "Fax inquiry - solar heating system for detached houses and<br />
two-family homes" (copy template) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142<br />
Keyword index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144<br />
L<strong>is</strong>t of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147<br />
1
1<br />
Principles<br />
1 Principles<br />
1.1 Free solar energy<br />
The energy that <strong>is</strong> provided by the sun can be used<br />
effectively in almost any part of Germany. The annual<br />
insolation level lies between 900 kWh/m2 and 1200<br />
kWh/m2 . The "insolation map" gives you an idea of the<br />
average insolation that can be expected in y<strong>our</strong><br />
region(➔ 2/1).<br />
A thermal solar heating system uses the energy of the<br />
sun to heat domestic hot water (DHW) and can also be<br />
used as central heating backup. Solar systems for DHW<br />
heating are energy-saving and environmentally<br />
friendly. Combined solar heating systems for DHW<br />
heating and central heating backup are progressively<br />
becoming more popular. Frequently it <strong>is</strong> only<br />
information about the astounding proportion of<br />
heating that technically advanced solar heating<br />
systems can provide today that <strong>is</strong> lacking.<br />
A considerable proportion of solar energy can be used<br />
for heat generation using solar collector systems,<br />
saving valuable fuel, and fewer em<strong>is</strong>sions reduce the<br />
burden on the environment.<br />
2<br />
Münster<br />
Frankfurt<br />
2/1 Average insolation in Germany<br />
Caption<br />
1150 to 1200 kWh/m 2<br />
1100 to 1150 kWh/m 2<br />
1050 to 1100 kWh/m 2<br />
1000 to 1050 kWh/m 2<br />
950 to 1000 kWh/m 2<br />
900 to 950 kWh/m 2<br />
Bremen<br />
Kassel<br />
Hannover<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Köln<br />
Freiburg<br />
Hamburg<br />
Leipzig<br />
Nürnberg<br />
München<br />
Chemnitz<br />
Berlin<br />
Cottbus
1.2 Energy supplied by solar collector systems in relation to the energy demand<br />
Solar collector systems for DHW heating<br />
DHW heating <strong>is</strong> the most obvious application for solar<br />
collector systems. The regular demand for hot water all<br />
the year round <strong>is</strong> a good match for solar energy.<br />
Almost 100% of the energy demand for DHW heating<br />
during the summer can be covered by a solar heating<br />
system (➔ 3/1). Nevertheless, the conventional heating<br />
system must still be able to cover the DHW demand<br />
independently of solar heating. Long periods of bad<br />
weather may occur during which the convenience of<br />
hot water still has to be assured.<br />
Solar collector systems for DHW heating and<br />
central heating backup<br />
Being environmentally aware means thinking of solar<br />
collector systems not just for DHW heating but also for<br />
central heating backup. However, the solar heating<br />
system can only give off heat if the return temperature<br />
of the heating system <strong>is</strong> lower than the temperature of<br />
the solar collector. Large radiators with low system<br />
temperatures or underfloor heating systems are<br />
therefore ideal.<br />
With an appropriate design the solar heating system<br />
will cover up to 30% of the annual heating energy that<br />
<strong>is</strong> needed for DHW heating and central heating.<br />
Combined with a back boiler or solid fuel boiler, the<br />
requirement for fossil fuels can be reduced even further<br />
during the heating season because renewables such as<br />
wood can be used. The residual energy <strong>is</strong> provided by a<br />
condensing or a low temperature boiler<br />
Q<br />
kWh<br />
1 2 3 4 5<br />
Caption (➔ 3/1 and 3/2)<br />
a Energy demand<br />
b Energy provided by the solar heating system<br />
MMonth<br />
Q <strong>Heat</strong>ing energy<br />
Solar energy surplus<br />
(available for a swimming pool, for example)<br />
Util<strong>is</strong>ed solar energy<br />
(solar coverage)<br />
Energy demand that has not been covered<br />
(reheating)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Principles 1<br />
3/1 Energy provided by a solar collector system in relation to the<br />
annual energy demand for DHW heating<br />
Q<br />
kWh<br />
6<br />
M<br />
7 8 9 10 11 12<br />
1 2 3 4 5 6<br />
M<br />
7 8 9 10 11 12<br />
3/2 Energy provided by a solar collector system in relation to the<br />
annual energy demand for DHW and central heating<br />
a<br />
b<br />
a<br />
b<br />
3
2<br />
<strong>Technical</strong> description of system components<br />
2 <strong>Technical</strong> description of system components<br />
2.1 Solar collectors<br />
2.1.1 Logasol SKN3.0 flat-plate collector<br />
Selected features and character<strong>is</strong>tics<br />
● Fav<strong>our</strong>able price/performance ratio<br />
● Cons<strong>is</strong>tently high yield through robust, highlyselective<br />
black chromium coating<br />
● TÜV-tested connecting technology<br />
● Rapid collector connection without the need for tools<br />
● Easy handling because of light weight of 42 kg<br />
● Meets all federal subsidy requirements in full<br />
[Germany]<br />
● Solar fluid has long-term stability due to fan<br />
absorber with extremely good stagnation<br />
character<strong>is</strong>tics<br />
● Energy-saving manufacture with recyclable<br />
materials<br />
● Solar keymark<br />
4<br />
R<br />
8<br />
4/1 Design of Logasol SKN3.0-s flat-plate collector (portrait)<br />
V<br />
7<br />
M<br />
R<br />
Component design and functions (➔ 4/1)<br />
The casing of the Logasol SKN3.0 solar collector<br />
cons<strong>is</strong>ts of a lightweight, extremely strong fibre glass<br />
frame profile. The back panel <strong>is</strong> made from 0.6 mm<br />
aluminium zinc-coated sheet steel. The collector <strong>is</strong><br />
covered with 3.2 mm thick single-pane safety glass.<br />
The low-ferrous, structured cast glass <strong>is</strong> coated, <strong>is</strong><br />
highly transparent (92% light transm<strong>is</strong>sion) and has<br />
extremely good load-bearing capability.<br />
The 55 mm thick mineral wool provides extremely<br />
good thermal insulation and high efficiency. It <strong>is</strong> heat<br />
res<strong>is</strong>tant and non-outgassing.<br />
The absorber cons<strong>is</strong>ts of individual strips with a highlyselective<br />
black chromium coating. The absorber <strong>is</strong><br />
ultrasonically welded to the pipe fan in order to<br />
provide an extremely good heat transfer.<br />
The Logasol SKN3.0 has f<strong>our</strong> hose coupling nipples for<br />
making simple, rapid hydraulic connections. The solar<br />
hoses can be fitted using spring band clips that require<br />
no tools. They are designed for temperatures up to<br />
+170 °C and pressures of up to 6 bar in conjunction<br />
with the collector.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
6<br />
5<br />
4<br />
3<br />
2<br />
V<br />
1<br />
R Solar return<br />
V Solar flow<br />
M Measuring point (sensor well)<br />
1 Glass cover<br />
2 Strip absorber<br />
3 Pipe fan<br />
4 Thermal insulation<br />
5 Back panel of casing<br />
6 Fibre glass frame profile<br />
7 Extruded plastic corner<br />
8 Header pipe cover<br />
Dimensions and specification<br />
➔ 5/1 and 5/2
Dimensions and specification for Logasol SKN3.0 flat-plate collectors<br />
90<br />
R<br />
1145<br />
<strong>Technical</strong> description of system components 2<br />
Logasol SKN3.0-s Logasol SKN3.0-w<br />
V<br />
M<br />
R<br />
2070<br />
5/1 Dimensions of Logasol SKN3.0-s (portrait) and SKN3.0-w (landscape) flat-plate collectors; dimensions in mm<br />
V<br />
90<br />
R Solar return<br />
V Solar flow<br />
M Measuring point (sensor well)<br />
Logasol flat-plate collector SKN3.0-s SKN3.0-w<br />
Type of installation portrait landscape<br />
Gross absorber surface area m 2<br />
2.37 2.37<br />
Aperture area (light entry area) m 2 2.26 2.26<br />
Net absorber surface area m 2 2.23 2.23<br />
Absorber contents l 0.86 1.25<br />
Selectivity Level of absorption<br />
Level of em<strong>is</strong>sions<br />
Weight kg 41 42<br />
Efficiency η0 % 77<br />
Effective heat transfer coefficient k1<br />
W/(m<br />
k2<br />
2 ·K)<br />
W/(m2 ·K2 3,6810<br />
)<br />
0,0173<br />
Thermal capacity c kJ/(m 2 ·K) 2.96<br />
Irradiation angle correction factor IAM dir<br />
τα (50°)<br />
IAM dfu<br />
τα<br />
R<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
V<br />
%<br />
%<br />
M<br />
2070<br />
95±2<br />
12±2<br />
0.911<br />
0.900<br />
Nominal flow rate V l/h 50<br />
Stagnation temperature °C 188<br />
Max. operating pressure (test pressure) bar 6<br />
Max. operating temperature °C 120<br />
Collector yield (minimum yield verification 1) of 525 kWh/(m 2 ·a) for<br />
BAFA)<br />
DIN reg<strong>is</strong>tration number 011-75050 F<br />
5/2 Specification for Logasol SKN3.0 flat-plate collectors<br />
1) Minimum yield verification for BAFA (Bundesamt für Wirtschaft and Ausfuhrkontrolle, Eschborn, Germany) in conformity with<br />
DIN EN 12975 for a fixed coverage of 40%, daily consumption 200 l and location Würzburg<br />
>525<br />
R<br />
1145<br />
V<br />
5
2<br />
<strong>Technical</strong> description of system components<br />
2.1.2 Logasol SKS4.0 high performance flat-plate collector<br />
Selected features and character<strong>is</strong>tics<br />
● High performance flat-plate collector<br />
● Hermetically sealed with inert gas filling between<br />
glass and absorber<br />
● No m<strong>is</strong>ting up of inside of the glass<br />
● Rapid responses<br />
● Absorber coating permanently protected against<br />
dust, mo<strong>is</strong>ture and airborne pollutants<br />
● Optim<strong>is</strong>ed insulation from the glass cover<br />
● Powerful full-area absorber with vacuum coating<br />
and double meander<br />
● Array connection for up to 5 collectors on one side<br />
● Extremely good stagnation character<strong>is</strong>tics<br />
● Rapid collector connection without the need for tools<br />
6<br />
R<br />
8<br />
6/1 Design of the Logasol SKN3.0-s flat-plate collector (portrait)<br />
V<br />
M<br />
7<br />
R<br />
Component design and functions (➔ 6/1)<br />
The casing of the Logasol SKS4.0 solar collector cons<strong>is</strong>ts<br />
of a lightweight, extremely strong fibre glass frame<br />
profile. The back panel <strong>is</strong> made from 0.6 mm<br />
aluminium zinc-coated sheet steel. The collector <strong>is</strong><br />
covered with 3.2 mm thick single-pane safety glass.<br />
The low-ferrous, slightly structured cast glass <strong>is</strong> highly<br />
transparent (92% light transm<strong>is</strong>sion) and has<br />
extremely good load-bearing capability.<br />
The 55 mm thick mineral wool insulation provides<br />
extremely good thermal insulation and high<br />
efficiency. It <strong>is</strong> heat res<strong>is</strong>tant and non-outgassing.<br />
The effective copper surface absorber <strong>is</strong> provided with<br />
a highly selective vacuum coating. The double<br />
meander on the back <strong>is</strong> ultrasonically welded to the<br />
absorber to provide an extremely good heat transfer.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
6<br />
5<br />
4<br />
3<br />
2<br />
1<br />
V<br />
R Solar return<br />
V Solar flow<br />
M Measuring point (sensor well)<br />
1 Glass cover<br />
2 Full area absorber<br />
3 Double meander<br />
4 Thermal insulation<br />
5 Back panel of casing<br />
6 Fibre glass frame profile<br />
7 Extruded plastic corner<br />
8 Edge assembly<br />
Dimensions and specification<br />
➔ 8/1 and 8/2
Inert gas filling<br />
The inert gas filling (➔ 7/1, item 2) between the<br />
absorber and the pane of glass reduces heat loss. The<br />
enclosed space <strong>is</strong> filled with a heavy, convectioninhibiting<br />
inert gas as used in thermal glass. The<br />
hermetically sealed design also protects the absorber<br />
coating from environmental effects such as mo<strong>is</strong>t air,<br />
dust and pollutants. Th<strong>is</strong> gives the equipment a longer<br />
service life and output <strong>is</strong> cons<strong>is</strong>tently high.<br />
Double meander absorber<br />
Because the absorber <strong>is</strong> designed as a double meander,<br />
the collector can be easily connected on one side into<br />
arrays of up to 5 collectors. Connection at alternate<br />
sides <strong>is</strong> only required for larger collector arrays to<br />
provide a homogeneous flow through the collectors.<br />
The meander design of the absorber makes the<br />
collector extremely efficient, since the flow <strong>is</strong> always<br />
turbulent over the entire flow rate range. The pressure<br />
drop <strong>is</strong> also kept low by connecting two meanders in<br />
parallel. The collective return line of the collector <strong>is</strong> at<br />
the bottom so that the hot solar fluid can escape from<br />
the collector in the event of stagnation.<br />
St<br />
St R<br />
7/2 Design and connection of the Logasol SKS4.0-s double meander absorber<br />
V<br />
<strong>Technical</strong> description of system components 2<br />
7<br />
6<br />
7/1 Sectional view of the Logasol SKS4.0 high performance<br />
flat-plate collector with inert gas filling<br />
Caption (➔ 7/1)<br />
1 Glass cover<br />
2 Stainless steel spacer<br />
3 Inert gas filling<br />
4 Surface absorber<br />
5 Thermal insulation<br />
6 Bottom panel<br />
7 Absorber pipe outlet<br />
Meander 1<br />
Meander 2<br />
1 2 3 4<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
V<br />
5<br />
St<br />
St R<br />
R Solar return<br />
up to 5 up to 10 collectors<br />
7
2<br />
<strong>Technical</strong> description of system components<br />
Dimensions and specification for Logasol SKS4.0 high performance flat-plate collectors<br />
8/1 Dimensions of Logasol SKS4.0-s (portrait) and SKS4.0-w (landscape) high performance flat-plate collectors; dimensions in mm<br />
8<br />
90<br />
R<br />
Logasol SKS4.0-s Logasol SKS4.0-w<br />
1145<br />
V<br />
Logasol high performance flat-plate collector SKS4.0-s SKS4.0-w<br />
Type of installation portrait landscape<br />
Gross absorber area m 2 2.37 2.37<br />
Aperture area (light entry area) m 2<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
2.1 2.1<br />
Absorber area (net area) m 2 2.1 2.1<br />
Absorber contents l 1.43 1.76<br />
Selectivity Level of absorption<br />
Level of em<strong>is</strong>sions<br />
Weight kg 46 47<br />
Efficiency η0 % 85.1<br />
Effective heat transfer coefficient k1<br />
W/(m<br />
k2<br />
2 ·K)<br />
W/(m2 ·K2 4.0360<br />
)<br />
0.0108<br />
Thermal capacity c kJ/(m2 ·K) 4.82<br />
Irradiation angle correction factor IAM dir<br />
τα (50°)<br />
IAM dfu<br />
τα<br />
Nominal volume flow V l/h 50<br />
Stagnation temperature °C 204<br />
Max. operating pressure bar 10<br />
Max. operating temperature °C 120<br />
Collector yield (minimum yield verification 1) of 525 kWh/(m 2 ·a)<br />
for BAFA)<br />
M<br />
R<br />
2070<br />
DIN reg<strong>is</strong>tration number 011-75052 F<br />
V<br />
90<br />
R Solar return<br />
V Solar flow<br />
M Measuring point (sensor well)<br />
8/2 Specification for Logasol SKS4.0 high performance flat-plate collectors<br />
1) Minimum yield verification for BAFA (Bundesamt für Wirtschaft and Ausfuhrkontrolle, Eschborn) in conformity with DIN EN 12975 with<br />
fixed cover proportion of 40%, daily consumption 200 l and location Würzburg<br />
R<br />
V<br />
%<br />
%<br />
M<br />
2070<br />
95±2<br />
5±2<br />
0.95<br />
0.90<br />
>525<br />
R<br />
1145<br />
V
2.1.3 Vaciosol CPC6 and CPC12 vacuum tube collectors<br />
Selected features and character<strong>is</strong>tics<br />
● Suitable for sloping or flat roof installation,<br />
floorstanding installation or facade installation.<br />
● For heating domestic water and heating water for<br />
partially solar heating systems and swimming pool<br />
water<br />
● High degree of flexibility using collector modules<br />
with 6 or 12 tubes<br />
● Excellent design<br />
● Rapid assembly times due to prefabricated collector<br />
units and simple, flexible roof and flat room<br />
installation kits<br />
● Simple connecting technology for installing several<br />
collectors next to each other using preinstalled<br />
threaded connections. No more pipework or<br />
complex thermal insulation required<br />
● Solar flow and return can be on the right or left side<br />
of the collector (optional)<br />
● Tubes can be replaced without emptying the<br />
collector circuit - "dry connection"<br />
● Hydraulic connecting lines easy to connect using<br />
locking ring screw connections<br />
● High level of operating safety and long service life<br />
due to use of high-quality, corrosion res<strong>is</strong>tant<br />
materials such as thick-walled borosilicate glass,<br />
copper, aluminium with anticorrosive coating and<br />
connecting vacuum pipes to solar circuit using "dry<br />
connections"<br />
1 2 3<br />
9<br />
9/1 Design of the Vaciosol CPC12 vacuum tube collectors<br />
8<br />
<strong>Technical</strong> description of system components 2<br />
4 5<br />
7<br />
6<br />
● Tubes are permanently vacuum sealed because all<br />
connections are glass-to-glass, no glass-to-metal<br />
transitions<br />
Energy yield and performance<br />
● Extremely high energy yield with small collector<br />
area<br />
● Circular absorber surface means that each<br />
individual tube <strong>is</strong> always properly aligned in<br />
relation to the sun<br />
● Extremely high solar coverage rates possible<br />
● Extremely efficient because of highly-selective<br />
coated absorbers<br />
● The vacuum tubes are extremely effective in<br />
reducing the thermal loss of a solar collector, since<br />
there <strong>is</strong> no air in the vacuum that can transport the<br />
heat of the absorber surface to the glass tubes on the<br />
outside that are exposed to the weather<br />
● The heat transfer medium <strong>is</strong> directly led to the tubes<br />
without an intermediate heat exchanger in the<br />
collector<br />
● The circular absorber always collects direct and<br />
diffused insolation at different irradiation angles<br />
● The CPC mirror and direct flow through the vacuum<br />
tubes make a considerable contribution to the high<br />
energy yield<br />
● The vacuum provides the best possible thermal<br />
insulation, therefore high efficiency also in winter<br />
and during periods of low irradiation<br />
1 Flow and return connection<br />
2 Sensor well<br />
3 Header tube/d<strong>is</strong>tribution tube<br />
4 Thermal insulation<br />
5 <strong>Heat</strong> exchanger<br />
6 Vacuum tubes<br />
7 <strong>Heat</strong> conducting plate<br />
8 CPC mirror<br />
9 U tube<br />
Dimensions and specification<br />
➔ 11/1 and 11/2<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
9
2<br />
<strong>Technical</strong> description of system components<br />
<strong>Heat</strong> exchanger and heat transfer unit<br />
The insulated collection and d<strong>is</strong>tribution tubes are in<br />
the heat exchanger (➔ 9/1, item 5).<br />
The flow and return connections can be on the left or<br />
right side (optional).<br />
Each vacuum tube contains a U-tube with direct flow<br />
that <strong>is</strong> connected to the collection or d<strong>is</strong>tribution tube<br />
in such a way that each individual vacuum tube has<br />
identical hydraulic res<strong>is</strong>tance. Th<strong>is</strong> U-tube <strong>is</strong> pressed<br />
onto the inside of the vacuum tubes with the heat<br />
conducting plate.<br />
Vacuum tubes<br />
The vacuum tube <strong>is</strong> a product with optim<strong>is</strong>ed geometry<br />
and performance (➔ 10/1).<br />
The tubes cons<strong>is</strong>t of two concentric glass tubes that<br />
have a hem<strong>is</strong>pherical closure at one end and are fused<br />
together at the other end. The space between the tubes<br />
<strong>is</strong> evacuated and then hermetically sealed (vacuum<br />
insulation).<br />
In order to make solar energy usable, the inner glass<br />
tube has an environmentally friendly highly-selective<br />
coating on the outside and <strong>is</strong> therefore designed to be<br />
an absorber. Th<strong>is</strong> coating <strong>is</strong> therefore protected in the<br />
vacuum space. Th<strong>is</strong> <strong>is</strong> an aluminium nitrite sputter<br />
coating that has extremely low em<strong>is</strong>sions and<br />
extremely good absorption.<br />
CPC mirror<br />
In order to increase the efficiency of the vacuum tubes<br />
there <strong>is</strong> a highly-reflective, weather res<strong>is</strong>tant CPC<br />
mirror behind the vacuum tubes (Compound<br />
Parabolic Concentrator). The special mirror geometry<br />
ensures that direct and diffused sunlight falls on the<br />
absorber, even at unfav<strong>our</strong>able irradiation angles<br />
(➔ 10/2). Th<strong>is</strong> improves the energy yield of a solar<br />
collector considerably.<br />
10<br />
10/1 Sectional diagram of a vacuum tube in the Vaciosol CPC6 and<br />
CPC12 vacuum tube collectors<br />
Caption (➔ 10/1)<br />
1 Copper pipe<br />
2 <strong>Heat</strong> conducting plate<br />
3 Absorber layer<br />
4 Vacuum tubes<br />
5 CPC mirror<br />
10/2 CPC mirror of the Vaciosol CPC6 and CPC12 vacuum tube<br />
collectors<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
5<br />
4<br />
3<br />
1<br />
2
<strong>Technical</strong> description of system components 2<br />
Dimensions and specifications of the Vaciosol CPC6 and CPC12 vacuum tube collectors<br />
101<br />
Vaciosol CPC6 Vaciosol CPC12<br />
2057<br />
11/1 Dimensions of the Vaciosol CPC6 and CPC12 vacuum tube collectors; dimensions in mm<br />
Vacuum tube collector, Vaciosol CPC6 CPC12<br />
Number of vacuum tubes 6 12<br />
Type of installation vertical<br />
Gross absorber surface area m 2 1.43 2.82<br />
Aperture area (light entry area) m 2<br />
1.28 2.56<br />
Absorber contents l 0.97 1.91<br />
Selectivity Level of absorption<br />
Level of em<strong>is</strong>sions<br />
Weight kg 24 46<br />
Efficiency η0 % 66.5<br />
Effective heat transition coefficient k1<br />
W/(m<br />
k2<br />
2 ·K)<br />
W/(m 2 ·K 2 0.721<br />
)<br />
0.006<br />
Thermal capacity c kJ/(m2 ·K) 7.974<br />
Nominal flow rate V l/h 46 92<br />
Stagnation temperature °C 295<br />
Max. operating pressure bar 10<br />
Collector yield (minimum yield verification 1) of 525 kWh/(m 2 ·a)<br />
for BAFA)<br />
702<br />
EC type test Z-DDK-MUC-04-100029919-005<br />
11/2 Specifications of the Vaciosol CPC6 and CPC12 vacuum tube collectors<br />
1) Minimum yield verification for BAFA (Bundesamt für Wirtschaft and Ausfuhrkontrolle, Eschborn, Germany) in conformity with<br />
DIN EN 12975 with fixed coverage of 40%, daily consumption of 200 l and location Würzburg<br />
101<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
2057<br />
%<br />
%<br />
1390<br />
>95<br />
525<br />
11
2<br />
<strong>Technical</strong> description of system components<br />
2.2 Logalux solar cylinder<br />
2.2.1 Logalux SM… dual-mode cylinder for DHW heating<br />
Selected features and character<strong>is</strong>tics<br />
● Dual-mode cylinder with two smooth tube indirect<br />
coils<br />
● Available with blue or white casing<br />
● <strong>Buderus</strong> thermoglazing and magnesium anode for<br />
corrosion protection<br />
● Large cleaning aperture<br />
● Low heat loss due to high-grate thermal insulation<br />
● CFC-free insulating casing made from 50 mm thick<br />
rigid polyurethane foam (Logalux SM300) or 100 mm<br />
thick flexible polyurethane foam (Logalux SM400 and<br />
SM500)<br />
Design and function<br />
Different cylinders can be used, subject to the<br />
individual application and system capacity. The<br />
Logalux SM300, SM400 and SM500 dual-mode<br />
cylinders are designed for solar DHW heating.<br />
Conventional reheating by a boiler <strong>is</strong> an option.<br />
The large size of the solar indirect coils inside the<br />
Logalux SM300, SM400 and SM500 dual-mode<br />
cylinders provide an extremely good heat transfer and<br />
therefore create a high temperature differential in the<br />
solar circuit between the flow and the return.<br />
A further indirect coil <strong>is</strong> fitted into the upper part of the<br />
cylinder to ensure that hot water <strong>is</strong> always available,<br />
even if little insolation <strong>is</strong> available. Th<strong>is</strong> indirect coil<br />
can also be used for reheating using a conventional<br />
boiler.<br />
The mono-mode Logalux SU... cylinder can be used in<br />
ex<strong>is</strong>ting heating systems. Another technical solution<br />
provided by <strong>Buderus</strong> <strong>is</strong> a cylinder primary system<br />
cons<strong>is</strong>ting of an SU400, SU500, SU750 or SU1000<br />
mono-mode cylinder with a fitted plate-type heat<br />
exchanger (Logalux LAP heat exchanger kit ➔ Current<br />
technical <strong>guide</strong> "DHW cylinder"). The Logalux LAP<br />
heat exchanger kit can be used for reheating with a<br />
conventional boiler. Wall mounted or floorstanding<br />
gas/oil fired boilers and solid fuel boilers or a<br />
combination of the above are generally suitable for<br />
reheating.<br />
12<br />
12/1 Components of the Logalux SM300, SM400 and SM500<br />
dual-mode cylinders<br />
Caption<br />
1 Magnesium anode<br />
2 Thermal insulation (rigid foam insulation for Logalux SM300,<br />
flexible foam insulation for Logalux SM400 and SM500)<br />
3 DHW outlet<br />
4 Cylinder<br />
5 Upper indirect coil for reheating with a conventional boiler<br />
6 Solar indirect coil<br />
7 Cold water inlet<br />
Dimensions, connections and specification➔ 13/1 and 13/2<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
2<br />
3<br />
4<br />
5<br />
6<br />
7
Dimensions and specifications of Logalux SM... dual-mode solar cylinder<br />
13/1 Dimensions and connections of Logalux SM... dual-mode cylinders<br />
<strong>Technical</strong> description of system components 2<br />
Logalux dual-mode cylinder SM300 SM400 SM500<br />
Cylinder diameter with/without insulation ØD/ØD Sp mm 672/– 850/650 850/650<br />
Height H mm 1465 1550 1850<br />
Cold water inlet / drain H EK/EL mm 60 148 148<br />
Cylinder return on the solar side H RS1 mm 297 303 303<br />
Cylinder flow on the solar side H VS1 mm 682 690 840<br />
Cylinder return H RS2 mm 842 790 940<br />
Cylinder flow H VS2 mm 1077 1103 1253<br />
DHW circulation inlet H EZ mm 762 912 1062<br />
DHW outlet ØAW<br />
HAW Feet centres A1<br />
A2<br />
inch<br />
mm<br />
mm<br />
mm<br />
R1<br />
1326<br />
400<br />
408<br />
R14<br />
1343<br />
480<br />
420<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
R14<br />
1643<br />
480<br />
420<br />
Cylinder capacity total/standby l 290/≈130 390/≈165 490/≈215<br />
Content, solar indirect coil l 8 9.5 13.2<br />
Size of solar indirect coil m 2 1.2 1.3 1.8<br />
Standby heat loss 1)<br />
ØD<br />
ØD Sp<br />
Performance factor (upper indirect coil) 2)<br />
Continuous output (upper indirect coil) with<br />
80/45/10 °C 3)<br />
AW<br />
VS2<br />
R 1<br />
EZ<br />
R 3/4<br />
RS2<br />
R 1<br />
VS1<br />
R 1<br />
RS1<br />
R 1<br />
EK/EL<br />
R 1 1/4<br />
M1 Ø19 mm internal<br />
M2 Ø19 mm internal<br />
kWh/24h 2.1 2.81 3.3<br />
N L 2.9 4.1 6.7<br />
kW (l/h) 34.3 (843) 34.3 (843) 34.3 (843)<br />
Number of collectors ➔ 83/2, 86/2 ➔ 83/2, 86/2 ➔ 83/2, 86/2<br />
Weight (net) kg 144 202 248<br />
Max. operating pressure heating water/DHW bar 25/10<br />
H<br />
H AW<br />
H VS2<br />
H EZ<br />
H RS2<br />
H VS1<br />
H RS1<br />
H EK/EL<br />
20 – 25<br />
Max. operating temperature heating water/DHW °C 160/95<br />
13/2 Specification of the Logalux SM300, SM400 and SM500 dual-mode cylinders<br />
1) In accordance with DIN 4753-8: DHW temperature 65 °C, ambient temperature 20 °C<br />
2) In accordance with DIN 4708 when heating to a cylinder temperature of 60 °C with a heating water flow temperature of 80 °C<br />
3) <strong>Heat</strong>ing water flow temperature/DHW outlet temperature/cold water inlet temperature<br />
A2<br />
Plan view<br />
A1<br />
13
2<br />
<strong>Technical</strong> description of system components<br />
2.2.2 Thermosiphon cylinder Logalux SL… for DHW heating<br />
Selected features and character<strong>is</strong>tics<br />
● Patented heating lance for stratified cylinder<br />
heating in the respective highest temperature zone<br />
● Buoyancy-controlled plastic gravity flaps for<br />
stratification system<br />
● DHW available extremely quickly via the solar<br />
heating system and less frequent reheating using<br />
the boiler<br />
● <strong>Buderus</strong> thermoglazing and magnesium anode for<br />
corrosion protection<br />
● CFC-free insulation casing made from flexible<br />
polyurethane foam, 100 mm thick at the sides and<br />
150 mm thick on top (removable)<br />
Design and function<br />
<strong>Buderus</strong> provides thermosiphon cylinders in various<br />
shapes and sizes for DHW heating. All versions are<br />
based on the thermosiphon principle (➔ page 15).<br />
The solar indirect coil only heats a relatively small<br />
quantity of DHW, almost to the solar flow<br />
temperature. The heated DHW r<strong>is</strong>es directly upwards<br />
into the standby reservoir through the heating lance<br />
(item 6 ➔ 14/1). With normal insolation, the set<br />
temperature <strong>is</strong> soon reached. Reheating using a<br />
conventional boiler <strong>is</strong> therefore less frequently<br />
required.<br />
Depending on the solar heating, the DHW only r<strong>is</strong>es<br />
upwards until it reaches the layer with the same<br />
temperature level. Then the relevant buoyancycontrolled<br />
gravity flaps open (item 7 ➔ 14/1). The<br />
cylinder heats itself in th<strong>is</strong> way layer by layer from top<br />
to bottom (➔ page 15).<br />
Particularly with a control unit that <strong>is</strong> suitable for<br />
double match flow operation (SC20, SC40, solar<br />
function module FM443 or SM10), th<strong>is</strong> principle <strong>is</strong><br />
optimally coordinated by the flow rate adjustment of<br />
the variable speed pump and the heating of the<br />
standby reservoir with higher priority.<br />
Mono-mode cylinder Logalux SL300-1<br />
The upper indirect coil for reheating by a conventional<br />
boiler <strong>is</strong> not fitted to the Logalux SL300-1 mono-mode<br />
cylinder with 300 litre capacity. The cylinder <strong>is</strong> suitable<br />
for retrofitting an ex<strong>is</strong>ting DHW system by adding a<br />
solar heating system.<br />
14<br />
Dual-mode cylinder Logalux SL300/400/500-2<br />
The dual-mode solar cylinders SL…-2 with capacities of<br />
300 l, 400 l and 500 l have a solar indirect coil and an<br />
upper indirect coil for conventional reheating. These<br />
cylinders are also available with white casing as<br />
version Logalux SL…-2 W.<br />
14/1 Design of the Logalux SL300-2 thermosiphon cylinder<br />
Caption<br />
1 Magnesium anode<br />
2 Thermal insulation<br />
3 DHW outlet<br />
4 Cylinder<br />
5 Upper indirect coil for reheating by a conventional boiler<br />
6 <strong>Heat</strong>ing lance<br />
7 Gravity flap<br />
8 Solar indirect coil<br />
9 Cold water inlet<br />
Dimensions, connections and specification➔ 16/1 and 16/2<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
2<br />
3<br />
4<br />
5<br />
6<br />
7<br />
8<br />
9
Thermosiphon principle for high levels of insolation<br />
The heated water r<strong>is</strong>es rapidly and <strong>is</strong> available in the<br />
standby reservoir extremely quickly. The cylinder <strong>is</strong><br />
heated up from top to bottom (item 1 ➔ 15/1).<br />
Because only water from below flows through the<br />
heating lance at the solar indirect coil, there <strong>is</strong> always<br />
AW 1<br />
V<br />
R<br />
15/1 <strong>Heat</strong>ing procedure for a thermosiphon cylinder at full insolation<br />
Thermosiphon principle with low insolation<br />
For example, if the water <strong>is</strong> only heated to 30 °C, it only<br />
r<strong>is</strong>es to the layer at that temperature level. The water<br />
flows through the open gravity flaps into the cylinder<br />
and heats the area (item 2 ➔ 15/2).<br />
The water leaving through the gravity flaps stops the<br />
water from r<strong>is</strong>ing in the heating lance and prevents it<br />
from mixing with layers at higher temperatures<br />
(item 3 ➔ 15/2).<br />
VS<br />
RS<br />
Caption (➔ 15/1 and 15/2)<br />
1 Separating layer between temperature zones<br />
2 Open gravity flap in heating lance<br />
3 Closed gravity flap<br />
AW DHW outlet<br />
EK Cold water inlet<br />
R Solar return<br />
V Solar flow<br />
EK<br />
<strong>Technical</strong> description of system components 2<br />
AW<br />
V<br />
R<br />
a wide temperature differential between the cylinder<br />
return and the collector. That ensures a high solar<br />
yield.<br />
AW<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
V<br />
R<br />
EK<br />
VS<br />
RS<br />
1<br />
AW<br />
V<br />
R<br />
VS<br />
VS<br />
40ß C<br />
40ß C<br />
RS<br />
RS<br />
3 3<br />
30 30 ßC ßC<br />
2 2<br />
EK<br />
EK<br />
30ß C<br />
20ß 20ß CC<br />
15/2 Hot water leaving the heating lance at low insolation<br />
EK<br />
VS<br />
RS<br />
1<br />
40 ßC<br />
40 ßC<br />
30 30 ßC ßC<br />
20 ßC<br />
3<br />
3<br />
2<br />
2<br />
15
2<br />
<strong>Technical</strong> description of system components<br />
Dimensions and specification for the Logalux SL… thermosiphon cylinder<br />
Mg<br />
M1<br />
EH<br />
M2<br />
M3<br />
M4<br />
16/1 Dimensions and connection of the Logalux SL… mono-mode and dual-mode thermosiphon cylinders for HDW heating<br />
Logalux thermosiphon cylinder SL300-1 SL300-2 SL400-2 SL500-2<br />
Cylinder diameter with/without insulation ØD/ØD Sp mm 770/570 770/570 850/650 850/650<br />
Height H mm 1670 1670 1670 1970<br />
Cold water inlet/drain H EK, EL mm 245 245 230 230<br />
Cylinder return on the solar side H RS1 mm 100 100 100 100<br />
Cylinder flow on the solar side H VS1 mm 170 170 170 170<br />
Cylinder return H RS mm – 886 872 1032<br />
Cylinder flow H VS mm – 1199 1185 1345<br />
DHW circulation inlet H EZ mm 1008 1008 994 1154<br />
DHW outlet ØAW<br />
H AW<br />
Immersion heater HEH mm 949 – – 985<br />
Feet centres A1/A2 mm 380/385 375/435 440/600 440/600<br />
Cylinder capacity total/standby l 300/≈165 300/≈155 380/≈180 500/≈230<br />
Content, solar indirect coil l 0.9 0.9 1.4 1.4<br />
Size of the solar indirect coil m 2 0.8 0.8 1 1<br />
Standby heat loss 1)<br />
Performance factor (upper indirect coil) 2)<br />
Continuous output (upper indirect coil) at<br />
80/45/10 °C 3)<br />
16/2 Specification for the Logalux SL… mono-mode and dual-mode thermosiphon cylinders for DHW heating<br />
1) In accordance with DIN 4753-8: DHW temperature 65 °C, ambient temperature 20 °C<br />
2) In accordance with DIN 4708 when heating to a cylinder temperature of 60 °C and with a heating water flow temperature of 80 °C<br />
3) <strong>Heat</strong>ing water flow temperature/DHW outlet temperature/cold water inlet temperature<br />
16<br />
ØD<br />
ØD Sp<br />
AW<br />
EZ<br />
R6<br />
EK, EL<br />
R14<br />
VS1<br />
R6<br />
RS1<br />
R6<br />
H<br />
H AW<br />
H EZ<br />
H EK, EL<br />
H VS1<br />
H RS1<br />
8<br />
Mg<br />
M1<br />
M2<br />
M3<br />
M4<br />
Logalux SL300-1<br />
Mg Magnesium anode<br />
M1–M4 Temperature measuring points;<br />
assignment subject to system<br />
components, hydraulics and control<br />
units<br />
EH<br />
inch<br />
mm<br />
R1<br />
1393<br />
R1<br />
1393<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
R1<br />
1392<br />
R1<br />
1692<br />
kWh/24h 2.51 2.51 2.85 3.48<br />
N L – 2.3 4.1 6.7<br />
kW (l/h) – (–) 34.3 (843) 34.3 (843) 34.3 (843)<br />
Number of collectors ➔ 83/2, 86/2 ➔ 83/2, 86/2 ➔ 83/2, 86/2 ➔ 83/2, 86/2<br />
Weight (net) kg 135 151 197 223<br />
Max. operating pressure (solar circuit/heating water/DHW) bar 8/–/10 8/25/10 8/25/10 8/25/10<br />
Max. operating temperature (solar circuit/heating<br />
water/DHW)<br />
°C 135/–/95 135/160/95 135/160/95 135/160/95<br />
ØD<br />
ØD Sp<br />
Logalux SL…-2<br />
Aw<br />
VS<br />
R1<br />
M<br />
EZ<br />
R6<br />
RS<br />
R1<br />
EK, EL<br />
R14<br />
VS1<br />
R6<br />
RS1<br />
R6<br />
H<br />
H AW<br />
H VS<br />
H EZ<br />
H RS<br />
H EK, EL<br />
H VS1<br />
H RS1<br />
8<br />
Mg<br />
Fixing clips M1 to M4 for temperature sensors<br />
are shown offset in the side view.<br />
EH<br />
Plan view<br />
A1<br />
Bottom view<br />
M 1–M4<br />
RS1<br />
VS1<br />
A2
<strong>Technical</strong> description of system components 2<br />
2.2.3 Combi cylinder Logalux P750 S and thermosiphon Combi cylinder<br />
Logalux PL750/2S and PL1000/2S for DHW and central heating backup<br />
Combi cylinders are designed for solar DHW heating in<br />
combination with solar central heating backup. Their<br />
compact design provides a fav<strong>our</strong>able ratio between<br />
external surface area and volume, meaning that<br />
cylinder losses are minim<strong>is</strong>ed. All Logalux combi<br />
cylinders are fitted with a 100 mm thick, CFC-free<br />
insulation jacket made from flexible polyurethane<br />
foam. They also have the advantage of simple<br />
hydraulics with few mechanical components.<br />
Selected features and character<strong>is</strong>tics of the Logalux<br />
P750 S combi cylinder<br />
● Internal DHW cylinder with <strong>Buderus</strong> thermoglazing<br />
and magnesium anode for corrosion protection<br />
● Large smooth tube indirect coils for optimum<br />
util<strong>is</strong>ation of solar energy<br />
● All connections on the DHW side are at the top, all<br />
connections on the heating water and solar side are<br />
on the cylinder side.<br />
● Solar indirect coil in the heating water resulting in<br />
no r<strong>is</strong>k of scaling.<br />
Design and operation of the Logalux P750 S combi<br />
cylinder<br />
There <strong>is</strong> a DHW cylinder in the top part of the thermal<br />
store that <strong>is</strong> designed in accordance with the double<br />
jacket principle. Cold water enters th<strong>is</strong> section from<br />
above. A solar indirect coil (item 7 ➔ 17/1) <strong>is</strong><br />
connected to the side of the lower section. Th<strong>is</strong> first<br />
heats the heating buffer water (item 6 ➔ 17/1). After a<br />
short time the DHW in the standby part at the top<br />
(item 4 ➔ 17/1) reaches the set temperature, meaning<br />
that DHW can be drawn from the top. The return<br />
connection at the bottom of the standby section must<br />
be used to reheat the DHW by a conventional boiler<br />
(➔ 55/2). A return temperature limiter (➔ page 55) or<br />
an HZG kit (➔ page 31) in combination with an SC40<br />
solar control unit or solar function module FM443 <strong>is</strong><br />
recommended for connecting to the heating system.<br />
17/1 Design of the Logalux P750 S combi cylinder<br />
Caption<br />
1 Magnesium anode<br />
2 Thermal insulation<br />
3 Sensor well<br />
4 DHW standby part<br />
5 Cold water inlet<br />
6 Thermal store section<br />
7 Solar indirect coil<br />
Dimensions, connections and specification➔ 20/1 and 20/2<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
2<br />
3<br />
4<br />
5<br />
6<br />
7<br />
17
2<br />
<strong>Technical</strong> description of system components<br />
Selected features and character<strong>is</strong>tics of the<br />
Logalux PL…/2S thermosiphon combi cylinder<br />
● Internal DHW cylinder, conical straight-through<br />
design, with <strong>Buderus</strong> thermoglazing and<br />
magnesium anode for corrosion protection<br />
● Patented heating lance for stratified cylinder<br />
heating, surrounded by DHW and running along<br />
the entire height of the cylinder.<br />
● Solar indirect coil integrated in the heating lance<br />
and therefore also surrounded by DHW<br />
● Significantly improved solar efficiency because the<br />
solar heating system always heats the coldest<br />
medium first<br />
● All connections on the heating side are at the<br />
cylinder side<br />
● Solar connection and cold water inlet from below<br />
Design and operation of the Logalux PL…/2S<br />
thermosiphon combi cylinder<br />
The Logalux PL750/2S and PL1000/2S thermosiphon<br />
combi cylinders have a conical internal body (item 5<br />
➔ 18/1) for DHW heating. There <strong>is</strong> a heating lance<br />
suspended in the DHW that runs along the entire<br />
height of the cylinder integrating the solar indirect coil<br />
(item 6 and item 8 ➔ 18/1). The DHW cylinder can<br />
therefore be heated in accordance with the<br />
thermosiphon principle using th<strong>is</strong> patented<br />
stratification system. Subject to the availability of<br />
adequate insolation, a sensible temperature level <strong>is</strong><br />
reached in the DHW cylinder after only a short time.<br />
The DHW cylinder <strong>is</strong> surrounded by a thermal store<br />
(item 4 ➔ 18/1) that <strong>is</strong> heated subject to the<br />
stratification status in the internal body.<br />
18<br />
18/1 Design of the Logalux PL750/2S and PL1000/2S thermosiphon<br />
combi cylinders<br />
Caption<br />
1 Magnesium anode<br />
2 Thermal insulation<br />
3 DHW outlet<br />
4 Thermal store<br />
5 Conical internal body<br />
6 <strong>Heat</strong>ing lance<br />
7 Gravity flaps<br />
8 Solar indirect coil<br />
9 Cold water inlet<br />
Dimensions, connections and specification➔ 21/1 and 21/2<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
2<br />
3<br />
4<br />
5<br />
6<br />
7<br />
8<br />
9
Cold water enters the lower section of the conical<br />
internal body, so that the solar indirect coil and the<br />
heating lance are in the coldest medium. The heating<br />
lance has an opening at the bottom that enables the<br />
cold drinking water to reach the solar indirect coil.<br />
Here the water <strong>is</strong> heated by the solar heating system<br />
and r<strong>is</strong>es upwards in the lance without mixing with the<br />
colder water that surrounds it.<br />
There are various outlets with buoyancy-controlled<br />
gravity flaps at different levels (Pos. 7 ➔ 18/1), through<br />
which the heated medium reaches the layers with the<br />
same temperature level in the cylinder (phase 1<br />
➔ 19/1). After a delay, the heat <strong>is</strong> then transferred to<br />
the buffer water in the outer body, enabling the<br />
thermal store to be heated from top to bottom<br />
(phase 2 ➔ 19/1). The solar system shuts down<br />
(phase 3 ➔ 19/2) when the DHW cylinder and the<br />
thermal store are both fully heated. Drawing hot water<br />
gradually d<strong>is</strong>charges the DHW cylinder from bottom to<br />
top. Cold drinking water replaces the DHW drawn<br />
inside the inner body. Because of the heat-up delay<br />
between the inner and outer bodies, the internal<br />
body can be supplied with solar heat again although<br />
the outer thermal store <strong>is</strong> still fully heated (phase 4<br />
➔ 19/2). Th<strong>is</strong> makes the system considerably more<br />
efficient.<br />
When the DHW cylinder has been almost completely<br />
drawn off, both the solar indirect coil and the thermal<br />
store reheat the DHW cylinder (phase 5 ➔ 19/3). If no<br />
solar yield <strong>is</strong> available (e.g. during bad weather), the<br />
thermal store can be reheated using a conventional<br />
boiler (phase 6 ➔ 19/3) or may be combined with a<br />
solid fuel boiler (engineering notes ➔ page 58). A<br />
return temperature controller (➔ page 55) or an HZG<br />
kit (➔ page 31) in combination with a SC40 solar<br />
control unit or solar function module FM443 <strong>is</strong><br />
required for connecting to the heating system.<br />
Caption (➔ 19/1 to 19/3)<br />
AW DHW outlet<br />
EK Cold water inlet<br />
RS1 Solar return<br />
VS1 Solar flow<br />
RS2 Boiler return<br />
VS3 Boiler flow<br />
Other connections for alternative heating ➔ 20/1 to 21/2<br />
<strong>Technical</strong> description of system components 2<br />
EK<br />
VS1<br />
RS1<br />
AW AW<br />
EK<br />
VS1<br />
RS1<br />
19/1 <strong>Heat</strong>ing the thermosiphon combi cylinder via the solar indirect<br />
coil (1) and delayed thermal store heating (2)<br />
EK<br />
VS1<br />
RS1<br />
19/2 Drawing DHW from the fully heated cylinder (3) and reheating<br />
the DHW cylinder (which <strong>is</strong> cold at the bottom) via the solar<br />
indirect coil in spite of having a full thermal store (4)<br />
EK<br />
VS1<br />
RS1<br />
19/3 Reheating the DHW cylinder via the solar indirect coil and the<br />
thermal store (5) and reheating via a conventional boiler in the<br />
event of insufficient solar yield (6)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
VS3<br />
RS2<br />
Phase 1 Phase 2<br />
AW AW<br />
VS3<br />
RS2<br />
EK<br />
VS1<br />
RS1<br />
Phase 3 Phase 4<br />
AW AW<br />
VS3<br />
RS2<br />
EK<br />
VS1<br />
RS1<br />
Phase 5 Phase 6<br />
VS3<br />
RS2<br />
VS3<br />
RS2<br />
VS3<br />
RS2<br />
19
2<br />
<strong>Technical</strong> description of system components<br />
Dimensions and specification for the Logalux P750 S combi cylinder<br />
20/1 Dimensions and connections of the Logalux P750 S combi cylinder for DHW heating and as central heating backup<br />
Logalux combi cylinder P750 S<br />
Cylinder diameter with/without insulation ØD/ØD Sp mm 1000/800<br />
Cold water inlet ØEK inch R6"<br />
Draining the heating system ØEL inch R14<br />
Cylinder return on the solar side ØRS1 inch R1<br />
Cylinder flow on the solar side ØVS1 inch R1<br />
Return, oil/gas fired/condensing boilers for DHW heating ØRS2 inch R14<br />
Flow, oil/gas fired/condensing boiler for DHW heating ØVS3 inch R14<br />
Return, oil/gas fired boiler ØRS3 inch R14<br />
Return, heating circuits ØRS4 inch R14<br />
Flow, heating circuits ØVS4 inch R14<br />
Flow, solid fuel boiler ØVS2 inch R14<br />
DHW circulation inlet ØEZ inch R 6"<br />
DHW outlet ØAW inch R 6"<br />
Capacity l 750<br />
Capacity, thermal store only l ≈400<br />
Capacity, DHW l ≈160<br />
Content, solar indirect coil l 16.4<br />
Size, solar indirect coil m 2 2.15<br />
Standby heat loss 1)<br />
Performance factor 2)<br />
Continuous output at 80/45/10 °C 3)<br />
20/2 Specification for the Logalux PL750 S combi cylinder for DHW and central heating backup<br />
1) In accordance with DIN 4753-8: DHW temperature 65 °C, ambient temperature 20 °C<br />
2) In accordance with DIN 4708 when heating to a cylinder temperature of 60 °C and with a heating water flow temperature of 80 °C<br />
3) <strong>Heat</strong>ing water flow temperature/DHW outlet temperature/cold water inlet temperature<br />
20<br />
M1<br />
M2<br />
M3<br />
M4<br />
M5<br />
M6<br />
M7<br />
M8<br />
ØD<br />
ØD sp<br />
M<br />
VS2<br />
VS3<br />
RS2<br />
VS 4<br />
VS1<br />
RS3<br />
RS1<br />
RS4/EL<br />
1920<br />
1668<br />
1513<br />
1033<br />
911<br />
788<br />
500<br />
370<br />
215<br />
8<br />
kWh/24h 3.7<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
N L<br />
M 1–M 8<br />
EK<br />
EZ/AW<br />
kW (l/h) 28 (688)<br />
Number of collectors ➔ 86/1<br />
Weight (net) kg 262<br />
Max. operating pressure (solar indirect coil/heating water/DHW) bar 8/3/10<br />
Max. operating temperature (heating water/DHW) °C 95/95<br />
AW/EZ<br />
M<br />
MB1<br />
550<br />
Plan view Bottom view<br />
MB1 DHW measuring point<br />
M1–M8 Temperature measuring<br />
points; assignment depending<br />
on components, hydraulics<br />
and control units in the system<br />
3<br />
640<br />
Fixing clips M1 to M8 for temperature<br />
sensors are shown offset in the side view.
<strong>Technical</strong> description of system components 2<br />
Dimensions and specification of the Logalux PL…/2S thermosiphon combi cylinder<br />
M1<br />
M2<br />
M3<br />
M4<br />
M5<br />
M6<br />
M7<br />
M8<br />
EL2<br />
21/1 Dimensions and connections of the Logalux PL…/2S thermosiphon combi cylinder<br />
Logalux thermosiphon combi cylinder PL750/2S PL1000/2S<br />
Cylinder diameter with/without insulation ØD/ØD Sp mm 1000/800 1100/900<br />
Cold water inlet ØEK inch R1 R1<br />
Draining the heating system ØEL inch R14 R14<br />
Solar/DHW draining ØEL1/ØEL2 inch R 6" R 6"<br />
Cylinder return on the solar side ØRS1 inch R 6" R 6"<br />
Cylinder flow on the solar side ØVS1 inch R 6" R 6"<br />
Return, oil/gas fired/condensing boiler for DHW heating ØRS2 inch R14 R14<br />
Flow, oil/gas fired/condensing boiler for DHW heating ØVS3 inch R14 R14<br />
Return, oil/gas fired boiler ØRS3 inch R14 R14<br />
Flow, oil/gas fired boiler ØVS5 inch R14 R14<br />
Return, heating circuits ØRS4 inch R14 R14<br />
Flow, heating circuits ØVS4 inch R14 R14<br />
Return, solid fuel boiler ØRS5 inch R14 R14<br />
Flow, solid fuel boiler ØVS2 inch R14 R14<br />
DHW circulation inlet ØEZ inch R 6" R 6"<br />
DHW outlet ØAW inch R 6" R 6"<br />
Immersion heater ØEH inch R15 R15<br />
Capacity l 750 940<br />
Capacity, thermal store only l ≈275 ≈380<br />
Capacity, DHW total/standby part l ≈300/≈150 ≈300/≈150<br />
Content, solar indirect coil l 1.4 1.4<br />
Size of the solar indirect coil m 2 1.0 1.2<br />
Standby heat loss 1)<br />
Performance factor 2)<br />
ØD<br />
ØD sp<br />
Continuous output at 80/45/10 °C 3)<br />
M<br />
VS2<br />
VS3<br />
RS2<br />
VS4<br />
EH/VS5<br />
RS3<br />
RS4<br />
RS5/EL<br />
VS1<br />
RS1/EL1<br />
EK<br />
1920<br />
550<br />
1668<br />
AW/EZ<br />
1513<br />
EH<br />
M<br />
MB1<br />
MB2<br />
RS1<br />
EK<br />
1033<br />
911<br />
788<br />
500<br />
370<br />
M 1–M8<br />
EZ/AW<br />
Mg<br />
640<br />
VS1<br />
EL2<br />
215<br />
Plan view Bottom view<br />
170<br />
100 MB1 DHW measuring point<br />
Fixing clips M1 to M8 for temperature<br />
8<br />
MB2 Solar measuring point<br />
M1–M8 Temperature measuring<br />
points; subject to system<br />
configuration<br />
sensors are shown offset in the side view.<br />
kWh/24h 3.7 4.57<br />
N L 3.8 3.8<br />
kW (l/h) 28 (688) 28 (688)<br />
Number of collectors ➔ 86/1 ➔ 86/1<br />
Weight (net) kg 252 266<br />
Max. operating pressure (solar indirect coil/heating water/DHW) bar 8/3/10 8/3/10<br />
Max. operating temperature (heating water/DHW) °C 95/95 95/95<br />
21/2 Specification for the Logalux PL…/2S combi cylinder for DHW and central heating backup<br />
1) In accordance with DIN 4753-8: DHW temperature 65 °C, ambient temperature 20 °C<br />
2) In accordance with DIN 4708 when heating to a cylinder temperature of 60 °C and with a heating water flow temperature of 80 °C<br />
3) <strong>Heat</strong>ing water flow temperature/DHW outlet temperature/cold water inlet temperature<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
21
2<br />
<strong>Technical</strong> description of system components<br />
2.2.4 Duo FWS combi cylinder<br />
Selected features and character<strong>is</strong>tics<br />
● Internal corrugated stainless steel pipe (material<br />
W1.4404) for hygienic DHW heating<br />
● High degree of DHW convenience through a<br />
corrugated pipe with a large transfer area<br />
● Large smooth-tube indirect coil for optimum solar<br />
util<strong>is</strong>ation<br />
● Solar indirect coil in the heating water preventing a<br />
r<strong>is</strong>k of scaling<br />
● Slimline version for easy handling<br />
● All DHW and heating water connections are on the<br />
cylinder side<br />
● Sensor terminal strip for variable sensor positioning<br />
Design and function<br />
An internal corrugated stainless steel pipe (item 2 ➔ 22/1)<br />
<strong>is</strong> wound onto a supporting structure. The corrugated<br />
pipe has an extremely large surface in its upper area to<br />
achieve a high degree of DHW convenience. The lower<br />
section <strong>is</strong> sized so that the thermal store <strong>is</strong> efficiently<br />
cooled by the cold water. Th<strong>is</strong> optim<strong>is</strong>es the solar yield.<br />
If no solar yield <strong>is</strong> available, the thermal store can be<br />
reheated using a conventional boiler or can be<br />
combined with a solid fuel boiler. The thermal store<br />
temperature (top) indirectly specifies the DHW<br />
temperature and has a major influence on the drawing<br />
capacity (DHW convenience). A return temperature<br />
controller (➔ page 55) or an HZG kit (➔ page 41) in<br />
combination with the FM443 solar function module<br />
FM443 or the SC40 solar control unit <strong>is</strong> required for<br />
connecting to the heating system.<br />
22<br />
22/1 Design of the Duo FWS combi cylinder<br />
Caption<br />
1 DHW outlet<br />
2 corrugated stainless steel pipe<br />
3 Thermal store section<br />
4 Solar indirect coil<br />
5 Cold water inlet<br />
Dimensions, connections and specification ➔ 23/1 and 23/2<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
2<br />
3<br />
4<br />
5
Dimensions and specification of the Duo FS combi cylinder<br />
AB<br />
EK<br />
ØD<br />
Side view with indirect coil and<br />
corrugated pipe heat exchanger<br />
VS2<br />
VS3<br />
23/1 Dimensions and specification of the Duo FWS combi cylinder<br />
<strong>Technical</strong> description of system components 2<br />
Combi cylinder Duo FWS750 Duo FWS1000<br />
Cylinder diameter with thermal insulation 80 mm<br />
120 mm<br />
VS4<br />
RS2<br />
VS1<br />
RS5<br />
RS3<br />
RS1<br />
RS4<br />
H<br />
120<br />
ØD W<br />
ØD W<br />
Cylinder diameter without thermal insulation Dia. D mm 750 800<br />
Height H mm 1948 2208<br />
Height with thermal insulation 80 mm HW mm 1985<br />
2260<br />
120 mm HW mm 2025<br />
2300<br />
Cold water inlet ØEK<br />
inch R14<br />
R14<br />
HEK mm<br />
270<br />
280<br />
Cylinder return on the solar side ØRS1<br />
inch<br />
G1<br />
G1<br />
HRS1 mm<br />
370<br />
380<br />
Cylinder flow on the solar side ØVS1<br />
inch<br />
G1<br />
G1<br />
HVS1 mm<br />
930<br />
980<br />
Return, oil/gas fired/condensing boiler for DHW heating/heating ØRS2<br />
inch G15<br />
G15<br />
circuit flow/pellet boiler return<br />
HRS2 mm 1030<br />
1080<br />
Return, oil/gas fired/condensing boiler for DHW heating ØRS5<br />
inch G15<br />
G15<br />
(alternative)<br />
HRS5 mm<br />
830<br />
880<br />
Flow, oil/gas fired/condensing boiler for DHW heating ØVS3<br />
inch G15<br />
G15<br />
HVS3 mm 1570<br />
1830<br />
Return, heating circuits ØRS3<br />
inch G15<br />
G15<br />
HRS3 mm<br />
470<br />
480<br />
Flow, pellet system heating circuits ØVS4<br />
inch G15<br />
G15<br />
HVS4 mm 1230<br />
1280<br />
23/2 Specification of Duo FWS combi cylinder<br />
Continued on the next page<br />
48<br />
A A<br />
H AB<br />
H EK<br />
Ø600<br />
A – A<br />
mm<br />
mm<br />
910<br />
990<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
H VS2<br />
H VS3<br />
H VS4<br />
HRS2 HVS1 HRS5 HRS3 HRS1 HRS4 Side view without indirect coil or<br />
corrugated pipe heat exchanger<br />
Plan view without indirect coil<br />
1450<br />
G1½<br />
960<br />
1040<br />
120<br />
Side view without corrugated<br />
pipe heat exchanger<br />
23
2<br />
<strong>Technical</strong> description of system components<br />
Combi cylinder Duo FWS750 Duo FWS1000<br />
Return, solid fuel boiler ØRS4<br />
HRS4 Flow, pellet boiler/solid fuel boiler ØVS2<br />
HVS2 DHW outlet ØAB<br />
HAB 24<br />
inch<br />
mm<br />
inch<br />
mm<br />
inch<br />
mm<br />
G15<br />
280<br />
G15<br />
1660<br />
R14<br />
1670<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
G15<br />
290<br />
G15<br />
1920<br />
R14<br />
1930<br />
Cylinder capacity l 750 1000<br />
Capacity, corrugated stainless steel pipe (DHW) l 38 38<br />
Size of the corrugated stainless steel pipe m 2 7 7<br />
Content, solar indirect coil l 11 13<br />
Size of the solar indirect coil m 2 2.2 2.7<br />
Performance factor1) at a boiler output of 30 kW<br />
at a boiler output of 45 kW<br />
Drawing capacity2) Draw-off rate 10 l/min<br />
Draw-off rate 20 l/min<br />
N L<br />
N L<br />
Number of collectors ➔ 86/1 ➔ 86/1<br />
Weight (net) kg 240 270<br />
Max. operating pressure (heating water/DHW/solar circuit) bar 3/10/10 3/10/10<br />
Max. operating temperature (heating water/DHW/solar circuit) °C 95/95/110 95/95/110<br />
23/2 Specification of Duo FWS combi cylinder<br />
1) With reference to DIN 4708 T3<br />
2) Without reheating, cylinder partially heated at 70 °C, DHW temperature 45 °C<br />
l<br />
l<br />
3.2<br />
–<br />
275<br />
218<br />
–<br />
4.2<br />
407<br />
324
<strong>Technical</strong> description of system components 2<br />
2.2.5 Thermosiphonthermal stores Logalux PL750, PL1000 and PL1500<br />
as heating thermal stores<br />
Selected features and character<strong>is</strong>tics<br />
● Suitable for solar arrays with up to 8 collectors (with<br />
Logalux PL750 and PL1000) or up to 16 collectors<br />
(with Logalux PL1500) and for heat supplied from<br />
other sustainable energy s<strong>our</strong>ces<br />
● Patented heating lance for stratified cylinder<br />
heating<br />
● Buoyancy-controlled plastic gravity flaps<br />
● Extremely suitable for use as a heating thermal store<br />
because of its large buffer volume (e.g. in dualcylinder<br />
systems)<br />
● Encased in 100 mm thick, CFC-free insulation jacket<br />
made from flexible polyurethane foam in a blue<br />
jacket<br />
Design and function<br />
Th<strong>is</strong> sheet steel thermosiphon thermal store <strong>is</strong><br />
available in three versions:<br />
● Logalux PL750 with a content of 750 l<br />
● Logalux PL1000 with a content of 1000 l<br />
● Logalux PL1500 with a content of 1500 l<br />
The Logalux PL1500 thermosiphon thermal store has<br />
two solar indirect coils.<br />
➔ Detailed description of the thermosiphon<br />
equipment ➔ page 14 ff.<br />
Caption (➔ 25/1)<br />
1 Thermal insulation<br />
2 Cylinder<br />
3 <strong>Heat</strong>ing lance<br />
4 Gravity flap<br />
5 Solar indirect coil<br />
25/1 Logalux PL750 and PL1000 thermosiphon thermal stores<br />
25/2 Logalux PL1500 thermosiphon thermal store<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
2<br />
3<br />
4<br />
5<br />
V<br />
R<br />
25
2<br />
<strong>Technical</strong> description of system components<br />
Dimensions and specification of the Logalux PL750, PL1000 and PL1500 thermosiphon thermal stores<br />
26/1 Dimensions and connections of the Logalux PL…thermosiphon thermal store<br />
Logalux thermosiphon thermal store PL750 PL1000 PL1500<br />
Cylinder diameter with/without insulation ØD/ØD Sp mm 1000/800 1100/900 1400/1200<br />
Height H mm 1920 1920 1900<br />
Cylinder return on the solar side H RS1 mm 100 100 100<br />
Cylinder flow on the solar side H VS1 mm 170 170 170<br />
Cylinder return ØRS2–RS4<br />
HRS2 HRS3 HRS4 Cylinder flow ØVS2–VS4<br />
HVS2 HVS3 HVS4 Feet centres A1<br />
A2<br />
26<br />
M1<br />
M2<br />
M3<br />
M4<br />
ØD<br />
ØDSp E<br />
R 5<br />
VS2<br />
VS3<br />
VS 4<br />
RS 4<br />
RS2<br />
RS3<br />
VS1<br />
R6<br />
RS1<br />
R6<br />
Side view<br />
Logalux PL750, PL1000, PL1500<br />
M<br />
H<br />
H E<br />
H VS2<br />
H VS3<br />
HVS4 HRS4 H RS2<br />
H RS3<br />
H VS1<br />
H RS1<br />
8<br />
inch<br />
mm<br />
mm<br />
mm<br />
inch<br />
mm<br />
mm<br />
mm<br />
mm<br />
mm<br />
R14<br />
370<br />
215<br />
1033<br />
R14<br />
1668<br />
1513<br />
1033<br />
555<br />
641<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
R14<br />
370<br />
215<br />
1033<br />
R14<br />
1668<br />
1513<br />
1033<br />
555<br />
641<br />
Cylinder capacity l 750 1000 1500<br />
Content, solar indirect coil l 2.4 2.4 5.4<br />
Size of the solar indirect coil m 2<br />
3 3 7.2<br />
Standby heat loss 1)<br />
kWh/24h 3.7 4.57 5.3<br />
Number of collectors ➔ 86/3 ➔ 86/3 ➔ 86/3<br />
Weight (net) kg 212 226 450<br />
Max. operating pressure (solar indirect coil/heating water) bar 8/3 8/3 8/3<br />
Max. operating temperature (heating water) °C 110 110 110<br />
M 1–M 4<br />
26/2 Specification of Logalux PL... thermosiphon thermal store for solar central heating backup<br />
1) In accordance with DIN 4753-8: DHW temperature 65 °C, ambient temperature 20 °C<br />
M<br />
E<br />
Plan view Bottom view<br />
Logalux PL750, PL1000<br />
A1<br />
M1–M4 Temperature measuring<br />
points; assignment subject to<br />
system components,<br />
hydraulics and control units<br />
Fixing clips M1 to M4 for temperature<br />
sensors are shown offset in the side view.<br />
RS1<br />
VS1<br />
A2<br />
Bottom view<br />
Logalux PL1500<br />
VS2–VS4 Use subject to system<br />
components and hydraulics<br />
RS2–RS4 Use subject to system<br />
components and hydraulics<br />
R15<br />
522<br />
284<br />
943<br />
R15<br />
1601<br />
1363<br />
943<br />
850<br />
980<br />
RS1<br />
VS1
2.3 Solar control unit<br />
2.3.1 Selection aids<br />
Selection and standard delivery of control unit<br />
Various control units and function modules are<br />
available depending on the application area and the<br />
boiler control unit:<br />
● <strong>Heat</strong> s<strong>our</strong>ce with Logamatic EMS control system:<br />
– Solar heating systems for DHW heating:<br />
Programming unit RC35 with<br />
Solar function module SM10 (➔ page 29)<br />
– Solar heating systems for DHW and central<br />
heating backup:<br />
Logamatic 4121 control unit with<br />
Solar function module FM443 (➔ page 31)<br />
2.3.2 Control strategies<br />
Temperature differential control<br />
In "Automatic" mode the solar control unit monitors<br />
whether the solar cylinder can be heated with solar<br />
energy. To do th<strong>is</strong>, the control unit compares the<br />
collector temperature using the FSK sensor and the<br />
temperature in the lower area of the cylinder (FSS<br />
sensor). If there <strong>is</strong> adequate insolation, i.e. the set<br />
temperature differential between the collector and the<br />
cylinder <strong>is</strong> exceeded, the solar circuit pump starts and<br />
the cylinder <strong>is</strong> heated.<br />
After a long period of insolation and low DHW<br />
consumption, high temperatures occur in the cylinder.<br />
The solar circuit control unit switches the solar circuit<br />
pump off when the maximum cylinder temperature <strong>is</strong><br />
been reached during heating.<br />
Temperature differential control unit SC20 for one consumer<br />
V<br />
FSK<br />
SP1<br />
Logasol<br />
SKN3.0<br />
SKS4.0<br />
AW<br />
SP1 Logasol<br />
SKN3.0<br />
SKS4.0<br />
AW<br />
Twin-Tube<br />
Twin-Tube<br />
Logasol<br />
KS0105SC20<br />
R<br />
MAG<br />
230 V<br />
50 Hz<br />
FE<br />
AW<br />
FSX<br />
FSS<br />
WWM<br />
Logalux SL300-2<br />
SL400-2, SL500-2<br />
VS<br />
RS<br />
EK<br />
V<br />
FSK<br />
<strong>Technical</strong> description of system components 2<br />
Logasol<br />
KS0105SC20<br />
R<br />
MAG<br />
230 V<br />
50 Hz<br />
FE<br />
AW<br />
FSX<br />
FSS<br />
WWM<br />
Logalux SL300-2<br />
SL400-2, SL500-2<br />
● <strong>Heat</strong> s<strong>our</strong>ce with Logamatic 2107 control unit:<br />
Solar function module FM244 (➔ page 30)<br />
● <strong>Heat</strong> s<strong>our</strong>ce with Logamatic 4000 control unit:<br />
Solar function module FM443 (➔ page 31)<br />
● <strong>Heat</strong> s<strong>our</strong>ce with third party control unit:<br />
Control unit SC20 or SC40 (➔ page 34 f.)<br />
The standard delivery of the solar function modules or<br />
the SC20 and SC40 control units includes:<br />
● One collector temperature sensor FSK<br />
(NTC 20 K, Ø6 mm, 2.5m lead) and<br />
● One collector temperature sensor FSS<br />
(NTC 10 K, Ø9.7 mm, 3.1m lead)<br />
The maximum cylinder temperature can be adjusted<br />
at the control unit.<br />
If there <strong>is</strong> little insolation the pump speed <strong>is</strong> reduced to<br />
maintain a constant temperature differential. Th<strong>is</strong><br />
allows the cylinder to be heated with low power<br />
consumption. The solar control unit does not switch<br />
the pump off until the temperature differential has<br />
dropped below the minimum temperature differential,<br />
and the speed of the circulation pump has already<br />
been reduced to its minimum value by the solar control<br />
unit.<br />
If the cylinder temperature <strong>is</strong> inadequate to provide<br />
DHW convenience a heating circuit control unit<br />
ensures the reheating of the cylinder by a conventional<br />
heat s<strong>our</strong>ce.<br />
27/1 Function diagram of solar DHW heating with temperature differential control unit SC20 and flat-plate collectors with the system enabled<br />
(left) and conventional reheating if there <strong>is</strong> insufficient insolation (right)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
VS<br />
RS<br />
EK<br />
KS0105SC20 Logasol complete station<br />
KS0105 with integral solar<br />
control unit SC20<br />
FSK Collector temperature sensor<br />
FSS Cylinder temperature sensor<br />
(bottom)<br />
FSX Cylinder temperature sensor<br />
(top; optional)<br />
Other abbreviations ➔ page 148<br />
27
2<br />
<strong>Technical</strong> description of system components<br />
Double-Match-Flow<br />
Solar function modules SM10, FM443 and control units<br />
SC20 and SC40 provide optim<strong>is</strong>ed heating of the<br />
thermosiphon cylinder using a special high-flow/lowflow<br />
strategy. The solar control unit monitors the<br />
cylinder heating status using a threshold sensor<br />
located in the centre of the cylinder. Depending on the<br />
heating status the control unit switches to high-flow or<br />
low-flow operation, whichever <strong>is</strong> currently the best.<br />
Th<strong>is</strong> changeover facility <strong>is</strong> known as Double-Match-<br />
Flow.<br />
Priorit<strong>is</strong>ed heating of the standby part<br />
with low-flow operation<br />
In low-flow operation the control unit attempts to<br />
achieve a temperature differential between the<br />
collector (FLK sensor) and the cylinder (FSS sensor).<br />
Th<strong>is</strong> <strong>is</strong> done by varying the flow rate via the solar<br />
circuit pump speed.<br />
The standby part of the thermosiphon cylinder <strong>is</strong><br />
heated with priority using the resulting high flow<br />
temperature. Conventional cylinder reheating <strong>is</strong><br />
therefore suppressed as much as possible conserving<br />
primary energy.<br />
Standard thermosiphon cylinder heating<br />
in high-flow operation<br />
The solar control unit increases the speed of the solar<br />
circuit pump if the standby part of the cylinder has<br />
been heated up to 45 °C (FSX threshold sensor). The set<br />
temperature differential between the collector (FSK<br />
sensor) and the lower cylinder area (FSS sensor) <strong>is</strong> 15 K.<br />
The system <strong>is</strong> then operating with a lower flow<br />
temperature. With th<strong>is</strong> operating mode, less heat <strong>is</strong> lost<br />
in the collector circuit, and system efficiency <strong>is</strong><br />
optim<strong>is</strong>ed during cylinder heating.<br />
Subject to sufficient collector output being available,<br />
the control system reaches the set temperature<br />
differential and continues to heat the cylinder with<br />
optimum collector efficiency. If the set temperature<br />
differential can no longer be achieved, the control<br />
system uses the available solar heat at the slowest<br />
pump speed until the shut-off criterion <strong>is</strong> reached. The<br />
thermosiphon cylinder stores the heated water in the<br />
correct temperature layer (➔ 28/3). If the temperature<br />
differential drops below 5 K, the control unit switches<br />
the solar circuit pump off.<br />
Caption (➔ 28/1 to 28/3)<br />
ΔJ Temperature differential between collector (FSK sensor)<br />
and lower cylinder area (FSS1 sensor)<br />
R Solar return<br />
V Solar flow<br />
Other abbreviations ➔ page 148<br />
28<br />
Δϑ = 30 K<br />
28/1 Priorit<strong>is</strong>ed heating of the standby section of a thermosiphon<br />
cylinder with Δϑ = 30 K using a variable, slow pump speed in<br />
low-flow operation, until 45 °C <strong>is</strong> reached at the FSX threshold<br />
sensor<br />
Δϑ = 15 K<br />
FSS1<br />
V<br />
28/2 <strong>Heat</strong>ing of a thermosiphon cylinder with Δϑ = 15K with strong<br />
insolation using a fast pump speed in high-flow operation<br />
Δϑ < 15 K<br />
28/3 <strong>Heat</strong>ing of a thermosiphon cylinder with the maximum<br />
possible flow temperature (Δϑ < 15 K) using the slowest pump<br />
speed with low insolation<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
AW<br />
R<br />
AW<br />
FSS1<br />
V<br />
R<br />
AW<br />
FSS1<br />
V<br />
R<br />
FSX<br />
EK<br />
FSX<br />
FSX<br />
EK<br />
VS<br />
RS<br />
VS<br />
RS<br />
VS<br />
RS
Solar optim<strong>is</strong>ation function of function modules SM10, FM244 and FM443<br />
With the solar optim<strong>is</strong>ation function, conventional<br />
energy <strong>is</strong> conserved and solar yield <strong>is</strong> increased by<br />
integrating the solar control in the boiler control unit.<br />
The consumption of reheating (primary) energy for<br />
heating DHW <strong>is</strong> reduced by up to 10% compared to<br />
conventional solar control units. The number of burner<br />
starts <strong>is</strong> reduced by up to 24%.<br />
60<br />
With the solar optim<strong>is</strong>ation function the control unit<br />
captures whether<br />
ϑSp ● solar yield <strong>is</strong> available, and whether<br />
˚C<br />
● the stored amount of heat <strong>is</strong> sufficient to provide<br />
45<br />
DHW.<br />
The general objective of the control unit <strong>is</strong> to reduce the<br />
temporary set DHW temperature as much as possible<br />
whilst at the same time ensuring user convenience, to<br />
prevent reheating by the boiler.<br />
The standby volume of the cylinder <strong>is</strong> designed to cover<br />
the DHW demand at a storage temperature of 60 °C. If<br />
the lower region of the cylinder <strong>is</strong> heated by solar<br />
energy, then the boiler can heat the water to useful<br />
temperatures that much more rapidly. Higher<br />
temperatures in the lower cylinder region therefore<br />
enable a reduction of the set reheating temperature,<br />
saving primary energy. The lowest acceptable DHW<br />
temperature can be set by the user using the<br />
"MINSOLAR" parameter within a range of 30 °C to<br />
54 °C. With DHW heating using the flow-through<br />
principle, th<strong>is</strong> temperature relates to the water in the<br />
upper section of the thermal store.<br />
2.3.3 Solar control units and function modules<br />
<strong>Technical</strong> description of system components 2<br />
Logamatic EMS control system with solar function module SM10<br />
Features and character<strong>is</strong>tics<br />
● Control of solar DHW heating for heat s<strong>our</strong>ces with<br />
EMS and control unit RC35<br />
● Up to 10% primary energy saving and up to 24%<br />
fewer burner starts compared to conventional solar<br />
control units by means of system integration in the<br />
heating control unit (solar optim<strong>is</strong>ation function)<br />
5:30 8:00 10:10 17:00 22:00<br />
29/1 "Solar yield optim<strong>is</strong>ation" control function<br />
Caption<br />
ϑ Sp DHW temperature in the cylinder<br />
t Time<br />
a Insolation<br />
b DHW temperature at the top of the cylinder<br />
c DHW temperature at the bottom of the cylinder<br />
d Set DHW temperature<br />
➊ First draw-off (reheating)<br />
➋ Second draw-off (adequate solar yield)<br />
➋ Third draw-off (adequate cylinder temperature)<br />
● Priorit<strong>is</strong>ed heating of the standby section of<br />
thermosiphon cylinders and energy-optim<strong>is</strong>ed<br />
operation control using Double-Match-Flow<br />
(FSX sensor also used as threshold sensor)<br />
● Optional dual-cylinder systems (cylinders connected<br />
in series) for DHW heating in combination with<br />
KR-VWS (daily heating of pre-heating stage and<br />
stratification) or SC10 (water transfer only)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
a<br />
b<br />
c<br />
t<br />
d<br />
29
2<br />
<strong>Technical</strong> description of system components<br />
● Different versions:<br />
– SM10 inside: SM10 integrated in<br />
Logasol KS0105SM1 complete station<br />
– SM10: Module for wall mounting or integration in<br />
a slot in the heat s<strong>our</strong>ce (please observe heat<br />
s<strong>our</strong>ce details), only suitable for combining with<br />
Logasol KS01 complete stations without control<br />
system<br />
Caption (➔ 30/1)<br />
1 Access to equipment fuse<br />
2 Solar function module SM10<br />
3 Access to replacement fuse<br />
4 Indicator (LED) for operation and alarm indication<br />
5 Wall retainer<br />
6 Terminal cover<br />
Logamatic 2107 control unit with solar function module FM244<br />
Features and character<strong>is</strong>tics<br />
● Combined boiler/solar control unit for low<br />
temperature boilers with low and moderate heating<br />
demand and solar DHW heating<br />
● Up to 10 % primary energy saving and up to 24%<br />
fewer burner starts compared to conventional solar<br />
control units by means of system integration in the<br />
Logamatic 2107 control unit (solar optim<strong>is</strong>ation<br />
function)<br />
● Optional solar heating systems for central heating<br />
backup in combination with the RW return<br />
temperature limiter<br />
● Optional dual-cylinder systems (cylinders connected<br />
in series) for DHW heating in combination with<br />
SC10 (water transfer only)<br />
● Only for combining with Logasol KS01... complete<br />
stations without control unit<br />
● Solar function module FM244 <strong>is</strong> integrated in<br />
control unit 2107<br />
30<br />
1 2 3 4<br />
30/1 Solar-function module SM10 for wall mounting<br />
Caption (➔ 30/2)<br />
Components that can be used for solar operation<br />
(with solar function module FM244):<br />
1 Digital d<strong>is</strong>play<br />
2 User interface with cover<br />
3 Rotary selector<br />
4 Operating mode buttons<br />
Additional boiler control components:<br />
5 Control unit ON/OFF switch<br />
6 Burner control selector switch<br />
7 Control unit power fuse<br />
8 Flue gas test button (chimney sweep)<br />
9 Boiler control thermostat<br />
10 Boiler high limit safety cut-out<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
2 3 4<br />
6 5<br />
10 9 8 7 6 5<br />
30/2 Boiler control unit Logamatic 2107 with fitted solar-function<br />
module FM244
<strong>Technical</strong> description of system components 2<br />
Logamatic 4000 control system with solar function module FM443<br />
Features and character<strong>is</strong>tics<br />
● Solar function module FM433 makes enables the<br />
control of DHW heating or DHW and central<br />
heating backup in systems with a maximum of two<br />
solar consumers (cylinders)<br />
● Up to 10% primary energy saving and up to 24%<br />
fewer burner starts compared to conventional solar<br />
control units by means of system integration in the<br />
heating control unit (solar optim<strong>is</strong>ation function)<br />
● Priorit<strong>is</strong>ed heating of the standby part of<br />
thermosiphon cylinders and energy-optim<strong>is</strong>ed<br />
operation control using Double-Match-Flow (FSX<br />
sensor also used as threshold sensor)<br />
● Can be used for EMS heat s<strong>our</strong>ces with the<br />
Logamatic 4121 control unit; required for solar<br />
heating systems for DHW heating with central<br />
heating backup because of the external heat<br />
detection function<br />
● Optional integrated heat meter function in<br />
combination with WMZ1.2 accessory kit<br />
● Entire system, including the solar control unit, can<br />
be operated from the living room using the MEC2<br />
programming unit<br />
● Only for combining with Logasol KS01... complete<br />
stations without control unit<br />
● Stratification of dual-mode cylinders<br />
● Transfer of hot water in dual-cylinder systems for<br />
DHW heating<br />
● Intelligent buffer management<br />
● Stat<strong>is</strong>tics function<br />
● Solar function module FM443 can be integrated in a<br />
digital control unit of the Logamatic 4000 modular<br />
control system<br />
31/1 Solar function module FM443<br />
Caption<br />
1 Connection plug<br />
2 LED indicator, module fault<br />
3 LED maximum collector temperature<br />
4 LED solar circuit pump 2 (secondary pump) running<br />
5 LED solar circuit pump 2 running or three-way diverter valve in<br />
solar circuit 2 position<br />
6 LED three-way diverter valve in solar circuit 1 position<br />
7 Manual switch solar circuit selection<br />
8 PCB<br />
9 Manual switch, solar circuit function 1<br />
10 LED three-way diverter valve in direction "Central heating<br />
backup via thermal store off" or "Pump off" (bypass operation)<br />
11 LED three-way diverter valve in direction "Central heating<br />
backup via thermal store on" or "Pump running" (thermal store<br />
operation)<br />
12 LED solar circuit pump 1 running<br />
13 LED maximum temperature in cylinder 1<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
13<br />
12<br />
11<br />
10<br />
9<br />
1<br />
2<br />
3<br />
4<br />
5<br />
6<br />
7<br />
8<br />
31
2<br />
<strong>Technical</strong> description of system components<br />
Stratification<br />
If the pump function <strong>is</strong> set to "Stratification" with dualmode<br />
solar cylinders, the pump that <strong>is</strong> connected <strong>is</strong><br />
used to heat up the solar pre-heating stage to 60 °C<br />
once every day, if required, to provide pasteur<strong>is</strong>ation in<br />
accordance with DVGW Code of Practice W 551 or for<br />
the pasteur<strong>is</strong>ation of the solar pre-heating stage.<br />
Transfer of hot water<br />
If the pump function <strong>is</strong> set to "transfer", with cylinders<br />
connected in series the connected pump <strong>is</strong> used to<br />
transfer the water from the solar cylinder and the<br />
cylinder that <strong>is</strong> heated via the boiler. As soon as the<br />
solar cylinder <strong>is</strong> hotter than the cylinder that <strong>is</strong> heated<br />
by the boiler, pump PUM <strong>is</strong> switched on and the water<br />
in the cylinders <strong>is</strong> transferred.<br />
Th<strong>is</strong> pump <strong>is</strong> also used to heat the solar cylinder, i. e.<br />
the solar pre-heating stage, to 60 °C once every day if<br />
required to pasteur<strong>is</strong>e in accordance with the DVGW<br />
Code of Practice W 551 or for the pasteur<strong>is</strong>ation of the<br />
solar pre-heating stage.<br />
32<br />
32/1 Water transfer in a circuit with one solar cylinder<br />
32/2 Transfer of hot water between cylinders connected in series<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
FSS<br />
FSX<br />
FSS<br />
PUM<br />
M<br />
PUM<br />
FSX
Logamatic SC10 solar control unit<br />
Features and character<strong>is</strong>tics<br />
● Autonomous solar control unit with temperature<br />
differential control for simple solar heating systems<br />
● Easy operation and function control of the<br />
temperature differential control unit with two sensor<br />
inputs and one switching output<br />
● Controller for wall mounting, function and<br />
temperature d<strong>is</strong>played via segment LCD<br />
● Can be used to transfer hot water between two<br />
cylinders, e.g. the heat stored in the pre-heating<br />
cylinder can be transferred to the standby cylinder<br />
● Used for buffer bypass circuits in solar heating<br />
systems for central heating backup. The<br />
temperature compar<strong>is</strong>on results in the volume flow<br />
being routed either to the thermal store or to the<br />
heating return. Th<strong>is</strong> function can also be used in<br />
combination with wood burning boilers.<br />
Temperature differential control<br />
The required temperature differential can be set to<br />
between 4 K and 20 K (factory setting 10 K). The pump<br />
starts if the set temperature differential between the<br />
collector (FSK sensor) and the bottom of the cylinder<br />
(FSS sensor) <strong>is</strong> exceeded. The control unit switches the<br />
pump off when the temperature differential drops<br />
below th<strong>is</strong> value again.<br />
A maximum cylinder temperature of between 20 °C<br />
and 90 °C can also be set (factory setting 60 °C). When<br />
the cylinder reaches the maximum temperature (FSS<br />
sensor), the control unit switches the pump off.<br />
Special d<strong>is</strong>plays and controls of the SC10 solar<br />
control unit<br />
The temperature settings can be viewed on the control<br />
unit d<strong>is</strong>play. The current values of connected<br />
temperature sensors 1 and 2 are d<strong>is</strong>played together<br />
with the respective sensor number.<br />
Standard delivery<br />
The standard delivery includes:<br />
● One collector temperature sensor FSK<br />
(NTC 20K, Ø6 mm, 2.5m lead)<br />
● One collector temperature sensor FSS<br />
(NTC 10K, Ø9.7 mm, 3.1m lead)<br />
<strong>Technical</strong> description of system components 2<br />
5<br />
33/1 Logamatic SC10 solar control unit<br />
Caption<br />
1 Segment LCD<br />
2 Direction key "Up"<br />
3 Function key "SET"<br />
4 Direction key "Down"<br />
5 Operating mode keys (concealed)<br />
Application Recommended switch-on<br />
temperature differential<br />
K<br />
Operating a solar<br />
10<br />
heating system<br />
Buffer bypass circuit<br />
(three-way valve)<br />
6<br />
Transfer between<br />
two cylinders<br />
10<br />
33/2 Recommended switch-on temperature differential<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
2<br />
3<br />
4<br />
33
2<br />
<strong>Technical</strong> description of system components<br />
Logamatic SC20 solar control unit<br />
Features and character<strong>is</strong>tics<br />
● Autonomous solar heating system control unit for<br />
DHW heating, independently of the heat generator<br />
control unit<br />
● Priorit<strong>is</strong>ed heating of the standby part of<br />
thermosiphon cylinders and energy-optim<strong>is</strong>ed<br />
operation control using Double-Match-Flow (FSX<br />
threshold sensor available as accessory, AS1 or<br />
AS1.6 cylinder connection kit)<br />
● Different versions:<br />
– SC20 integrated in the Logasol KS0105 complete<br />
station<br />
– SC20 for wall mounting in combination with<br />
Logasol KS01<br />
● Easy operation and monitoring of single consumer<br />
systems with three sensor inputs and one switching<br />
output for one variable speed solar circuit pump<br />
with variable lower modulation limit<br />
● Backlit segment LCD with animated system<br />
pictograph. Different system values (temperature<br />
values, h<strong>our</strong>s run, pump speed) can be called up in<br />
automatic mode<br />
● The pump <strong>is</strong> switched off when the maximum<br />
collector temperature <strong>is</strong> exceeded. The pump will<br />
not start if the temperature drops below the<br />
minimum collector temperature (20 °C), even if the<br />
other switch-on conditions are met<br />
● With the tube collector function the solar circuit<br />
pump <strong>is</strong> activated briefly every 15 minutes from a<br />
collector temperature of 20 °C to pump warm solar<br />
fluid to the sensor<br />
Special d<strong>is</strong>plays and controls of the SC20 solar<br />
control unit<br />
As well the above parameters, the digital d<strong>is</strong>play also<br />
allows the speed of the solar circuit pump to be<br />
d<strong>is</strong>played in percent.<br />
The following values can be optionally recorded with<br />
the FSX sensor accessory (cylinder connection kit AS1):<br />
● The top cylinder temperature in the standby part of<br />
the DHW cylinder or<br />
● The mid-cylinder temperature for Double-Match-<br />
Flow (here the FSX threshold sensor)<br />
Standard delivery<br />
The standard delivery includes:<br />
● One collector temperature sensor FSK<br />
(NTC 20K, Ø6 mm, 2.5m lead)<br />
● One collector temperature sensor FSS<br />
(NTC 10K, Ø9.7 mm, 3.1m lead)<br />
34<br />
34/1 Logamatic SC20 solar control unit<br />
Caption (➔ 34/1)<br />
1 System pictograph<br />
2 Segment LCD<br />
3 Rotary selector<br />
4 Function key "OK"<br />
5 Direction key "Back"<br />
34/2 Segment LCD of the Logamatic SC20 solar control unit<br />
Caption (➔ 34/2)<br />
1 D<strong>is</strong>play "Maximum collector temperature or minimum collector<br />
temperature"<br />
2 "Temperature sensor" symbol<br />
3 Segment LCD<br />
4 Multifunction d<strong>is</strong>play (temperature, h<strong>our</strong>s run, etc.)<br />
5 "Maximum cylinder temperature" d<strong>is</strong>play<br />
6 Animated solar circuit<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
6<br />
1<br />
min/max<br />
5<br />
1<br />
2<br />
T1 T1<br />
T3 T3<br />
max max<br />
T2 T2<br />
2<br />
ΔT T on on<br />
-<br />
+<br />
4<br />
3<br />
3<br />
max max<br />
DMF DMF<br />
reset reset<br />
�i<br />
❄<br />
˚C<br />
%<br />
h<br />
4<br />
5
Control unit function<br />
The required temperature differential between the two<br />
connected temperature sensors can be set to between<br />
7 K and 20 K in automatic mode (factory setting 10 K).<br />
The pump starts if th<strong>is</strong> temperature differential <strong>is</strong><br />
exceeded between the collector temperature sensor<br />
(FSK sensor) and the bottom of the cylinder (FSS<br />
sensor). An animated d<strong>is</strong>play of the movement of the<br />
solar fluid appears on the d<strong>is</strong>play (➔ 34/2, item 6). The<br />
efficiency of the solar system <strong>is</strong> increased by the<br />
variable speed control provided by the SC20. A<br />
minimum speed can also be stored. When the<br />
temperature differential drops below th<strong>is</strong> value again<br />
the control unit switches the pump off. To protect the<br />
pump, it <strong>is</strong> automatically activated for about 3 seconds<br />
approximately 24 h<strong>our</strong>s after it was last operated<br />
(pump kick).<br />
The different system values (temperature values, h<strong>our</strong>s<br />
run, pump speed) can be called up using the rotary<br />
Logamatic SC40 solar control unit<br />
Features and character<strong>is</strong>tics<br />
● Autonomous solar heating system control unit for<br />
different applications, independent of the heat<br />
s<strong>our</strong>ce, with 27 selectable solar heating systems,<br />
from DHW heating and central heating backup to<br />
swimming pool water heating<br />
● Different versions:<br />
– SC40 integrated in the Logasol KS 0105 complete<br />
station<br />
– SC40 for wall mounting in combination with<br />
Logasol KS01<br />
● Easy operation and monitoring of systems with up<br />
to f<strong>our</strong> consumers, eight sensor inputs and five<br />
switching outputs, two of which are for variable<br />
speed solar circuit pumps with adjustable lower<br />
modulation limit<br />
● Backlit LCD graphic with depiction of the selected<br />
solar system. Different system values (pump status,<br />
temperature values, selected function, fault<br />
messages) can be called up in automatic mode<br />
● RS232 interface for transferring data and integral<br />
heat meter (accessory WMZ 1.2 required)<br />
● Integrated circuit for buffer bypass circuit in solar<br />
heating systems for central heating backup<br />
● Daily heating of the pre-heating cylinder to provide<br />
pasteur<strong>is</strong>ation<br />
● In solar heating systems with a pre-heating cylinder<br />
and standby cylinder, the cylinder contents are<br />
transferred by actuating a pump as soon as the<br />
temperature of the standby cylinder drops below the<br />
temperature of the pre-heating cylinder<br />
● Priority definition with two consumers in the solar<br />
heating system and actuation of the 2nd consumer<br />
via a pump or a three-way diverter valve<br />
<strong>Technical</strong> description of system components 2<br />
selector (➔ 34/1, item 3). The temperature values are<br />
assigned in the pictograph using item numbers.<br />
The SC20 solar control unit also enables the setting of<br />
a maximum cylinder temperature between 20 °C and<br />
90 °C, which <strong>is</strong> d<strong>is</strong>played in the system pictograph, if<br />
required. Reaching of the maximum or minimum<br />
collector temperature <strong>is</strong> also v<strong>is</strong>ually indicated on the<br />
segment LCD, and the pump switched off if they are<br />
exceeded. If the temperature drops below the<br />
minimum collector temperature the pump will not<br />
start, even if the other switch-on conditions are met.<br />
The tube collector function that <strong>is</strong> integrated in the<br />
SC20 provides a pump kick to optim<strong>is</strong>e the operation<br />
of vacuum tube collectors.<br />
The combination of the Double-Match-Flow function<br />
(only possible with additional FSX sensor as accessory<br />
to the AS1 cylinder connection kit) and the speed<br />
● Optional actuation for two solar heating circuit<br />
pumps for a separate operation of two collector<br />
arrays, e.g. with east/west orientation<br />
● Actuation of an external plate-type heat exchanger<br />
for heating the solar cylinder<br />
● Collector array cooling for reducing the stagnation<br />
times by means of adapted solar circuit pump<br />
operation<br />
● With the tube collector function, the solar circuit<br />
pump <strong>is</strong> activated briefly every 15 minutes at a<br />
collector temperature from 20 °C to pump warm<br />
solar fluid to the sensor<br />
Special d<strong>is</strong>plays and controls of the SC40 solar<br />
control unit<br />
The relevant system pictograph <strong>is</strong> selected from the 27<br />
pre-programmed hydraulic schemes, and subsequently<br />
saved to the control unit.<br />
Standard delivery<br />
The standard delivery includes:<br />
● One collector temperature sensor FSK<br />
(NTC 20 K, Ø6 mm, 2.5m lead)<br />
● One collector temperature sensor FSS<br />
(NTC 10 K, Ø9.7 mm, 3.1m lead)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
35
2<br />
<strong>Technical</strong> description of system components<br />
Control unit function<br />
The control unit <strong>is</strong> divided into two operating levels.<br />
Various system values (temperatures, h<strong>our</strong>s run, pump<br />
speed, amount of heat and bypass valve setting) can be<br />
d<strong>is</strong>played at the d<strong>is</strong>play level. Functions can be selected<br />
and settings made and modified at the service level<br />
The system selection function <strong>is</strong> used to select the<br />
standard system at the SC40 solar control unit and the<br />
hydraulic scheme of the solar heating system. The<br />
selected hydraulic scheme defines the system<br />
configuration and function. The selection <strong>is</strong> made from<br />
systems for DHW heating, central heating backup or<br />
swimming pool water heating as per the system<br />
pictographs (➔ 37/1). The settings contain all dec<strong>is</strong>ive<br />
temperatures, temperature differentials, pump speeds<br />
and optional functions, e.g. tube collector functions,<br />
capturing the heat amount, cylinder water transfer,<br />
daily heating of the pre-heating volume, Double-<br />
Match-Flow etc. required for the system operation. The<br />
marginal conditions for controlling two collector<br />
arrays with different orientation and heating the<br />
cylinder via an external heat exchanger are also<br />
entered here.<br />
The SC40 further provides the following extensions via<br />
the control facilities of the SC20 solar control unit:<br />
● Central heating backup with buffer bypass<br />
actuation<br />
● Swimming pool water heating using a plate-type<br />
heat exchanger<br />
● Actuation of a 2nd consumer via a pump or threeway<br />
diverter valve<br />
● Actuation of a water transfer pump with cylinders<br />
connected in series<br />
● East/west control for separate operation of two<br />
collector arrays<br />
● Daily heating of pre-heating cylinder for<br />
pasteur<strong>is</strong>ation purposes<br />
36<br />
● Integral capturing of the heat amount with flow<br />
meter<br />
● Cylinder heating via an external heat exchanger<br />
● Data transfers via an RS232 interface<br />
● Collector array cooling for reducing stagnation<br />
times<br />
● Rapid diagnos<strong>is</strong> and simple function tests<br />
Detailed descriptions of special functions ➔ page 41 ff.<br />
36/1 Logamatic SC40 solar control unit<br />
Caption<br />
1 System pictograph<br />
2 Segment LCD<br />
3 Rotary selector<br />
4 Function key "OK"<br />
5 Direction key "Back"<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
2<br />
3<br />
4<br />
5
<strong>Technical</strong> description of system components 2<br />
Logamatic SC40 solar control unit, system and function overview<br />
Hydraulic<br />
no.<br />
Domestic hot water heating<br />
T1<br />
T2<br />
T3<br />
T4<br />
T5<br />
T6<br />
T7<br />
WMZ<br />
S8<br />
WMZ<br />
S8<br />
WMZ<br />
R1<br />
R1<br />
S1<br />
S7<br />
System pictograph Selectable additional functions, subject to the hydraulic scheme<br />
S1<br />
S7<br />
S1<br />
WMZ<br />
S5<br />
R1 WMZ S8 R5<br />
S8<br />
WMZ<br />
S8<br />
WMZ<br />
S8<br />
R1<br />
R1<br />
R1<br />
R1<br />
S1<br />
S7<br />
S7<br />
S1<br />
S7<br />
S7<br />
S1<br />
S1<br />
S6<br />
R5<br />
S6<br />
S5<br />
S5<br />
R4<br />
R2<br />
S7<br />
S8<br />
R2<br />
R2<br />
S6<br />
S3<br />
S4<br />
R5<br />
S3<br />
S2<br />
S3<br />
S4<br />
S3<br />
S4<br />
R2 S2<br />
S2<br />
S3<br />
S4<br />
R2 S2<br />
Double-Match-<br />
Flow<br />
●<br />
(S4)<br />
●<br />
(S4)<br />
●<br />
(S4)<br />
●<br />
(S4)<br />
●<br />
(S3)<br />
●<br />
(S3)<br />
●<br />
(S3)<br />
Cooling<br />
function<br />
●<br />
(S1, S2)<br />
●<br />
(S1, S2, S5)<br />
●<br />
(S1, S2)<br />
●<br />
(S1, S2, S5)<br />
●<br />
(S1, S2)<br />
●<br />
(S1, S2, S5)<br />
●<br />
(S1, S2)<br />
37/1 Logamatic SC40 solar control unit, system and function overview<br />
Symbols: ● Function available, – function unavailable, (S..) required temperature sensors<br />
R3<br />
R3<br />
S2 S4<br />
S3<br />
R3<br />
S2 S4<br />
S3<br />
R3<br />
S2 S4<br />
R3<br />
R3<br />
R3<br />
Daily heating <strong>Heat</strong> exch. antiicing<br />
protection<br />
●<br />
(S2, S3)<br />
●<br />
(S2, S3)<br />
●<br />
(S2, S3)<br />
●<br />
(S2, S3)<br />
●<br />
(S2, S3, S4)<br />
●<br />
(S2, S3, S4)<br />
●<br />
(S2, S3, S4)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
–<br />
–<br />
●<br />
(S6)<br />
●<br />
(S6)<br />
–<br />
–<br />
●<br />
(S6)<br />
Continued on the next page<br />
37
2<br />
<strong>Technical</strong> description of system components<br />
38<br />
Hydraulic<br />
no.<br />
T8<br />
Central heating backup<br />
H1<br />
H2<br />
H3 –<br />
H4 –<br />
H5<br />
H6<br />
R1<br />
WMZ<br />
R1<br />
WMZ<br />
S8<br />
R1<br />
WMZ<br />
S8<br />
WMZ<br />
S8<br />
S1<br />
S8<br />
R1<br />
S7<br />
R1<br />
System pictograph Selectable additional functions, subject to the hydraulic scheme<br />
S5<br />
S1<br />
S7<br />
R4<br />
WMZ<br />
S8<br />
S1 S555<br />
S7<br />
WMZ<br />
S8<br />
R4<br />
R1<br />
S1<br />
S1<br />
S1<br />
S7<br />
S7<br />
S5<br />
R4<br />
S6<br />
R5<br />
R2<br />
S4<br />
S2<br />
S4<br />
S6<br />
S2<br />
R2<br />
S7<br />
R3<br />
S3<br />
R2<br />
S4<br />
S6<br />
S2<br />
S4<br />
S6<br />
S2<br />
R2 S2<br />
S6<br />
WMZ<br />
S8<br />
R4 S5<br />
R1<br />
R2<br />
S1<br />
S7<br />
S4<br />
S2<br />
S6<br />
S4<br />
S6<br />
S5<br />
R3<br />
Double-Match-<br />
Flow<br />
●<br />
(S3)<br />
●<br />
(S4)<br />
●<br />
(S4)<br />
●<br />
(S4)<br />
●<br />
(S4)<br />
Cooling<br />
function<br />
●<br />
(S1, S2, S5)<br />
●<br />
(S1, S2)<br />
●<br />
(S1, S2, S5)<br />
●<br />
(S1, S2)<br />
●<br />
(S1, S2, S5)<br />
●<br />
(S1, S2, S5)<br />
●<br />
(S1, S2, S5)<br />
37/1 Logamatic SC40 solar control unit, system and function overview<br />
Symbols: ● Function available, – function unavailable, (S..) required temperature sensors<br />
R3<br />
S2 S4<br />
R5<br />
R3<br />
R5<br />
R5<br />
R5<br />
S3<br />
R5<br />
R5<br />
S3<br />
S3<br />
S3<br />
S3<br />
S3<br />
●<br />
(S2, S3, S4)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Daily heating <strong>Heat</strong> exch. antiicing<br />
protection<br />
●<br />
(S6)<br />
– –<br />
– –<br />
–<br />
–<br />
●<br />
(S2, S4)<br />
●<br />
(S2, S4)<br />
●<br />
(S7)<br />
●<br />
(S7)<br />
–<br />
–
Hydraulic<br />
no.<br />
H7 –<br />
H8 –<br />
H9 WMZ<br />
S2<br />
–<br />
H10<br />
H11<br />
H12<br />
WMZ<br />
R1<br />
S8<br />
R1<br />
S1 S5<br />
WMZ<br />
S1<br />
S7<br />
S8<br />
S8 R1<br />
R1<br />
WMZ<br />
R1<br />
H13 –<br />
R1<br />
R1<br />
WMZ<br />
R4<br />
<strong>Technical</strong> description of system components 2<br />
System pictograph Selectable additional functions, subject to the hydraulic scheme<br />
S7<br />
R2<br />
R4<br />
S1<br />
S7<br />
S1<br />
S7<br />
R4<br />
S2<br />
S4<br />
R3<br />
S4<br />
R3<br />
WMZ<br />
S8 R4<br />
S1 S5<br />
S8<br />
WMZ<br />
S1<br />
S7<br />
S8<br />
S1 S5<br />
S8<br />
S7<br />
S7<br />
R4<br />
R3<br />
R2<br />
S2<br />
R2<br />
S6<br />
S2<br />
R4<br />
S2<br />
S6<br />
R5<br />
R4<br />
S5<br />
R2<br />
S6<br />
S5<br />
S6<br />
S2<br />
S2<br />
S6<br />
R5<br />
R2<br />
S6<br />
S4<br />
S6<br />
S5<br />
S3<br />
S4<br />
S3<br />
Double-Match-<br />
Flow<br />
●<br />
(S6)<br />
●<br />
(S6)<br />
●<br />
(S5)<br />
Cooling<br />
function<br />
●<br />
(S1, S2, S4, S5)<br />
●<br />
(S1, S2, S5)<br />
●<br />
(S1, S2, S5)<br />
●<br />
(S1, S2, S4)<br />
●<br />
(S1, S2, S4, S5)<br />
●<br />
(S1, S2, S3)<br />
●<br />
(S1, S2, S3, S5)<br />
37/1 Logamatic SC40 solar control unit, system and function overview<br />
Symbols: ● Function available, – function unavailable, (S..) required temperature sensors<br />
S4<br />
R3<br />
R3<br />
S4<br />
S3<br />
S4<br />
R2<br />
S3<br />
R3<br />
R5<br />
R5<br />
R5<br />
R3<br />
S3<br />
S3<br />
S3<br />
Daily heating <strong>Heat</strong> exch. antiicing<br />
protection<br />
●<br />
(S2)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
–<br />
–<br />
●<br />
(S2)<br />
●<br />
(S2)<br />
●<br />
(S2)<br />
–<br />
–<br />
●<br />
(S4)<br />
●<br />
(S4)<br />
–<br />
–<br />
●<br />
(S6)<br />
●<br />
(S6)<br />
Continued on the next page<br />
39
2<br />
<strong>Technical</strong> description of system components<br />
Swimming pool water heating<br />
40<br />
Hydraulic<br />
no.<br />
S1<br />
S2<br />
S3 – – –<br />
S4 – – –<br />
●<br />
(S4)<br />
●<br />
(S4)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
–<br />
–<br />
●<br />
(S2, S4)<br />
●<br />
(S2, S4)<br />
S5 S3<br />
– – –<br />
S6<br />
WMZ<br />
R1<br />
WMZ<br />
S8<br />
R1<br />
WMZ<br />
S8<br />
WMZ<br />
S8<br />
S1<br />
S1<br />
S7<br />
System pictograph Selectable additional functions, subject to the hydraulic scheme<br />
S4<br />
S2<br />
S6<br />
S8 R4 R5 R2<br />
R1<br />
R4<br />
S7<br />
S1<br />
S7<br />
S5<br />
S1<br />
S7<br />
R3<br />
S6<br />
R5<br />
S4<br />
R2<br />
S3<br />
S4<br />
S2<br />
S3<br />
Double-Match-<br />
Flow<br />
●<br />
(S4)<br />
Cooling<br />
function<br />
37/1 Logamatic SC40 solar control unit, system and function overview<br />
Symbols: ● Function available, – function unavailable, (S..) required temperature sensors<br />
R3<br />
S2<br />
S6<br />
S3<br />
R4 R5 R2<br />
S2<br />
S4<br />
R1 WMZ<br />
S8<br />
R4 R3 R2<br />
R1<br />
R4<br />
S1<br />
S7<br />
S1<br />
S7<br />
S4<br />
S2<br />
S2<br />
S4<br />
S6<br />
R3<br />
S6<br />
S5<br />
R5<br />
S6<br />
R5<br />
S5<br />
R2<br />
S3<br />
R1 WMZ R4 R5 R3 S5<br />
S8<br />
R2<br />
S3<br />
R3<br />
– –<br />
Daily heating <strong>Heat</strong> exch. antiicing<br />
protection<br />
●<br />
(S6)<br />
●<br />
(S6)<br />
●<br />
(S6)<br />
●<br />
(S4)<br />
●<br />
(S4)<br />
●<br />
(S6)
2.3.4 Special functions<br />
Central heating backup via buffer bypass circuit<br />
The solar central heating backup can be controlled<br />
with the FM443 solar function module and the SC40<br />
solar control unit via a buffer bypass circuit using the<br />
HZG kit (➔ 41/1) available as an accessory. A buffer<br />
bypass circuit provides a hydraulic connection<br />
between the thermal store and the heating circuit<br />
return. If the temperature in the thermal store <strong>is</strong> higher<br />
than the heating circuit return temperature by an<br />
adjustable amount (ϑOn), the three-way diverter valve<br />
opens in the direction of the thermal store. The thermal<br />
store heats the return water that <strong>is</strong> flowing to the<br />
boiler. If the temperature differential between the<br />
thermal store and the heating circuit return drops by<br />
an adjustable amount (ϑOff ), the three-way diverter<br />
valve switches in the direction of the boiler and stops<br />
cylinder d<strong>is</strong>charging.<br />
The operating status of the three-way diverter valve <strong>is</strong><br />
d<strong>is</strong>played by the FM443 solar function module and the<br />
SC40 solar control unit. The HZG kit includes:<br />
● Two FSS temperature sensors (NTC 10 K, Ø9.7 mm,<br />
3.1 m lead) for connecting to the FM443 or SC40<br />
● One three-way diverter valve<br />
(threaded connection Rp1")<br />
Caption (➔ 41/1)<br />
1 Cylinder temperature sensor (two sensors provided in the<br />
HZG kit; available as sensor kit for the 2nd consumer FSS)<br />
2 Three-way diverter valve (included in HZG kit; available separately<br />
as diverter valve for the 2nd consumer VS-SU)<br />
Caption (➔ 41/2)<br />
Δp3WV Pressure drop of three-way diverter valve (HZG kit or VS-SU)<br />
VR <strong>Heat</strong>ing system return flow rate<br />
<strong>Technical</strong> description of system components 2<br />
41/1 HZG kit with three-way diverter valve and two cylinder<br />
temperature sensors<br />
Δp3WV<br />
mbar<br />
41/2 Pressure drop of three-way diverter valve (➔ 41/1)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
400<br />
300<br />
200<br />
100<br />
0<br />
1000 2000<br />
I<br />
3000 4000 5000<br />
VR h<br />
2<br />
1<br />
41
2<br />
<strong>Technical</strong> description of system components<br />
Solar heating systems with two consumers<br />
Two solar consumers (cylinders) can be heated using<br />
the FM443 solar heating function module and the<br />
SC40 solar control unit in combination with the sensor<br />
kit 2nd consumer FSS and the diverter valve 2nd<br />
consumer VS-SU.<br />
The single-line solar station KS01...E can be used as an<br />
alternative to the VS-SU. Priority <strong>is</strong> given to the first<br />
consumer (selectable with the SC40). If the<br />
temperature differential setting of 10 K <strong>is</strong> exceeded, the<br />
solar control unit switches on the supply pump in solar<br />
heating circuit 1 (high-flow/low-flow operation with<br />
thermosiphon cylinder ➔ page 28).<br />
The solar control unit optionally changes over to an<br />
additional solar circuit pump or the second consumer<br />
via a three-way diverter valve, if:<br />
● The first consumer has reached the maximum<br />
cylinder temperature or<br />
● The temperature spread in solar circuit 1 <strong>is</strong> no longer<br />
adequate for heating the first consumer, in spite of<br />
using the slowest pump speed.<br />
42<br />
FSW1<br />
FV<br />
FSK<br />
V<br />
WMZ<br />
ZV<br />
VS-<br />
SU<br />
Twin-<br />
Tube<br />
R<br />
WMZ<br />
1.2<br />
MAG<br />
FSW2<br />
FR<br />
Logasol<br />
SKN3.0<br />
SKS4.0<br />
Logasol<br />
KS01..<br />
FE<br />
AW<br />
FSS1<br />
WWM<br />
AW<br />
Logalux SM...<br />
VS<br />
RS<br />
EK<br />
FE<br />
PS<br />
FSX<br />
FSS2<br />
<strong>Heat</strong>ing of the second consumer <strong>is</strong> interrupted every 30<br />
minutes to check the temperature r<strong>is</strong>e in the collector.<br />
If the collector temperature increases by more than 1 K<br />
per minute, the check <strong>is</strong> repeated until:<br />
● The temperature increase at the collector<br />
temperature sensor <strong>is</strong> less than 1K per minute, or<br />
● The temperature spread in solar circuit 1 will enable<br />
heating of the priorit<strong>is</strong>ed consumer again<br />
The solar function module FM443 and solar control<br />
unit SC40 indicate which consumer <strong>is</strong> currently being<br />
heated. The following are required as accessories for a<br />
second consumer:<br />
● diverter valve for 2nd consumer VS-SU: Three-way<br />
diverter valve (threaded connection Rp1")<br />
● Alternative: Single-line solar station KS01... E<br />
● Sensor kit for 2nd consumer FSS:<br />
Cylinder temperature sensor as sensor FSS2<br />
(NTC 10K, Ø9.7 mm, 3.1m lead)<br />
42/1 Solar heating system with flat-plate collectors for two consumers with control via solar function module FM443 (abbreviations ➔ page 148;<br />
additional sample systems ➔ page 60 ff.)<br />
VK<br />
MAG<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
HZG<br />
A B<br />
AB<br />
RK<br />
VK<br />
RK<br />
Logalux PL... Logano EMS<br />
Oil/Gas<br />
Logamatic 4121<br />
+ FM443<br />
1<br />
2
<strong>Heat</strong> meter kit WMZ 1.2 (accessory)<br />
The solar function module FM443 and solar control<br />
unit SC40 include the function of a heat meter. If heat<br />
meter kit WMZ 1.2 <strong>is</strong> being used, the amount of heat<br />
can be captured directly by the solar circuit taking the<br />
glycol content into consideration (adjustable from 0%<br />
to 50%). The amount of heat and the current output in<br />
the solar heating circuit (only with FM443) as well as<br />
the flow rate can be monitored th<strong>is</strong> way.<br />
The WMZ 1.2 kit includes:<br />
● Flow meter with two threaded 6" water meter<br />
connections<br />
● Two temperature sensors as pipe contact sensors<br />
with clips for attaching to flow and return<br />
(NTC 10 K, Ø9.7 mm, 3.1m lead) for connecting to<br />
FM443 or SC40<br />
Because of the differing nominal flow rates there are<br />
three different WMZ 1.2 heat meter kits:<br />
● For a maximum of five collectors<br />
(nominal flow rate 0.6 m3 /h)<br />
● For a maximum of ten collectors<br />
(nominal flow rate 1.0 m3 /h)<br />
● For a maximum of fifteen collectors<br />
(nominal flow rate 1.5 m 3 /h)<br />
The flow meter must be installed in the solar return.<br />
The contact sensors can be attached to the flow and<br />
return using clips.<br />
The pressure drop of the three-way diverter valve and<br />
the flow meter must be taken into consideration when<br />
the complete stations are selected (➔ 41/2 and 43/2).<br />
<strong>Technical</strong> description of system components 2<br />
Caption (➔ 43/1)<br />
1 Threaded water meter connection 6"<br />
2 Flow meter<br />
3 Contact temperature sensor<br />
Caption (➔ 43/2)<br />
a WMZ1.2 up to 5 collectors<br />
b WMZ1.2 up to 10 collectors<br />
c WMZ1.2 up to 15 collectors<br />
ΔpWMZ Flow meter pressure drop<br />
VSol Solar circuit flow rate<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
110<br />
208<br />
43/1 <strong>Heat</strong> meter kit WMZ 1.2 (dimensions in mm)<br />
43/2 Pressure drop of WMZ1.2 flow meter<br />
1<br />
2<br />
3<br />
43
2<br />
<strong>Technical</strong> description of system components<br />
Two collector arrays with different orientation (east/west control)<br />
If insufficient space <strong>is</strong> available on a rooftop, select the<br />
system hydraulics of the east/west orientation. The<br />
collectors are d<strong>is</strong>tributed on two rooftops, which makes<br />
special demands of the hydraulic scheme and the<br />
control system.<br />
FSK<br />
The hydraulic system should preferably be<br />
implemented using two solar stations (a 2-line station<br />
and a 1-line station). The advantage <strong>is</strong> that both<br />
collector arrays can be operated at the same time at<br />
PSS<br />
midday.<br />
The circuits must be controlled separately when<br />
WMZ<br />
FSW1<br />
operating with two solar stations, which <strong>is</strong> taken care<br />
of by the SC40 solar control unit.<br />
FSW2<br />
Solar cylinder heating via an external heat exchanger<br />
These system hydraulics are chosen if a relatively small<br />
solar heating cylinder with high DHW usage <strong>is</strong> being<br />
used with a relative large collector area, or only a<br />
shared heat transfer <strong>is</strong> to be implemented with several<br />
solar heating cylinders (thermal stores). In both cases,<br />
a high heat exchanger output <strong>is</strong> required that cannot<br />
be provided by the indirect coils that are integrated<br />
inside the cylinders.<br />
From a hydraulic point of view, another pump <strong>is</strong><br />
required at the secondary side of the heat exchanger<br />
that has to be controlled. Th<strong>is</strong> function can be<br />
performed by the SC40 solar control unit.<br />
A good hydraulic balance <strong>is</strong> required between the<br />
primary and secondary sides of the heat exchanger<br />
with th<strong>is</strong> hydraulic scheme.<br />
44<br />
44/1 East/west control via two solar stations<br />
Caption (➔ 44/1)<br />
FSK Collector temperature sensor<br />
FSS Cylinder temperature sensor (bottom)<br />
FSX1 Cylinder temperature sensor (top; optional – required for<br />
water transfer)<br />
FSX2 Cylinder temperature sensor (centre; optional – required for<br />
Double-Match-Flow function)<br />
FSW1 <strong>Heat</strong> meter temperature sensor, flow (option)<br />
FSW2 <strong>Heat</strong> meter temperature sensor, return (option)<br />
PSS Solar circuit pump<br />
PUM Water transfer pump (option)<br />
WMZ <strong>Heat</strong> meter kit<br />
Caption (➔ 44/2)<br />
FSK Collector temperature sensor<br />
FSS Cylinder temperature sensor (bottom)<br />
FSX1 Cylinder temperature sensor (top; option – required for<br />
water transfer)<br />
FSX2 Cylinder temperature sensor (centre; option – required for<br />
Double-Match-Flow function)<br />
WT Sensor for heat exchanger, external<br />
FSW1 <strong>Heat</strong> meter temperature sensor, flow (option)<br />
FSW2 <strong>Heat</strong> meter temperature sensor, return (option)<br />
PSS Solar circuit pump<br />
PWT <strong>Heat</strong> exchanger pump<br />
PUM Water transfer pump (option)<br />
SU Diverter valve<br />
WMZ <strong>Heat</strong> meter kit<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
FSK<br />
FSW1 WT<br />
FSK<br />
PSS<br />
PSS PWT<br />
WMZ<br />
FSW2<br />
SU<br />
FSX1<br />
FSX2<br />
FSX1<br />
FSX2<br />
FSS<br />
FSS<br />
44/2 Control unit for heating a cylinder via an external heat<br />
exchanger<br />
PUM<br />
PUM
Cylinders connected in series<br />
When cylinders are connected in series, the preheating<br />
cylinder <strong>is</strong> heated via the solar heating system.<br />
The solar heating function module FM443 or solar<br />
control unit SC40 <strong>is</strong> used to control the solar heating<br />
system.<br />
When hot water <strong>is</strong> drawn-off, the water that has been<br />
pre-heated using solar energy enters the cold water<br />
inlet of the standby cylinder via the hot water outlet of<br />
the pre-heating cylinder and <strong>is</strong> reheated by the boiler,<br />
if required (➔ 45/1).<br />
With high levels of solar yield, the pre-heating cylinder<br />
can also achieve higher temperatures than the<br />
standby cylinder. To enable the use of the entire<br />
cylinder volume for solar heating, a pipe must be<br />
routed from the hot water outlet of the standby<br />
cylinder to the cold water inlet of the pre-heating<br />
cylinder. A pump <strong>is</strong> used to deliver the water in such<br />
cases.<br />
To safeguard that the system <strong>is</strong> operated in accordance<br />
with the technical regulations in DVGW Code of<br />
Practice W 551 (➔ 59/1), all water in the pre-heating<br />
stages must be heated to 60 °C once every day. The<br />
temperature in the standby cylinder must always be<br />
≥ 60 °C. The daily heating of the pre-heating stage can<br />
FSK<br />
PSS<br />
SP1<br />
Collector<br />
Logasol<br />
KS01..<br />
TW<br />
FSS<br />
System part-heated<br />
by solar energy<br />
(pre-heat stage)<br />
VS<br />
M<br />
RS<br />
AW<br />
Pre-heat cylinder<br />
Logalux SU...<br />
EK<br />
<strong>Technical</strong> description of system components 2<br />
DHW heating<br />
(downstream)<br />
be carried out either in standard operation by solar<br />
heating or via conventional reheating.<br />
In combination with the SC40 solar control unit, two<br />
additional cylinder sensors are needed that are<br />
installed at the top or bottom of the standby cylinder.<br />
Cylinders with insulation that can be removed allow<br />
the sensor to be freely secured with straps. The FSX<br />
sensor <strong>is</strong> installed inside the standby cylinder.<br />
The control units FM443 or SC40 monitor the<br />
temperatures via the sensor in the pre-heating<br />
cylinder. If the required temperature of 60 °C in not<br />
achieved in the pre-heating cylinder using solar<br />
energy, circulation pump P UM between the hot water<br />
outlet of the standby cylinder and the cold water inlet<br />
of the pre-heating stage <strong>is</strong> started during a period when<br />
no hot water <strong>is</strong> drawn off (preferably at night). The P UM<br />
pump remains on until the required temperature has<br />
been achieved at both sensors or the end of the<br />
specified period <strong>is</strong> reached.<br />
45/1 Example of a DHW pre-heating cylinder and standby cylinder connected in series, control of cylinder water transfer and<br />
pasteur<strong>is</strong>ation circuit in accordance with DVGW Code of Practice W 551, controlled by a FM443<br />
(example system ➔ 88/1; abbreviations ➔ page 148)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
FSX<br />
PS<br />
VS<br />
M<br />
RS<br />
P UM<br />
AW<br />
EZ<br />
WWM<br />
EK<br />
Standby cylinder<br />
Logalux SU...<br />
PZ<br />
FK<br />
Boiler Logano EMS<br />
Oil/Gas<br />
1<br />
2<br />
Logamatic<br />
4121<br />
+ FM443<br />
45
2<br />
<strong>Technical</strong> description of system components<br />
2.4 Logasol KS... complete station<br />
Features and character<strong>is</strong>tics<br />
● An assembly cons<strong>is</strong>ts of all required components<br />
such as the solar circuit pump, the gravity brake, the<br />
safety valve, the pressure gauge, a ball valve in the<br />
flow and return with integral thermometer, a<br />
throughput limiter and thermal protection.<br />
● Available as 1-line or 2-line solar station.<br />
● F<strong>our</strong> different output stages<br />
● Optionally available with or without integral<br />
control unit<br />
Max.<br />
recommended no.<br />
of collectors<br />
Logasol KS01... complete stations are designed for one<br />
solar consumer. However, they are suitable for two<br />
consumers if a 2-line solar station <strong>is</strong> operated in<br />
combination with a 1-line solar station. Th<strong>is</strong><br />
arrangement provides two separate return connections<br />
with separate pumps and throughput limiters (➔ 47/2).<br />
Th<strong>is</strong> enables the hydraulic balancing of two consumers<br />
with different pressure drop values. One safety<br />
assembly <strong>is</strong> sufficient for th<strong>is</strong> arrangement, provided<br />
that no pressure filling <strong>is</strong> required.<br />
The two-consumer system <strong>is</strong> controlled either by an<br />
FM443 solar function module or an SC40 solar control<br />
unit in combination with the 2nd consumer sensor kit<br />
FSS. Optionally, the SC40 can also already be installed<br />
in the solar station.<br />
As an alternative to the 1-line station, a VS-SU 2nd<br />
consumer diverter valve can also be used.<br />
Another application for the combination of a 2-line<br />
solar station with a 1-line solar station <strong>is</strong> the<br />
implementation of a solar heating system with two<br />
collector arrays in different orientation (east/west<br />
control). Here too it <strong>is</strong> important to have two separate<br />
return connections with separate pumps and<br />
46<br />
Without integral<br />
control unit<br />
Configuration of the Logasol KS01.. complete<br />
station<br />
Two versions and f<strong>our</strong> different output levels of the<br />
Logasol KS01... complete station are available for<br />
optimum adaptation to the collector array.<br />
The 2-line solar stations for collector arrays with up to<br />
50 collectors are already equipped with an air<br />
separator. The smallest version KS0105 <strong>is</strong> also<br />
available with an integral SC20 or SC40 solar control<br />
unit or with the SM10 solar module.<br />
1-line complete stations without air separators offer a<br />
solar circuit pump and shut-off valves for the<br />
additional return line in systems with two collector<br />
arrays (east/west) or two consumers.<br />
The table 46/1 shows the different versions and<br />
recommends the maximum number of collectors that<br />
can be operated with them. A pipework calculation <strong>is</strong><br />
required to determine the correct output level.<br />
SM10<br />
With integral<br />
control unit<br />
SC20 SC40<br />
throughput limiters (➔ 47/2). As previously described,<br />
hydraulic balancing of the two collector arrays with<br />
different pressure drop values <strong>is</strong> now feasible. Two<br />
safety assemblies (part of the standard delivery) and<br />
two diaphragm expansion vessels (MAG) are required<br />
for th<strong>is</strong> arrangement.<br />
Two collector arrays with different orientation are<br />
controlled using an SC40 solar control unit in<br />
combination with an additional collector array<br />
temperature sensor. Here too, a 2-line solar station<br />
with integrated SC40 solar control unit can be used.<br />
The Logasol KS01... complete station without integral<br />
control unit <strong>is</strong> specially designed for combination with<br />
solar function modules that are integrated into the<br />
boiler control unit. These include function modules<br />
FM244, FM443 and SM10.<br />
The Logasol KS01.. complete station SM10 <strong>is</strong> connected<br />
to the Logamatic EMS control system via a BUS line,<br />
enabling an intelligent combination of the boiler<br />
control and solar heating control units.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
With integral air<br />
separator<br />
5 Logasol KS0105 E – – – –<br />
10 Logasol KS0110 E – – – –<br />
5 Logasol KS0105 Logasol KS0105SM10 Logasol KS0105SC20 Logasol KS0105SC40 ●<br />
10 Logasol KS0110 – – – ●<br />
20 Logasol KS0120 – – – ●<br />
50 Logasol KS0150 – – – ● 1)<br />
46/1 Selection of a suitable Logasol KS... complete station subject to the number of collectors and their equipment level<br />
Symbols: ● Integral, – not integral<br />
1) Additional air separator at the roof level required for each collector array
➔ The essential diaphragm expansion vessel (DEV) <strong>is</strong><br />
not part of the standard delivery of the Logasol KS...<br />
complete station. It must be sized for each individual<br />
case (➔ page 110 ff.). An AAS/Solar connection kit with<br />
corrugated stainless steel pipe, a ¾" quick release<br />
coupling and a wall retainer for a DEV with a<br />
2<br />
1<br />
10<br />
9<br />
2<br />
V<br />
V<br />
1<br />
47/1 Layout of the Logasol KS01... complete station without integral<br />
solar control unit<br />
2<br />
1<br />
3<br />
4<br />
5<br />
6<br />
7<br />
10<br />
6<br />
8<br />
2<br />
2<br />
R<br />
R<br />
<strong>Technical</strong> description of system components 2<br />
3<br />
4<br />
5<br />
6<br />
7<br />
6<br />
2<br />
8<br />
maximum of 25 l are available as accessories. The wall<br />
retainer cannot be used for DEV with a capacity of 35 l<br />
to 50 l. The AAS/Solar connecting kit <strong>is</strong> unsuitable for<br />
DEV with a capacity in excess of 50 l because the DEV<br />
connection <strong>is</strong> larger than ¾".<br />
Caption (➔ 47/1 and 47/2)<br />
V Flow from collector to consumer<br />
R Return from consumer to collector<br />
1 Ball valve with thermometer and integral gravity<br />
brake<br />
Position 0° = gravity brake ready for operation,<br />
ball valve open<br />
Position 45° = gravity brake manually open<br />
Position 90° = ball valve closed<br />
2 Clamping ring fitting (all flow and return connections)<br />
3 Safety valve<br />
4 Pressure gauge<br />
5 Connection for diaphragm expansion vessel<br />
(DEV and AAS/Solar not part of the standard delivery)<br />
6 Fill & drain valve<br />
7 Solar circuit pump<br />
8 Throughput indicator<br />
9 Air separator (not with 1-line solar stations)<br />
10 Regulating/shut-off valve<br />
Dimensions and specification ➔ 48/1 and 48/2<br />
47/2 Layout of the combination of Logasol KS01... 2-line complete station and Logasol KS01... 1-line complete station E<br />
R<br />
R<br />
V<br />
V<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
2<br />
R<br />
R<br />
3<br />
4<br />
5<br />
6<br />
7<br />
6<br />
9<br />
2<br />
8<br />
47
2<br />
<strong>Technical</strong> description of system components<br />
Dimensions and specification of Logasol KS… complete station<br />
48/1 Dimensions of the Logasol KS... complete station<br />
Logasol complete station KS0105 E KS0110 E KS0105 KS0110 KS0120 KS0150<br />
Number of consumers 1 1 1 1 1 1<br />
Casing dimensions Height H mm 355 355 355 355 355 355<br />
Selecting the Logasol KS... complete station<br />
Information concerning the selection of a suitable<br />
complete station ➔ page 109.<br />
48<br />
Logasol<br />
KS01... E<br />
Width W mm 185 185 290 290 290 290<br />
Depth D mm 180 180 235 235 235 235<br />
Detailed dimensions A mm – – 130 130 130 130<br />
Copper pipe connection size<br />
(clamping ring fitting)<br />
B<br />
C<br />
C mm 93 93 80 80 80 80<br />
E mm 50 50 50 50 50 50<br />
Flow/<br />
return<br />
mm 15 × 1 22 × 1 15 × 1 22 × 1 28 × 1 28 × 1<br />
Expansion vessel connection 6" 6" 6" 6" 6" 1"<br />
Safety valve bar 6 6 6 6 6 6<br />
Circulation pump Type<br />
Fin<strong>is</strong>hed<br />
length<br />
Grundfos<br />
Solar<br />
15-40<br />
H<br />
Logasol<br />
KS01...<br />
Grundfos<br />
Solar<br />
15-70<br />
Grundfos<br />
Solar<br />
15-40<br />
Grundfos<br />
Solar<br />
15-70<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Grundfos<br />
UPS<br />
25-80<br />
Grundfos<br />
Solar<br />
25-120<br />
mm 130 130 130 130 180 180<br />
Electrical power supply VAC 230 230 230 230 230 230<br />
Frequency Hz 50 50 50 50 50 50<br />
Max. power consumption W 60 125 60 125 195 230<br />
Max. current strength A 0.25 0.54 0.25 0.54 0.85 1.01<br />
Throughput limiter adjusting range l/min 0.5–6 2–16 0.5–6 2–16 8–26 20–42.5<br />
Weight kg 5.4 5.4 7.1 (8.01) ) 7.1 9.3 10.0<br />
48/2 Specification and dimensions of the Logasol KS… complete station<br />
1) Logasol KS0105 complete station with integral SC20, SC40 or SM10 control unit<br />
B T<br />
A C E<br />
Logasol<br />
KS01... E<br />
KS01...
2.5 Other system components<br />
2.5.1 LA1 air separator for a 1-line complete station<br />
The LA1 air separator <strong>is</strong> used for filling the solar<br />
heating system with the BS01 filling station<br />
(➔ page 120). The LA1 separates residual trapped air<br />
(micro-bubbles) during operation and ensures that the<br />
solar heating circuit <strong>is</strong> continuously de-aerated. The<br />
AAV at the highest point of the system <strong>is</strong> not required.<br />
The LA1 <strong>is</strong> installed in the solar heating circuit using<br />
clamping ring fittings. Two connection sizes are<br />
available:<br />
● LA1 Ø18<br />
● LA1 Ø22<br />
2.5.2 Connection with Twin-Tube<br />
Twin-Tube <strong>is</strong> a thermally insulated twin tube with UV<br />
protective jacket and integral sensor lead. The<br />
connection kits contains suitable fittings for the<br />
various collector types to enable the Twin-Tube 15 and<br />
Twin-Tube DN20 fittings to be connected to the<br />
collector array, the complete station and the cylinder.<br />
An appropriate mounting kit for the Twin-Tube special<br />
tube cons<strong>is</strong>ting of f<strong>our</strong> oval clips with headless spiral<br />
screws and dowels must be ordered separately.<br />
Space for a bending radius of at least 110 mm for routing<br />
the Twin-Tube 15 must be available on site (➔ 49/2).<br />
The corrugated stainless steel Twin-Tube DN20 can be<br />
bent at an angle of up to 90° without springing back.<br />
<strong>Technical</strong> description of system components 2<br />
49/1 Air separator<br />
r ≥ 110<br />
r ≥ 110<br />
49/2 Bending radius for Twin-Tube 15; sizes in mm<br />
(dimensions ➔ 49/3)<br />
Twin-Tube 15 (DN12) DN20<br />
Dimensions (➔ 49/2) A mm 73 105<br />
B mm 45 62<br />
Pipe material Soft copper (F22) in accordance with<br />
DIN 59753<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
A<br />
Corrugated stainless steel pipe<br />
no. 1.4571<br />
Pipe dimensions Diameter DN 2 ×15 × 0.8 2 × DN20 (external Ø = 26.6 mm)<br />
Length m 12.5 12.5<br />
Insulating material EPDM rubber EPDM rubber<br />
Fire protection class DIN 4102-B2 DIN 4102-B2<br />
λ insulation W/m·K 0.04 0.04<br />
Insulation thickness mm 15 19<br />
Temperature res<strong>is</strong>tant up to °C 190 190<br />
Protection film PE, UV-res<strong>is</strong>tant PE, UV-res<strong>is</strong>tant<br />
Sensor lead 2 × 0.75 mm 2 , VDE 0250 2 × 0.75 mm 2 , VDE 0250<br />
49/3 Twin-Tube specification<br />
B<br />
49
2<br />
<strong>Technical</strong> description of system components<br />
2.5.3 Overvoltage protection for the control unit<br />
The collector temperature sensor in the lead collector<br />
can be subject to overvoltage during a thunderstorm<br />
because of its exposed location on the roof. Th<strong>is</strong><br />
overvoltage can destroy the sensor.<br />
The overvoltage protection <strong>is</strong> not a lightning<br />
conductor. It <strong>is</strong> designed for situations where lightning<br />
strikes somewhere in the vicinity of the solar heating<br />
system can cause overvoltages. Safety diodes limit th<strong>is</strong><br />
overvoltage to a level that will not damage the control<br />
unit. The junction box must be located within the<br />
range of the lead length of the FSK collector<br />
temperature sensor (➔ 50/1).<br />
2.5.4 Solar fluid<br />
The solar heating system must be protected against<br />
frost. Either solar fluid L or Tyfocor LS antifreeze can be<br />
used for th<strong>is</strong> purpose.<br />
Solar fluid L<br />
Solar fluid L <strong>is</strong> a ready-made mixture cons<strong>is</strong>ting of 50%<br />
PP glycol and 50% water. Th<strong>is</strong> clear mixture <strong>is</strong> foodcompatible<br />
and biologically degradable.<br />
Solar fluid L protects the system against frost and<br />
corrosion. As can be seen in the diagram 50/2, solar<br />
fluid L provides frost protection down to an outside<br />
temperature of –37 °C. In systems with Logasol SKN3.0<br />
and SKS4.0 collectors, solar fluid L ensures a reliable<br />
operation at temperatures from –37 °C to +170 °C.<br />
50<br />
50/1 Overvoltage protection for control unit (sample installation)<br />
Caption (➔ 50/2)<br />
ϑ A Outside temperature<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
V<br />
ϑ A<br />
˚C<br />
V<br />
FSK<br />
SP1<br />
0<br />
–10<br />
–20<br />
–30<br />
–37<br />
R<br />
Logasol<br />
SK...<br />
Twin-Tube<br />
Logasol<br />
KS0105SC..<br />
R<br />
MAG<br />
230 V<br />
50 Hz<br />
E Automatic all-metal air<br />
vent valve (accessory)<br />
FSK Collector temperature<br />
sensor (standard delivery<br />
of the control unit)<br />
KS01… Logasol KS… complete<br />
station with integral<br />
control unit<br />
SK… Logasol SKN3.0 or<br />
SKS4.0 solar collector<br />
SP1 Overvoltage protection<br />
Solar fluid L<br />
Other abbreviations ➔ page 148<br />
–50<br />
0 10 20 30 40 50<br />
PP: glycol/% by vol.<br />
50/2 Level of frost protection of heat transfer medium subject to the<br />
glycol:water mixture<br />
60
Tyfocor LS<br />
Tyfocor LS <strong>is</strong> a ready-made mixture cons<strong>is</strong>ting of 43%<br />
PP glycol and 57% water. The mixture <strong>is</strong> foodcompatible,<br />
biologically degradable and has a<br />
red/pink col<strong>our</strong>.<br />
Tyfocor LS protects the system against frost and<br />
corrosion. As can be seen in the table 51/1, Tyfocor LS<br />
provides frost protection down to an outside<br />
temperature of – 28 °C. In systems with Logasol SKN3.0<br />
and SKS4.0 collectors, Tyfocor LS ensures a reliable<br />
operation at temperatures from –28 °C to +170 °C.<br />
Never dilute the prepared mixture of Tyfocor LS heat<br />
transfer medium. The values in table 51/1 apply to<br />
situations where water remaining in the solar heating<br />
system after flushing has led to prohibited dilution of<br />
the heat transfer medium.<br />
➔ Only Tyfocor LS must be used in solar heating<br />
systems with Vaciosol CPC vacuum tube collectors.<br />
Testing the solar fluid<br />
<strong>Heat</strong> transfer media based on mixtures of propylene<br />
glycol and water age during operation in solar heating<br />
systems. Th<strong>is</strong> decay can be detected from the outside by<br />
dark col<strong>our</strong>ation or opaqueness. Long periods of<br />
overheating (> 200 °C) result in a character<strong>is</strong>tic<br />
pungent smell of burning. The fluid becomes almost<br />
black because of the increase in solid decomposition<br />
products of the propylene glycol or the inhibitors that<br />
are no longer soluble in fluid.<br />
The main influences are high temperatures, pressure<br />
and the duration of the load. These factors are strongly<br />
influenced by the absorber geometry.<br />
Fav<strong>our</strong>able character<strong>is</strong>tics are obtained using fanshaped<br />
absorbers such as the ones used in the SKN3.0,<br />
and double meander absorbers with return line at the<br />
bottom such as the ones used in the SKS4.0.<br />
<strong>Technical</strong> description of system components 2<br />
Tyfocor LS<br />
prepared mixture<br />
% by vol.<br />
Value read off<br />
Glykomat °C<br />
However, the locations of the connecting pipes on the<br />
collector also influence the stagnation character<strong>is</strong>tics<br />
and therefore the ageing of the solar fluid. It <strong>is</strong><br />
therefore important to avoid running the flow and<br />
return lines over long d<strong>is</strong>tances with inclines at the<br />
collector array, since solar fluid will run into the<br />
collector from these line sections in the event of<br />
stagnation and increase the vap<strong>our</strong> volume. Ageing <strong>is</strong><br />
also accelerated by oxygen (air-borne) and impurities<br />
such as copper or iron cinders.<br />
To check the solar fluid on site, determine the pH value<br />
and the antifreeze level. Suitable pH measuring sticks<br />
and a refractometer (frost protection) are included in<br />
the <strong>Buderus</strong> solar service case.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Provides frost<br />
protection down to<br />
°C<br />
100 –23<br />
Prohibited dilution with water!<br />
–28<br />
95 –20 –25<br />
90 –18 –23<br />
85 –15 –20<br />
80 –13 –18<br />
51/1 Frost protection with Tyfocor LS heat transfer medium<br />
Ready-mixed solar fluid pH value in the delivered condition pH limit for replacement<br />
Solar fluid L 50/50 approx. 8 ≤ 7<br />
Tyfocor LS 50/50 approx. 10 ≤ 7<br />
51/2 pH limits for checking ready-mixed solar fluid<br />
51
2<br />
<strong>Technical</strong> description of system components<br />
2.5.5 Thermostatically controlled domestic hot water mixer<br />
Anti-scalding protection<br />
If the maximum cylinder temperature <strong>is</strong> set higher<br />
than 60 °C, take suitable measures to provide<br />
protection against scalding. The following options are<br />
available:<br />
● Either install a thermostatically controlled DHW<br />
mixer downstream of the cylinder's DHW<br />
connection or<br />
● At all draw-off points, limit the mixing temperature<br />
using thermostatic valves or pre-selectable monolever<br />
mixing taps (maximum temperatures of 45 °C<br />
to 60 °C are considered to be relevant in residential<br />
buildings)<br />
The diagram 52/1 must be taken into consideration<br />
when designing a system with a thermostatically<br />
controlled DHW mixer.<br />
➔ The mixed water temperature can be adjusted in 6<br />
steps of about 5 °C within a temperature range of 35 °C<br />
to 60 °C.<br />
Caption (➔ 52/1)<br />
Δp Pressure drop of a thermostatically controlled DHWmixer<br />
V Flow rate<br />
52<br />
V<br />
l/min<br />
Thermostatic DHW mixer assembly with circulation pump<br />
The thermostatic DHW mixer assembly <strong>is</strong> suitable for<br />
use in detached house or two-family home and for all<br />
DHW cylinders with an operating temperature up to<br />
73<br />
90 °C. It <strong>is</strong> used to provide protection against scalding,<br />
particularly for solar DHW systems.<br />
The DHW mixer assembly cons<strong>is</strong>ts of a thermostatic<br />
mixer valve for adjustable temperatures ranging from<br />
35 °C to 65 °C, a DHW circulation pump, two<br />
thermometers for the DHW outlet temperature and the<br />
cylinder temperature, non-return valves and shut-off<br />
valves in a compact unit. The benefit offered by th<strong>is</strong><br />
unit <strong>is</strong> rapid, fault-free assembly of the DHW mixer<br />
and the DHW circulation.<br />
DHW mixer assembly<br />
Max. operating pressure: bar 10<br />
Max. water temperature °C 90<br />
Setting range °C 35–65<br />
Kvs value m 3 /h 1.6<br />
52/2 DHW mixer assembly specification<br />
DHW circulation pump<br />
Power supply V 230<br />
Frequency Hz 50<br />
Power consumption at stage 1 W 27<br />
Power consumption at stage 2 W 39<br />
Power consumption at stage 3 W 56<br />
52/3 DHW circulation pump specification<br />
52/1 Pressure drop of a thermostatically controlled DHW mixer at a<br />
hot water temperature of 80 °C, a mixed water temperature of<br />
60 °C and a cold water temperature of 10 °C<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
30<br />
20<br />
10<br />
5<br />
40 60 80 100 200 400 600 800 1000<br />
86.5<br />
Δp/mbar<br />
383<br />
343<br />
300<br />
342.5 58 93<br />
52/4 Dimensions of DHW mixer valve with DHW circulation pump<br />
(dimensions in mm)
5<br />
4<br />
3<br />
2<br />
1<br />
EW<br />
MIX<br />
EK 11 EZ<br />
53/1 Connections and components of DHWmixer assembly<br />
AW<br />
EZ<br />
EK<br />
A 6 B<br />
53/2 DHW mixer assembly installation diagram<br />
4<br />
3<br />
1<br />
MIX<br />
Caption (➔ 53/2)<br />
AW DHW outlet<br />
EK Cold water inlet<br />
EZ DHW circulation inlet<br />
MIX Mixed water<br />
1 Non-return valve<br />
2 DHW circulation pump<br />
3 Thermostatic mixing valve<br />
4 Shut-off valve with non-return valve<br />
5 DHW circulation line<br />
6 AW draw-off point<br />
7 Cold water connection in accordance with the technical<br />
regulations for domestic water installation (TRWI)<br />
7<br />
1<br />
1<br />
2<br />
<strong>Technical</strong> description of system components 2<br />
5<br />
7<br />
8<br />
9<br />
10<br />
EK<br />
6<br />
Caption (➔ 53/1)<br />
A Mixed water outlet at draw-off points<br />
B DHW circulation line inlet from draw-off points<br />
EK Cold water inlet (mixer assembly)<br />
EW DHW inlet (mixer assembly)<br />
EZ DHW circulation inlet to cylinder<br />
MIX Mixed water<br />
1 Cold water supply ball valve Rp6" (internal)<br />
2 Tee with non-return valve<br />
3 DN20 DHW mixing valve<br />
4 Dial thermometer<br />
5 DHW water supply ball valve Rp6" (internal) with non-return<br />
valve<br />
6 Mixed water drain ball valve Rp6" (internal)<br />
7 DHW circulation shut-off valve Rp6" (internal)<br />
8 DHW circulation pump<br />
9 Tee with non-return valve<br />
10 Fem. reducing coupling Ø G1" x Rp6"”<br />
11 Connecting piece with non-return valve<br />
53/3 Residual head of the DHW circulation pump<br />
Caption (➔ 53/3)<br />
H Residual head<br />
V Flow rate<br />
a Stage 3<br />
b Stage 2<br />
c Stage 1<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
53
2<br />
<strong>Technical</strong> description of system components<br />
Method of operation in conjunction with a DHW circulation line<br />
The thermostatically controlled DHW mixer mixes<br />
sufficient cold water into the hot water from the<br />
cylinder to prevent the temperature from exceeding a<br />
selected set temperature. In conjunction with a DHW<br />
circulation line, a bypass line <strong>is</strong> required between the<br />
DHW circulation inlet at the cylinder and the cold<br />
water inlet into the thermostatically controlled DHW<br />
mixer (item 2 ➔ 54/1).<br />
If the cylinder temperature exceeds the set value that<br />
has been selected at the thermostatically controlled<br />
DHW mixer and no water <strong>is</strong> being drawn off, the<br />
circulation pump delivers part of the DHW circulation<br />
return via the bypass line directly to the DHW mixer<br />
cold water inlet, which <strong>is</strong> now open. The hot water<br />
from the mixer now mixes with the colder water from<br />
the DHW circulation return. To prevent natural<br />
circulation, the thermostatically controlled DHW<br />
mixer must be installed below the cylinder's DHW<br />
54<br />
PZ<br />
3<br />
V<br />
R<br />
WWM<br />
2<br />
3<br />
FE<br />
AW<br />
1<br />
AW<br />
EZ<br />
Logalux SM…<br />
(Logalux SL…2)<br />
VS<br />
RS<br />
54/1 Example of a DHW circulation line with a thermostatically controlled DHW mixer<br />
outlet. Where that <strong>is</strong> impossible, install a heat<br />
insulating loop or non-return valve at the DHW outlet<br />
connection (AW). Th<strong>is</strong> prevents single-pipe DHW<br />
circulation losses. Non-return valves must be allowed<br />
for to prevent incorrect circulation and therefore<br />
cooling and mixing of the cylinder content.<br />
➔ DHW circulation causes standby losses. It should<br />
therefore only be used in widespread DHW networks.<br />
Using a poorly designed DHW circulation line or DHW<br />
circulation pump could reduce the net solar yield<br />
considerably.<br />
If DHW circulation <strong>is</strong> to be provided, the content of the<br />
DHW line must be circulated three times per h<strong>our</strong> in<br />
accordance with DIN 1988, preventing a temperature<br />
drop in excess of 5 K. To retain the temperature<br />
stratification inside the cylinder, coordinate the flow<br />
rate and any DHW circulation pump cycling.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
EK<br />
1 Thermostatic DHW mixer assembly with<br />
DHW circulation pump<br />
2 DHW circulation bypass line<br />
3 Non-return valve<br />
AW DHW outlet<br />
EK Cold water inlet<br />
EZ DHW circulation inlet<br />
FE Fill & drain valve<br />
PZ DHW circulation pump with time switch<br />
SM… Dual-mode solar cylinder<br />
Logalux SM300, SM400 or SM500<br />
SL…2 Dual-mode thermosiphon cylinder<br />
Logalux SL300-2, SL400-2 or SL500-2<br />
(not shown)<br />
V/R Connections for solar heating system<br />
VS/RS Reheating connection<br />
WWM Thermostatically controlled DHW mixer
<strong>Technical</strong> description of system components 2<br />
2.5.6 RW return temperature limiter for central heating backup<br />
Limiting the return temperature<br />
A so-called return temperature limiter RW <strong>is</strong><br />
recommended in all systems for central heating<br />
backup<br />
The standard delivery includes:<br />
● One solar control unit SC10<br />
(temperature differential control unit)<br />
● One three-way valve with servomotor<br />
● Two cylinder temperature sensors:<br />
NTC 10 K, Ø9.7 mm, 3.1 m lead and<br />
NTC 20 K, Ø6 mm, 2.5 m lead<br />
The RW return temperature limiter continuously<br />
compares the temperature in the heating return with<br />
the temperature in the thermal store. Subject to the<br />
return temperature, it directs the heating return flow<br />
through the thermal store or straight back to the boiler<br />
(➔ 55/2). The buffer bypass circuit can be real<strong>is</strong>ed with<br />
the HZG-set in conjunction with the FM443 solar<br />
function module or the Logamatic SC40 solar control<br />
unit.<br />
Water connection<br />
To provide the optimum solar yield, size the heating<br />
surfaces for the lowest possible system temperature.<br />
Experience has shown that the lowest system<br />
temperatures are provided by area heating (e.g.<br />
underfloor heating system). To prevent unnecessarily<br />
high return temperatures, all heating surfaces must be<br />
calibrated in accordance with DIN 18380 (VOB part C).<br />
<strong>Heat</strong>ing surfaces that have not been hydraulically<br />
calibrated can significantly reduce the solar yield.<br />
Caption (➔ 55/1)<br />
1 Solar control unit SC10<br />
2 Three-way valve with servomotor<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
55/1 Control unit and three-way valve of the RW return temperature<br />
limiter<br />
VS1<br />
RS1<br />
EK<br />
EK<br />
2<br />
AW<br />
Logalux P750 S<br />
VS2<br />
VS4<br />
A B<br />
AW<br />
WWM<br />
55/2 Hydraulic connection of an RW return temperature limiter<br />
using the example of the Logalux P750 S combi cylinder<br />
(abbreviations ➔ page 148)<br />
AB<br />
PS<br />
SC10<br />
VK<br />
RK<br />
55
2<br />
<strong>Technical</strong> description of system components<br />
2.5.7 Swimming pool water heat exchanger<br />
Selected features and character<strong>is</strong>tics<br />
● Stainless steel plate-type heat exchanger<br />
● Removable moulded thermal insulation shells<br />
● <strong>Heat</strong> transfer from the heat transfer medium in the solar<br />
heating circuit to the swimming pool water via liquids<br />
flowing in countercurrents<br />
● The connection at the swimming pool end must be<br />
protected using a check valve and a dirt filter<br />
Sizing the circulation pump in the secondary circuit<br />
The primary side flow rate depends on the number of<br />
collectors. The control unit in the complete station regulates<br />
both the solar circuit pump (primary) and the swimming<br />
pool water pump (secondary). The secondary pump must be<br />
res<strong>is</strong>tant to chlorinated water. The inlet pressure at the inlet<br />
side must also be taken into consideration.<br />
➔ A relay <strong>is</strong> required for the swimming pool water pump if<br />
the total power consumption exceeds the maximum output<br />
current of the control unit.<br />
The circulation pump at the secondary side must be sized in<br />
accordance with the required flow rate using the following<br />
formula.<br />
56/1 Secondary pump flow rate<br />
Calculating parameters (➔ 56/1)<br />
m SP Secondary pump flow rate in m 3 /h<br />
n Number of solar collectors<br />
56<br />
m SP<br />
=<br />
n ⋅ 0.25<br />
Dimensions and specification of swimming pool water<br />
heat exchanger<br />
The swimming pool heat exchanger should be linked in<br />
parallel to the conventional heating system. Th<strong>is</strong> allows the<br />
solar heating system to heat the swimming pool water either<br />
alone or with boiler backup.<br />
56/2 Swimming pool water heat exchangers SWT6 and SWT10<br />
(specification ➔ 56/3)<br />
Swimming pool water heat exchanger SWT6 SWT10<br />
Length L mm 208 208<br />
Width W mm 78 78<br />
Depth D mm 55 79<br />
Max. number of collectors 6 10<br />
Connections Flow (V) and return (R) inch G6 (male) G6 (male)<br />
Max. operating pressure: bar 30 30<br />
Pressure drop at the secondary side<br />
at a flow rate of<br />
Weight (net, approx.) kg 1.9 2.5<br />
<strong>Heat</strong> exchanger output at temperatures of<br />
kW<br />
7<br />
12<br />
primary side<br />
°C<br />
48/31<br />
48/31<br />
secondary side<br />
°C<br />
24/28<br />
24/28<br />
56/3 Specification for swimming pool water heat exchangers SWT6 and SWT10<br />
mbar<br />
m 3 /h<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
L<br />
160<br />
1.5<br />
B<br />
T<br />
R2<br />
V2<br />
V1<br />
R1<br />
210<br />
2.6
3 Notes regarding solar heating systems<br />
3.1 General information<br />
Notes regarding solar heating systems 3<br />
57/1 Specimen wiring diagram in connection with the general information regarding solar heating systems (abbreviations ➔ page 148)<br />
Item System<br />
components<br />
General design infomration<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Further<br />
information<br />
1 Collectors The size of the collector arrays must be determined independently of the hydraulic system. ➔ page 80 ff.<br />
2<br />
3<br />
FSK<br />
2<br />
3<br />
PSS<br />
FP<br />
FSS 2<br />
FPU<br />
Pipework with<br />
incline to the air<br />
vent valve<br />
(Logasol KS…)<br />
Connection lines<br />
Twin-Tube<br />
4 Complete station<br />
SP1<br />
VS-SU<br />
5<br />
4<br />
6<br />
Collector<br />
Logalux PL...<br />
57/2 General information regarding solar heating systems<br />
1<br />
M1<br />
M3<br />
Logasol<br />
KS01..<br />
M4<br />
VS 1<br />
VS 2<br />
VS 3<br />
RS2<br />
RS3<br />
RS 1<br />
HSM-E<br />
10<br />
13<br />
A M B<br />
AB<br />
FR<br />
HK1<br />
11<br />
PH<br />
M<br />
FK<br />
PH<br />
14<br />
Logamatic<br />
2114<br />
Solid fuel boiler<br />
Logano S151<br />
Boiler Logano EMS<br />
Oil/Gas<br />
AW<br />
VS 2<br />
Logalux SM.../SL...<br />
Install an all-metal air vent valve at the highest point of the system if the system <strong>is</strong> not vented<br />
with "filling station and air separator" or the KS0150 complete station <strong>is</strong> used (collector<br />
accessories in <strong>Heat</strong>ing Technology catalogue). An air vent valve can also be installed wherever<br />
the pipework changes direction and goes downwards, and then r<strong>is</strong>es again. The 2-branch<br />
complete station <strong>is</strong> equipped with an air separator.<br />
To make the connecting lines easier to install, the double copper tube Twin-Tube 15 or the<br />
stainless steel corrugated tube Twin-Tube DN20 <strong>is</strong> recommended, complete with heat and UV<br />
protection jacket and integral extension lead for the FSK collector temperature sensor.<br />
If Twin-Tube cannot be used or larger pipework cross-sections or lengths are required, install<br />
appropriate pipework and sensor lead extensions on site (e. g. 2 × 0.75 mm 2 ).<br />
The Logasol KS... complete station contains all important hydraulic and control components<br />
for the solar circuit.<br />
The choice of complete station <strong>is</strong> subject to the number of consumers, the<br />
number/arrangement of collectors or connections, and the collector array pressure drop. A<br />
Logasol KS... complete station without control unit <strong>is</strong> recommended if the solar circuit control<br />
can be integrated into the boiler control unit via the FM244, SM10 or FM443 solar function<br />
module or the SC20 or SC40 solar control unit for wall mounting.<br />
TW<br />
9<br />
12<br />
FSX<br />
FSS1<br />
9<br />
PS<br />
TW<br />
M1<br />
RS 2<br />
VS 1<br />
M2<br />
RS 1<br />
6<br />
1<br />
2<br />
EZ<br />
Logamatic 4121<br />
+ FM443<br />
WWM<br />
EK<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
7<br />
PZ<br />
8<br />
➔ page 119 f.<br />
➔ page 49 f.<br />
➔ page 108<br />
➔ page 118 f.<br />
➔ page 46 ff.<br />
➔ page 29 ff.<br />
Continued on the next page<br />
57
3<br />
Notes regarding solar heating systems<br />
Item System<br />
components<br />
5<br />
58<br />
Diaphragm<br />
expansion vessel<br />
General design information<br />
Size the diaphragm expansion vessel separately subject to the system volume and the safety<br />
valve response pressure so that it can withstand the volume fluctuations in the system. With<br />
east/west systems an additional diaphragm expansion vessel <strong>is</strong> required for the 2nd collector<br />
array. If the Vaciosol CPC vacuum tube collectors are used, install the diaphragm expansion<br />
vessel 20-30 cm above the complete station. A pre-cooling vessel <strong>is</strong> also required if the DHW<br />
heating coverage <strong>is</strong> above 60% or in central heating backup systems.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Further<br />
information<br />
➔ page 110 ff<br />
.<br />
➔ page 116 f.<br />
6 DHW cylinder Determine the size of the cylinders independently of the hydraulic system. ➔ page 80 ff.<br />
7 Hot water mixers<br />
8<br />
9<br />
DHW water<br />
circulation<br />
Conventional reheating<br />
(boiler control unit)<br />
10 Thermal store<br />
11<br />
12<br />
13<br />
<strong>Heat</strong>ing surface<br />
sizing and<br />
adjustment<br />
Control unit<br />
<strong>Heat</strong>ing circuit<br />
Return temperature<br />
controller<br />
14 Solid fuel boiler<br />
58/1 General information regarding solar heating systems<br />
Reliable protection from excessive hot water temperatures (r<strong>is</strong>k of scalding!) <strong>is</strong> provided by a<br />
thermostatically controlled hot water mixer (WWM).<br />
To prevent natural circulation, install the thermostatically controlled DHW mixer below the<br />
cylinder's DHW outlet. If th<strong>is</strong> <strong>is</strong> not possible, provide a heat insulating loop or a non-return<br />
valve.<br />
A DHW circulation line was not depicted! DHW circulation causes standby losses. It should<br />
therefore only be used in widespread DHW networks. Using a poorly designed DHW<br />
circulation line or DHW circulation pump could reduce the net solar yield considerably.<br />
If DHW circulation <strong>is</strong> to be provided, the content of the DHW line must be circulated three<br />
times per h<strong>our</strong> in accordance with DIN 1988, preventing a temperature drop in excess of 5 K.<br />
To retain the temperature stratification inside the cylinder, coordinate the flow rate and any<br />
DHW circulation pump cycling.<br />
The hydraulic integration of the heat s<strong>our</strong>ce and the solar control unit that can be used are<br />
subject to the boiler type and the control unit that <strong>is</strong> used.<br />
A d<strong>is</strong>tinction can be drawn between the following boiler groups.<br />
Wall mounted with EMS: e.g. Logamax plus GB142 and GB152<br />
Floorstanding with EMS: e.g. Logano G125, G135 and G144<br />
Wall mounted: e.g. Logamax plus GB142<br />
Floorstanding: e.g. Logano G125, G225, S125, S325, G134 and G234<br />
Only heat from the solar heating system and (if available) other sustainable energy s<strong>our</strong>ces<br />
should be fed to the buffer part for central heating in the combi cylinder or thermal store. If<br />
the buffer area of the solar cylinder <strong>is</strong> heated by a conventional boiler, th<strong>is</strong> part <strong>is</strong> blocked for<br />
energy consumption by the solar heating system.<br />
When the central heating <strong>is</strong> being integrated, size the radiators such that the return<br />
temperature <strong>is</strong> as low as possible.<br />
As well as sizing the radiators, pay special attention to adjusting them in accordance with<br />
regulations. The lower the return temperature that can be selected, the greater the expected<br />
solar yield.<br />
In th<strong>is</strong> case it <strong>is</strong> important for all radiators to be adjusted in accordance with the applicable<br />
regulations (VOB part C: DIN 18380). A wrongly adjusted radiator can reduce the solar yield<br />
of the central heating considerably.<br />
The possibility of using the control unit must be checked with regard to the number of heating<br />
circuits.<br />
A so-called return temperature controller (RW) must be installed for all central heating backup<br />
systems. Th<strong>is</strong> monitors the central heating return temperature and prevents the solar cylinder<br />
from being heated up via the central heating return at high temperatures using a three-way<br />
d<strong>is</strong>tribution valve. The HZG kit can be used in combination with the FM443 solar function<br />
module or the SC40 solar control unit.<br />
Occasional heating<br />
If a wood burning fireplace insert or solid fuel boiler <strong>is</strong> only operated occasionally, the heat<br />
that <strong>is</strong> generated can be fed into the solar thermal store or combi cylinder. However, the solar<br />
yield <strong>is</strong> limited during th<strong>is</strong> time. Simultaneous operation of the solar heating part of the system<br />
and solid fuel combustion must be minim<strong>is</strong>ed so that the solar yield <strong>is</strong> only reduced<br />
temporarily. Th<strong>is</strong> requires correct system engineering.<br />
Permanent heating<br />
If a wood burning fireplace insert or solid fuel boiler <strong>is</strong> to be used permanently in occasional<br />
alternating mode with an oil/gas fired boiler for central heating, a reduction in solar yield can<br />
be expected during the transition period due to the higher temperatures in the buffer part.<br />
Always comply with the current design/engineering document for solid fuel boilers.<br />
➔ page 52 f.<br />
➔ page 54<br />
➔ page 60 ff.<br />
➔ page 64 ff.<br />
➔ page 73 ff.<br />
➔ page 27 ff.<br />
➔ page 55<br />
➔ page 79<br />
➔ page 27 ff.<br />
➔ page 31 f.<br />
➔ page 55<br />
➔ page 64 ff.<br />
➔ page 73 ff.<br />
➔ page 70 ff.
Notes regarding solar heating systems 3<br />
3.2 Regulations and <strong>guide</strong>lines for designing/engineering a solar collector system<br />
➔ The <strong>guide</strong>lines shown here are only a selection and<br />
may not be complete.<br />
Installation and comm<strong>is</strong>sioning must be carried out by<br />
a special<strong>is</strong>t contractor. Take appropriate accident<br />
prevention measures when carrying out any<br />
installation work on the roof. Observe all relevant<br />
accident prevention regulations!<br />
<strong>Technical</strong> rules for the installation of solar heating systems<br />
Requirement Description<br />
Rooftop installation<br />
DIN 18338 VOB 1) ; roofing and sealing work<br />
DIN 18339 VOB 1) ; plumbing work<br />
DIN 18451 VOB 1) ; scaffolding work<br />
DIN 1055 Design loads for buildings<br />
Connection of solar heating systems<br />
Apply all current technical standards to all practical<br />
work. Design the safety equipment in accordance with<br />
all locally applicable regulations. Also comply with the<br />
building regulations of the country concerned, the<br />
l<strong>is</strong>ted building regulations and any local building<br />
regulations that may apply to the assembly and<br />
operation of a solar collector system.<br />
DIN EN 12975-1 Solar heating systems and components - Solar collectors - Part 1:<br />
General requirements, German version<br />
DIN EN 12976-1 Solar heating systems and components - Factory made systems - Part 1:<br />
General requirements, German version<br />
DIN V ENV 12977-1 Solar heating systems and components - Custom built systems - Part 1:<br />
General requirements, German version<br />
Installation and equipment of DHW cylinders<br />
DIN 1988 <strong>Technical</strong> Regulations for Drinking Water Installations (TRWI)<br />
DIN 4753-1 Water heaters and water heating installations for drinking water and service water; requirements, marking,<br />
equipment and testing<br />
DIN 18380 VOB1) ; heating systems and central DHW heating systems<br />
DIN 18381 VOB1) ; gas, water and sewage plumbing works inside of buildings<br />
DIN 18421 VOB 1) ; insulation work on technical installations<br />
AVB2) Water<br />
DVGW W 551 DHW heating and pipework systems; technical measures for reducing the growth of legionella bacteria<br />
Electrical connection<br />
DIN VDE 0100 Installation of HV systems with rated voltages up to 1000 V<br />
DIN VDE 0185 Lightning protection systems<br />
VDE 0190 Main earth bonding of electrical systems<br />
DIN VDE 0855 Antenna systems - to be applied analogous<br />
DIN 18382 VOB 1) ; electrical cabling systems in buildings<br />
59/1 Important standards, regulations and EC directives for the installation of solar collector systems<br />
1) VOB – contract procedures for construction work – part C: General technical conditions of contract for construction services (ATV)<br />
2) Invitation to tender templates for building work in overground workings, particularly with regard to residential building<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
59
4<br />
Sample systems<br />
4 Sample systems<br />
4.1 Solar heating systems for domestic hot water heating with conventional<br />
oil/gas fired boilers<br />
4.1.1 Solar DHW heating floorstanding boiler and dual-mode cylinder<br />
Solar heating circuit<br />
The 1st consumer (dual-mode DHW cylinder)<br />
<strong>is</strong> heated subject to the temperature<br />
differential between FSK and FSS.<br />
60<br />
<strong>Heat</strong>ing circuit<br />
The boiler heats up the unmixed heating<br />
circuit.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the boiler subject to the FSX sensor, if<br />
required. Small system in accordance with<br />
DVGW Code of Practice W 551.<br />
60/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Floorstanding Control unit Type Control unit Component<br />
Logano with EMS<br />
Logano plus with EMS<br />
Logano<br />
FSK<br />
PSS<br />
SP1<br />
Logasol<br />
KS01..<br />
I<br />
Collector<br />
Logamatic EMS RC35 SM10<br />
Logamatic 4000 4121 FM443<br />
Logamatic 2000 2107 FM244<br />
Logamatic 4000 4211 FM443<br />
Third party Third party Third party<br />
60/2 Possible control versions for the solar heating system<br />
FSX<br />
FSS<br />
PS<br />
HS-E -<br />
TW<br />
VS2 AW<br />
M1<br />
RS2<br />
VS1<br />
M2<br />
RS1<br />
WWM<br />
EZ<br />
EK<br />
Logalux SM.../SL...<br />
HK1<br />
PH<br />
PZ<br />
Logamatic EMS<br />
+ SM10<br />
+ RC35<br />
SC20<br />
Boiler Logano<br />
Oil/Gas<br />
SC40 (hydraulic<br />
system T1 ➔ 37/1)<br />
FK<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment in<br />
accordance with local regulations.<br />
Logasol KS01.. I<br />
Logasol KS01.. I<br />
Logasol KS01.. SC.. I
4.1.2 Solar DHW heating: Wall mounted boiler and dual-mode cylinder<br />
FSK<br />
Solar heating circuit<br />
The 1st consumer (dual-mode DHW cylinder)<br />
<strong>is</strong> heated subject to the temperature<br />
differential between FSK and FSS.<br />
<strong>Heat</strong>ing circuit<br />
The boiler heats up the unmixed heating<br />
circuit.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sample systems 4<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the boiler subject to the FSX sensor, if<br />
required. Small system in accordance with<br />
DVGW Code of Practice W 551.<br />
61/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Wall Control unit Type Control unit Component<br />
Logamax with EMS<br />
Logamax plus with EMS<br />
Logamax<br />
Logamax plus<br />
PSS<br />
SP1<br />
Logasol<br />
KS01..<br />
I<br />
Collector<br />
M1<br />
RS2<br />
VS1<br />
M2<br />
RS 1<br />
Logamatic EMS RC35 SM10<br />
Logamatic 4000 4121 FM443<br />
Logasol KS01.. I<br />
Logamatic 4000 4121 FM443 Logasol KS01.. I<br />
Third party Third party Third party<br />
61/2 Possible control versions for the solar heating system<br />
FSX<br />
FSS<br />
TW<br />
VS2<br />
AW<br />
WWM<br />
EZ<br />
EK<br />
Logalux SM.../SL...<br />
HK1<br />
Logamatic EMS<br />
+ SM10<br />
+ RC35<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
PZ<br />
GB142<br />
VK<br />
RK<br />
VS<br />
RS<br />
SC20<br />
SC40 (hydraulic<br />
system T1 ➔ 37/1)<br />
Logasol KS01.. SC.. I<br />
61
4<br />
Sample systems<br />
4.1.3 Solar DHW heating: Floorstanding boiler and pre-heat cylinder (retrofit solution)<br />
Solar heating circuit<br />
The 1st consumer (pre-heat cylinder) <strong>is</strong><br />
heated subject to the temperature differential<br />
between FSK and FSS. The water from both<br />
cylinders <strong>is</strong> transferred, if the standby<br />
cylinder <strong>is</strong> cooler than the pre-heat cylinder.<br />
62<br />
FSK<br />
SP1<br />
<strong>Heat</strong>ing circuit<br />
The boiler heats up the unmixed heating<br />
circuit.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the boiler subject to sensor FSX3, if<br />
required. Small system in accordance with<br />
DVGW Code of Practice W 551.<br />
62/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Floorstanding Control unit Type Control unit Component<br />
Logano with EMS<br />
Logano plus with EMS<br />
Logano<br />
PSS<br />
Logasol<br />
KS01..<br />
I<br />
Collector<br />
FSX1<br />
FSS<br />
TW<br />
RS<br />
VS<br />
M<br />
Logalux SU.../ST...<br />
Logamatic EMS RC35<br />
SM10<br />
SC10<br />
Logamatic 4000 4211 FM443<br />
Logamatic 2000 2107<br />
FM244<br />
SC10<br />
Logamatic 4000 4211 FM443<br />
Third party Third party Third party<br />
62/2 Possible control versions for the solar heating system<br />
1) Actuation via buffer water bypass circuit temperature differential<br />
AW<br />
SC40<br />
EK<br />
HS-E -<br />
HK1<br />
PH<br />
II<br />
P UM<br />
WWM<br />
PZ<br />
SC40 (hydraulic<br />
system T5 ➔ 37/1)<br />
Boiler<br />
Oil/Gas FK<br />
FSX3<br />
FSX2<br />
AW<br />
EZ<br />
EK<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
Cylinder<br />
Logasol KS01..<br />
P UM<br />
Logasol KS01..<br />
1) PUM Logasol KS01..<br />
P UM<br />
Logasol KS01..<br />
1) PUM Logasol KS01..<br />
P UM<br />
I<br />
II<br />
I<br />
II<br />
I<br />
II<br />
I<br />
II<br />
I<br />
II
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sample systems 4<br />
4.1.4 Solar DHW heating: Wall mounted boiler and pre-heat cylinder (retrofit solution)<br />
FSK<br />
SP1<br />
PSS<br />
Solar heating circuit<br />
The 1st consumer (pre-heat cylinder) <strong>is</strong><br />
heated subject to the temperature differential<br />
between FSK and FSS. The water from both<br />
cylinders <strong>is</strong> transferred, if the standby<br />
cylinder <strong>is</strong> cooler than the pre-heat cylinder.<br />
<strong>Heat</strong>ing circuit<br />
The boiler heats up the unmixed heating<br />
circuit.<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the boiler subject to sensor FSX3, if<br />
required. Small system in accordance with<br />
DVGW Code of Practice W 551.<br />
63/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Wall Control unit Type Control unit Component<br />
Logamax with EMS<br />
Logamax plus with EMS<br />
Logamax<br />
Logamax plus<br />
Logasol<br />
KS01..<br />
I<br />
Collector<br />
FSX1<br />
FSS<br />
TW<br />
RS<br />
VS<br />
M<br />
HK1<br />
Logamatic EMS RC35<br />
SM10<br />
SC10<br />
Logamatic 4000 4121 FM443<br />
Logamatic 4000 4121 FM443<br />
Third party Third party Third party<br />
63/2 Possible control versions for the solar heating system<br />
1) Actuation via buffer water bypass circuit temperature differential<br />
AW<br />
SC40<br />
EK<br />
Logalux SU.../ST...<br />
FSX3<br />
FSX2<br />
RS<br />
VS<br />
M2<br />
Boiler<br />
Gas<br />
II<br />
P UM<br />
AW<br />
EZ<br />
EK<br />
Cylinder<br />
WWM<br />
VK<br />
RK<br />
VS<br />
RS<br />
PZ<br />
SC40 (hydraulic<br />
system T5 ➔ 37/1)<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
Logasol KS01..<br />
P UM<br />
Logasol KS01..<br />
1)<br />
PUM Logasol KS01..<br />
1) PUM Logasol KS01..<br />
P UM<br />
I<br />
II<br />
I<br />
II<br />
I<br />
II<br />
I<br />
II<br />
63
4<br />
Sample systems<br />
4.2 Solar heating systems for DHW heating and central heating backup with<br />
conventional oil/gas fired boilers<br />
4.2.1 Solar DHW heating and central heating backup: Wall mounted boiler, dual-mode<br />
DHW cylinder and thermal store<br />
Solar heating circuit<br />
The 1st consumer (dual-mode DHW cylinder)<br />
<strong>is</strong> heated subject to the temperature<br />
differential between FSK and FSS1. If the 1st<br />
consumer can no longer be heated, the 2nd<br />
consumer <strong>is</strong> heated subject to the<br />
temperature differential between FSK and<br />
FSS2. Possible heating of the 1st<br />
64<br />
consumer <strong>is</strong> checked at frequent intervals.<br />
<strong>Heat</strong>ing circuit<br />
The system return temperature <strong>is</strong> ra<strong>is</strong>ed by<br />
the solar thermal store if there <strong>is</strong> a positive<br />
temperature differential between the FP and<br />
the FR. The temperature <strong>is</strong> increased to the<br />
required<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
flow temperature by the wall mounted<br />
boiler. All heating circuits are equipped with<br />
a three-way valve.<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the FSX sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W551.<br />
64/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Wall Control unit Type Control unit Component<br />
Logamax with EMS<br />
Logamax plus with EMS 1)<br />
Logamax<br />
Logamax plus<br />
FSK<br />
SP1<br />
PSS<br />
II<br />
FP<br />
FSS 2<br />
I<br />
M1<br />
M4<br />
VS 1<br />
Collector<br />
Logasol<br />
KS01..<br />
VS 2<br />
Logalux PL...<br />
Logamatic 4000 4121 FM443<br />
Logamatic 4000 4121 FM443<br />
Third party Third party Third party<br />
RS3<br />
RS1<br />
SV<br />
HSM-E M<br />
III<br />
64/2 Possible control versions for the solar heating system<br />
1) Th<strong>is</strong> system hydraulic scheme <strong>is</strong> not possible with the Logamax plus GB152<br />
FR<br />
A M B<br />
AB<br />
HK1<br />
PH<br />
FK<br />
1<br />
2<br />
Logamatic 4121<br />
+ FM443<br />
VK<br />
RK<br />
GB142<br />
KFE<br />
FSX<br />
FSS 1<br />
PS<br />
TW<br />
AW<br />
VS 2<br />
M1<br />
RS2<br />
VS1<br />
RS1<br />
M2<br />
Logalux SM.../SL...<br />
SC40 (hydraulic<br />
system H5 ➔ 37/1)<br />
EZ<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
WWM<br />
EK<br />
PZ<br />
Logasol KS01..<br />
VS-SU<br />
HZG kit<br />
Logasol KS01..<br />
VS-SU<br />
HZG kit<br />
Logasol KS01..<br />
VS-SU<br />
HZG kit<br />
I<br />
II<br />
III<br />
I<br />
II<br />
III<br />
I<br />
II<br />
III
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sample systems 4<br />
4.2.2 Solar DHW heating and central heating backup: Wall mounted boiler, pre-heat<br />
cylinder and thermal store<br />
FSK<br />
Solar heating circuit<br />
The 1st consumer (pre-heat cylinder) <strong>is</strong><br />
heated subject to the temperature differential<br />
between FSK and FSS1. The water from both<br />
cylinders <strong>is</strong> transferred, if the standby<br />
cylinder <strong>is</strong> cooler than the pre-heat cylinder.<br />
If the 1st consumer can no longer be heated,<br />
the 2nd consumer <strong>is</strong> heated subject to the<br />
temperature differential between FSK and<br />
FSS2. Possible heating of the 1st consumer <strong>is</strong><br />
checked at frequent intervals.<br />
<strong>Heat</strong>ing circuit<br />
The system return temperature <strong>is</strong> ra<strong>is</strong>ed by<br />
the solar thermal store if there <strong>is</strong> a positive<br />
temperature differential between the FP and<br />
the FR. The temperature <strong>is</strong> increased to the<br />
required flow temperature by the wall<br />
mounted boiler. All heating circuits are<br />
equipped with a three-way valve.<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the FSX sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W 551.<br />
65/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Wall Control unit Type Control unit Component<br />
Logamax with EMS<br />
Logamax plus with EMS<br />
Logamax<br />
Logamax plus<br />
SP1<br />
PSS<br />
Logasol<br />
KS01..<br />
I<br />
Collector<br />
Logamatic 4000 4121 FM443<br />
Logamatic 4000 4121 FM443<br />
Third party Third party Third party<br />
65/2 Possible control versions for the solar heating system<br />
TW<br />
FSS<br />
RS1<br />
VS1<br />
AB<br />
MB 2<br />
WWM<br />
MB1<br />
FSX<br />
EK<br />
PZ<br />
EZ VS3<br />
M4<br />
Logalux PL.../2S<br />
VS4<br />
FP<br />
RS4<br />
II<br />
PS<br />
A M B<br />
AB<br />
FR<br />
HSM-E<br />
HK1<br />
PH<br />
M<br />
SC40 (hydraulic<br />
system H5 ➔ 37/1)<br />
Boiler Logano EMS<br />
Oil/Gas<br />
Logasol KS01..<br />
VS-SU<br />
HZG kit<br />
PUM Logasol KS01..<br />
VS-SU<br />
HZG kit<br />
PUM Logasol KS01..<br />
VS-SU<br />
HZG kit<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schem<br />
representation that provide<br />
<strong>guide</strong> to possible hydraulic<br />
Implement all safety equipm<br />
in accordance with local reg<br />
I<br />
II<br />
III<br />
IV<br />
I<br />
II<br />
III<br />
IV<br />
I<br />
II<br />
III<br />
SC10 P UM IV<br />
1<br />
2 Logamatic<br />
4<br />
+ FM443<br />
65
4<br />
Sample systems<br />
4.2.3 Solar DHW heating and central heating backup: Floorstanding boiler and<br />
thermal store (retrofit solution)<br />
Solar heating circuit<br />
The 1st consumer (pre-heat cylinder) <strong>is</strong><br />
heated subject to the temperature differential<br />
between FSK and FSS1. The water from both<br />
cylinders <strong>is</strong> transferred, if the standby<br />
cylinder <strong>is</strong> cooler than the pre-heat cylinder.<br />
If the 1st consumer can no longer be heated,<br />
the 2nd consumer <strong>is</strong> heated subject to the<br />
temperature differential between FSK and<br />
66<br />
FSK<br />
SP1<br />
Log asol<br />
KS0 1..E<br />
II<br />
PSS2<br />
FP<br />
FSS2<br />
VS1<br />
RS1<br />
FSS2. Possible heating of the 1st consumer <strong>is</strong><br />
checked at frequent intervals.<br />
<strong>Heat</strong>ing circuit<br />
The system return temperature <strong>is</strong> ra<strong>is</strong>ed by<br />
the solar thermal store if there <strong>is</strong> a positive<br />
temperature differential between the FP and<br />
the FR. The temperature <strong>is</strong> increased to the<br />
required<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
flow temperature by the floorstanding boiler.<br />
All heating circuits are equipped with a threeway<br />
valve.<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the FSX3 sensor, if required. Small system<br />
in accordance with DVGW Code of Practice<br />
W 551.<br />
66/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Floorstanding Control unit Type Control unit Component<br />
Logano with EMS<br />
Logano plus with EMS<br />
Collector<br />
PSS1<br />
M1<br />
M4<br />
VS 2<br />
RS3<br />
Logasol<br />
KS01..<br />
III<br />
Logamatic 4000 4121 FM443<br />
Logano Logamatic 4000 4211 FM443<br />
Third party Third party Third party<br />
66/2 Possible control versions for the solar heating system<br />
I<br />
SC40<br />
Logalux PL...<br />
A M B<br />
AB<br />
FR<br />
HK1<br />
PH<br />
M<br />
FSS1<br />
FSX1<br />
HSM-E<br />
VS<br />
M<br />
RS<br />
Logalux SU.../ST...<br />
TW<br />
AW<br />
EK<br />
SC10<br />
WWM<br />
IV<br />
P UM<br />
SC40 (hydraulic<br />
system H6 ➔ 37/1)<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
PZ<br />
Boiler<br />
Oil/Gas<br />
FSX3<br />
FSX2<br />
AW<br />
EZ<br />
EK<br />
Logasol KS01..<br />
Logasol KS01.. E<br />
HZG kit<br />
PUM Logasol KS01..<br />
Logasol KS01.. E<br />
HZG kit<br />
PUM Logasol KS01..<br />
Logasol KS01.. E<br />
HZG kit<br />
Cylinder<br />
I<br />
II<br />
III<br />
IV<br />
I<br />
II<br />
III<br />
IV<br />
I<br />
II<br />
III<br />
SC10 P UM IV<br />
PS
4.2.4 Solar DHW heating and central heating backup: Floorstanding boiler,<br />
combi cylinder<br />
FSK<br />
Solar heating circuit<br />
The combi cylinder <strong>is</strong> heated subject to the<br />
temperature differential between FSK and<br />
FSS. The heating water and the DHW are<br />
heated.<br />
<strong>Heat</strong>ing circuit<br />
The system return temperature <strong>is</strong> ra<strong>is</strong>ed by<br />
the combi cylinder if there <strong>is</strong> a positive<br />
temperature differential between the FP and<br />
the FR. The temperature <strong>is</strong> increased to the<br />
required flow temperature by the<br />
floorstanding boiler. All heating circuits are<br />
equipped with a three-way valve.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sample systems 4<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the floorstanding boiler subject to the FSX<br />
sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W 551.<br />
67/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Floorstanding Control unit Type Control unit Component<br />
Logano with EMS<br />
Logano plus with EMS<br />
Logano<br />
SP1<br />
PSS<br />
Logasol<br />
KS01..<br />
I<br />
Collector<br />
TW<br />
Logamatic 4000 4121 FM443<br />
Logamatic EMS RC35 SM10<br />
Logamatic 2000 2107 FM244<br />
Logamatic 4000 4211 FM443<br />
Third party Third party Third party<br />
67/2 Possible control versions for the solar heating system<br />
FSS<br />
RS1<br />
VS1<br />
AB<br />
MB 2<br />
WWM<br />
MB1<br />
FSX<br />
EK<br />
PZ<br />
EZ VS3<br />
M4<br />
Logalux PL.../2S<br />
VS4<br />
FP<br />
RS4<br />
II<br />
PS<br />
A M B<br />
AB<br />
FR<br />
HSM-E<br />
HK1<br />
PH<br />
M<br />
SC40 (hydraulic<br />
system H1 ➔ 37/1)<br />
Boiler Logano EMS<br />
Oil/Gas<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes<br />
Implement all safety equipment<br />
in accordance with local regulations<br />
Logasol KS01..<br />
HZG kit<br />
Logasol KS01..<br />
RW<br />
Logasol KS01..<br />
RW<br />
Logasol KS01..<br />
HZG kit<br />
Logasol KS01..<br />
HZG kit<br />
1<br />
2 Logamatic<br />
4121<br />
+ FM443<br />
I<br />
II<br />
I<br />
II<br />
I<br />
II<br />
I<br />
II<br />
I<br />
II<br />
67
4<br />
Sample systems<br />
4.2.5 Solar DHW heating and central heating backup: Wall mounted boiler (GB142),<br />
combi cylinder<br />
Solar heating circuit<br />
The combi cylinder <strong>is</strong> heated subject to the<br />
temperature differential between FSK and<br />
FSS. The heating water and the DHW are<br />
heated.<br />
68<br />
FSK<br />
SP1<br />
PSS<br />
Logasol<br />
KS01..<br />
I<br />
Collector<br />
TW<br />
<strong>Heat</strong>ing circuit<br />
The system return temperature <strong>is</strong> ra<strong>is</strong>ed by<br />
the combi cylinder if there <strong>is</strong> a positive<br />
temperature differential between the FP and<br />
the FR. The temperature <strong>is</strong> increased to the<br />
required flow temperature by the wall<br />
mounted boiler. All heating circuits are<br />
equipped with a three-way valve.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the floorstanding boiler subject to the FSX<br />
sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W 551.<br />
68/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Wall Control unit Type Control unit Component<br />
Logamax with EMS<br />
Logamax plus with EMS1) Logamax<br />
Logamax plus<br />
FSS<br />
RS1<br />
VS1<br />
Logalux PL.../2S<br />
Logamatic 4000 4121 FM443<br />
Logamatic 4000 4121 FM443<br />
Third party Third party Third party<br />
AW<br />
MB 2<br />
WWM<br />
68/2 Possible control versions for the solar heating system<br />
1) Th<strong>is</strong> system hydraulic scheme <strong>is</strong> not possible with the Logamax plus GB152<br />
MB1<br />
FSX<br />
EK<br />
PZ<br />
EZ VS3<br />
VS4<br />
M4 FP<br />
RS4<br />
II<br />
A M B<br />
AB<br />
FR<br />
HSM-E<br />
HK1<br />
PH<br />
M<br />
FK<br />
Logamatic 4121<br />
+ FM443<br />
1<br />
2<br />
SC40 (hydraulic<br />
system H1 ➔ 37/1)<br />
VK<br />
RK<br />
VS<br />
Logasol KS01..<br />
HZG kit<br />
Logasol KS01..<br />
HZG kit<br />
Logasol KS01..<br />
HZG kit<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic scheme<br />
Implement all safety equipment<br />
in accordance with local regulation<br />
GB142<br />
I<br />
II<br />
I<br />
II<br />
I<br />
II
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sample systems 4<br />
4.2.6 Solar DHW heating and central heating backup: Wall mounted boiler (GB152),<br />
combi cylinder<br />
FSK<br />
SP1<br />
PSS<br />
Collector<br />
Logasol<br />
KS01..<br />
I<br />
TW<br />
Solar heating circuit<br />
The combi cylinder <strong>is</strong> heated subject to the<br />
temperature differential between FSK and<br />
FSS. The heating water and the DHW are<br />
heated.<br />
<strong>Heat</strong>ing circuit<br />
The system return temperature <strong>is</strong> ra<strong>is</strong>ed by<br />
the combi cylinder if there <strong>is</strong> a positive<br />
temperature differential between the FP and<br />
the FR. The temperature <strong>is</strong> increased to the<br />
required flow temperature by the wall<br />
mounted boiler. All heating circuits are<br />
equipped with a three-way valve.<br />
DHW reheating takes place via a third-party<br />
three-way valve GS-U (remove motor from<br />
internal three-way valve).<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the floorstanding boiler subject to the FSX<br />
sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W 551.<br />
68/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Wall Control unit Type Control unit Component<br />
Logamax with EMS<br />
Logamax plus with EMS<br />
Logamax<br />
Logamax plus<br />
Logamatic 4000 4121 FM443<br />
Logamatic 4000 4121 FM443<br />
Third party Third party Third party<br />
68/2 Possible control versions for the solar heating system<br />
FSS<br />
RS1<br />
VS1<br />
AW<br />
MB 2<br />
WWM<br />
MB1<br />
FSX<br />
EK<br />
PZ<br />
EZ VS3<br />
Logalux PL.../2S<br />
VS4<br />
M4 FP<br />
RS4<br />
II<br />
A M B<br />
AB<br />
FR<br />
HSM-E<br />
HK1<br />
PH<br />
M<br />
FK<br />
Logamatic 4121<br />
+ FM443<br />
1<br />
2<br />
VK<br />
RK<br />
SC40 (hydraulic<br />
system H1 ➔ 37/1)<br />
M<br />
MAG<br />
BC10<br />
U-KS11<br />
G-SU<br />
Logasol KS01..<br />
HZG kit<br />
Logasol KS01..<br />
HZG kit<br />
Logasol KS01..<br />
HZG kit<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic scheme<br />
Implement all safety equipment<br />
in accordance with local regulation<br />
GB152<br />
1) Remove motor from internal three-way changeover valve<br />
1)<br />
I<br />
II<br />
I<br />
II<br />
I<br />
II<br />
69
4<br />
Sample systems<br />
4.3 Solar heating systems for DHW heating with solid fuel boiler<br />
4.3.1 Solar DHW heating: Floorstanding boiler, solid fuel boiler with dual-mode<br />
DHW cylinder and thermal store<br />
Solar heating circuit<br />
The 1st consumer (dual-mode DHW cylinder)<br />
<strong>is</strong> heated subject to the temperature<br />
differential between FSK and FSS.<br />
70<br />
FSK<br />
<strong>Heat</strong>ing circuit<br />
The floorstanding boiler or solid fuel boiler<br />
heats up the heating circuit.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the FSX sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W 551.<br />
70/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Floorstanding Control unit Type Control unit Component<br />
Logano with EMS 1)<br />
Logano plus with EMS 1)<br />
Logano<br />
SP1<br />
PSS<br />
FPO<br />
FPU<br />
Collector<br />
Logasol<br />
KS01..<br />
I<br />
M1<br />
VS1<br />
VS2<br />
RS2<br />
RS3<br />
Logalux PR.../PS...<br />
HSM-E<br />
A M B<br />
AB<br />
70/2 Possible control versions for the solar heating system<br />
1) Every boiler requires its own chimney<br />
Logamatic 4000 4121 FM443<br />
Logamatic EMS RC35 SM10<br />
Logamatic 2000 2107 FM244<br />
Logamatic 4000 4211 FM443<br />
Third party Third party Third party<br />
FR<br />
HK1<br />
PH<br />
M<br />
FK<br />
PH<br />
Logamatic<br />
2114<br />
Solid fuel boiler<br />
Logano S151<br />
Boiler Logano EMS<br />
Oil/Gas<br />
TW<br />
FSX<br />
FSS1<br />
FK<br />
PS<br />
TW<br />
AW<br />
VS2<br />
M1<br />
RS2<br />
VS1<br />
M2<br />
RS1<br />
Logalux SM.../SL...<br />
SC20<br />
1<br />
2<br />
Logamatic<br />
4121<br />
+ FM443<br />
EZ<br />
SC40 (hydraulic<br />
system T1 ➔ 37/1)<br />
WWM<br />
EK<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
PZ<br />
Logasol KS01.. I<br />
Logasol KS01.. I<br />
Logasol KS01.. I
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sample systems 4<br />
4.3.2 Solar DHW heating: Wall mounted boiler, solid fuel-boiler with dual-mode<br />
DHW cylinder and thermal store<br />
FSK<br />
PSS<br />
SP1<br />
II<br />
FPO<br />
FP<br />
FSS2<br />
FPU<br />
Solar heating circuit<br />
The 1st consumer (dual-mode DHW cylinder)<br />
<strong>is</strong> heated subject to the temperature<br />
differential between FSK and FSS.<br />
<strong>Heat</strong>ing circuit<br />
The wall mounted boiler or solid fuel boiler<br />
heats up the heating circuit.<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the FSX sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W 551.<br />
71/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Wall Control unit Type Control unit Component<br />
Logamax with EMS 1)<br />
Logamax plus with EMS 1)<br />
Logamax<br />
Logamax plus<br />
VS-SU<br />
Logasol<br />
KS01..<br />
I<br />
M1<br />
M4<br />
VS 1<br />
Collector<br />
VS2<br />
VS3<br />
RS3<br />
RS2<br />
RS1<br />
Logalux PL...<br />
HSM-E<br />
III<br />
A M B<br />
AB<br />
FR<br />
HK1<br />
71/2 Possible control versions for the solar heating system<br />
1) Every boiler requires its own chimney<br />
Logamatic 4000 4121 FM443 Logasol KS01.. I<br />
Logamatic 4000 4121 FM443 Logasol KS01.. I<br />
Third party Third party Third party<br />
PH<br />
FK<br />
M<br />
PH<br />
FK<br />
Logamatic<br />
2114<br />
1<br />
2<br />
Solid fuel boiler<br />
Logano S151<br />
Logamatic 4121<br />
+ FM443<br />
RK<br />
TW<br />
VK<br />
GB142<br />
FSX<br />
FSS1<br />
PS<br />
TW<br />
AW<br />
VS2<br />
M1<br />
RS2<br />
VS1<br />
M2<br />
RS1<br />
EZ<br />
Logalux SM.../SL...<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
SC20<br />
WWM<br />
EK<br />
SC40 (hydraulic<br />
system T1 ➔ 37/1)<br />
PZ<br />
Logasol KS01.. I<br />
71
4<br />
Sample systems<br />
4.3.3 Solar DHW heating: Pellet boiler with dual-mode DHW cylinder and thermal store<br />
Solar heating circuit<br />
The 1st consumer (dual-mode DHW cylinder)<br />
<strong>is</strong> heated subject to the temperature<br />
differential between FSK and FSS.<br />
72<br />
FSK<br />
<strong>Heat</strong>ing circuit<br />
The solid fuel boiler heats up the thermal<br />
store to a constant temperature.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the FSX sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W 551.<br />
72/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Solid fuel Control unit Type Control unit Component<br />
Logano pellet Logamatic 4000 4211 P FM443 Logasol KS01.. I<br />
Logano solid fuel<br />
SP1<br />
PSS<br />
FK<br />
Logasol<br />
KS01..<br />
Logamatic 4000 +<br />
Logamatic 2000<br />
Merchand<strong>is</strong>e +<br />
Logamatic 4000<br />
S151 + 2114 + 4121<br />
SX11 + 4121<br />
Ixtronic + 4121<br />
S241 control unit +<br />
4121<br />
Third party Third party Third party<br />
72/2 Possible control versions for the solar heating system<br />
I<br />
M1<br />
Collector<br />
VS1<br />
VS2<br />
RS2<br />
RS3<br />
Logalux PR.../PS...<br />
HSM-E<br />
HK1<br />
PH<br />
M<br />
PH<br />
Logamatic<br />
4211P<br />
+ FM443<br />
Pellet boiler Logano SP...<br />
FM443 Logasol KS01.. I<br />
SC20<br />
FSX<br />
FSS1<br />
PS<br />
SC40 (hydraulic<br />
system T1 ➔ 37/1)<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
TW<br />
AW<br />
VS2<br />
M1<br />
RS2<br />
VS 1<br />
M2<br />
RS1<br />
EZ<br />
WWM<br />
EK<br />
Logalux SM.../SL...<br />
PZ<br />
Logasol KS01.. I
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sample systems 4<br />
4.4 Solar heating systems for DHW heating and central heating backup with solid fuel<br />
boiler<br />
4.4.1 Solar DHW heating and central heating backup: Floorstanding boiler, solid fuel<br />
boiler with dual-mode DHW cylinder and thermal store<br />
FSK<br />
SP1<br />
Log asol<br />
KS0 1..E<br />
II<br />
PSS2<br />
Collector<br />
PSS1<br />
Solar heating circuit<br />
The 1st consumer (dual-mode DHW cylinder)<br />
<strong>is</strong> heated subject to the temperature<br />
differential between FSK and FSS1. If the 1st<br />
consumer can no longer be heated, the 2nd<br />
consumer (solar buffer) <strong>is</strong> heated subject to<br />
the temperature differential between FSK and<br />
FSS2. Possible heating of the 1st consumer<br />
<strong>is</strong> checked at frequent intervals.<br />
<strong>Heat</strong>ing circuit<br />
The system return temperature <strong>is</strong> ra<strong>is</strong>ed by<br />
the solar thermal store if there <strong>is</strong> a positive<br />
temperature differential between the FP and<br />
the FR. The temperature <strong>is</strong> increased to the<br />
required flow temperature by the<br />
floorstanding boiler and the solid fuel<br />
boiler. The solar yield <strong>is</strong> reduced during solid<br />
fuel boiler operation. All heating circuits are<br />
equipped with a three-way valve.<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the FSX sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W 551.<br />
73/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Floorstanding Control unit Type Control unit Component<br />
Logano with EMS 1)<br />
Logano plus with EMS 1)<br />
Logasol<br />
KS01..<br />
73/2 Possible control versions for the solar heating system<br />
1) Every boiler requires its own chimney<br />
I<br />
SC40<br />
Logamatic 4000 4121 FM443<br />
Logano Logamatic 4000 4211 FM443<br />
Third party Third party Third party<br />
FPO<br />
FP<br />
FSS2<br />
FPU<br />
M1<br />
M4<br />
VS 1<br />
VS2<br />
VS3<br />
RS2<br />
RS3<br />
RS1<br />
Logalux PL...<br />
HSM-E<br />
III<br />
A M B<br />
AB<br />
FR<br />
HK1<br />
PH<br />
M<br />
FK<br />
PH<br />
Logamatic<br />
2114<br />
Logamatic<br />
2107 M<br />
Solid fuel boiler<br />
Logano S151<br />
SC40 (hydraulic<br />
system H6 ➔ 37/1)<br />
FSX<br />
FSS1<br />
FK<br />
Floorstanding boiler<br />
Oil/Gas<br />
TW<br />
PS<br />
TW<br />
AW<br />
VS2<br />
M1<br />
RS2<br />
VS1<br />
M2<br />
RS1<br />
EZ<br />
WWM<br />
EK<br />
Logalux SM.../SL...<br />
Logasol KS01..<br />
Logasol KS01.. E<br />
HZG kit<br />
Logasol KS01..<br />
Logasol KS01.. E<br />
HZG kit<br />
Logasol KS01..<br />
Logasol KS01.. E<br />
HZG kit<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic scheme<br />
Implement all safety equipment<br />
in accordance with local regulation<br />
I<br />
II<br />
III<br />
I<br />
II<br />
III<br />
I<br />
II<br />
III<br />
PZ<br />
73
4<br />
Sample systems<br />
4.4.2 Solar DHW heating and central heating backup: Wall mounted boiler, solid fuel<br />
boiler with dual-mode DHW cylinder and thermal store<br />
Solar heating circuit<br />
The 1st consumer (dual-mode DHW cylinder)<br />
<strong>is</strong> heated subject to the temperature<br />
differential between FSK and FSS1. If the 1st<br />
consumer can no longer be heated, the 2nd<br />
consumer (solar buffer) <strong>is</strong> heated subject to<br />
the temperature differential between FSK and<br />
FSS2. Possible heating of the 1st consumer <strong>is</strong><br />
checked at frequent intervals.<br />
74<br />
<strong>Heat</strong>ing circuit<br />
The system return temperature <strong>is</strong> ra<strong>is</strong>ed by<br />
the solar thermal store if there <strong>is</strong> a positive<br />
temperature differential between the FP and<br />
the FR. The temperature <strong>is</strong> increased to the<br />
required flow temperature by the wall<br />
mounted boiler and the solid fuel boiler. The<br />
solar yield <strong>is</strong> reduced during solid fuel boiler<br />
operation. All heating circuits are equipped<br />
with a three-way valve.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the FSX sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W 551.<br />
74/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Wall Control unit Type Control unit Component<br />
Logamax with EMS 1)<br />
Logamax plus with EMS 1)<br />
Logamax<br />
Logamax plus<br />
FSK<br />
PSS<br />
SP1<br />
II<br />
FPO<br />
FP<br />
FSS2<br />
FPU<br />
VS-SU<br />
Logasol<br />
KS01..<br />
Logalux PL...<br />
74/2 Possible control versions for the solar heating system<br />
1) Every boiler requires its own chimney<br />
I<br />
M1<br />
M4<br />
VS 1<br />
Collector<br />
Logamatic 4000 4121 FM443<br />
Logamatic 4000 4121 FM443<br />
Third party Third party Third party<br />
VS2<br />
VS3<br />
RS3<br />
RS2<br />
RS1<br />
HSM-E<br />
III<br />
A M B<br />
AB<br />
FR<br />
HK1<br />
PH<br />
FK<br />
M<br />
PH<br />
FK<br />
Logamatic<br />
2114<br />
1<br />
2<br />
Solid fuel boiler<br />
Logano S151<br />
Logamatic 4121<br />
+ FM443<br />
RK<br />
TW<br />
VK<br />
GB142<br />
FSX<br />
FSS1<br />
PS<br />
TW<br />
AW<br />
VS2<br />
M1<br />
RS2<br />
VS1<br />
M2<br />
RS1<br />
SC40 (hydraulic<br />
system H5 ➔ 37/1)<br />
EZ<br />
WWM<br />
EK<br />
Logalux SM.../SL...<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
Logasol KS01..<br />
VS-SU<br />
HZG kit<br />
Logasol KS01..<br />
VS-SU<br />
HZG kit<br />
Logasol KS01..<br />
VS-SU<br />
HZG kit<br />
PZ<br />
I<br />
II<br />
III<br />
I<br />
II<br />
III<br />
I<br />
II<br />
III
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sample systems 4<br />
4.4.3 Solar DHW heating and central heating backup: Solid fuel boiler with dual-mode<br />
DHW cylinder and thermal store<br />
FSK<br />
PSS<br />
SP1<br />
Solar heating circuit<br />
The 1st consumer (dual-mode DHW cylinder)<br />
<strong>is</strong> heated subject to the temperature<br />
differential between FSK and FSS1. If the 1st<br />
consumer can no longer be heated, the 2nd<br />
consumer (solar buffer) <strong>is</strong> heated subject to<br />
the temperature differential between FSK and<br />
FSS2. Possible heating of the 1st consumer <strong>is</strong><br />
checked at frequent intervals.<br />
<strong>Heat</strong>ing circuit<br />
The system return temperature <strong>is</strong> ra<strong>is</strong>ed by<br />
the solar thermal store if there <strong>is</strong> a positive<br />
temperature differential between the FP and<br />
the FR. The temperature <strong>is</strong> increased to the<br />
required flow temperature by the solid fuel<br />
boiler. All heating circuits are equipped with<br />
a three-way valve.<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the FSX sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W 551.<br />
75/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57 f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Solid fuel Control unit Type Control unit Component<br />
Logano pellet Logamatic 4000 4211 P FM443<br />
Logano solid fuel<br />
II<br />
FPO<br />
FSS2<br />
FPU<br />
VS-SU<br />
Logasol<br />
KS01..<br />
I<br />
M1<br />
M4<br />
VS 1<br />
Collector<br />
RS2<br />
RS3<br />
Logalux PL...<br />
Logamatic 4000 +<br />
Logamatic 2000<br />
Merchand<strong>is</strong>e +<br />
Logamatic 4000<br />
S151 + 2114 + 4121<br />
SX11 + 4121<br />
Ixtronic + 4121<br />
S241 control unit +<br />
4121<br />
Third party Third party Third party<br />
75/2 Possible control versions for the solar heating system<br />
VS3<br />
VS2<br />
RS1<br />
HSM-E<br />
HK1<br />
PH<br />
M<br />
FK<br />
PH<br />
1<br />
2<br />
Logamatic<br />
4121<br />
+ FM443<br />
TW<br />
Solid fuel boiler Logano S241<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
FSX<br />
FSS1<br />
FM443<br />
PS<br />
TW<br />
AW<br />
VS2<br />
M1<br />
RS2<br />
VS1<br />
M2<br />
RS1<br />
SC40 (hydraulic<br />
system H5 ➔ 37/1)<br />
EZ<br />
WWM<br />
EK<br />
Logalux SM.../SL...<br />
Logasol KS01..<br />
VS-SU<br />
Logasol KS01..<br />
VS-SU<br />
Logasol KS01..<br />
VS-SU<br />
PZ<br />
I<br />
II<br />
I<br />
II<br />
I<br />
II<br />
75
4<br />
Sample systems<br />
4.5 Solar heating systems for DHW heating and swimming pool heating with<br />
conventional oil/gas-fired boilers<br />
4.5.1 Solar DHW heating and swimming pool water heating: Floorstanding boiler<br />
Solar heating circuit<br />
The 1st consumer (dual-mode DHW cylinder)<br />
<strong>is</strong> heated subject to the temperature<br />
differential between FSK and FSS1. If the 1st<br />
consumer can no longer be heated, the 2nd<br />
consumer (swimming pool) <strong>is</strong> heated via the<br />
swimming pool heat exchanger SWT and the<br />
secondary circuit pump PS2 subject to the<br />
temperature differential<br />
76<br />
FSK<br />
SP1<br />
PSS<br />
II<br />
between FSK and FSS2. Possible heating of<br />
the 1st consumer <strong>is</strong> checked at frequent<br />
intervals.<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
by the FSX sensor, if required. Small system in<br />
accordance with DVGW Code of Practice<br />
W 551.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Swimming pool water reheating<br />
The floorstanding boiler reheats the<br />
swimming pool water via a heating circuit<br />
with heat exchanger (WT).<br />
76/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Floorstanding Control unit Type Control unit Component<br />
Logano with EMS<br />
Logano plus with EMS<br />
Collector<br />
Logasol<br />
KS01..<br />
I<br />
A M B<br />
AB<br />
Logamatic 4000 4121 FM443<br />
Logano Logamatic 4000 4211 FM443<br />
Third party Third party Third party<br />
76/2 Possible control versions for the solar heating system<br />
FE<br />
FSS1<br />
AB<br />
VS 1<br />
RS 1<br />
WWM<br />
AW<br />
M 4<br />
FSX<br />
Logalux SL300-2, SL400-2, SL500-2<br />
M<br />
VS<br />
RS<br />
EK<br />
PS<br />
VK<br />
MAG<br />
RK<br />
1<br />
2<br />
FV3<br />
SC40 (hydraulic<br />
system S1 ➔ 37/1)<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
M<br />
WT<br />
PH<br />
SH<br />
Logamatic 4121<br />
+ FM443 + FM442<br />
Boiler<br />
Logano EMS<br />
Oil/Gas<br />
PSB SMF<br />
III<br />
SWT<br />
Logasol KS01..<br />
VS-SU<br />
SWT<br />
PS2<br />
Logasol KS01..<br />
VS-SU<br />
SWT<br />
PS2<br />
Logasol KS01..<br />
VS-SU<br />
SWT<br />
PS2<br />
FSS2<br />
FSB<br />
PS2<br />
230 V<br />
50 Hz<br />
IV<br />
RSB<br />
I<br />
II<br />
III<br />
IV<br />
I<br />
II<br />
III<br />
IV<br />
I<br />
II<br />
III<br />
IV
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sample systems 4<br />
4.5.2 Solar DHW heating and swimming pool water heating: Wall mounted boiler<br />
FSK<br />
SP1<br />
PSS<br />
II<br />
Solar heating circuit<br />
The 1st consumer (dual-mode DHW cylinder)<br />
<strong>is</strong> heated subject to the temperature<br />
differential between FSK and FSS1. If the 1st<br />
consumer can no longer be heated, the 2nd<br />
consumer (swimming pool) <strong>is</strong> heated via the<br />
swimming pool heat exchanger SWT and the<br />
secondary circuit pump PS2 subject to the<br />
temperature differential<br />
between FSK and FSS2. Possible heating of<br />
the 1st consumer <strong>is</strong> checked at frequent<br />
intervals.<br />
DHW reheating<br />
The DHW <strong>is</strong> reheated to the set temperature<br />
subject to the FSX sensor, if required. Small<br />
system in accordance with DVGW Code of<br />
Practice W 551.<br />
Swimming pool water reheating<br />
The wall mounted boiler reheats the<br />
swimming pool water via a heating circuit<br />
with heat exchanger (WT).<br />
77/1 Wiring diagram with short description of the sample system (General instructions ➔ page 57f.; abbreviations ➔ page 148)<br />
Boiler Boiler Solar<br />
Wall Control unit Type Control unit Component<br />
Logamax with EMS<br />
Logamax plus with EMS<br />
Logamax<br />
Logamax plus<br />
Collector<br />
Logasol<br />
KS01..<br />
I<br />
A M B<br />
AB<br />
Logamatic 4000 4121 FM443<br />
Logamatic 4000 4121 FM443<br />
Third party Third party Third party<br />
77/2 Possible control versions for the solar heating system<br />
FE<br />
FSS2<br />
AB<br />
FSS1<br />
VS 1<br />
RS 1<br />
WWM<br />
AW<br />
M 4<br />
Logamatic<br />
4121<br />
+ FM443<br />
FSX<br />
Logalux SL300-2, SL400-2, SL500-2<br />
M<br />
VS<br />
RS<br />
1<br />
2<br />
EK<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
GB142<br />
SA<br />
VK<br />
SMF RK<br />
FV3<br />
SC40 (hydraulic<br />
system S1 ➔ 37/1)<br />
M<br />
WT<br />
PH<br />
SH<br />
PSB SMF<br />
III<br />
SWT<br />
Logasol KS01..<br />
VS-SU<br />
SWT<br />
PS2<br />
Logasol KS01..<br />
VS-SU<br />
SWT<br />
PS2<br />
Logasol KS01..<br />
VS-SU<br />
SWT<br />
PS2<br />
PS2<br />
230 V<br />
50 Hz<br />
FSS2<br />
FSB<br />
RSB<br />
IV<br />
I<br />
II<br />
III<br />
IV<br />
I<br />
II<br />
III<br />
IV<br />
I<br />
II<br />
III<br />
IV<br />
77
4<br />
Sample systems<br />
4.6 Detailed hydraulic scheme for wall mounted boilers<br />
The individual device hydraulics are different for wall<br />
mounted boilers. For example, the three-way diverter<br />
valve in each boiler <strong>is</strong> installed into the boiler flow or<br />
return.<br />
Systems for solar DHW heating<br />
78<br />
The diagrams 78/1 and 78/2 show the hydraulic<br />
integration of several <strong>Buderus</strong> wall mounted boilers<br />
subject to the selected system hydraulic scheme.<br />
78/1 Detailed hydraulic scheme for wall mounted boilers in sample systems for solar DHW heating (abbreviations ➔ page 148)<br />
Systems for solar DHW heating and central heating backup<br />
VK<br />
RK<br />
VK<br />
RK<br />
SV<br />
Logamax plus<br />
GB152-16...24<br />
M SV<br />
ÜV<br />
AV<br />
VS RS<br />
MAG<br />
Logamax plus<br />
GB142<br />
MAG<br />
AV<br />
VS<br />
M<br />
PH<br />
Combi cylinder system<br />
Logamax plus<br />
GB142<br />
78/2 Detailed hydraulic scheme for wall mounted boilers in sample systems for solar DHW heating and central heating backup (abbreviations<br />
➔ page 148)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
VK<br />
RK<br />
VK<br />
RK<br />
SV<br />
MAG<br />
VS<br />
M<br />
AV<br />
PH<br />
RS<br />
Logamax plus<br />
GB142<br />
SV<br />
MAG<br />
M<br />
PH<br />
Two-cylinder system
5 Sizing<br />
5.1 Sizing principles<br />
5.1.1 Solar DHW heating<br />
Solar heating systems are most frequently used for<br />
DHW heating. Check each case individually as to<br />
whether it <strong>is</strong> possible to combined an ex<strong>is</strong>ting heating<br />
system and a solar heating system. The conventional<br />
heat s<strong>our</strong>ce must be able to provide the hot water in a<br />
building independently of the solar heating system.<br />
There <strong>is</strong> also an appropriate comfort requirement that<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
must be reliably covered during periods of bad<br />
weather.<br />
Coverage of 50% to 60% <strong>is</strong> generally desirable for<br />
DHW heating systems for detached houses and twofamily<br />
homes. Sizing for less than 50% <strong>is</strong> also relevant<br />
if the available consumption values are unreliable. A<br />
coverage of less than 50% <strong>is</strong> generally appropriate in<br />
apartment blocks.<br />
5.1.2 Domestic hot water (DHW) heating and central heating backup<br />
Solar heating systems can also be designed as<br />
combination systems for DHW heating and central<br />
heating backup. Solar swimming pool water heating,<br />
combined with DHW heating and central heating<br />
backup <strong>is</strong> also possible.<br />
Since the system <strong>is</strong> operated at low temperatures<br />
during the spring and autumn, the type of heat<br />
d<strong>is</strong>tribution only plays a minor part in the efficiency of<br />
the system. A solar heating system for providing<br />
central heating backup can be real<strong>is</strong>ed in combination<br />
with an underfloor heating system and with radiators.<br />
5.1.3 Sizing with computer simulation<br />
It <strong>is</strong> adv<strong>is</strong>able to size the solar heating system using<br />
computer simulation:<br />
● With six collectors or more, or<br />
● If there <strong>is</strong> a significant difference from the<br />
calculation conditions in the sizing diagrams<br />
(➔ 80/1 to 81/2 and 84/1 to 85/2)<br />
Correct sizing essentially depends on the accuracy of<br />
the information concerning the actual DHW demand.<br />
The following values are important:<br />
● Daily DHW demand<br />
● Daily profile, DHW demand<br />
● Weekly profile, DHW demand<br />
● Seasonal influence on the DHW demand (e. g. camp<br />
site)<br />
● Set DHW temperature<br />
● Ex<strong>is</strong>ting DHW heating equipment (if an ex<strong>is</strong>ting<br />
system <strong>is</strong> being extended)<br />
● Circulation losses<br />
The desired coverage for DHW heating systems<br />
combined with central heating backup <strong>is</strong> between 15%<br />
and 35% of the total annual heating demand for DHW<br />
and central heating. The achievable coverage <strong>is</strong><br />
largely dependent on the building's heating demand.<br />
The Logasol SKS4.0 high-performance flat-plate<br />
collector and the Vaciosol CPC vacuum tube collector<br />
are particularly recommended as solar collectors for<br />
systems with central heating backup because of their<br />
high efficiency and dynamic response behavi<strong>our</strong>.<br />
● Location<br />
● Orientation<br />
● Slope<br />
The T-SOL simulation program <strong>is</strong> extremely practical<br />
for calculating solar heating systems. Simulation<br />
programs require consumption values as well as the<br />
size of the collector array and the cylinder.<br />
Consumption information should always be obtained,<br />
since values taken from literature are of little use.<br />
The collector array and the solar heating cylinder must<br />
therefore be pre-sized for the computer simulation<br />
(➔ page 80 ff.). The required output result <strong>is</strong> obtained<br />
in stages.<br />
The T-SOL program stores results such as temperatures,<br />
energy levels, efficiencies and coverage in a file. Th<strong>is</strong><br />
information can be d<strong>is</strong>played on screen in many<br />
different ways and can be printed out for further<br />
analys<strong>is</strong>.<br />
79
5<br />
Sizing<br />
5.2 Sizing the collector array and solar heating cylinder<br />
5.2.1 Systems for DHW heating in detached houses and two-family homes<br />
Number of collectors<br />
Empirical values from detached houses and two-family<br />
homes can be used when a small solar heating system<br />
for DHW heating <strong>is</strong> being sized. The following factors<br />
influence the optimum sizing of the collector array, the<br />
cylinder and the compact station for solar collector<br />
systems for DHW heating:<br />
● Location<br />
● Roof slope (collector angle of inclination)<br />
● Roof orientation (south-facing collector)<br />
● DHW consumption profile<br />
Take the draw-off temperature in accordance with the<br />
ex<strong>is</strong>ting or intended sanitary equipment into<br />
consideration. Basically, you orient y<strong>our</strong>self to the<br />
known number of occupants and the average<br />
consumption per person per day. Information about<br />
particular draw-off habits and comfort requirements<br />
are ideal.<br />
Calculation principles<br />
Diagrams 80/1 to 81/2 are based on a sample<br />
calculation with the following system parameters:<br />
● Logasol SKS4.0 high-performance flat-plate<br />
collectors, Logasol SKN3.0 flat-plate collectors and<br />
Vaciosol CPC6 vacuum tube collectors<br />
● Logasol SKS4.0: Logalux SL300-2 dual-mode<br />
thermosiphon cylinder (for more than three<br />
collectors: Logalux SL400-2)<br />
● Logasol SKN3.0: Logalux SM300 dual-mode cylinder<br />
(for more than three collectors: Logalux SM400)<br />
● Vaciosol CPC6: Logalux SL300-2 dual-mode<br />
thermosiphon cylinder (for more than three CPC6:<br />
Logalux SL400-2)<br />
● South-facing roof orientation (correction factor<br />
➔ page 82)<br />
● Roof incline 45° (correction factor ➔ page 82)<br />
● Location Würzburg<br />
● Draw-off temperature 45 °C<br />
➔ Determining the number of collectors or tubes in<br />
accordance with diagram 80/1, 81/1 or 81/2 results in<br />
a solar coverage of approx. 60%.<br />
80<br />
Example<br />
● Household with f<strong>our</strong> occupants and a DHW demand<br />
of 200 l per day<br />
● Solar heating system for DHW heating<br />
➔ According to diagram 80/1, curve b, two Logasol<br />
SKS4.0 high-performance flat-plate collectors are<br />
required.<br />
Logasol SKS4.0<br />
80/1 Diagram for an approximate determination of the number of<br />
Logasol SKS4.0 collectors for DHW heating (example<br />
highlighted, observe calculation principles!)<br />
Caption (➔ 80/1)<br />
nSKS4.0 Number of collectors<br />
nP Number of occupants<br />
DHW demand curves:<br />
a Low (< 40 l per person per day)<br />
b Average (50 l per person per day)<br />
c High (75 l per person per day)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
n P<br />
8<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
a<br />
c<br />
b<br />
1 1 2 3 4 5<br />
n SKS4.0<br />
6
Logasol SKN3.0<br />
n P<br />
8<br />
7<br />
6<br />
5<br />
4<br />
3<br />
2<br />
81/1 Diagram for an approximate determination of the number of<br />
Logasol SKN3.0 collectors for DHW heating (observe<br />
calculation principles!)<br />
Caption (➔ 81/1)<br />
nSKN3.0 Number of collectors<br />
nP Number of occupants<br />
DHW demand curves:<br />
a Low (
5<br />
Sizing<br />
Influence of collector orientation and inclination on solar yield<br />
Optimum angle of inclination for collectors<br />
Use of solar heat for Optimum angle of<br />
inclination of<br />
collectors<br />
DHW 30°–45°<br />
Domestic hot water + central heating 45°–53°<br />
Domestic hot water + swimming pool<br />
water<br />
30°–45°<br />
Domestic hot water + central heating +<br />
swimming pool water<br />
45°–53°<br />
82/1 Angle of inclination of collectors subject to the use of solar<br />
heating system<br />
The optimum angle of inclination depends on the use<br />
of the solar heating system. The shallower optimum<br />
angles of inclination for DHW and swimming pool<br />
water heating take into account the higher position of<br />
the sun in the summer The wider optimum angles of<br />
inclination for central heating backup are designed for<br />
the lower sun position in spring and autumn.<br />
82<br />
Collector orientation according to the points of the<br />
compass<br />
Orientation in accordance with the points of the<br />
compass and the angles of inclination of the solar<br />
collectors have an influence on the thermal energy<br />
that <strong>is</strong> supplied by a collector array. Aligning the<br />
collector array south with a deviation of up to 10° east<br />
or west and an angle of inclination of 35° to 45° are the<br />
ideal conditions for maximum solar yield.<br />
If the collector array <strong>is</strong> mounted on a steep roof or a<br />
wall, the orientation of the collector array <strong>is</strong> identical<br />
to that of the roof or wall. If the collector array<br />
orientation deviates to the east or west, the rays of the<br />
sun will no longer strike the absorber area in the most<br />
effective way. Th<strong>is</strong> will reduce the performance of the<br />
collector array.<br />
According to table 82/2 there <strong>is</strong> a correction factor for<br />
every collector array deviation from the southern point<br />
of the compass, subject to the angle of inclination. The<br />
collector area that was determined under ideal<br />
conditions must be multiplied by th<strong>is</strong> factor to achieve<br />
the same energy yield as <strong>is</strong> achieved with direct<br />
orientation south.<br />
Correction factors for solar collectors Logasol SKN3.0 and SKS4.0 for DHW heating<br />
Angle of<br />
Correction factors for collector orientation deviation from south<br />
inclination<br />
Deviation to the west by South Deviation to the east by<br />
90° 75° 60° 45° 30° 15° 0° –15° –30° –45° –60° –75° –90°<br />
60° 1.26 1.19 1.13 1.09 1.06 1.05 1.05 1.06 1.09 1.13 1.19 1.26 1.34<br />
55° 1.24 1.17 1.12 1.08 1.05 1.03 1.03 1.05 1.07 1.12 1.17 1.24 1.32<br />
50° 1.23 1.16 1.10 1.06 1.03 1.02 1.01 1.04 1.06 1.10 1.16 1.22 1.30<br />
45° 1.21 1.15 1.09 1.05 1.02 1.01 1.00 1.02 1.04 1.08 1.14 1.20 1.28<br />
40° 1.20 1.14 1.09 1.05 1.02 1.01 1.00 1.02 1.04 1.08 1.13 1.19 1.26<br />
35° 1.20 1.14 1.09 1.05 1.02 1.01 1.01 1.02 1.04 1.08 1.12 1.18 1.25<br />
30° 1.19 1.14 1.09 1.06 1.03 1.02 1.01 1.03 1.05 1.08 1.13 1.18 1.24<br />
25° 1.19 1.14 1.10 1.07 1.04 1.03 1.03 1.04 1.06 1.09 1.13 1.17 1.22<br />
82/2 Correction factors with south deviation of Logasol SKN3.0 and SKS4.0 solar collectors for different angles of inclination<br />
Correction ranges: 1.00–1.05 1.06–1.10 1.11–1.15 1.16–1.20 1.21–1.25 > 1.25<br />
➔ The correction factors only apply to DHW heating<br />
and not for central heating backup.<br />
Example<br />
● Parameters<br />
– Household with f<strong>our</strong> occupants with DHW<br />
demand of 200 l per day<br />
– Angle of inclination 25° with rooftop installation<br />
or roof integration of Logasol SKS4.0 solar<br />
collectors<br />
– Deviation to the west by 60°<br />
● Measure<br />
– 1.8 Logasol SKS4.0 collectors (➔ Diagram 80/1)<br />
– Correction factor 1.10 (➔ Table 82/2)<br />
– The calculation results in: 1.8 × 1.10 = 2.0<br />
➔ To achieve the same energy yield as with direct<br />
southerly orientation, allow for 2 Logasol SKS4.0 solar<br />
collectors.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007
Correction factors for Vaciosol vacuum tube collectors with DHW heating<br />
Cylinder selection<br />
A suitable ratio between collector output (size of<br />
collector array) and cylinder capacity (cylinder<br />
volume) <strong>is</strong> required to make a solar heating system<br />
operate efficiently. The size of the collector array <strong>is</strong><br />
limited subject to the cylinder capacity (➔ 83/2).<br />
Always operate solar heating systems for DHW heating<br />
in a detached house with a dual-mode cylinder, if<br />
possible. A dual-mode solar cylinder has a solar heat<br />
exchanger and a heat exchanger for reheating by a<br />
boiler. In th<strong>is</strong> concept the upper part of the cylinder<br />
acts as the standby part. Take th<strong>is</strong> into consideration<br />
when selecting a cylinder.<br />
Two-cylinder systems are only worthwhile for greater<br />
DHW demands than can be covered by a dual-mode<br />
cylinder. In such systems, a mono-mode cylinder for<br />
accepting the solar heat <strong>is</strong> installed upstream of a<br />
conventional cylinder. The conventional cylinder must<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
Angle of<br />
Correction factors for collector orientation deviation from south<br />
inclination<br />
Deviation to the west by South Deviation to the east by<br />
90° 75° 60° 45° 30° 15° 0° –15° –30° –45° –60° –75° –90°<br />
90° 2.4 2.0 1.9 1.8 1.8 1.9 2.0 1.9 1.8 1.8 1.9 2.0 2.4<br />
80° 2.0 1.7 1.6 1.5 1.5 1.5 1.6 1.5 1.5 1.5 1.6 1.7 2.0<br />
70° 1.7 1.5 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.5 1.7<br />
60° 1.6 1.4 1.3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.4 1.6<br />
50° 1.4 1.3 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2 1.3 1.4<br />
40° 1.3 1.2 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.2 1.3<br />
30° 1.3 1.2 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.2 1.3<br />
20° 1.2 1.1 1.1 1.1 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.1 1.2<br />
15° 1.2 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.2<br />
83/1 Correction factors with southerly deviation of Vaciosol vacuum tube collectors for different angles of inclination<br />
Correction ranges: 1.0–1.1<br />
1.2–1.3 1.4–1.6 1.7–2.4<br />
cover all DHW demands. The solar cylinder can<br />
therefore be somewhat smaller.<br />
Th<strong>is</strong> concept can also be used for retrofitting a solar<br />
heating system in a conventional system. However, the<br />
use of a dual-mode cylinder should always be<br />
considered for energy and financial reasons.<br />
Rule of thumb<br />
A cylinder volume of twice the daily demand has<br />
proven to be adequate. Table 83/2 shows standard<br />
values for selecting the DHW cylinder subject to the<br />
DHW demand per day for the relevant number of<br />
occupants. A cylinder temperature of 60 °C and a<br />
draw-off temperature 45 °C have been assumed. In a<br />
multi-cylinder system the stored volume of DHW<br />
should be able to cover twice the daily demand with a<br />
draw-off level of 85%.<br />
DHW<br />
Recommended<br />
Recommended number of occupants Capacity Rec. no.<br />
cylinder<br />
daily DHW demand in l<br />
1)<br />
Rec. no. of<br />
Logalux with cylinder temperature of 60 °C<br />
and draw-off temperature of 45 °C<br />
with a DHW demand per person per day of<br />
40 l<br />
50 l<br />
75 l<br />
Low Average High l<br />
Collectors<br />
SKN3.0 or<br />
SKS4.0<br />
CPC tubes<br />
SM300 up to 200/250 approx. 5–6 approx. 4-5 approx. 3 290 2–3 18<br />
SM400 up to 250/300 approx. 6-8 approx. 5-6 approx. 3-4 390 3–4 24<br />
SM500 up to 300/400 approx. 8-10 approx. 6-8 approx. 4-5 490 4–5 30<br />
SL300 up to 200/250 approx. 5-6 approx. 4-5 approx. 3 300 2–3 18<br />
SL400 up to 250/300 approx. 6-8 approx. 5-6 approx. 3-4 380 3–4 24<br />
SL500 up to 300/400 approx. 8-10 approx. 6-8 approx. 4-5 500 4–5 30<br />
SU160 2)<br />
SU200 2)<br />
up to 200/250 approx. 5-6 approx. 4-5 approx. 3 160 (300) 2–3 12<br />
up to 200/250 approx. 5-6 approx. 4-5 approx. 3 200 (300) 2–3 12<br />
83/2 Standard values for selecting the DHW cylinder<br />
1) Determining the number of collectors ➔ page 84<br />
2) Subject to the system configuration; relative to a total DHW volume of 300 l and water transfer between the pre-heating stage and the<br />
standby cylinder (sample system ➔ 45/1)<br />
83
5<br />
Sizing<br />
5.2.2 Systems for DHW heating and central heating backup in detached houses<br />
and two-family homes<br />
Number of collectors<br />
The sizing of the collector array for a solar heating<br />
system for DHW heating and central heating backup <strong>is</strong><br />
directly dependent on the heating demand of the<br />
building and the required solar coverage. Only partial<br />
coverage <strong>is</strong> generally achieved during the heating<br />
season.<br />
➔ Diagrams 84/1 to 85/2 assume an average DHW<br />
demand for a 4-person household to be 50 l per person<br />
per day for DHW heating.<br />
Calculation principles<br />
Diagrams 84/1 to 85/2 are based on a sample<br />
calculation with the following system parameters:<br />
● Logasol SKS4.0 high-performance flat-plate<br />
collectors, Logasol SKN3.0 flat-plate collectors and<br />
Vaciosol CPC vacuum tube collectors<br />
● Logasol SKS4.0:<br />
Thermosiphon combi cylinder PL750/2S (for more<br />
than 8 collectors: Logalux PL1000/2S)<br />
● Logasol SKN3.0:<br />
P750 S combi cylinder (for more than six collectors:<br />
Logalux PL1000/2S)<br />
● Vaciosol CPC:<br />
Thermosiphon combi cylinder PL750/2S (for more<br />
than 42 CPC tubes: Logalux PL1000/2S)<br />
● Household with f<strong>our</strong> occupants with a DHW<br />
demand of 200 l per day<br />
● Roof orientation towards south<br />
● Roof pitch 45°<br />
● Location Würzburg<br />
● Low temperature heating with ϑ V =40°C, ϑ R = 30 °C<br />
Example<br />
● Household with f<strong>our</strong> occupants with a DHW<br />
demand of 200 l per day<br />
● Solar heating system for DHW heating and<br />
underfloor heating backup<br />
● <strong>Heat</strong>ing demand 8 kW<br />
● Required coverage 25%<br />
➔ According to diagram 84/1, curve c, six Logasol<br />
SKS4.0 high-performance flat-plate collectors are<br />
required.<br />
84<br />
Logasol SKS4.0<br />
84/1 Diagram for an approximate determination of the number of<br />
Logasol SKS4.0 collectors for DHW heating and central heating<br />
backup (example highlighted, observe calculation principles!)<br />
Caption (➔ 84/1)<br />
nSKS4.0 Number of collectors<br />
QH Building heating demand<br />
Curves for coverage of total annual heating demand for DHW<br />
heating and central heating<br />
a Coverage of approx. 15 %<br />
b Coverage of approx. 20 %<br />
c Coverage of approx. 25 %<br />
d Coverage of approx. 30 %<br />
e Coverage of approx. 35 %<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Q H<br />
kW<br />
18<br />
16<br />
14<br />
12<br />
10<br />
8<br />
6<br />
4<br />
2<br />
0 1 2 3 4 5<br />
n SKS4.0<br />
a<br />
b<br />
c<br />
d<br />
e<br />
6 7 8 9 10
Logasol SKN3.0<br />
Q H<br />
kW<br />
18<br />
16<br />
14<br />
12<br />
10<br />
8<br />
6<br />
4<br />
2<br />
0 1 2 3 4 5<br />
85/1 Diagram for an approximate determination of the number of<br />
Logasol SKN3.0 collectors for DHW heating and central<br />
heating backup (observe calculation principles!)<br />
Caption (➔ 85/1)<br />
nSKN3.0 Number of collectors<br />
QH Building heating demand<br />
Curves for coverage of total annual heating demand for DHW<br />
heating and central heating<br />
a Coverage of approx. 15 %<br />
b Coverage of approx. 20 %<br />
c Coverage of approx. 25 %<br />
d Coverage of approx. 30 %<br />
e Coverage of approx. 35 %<br />
a<br />
n SKN3.0<br />
b<br />
c<br />
d<br />
e<br />
6 7 8 9 10<br />
Vaciosol CPC<br />
Caption (➔ 85/2)<br />
nCPC Number of tubes<br />
QH Building heating demand<br />
Curves for coverage of total annual heating demand for DHW<br />
heating and central heating<br />
a Coverage of approx. 15 %<br />
b Coverage of approx. 20 %<br />
c Coverage of approx. 25 %<br />
d Coverage of approx. 30 %<br />
e Coverage of approx. 35 %<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
QH kW<br />
18<br />
16<br />
14<br />
12<br />
10<br />
8<br />
6<br />
4<br />
2<br />
Sizing 5<br />
0<br />
6 12 18 24 30<br />
nCPC 36 42 48 54 60<br />
85/2 Diagram for an approximate determination of the number of<br />
Vaciosol CPC tubes for DHW heating and central heating<br />
backup (observe calculation principles!)<br />
a<br />
b<br />
c<br />
d<br />
e<br />
85
5<br />
Sizing<br />
Cylinder selection<br />
Solar heating systems for DHW heating and central<br />
heating backup should be operated using a<br />
combination cylinder if possible. When a cylinder <strong>is</strong><br />
being selected ensure that the DHW standby part<br />
corresponds to the user's usage pattern.<br />
As well as providing an adequate supply of DHW, a<br />
solar heating system for DHW heating and central<br />
heating backup must also take the building heating<br />
demand into consideration.<br />
DHW cylinder Recommended<br />
daily DHW demand in l<br />
86/1 Standard values for selecting the combi cylinder<br />
1) Determining the number of collectors ➔ page 84<br />
Alternatively it <strong>is</strong> possible to install a two-cylinder<br />
system instead of a combi cylinder. Th<strong>is</strong> would be<br />
particularly adv<strong>is</strong>able if an additional DHW demand<br />
or buffer water demand ar<strong>is</strong>es due to an additional<br />
86<br />
Recommended<br />
number of<br />
occupants<br />
Table 83/2 shows standard values for selecting the<br />
combi cylinder subject to the DHW demand per day for<br />
the relevant number of occupants, and the<br />
recommended number of collectors. A cylinder volume<br />
of at least 100 l must be available per flat-plate<br />
collector to minim<strong>is</strong>e stagnation times.<br />
The total coverage can be sized in accordance with<br />
diagrams 84/1 to 85/2. A detailed result <strong>is</strong> provided by<br />
simulation using a suitable simulation program.<br />
Capacity<br />
DHW/total<br />
Logalux at a cylinder temperature of 60 °C<br />
and draw-off temperature of 45 °C l<br />
Recommended<br />
number 1)<br />
of collectors<br />
SKN3.0 or SKS4.0<br />
consumer. The number of collectors must be adapted<br />
to the demand of the additional consumer in th<strong>is</strong> case<br />
(e.g. swimming pool or thermal store).<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Recommended<br />
number<br />
of CPC tubes<br />
P750 S up to 200/250 approx. 3-5 160/750 4–6 36–48<br />
PL750/2S up to 250/350 approx. 3-9 300/750 4–8 36–48<br />
PL1000/2S up to 250/350 approx. 3-9 300/940 6–10 48–60<br />
Duo FWS750 up to 200/250 approx. 3-5 38/750 4–6 36–48<br />
Duo FWS1000 up to 250/350 approx. 3-6 38/1000 4–8 48–60<br />
DHW cylinder Recommended<br />
daily DHW demand in l<br />
Logalux<br />
at a cylinder temperature of 60 °C<br />
and draw-off temperature of 45 °C<br />
86/2 Standard values for selecting the DHW cylinder for a two-cylinder system.<br />
1) Determining the number of collectors ➔ page 84<br />
Recommended number of occupants Cylinder<br />
with DHW demand per person per day of<br />
capacity<br />
40 l<br />
Low<br />
50 l<br />
Average<br />
75 l<br />
High l<br />
Rec.<br />
number 1)<br />
of collectors<br />
SKN3.0<br />
or<br />
SKS4.0<br />
Rec.<br />
number of<br />
CPC tubes<br />
SM300 up to 200/250 approx. 5-6 approx. 4-5 approx. 3 290 2–3 18<br />
SM400 up to 250/300 approx. 6-8 approx. 5-6 approx. 3-4 390 3–4 24<br />
SM500 up to 300/400 approx. 8-10 approx. 6-8 approx. 4-5 490 4–5 30<br />
SL300 up to 200/250 approx. 5-6 approx. 4-5 approx. 3 300 2–3 18<br />
SL400 up to 250/300 approx. 6-8 approx. 5-6 approx. 3-4 380 3–4 24<br />
SL500 up to 300/400 approx. 8-10 approx. 6-8 approx. 4-5 500 4–5 30<br />
DHW cylinder Buffer capacity Recommended number of 1) SKN3.0 or<br />
SKS4.0 collectors<br />
Logalux l<br />
86/3 Standard values for selecting the thermal store for a two-cylinder system.<br />
1) Determining the number of collectors ➔ page 84<br />
Recommended number of CPC tubes<br />
PL750 750 4–8 36–48<br />
PL1000 1000 4–8 48–60<br />
PL1500 1500 6–16 72–108
5.2.3 Apartment blocks with 3 to 5 residential units<br />
Dual-mode cylinder in large systems<br />
With large systems as defined by the DVGW<br />
[Germany], the water delivered by the DHW heating<br />
system must always be at a temperature of ≥ 60 °C.<br />
The entire contents of pre-heating stages must be<br />
heated to ≥ 60 °C at least once per day.<br />
For small detached houses the pre-heating stage (the<br />
part of the cylinder volume that <strong>is</strong> heated by the solar<br />
heating system) and the standby part (conventionally<br />
heated cylinder volume) must also be combined in a<br />
dual-mode cylinder. The daily heating <strong>is</strong> made<br />
possible by a water transfer between the standby part<br />
and the pre-heating stage. A connecting line with<br />
circulation pump <strong>is</strong> provided for th<strong>is</strong> purpose between<br />
the DHW outlet and the cold water inlet of the dual-<br />
FSK<br />
SP1<br />
PSS<br />
Logasol<br />
KS01..<br />
Collector<br />
PS<br />
FSX<br />
FSS<br />
M1<br />
RS 2<br />
VS 1<br />
M2<br />
RS 1<br />
VS 2 AW<br />
TW<br />
EZ<br />
EK<br />
Logalux SM.../SL...<br />
HK1<br />
HS-E PH<br />
PUM<br />
WWM<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
mode cylinder. The pump <strong>is</strong> actuated via the FM443<br />
solar function module.<br />
Th<strong>is</strong> means that a coverage of approx. 30% can be<br />
achieved for a system with a Logalux SM500 or SL500<br />
cylinder with 4 or 5 collectors and a DHW demand of<br />
100 l at 60 °C per residential unit.<br />
➔ When sizing the cylinder ensure that the DHW<br />
demand can also be covered without solar yield via<br />
conventional reheating.<br />
Daily heating/pasteur<strong>is</strong>ation control<br />
Pasteur<strong>is</strong>ation control can only be used and completed<br />
successfully if the same conditions as those for<br />
apartment blocks with up to 30 residential units are<br />
met (➔ page 89).<br />
87/1 Example of hydraulic integration of a dual-mode cylinder in large systems for apartment blocks of 3 to 5 residential units; control of cylinder<br />
water transfer and pasteur<strong>is</strong>ation control in accordance with DVGW Code of Practice W 551 using solar function module FM443<br />
(abbreviations ➔ page 148)<br />
PZ<br />
FK<br />
Boiler Logano EMS<br />
Oil/Gas<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment<br />
in accordance with local regulations.<br />
1<br />
2<br />
Logamatic 4121<br />
+ FM443<br />
87
5<br />
Sizing<br />
5.2.4 Apartment blocks with up to 30 residential units<br />
Two-cylinder system with pre-heating stage<br />
The daily heating of the pre-heating stages must<br />
always be taken into consideration when solar heating<br />
systems are being planned in combination with large<br />
systems for DHW heating in accordance with the<br />
DVGW. Th<strong>is</strong> ensures that hygiene <strong>is</strong> maintained, and<br />
simultaneously ra<strong>is</strong>es the average temperature level in<br />
the solar pre-heating stage.<br />
In smaller large systems with a uniform consumption<br />
profile (e.g. an apartment block) or lesser coverage<br />
requirements of approx. 20% to 30%, systems with preheating<br />
stages filled with DHW are frequently a<br />
financially interesting solution in spite of the required<br />
daily heating. However, the daily heating reduces the<br />
yield considerably in systems with greater coverage<br />
requirements of approx. 40% and the associated large<br />
solar buffer volumes. A switch to thermal stores filled<br />
with heating water with additional heat transfer to the<br />
DHW <strong>is</strong> a frequent response for such systems. These<br />
also offer the advantage that integrating the solar<br />
heating system only leads to a slight increase in DHW<br />
volume with the SAT-VWS system and none at all with<br />
88<br />
FSK<br />
PSS<br />
SP1<br />
Logasol<br />
KS01..<br />
Collector<br />
FSS<br />
TW<br />
RS<br />
VS<br />
M<br />
AW<br />
EK<br />
Logalux SU.../ST...<br />
HS-E -<br />
HK1<br />
PH<br />
FSX<br />
PS<br />
the SAT-ZWE system. Separate engineering documents<br />
are available for these systems.<br />
Systems with DHW cylinders are suitable for<br />
retrofitting, since the pre-heating stage and the<br />
standby part have separate cylinders. The pre-heating<br />
stage and the standby cylinder can be sized separately.<br />
The set temperature for the standby cylinder <strong>is</strong> at least<br />
60 °C. Solar heating must be enabled up to 75 °C so<br />
that the solar heating system can util<strong>is</strong>e the entire<br />
cylinder volume. The solar function module FM443 or<br />
solar control unit SC40 switches pump PUM ON for a<br />
water transfer between the two cylinders if the preheating<br />
cylinder <strong>is</strong> hotter than the standby cylinder.<br />
Th<strong>is</strong> means that both cylinders are heated above the<br />
set temperature, and the heat loss due to DHW<br />
circulation can also be covered by solar energy.<br />
The water transfer <strong>is</strong> started at a preset time during the<br />
night if the required pasteur<strong>is</strong>ation temperature of<br />
60 °C <strong>is</strong> not achieved during the day.<br />
88/1 Diagram of a two-cylinder system as large system with pre-heat cylinder and standby cylinder filled with DHW; cylinder water transfer and<br />
pasteur<strong>is</strong>ation control regulated in accordance with DVGW Code of Practice W 551 by solar function module FM443 (abbreviations<br />
➔ page 148)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
RS<br />
VS<br />
M<br />
PUM<br />
AW<br />
EZ<br />
WWM<br />
EK<br />
Logalux SU.../ST...<br />
Th<strong>is</strong> diagram <strong>is</strong> only a schematic<br />
representation that provides a<br />
<strong>guide</strong> to possible hydraulic schemes.<br />
Implement all safety equipment in<br />
accordance with local regulations.<br />
PZ<br />
FK<br />
Boiler Logano EMS<br />
Oil/Gas<br />
1<br />
2<br />
Logamatic 4121<br />
+ FM443
Daily heating/pasteur<strong>is</strong>ation control<br />
The following conditions must be complied with to<br />
enable pasteur<strong>is</strong>ation control to be used and<br />
completed successfully:<br />
● Pasteur<strong>is</strong>ation of the pre-heat stage must take place<br />
during periods where no DHW <strong>is</strong> drawn. Th<strong>is</strong><br />
requirement <strong>is</strong> easiest to comply with at night.<br />
● The flow rate for pasteur<strong>is</strong>ation should be selected so<br />
that the content of the pre-heat cylinder <strong>is</strong> circulated<br />
at least twice per h<strong>our</strong>. It <strong>is</strong> adv<strong>is</strong>able to use a threestage<br />
pump that delivers appropriate reserves.<br />
● The temperature of the standby cylinder must not drop<br />
below the 60 °C limit whilst pasteur<strong>is</strong>ation <strong>is</strong> taking<br />
place. The output for pasteur<strong>is</strong>ation must not be<br />
greater than the maximum output for conventional<br />
reheating of the standby cylinder so that the<br />
temperature in the standby cylinder does not drop.<br />
● To minim<strong>is</strong>e the heat loss between the standby<br />
cylinder and the pre-heat cylinder, the line must be<br />
adequately insulated to a high thermal insulation<br />
standard.<br />
Collector area sizing<br />
Apply a daily consumption of approx. 70 l to 75 l of<br />
DHW at 60 °C per m² of collector area for sizing the<br />
collector area in properties with a uniform<br />
consumption profile, such as in apartment blocks.<br />
Estimate the DHW demand with care, since less<br />
util<strong>is</strong>ation would lead to a considerable increase in the<br />
stagnation time of th<strong>is</strong> system. Higher util<strong>is</strong>ation helps<br />
to improve the system resilience.<br />
By way of simplification, the following formulae can<br />
be used taking the specified marginal conditions into<br />
consideration:<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
● Keep the pasteur<strong>is</strong>ation line as short as possible (close<br />
proximity to pre-heat or standby cylinder).<br />
● The DHW circulation must be switched off during preheat<br />
stage pasteur<strong>is</strong>ation (no cooling by circulation<br />
return into the standby cylinder).<br />
● If the control unit for heating the standby cylinder has<br />
a function for temporarily increasing the set<br />
temperature in the cylinder, the time window of th<strong>is</strong><br />
function must precede (e.g. 1/2 h) the time window for<br />
pre-heat cylinder pasteur<strong>is</strong>ation (synchron<strong>is</strong>e both<br />
time windows).<br />
● Check the pasteur<strong>is</strong>ation function during the system<br />
comm<strong>is</strong>sioning. Select conditions that are identical to<br />
the subsequent operating conditions.<br />
n SKS4.0 =0.6·n WE<br />
n SKN3.0 =0.7·n WE<br />
n CPC12 =0.5·n WE<br />
89/1 Formulae for the required number of Logasol SKS4.0, SKN3.0<br />
and Vaciosol CPC12 solar collectors in relation to the number<br />
of residential units (observe marginal conditions!)<br />
Calculating sizes<br />
nSKS4.0 Number of Logasol SKS4.0 solar collectors<br />
nSKN3.0 Number of Logasol SKN3.0 solar collectors<br />
nCPC12 Number of Vaciosol solar collectors with 12 tubes<br />
nWE Number of residential units<br />
Marginal conditions for formulae ➔ 89/1<br />
● Pasteur<strong>is</strong>ation control at 02:00 h<br />
● New building circulation cost: 100 W/apartment<br />
Old building: 140 W/RU<br />
● Location Würzburg<br />
● Pre-heat cylinder temperature max. 75 °C, water<br />
transfer enabled<br />
● 100 l/RU at 60 °C<br />
89
5<br />
Sizing<br />
Cylinder volume sizing<br />
The DHW cylinders connected in series must be<br />
equipped with a water transfer facility. Ensure that<br />
daily heating takes place, and also a transfer of hotter<br />
water from the pre-heat cylinder to the standby<br />
cylinder. The cylinder volume for the solar heating<br />
system then cons<strong>is</strong>ts of the volume of the pre-heat<br />
cylinder plus the volume of the standby cylinder.<br />
Observe the sensor positions that are required during<br />
cylinder selection. A cylinder with removable flexible<br />
foam insulation makes it possible to attach additional<br />
contact sensors, e.g. using straps.<br />
Pre-heat cylinder<br />
The minimum pre-heat cylinder volume should be<br />
approx. 20 l per square metre of collector area:<br />
90/1 Formula for minimum pre-heat cylinder volume in relation to<br />
the collector area<br />
Calculating parameters (➔ 90/1)<br />
AK Collector area in m2 VVWS,min Minimum pre-heat cylinder volume in l<br />
An increase in the specific cylinder volume increases<br />
the system resilience regarding consumption<br />
fluctuations, on the other hand more conventional<br />
energy would be required for daily heating.<br />
The pre-heat cylinder must provide a facility for<br />
positioning two additional sensors at 20 % and 80 % of<br />
the cylinder height.<br />
The maximum number of collectors for the Logalux SU<br />
pre-heat cylinder as per table 90/2 applies to a<br />
maximum cylinder temperature of 75 °C and solar<br />
heating system coverage of 25% to 30%. A heat<br />
transfer to the collector circuit <strong>is</strong> not safeguarded if the<br />
maximum cylinder temperature <strong>is</strong> exceeded.<br />
Simulations must be used to verify that stagnation <strong>is</strong><br />
unlikely to occur. Th<strong>is</strong> <strong>is</strong> particularly important for<br />
properties with limited summer use (e.g. schools).<br />
90<br />
V VWS ,min = A K ·20l/m 2<br />
pre-heat cylinder Number of solar collectors<br />
Logalux SKN3.0 SKS4.0 CPC12<br />
SU400 16 14 11<br />
SU500 20 16 13<br />
SU750 22 18 15<br />
SU1000 25 21 17<br />
90/2 Maximum number of collectors for a Logalux SU pre-heat<br />
cylinder (with a maximum cylinder temperature of 75 °C and<br />
solar heating system coverage of 25% to 30%)<br />
Standby cylinder<br />
The standby cylinder <strong>is</strong> not heated at a lower<br />
temperature differential (maximum temperature<br />
minus reheat temperature) than the pre-heat cylinder,<br />
but th<strong>is</strong> cylinder provides about one third of the<br />
necessary cylinder capacity because of its larger<br />
volume. The heating of the standby cylinder also<br />
enables an integration and prov<strong>is</strong>ion of solar coverage<br />
of the heat loss resulting from the DHW circulation.<br />
The standby cylinder <strong>is</strong> sized in accordance with<br />
conventional heat demand without taking the preheat<br />
cylinder volume that <strong>is</strong> heated using solar energy<br />
into consideration. However, the specific total cylinder<br />
volume should be approx. 50 l per square metre of<br />
collector area:<br />
VBS + VVWS AK ------------------------ 50 l/m 2<br />
≥<br />
90/3 Formula for minimum total cylinder volume of pre-heat stage<br />
and standby part per square metre of collector area<br />
Calculating parameters (➔ 90/3)<br />
AK Collector area in m2 VBS Standby cylinder volume in l<br />
VVWS Pre-heat cylinder volume in l<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007
5.2.5 Swimming pool water heating systems<br />
The weather conditions and the swimming pool heat<br />
loss into the ground have a considerable influence on<br />
sizing. For that reason, sizing a solar heating system<br />
for heating swimming pool water can only ever be<br />
approximate. Basically, the sizing has to be oriented to<br />
the area of the pool. The water cannot be guaranteed<br />
to be at a certain temperature over several months.<br />
Standard values for indoor swimming pools with covers.<br />
Conditions for standard indoor swimming pool values<br />
● Pool basin covered when not in used (insulation)<br />
● Set pool water temperature 24 °C<br />
Example<br />
● Parameters<br />
– Indoor swimming pool, covered<br />
– Pool surface 32 m2 – Pool water temperature 25 °C<br />
● Wanted<br />
– Number of Logasol SKS4.0 solar collectors for solar<br />
swimming pool water heating<br />
Standard values for outdoor swimming pools<br />
The standard values only apply if the swimming pool<br />
<strong>is</strong> insulated and embedded in the ground in a dry<br />
condition. First insulate the pool if the swimming pool<br />
<strong>is</strong> at the level of groundwater without insulation. Then<br />
carry out a heat demand calculation.<br />
Covered outdoor swimming pool (or indoor<br />
swimming pool without insulation)<br />
A ratio of 1:2 applies as standard value. Th<strong>is</strong> means<br />
that the area of a collector array with Logasol SKN or<br />
SKS must be half the size of the pool surface area. The<br />
standard value <strong>is</strong> 1:3 for vacuum tube collectors.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
➔ If the solar swimming pool water heating system <strong>is</strong><br />
combined with DHW heating, we recommend the use<br />
of a Logalux SM... dual-mode solar heating cylinder<br />
with a large solar indirect coil and limited cylinder<br />
heating up to 60 °C.<br />
If the required set water temperature <strong>is</strong> higher than<br />
24 °C, the number of required collectors increases by<br />
the correction factor in table 91/1.<br />
Range Reference size Sizing with solar collectors<br />
SKN3.0 SKS4.0 CPC<br />
Pool surface Pool surface in m 2 1 collector for every 5 m 2 1 collector<br />
for every 6.4 m 2<br />
Correction factor for pool<br />
water temperature<br />
Deviation above 24 °C pool<br />
water temperature<br />
1.3 additional collectors 1 additional collector<br />
For every +1 °C above a pool water temp. of 24 °C<br />
12 tubes for every 8 m 2<br />
1 additional<br />
CPC12 collector<br />
91/1 Standard values for calculating the number of collectors for swimming pool water heating for a covered indoor swimming pool (insulation).<br />
● Read off (➔ 91/1)<br />
– 5 Logasol SKS4.0 solar collectors for pool area of<br />
32 m 2<br />
– 1 Logasol SKS4.0 solar collector as correction for<br />
+1 °C above 24 °C pool water temperature<br />
➔ Six Logasol SKS4.0 solar collectors are required for<br />
solar swimming pool water heating.<br />
Outdoor swimming pool without insulation<br />
In th<strong>is</strong> case the standard value ratio <strong>is</strong> 1:1. Th<strong>is</strong> means<br />
that the area of a collector array compr<strong>is</strong>ing Logasol<br />
SKN or SKS must be the same size as the pool surface.<br />
The standard value <strong>is</strong> 1:2 for vacuum tube collectors.<br />
If the solar heating system <strong>is</strong> intended for an outdoor<br />
swimming pool, DHW heating and/or central heating<br />
backup, add the required collector areas for the<br />
swimming pool water and DHW. Do not add the<br />
collector areas for central heating. The solar heating<br />
system heats the outdoor swimming pool in summer<br />
and central heating in winter. DHW <strong>is</strong> heated all year<br />
round.<br />
91
5<br />
Sizing<br />
5.3 Space requirements for solar collectors<br />
5.3.1 Space requirement with rooftop installation and roof integration<br />
Logasol solar collectors can be installed on steep roofs<br />
with a pitch of 25° to 65° and offer two installation<br />
options. These are rooftop installation (➔ page 123 ff.)<br />
and roof integration (➔ page 130 ff.). Installation on<br />
corrugated sheets and sheet metal roofs (rooftop<br />
installation only) can only be carried out on roof<br />
pitches between 5° and 65°.<br />
The minimum angle of inclination for vacuum tube<br />
collectors with rooftop installations <strong>is</strong> 15°. Roof<br />
integration <strong>is</strong> not possible.<br />
➔ At the planning stage, the amount of space required<br />
beneath the roof must be taken into consideration as<br />
well as the area required on top of the roof.<br />
Dimensions A and B represent the area requirement<br />
for the selected number and layout of collectors (➔ 93/1<br />
to 93/3). With roof integration they include the area<br />
required for the collectors and their connection kits.<br />
These dimensions must be considered to be the<br />
minimum requirements. Installation with two persons<br />
<strong>is</strong> made easier by also removing one or two rows of tiles<br />
around the collector array. For th<strong>is</strong>, dimension C <strong>is</strong><br />
regarded as the upper limit.<br />
Dimension C represents at least two rows of tiles (three<br />
rows of tiles with the Vaciosol CPC) up to the roof ridge.<br />
If the tiles are laid in concrete there <strong>is</strong> a r<strong>is</strong>k of<br />
damaging the roof cover at the roof ridge.<br />
Dimension D represents the roof overhang, including<br />
the gable end thickness. The adjacent 0.5 m (0.3 m<br />
with the Vaciosol CPC) space from the collector array<br />
<strong>is</strong> required beneath the roof, subject to the connection<br />
version (right or left).<br />
Allow 0.5 m to the right and/or left of the collector<br />
array for the connection lines (beneath the roof!).<br />
92<br />
Allow 0.3 m beneath the collector array (beneath the<br />
roof!) for routing the return connection line.<br />
➔ Route the return line with a r<strong>is</strong>e to the automatic air<br />
vent valve if the system <strong>is</strong> not filled using a filling<br />
station.<br />
Allow 0.4 m above the collector array (beneath the<br />
roof!) for routing the flow header (r<strong>is</strong>ing) and the air<br />
cowl with automatic air vent valve if the system <strong>is</strong> not<br />
filled using a filling station.<br />
≥ 0.5<br />
92/1 Space requirements for rooftop and roof integration of solar<br />
collectors (explanation in the text body); dimensions in m<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
C<br />
A<br />
≥ 0.5<br />
D<br />
B<br />
≥ 0.3<br />
D<br />
≥ 0.4
Area required for solar collector rooftop and roof integration installation<br />
C<br />
B 1 2 3 4 5 6 7 8 9 10<br />
Y<br />
B<br />
1 2 3 4 5 6 7 8 9 10<br />
A<br />
93/1 Area required for collector arrays for rooftop and roof integration installation (dimensions ➔ 93/2 and 93/3)<br />
Dimensions Collector array dimensions for Logasol flat-plate collectors<br />
SKN3.0 and SKS4.0 SKN3.0 and SKS4.0<br />
at<br />
rooftop installation<br />
at<br />
roof integration<br />
portrait landscape portrait landscape<br />
A for 1 collector m 1.15 2.07 – –<br />
for 2 collectors m 2.32 4.17 2.67 4.52<br />
for 3 collectors m 3.49 6.26 3.84 6.61<br />
for 4 collectors m 4.66 8.36 5.01 8.71<br />
for 5 collectors m 5.83 10.45 6.18 10.80<br />
for 6 collectors m 7.06 12.55 7.41 12.90<br />
for 7 collectors m 8.17 14.64 8.52 14.99<br />
for 8 collectors m 9.34 16.74 9.69 17.09<br />
for 9 collectors m 10.51 18.83 10.86 18.96<br />
for 10 collectors m 11.68 20.93 12.03 21.28<br />
B m 2.07 1.15 2.80 1.87<br />
C 2 rows of tiles 2 rows of tiles 2 rows of tiles 2 rows of tiles<br />
X ≈0.20 m ≈0.20 m 3 rows of tiles 3 rows of tiles<br />
Y subject to roof<br />
subject to roof<br />
– –<br />
construction<br />
construction<br />
(batten spacing) (batten spacing)<br />
93/2 Collector array dimensions with Logasol flat-plate collectors for rooftop and roof integration installation (➔ 92/1 and 93/1)<br />
Dimensions Collector array dimensions for Vaciosol vacuum tube collectors<br />
CPC6 CPC12<br />
for<br />
rooftop installation<br />
for<br />
rooftop installation<br />
one row two rows one row two rows<br />
A for 6 tubes m 0.70 0.70 – –<br />
for 12 tubes m 1.40 1.40 1.40 1.40<br />
for 18 tubes m 2.15 2.15 – –<br />
for 24 tubes m 2.85 2.85 2.80 2.80<br />
for 30 tubes m 3.55 3.55 – –<br />
for 36 tubes m 4.25 4.25 4.20 4.20<br />
B m 2.10 4.15 2.10 4.15<br />
93/3 Collector array dimensions with Vaciosol vacuum tube collectors for rooftop installation (➔ 92/1 and 93/1)<br />
X<br />
A Width of collector row<br />
B Height of collector row<br />
C D<strong>is</strong>tance from roof ridge (at least two rows of tiles ➔ 92/1)<br />
X D<strong>is</strong>tance between collectors rows side by side<br />
Y D<strong>is</strong>tance between collectors rows above each other<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
93
5<br />
Sizing<br />
5.3.2 Space required for flat roof installation<br />
Flat roof installation <strong>is</strong> possible with portrait and<br />
landscape Logasol SKS4.0 or SKN3.0 collectors and<br />
with Vaciosol CPC vacuum tube collectors. The area<br />
required for the collectors corresponds to the<br />
installation area for the flat roof supports used plus a<br />
space for pipework routing. Th<strong>is</strong> space should be at<br />
least 0.5m to the left and right of the array. Maintain<br />
a minimum d<strong>is</strong>tance of one metre from the roof edge.<br />
94/1 Flat roof stand installation dimensions on the example of<br />
Logasol SKN3.0-s and SKS4.0-s portrait flat-plate collectors<br />
(dimension A ➔ 94/2 and dimension B ➔ 94/3)<br />
94<br />
A<br />
Number of Collector row dimensions for Logasol<br />
collectors<br />
SKN3.0 and SKS4.0<br />
portrait landscape<br />
A A<br />
m m<br />
2 2.34 4.18<br />
3 3.51 6.28<br />
4 4.68 8.38<br />
5 5.85 10.48<br />
6 7.02 12.58<br />
7 8.19 14.68<br />
8 9.36 16.78<br />
9 10.53 18.88<br />
10 11.70 20.98<br />
94/2 Collector row dimensions when using flat roof supports<br />
Angle of Collector row dimensions for Logasol<br />
inclination<br />
SKN3.0 and SKS4.0<br />
portrait landscape<br />
B B<br />
m m<br />
25° 1.84 1.06<br />
30° 1.75 1.02<br />
35° 1.68 0.96<br />
40° 1.58 0.91<br />
45° 1.48 0.85<br />
50° 1.48 0.85<br />
55° 1.48 0.85<br />
60° 1.48 0.85<br />
94/3 Collector row dimensions when using flat roof supports<br />
B<br />
A B<br />
94/4 Flat roof stand installation dimensions for Vaciosol CPC6 and<br />
CPC12 vacuum tube collectors (dimension A ➔ 94/5 and<br />
dimension B ➔ 94/6)<br />
Number of Collector row dimensions for Vaciosol<br />
tubes<br />
CPC6 CPC12<br />
one row one row<br />
A A<br />
m m<br />
6 0.70 –<br />
12 1.40 1.40<br />
18 2.15 –<br />
24 2.85 2.80<br />
30 3.55 –<br />
36 4.25 4.20<br />
94/5 Collector row dimensions when using flat roof supports<br />
Number of Collector row dimensions for Vaciosol<br />
tubes<br />
CPC6 CPC12<br />
one row one row one row one row<br />
with 30° with 45° with 30° with 45°<br />
B B B B<br />
m m m m<br />
6 1.82 1.49 – –<br />
12 1.82 1.49 1.82 1.49<br />
18 1.82 1.49 – –<br />
24 1.82 1.49 1.82 1.49<br />
30 1.82 1.49 – –<br />
36 1.82 1.49 1.82 1.49<br />
94/6 Collector row dimensions when using flat roof supports<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007
Minimum row spacing<br />
If several rows of collectors are installed behind each<br />
other, they must be a minimum d<strong>is</strong>tance apart to<br />
minim<strong>is</strong>e the shading on the collectors at the back.<br />
Standard values that apply to standard sizing apply to<br />
th<strong>is</strong> minimum spacing (➔ 95/3).<br />
sinγ<br />
X = L ⋅ ⎛----------- + cosγ⎞<br />
⎝tanε ⎠<br />
95/1 Formula for minimum row spacing for flat roof installation<br />
L<br />
95/2 Calculation parameter d<strong>is</strong>play (formula ➔ 95/1)<br />
X<br />
Calculation parameters (➔ 95/1 and 95/2)<br />
X Free minimum spacing between collector rows (standard values<br />
➔ 95/3)<br />
L Length of solar collectors<br />
γ Collector angle of inclination relative to the horizontal (standard<br />
values ➔ 95/3)<br />
ε Minimum solar altitude relative to the horizontal without shading<br />
Angle of<br />
inclination 1)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
Free minimum space X between collector rows<br />
for Logasol<br />
SKN3.0 and SKS4.0<br />
for Vaciosol<br />
CPC6 and CPC12<br />
portrait landscape portrait<br />
γ m m m<br />
25° 2)<br />
30° 3)<br />
4.74 2.63 –<br />
5.18 2.87 34) 35° 5.58 3.09 –<br />
40° 5.94 3.29 –<br />
45° 6.26 3.46 3.55) 50° 6.52 3.61 –<br />
55° 6.74 3.73 –<br />
60° 6.90 3.82 –<br />
95/3 The standard values for the minimum space between collector<br />
rows at different angles of inclination (➔ 95/2; relative to the<br />
minimum solar altitude without shading of 17° as the mean<br />
between the Münster and Freiburg locations on the 21st<br />
December at 12.00 h (midday))<br />
1) Only these angles of inclination are approved by the<br />
manufacturer. The use of different positions could damage<br />
the system.<br />
2) Adjustable by trimming the telescopic strut<br />
3) Adjustable by trimming the telescopic strut with landscape<br />
collectors<br />
4) Angle of inclination only meaningful for DHW heating<br />
5) Angle of inclination only meaningful for combined DHW<br />
and central heating backup<br />
95
5<br />
Sizing<br />
5.3.3 Space requirements for wall mounting<br />
Logasol flat-plate collectors<br />
Wall mounting <strong>is</strong> only suitable for Logasol SKN3.0-w<br />
and SKS4.0-w landscape flat-plate collectors, and <strong>is</strong><br />
only approved for an installation height of up to 20 m.<br />
The wall must have adequate load-bearing capacity<br />
(➔ page 138)!<br />
The space requirement on the wall for the collector rows<br />
depends on the number of collectors. In addition to the<br />
width of the collector array, allow at least 0.5 m to the left<br />
and right (dimension A ➔ 96/2) for routing the<br />
pipework. The space between the collector row and the<br />
edge of the wall must be at least one metre.<br />
96/1 Installation dimensions of wall mounting kits for Logasol<br />
SKN3.0-w and SKS4.0-w landscape flat-plate collectors;<br />
dimensions in m (dimension A ➔ 96/2)<br />
96<br />
A<br />
Number of Collector row dimensions for Logasol<br />
collectors<br />
SKN3.0-w and SKS4.0-w<br />
landscape<br />
A<br />
m<br />
2 4.17<br />
3 6.26<br />
4 8.36<br />
5 10.45<br />
6 12.55<br />
7 14.64<br />
8 16.74<br />
9 18.83<br />
10 20.93<br />
96/2 Collector row dimensions when using wall mounting supports<br />
0.85<br />
Minimum row spacing<br />
The wall mounting kit <strong>is</strong> particularly suitable for<br />
buildings the roof orientation of which deviates<br />
considerably from south or for providing windows and<br />
doors with shade. From a technical point of view th<strong>is</strong><br />
allows the best possible use to be made of the sun, and<br />
also represents an architectural feature.<br />
In summer the collector provides ideal shade for<br />
windows and keeps the rooms nice and cool. In winter,<br />
when the sun <strong>is</strong> at a low altitude, the rays if the sun can<br />
shine into the window below the collector and<br />
therefore provide an additional s<strong>our</strong>ce of energy.<br />
➔ Several rows of collectors arranged above of each<br />
other must be kept at least 3.7 m apart to prevent the<br />
collectors from casting shadows on each other<br />
(➔ 96/3). Th<strong>is</strong> space can be reduced if "freedom from<br />
shade" <strong>is</strong> not required.<br />
96/3 Shade-free spacing for several rows of wall installation kits for<br />
landscape flat-plate collectors arranged above each other.<br />
Logasol SKN3.0-w and SKS4.0-w; dimension in m<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
3,7
Vaciosol vacuum tube collectors<br />
Vaciosol CPC vacuum tube collectors can be fitted to<br />
the wall with an angle of inclination of 45° or 60° using<br />
flat roof support.<br />
Portrait installation <strong>is</strong> possible using a rooftop<br />
installation kit. The wall must have an adequate loadbearing<br />
capacity. The header must generally be<br />
installed at the top.<br />
97/1 Installation dimensions of wall installation kits with angled<br />
frames for Vaciosol CPC6 and CPC12 vacuum tube collectors.<br />
(dimension A ➔ 97/2 and dimension B ➔ 97/3)<br />
Number of Collector row dimensions for Vaciosol<br />
tubes<br />
CPC6 CPC12<br />
one row one row<br />
A A<br />
m m<br />
6 0.70 –<br />
12 1.40 1.40<br />
18 2.15 –<br />
24 2.85 2.80<br />
30 3.55 –<br />
36 4.25 4.20<br />
97/2 Collector row dimensions when using flat roof supports<br />
Number of Collector row dimensions for Vaciosol<br />
tubes<br />
CPC6 CPC12<br />
one row one row one row one row<br />
with 30° with 45° with 30° with 45°<br />
B B B B<br />
m m m m<br />
6 1.82 1.52 – –<br />
12 1.82 1.52 1.82 1.52<br />
18 1.82 1.52 – –<br />
24 1.82 1.52 1.82 1.52<br />
30 1.82 1.52 – –<br />
36 1.82 1.52 1.82 1.52<br />
97/3 Collector row dimensions when using flat roof stands<br />
B<br />
A<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
B<br />
Sizing 5<br />
97/4 Installation dimensions of portrait wall mounting kits for<br />
Vaciosol CPC6 and CPC12 vacuum tube collectors (dimensions<br />
A and B ➔ 97/5)<br />
Number Collector row dimensions for Vaciosol<br />
of tubes<br />
CPC6 CPC12<br />
one row two rows one row two rows<br />
B = 2.10 m B=4.15m B=2.10m B=4.15m<br />
A A A A<br />
m m m m<br />
6 0.70 0.70 – –<br />
12 1.40 1.40 1.40 1.40<br />
18 2.15 2.15 – –<br />
24 2.85 2.85 2.80 2.80<br />
30 3.55 3.55 – –<br />
36 4.25 4.25 4.20 4.20<br />
97/5 Collector row dimensions when using rooftop installation kits<br />
A<br />
97
5<br />
Sizing<br />
5.4 Hydraulic system engineering<br />
5.4.1 Hydraulic circuit<br />
Collector array<br />
A collector array should cons<strong>is</strong>t of the same collectors<br />
and have the same collector orientation (all portrait or<br />
all landscape). Th<strong>is</strong> <strong>is</strong> necessary, since the volume flow<br />
d<strong>is</strong>tribution would otherw<strong>is</strong>e be non-uniform. A<br />
maximum of ten Logasol SKN3.0 or SKS4.0 flat-plate<br />
collectors may be installed next to each other and<br />
hydraulically connected in a collector row if the<br />
connections are on alternate sides. If the connections<br />
are all on the same side, a maximum of five Logasol<br />
SKS4.0 flat-plate collectors can be installed next to<br />
each other and hydraulically connected. With CPC6 or<br />
CPC12 vacuum tube collectors, a maximum of 36<br />
tubes can be connected in series.<br />
Connection in series<br />
The hydraulic connection of collector rows in series <strong>is</strong><br />
quickly accompl<strong>is</strong>hed because of the ease of<br />
connection. Connection in series <strong>is</strong> the easiest way to<br />
achieve a uniform volume flow d<strong>is</strong>tribution. An almost<br />
uniform flow through the individual collectors can be<br />
achieved, even if the collector rows are asymmetrically<br />
d<strong>is</strong>tributed.<br />
The number of collectors per row should be equal, if<br />
possible. However, the number of collectors in the<br />
individual rows must not differ by more than one.<br />
The maximum number of flat-plate collectors<br />
connected in series <strong>is</strong> limited to 9 or 10 collectors and 3<br />
rows (➔ 98/1).<br />
98<br />
Row(s) Max. number of<br />
collectors per row with<br />
flat-plate collectors<br />
In small systems it <strong>is</strong> preferable to connect collectors in<br />
series. Connecting the collectors in parallel <strong>is</strong> better in<br />
larger systems. Th<strong>is</strong> makes the volume flow<br />
d<strong>is</strong>tribution of the entire array more uniform.<br />
Connection in series Connection in parallel<br />
Max. number of tubes<br />
per row with vacuum<br />
tube collectors<br />
1 10 36 1<br />
2 5 18 2<br />
3 3 12 3<br />
4<br />
More than three rows<br />
connected in series<br />
not possible!<br />
98/1 Collector array layout options<br />
–<br />
Row(s) Max. number of collectors per<br />
row with flat-plate collectors<br />
With alternate connections<br />
max. 10 collectors per row<br />
or<br />
with connections on same side<br />
max. 5 SKS4.0 per row<br />
Allow for a higher pressure drop if Logasol SKS4.0<br />
collectors are connected in series (➔ 102/2).<br />
The hydraulic connection <strong>is</strong> shown in the following<br />
diagram on the example of a rooftop installation.<br />
Additional automatic air vent valves may be required<br />
if such valves cannot be installed above the top row<br />
(i.e. flat roof installation) (➔ page 119). As an<br />
alternative to the use of automatic air vent valves, the<br />
system can also be operated using an air separator in<br />
the cellar (separate or integrated into the Logasol<br />
KS01... compact station) if the system <strong>is</strong> filled via a<br />
filling station.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
4<br />
…<br />
…<br />
n<br />
Max. number of tubes<br />
per row with vacuum<br />
tube collectors<br />
Max. 36 tubes per row
Examples of connections in series<br />
E<br />
V<br />
E<br />
V<br />
FSK<br />
FSK<br />
99/1 Layout of a row of collectors<br />
99/2 Two collector rows connected in series<br />
E<br />
V<br />
1)<br />
E<br />
V<br />
99/3 Three collector rows connected in series<br />
R<br />
FSK<br />
Logasol SKN3.0<br />
1 to 10 collectors<br />
Logasol SKS4.0 Logasol SKS4.0<br />
Connection at alternate sides:<br />
1 to 10 collectors<br />
1)<br />
1 to 5 collectors per row V R 1 to 5 collectors per row<br />
Logasol SKN3.0<br />
FSK<br />
1 to 3 collectors<br />
per row<br />
Logasol SKN3.0<br />
1)<br />
R<br />
E<br />
V<br />
1) Kit for connecting in series<br />
1)<br />
1)<br />
R<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
E<br />
1)<br />
Logasol SKS4.0<br />
FSK<br />
1 to 3 collectors<br />
per row<br />
1) Kit for connecting in series<br />
R<br />
R<br />
FSK<br />
R<br />
E<br />
V<br />
V<br />
R<br />
FSK<br />
Logasol SKS4.0<br />
FSK<br />
Vaciosol CPC12<br />
12 to 36 tubes<br />
Same-side connection: 1<br />
to 5 collectors<br />
Vaciosol CPC12<br />
12 to 36 tubes<br />
in total<br />
V<br />
R<br />
Sizing 5<br />
FSK<br />
99
5<br />
Sizing<br />
Connection in parallel<br />
Connect the collector rows in parallel if more than 10<br />
flat-plate collectors or 36 tubes are required. Rows<br />
connected in parallel must cons<strong>is</strong>t of the same number<br />
of collectors and must be hydraulically connected in<br />
accordance with the Tichelmann principle. Ensure that<br />
the tube diameters are identical. Perform a hydraulic<br />
balancing if th<strong>is</strong> <strong>is</strong> not possible. Provide a Tichelmann<br />
loop in the return to minim<strong>is</strong>e heat losses. Collector<br />
arrays that are installed side by side can be arranged<br />
in a mirror image so that both arrays can be connected<br />
with a r<strong>is</strong>er in the centre.<br />
E<br />
V<br />
E<br />
V<br />
100/1 Connecting collector rows in parallel<br />
100<br />
E<br />
E<br />
E<br />
E<br />
R<br />
R<br />
FSK<br />
FSK<br />
Logasol SKN3.0<br />
1 to 10 collectors per row<br />
Ensure that only collectors of one type are used, since<br />
portrait and landscape collectors have a different<br />
pressure drop value.<br />
Each row requires a separate automatic air vent valve.<br />
As an alternative to the use of automatic air vent<br />
valves (➔ page 119), the system can also be operated<br />
using an air separator in the cellar (separate or<br />
integrated into the Logasol KS01... compact station) if<br />
the system <strong>is</strong> filled via a Logasol BS01 filling station<br />
(➔ page 120). In th<strong>is</strong> case, a shut-off valve <strong>is</strong> required<br />
for each flow in a row.<br />
Logasol SKS4.0 Logasol SKS4.0<br />
E<br />
FSK<br />
Connection at alternate sides:<br />
1 to 10 collectors<br />
1) For improved ventilation and for calibrating the collector arrays<br />
install a shut-off ball valve in each outlet.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
V<br />
E<br />
E<br />
FSK<br />
1)<br />
1)<br />
1)<br />
R<br />
Vaciosol CPC12<br />
12 to 36 tubes per row<br />
Same-side connection:<br />
1 to 5 collectors<br />
V R
Combined connection in series and in parallel<br />
It <strong>is</strong> only possible to hydraulically connect more than<br />
three collectors above or behind each other by using a<br />
combination of connection in series and connection in<br />
parallel. Th<strong>is</strong> <strong>is</strong> done by connecting the bottom two (1<br />
+ 2) and the top two (3 + 4) collectors in series<br />
(➔ 101/1).<br />
101/1 Connection of more than three landscape collectors above each other<br />
Collector array with dormer<br />
The following hydraulic schemes represent one option<br />
for solving the problem of dormers. These hydraulic<br />
schemes generally equate to two rows of collectors<br />
connected in series. Observe the information<br />
concerning the maximum number of collectors that<br />
can be used in rows of collectors connected in series. As<br />
E<br />
V<br />
R<br />
FSK<br />
E<br />
V<br />
E<br />
R<br />
Logasol SKN3.0<br />
Logasol SKN3.0-w<br />
FSK<br />
1)<br />
1)<br />
4<br />
3<br />
2<br />
1<br />
1) Kit for connection in series<br />
101/2 Hydraulic connection of collector arrays that are interrupted by a dormer<br />
E<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
Then connect rows 1 + 2 to rows 3 + 4 in parallel. Here<br />
too, observe the position of the automatic air vent<br />
valve.<br />
➔ The maximum permitted number of collectors per<br />
row <strong>is</strong> 5 if two collector rows connected in series are<br />
connected to each other in parallel.<br />
➔ Take the pressure drop of the collector array into<br />
consideration when selecting the compact station.<br />
E<br />
V<br />
E<br />
R<br />
1)<br />
1)<br />
Logasol SKS4.0-w<br />
FSK<br />
an alternative to the use of automatic air vent valves,<br />
the system can also be operated using an air separator<br />
in the cellar (separate or integrated into the Logasol<br />
KS01... compact station) if the system <strong>is</strong> filled via a<br />
filling station.<br />
E<br />
4<br />
3<br />
2<br />
1<br />
Logasol SKS4.0<br />
Dormer Dormer<br />
R<br />
E<br />
V<br />
FSK<br />
101
5<br />
Sizing<br />
5.4.2 Flow rate in the collector array for flat-plate collectors<br />
The nominal flow rate for engineering small and<br />
medium-sized systems <strong>is</strong> 50 l/h per collector, resulting<br />
in a total system flow rate as per formula 102/1.<br />
➔ A flow rate 10% to 15% lower (at full pump rate)<br />
does not usually lead to significant yield reductions.<br />
However, avoid higher flow rates to minim<strong>is</strong>e the<br />
amount of power required by the solar circuit pump.<br />
102<br />
Calculating sizes<br />
VA Total system flow rate in l/h<br />
VK,Nom Nominal flow rate of collector in l/h<br />
nK Number of collectors<br />
5.4.3 Pressure drop calculation in collector array for flat-plate collectors<br />
Collector row pressure drop<br />
The pressure drop of a collector row increases with the<br />
number of collectors per row. The pressure drop for a<br />
row including connecting accessories, subject to the<br />
number of collectors per row, can be found in the table<br />
102/2.<br />
Number<br />
of<br />
collectors<br />
VA = VK,Nom ⋅ nK = 50 l/h ⋅ nK 102/1 Formula for total system flow rate<br />
➔ The pressure drop values for the Logasol SKS4.0 and<br />
SKN3.0 collectors for a solar fluid mixture cons<strong>is</strong>ting of<br />
50% glycol and 50% water at a mean temperature of<br />
50 °C are specified in the table 102/2.<br />
Pressure drop for a row cons<strong>is</strong>ting of n collectors<br />
Logasol SKN3.0 Logasol SKS4.0<br />
portrait landscape portrait and landscape<br />
at a flow rate per collector (nominal flow rate 50 l/h)<br />
50 l/h 100 l/h1) 150 l/h2) 50 l/h 100 l/h1) 150 l/h2) 50 l/h 100 l/h1) 150 l/h2) n mbar mbar mbar mbar mbar mbar mbar mbar mbar<br />
1 1.1 4.7 10.2 0.4 1.7 4.3 30 71 131<br />
2 1.5 6.5 13.2 1.9 6.9 14.4 31 73 133<br />
3 2.1 13.5 26.3 5.6 18.1 35.1 32 82 153<br />
4 6.5 22.1 – 9.3 29.7 – 39 96 –<br />
5 11.1 34.5 – 14.8 46.8 – 44 115 –<br />
6 15.2 – – 21.3 – – 49 – –<br />
7 21.0 – – 28.9 – – 61 – –<br />
8 28.0 – – 37.6 – – 73 – –<br />
9 35.9 – – 47.5 – – 87 – –<br />
10 45.0 – – 58.6 – – 101 – –<br />
102/2 Pressure drop values for collector rows with Logasol SKN3.0 or SKS4.0 including AAV and connection kit; pressure drop values apply to solar<br />
fluid L at an average temperature of 50 °C<br />
1) Flow rate per collector, connected in two rows (➔ page 103)<br />
2) Flow rate per collector, connected in three rows (➔ page 103)<br />
– Non-perm<strong>is</strong>sible number of collectors<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007
Rows of collectors connected in series<br />
The pressure drop of the array results from the total of<br />
all pipework drop values and the pressure drop for<br />
each row of collectors. The pressure drop of rows of<br />
collectors connected in series <strong>is</strong> cumulative.<br />
ΔpArray = pRow Δ ⋅ nRow 103/1 Formula for pressure drop of a collector array with rows of<br />
collectors connected in series<br />
As far as table 102/2 <strong>is</strong> concerned, take into<br />
consideration that the actual flow rate <strong>is</strong> calculated via<br />
the individual collectors connected in series from the<br />
number of collector rows and the nominal collector<br />
flow rate (50 l/h):<br />
VK = VK,Nom ⋅ nRow = 50 l ⁄ h ⋅ nRow 103/2 Formula for flow rate through a collector with rows of collectors<br />
connected in series<br />
Calculation parameters (➔ 103/1 and 103/2)<br />
ΔpArray Pressure drop for collector array in mbar<br />
ΔpRow Pressure drop for one collector row in mbar<br />
nRow Number of collector rows<br />
VK Flow rate through the individual collectors in l/h<br />
VK,Nom Nominal flow rate of collector in l/h<br />
Example<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
● Parameters<br />
– Connection in series of 2 collector rows, each with<br />
5 Logasol SKN3.0-s solar collectors<br />
● Wanted<br />
– Pressure drop of overall collector array<br />
● Calculation<br />
– Flow rate through one collector:<br />
VK = VK,Nom · nRow V K =50l/h ·n Row =50l/h·2=100l/h<br />
– Read-off from table 102/2:<br />
34.5 mbar per collector row<br />
– Pressure drop of array:<br />
ΔpArray = ΔpRow · nRow =34.5mbar·2=69mbar<br />
➔ The pressure drop of the collector array <strong>is</strong> 69 mbar.<br />
E<br />
V<br />
R<br />
FSK<br />
103/3 Connection in series of two Logasol SKN3.0 collector rows<br />
103
5<br />
Sizing<br />
Collector rows connected in parallel<br />
The pressure drop for the array results from the total of<br />
the pipework pressure drop values up to a collector row<br />
and the pressure drop of an individual collector row.<br />
Unlike the situation when connecting in series, the<br />
actual flow rate via the individual collectors<br />
corresponds to the nominal collector flow rate (50 l/h)<br />
Calculation parameters (➔ 104/1 and 104/2)<br />
ΔpArray Pressure drop for collector array in mbar<br />
ΔpRow Pressure drop for one collector row in mbar<br />
VK Flow rate through the individual collectors in l/h<br />
VK,Nom Nominal flow rate of collector in l/h<br />
104<br />
ΔpArray = ΔpRow<br />
104/1 Formula for the pressure drop of a collector array with rows of<br />
collectors connected in parallel<br />
V K<br />
=<br />
V K,Nom<br />
104/2 Formula for the flow rate through a collector with rows of<br />
collectors connected in parallel<br />
Example<br />
● Parameters<br />
– Connection in parallel of 2 collector rows, each<br />
with 5 Logasol SKN3.0-s solar collectors<br />
● Wanted<br />
– Pressure drop of overall collector array<br />
● Calculation<br />
– Flow rate through one collector:<br />
VK = VK,Nom =50l/h<br />
– Read-off from table 102/2:<br />
11.1 mbar per collector row<br />
– Pressure drop of array:<br />
ΔpArray = ΔpRow = 11.1 mbar<br />
➔ The pressure drop of the collector array <strong>is</strong> 11.1 mbar.<br />
104/3 Two Logasol SKN3.0 collector rows connected in parallel using<br />
the Tichelmann principle<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
E<br />
V<br />
E<br />
FSK<br />
R
Combined connection in series and in parallel<br />
Illustration 105/3 shows an example of a combination<br />
of connections in series and in parallel. In each case,<br />
the top and bottom rows of collectors are connected in<br />
series to form a sub-array, meaning that only the<br />
pressure drop values of the sub-array collector rows<br />
connected in series will cumulate.<br />
For th<strong>is</strong>, take into consideration that the actual flow<br />
rate <strong>is</strong> calculated via the individual collectors<br />
connected in series from the number of collector rows<br />
connected in series and the nominal flow rate per<br />
collector (50 l/h):<br />
Calculation parameters (➔ 105/1 and 105/2)<br />
ΔpArray Pressure drop for collector array in mbar<br />
Δpsub-array Pressure drop of the collector sub-array cons<strong>is</strong>ting of<br />
collector rows connected in series in mbar<br />
ΔpRow Pressure drop for one collector row in mbar<br />
VK Flow rate through the individual collectors in l/h<br />
Nominal flow rate of collector in l/h<br />
V K,Nom<br />
ΔpArray = ΔpSub-array = pRow Δ ⋅ nRow 105/1 Formula for the pressure drop of a collector array cons<strong>is</strong>ting of<br />
a combination of collector rows connected in series and parallel<br />
VK = VK,Nom ⋅ nRow = 50 l ⁄ h ⋅ nRow 105/2 Formula for the pressure drop through a collector array<br />
cons<strong>is</strong>ting of a combination of collector rows connected in<br />
series and in parallel<br />
Example<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
● Parameters<br />
– Connection in parallel of 2 sub-arrays cons<strong>is</strong>ting<br />
of 2 rows of collectors, each of which cons<strong>is</strong>ts of 5<br />
Logasol SKN3.0 solar collectors.<br />
● Wanted<br />
– Pressure drop of overall collector array<br />
● Calculation<br />
– Flow rate through one collector:<br />
VK = VK,Nom · nRow V K =50l/h ·n Row =50l/h·2=100l/h<br />
– Read-off from table 102/2:<br />
34.5 mbar per collector row<br />
– Pressure drop of (sub-)array:<br />
ΔpArray = ΔpSub-array = ΔpRow · nRow Δp Array =34.5mbar·2=69mbar<br />
➔ The pressure drop of the collector array <strong>is</strong> 69 mbar.<br />
E<br />
V<br />
E<br />
R<br />
FSK<br />
105/3 Combination of connections in series and in parallel in a<br />
collector array cons<strong>is</strong>ting of Logasol SKN3.0 solar collectors<br />
105
5<br />
Sizing<br />
5.4.4 Calculation of pressure drop values in an array of vacuum tube collectors<br />
Pressure drop of CPC6 and CPC12 vacuum tube collectors; heat transfer media; Tyfocor LS; medium<br />
temperature 40 °C<br />
106/1 Pressure drop of CPC6 and CPC12 vacuum tube collectors<br />
Collector array pressure drop<br />
The pressure drop of the array approximately cons<strong>is</strong>ts<br />
of the total of the pressure drop values of each<br />
collector. The pressure drop values of the connecting<br />
lines may also need to be taken into consideration.<br />
106<br />
Δp<br />
mbar<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
CPC12<br />
0<br />
0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5<br />
Δ = Δp ⋅ n<br />
p Array<br />
106/2 Formula for the pressure drop of a collector array<br />
I<br />
V<br />
min<br />
The flow rate through the individual collectors <strong>is</strong><br />
calculated from the aperture area of the collector and<br />
the nominal collector flow rate (0.6 l/min · m 2 ).<br />
Calculation parameters (➔ 106/2 and 106/3)<br />
ΔpArray Pressure drop for collector array in mbar<br />
Δp Pressure drop for one collector in mbar<br />
n Number of collectors<br />
VK Flow rate through the individual collectors in l/min.<br />
VK,Nom Nominal flow rate of collector in l/min · m2 A Aperture areas in m 2<br />
ACPC6 = 1.28 m2 ACPC12 = 2.56 m2 <strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
CPC6<br />
VK =<br />
VK,Nom ⋅ n⋅ A<br />
106/3 Formula for the flow rate through a collector
Example 1<br />
● Parameters<br />
– 2 CPC12 connected in series<br />
● Wanted<br />
– Collector array pressure drop<br />
● Calculation<br />
– Flow rate through one collector:<br />
VK = VK,Nom · n · ACPC12 V K = 0.6 l/min · m 2 · 2 · 2.56 m 2<br />
V K =3l/min<br />
– Read-off from diagram 106/1:<br />
ΔpCPC12(3 l/min) =46mbar<br />
– Pressure drop of array:<br />
ΔpArray = ΔpCPC12(3 l/min) · n<br />
ΔpArray =46mbar·2<br />
ΔpArray =92mbar<br />
➔ The pressure drop of the collector array <strong>is</strong> 92 mbar.<br />
Example 2<br />
● Parameters<br />
– 2 CPC12 and 1 CPC6 connected in series<br />
● Wanted<br />
– Collector array pressure drop<br />
● Calculation<br />
– Flow rate through one collector:<br />
VK = VK,Nom · n · ACPC6 + n · ACPC12 VK =0.6l/min · m2 · (1 · 1.28 m2 + 2 · 2.56 m2 )<br />
VK =3.8l/min<br />
– Read-off from diagram 106/1:<br />
ΔpCPC6(3.8 l/min) =30mbar<br />
ΔpCPC12(3.8 l/min) =60mbar<br />
– Pressure drop of array:<br />
ΔpArray = ΔpCPC6(3.8 l/min) · n + ΔpCPC12(3.8 l/min) · n<br />
ΔpArray =30mbar·1+60mbar·2<br />
ΔpArray =150mbar<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
➔ The pressure drop of the collector array <strong>is</strong> 150 mbar.<br />
107
5<br />
Sizing<br />
5.4.5 Pressure drop of pipework in the solar circuit<br />
Calculating the pipework<br />
The flow velocity in the pipework should be in excess of<br />
0.4 m/s to enable air remaining in the heat transfer<br />
medium to be transported to the next air separator in<br />
lines with a slope. Interfering flow no<strong>is</strong>e can occur from<br />
flow velocities of 1 m/s and above. Take individual<br />
res<strong>is</strong>tance values (caused by bends, for example) into<br />
consideration in the pressure drop calculation. In<br />
practice, th<strong>is</strong> <strong>is</strong> often done by adding 30% to 50% to the<br />
Number<br />
of<br />
collecto<br />
rs<br />
108<br />
Flow<br />
rate<br />
pressure drop of the straight pipework. The actual<br />
pressure drops can vary more subject to the type of<br />
pipework.<br />
In systems with differently aligned collector arrays<br />
(east/west systems), take the total flow rate into<br />
consideration when the common flow line <strong>is</strong> being<br />
sized.<br />
Flow velocity v and pressure drop R in copper pipes with pipe dimensions of<br />
15 x 1 18 x 1 22 x 1 28 x 1.5 35 x 1.5<br />
v R v R v R v R v R<br />
l/h m/s mbar/m m/s mbar/m m/s mbar/m m/s mbar/m m/s mbar/m<br />
2 100 0.21 0.93 – – – – – – – –<br />
3 150 0.31 1.37 – – – – – – – –<br />
4 200 0.42 3.41 0.28 0.82 – – – – – –<br />
5 250 0.52 4.97 0.35 1.87 – – – – – –<br />
6 300 0.63 6.97 0.41 2.5 – – – – – –<br />
7 350 0.73 9.05 0.48 3.3 0.31 1.16 – – – –<br />
8 400 0.84 11.6 0.55 4.19 0.35 1.4 – – – –<br />
9 450 0.94 14.2 0.62 5.18 0.4 1.8 – – – –<br />
10 500 – – 0.69 6.72 0.44 2.12 – – – –<br />
12 600 – – 0.83 8.71 0.53 2.94 0.34 1.01 – –<br />
14 700 – – 0.97 11.5 0.62 3.89 0.4 1.35 – –<br />
16 800 – – – – 0.71 4.95 0.45 1.66 – –<br />
18 900 – – – – 0.8 6.12 0.51 2.06 0.31 0.62<br />
20 1000 – – – – 0.88 7.26 0.57 2.51 0.35 0.75<br />
22 1100 – – – – 0.97 8.65 0.62 2.92 0.38 0.86<br />
24 1200 – – – – – – 0.68 3.44 0.41 1.02<br />
26 1300 – – – – – – 0.74 4.0 0.45 1.21<br />
28 1400 – – – – – – 0.79 4.5 0.48 1.35<br />
30 1500 – – – – – – 0.85 5.13 0.52 1.56<br />
108/1 Flow velocity and pressure drop per meter of straight copper pipe for a 50/50 glycol:water mixture at 50 °C<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007
5.4.6 Pressure drop of the selected solar cylinder<br />
The pressure drop of the solar cylinder depends on the<br />
number of collectors and the flow rate The indirect coils<br />
of the solar cylinder have various pressure drop<br />
character<strong>is</strong>tics because of their differing dimensions.<br />
Numbe<br />
r of<br />
collect<br />
ors<br />
Flow<br />
rate<br />
SL300-1<br />
SL300-2<br />
SL400-2<br />
SL500-2<br />
SM300<br />
SM400<br />
SM500<br />
5.4.7 Selecting the Logasol KS... compact station<br />
The selection of the suitable complete station can be<br />
approximately determined through the number of<br />
collectors. The pressure drop (residual head) and the<br />
flow rate in the collector circuit are required for<br />
final<strong>is</strong>ing the selection. Take the following pressure<br />
drop values into consideration:<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
Use table 109/1 to estimate the pressure drop The<br />
pressure drop in the table applies to a 50/50<br />
glycol:water mixture at a temperature of 50 °C.<br />
Press drop in solar indirect coils of the Logalux cylinder<br />
P750 S PL750/2S PL1000/2S PL750 PL1000 PL1500 Duo<br />
FWS750<br />
● Pressure drop in the collector array (➔ page 102)<br />
● Pipework pressure drop (➔ page 108)<br />
Duo<br />
FWS1000<br />
l/h mbar mbar mbar mbar mbar mbar mbar mbar mbar mbar mbar<br />
2 100
5<br />
Sizing<br />
5.5 Sizing of the diaphragm expansion vessel<br />
5.5.1 System volume calculation<br />
The volume of a solar heating system with the Logasol<br />
KS... complete station <strong>is</strong> significant in the sizing of the<br />
expansion vessel and the determination of the<br />
quantity of solar fluid.<br />
The following formula applies to the filling volume of<br />
the solar heating system with a Logasol KS... complete<br />
station:<br />
110/1 Formula for filling volume of solar heating systems with a<br />
Logasol KS... complete station<br />
Calculating sizes<br />
VA System filling volume<br />
VK Volume of one collector (➔ 110/3)<br />
nK Number of collectors<br />
VWT Solar indirect coil volume (➔ 110/4)<br />
VKS Volume of a Logasol KS… complete station (approx. 1.0 l)<br />
VR Pipework volume (➔ 110/2)<br />
Solar indirect coil volume<br />
110<br />
VA = VK ⋅ nK + VWT + VKS + VR Pipework volume<br />
Pipe dimension<br />
Ø × wall thickness<br />
Specific line volume<br />
mm l/m<br />
15×1.0 0.133<br />
18×1.0 0.201<br />
22×1.0 0.314<br />
28×1.5 0.491<br />
35×1.5 0.804<br />
42×1.5 1.195<br />
110/2 Specific filling volume of selected pipework<br />
Solar collector volume<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Solar collectors Collector content<br />
Type Version l<br />
Flat-plate<br />
collector<br />
SKN3.0<br />
portrait<br />
landscape<br />
0.86<br />
1.25<br />
High-perf. flatplate<br />
collector<br />
.<br />
SKS4.0<br />
portrait<br />
landscape<br />
1.43<br />
1.76<br />
Vacuum tube CPC6 6 tubes 0.97<br />
collector CPC12 12 tubes 1.91<br />
110/3 Filling volume of Logasol solar collectors<br />
Solar cylinder Indirect coil content<br />
Scope Type Logalux l<br />
DHW heating<br />
DHW heating and<br />
central heating backup (combi cylinder)<br />
Thermal store<br />
dual-mode<br />
mono-mode<br />
110/4 Filling volume of solar indirect coils in Logalux cylinders<br />
SM300 8.0<br />
SM400 9.5<br />
SM500 13.2<br />
SL300-2 0.9<br />
SL400-2 1.4<br />
SL500-2 1.4<br />
SL300-1 0.9<br />
SU160 4.5<br />
SU200 4.5<br />
SU300 8.0<br />
SU400 12.0<br />
SU500 16.0<br />
SU750 23.0<br />
SU1000 28.0<br />
P750 S 16.4<br />
PL750/2S 1.4<br />
PL1000/2S 1.6<br />
Duo FWS750 11.0<br />
Duo FWS1000 13.0<br />
PL750 2.4<br />
PL1000 2.4<br />
PL1500 5.4
5.5.2 Diaphragm expansion vessel for solar heating systems with flat-plate collectors<br />
Calculation principles<br />
Inlet pressure<br />
Adjust the inlet pressure of the diaphragm expansion<br />
vessel (DEV) prior to filling the solar heating system to<br />
take the system elevation into account. The require<br />
system inlet pressure be calculated using the following<br />
formula:<br />
Calculation parameters (➔ 111/1) and picture legend (➔ 111/2)<br />
pV DEV inlet pressure in bar<br />
hstat Static height in m between centre of DEV and highest point of<br />
system<br />
➔ The minimum inlet pressure <strong>is</strong> 1.2 bar.<br />
Filling pressure<br />
The expansion vessel creates a "hydraulic seal" when<br />
the system <strong>is</strong> filled, since an equilibrium between the<br />
fluid pressure and the gas pressure occurs at the<br />
diaphragm. The hydraulic seal (VV ➔ 111/4) <strong>is</strong><br />
introduced with the system in a cold state, and<br />
monitored via the filling pressure at the system<br />
pressure gauge on the water side after venting and<br />
degassing the system in a cold state. The system filling<br />
pressure should be 0.3 bar higher than the DEV inlet<br />
pressure. A controlled evaporation temperature of<br />
120 °C <strong>is</strong> therefore reached in the event of stagnation.<br />
The filling pressure <strong>is</strong> calculated using the following<br />
formula:<br />
Calculation parameters (➔ 111/3) and picture legend (➔ 111/4)<br />
p0 DEV filling pressure in bar<br />
pV DEV inlet pressure in bar<br />
Hydraulic seal<br />
V V<br />
pV = 0.1 ⋅ hstat + 0.4 bar<br />
111/1 Formula for inlet pressure of a diaphragm expansion vessel<br />
p0 = pV + 0.3 bar<br />
111/3 Formula for filling pressure of a diaphragm expansion vessel<br />
➔ A deviation from the optimum inlet pressure or<br />
filling pressure always leads to a reduction in the<br />
available volume. Th<strong>is</strong> can cause system<br />
malfunctions.<br />
111/2 Inlet pressure of a diaphragm expansion vessel<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
p V<br />
V V<br />
111/4 Filling pressure of a diaphragm expansion vessel<br />
p 0<br />
Sizing 5<br />
111
5<br />
Sizing<br />
Final pressure<br />
At the maximum collector temperature, the filling gas<br />
<strong>is</strong> compressed to the final system pressure by taking up<br />
additional expansion volume (Ve ➔ 112/2).<br />
The final pressure of the solar heating system and<br />
therefore the pressure rating and the required size of<br />
the DEV are determined by the safety valve response<br />
pressure. The final pressure <strong>is</strong> determined using the<br />
following formula:<br />
112/1 Formulas for final pressure of a diaphragm expansion vessel<br />
subject to the safety valve response pressure<br />
Calculation parameters (➔ 112/1) and picture legend (➔ 112/2)<br />
pe DEV final pressure in bar<br />
pSV Safety valve response pressure in bar<br />
Ve Expansion volume<br />
Hydraulic seal<br />
V V<br />
Intrinsic safety of a solar heating system<br />
A solar heating system <strong>is</strong> considered to be intrinsically<br />
safe if the DEV can absorb the volume change as a<br />
result of solar fluid evaporation in the collector and the<br />
connecting lines (stagnation). If a solar heating system<br />
<strong>is</strong> not intrinsically safe, the safety valve responds<br />
during stagnation. Then the solar heating system has<br />
to be re-started. A DEV <strong>is</strong> sized on the bas<strong>is</strong> of the<br />
following assumptions and formulae:<br />
Calculation parameters (➔ 112/3 and 112/4)<br />
Vn,min Minimum D volume in l<br />
VA n<br />
System filling volume in l (➔ 110/1)<br />
Expansion coefficient (= 7.3 % with Δϑ = 100 K)<br />
VD Evaporation volume in l<br />
pe DEV outlet pressure in bar<br />
p0 DEV filling pressure in bar<br />
nK Number of collectors<br />
Volume of one collector (➔ 110/3)<br />
V K<br />
112<br />
pe ≤ pSV ∠ 0.2 bar for pSV ≤ 3 bar<br />
pe ≤ 0.9 ⋅ pSV for pSV > 3 bar<br />
V V + V e<br />
112/2 Final pressure of a diaphragm expansion vessel<br />
V n min<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
p e<br />
( + 1)<br />
, = ( VA ⋅ n + VD) ⋅ ----------------------<br />
( ∠ )<br />
112/3 Formula for minimum DEV volume<br />
VD =<br />
nK ⋅ VK 112/4 Formula for the evaporation volume<br />
pe pe p 0
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
Nomograph for the graphical determination of the diaphragm expansion vessel for solar<br />
heating systems with flat-plate collectors<br />
The size of the diaphragm expansion vessel in systems<br />
with a 6 bar safety valve can be determined<br />
graphically subject to the system configuration using<br />
the following nomograph. The above assumptions and<br />
formulae are based on th<strong>is</strong> nomograph.<br />
Sizing example<br />
● Specified solar heating system with<br />
– 4 Logasol SKS4.0-s collectors and Logalux SL400<br />
thermosiphon cylinders<br />
– 12 m single pipe length between collector array<br />
and cylinder<br />
– Pipe dimension 15 mm x 1.0 mm<br />
– Static height between DEV and the highest point<br />
of system = 10 m<br />
● Wanted<br />
– Required expansion vessel<br />
➔ The graphical determination of the diaphragm<br />
expansion vessel <strong>is</strong> described in the nomograph on<br />
pages 114 and 115.<br />
Item Calculation principles and initial values Required operation<br />
1<br />
2<br />
3<br />
4<br />
5<br />
The single pipe between the cylinder and the collector array <strong>is</strong><br />
12 m in length.<br />
Trace the "Single pipe length" ax<strong>is</strong> at 12 m horizontally to the left<br />
of the "Pipe dimensions" sub-diagram.<br />
The pipe dimension that was used <strong>is</strong> 15 x 1. Continue vertically upwards into the "DHW cylinder" subdiagram<br />
at the intersection with line 15 x 1.<br />
A Logalux SL400 DHW cylinder <strong>is</strong> specified for th<strong>is</strong> system. At the intersection with the "Logalux SL..." curve, go horizontally<br />
to part 2 of the nomograph into the "Collector filling volume"<br />
sub-diagram.<br />
The system <strong>is</strong> operated using 4 Logasol SKS4.0-s collectors. The<br />
filling volume V K of the collector array <strong>is</strong> 5.72 l. 1)<br />
The static height between the highest point in the system<br />
(automatic air vent valve) and the expansion vessel <strong>is</strong> 10 m.<br />
Draw an additional line parallel to the ex<strong>is</strong>ting lines for a filling<br />
volume of 5.72 l in the "Collector array filling volume" subdiagram.<br />
Go vertically down into the "static height" sub-diagram<br />
from the intersection point with the new line<br />
At the intersection with line 10, go horizontally left and read off<br />
the minimum nominal volume of the expansion vessel (11.5 l).<br />
Result: Allow for a DEV with 18 l (DEV 10, white field).<br />
113/1 Description of operations for the example of expansion vessel sizing with nomograph (➔ 114/1 and ➔ 115/1)<br />
1) The values in table ➔ 110/3 apply to the collector filling volume<br />
113
5<br />
Sizing<br />
Nomograph for sizing the diaphragm expansion vessel for solar heating systems with flat-plate collectors<br />
(part 1)<br />
114<br />
28 x 1.5<br />
Logalux SM500, Duo FWS1000<br />
Duo FWS750<br />
Logalux SM400<br />
Logalux SM300<br />
Logalux PL1500<br />
Logalux P750 S<br />
Logalux SL..., PL.../2S, PL750, PL1000<br />
114/1 Nomograph for sizing the expansion vessels for systems with the Logasol KS... complete station and 6 bar safety valve (part 2 ➔ 115/1) with<br />
sizing example highlighted in blue (description ➔ page 113)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
22 x 1<br />
18 x 1<br />
15 x 1<br />
0<br />
2<br />
4<br />
6<br />
8<br />
10<br />
12<br />
14<br />
16<br />
18<br />
20<br />
22<br />
24<br />
26<br />
28<br />
30
Sizing 5<br />
Nomograph for sizing the diaphragm expansion vessel for solar heating systems with flat-plate collectors<br />
(part 2)<br />
Minimum nominal DEV volume (V n,min in l)<br />
0<br />
10<br />
20<br />
30<br />
MAG 18<br />
MAG 25<br />
MAG 35<br />
3 4 5 6 7 8 9 10 12 15 20 25 30 35 40<br />
MAG 80<br />
115/1 Nomograph for sizing the expansion vessel for systems with the Logasol KS... complete station and 6 bar safety valve with sizing example<br />
highlighted in blue (description ➔ page113)<br />
≤ 8<br />
10<br />
12<br />
14<br />
MAG 100<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
MAG 35<br />
MAG 50<br />
≤ 8<br />
10<br />
12<br />
14<br />
25<br />
30<br />
35<br />
40<br />
45<br />
50<br />
55<br />
60<br />
65<br />
70<br />
75<br />
80<br />
85<br />
90<br />
Static height (h st in m) Collector array filling volume (V K in l)<br />
115
5<br />
Sizing<br />
5.5.3 Diaphragm expansion vessel for solar heating systems with vacuum tube collectors<br />
Allow for a 6 bar safety valve to protect the solar<br />
heating circuit. Check the suitability of the env<strong>is</strong>aged<br />
components for th<strong>is</strong> pressure level. Install the<br />
System example: Solar DHW heating<br />
116/1 System example (abbreviations ➔ page 148)<br />
Calculation principles for determining the expansion vessel size<br />
The following formulae are based on a 6 bar safety<br />
valve. To calculate the expansion vessel size<br />
accurately, first determine the system component<br />
capacities so that the expansion vessel size can be<br />
calculated using the following formula:<br />
Calculating sizes<br />
VNom Nominal expansion vessel size<br />
VA System filling volume (content of entire solar heating circuit)<br />
VVap<strong>our</strong> Capacity of collectors and pipework<br />
in the vap<strong>our</strong> area above the bottom edge of collector<br />
DF Pressure factor (➔ 117/1)<br />
● Parameters<br />
– 2 CPC12 collectors<br />
– Cu pipe: 15 mm, length = 2 x 15 m<br />
– Static height: H = 9 m<br />
– Content of the cylinder indirect coil and the solar<br />
heating station: e. g. 6.4 l<br />
– Cu pipe in vap<strong>our</strong> area: 15 mm, length = 2 x 2 m<br />
– VA : 14.21 l<br />
116<br />
FSK<br />
VS<br />
RS<br />
Logalux SM... (SL...)<br />
VNom ≥<br />
( VA ⋅ 01 , + VVap<strong>our</strong> ⋅ 1. ( 25)<br />
) ⋅ DF<br />
116/2 Formula for the nominal size of the expansion vessel<br />
min 2 m<br />
expansion vessel 20 to 30 cm above the compete<br />
station in the returning to protect the group from<br />
excessive temperatures.<br />
0.2–0.3 m<br />
– V Vap<strong>our</strong>: 4.35 l<br />
The system component contents can be found in tables<br />
➔ 110/2 to 110/4.<br />
The pipework above the bottom edge of the collector<br />
(the lowest collector, if there are several collectors) can<br />
contain vap<strong>our</strong> when the solar heating system <strong>is</strong> idle.<br />
The vap<strong>our</strong> volume VVap<strong>our</strong> therefore includes the<br />
contents of the pipework and collectors concerned.<br />
Calculating the size of the expansion vessel<br />
VNom ≥ (VA ·0.1 + VVap<strong>our</strong> · 1.25) · DF<br />
DF (9 m) = 2.77 (➔ 117/1)<br />
VNom ≥ (14.21 l · 0.1 + 4.35 l · 1.25) · 2.77<br />
VNom ≥ 19 l<br />
➔ Select the next bigger expansion vessel, i.e. 25 l<br />
Calculation of system content, inlet pressure and<br />
operating pressure<br />
Add the hydraulic seal of the relevant expansion vessel<br />
to the system content to determine the necessary<br />
amount of solar fluid.<br />
The hydraulic seal in the expansion vessel results from<br />
filling the solar heating system from the inlet pressure<br />
to the operating pressure (subject to static height "H").<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
PSS<br />
Logasol<br />
KS01..
The percentage of the hydraulic seal in relation to the<br />
selected vessel size and the specified pressure can be<br />
found in table 117/1.<br />
with a static height of 9 m, the following applies:<br />
Vseal = VNom ·Hydraulic seal factor<br />
Hydraulic seal factor (9 m) = 7.7 % (➔ 117/1)<br />
Vseal = 25 l ·77%= 25 l ·0.77<br />
Vseal = 1.9 l<br />
Determining the pressure factor<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Sizing 5<br />
Calculation of the required amount of solar fluid<br />
Vtot = VA + VSeal Vtot = 14.21 l + 1.9 l<br />
Vtot = 16.13 l<br />
Calculation bas<strong>is</strong> for determining the pre-cooling vessel size<br />
Install a pre-cooling vessel upstream of the expansion<br />
vessel to provide the expansion vessel with thermal<br />
protection, particularly with solar central heating<br />
backup, and systems for DHW heating with more than<br />
60% coverage.<br />
Result<br />
The expansion vessel with 25 l capacity <strong>is</strong> adequate.<br />
The inlet pressure <strong>is</strong> 2.6 bar, the operating pressure <strong>is</strong><br />
2.9 bar and the solar fluid content <strong>is</strong> 16.13 l.<br />
Static height H Pressure factor DF Hydraulic seal factor DEV inlet pressure System filling pressure<br />
m % bar bar<br />
2 2.21 9.4 1.9 2.2<br />
3 2.27 9.1 2.0 2.3<br />
4 2.34 8.8 2.1 2.4<br />
5 2.41 8.6 2.2 2.5<br />
6 2.49 8.3 2.3 2.6<br />
7 2.58 8.1 2.4 2.7<br />
8 2.67 7.9 2.5 2.8<br />
9 2.77 7.7 2.6 2.9<br />
10 2.88 7.5 2.7 3.0<br />
11 3.00 7.3 2.8 3.1<br />
12 3.13 7.1 2.9 3.2<br />
13 3.28 7.0 3.0 3.3<br />
14 3.43 6.8 3.1 3.4<br />
15 3.61 6.7 3.2 3.5<br />
16 3.80 6.5 3.3 3.6<br />
17 4.02 6.4 3.4 3.7<br />
18 4.27 6.3 3.5 3.8<br />
19 4.54 6.1 3.6 3.9<br />
20 4.86 6.0 3.7 4.0<br />
117/1 Determining the pressure factor<br />
Pre-cooling vessel size 5 12<br />
l l<br />
Height mm 270 270<br />
Diameter mm 160 270<br />
Connection Inch 2 x R6 2 x R6<br />
Max. operating<br />
pressure:<br />
bar<br />
10 10<br />
117/2 Pre-cooling vessel specification<br />
The following standard value applies with regard to<br />
the pre-cooling vessel size:<br />
VPre ≥<br />
VVap<strong>our</strong> ∠ VPipe 117/3 Formula for nominal pre-cooling vessel size<br />
Calculating sizes<br />
VPre Nominal pre-cooling vessel size<br />
VVap<strong>our</strong> Content of collectors and pipework<br />
in the vap<strong>our</strong> area above the bottom edge of the collector<br />
VPipe Pipework from the lower edge of the collector to<br />
the complete station<br />
117
6<br />
Design/engineering information regarding the installation<br />
6 Design/engineering information regarding the installation<br />
6.1 Pipework, thermal insulation and collector temperature sensor extension cable<br />
Glycol and temperature-res<strong>is</strong>tant sealing<br />
All components of a solar heating system (including<br />
flexible seals for valve seats, diaphragms in expansion<br />
vessels etc.) must be made from glycol-res<strong>is</strong>tant<br />
materials and carefully sealed, since water:glycol<br />
mixtures have a greater tendency to leak than pure<br />
water. Aramide fibre seals have proven to be effective.<br />
Graphited cord <strong>is</strong> suitable for sealing glands. Hemp<br />
seals must also be coated with temperature-res<strong>is</strong>tant<br />
and glycol-res<strong>is</strong>tant thread paste. N<strong>is</strong>sen products "Neo<br />
Fermit universal" or "Fermitol" can be used as thread<br />
paste (observe the manufacturer's instructions).<br />
The solar hose ferrules on the Logasol SKN3.0 collectors<br />
and the connectors of the Logasol SKS4.0 collectors<br />
provide an easy and reliable seal for collector<br />
connections. Connecting kits for Twin-Tube 15 and<br />
Twin-Tube DN20 are available for providing a reliable<br />
connection to the special Twin-Tube double tube.<br />
Pipework routing<br />
All connections in the solar circuit must be brazed.<br />
Alternatively, press fittings can be used, provided that<br />
they are suitable for use with a water:glycol mixture<br />
and respectively high temperatures (200 °C). All<br />
pipework must be routed with a r<strong>is</strong>e towards the<br />
collector array or the air vent valve, if installed. <strong>Heat</strong><br />
expansion must be taken into consideration when the<br />
pipework <strong>is</strong> being routed. The pipes must be equipped<br />
118<br />
Pipe diameter<br />
mm<br />
Twin-Tube (double tube)<br />
insulation thickness 1) mm<br />
Collector temperature sensor extension lead<br />
When routing the pipework, also route a two-core lead<br />
(up to 50 m length 2 × 0.75 mm2 ) for the collector<br />
temperature sensor alongside. An appropriate lead <strong>is</strong><br />
provided in the insulation of the special Twin-Tube.<br />
Provide a shield for the collector temperature sensor<br />
Aeroflex SSH pipe<br />
diameter × insulation<br />
thickness mm<br />
118/1 Thickness of thermal insulation for solar heating system connection lines.<br />
1) Requirements according to the Energy Saving Order (EnEV) [Germany]<br />
with expansion facilities (bends, sliding clamps,<br />
compensators) to prevent damage and leaks.<br />
➔ Plastic pipework and galvan<strong>is</strong>ed components are<br />
not suitable for solar heating systems.<br />
Thermal insulation<br />
Connection lines may be routed in unused flues, air<br />
shafts and wall slits (in new buildings). Open shafts<br />
must be suitably sealed to prevent heat loss caused by<br />
r<strong>is</strong>ing air (convection).<br />
The thermal insulation of the connection lines must be<br />
designed for the operating temperature of the solar<br />
heating system. Therefore use appropriate high<br />
temperature-res<strong>is</strong>tant insulating materials such as<br />
insulating hoses made from EPDM rubber. The<br />
thermal insulation must be UV and temperatureres<strong>is</strong>tant<br />
in external areas. The connection kits for the<br />
Logasol SKS4.0 solar collectors are fitted with UV and<br />
high temperature-res<strong>is</strong>tant thermal insulation made<br />
from EPDM rubber. The solar collectors, complete<br />
stations and solar cylinders made by <strong>Buderus</strong> are fitted<br />
with efficient thermal insulation in the factory.<br />
The table 118/1shows standard values for the<br />
insulating thickness on pipework in solar heating<br />
systems. Mineral wool <strong>is</strong> unsuitable for external<br />
applications because it absorbs water and then fails to<br />
provide thermal insulation.<br />
Aeroflex HT pipe<br />
diameter × insulation<br />
thickness mm<br />
extension lead, if it <strong>is</strong> routed together with a 230 V<br />
cable. Install the FSK collector temperature sensor near<br />
the flow header in the sensor lead pipe of the Logasol<br />
SKN3.0 and SKS4.0 collectors.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Mineral wool insulation<br />
thickness (in relation to<br />
λ =0.035W/m⋅K) 1) mm<br />
15 15 – 15 × 24 20<br />
18 – 18 × 26 18 × 24 20<br />
20 19 22 × 26 22 × 24 20<br />
22 – 22 × 26 22 × 24 20<br />
28 – 28 × 38 28 × 36 30<br />
35 – 35 × 38 35 × 36 30<br />
42 – 42 × 51 42 × 46 40
6.2 Air vent valve<br />
Design/engineering information regarding the installation 6<br />
6.2.1 Automatic air vent valve<br />
Unless "filling station and air separator" are being<br />
used (➔ page 120), solar heating systems with flatplate<br />
collectors are ventilated via quick-acting air vent<br />
valves at the highest point of the system. After filling<br />
has been completed, th<strong>is</strong> valve must be closed to<br />
prevent gaseous solar fluid from escaping from the<br />
system in the event of stagnation. Vent Vaciosol<br />
vacuum collector tubes with "filling station and air<br />
separator".<br />
Provide an air vent valve at the highest point of the<br />
system (detail E ➔ 119/1) and, for every change of<br />
direction, with a new r<strong>is</strong>e (e.g. in dormers, ➔ 101/2).<br />
If there are several rows of collectors, provide an air<br />
vent valve for each row (➔ 119/2), unless the system<br />
can be ventilated above the top row (➔ 119/3). Order<br />
an automatic all-metal air vent valve in the form of an<br />
air vent valve kit.<br />
➔ Never use air vent valves with plastic floats in solar<br />
heating systems because of the high temperatures that<br />
occur. If there <strong>is</strong> insufficient room for an automatic allmetal<br />
air vent valve with an upstream ball valve,<br />
provide a manual air vent valve with a drip container.<br />
Logasol SKN3.0 Logasol SKS4.0<br />
R V<br />
E FSK<br />
E<br />
119/1 Hydraulic diagram with air vent valve at the highest point of<br />
system<br />
119/2 Hydraulic diagram with air vent valve for each collector row on<br />
the example of flat roof installation (connection in series)<br />
119/3 Hydraulic diagram with air vent valve above the top row on the<br />
example of rooftop installation (connection in series)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
FSK<br />
Same-side<br />
connection<br />
E E<br />
R V<br />
R V<br />
E<br />
E<br />
R V<br />
119
6<br />
Design/engineering information regarding the installation<br />
6.2.2 Filling station and air separator<br />
A solar heating system can also be filled with the<br />
Logasol BS01 filling station (➔ 120/1), resulting in a<br />
large proportion of the air being pushed out of the<br />
system during the filling procedure. An air vent valve<br />
on the roof <strong>is</strong> not required in th<strong>is</strong> case. Instead, a<br />
central air separator <strong>is</strong> part of the Logasol KS01 2branch<br />
complete station. (➔ 120/2). Th<strong>is</strong> separates the<br />
residual micro-bubbles out of the medium during<br />
operation.<br />
Benefits of the system are:<br />
● Reduced installation effort because no air vent<br />
valves are required on the roof<br />
● Easy and quick comm<strong>is</strong>sioning, i.e. filling and<br />
ventilation in one step.<br />
● Efficiently vented system<br />
● Low-maintenance operation<br />
If the collector array cons<strong>is</strong>ts of several rows connected<br />
in parallel, provide each individual row with a shut-off<br />
valve in the flow. Each row <strong>is</strong> filled and ventilated<br />
individually during the filling procedure.<br />
120<br />
No air<br />
vent valve<br />
required<br />
1<br />
A<br />
2<br />
1 Pressure hose 5"<br />
2 Return hose 6"<br />
FSK<br />
PSS<br />
Logasol<br />
KS01..<br />
Collector<br />
120/1 Logasol BS01 filling station<br />
VS2 AW<br />
120/2 System design; detail A: Filling procedure with filling pump (seal ➔ 60/1; abbreviations ➔ page 148)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
FSX<br />
FSS<br />
PS<br />
M1<br />
RS2<br />
VS1<br />
M2<br />
RS1<br />
EZ<br />
EK<br />
Logalux SM.../SL...<br />
HK1<br />
WWM<br />
PZ<br />
FK<br />
Boiler Logano EMS<br />
Oil/Gas<br />
1<br />
2<br />
Logamatic<br />
4121<br />
+ FM443
Design/engineering information regarding the installation 6<br />
6.3 Information regarding the different flat-plate collector installation systems<br />
6.3.1 Perm<strong>is</strong>sible standard snow loads and building heights in accordance with DIN 1055<br />
The following table contains the perm<strong>is</strong>sible standard<br />
snow loads and building heights for the different<br />
installation options. Observe the information shown<br />
Roof cover/wall<br />
Perm<strong>is</strong>sible roof pitch<br />
Perm<strong>is</strong>sible building heights<br />
(wind loads) of up to 20 m - at<br />
wind speeds of up to 80 mph<br />
Perm<strong>is</strong>sible building heights<br />
(wind loads) of up to 100 m - at<br />
wind speeds of up to 94 mph<br />
Standard snow loads in<br />
accordance with DIN 1055, part<br />
5<br />
0–2 kN/m 2<br />
Standard snow loads in<br />
accordance with DIN 1055, part<br />
5<br />
> 2kN/m2 6.3.2 Selection aid for hydraulic connection accessories<br />
Provide suitable hydraulic connection accessories<br />
subject to the number of collectors and their hydraulic<br />
connections.<br />
Single-row collector array<br />
Rooftop installation<br />
Portrait/landscape<br />
Tiles, plain tiles, slate,<br />
shingle, corrugated<br />
sheets, sheet steel,<br />
bitumen<br />
25°–65°,<br />
5°–65° (corrugated<br />
sheets, sheet steel roof)<br />
Connecting two collector rows in parallel<br />
during engineering to safeguard a correct installation<br />
and to prevent damage to the collector array.<br />
Roof integration<br />
Portrait/landscape<br />
Tiles, plain tiles, slate,<br />
shingle<br />
25°–65°<br />
Without accessories Without accessories<br />
Only portrait collectors<br />
with rooftop installation<br />
kit<br />
Not perm<strong>is</strong>sible<br />
Flat roof installation<br />
Portrait/landscape<br />
➔ For further details regarding the various assembly<br />
systems, see the relevant "Hydraulic connection"<br />
section in the following sub-chapters.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Wall mounting 45–60<br />
°C, landscape<br />
– load-bearing<br />
0° (with slightly sloping<br />
roofs of up to 25°,<br />
protection from sliding<br />
off or on-site fixing)<br />
Without accessories<br />
(observe securing flat<br />
roof supports!)<br />
With flat roof support kit<br />
(observe flat roof<br />
support fixing!)<br />
–<br />
Without accessories<br />
Not perm<strong>is</strong>sible<br />
Without accessories Without accessories Without accessories Without accessories<br />
Only portrait collectors<br />
with rooftop installation<br />
kit up to 3.1 kN/m 2<br />
Without accessories up<br />
to 3.8 kN/m 2<br />
121/1 Perm<strong>is</strong>sible standard snow loads and building heights in accordance with DIN 1055<br />
Without flat roof<br />
support kit up to<br />
3.8 kN/m 2<br />
Number of<br />
collectors<br />
Number of rows Connection kit Air vent valve kit1) 1 to 10 1 1 1<br />
121/2 Hydraulic connection accessories for a single-row collector array<br />
1) The air vent valve kit <strong>is</strong> not required if the system <strong>is</strong> filled with a "Filling station" (➔ page 120)<br />
Not perm<strong>is</strong>sible<br />
Number of<br />
collectors<br />
Number of rows Connection kit Air vent valve kit 1)<br />
2 to 20 2 2 2<br />
121/3 Hydraulic connection accessories for connecting two collector rows in parallel<br />
1) The air vent valve kit <strong>is</strong> not required if the system <strong>is</strong> filled with a "Filling station" (➔ page 120). Also provide a shut-off valve in the flow<br />
of each row if the collectors are connected in parallel<br />
121
6<br />
Design/engineering information regarding the installation<br />
Several collector rows connected in series<br />
122<br />
Number of<br />
collectors<br />
Number of rows Number<br />
of collectors<br />
per row<br />
Connection kit Air vent valve kit 1)<br />
122/1 Hydraulic connection accessories for connecting several collector rows in series<br />
1) The air vent valve kit <strong>is</strong> not required if the system <strong>is</strong> filled with a "Filling station" (➔ page 120). Additional air vent valve kits are required<br />
unless the system can be vented above the top row (e.g. with flat roof installation, ➔ 119/2).<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Series connection kit<br />
2 2 1 1 1 1<br />
3<br />
2<br />
2<br />
1<br />
1 1 1<br />
3 1 1 1 2<br />
4 2 2 1 1 1<br />
5 2<br />
6<br />
7 2<br />
3<br />
2<br />
1 1 1<br />
2 3 1 1 1<br />
3 2 1 1 2<br />
4<br />
3<br />
1 1 1<br />
8 2 4 1 1 1<br />
9<br />
2<br />
5<br />
4<br />
1 1 1<br />
3 3 1 1 2<br />
10 2 5 1 1 1
Design/engineering information regarding the installation 6<br />
6.3.3 Rooftop installation for flat-plate collectors<br />
Rooftop installation<br />
The collectors are secured at the same angle as the<br />
pitched roof using the rooftop installation kit. The roof<br />
skin retains its sealing properties.<br />
The rooftop installation kit for Logasol SKN3.0 and<br />
SKS4.0 flat-plate collectors cons<strong>is</strong>ts of a standard kit for<br />
the first collector in a row and an extension kit for each<br />
additional collector in the same row (➔ 124/1). Use the<br />
rooftop installation extension kit only in conjunction<br />
with a standard kit. In place of the single-side collector<br />
tensioner (item. 1 ➔ 124/1) the extension kit contains<br />
so-called double-sided collector tensioners (item 5<br />
Roof connection for tile and plain tile covers<br />
9<br />
50 – 80<br />
33<br />
285<br />
Roof hook Rafter anchor<br />
Roof connection for slate and shingle covers<br />
Special roof hook<br />
Roof connection for corrugated sheets, sheet steel roof<br />
123/1 Roof connection versions for different roof covers (dimensions in mm)<br />
62<br />
40<br />
➔ 124/1) and connectors for defining the correct<br />
spacing and securing two adjacent Logasol SKN3.0 or<br />
SKS4.0 flat-plate collectors.<br />
Roof connections for different roof covers<br />
The profile rails and collector tensioners of the various<br />
rooftop installation kits are identical for all roof<br />
connections. The various installation kits for tile and<br />
plain tile, slate and shingle cover as well as for<br />
corrugated sheet and sheet steel roofs only differ with<br />
regard to the type of roof hook (➔ 123/1) or special<br />
fixing materials used (➔ 125/2, 125/1 and 126/2).<br />
10<br />
61 65 8 65<br />
M12<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
35<br />
164.6 304<br />
55<br />
180<br />
300<br />
8<br />
75<br />
∅9<br />
38 – 59<br />
407<br />
35 70<br />
9<br />
123
6<br />
Design/engineering information regarding the installation<br />
Roof connection for tiled roofs<br />
Fig. 124/1 shows an example of the rooftop<br />
installation kits for tiled covers. The roof hooks (123/1<br />
and item 2 ➔ 124/1) are hooked over the ex<strong>is</strong>ting roof<br />
battens (➔ 124/2) and fastened to the profile rails.<br />
As an alterative to being hooked on, the roof hooks can<br />
also be fastened to a batten or a hard surface<br />
(➔ 124/3). Th<strong>is</strong> <strong>is</strong> done by turning the lower part of the<br />
roof hook. If additional height compensation <strong>is</strong><br />
required, the lower section of the roof hook can be<br />
shimmed.<br />
When rooftop installation on a tiled roof <strong>is</strong> env<strong>is</strong>aged,<br />
check whether the dimensions specified in fig. 124/1,<br />
detail A must be complied with. Use the roof hooks<br />
supplied, if they<br />
● fit into the valley of the roof tile and<br />
● extend over the roof tile plus roof batten.<br />
➔ The tile cover should not exceed 120 mm. Where<br />
necessary, include a roofing contractor in the planning<br />
process.<br />
Caption (➔ 124/1)<br />
1 Single-sided collector tensioner (only in the standard kit)<br />
2 Roof hook, adjustable<br />
3 Profile rail<br />
4 Anti-slippage protection for collectors (2x per collector)<br />
5 Two-sided collector tensioner (only in the extension kit)<br />
6 Connector (only in the extension kit)<br />
7 Hard surface (cladding)<br />
Caption (➔ 124/2)<br />
1 Hexagon nut<br />
2 Serrated washer<br />
3 Roof batten<br />
4 Roof hook, lower part<br />
Caption (➔ 124/3)<br />
1 Hexagon nut<br />
2 Serrated washer<br />
3 Fixing screws<br />
4 Roof hook, lower part<br />
5 Rafter/hard surface<br />
124<br />
124/1 Rooftop installation standard kit and extension kit (highlighted<br />
in blue) for one Logasol SKN3.0 or SKS4.0 flat-plate collector<br />
(detail A: dimensions in mm)<br />
124/2 Hooked-on roof hook<br />
124/3 Roof hook fastened to the rafter<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
7<br />
6<br />
35<br />
A<br />
5<br />
5<br />
50–86<br />
4<br />
B<br />
3<br />
4<br />
1<br />
2<br />
1<br />
2<br />
3<br />
4<br />
1<br />
2<br />
3
Design/engineering information regarding the installation 6<br />
Plain tile roof connection<br />
Fig. 125/1 shows the attachment of the roof hook<br />
(item 2) to a plain tile cover. Trim and attach the plain<br />
tiles on site.<br />
The horizontal profile rails must be fastened to the roof<br />
hook in the same way as they are with tiles (➔ 124/1).<br />
➔ Refer to a roofing contractor for rooftop installation<br />
on plain tiles, if required.<br />
Caption (➔ 125/1)<br />
1 Plain tiles (cut along the dotted line)<br />
2 Roof hook, lower part fastened to a rafter or plank/board<br />
Roof connection with slate or shingle<br />
➔ Special roof hook installations with slate or shingle<br />
cover must be carried out by a roofing contractor.<br />
Fig. 125/2 shows an example of a waterproof<br />
installation of the special roof hooks (item 5 ➔ 125/2)<br />
on a slate or shingle cover with seals and flashing to be<br />
provided on site.<br />
The horizontal profile rails must be fastened to the<br />
special roof hooks in the same way as they are with tile<br />
cover (➔ 124/1).<br />
Caption (➔ 125/2)<br />
1 Sheet steel above special roof hook (on site)<br />
2 Sheet steel below special roof hook (on site)<br />
3 Multiple overlap<br />
4 Seal (on site)<br />
5 Special roof hook<br />
6 Screw (standard delivery)<br />
125/1 Roof hook attached on a plain tile roof<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
2<br />
6<br />
4<br />
5<br />
4<br />
125/2 Special roof hook with waterproof cover for attaching a rooftop<br />
installation kit for flat-plate collectors to a slate or shingle cover<br />
3<br />
1<br />
2<br />
125
6<br />
Design/engineering information regarding the installation<br />
Roof connection in roofs with insulation on rafters<br />
Fig. 126/1 shows the roof connection to a roof with<br />
insulation on rafters using the special hooks. The<br />
roofing contractor must secure a wooden board with a<br />
minimum cross-section of 28 mm x 200 mm to the<br />
rafter. The force that <strong>is</strong> introduced by the roof hook<br />
must be transferred by th<strong>is</strong> board to the load-bearing<br />
rafters. With an assumed maximum snow load of<br />
2kN/m 2 (without accessories) or 3.1 kN/m 2 (with<br />
accessories), the following force per roof hook must be<br />
allowed for:<br />
● Horizontal to roof Fsx = 0.8kN<br />
● Vertical to roof Fsy =1.8kN<br />
The horizontal profile rails must be fastened to the<br />
special roof hooks in the same way as they are with a<br />
tile cover (➔ 124/1).<br />
Caption (➔ 126/1)<br />
1 Roof tile<br />
2 Special roof hook<br />
3 Insulation on rafters<br />
4 Rafter<br />
5 On-site screw connection<br />
6 Wooden board (at least 28 mm × 200 mm)<br />
F sx Load per roof hook, vertical to the roof<br />
F sy Load per roof hook, horizontal (parallel) to the roof<br />
Roof connection with corrugated sheet roofs<br />
➔ Rooftop installation onto a corrugated sheet cover <strong>is</strong><br />
only perm<strong>is</strong>sible if the headless spiral screws can be<br />
fastened at least 40 mm into a wooden structure with<br />
adequate load-bearing capacity (➔ 126/2).<br />
The corrugated sheet roof connection contains<br />
headless spiral screws including retaining brackets and<br />
sealing washers that are used instead of the roof hooks<br />
in the rooftop installation kit.<br />
Fig. 126/2 shows how the profile rails are attached to<br />
the retaining brackets of the headless spiral screws.<br />
Caption (➔ 126/2)<br />
1 M8 × 16 Allen screws<br />
2 Profile rail<br />
3 Retaining bracket<br />
4 Hexagon nut<br />
5 Seal washer<br />
126<br />
126/1 On-site attachment of additional wooden boards on the<br />
insulation on rafters, to which the special hooks for attaching<br />
a rooftop installation kit are fastened (dimensions in mm)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
5<br />
6<br />
1<br />
6<br />
5 2<br />
1<br />
4<br />
3<br />
2<br />
1<br />
126/2 Example of profile rail attachment with rooftop installation on<br />
a corrugated sheet cover (dimensions in mm)<br />
105<br />
< 60<br />
F sy<br />
2<br />
3<br />
F sx<br />
4<br />
3<br />
4<br />
5<br />
3<br />
> 40
Design/engineering information regarding the installation 6<br />
Roof connection on roofs with sheet steel<br />
Fig. 127/1 shows the roof connection on a sheet steel<br />
roof with the corrugated sheet/sheet steel roof<br />
connection Secure a sleeve to the roof on site and make<br />
it watertight. Generally f<strong>our</strong> sleeves per collector are<br />
usually soldered on for th<strong>is</strong> purpose. The M12 × 180<br />
headless special screws are fastened to the substructure<br />
(rafter or load-bearing timber, at least<br />
40 mm × 40 mm) through the sleeve.<br />
Caption (➔ 127/1)<br />
1 Profile rail<br />
2 M8 × 16 Allen screws<br />
3 Retaining bracket<br />
4 M12 headless special screw<br />
5 Sleeve<br />
6 Sheet steel roof<br />
7 Sub-structure (timber, at least 40 mm × 40 mm)<br />
Snow load profile/additional rail<br />
Also install a snow guard and an additional rail<br />
(accessories) during the rooftop installation of portrait<br />
flat-plate collectors on buildings between 20 m and<br />
100 m in height in regions with snow loads of 2 kN/m 2<br />
to 3.1 kN/m 2 . These provide better d<strong>is</strong>tribution of the<br />
higher loads on the roof.<br />
Fig. 127/2 shows the installation of a snow guard and<br />
an additional rail on the example of tile cover. Both<br />
accessories can also be fitted to installation systems for<br />
other roof covers.<br />
Caption (➔ 127/2)<br />
1 Profile rails from rooftop installation kit<br />
2 Additional rails (including collector tensioner)<br />
3 Additional roof connection (snow guard standard delivery)<br />
4 Vertical profile rails (snow guard standard delivery)<br />
1<br />
6<br />
127/1 On-site attachment of sleeves for watertight mounting of<br />
headless special screws for rooftop installation on sheet steel<br />
cover (dimensions in mm)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
2<br />
3<br />
4<br />
105<br />
40<br />
5<br />
< 60<br />
127/2 Rooftop installation kit with snow guard and additional rail<br />
6<br />
7<br />
4<br />
5<br />
3<br />
7<br />
> 40<br />
1<br />
2<br />
3<br />
4<br />
1<br />
127
6<br />
Design/engineering information regarding the installation<br />
Water connections<br />
The rooftop connection kits are used to make the<br />
hydraulic collector connections during rooftop<br />
installation (figs 128/1 and128/2).<br />
Roof outlets are required for flow and return, since the<br />
collector connections are above roof level. A<br />
ventilation tile (as shown in fig. 128/3) can be used as<br />
a roof outlet for the flow and return lines. The flow line<br />
<strong>is</strong> routed through the roofing skin with an incline to<br />
the air vent valve, if installed, via the upper ventilation<br />
tile. The lead from the collector temperature sensor<br />
also runs through th<strong>is</strong> tile. Route the return line with a<br />
slope to the KS station. A ventilation tile can be used<br />
for th<strong>is</strong> if the return line runs through the roof below or<br />
at the same level as the collector array return<br />
connection (fig. 128/3). An additional air vent valve <strong>is</strong><br />
not usually required, in spite of the change of direction<br />
in the tile.<br />
➔ Involve a roofing contractor in the planning to<br />
prevent damage to the building.<br />
Caption (➔ 128/1)<br />
1 Connecting line 1000 mm<br />
2 Dummy plug<br />
3 Spring clips<br />
4 Hose coupling with R 3/4” connection or 18 mm locking ring<br />
Caption (➔ 128/2)<br />
1 1000 mm connection line with R 3/4“ connection or 18 mm<br />
locking ring at the system side, insulated<br />
2 Dummy plug<br />
3 Clip<br />
Caption (➔ 128/3)<br />
1 Flow line<br />
2 Return line<br />
3 Sensor lead<br />
4 Ventilation tile<br />
5 Air vent valve<br />
Static requirements<br />
➔ The rooftop installation kit <strong>is</strong> exclusively designed<br />
for the secure mounting of solar collectors. The<br />
attachment of other rooftop equipment such as aerials<br />
to the rooftop mounting kit <strong>is</strong> not perm<strong>is</strong>sible.<br />
The roof and the substructure must have an adequate<br />
load-bearing capacity. A load of about 50 kg or 55 kg<br />
can be expected for each Logasol SKN3.0 or SKS4.0 flat-<br />
128<br />
128/1 SKN3.0 rooftop connection kit<br />
128/2 SKS4.0 rooftop/roof integration connection kit<br />
128/3 Route connection lines beneath the roof<br />
plate collector. Also take the specific regional loads as<br />
per DIN 1055 [or local regulations] into account.<br />
The values in table 121/1 are the perm<strong>is</strong>sible standard<br />
snow loads and building heights for rooftop<br />
installation.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
4<br />
3<br />
2<br />
2<br />
3<br />
3<br />
3<br />
3<br />
2<br />
4 5<br />
2<br />
3<br />
3<br />
1<br />
3<br />
2<br />
3<br />
3<br />
1<br />
4<br />
1<br />
4<br />
3<br />
1
Design/engineering information regarding the installation 6<br />
Rooftop installation system component selection aid<br />
Include appropriate connecting materials in the<br />
engineering subject to the number of collectors and<br />
their hydraulic connections.<br />
SKN3.0-s<br />
and<br />
SKS4.0-s<br />
SKN3.0-w<br />
and<br />
SKS4.0-w<br />
Total number of collectors 2 3 4 5 6 7 8 9 10<br />
Number of rows 1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
Number of collectors per row 2 1 3 2 1 4 2 5 3 6 3 2 7 4 8 4 9 5 3 10 5<br />
1<br />
2<br />
3<br />
4<br />
Standard<br />
kit1) Tiles<br />
Tiles<br />
Plain tiles<br />
Slate<br />
Shingle<br />
Corrugated<br />
sheets<br />
Sheet steel roof<br />
1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
Extension kit1) Tiles<br />
Tiles<br />
Plain tiles<br />
Slate<br />
Shingle<br />
Corrugated<br />
sheets<br />
sheet steel roof<br />
1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
Additional kit<br />
Standard kit2) Tiles<br />
Tiles<br />
Plain tiles<br />
Slate<br />
Shingle<br />
Corrugated<br />
sheets<br />
Sheet steel roof<br />
1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
Additional kit<br />
Extension kit2) Tiles<br />
Tiles<br />
Plain tiles<br />
Slate<br />
Shingle<br />
Corrugated<br />
sheets<br />
Sheet steel roof<br />
1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
Standard<br />
kit1) Tiles<br />
Tiles<br />
Plain tiles<br />
Slate<br />
Shingle<br />
Corrugated<br />
sheets<br />
Sheet steel roof<br />
1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
Extension kit1) Tiles<br />
Tiles<br />
Plain tiles<br />
Slate<br />
Shingle<br />
Corrugated<br />
sheets<br />
Sheet steel roof<br />
1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
1) Cons<strong>is</strong>ting of installation kit and roof connection<br />
2) Cons<strong>is</strong>ting of snow guard and additional horizontal rail, required for snow loads of 2 kN/m2 to 3.1 kN/m2 129/1 Fixing materials for rooftop installation system<br />
and building heights of 20 m<br />
to 100 m<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
129
6<br />
Design/engineering information regarding the installation<br />
6.3.4 Roof integration for flat-plate collectors<br />
The roof integration system <strong>is</strong> suitable for SKN3.0 and<br />
SKS4.0 portrait and landscape collectors. Individual<br />
installation kits are available for tile, shingle, slate and<br />
plain tile roof covers. The collectors seal the roof in<br />
conjunction with the metal surround (coated<br />
aluminium, anthracite RAL 7016).<br />
The two outer collectors in a row are installed using a<br />
standard kit. Every other collector in the array <strong>is</strong><br />
installed between the two outer collectors using an<br />
extension kit (fig. 130/2).<br />
Fit additional roof battens on site for attaching the<br />
collectors, the metal surround and as support for the<br />
cover plate at the top and the flashing at the bottom<br />
(fig. 130/3).<br />
During installation the collectors are first attached to<br />
the roof battens and then encased in the metal<br />
surround. The hydraulic connection lines can be<br />
routed through the roof inside the side cover plates.<br />
Another row cons<strong>is</strong>ting of the same number of<br />
collectors can be installed directly above the first row.<br />
Appropriate standard and extension kits are available<br />
for an additional row. The space between the top and<br />
bottom collector rows <strong>is</strong> closed off with a cover plate<br />
(fig. 131/1).<br />
If two rows with a different number of collectors are<br />
installed above each other, leave a gap of at least two<br />
rows of tiles between each row.<br />
➔ If necessary, include a roofing contractor in the<br />
planning and installation to prevent damage to the<br />
building.<br />
Caption (➔ 130/2)<br />
1 Top left cover plate<br />
2 Top centre cover plate<br />
3 Top right cover plate<br />
4 Retainer<br />
5 Right side cover plate<br />
6 Bottom right cover plate<br />
7 Batten to prevent slippage<br />
8 Anti-slippage protection (with landscape: 5x)<br />
9 Bottom centre cover plate<br />
10 Bottom left cover plate<br />
11 Roll of sealing tape<br />
12 Left side cover plate<br />
13 Left support plate<br />
14 Double-sided hold-down retainer<br />
15 Cover strip<br />
16 Screw 6 x 40 with washer<br />
17 Single-sided hold-down retainer<br />
18 Right support plate<br />
Caption (➔ 130/3)<br />
1 Additional roof battens<br />
130<br />
130/1 General layout, collector array integrated into the roof<br />
130/2 1 standard kit for the two outer collectors and 1 extension kit<br />
for the centre collector (highlighted in blue)<br />
130/3 Spacing between additional roof battens for single-row<br />
installation (dimensions in mm); values in brackets for portrait<br />
version<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
11<br />
12<br />
1<br />
4<br />
13<br />
10 9 8 7 6<br />
1<br />
1<br />
1 2 3<br />
1<br />
15<br />
14<br />
1<br />
16<br />
17<br />
18<br />
160 200 - 230<br />
1860 - 1890 (940 - 970)<br />
2120 (1200)<br />
2240 - 2270 (1320 - 1350)<br />
2490 - 2520 (1570 - 1600)<br />
1<br />
5<br />
4
Design/engineering information regarding the installation 6<br />
Water connections<br />
The roof integration connection kits are recommended<br />
for making the hydraulic collector connections during<br />
roof integration installation (figs 131/2 and 131/3).<br />
The flow and return lines can be routed through the<br />
roof inside the side cover plate using the connection<br />
kits.<br />
If an air vent valve <strong>is</strong> installed, route the flow line<br />
beneath the roof with an incline. Route the return line<br />
to the KS station with a slope.<br />
Static requirements<br />
The values in table 121/1 are the perm<strong>is</strong>sible standard<br />
snow loads and building heights for roof integration.<br />
Caption (➔ 131/1)<br />
1 Centre cover plate (right)<br />
2 Rubber lip<br />
Caption (➔ 131/2)<br />
1 Connection line 1000 mm<br />
2 Bracket<br />
3 Clamping d<strong>is</strong>k<br />
4 Nut G1<br />
5 Spring clip<br />
6 Dummy plug<br />
7 Hose ferrule with R 3/4“ connection or 18 mm locking ring<br />
Caption (➔ 131/3)<br />
1 1000 mm connection line with R 3/4“ connection or 18 mm<br />
locking ring at the system side, insulated<br />
2 Dummy plug<br />
3 Clip<br />
131/1 Cover plate between two rows of collectors arranged one above<br />
the other<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
2<br />
5<br />
2<br />
1<br />
131/2 SKN3.0 roof installation connection kit<br />
3<br />
2<br />
6<br />
3 4<br />
131/3 SKS4.0 roof installation connection kit<br />
5<br />
5<br />
7<br />
3<br />
2<br />
5<br />
3<br />
1<br />
4 3<br />
1<br />
6<br />
5<br />
2<br />
1<br />
5<br />
3<br />
1<br />
7<br />
131
6<br />
Design/engineering information regarding the installation<br />
Roof integration installation system component selection aid<br />
Include appropriate fixing materials in the<br />
engineering subject to the number of collectors and<br />
rows.<br />
132<br />
SKN3.0-s<br />
and<br />
SKS4.0-s<br />
SKN3.0-s<br />
and<br />
SKS4.0-s<br />
Total number of collectors 1 2 3 4 5 6 7 8 9 10<br />
Number of rows 1 1 2 1 3 1 2 1 1 2 3 1 1 2 1 3 1 2<br />
Number of collectors per row<br />
Row 1<br />
Tiles<br />
Tiles<br />
1 2 1 3 1 4 2 5 6 3 2 7 8 4 9 3 10 5<br />
Row 1<br />
Slate<br />
Shingle<br />
1 – 1 – 1 – – – – – – – – – – – – –<br />
Individual Plain tiles<br />
installation Additional row<br />
Tiles<br />
Tiles<br />
Additional row<br />
Slate<br />
Shingle<br />
Plain tiles<br />
Row<br />
Tiles<br />
Tiles<br />
– – 1 – 2 – – – – – – – – – – – – –<br />
Row 1<br />
Slate<br />
Shingle<br />
– 1 – 1 – 1 1 1 1 1 1 1 1 1 1 1 1 1<br />
Standard kit Plain tiles<br />
for 2 collectors Additional row<br />
Tiles<br />
Tiles<br />
Additional row<br />
Slate<br />
Shingle<br />
Plain tiles<br />
Row 1<br />
Tiles<br />
Tiles<br />
– – – – – – 1 – – 1 2 – – 1 – 2 – 1<br />
Row 1<br />
Slate<br />
Shingle<br />
Plain tiles<br />
– – – 1 – 2 – 3 4 1 – 5 6 2 7 1 8 3<br />
Extension kit<br />
Additional row<br />
Tiles<br />
Tiles<br />
Additional row<br />
Slate<br />
Shingle<br />
Plain tiles<br />
– – – – – – – – – 1 – – – 2 – 2 – 3<br />
132/1 Fixing materials for roof integration installation system<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007
SKN3.0-w<br />
and<br />
SKS4.0-w<br />
SKN3.0-w<br />
and<br />
SKS4.0-w<br />
Design/engineering information regarding the installation 6<br />
Total number of collectors 1 2 3 4 5 6 7 8 9 10<br />
Number of rows 1 1 2 1 3 1 2 1 1 2 3 1 1 2 1 3 1 2<br />
Number of collectors per row 1 2 1 3 1 4 2 5 6 3 2 7 8 4 9 3 10 5<br />
Individual<br />
installation<br />
Standard kit<br />
for 2 collectors<br />
Extension kit<br />
Row 1<br />
Tiles<br />
Tiles<br />
Row 1<br />
Slate<br />
Shingle<br />
Plain tiles<br />
Additional row<br />
Tiles<br />
Tiles<br />
Additional row<br />
Slate<br />
Shingle<br />
Plain tiles<br />
Row 1<br />
Tiles<br />
Tiles<br />
Row 1<br />
Slate<br />
Shingle<br />
Plain tiles<br />
Additional row<br />
Tiles<br />
Tiles<br />
Additional row<br />
Slate<br />
Shingle<br />
Plain tiles<br />
Row 1<br />
Tiles<br />
Tiles<br />
Row 1<br />
Slate<br />
Shingle<br />
Plain tiles<br />
Additional row<br />
Tiles<br />
Tiles<br />
Additional row<br />
Slate<br />
Shingle<br />
Plain tiles<br />
132/1 Fixing materials for roof integration installation system<br />
1 – 1 – 1 – – – – – – – – – – – – –<br />
– – 1 – 2 – – – – – – – – – – – – –<br />
– 1 – 1 – 1 1 1 1 1 1 1 1 1 1 1 1 1<br />
– – – – – – 1 – – 1 2 – – 1 – 2 – 1<br />
– – – 1 – 2 – 3 4 1 – 5 6 2 7 1 8 3<br />
– – – – – – – – – 1 – – – 2 – 2 – 3<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
133
6<br />
Design/engineering information regarding the installation<br />
6.3.5 Flat roof installation for flat-plate collectors<br />
Flat roof installation <strong>is</strong> intended for level roof surfaces.<br />
However, it <strong>is</strong> also suitable for roofs with minor slopes<br />
of up to 25° (➔ 134/1). For th<strong>is</strong>, secure the flat roof<br />
support on site.<br />
The flat roof installation kit for Logasol SKN3.0 and<br />
SKS4.0 flat-plate collectors cons<strong>is</strong>ts of a standard kit for<br />
the first collector in a row and an extension kit for each<br />
additional collector in the same row (➔ 134/2).<br />
Accessories are required for buildings more than 20 m<br />
high and with snow loads of > 2kN/m 2 (➔ 121/1).<br />
The angle of inclination of the flat roof support can be<br />
adjusted in steps of 5° as follows:<br />
● Portrait flat roof support: 30° to 60° (adjustable by<br />
25° by trimming the telescopic rail)<br />
● Landscape flat roof support: 35° to 60° (adjustable<br />
by 25° or 30° by trimming the telescopic rail)<br />
The flat roof supports can be fixed to the roof by means<br />
of weighting (ballast) or by attaching them to the roof<br />
structure.<br />
On-site mounting<br />
The flat roof supports can by mounted on on-site<br />
substructures cons<strong>is</strong>ting of double-T supports, for<br />
example (➔ 134/3). For th<strong>is</strong>, there are holes in the<br />
bottom profile rails of the flat roof supports. The on-site<br />
substructure must be designed such that the wind force<br />
acting upon the collectors can be absorbed.<br />
The support spacing dimensions can be found in<br />
figures 135/1 to 135/3. The positions of the holes for<br />
attaching the flat roof supports to the on-site<br />
substructure can be found in figure 134/3.<br />
For buildings more than 20 m in height or with snow<br />
loads of 2 kN/m 2 to 3.8 kN/m 2 , each standard kit for<br />
portrait collectors must be fitted with an additional rail<br />
(standard kit addition) and each extension kit must be<br />
fitted with an additional rail and an additional<br />
support (extension kit addition). With landscape<br />
collectors, fit all installation kits with an additional rail<br />
(standard kit and extension kit addition).<br />
134<br />
134/1 Examples of actual flat-plate collector angle of inclination when<br />
using flat roof supports on a flat roof with a shallow pitch (< 25°)<br />
Item 1: pitch; item 2: collector angle of inclination<br />
134/2 Flat roof support standard kit and extension kit (blue) for one<br />
SKN3.0-s or SKS4.0-s flat collector<br />
134/3 Flat roof support fixed on site with base anchoring to a<br />
substructure cons<strong>is</strong>ting of double-T supports (dimensions in m);<br />
value in brackets for landscape version; centre contact surface<br />
(blue) only required for buildings above 20 m in height.<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
30˚<br />
45˚<br />
15˚ 15˚<br />
45˚<br />
2<br />
30˚<br />
0.563 0.563<br />
(0.353) (0.353)<br />
1
Design/engineering information regarding the installation 6<br />
0.98<br />
135/1 Collector support spacing in standard version with flat roof supports for portrait collectors SKN3.0-s and SKS4.0-s (dimensions in m)<br />
135/2 Collector support spacing in standard version when using additional supports with flat roof supports for portrait collectors SKN3.0-s and<br />
SKS4.0-s (dimensions in m)<br />
135/3 D<strong>is</strong>tance between collector supports with flat roof supports for landscape SKN3.0-w and SKS4.0-w collectors (dimensions in m)<br />
1.17<br />
0.98 0.19 0.98 0.19<br />
1.82 0.275<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
0.98<br />
1.82<br />
0.98<br />
135
6<br />
Design/engineering information regarding the installation<br />
Securing by means of ballast troughs<br />
F<strong>our</strong> ballast troughs are required for each flat roof<br />
support when the collectors are weighed down<br />
(dimensions: 950 mm x 350 mm x 50 mm) - these are<br />
hooked into the flat roof support (➔ 136/1). They are<br />
filled with concrete slabs, gravel or the like to weigh<br />
them down. See table 137/1 for the required ballast<br />
weight (maximum 320 kg with gravel filling) subject<br />
to the height of the building.<br />
With a building up to 20 m high and snow loads of up<br />
to 2 kN/m2 , one additional support <strong>is</strong> required for the<br />
4th, 7th and 10th collector in a row when ballast<br />
troughs are used in conjunction with portrait<br />
collectors. The installation kit includes one additional<br />
support when landscape collectors are used. The<br />
additional supports are required for hooking in the<br />
trays.<br />
For buildings higher than 20 m or with snow loads of<br />
2kN/m 2 to 3.8 kN/m 2 , each standard kit must include<br />
an additional rail (standard kit addition) and each<br />
extension kit for portrait collectors must include an<br />
additional support and an additional rail (extension<br />
kit addition). With landscape collectors, all installation<br />
kits must be equipped with an additional rail<br />
(standard kit and extension kit addition).<br />
Erect the entire structure on protective building mats to<br />
protect the skin of the roof.<br />
Water connections<br />
The flat roof connection kits are used to make the<br />
hydraulic collector connections during flat roof<br />
installation (fig. 136/2 and 136/3). Route the flow line<br />
parallel to the collector to prevent damage to the<br />
connection due to the movement of the collector in the<br />
wind (fig. 136/4).<br />
Static requirements<br />
The values in table 121/1 are the perm<strong>is</strong>sible standard<br />
snow loads and building heights.<br />
Caption (➔ 136/2)<br />
1 Bracket with R 3/4“ connection on the system-side<br />
or 18 mm locking ring<br />
2 Clamping d<strong>is</strong>k<br />
3 Nut G1<br />
4 Dummy plug<br />
5 Spring clips<br />
Caption (➔ 136/3)<br />
1 Bracket with R 3/4“ connection on the system side or 18 mm<br />
locking ring<br />
2 Dummy plug<br />
3 Clip<br />
Caption (➔ 136/4)<br />
1 Pipe clamp (on site)<br />
2 M8 thread<br />
3 Bracket (connection kit standard delivery)<br />
4 Flow line<br />
136<br />
136/1 Flat roof support with ballast trough and additional guy ropes<br />
136/2 SKN3.0 flat roof connection kit<br />
136/3 SKS4.0 flat roof connection kit<br />
136/4 Collector flow line routing<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
1<br />
3<br />
2<br />
2<br />
4<br />
3<br />
5<br />
2<br />
3<br />
4<br />
3<br />
3<br />
5<br />
1<br />
2<br />
4<br />
3 2<br />
1<br />
3<br />
1<br />
1
Design/engineering information regarding the installation 6<br />
Flat roof support weights<br />
When the roof loads are being determined, the<br />
following weights can be assumed for flat roof<br />
installation kits:<br />
● Standard kit, portrait: 12.2 kg<br />
● standard kit, landscape: 8.7 kg<br />
Flat roof support fixing (collector stabil<strong>is</strong>ation)<br />
Flat roof installation system, component selection aid<br />
Include appropriate fixing materials in the<br />
engineering subject to the number of collectors and<br />
their hydraulic connections.<br />
● Extension kit, portrait: 7.2 kg<br />
● Extension kit, landscape: 8.7 kg<br />
Building height Wind velocity Base anchoring Ballast Guy rope<br />
Number and type of<br />
screws 1)<br />
Weight (e.g.<br />
concrete slabs)<br />
Protection against<br />
tilting<br />
Weight (e.g. concrete<br />
slabs)<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Protection against<br />
slippage<br />
Max. tensile strength<br />
per rope<br />
m km/h kg kg kN<br />
0 to 8 102 2x M8/8.8 270 180 1.6<br />
8 to 20 129 2x M8/8.8 450 320 2.5<br />
20 to 100 2)<br />
151 3x M8/8.8 – 450 3.3<br />
137/1 Options for securing flat roof supports for each collector to prevent tilting and sliding as a result of wind; version for Logasol SKN3.0 and<br />
SKS4.0 flat-plate collectors<br />
1) Per collector support<br />
2) Additional rail and additional support required for portrait collectors, and additional rail for landscape collectors<br />
Installation kits with ballast trough 1)<br />
SKN3.0-s<br />
and<br />
SKS4.0-s<br />
Total number of collectors 2 3 4 5 6 7 8 9 10<br />
Number of rows 1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
Number of collectors per row 2 1 3 2 1 4 2 5 3 6 3 2 7 4 8 4 9 5 3 10 5<br />
1<br />
2<br />
3<br />
4<br />
Standard kit 1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
Extension kit 1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
Additional support 2)<br />
– – – – – 1 – 1 – 1 – – 2 1 2 2 2 2 – 3 2<br />
Standard kit addition 3)<br />
1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
Addition to extension kit3) 1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
Standard kit 1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
SKN3.0-w<br />
and<br />
SKS4.0-w<br />
Extension kit<br />
Standard kit addition<br />
1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
3) 1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
Addition to extension kit 3)<br />
1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
Installation kits for on-site attachment<br />
SKN3.0-s<br />
Standard kit 1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
and Extension kit 1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
SKS4.0-s Standard kit addition3) 1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
Addition to extension kit3) 1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
SKN3.0-w<br />
Standard kit 1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
and Extension kit 1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
SKS4.0-w Standard kit addition 3)<br />
1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
Addition to extension kit3) 1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
1) The standard installation and extension kits contain one set of ballast troughs each<br />
2) Not required if the additional extension kit <strong>is</strong> selected<br />
3) Required in addition to the standard and extension kit with snow loads in excess of 2 kN/m2 137/2 Fixing materials for the flat roof installation system<br />
or building height exceeding 20 m<br />
137
6<br />
Design/engineering information regarding the installation<br />
6.3.6 Wall installation for flat-plate collectors<br />
Wall installation <strong>is</strong> only suitable for landscape Logasol<br />
SKN3.0-w and SKS4.0-w flat-plate collectors, and <strong>is</strong><br />
only approved for building walls up to an installation<br />
height of 20 m.<br />
Wall mounting requires horizontal flat roof supports.<br />
The first collector in the row <strong>is</strong> installed using a wall<br />
support standard kit. Every additional collector in the<br />
same row <strong>is</strong> installed using a wall support extension<br />
kit. These kits include three supports (➔ 138/2).<br />
The pitch of the collectors on the wall may only be set<br />
to between 45° and 60° relative to the horizontal<br />
(➔ 138/1).<br />
On-site fixing<br />
Secure the collector supports on site to a load-bearing<br />
surface using three bolts per support (➔ 138/3).<br />
Static requirements<br />
The values in table 121/1 are the perm<strong>is</strong>sible standard<br />
snow loads and building heights.<br />
138<br />
0.353<br />
0.353<br />
138/1 Max. permitted collector pitch on a wall<br />
Item 1: pitch (absolute angle relative to the horizontal)<br />
Item 2: collector angle of inclination<br />
138/2 Wall mounting with wall support standard kit and wall support extension kit (blue); dimensions in m<br />
Wall construction 1)<br />
Reinforced concrete at least B25<br />
(min. 0.12 m)<br />
Reinforced concrete at least B25<br />
(at least 0.12 m)<br />
Steel substructure<br />
(e.g. double-T support)<br />
0.98 0.98 0.135 0.98 0.98<br />
138/3 Fixing materials<br />
1) Brickwork on request<br />
2) Each dowel/screw must be able to withstand a tensile force of at least 1.63 kN and a vertical force (shearing force) of at least 1.56 kN<br />
3) 3x screw diameter = external washer diameter<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
60˚<br />
30˚<br />
Screws/dowels for each collector support D<strong>is</strong>tance from edge of wall<br />
3x UPAT MAX Express-anchors, type MAX 8 (A4) 2) and<br />
3x washers3) in acc.with DIN 9021<br />
3x Hilti HST-HCR-M82) or HST-R-M82) and<br />
3x washers3) in acc.with DIN 9021<br />
3x M8 (4.6) 2) and<br />
3x washers3) in acc.with DIN 9021<br />
45˚<br />
m<br />
2<br />
>0.10<br />
>0.10<br />
–<br />
1<br />
45˚
Design/engineering information regarding the installation 6<br />
Component selection aid for wall mounting system for Logasol SKN3.0-w and SKS4.0-w<br />
Include appropriate fixing materials in the<br />
engineering subject to the number of collectors and<br />
their hydraulic connections.<br />
Installation kits<br />
SKN3.0-w and<br />
SKS4.0-w<br />
Total number of collectors 2 3 4 5 6 7 8 9 10<br />
Number of rows 1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
Number of collectors<br />
2 1 3 2 1 4 2 5 3 6 3 2 7 4 8 4 9 5 3 10 5<br />
per row<br />
1<br />
2<br />
3<br />
4<br />
Standard kit for wall<br />
mounting<br />
Extension kit<br />
for wall mounting<br />
139/1 Fixing materials for wall mounting system for Logasol SKN3.0-w and SKS4.0-w<br />
6.3.7 Standard values for installation times<br />
Use of contractors<br />
At least two installers must be allowed for when<br />
installing solar collectors. Each installation on a<br />
sloping roof involves intervention in the roof cover<br />
S<strong>our</strong>ce appropriate contractors (roofers, plumbers)<br />
prior to installation. Use these as required. <strong>Buderus</strong><br />
provides training in the installation of solar heating<br />
systems. Information concerning th<strong>is</strong> can be obtained<br />
from y<strong>our</strong> local <strong>Buderus</strong> sales office (➔ back).<br />
➔ Kits are available for any installation option,<br />
including accessories and installation instructions.<br />
Read the installation instruction for the chosen<br />
installation option carefully before work commences.<br />
1 2 1 2 3 1 2 1 2 1 2 3 1 2 1 2 1 2 3 1 2<br />
1 – 2 1 – 3 2 4 3 5 4 3 6 5 7 6 8 7 6 9 8<br />
Collector installation times<br />
The times in table 139/2 only apply to collector<br />
installation with installation systems and connections<br />
to a row of collectors. In-depth knowledge of the<br />
relevant installation instructions <strong>is</strong> required.<br />
The times for safety measures, transporting the<br />
collectors and installation systems to the roof and roof<br />
modifications (adapting and cutting the roof tiles) are<br />
not taken into consideration. These times should be<br />
estimated in consultation with a roofing contractor.<br />
➔ The time calculation for planning a solar collector<br />
system <strong>is</strong> based on practical experience. These depend<br />
on the on-site situation. The actual installation times<br />
on site may therefore vary considerably from the times<br />
quoted in table 139/2.<br />
Installation option and scope Standard values for installation times<br />
of 2 SKN3.0/SKS4.0 collectors for each additional collector<br />
Rooftop installation 1.0 h per installer 0.3 h per installer<br />
Roof integration 3.0 h per installer 1.0 h per installer<br />
Flat roof installation with ballast troughs 1.5 h per installer 0.5 h per installer<br />
Flat roof installation on substructures 1.5 h per installer 0.5 h per installer<br />
Wall mounting 45° 2.5 h per installer 1.5 h per installer<br />
139/2 Installation times with two installers for collectors in small systems (up to 8 collectors) on roofs with an angle of inclination of ≤ 45°,<br />
excluding handling time, effort in conjunction with safety precautions and the creation of on-site substructures<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
139
6<br />
Design/engineering information regarding the installation<br />
6.4 Flat roof installation for vacuum tube collectors<br />
Flat roof installation <strong>is</strong> intended for level roof surfaces.<br />
The area required for concrete slabs must be cleared of<br />
gravel on flat roofs with gravel cover.<br />
Place protective building mats beneath the concrete<br />
slabs on flat roofs with plastic roof membranes (item 1<br />
➔ 140/2)<br />
Vacuum<br />
Concrete slab spacing<br />
tube collector<br />
with 30° with 45°<br />
A B B<br />
m m m<br />
CPC6 0.55 1.225 0.915<br />
CPC12 1.100 1.225 0.915<br />
140/1 Concrete slab spacings when using flat roof supports<br />
Weight of concrete slabs<br />
140<br />
Building height Vacuum<br />
tube collector<br />
Number<br />
of angled frames<br />
140/2 flat roof supports with concrete slabs (dimensions A and B<br />
➔ 140/1)<br />
Item 1: Protective building mats for flat roofs with plastic roof<br />
membranes<br />
Angle<br />
of frame<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
A<br />
1<br />
B<br />
Required weight<br />
front concrete slab rear concrete slab<br />
m kg kg<br />
0 to 8<br />
CPC6<br />
CPC12<br />
2<br />
2<br />
30°/45°<br />
30°/45°<br />
75<br />
75<br />
75<br />
75<br />
between 8 and 20<br />
CPC6 2 30°/45° 112 112<br />
CPC12 2 30°/45° 112 112<br />
140/3 Required concrete slab weight when using flat roof supports
Design/engineering information regarding the installation 6<br />
6.5 Lightning protection and earth bonding for solar heating systems<br />
Requirement for lighting protection<br />
The requirement for lightning protection <strong>is</strong> defined in<br />
the building regulations of the country concerned.<br />
Lightning protection <strong>is</strong> frequently required for<br />
buildings that<br />
● are more than 20 m high<br />
● are significantly higher than the surrounding<br />
buildings<br />
● are valuable buildings (monuments) and/or<br />
● could cause panic if a lightning strike occurred<br />
(schools, etc.).<br />
If a solar heating system <strong>is</strong> installed on top of a<br />
building with a high protection target (e.g. high-r<strong>is</strong>e<br />
building, hospital, assembly buildings or shops) the<br />
lightning protection requirements should be d<strong>is</strong>cussed<br />
with an expert and/or the building operator. Th<strong>is</strong><br />
d<strong>is</strong>cussion should take place in the planning phase of<br />
the solar heating system.<br />
Since solar heating systems are not higher than the<br />
roof ridge (even in special cases), the probability of a<br />
direct lightning strike for a residential building in<br />
accordance with DIN VDE 0185, part 100, <strong>is</strong> the same<br />
with or without a solar heating system.<br />
Earth bonding for the solar heating system<br />
Irrespective of whether a lightning protection system <strong>is</strong><br />
present, the flow and return of a solar heating system<br />
must always be earthed with a copper cable with at<br />
least 6 mm2 cross-section at the earth bonding rail.<br />
➔ If a lightning protection system <strong>is</strong> installed,<br />
determine whether the collector and the installation<br />
system are outside the protection scope of th<strong>is</strong> system.<br />
If th<strong>is</strong> <strong>is</strong> the case, a special<strong>is</strong>t electrical contractor<br />
must connect the solar heating system to the ex<strong>is</strong>ting<br />
lightning protection system. Electrically conducting<br />
parts of the solar heating circuit must be earthed with<br />
a copper cable with at least 6 mm 2 cross-section at the<br />
earth bonding rail<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
141
7<br />
Regulations and Directives<br />
7 Regulations and Directives<br />
Fax enquiry – Solar heating system for detached houses and two-family houses (Page 1/2)<br />
Details regarding the sizing of a solar heating system<br />
Project<br />
Contact <strong>Buderus</strong> Design/Engineering<br />
Mr./Mrs. Mr./Mrs.<br />
Telephone Telephone<br />
Fax Fax<br />
Place of collector installation<br />
System location:<br />
Collector orientation:<br />
Available roof area:<br />
Questionnaire "Fax inquiry - solar heating system for detached houses and two-family homes“ (copy template)<br />
142<br />
Postcode<br />
Town<br />
Point of the compass Angle of inclination<br />
Include scale drawings of southern aspect!<br />
Are collectors shaded? No Yes<br />
Type of collector installation: Roof integration<br />
Rooftop installation<br />
Roof skin make-up:<br />
Solar heating system pipework<br />
Single line length in the system:<br />
Boiler room / installation room of the cylinder(s)<br />
Room dimensions:<br />
Smallest door size:<br />
Util<strong>is</strong>ation of solar energy<br />
90<br />
West<br />
Length<br />
Flat roof installation<br />
m<br />
m<br />
Outside<br />
the building<br />
m<br />
DHW (WW)<br />
+ –<br />
0<br />
South<br />
Height<br />
Length<br />
Height<br />
Swimming pool (S)<br />
90<br />
East<br />
Collektor model: SKN3.0 SKS4.0<br />
Vaciosol CPC<br />
Static height:<br />
m<br />
m<br />
m<br />
× Width<br />
Wall mounting<br />
× Width<br />
× Width<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
m<br />
Between the highest system point and the<br />
centre of the diaphragm expansion vessel<br />
+<br />
m<br />
Inside<br />
the building<br />
Central heating (H)<br />
m<br />
m<br />
Assumptions<br />
if no details<br />
are provided<br />
0 south<br />
No<br />
Adequate space<br />
Rooftop<br />
Tiled roof<br />
1 m / 8 m<br />
8 m<br />
> 2 m<br />
Adequate space<br />
2.00 m × 1.20 m<br />
DHW (WW)
Fax enquiry – Solar heating system for detached houses<br />
and two-family homes (Page1/2)<br />
DHW heating<br />
No. of occupants: persons<br />
Daily DHW demand:<br />
(Standard values in litres/person)<br />
Daily DHW volume:<br />
Washing machine with hot fill? No Yes<br />
D<strong>is</strong>hwasher with hot fill? No Yes<br />
DHW draw-off temperature: ˚ßC<br />
Max. cylinder temperature: ˚ß˚C<br />
Control ON 1 OFF 1<br />
Regulations and Directives 7<br />
litre (person × litres per person)<br />
DHW circulation: DHW circulation loss: W<br />
Time<br />
Reheating<br />
:<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
4 persons<br />
50 l per person<br />
200 litres<br />
Reheating in summer mode? No Yes, with Yes, with …<br />
Boiler efficiency (summer mode): %<br />
50 %<br />
Additional cylinder volume? litre<br />
Dual-mode Mono-mode no<br />
Fuel:<br />
Central heating back-up<br />
Set water temperature:<br />
Oil Gas LPG Biomass Elec. D<strong>is</strong>trict heating<br />
Operating period: From to<br />
Standard outside temperature: ˚˚ß˚C<br />
Flow temperature: ˚˚ß˚C Return temperature:<br />
<strong>Heat</strong>ing limit temp. (changeover to summer mode): ˚ß˚C<br />
Annual oil consumption: m3 l/p.a.<br />
Annual gas consumption:<br />
/p.a.<br />
Swimming pool water heating<br />
Type:<br />
Indoor<br />
Available boiler output: kW<br />
Boiler efficiency of: %<br />
<strong>Heat</strong> demand: kW<br />
˚ß˚C<br />
No<br />
No<br />
45 ˚ßC / 60 ˚ß˚C<br />
60 ˚˚ßC<br />
None<br />
None<br />
18 kW<br />
Fuel oil /<br />
Natural gas<br />
–14 ßC<br />
6 kW<br />
18 ˚ßC<br />
1260 l/p.a. /<br />
1160 m 3 /p.a.<br />
Private Public Private<br />
kW m3 HE output (for reheating): HE water content:<br />
/h<br />
˚ß˚C<br />
90 %<br />
35 / 30 ˚ ßC<br />
May – September<br />
Indoor pool<br />
Sheltered<br />
Pool cover: None Available Type of cover Available<br />
Reheating by boiler via heat exchange (HE)? Yes No, with … Yes, with HE …<br />
Date: Signature:<br />
Low Medium High<br />
(40 l/person) (50 l/person) (75 l/person)<br />
ON 2 OFF 2 ON 3 OFF 3<br />
: : : : :<br />
Outdoor Exposed Sheltered Sheltered from wind<br />
Tile col<strong>our</strong><br />
(Std. value: 45 ß˚C For detached and two-family homes,<br />
60 ˚˚ßC for apartment buildings)<br />
Assumptions<br />
(continued)<br />
Basin: (Length x Width x Depth) m × m ×<br />
m<br />
Please state!<br />
Blue<br />
24 ßC<br />
Please state!<br />
143
7<br />
Appendix<br />
Keyword index<br />
A<br />
Absorber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4–6, 8<br />
Accessories<br />
Fixing materials . . . . . . . . . . . . . . . . .129, 132, 137, 139<br />
Hydraulic connection (options) . . . . . . . . . . . . . . . . .121<br />
Accident prevention regulations . . . . . . . . . . . . . . .59<br />
Air separator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120<br />
Air vent valve . . . . . . . . . . . . . . . . . . . . . . . . . . .57, 119<br />
Angle of inclination (collectors) . . . . . . .82–83, 92, 95<br />
B<br />
Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58<br />
Buffer bypass circuit . . . . . . . . . . . . . . . . . . . . . . . . .41<br />
C<br />
Central heating backup<br />
Buffer bypass circuit . . . . . . . . . . . . . . . . . . . . . . . . . .41<br />
RW return temperature limiter . . . . . . . . . . . . . . . . . .55<br />
Sample system . . . . . . . . . . . . . . . . . . . . . 64–69, 73–75<br />
Collector<br />
See solar collector...<br />
Collector array<br />
Collector row pressure drop . . . . . . . . . . . . . . .102, 106<br />
Flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102<br />
Hydraulic connection (options) . . . . . . . . . . . . . . . . . .98<br />
Number of collectors (sizing) . . . . . . . 80–81, 84–85, 89<br />
Pressure drop for connection in parallel . . . . . . . . . . .104<br />
Pressure drop with connection in series/parallel . . . .105<br />
Pressure drop, connection in series . . . . . . . . . . . . . .103<br />
Vacuum tube connector pressure drop . . . . . . . . . . .106<br />
Collector array hydraulics with dormer . . . . . . . . .101<br />
Collector temperature sensor extension lead . . . .118<br />
Combined connection in series and in parallel<br />
Pressure drop and flow rate . . . . . . . . . . . . . . . . . . . .105<br />
Computer simulation (solar heating system sizing) 79<br />
Connection accessories (hydraulic) . . . . . . . . . . . .121<br />
Connection in parallel . . . . . . . . . . . . . . . .98, 100, 104<br />
Connection in parallel and in series . . . . . . . .101, 105<br />
Connection in series . . . . . . . . . . . . . .98–99, 101, 103<br />
Connection in series and in parallel . . . . . . . .101, 105<br />
Connection pipes . . . . . . . . . . . . . . . . . . . . . . . . . .118<br />
Correction factor, number of collectors . . . . . . . . . .82<br />
Cylinder<br />
See dual-mode thermosiphon cylinder Logalux SL...<br />
See Duo FWS... combi cylinder<br />
See Logalux P750 S... combi cylinder<br />
See Logalux PL... thermosiphon thermal store<br />
See Logalux PL.../2S... thermosiphon combi cylinder<br />
144<br />
See Logalux SM... dual.mode cylinder<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
D<br />
Daily heating . . . . . . . . . . . . . . . . . . . . . . . . . . . 87, 89<br />
DHW circulation line . . . . . . . . . . . . . . . . . . . . . . . . 54<br />
DHW heating<br />
Correction factor, number of collectors . . . . . . . . . . . 82<br />
Sample system . . . . . . . . . . . . . . . . . . . . . . . . . . . 70–72<br />
Sizing (apartment block with 3 to 5 residential units) . 87<br />
Sizing (apartment block with up to 30 residential units) .<br />
88– . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90<br />
Sizing (detached house/two-family home) . . . 80, 82–83<br />
DHW heating and central heating backup<br />
Sample system . . . . . . . . . . . . . . . . . . . . . 64–69, 73–75<br />
Sizing (detached house/two-family home) . . . . . . 84, 86<br />
DHW mixer (thermostatic) . . . . . . . . . . . . . . . . 52–54<br />
Diaphragm expansion vessel (DEV) 111–112, 116–117<br />
Directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />
Domestic hot water heating<br />
Sample system . . . . . . . . . . . . . . . . . . . . . . . . . . . 60–63<br />
Dormer (collector array hydraulics) . . . . . . . . . . . . 101<br />
Double-Match-Flow . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />
Dual-mode cylinder Logalux SM...<br />
DHW circulation line . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />
Dimensions and specification . . . . . . . . . . . . . . . . . . . 13<br />
Pressure drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />
Sample system . . . . . . . . . . . . . . . . . . 60–61, 64, 70–75<br />
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83, 86<br />
Dual-mode thermosiphon cylinder Logalux SL...<br />
Design and function . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />
DHW circulation line . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />
Dimensions and specification . . . . . . . . . . . . . . . . . . . 16<br />
Pressure drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />
Sample system . . . . . . . . . . . . . . . . . . 60–61, 64, 70–75<br />
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83, 86<br />
Duo FWS... combi cylinder<br />
Design and function . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />
Dimensions and specification . . . . . . . . . . . . . . . . . . . 23<br />
Pressure drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />
E<br />
Earth bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141<br />
Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 8, 11<br />
EMS<br />
Boiler with EMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />
Control unit selection aid . . . . . . . . . . . . . . . . . . . . . . 27<br />
Solar function module FM443 . . . 28–29, 31, 41–43, 46<br />
Solar function module SM10 . . . . . . . . . . . . . 28–29, 46<br />
Energy supply (solar) . . . . . . . . . . . . . . . . . . . . . . . . . 3
F<br />
Filling pressure (DEV) . . . . . . . . . . . . . . . . . . . . . . .111<br />
Filling station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120<br />
Final pressure (DEV) . . . . . . . . . . . . . . . . . . . . . . . .112<br />
Flat roof installation . . . . . . . . . . . . . . . . .94, 134, 140<br />
Floorstanding boiler . . . . . . . . . . . . . . . . . . . . . . . . .58<br />
Flow rate<br />
Collector array . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102<br />
Connection in parallel . . . . . . . . . . . . . . . . . . . . . . . .104<br />
Connection in series . . . . . . . . . . . . . . . . . . . . . . . . .103<br />
Connection in series and in parallel . . . . . . . . . . . . . .105<br />
Frost protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50<br />
Function module (solar)<br />
FM244 (Logamatic 2107) . . . . . . . . . . . . . . . .29–30, 46<br />
FM443 (Logamatic 4000, EMS) . . . 28–29, 31, 41–43, 46<br />
SM10 (Logamatic EMS) . . . . . . . . . . . . . . . . . .28–29, 46<br />
H<br />
<strong>Heat</strong> meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43<br />
High-Flow operation . . . . . . . . . . . . . . . . . . . . . . . . .28<br />
Hydraulic connection accessories . . . . . . . . . . . . . .121<br />
Hydraulic connections<br />
Collector array (options) . . . . . . . . . . . . . . . . . . . . . . .98<br />
Connection in parallel . . . . . . . . . . . . . . . . . . . . .98, 100<br />
Connection in series . . . . . . . . . . . . . . . . . . . . . . .98–99<br />
Connection in series and in parallel . . . . . . . . . . . . . .101<br />
HZG kit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41<br />
I<br />
Inlet pressure (DEV) . . . . . . . . . . . . . . . . . . . . . . . .111<br />
Insolation map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2<br />
Installation instructions . . . . . . . . . . . . . . . . . . . . . .139<br />
Installation system (collector array)<br />
Flat roof installation . . . . . . . . . . . . . . . . . . . . . .134, 140<br />
Roof integration . . . . . . . . . . . . . . . . . . . . . . . . . . . .131<br />
Rooftop installation . . . . . . . . . . . . . . . . . .123–126, 129<br />
Wall installation . . . . . . . . . . . . . . . . . . . . . . . . .138–139<br />
Installation times (collectors) . . . . . . . . . . . . .139, 141<br />
Intrinsic safety of a solar heating system . . . . . . . .112<br />
L<br />
L<strong>is</strong>t of abbreviations . . . . . . . . . . . . . . . . . . . . . . . .147<br />
Logalux P750 S... combi cylinder<br />
See also thermosiphon combi cylinder...<br />
Design and function . . . . . . . . . . . . . . . . . . . . . . . . . .17<br />
Dimensions and specification . . . . . . . . . . . . . . . . . . .20<br />
Pressure drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109<br />
Sample system . . . . . . . . . . . . . . . . . . . . . . . . . . .67–69<br />
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86<br />
Logalux PL... thermosiphon thermal store<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Appendix 7<br />
Design and function . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />
Dimensions and specification . . . . . . . . . . . . . . . . . . . 26<br />
Pressure drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />
Sample system . . . . . . . . . . . . . . . . . . . . . 64–66, 70–75<br />
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />
Logalux PL.../2S... Thermosiphon combi cylinder<br />
Pressure drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109<br />
Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />
Logalux PL.../2S... thermosiphon combi cylinder<br />
Design and function . . . . . . . . . . . . . . . . . . . . . . . 18–19<br />
Dimensions and specification . . . . . . . . . . . . . . . . . . . 21<br />
Sample system . . . . . . . . . . . . . . . . . . . . . . . . . . . 67–69<br />
Logalux SL... thermosiphon cylinder<br />
See dual-mode thermosiphon cylinder Logalux SL...<br />
Logalux SM... dual-mode cylinder<br />
Design and function . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />
Logasol KS... compact station<br />
Diaphragm expansion vessel, . . . . . . 111–112, 116–117<br />
Selection (pressure drop, flow rate) . . . . . . . . . . . . . 109<br />
Logasol KS... complete station<br />
Diaphragm expansion vessel . . . . . . . . . . . . . . . . . . . 47<br />
Diaphragm expansion vessel, . . . . . . . . . . . . . . . . . . . 46<br />
Dimensions and specification . . . . . . . . . . . . . . . . . . . 48<br />
Equipment level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br />
External control . . . . . . . . . . . . . . 28–29, 31, 41–43, 46<br />
Integral control unit . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />
Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br />
Low-Flow operation . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />
O<br />
On-site fixing<br />
Flat roof installation . . . . . . . . . . . . . . . . . . . . . . . . . 137<br />
Wall installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />
On-site safety<br />
Installation instructions . . . . . . . . . . . . . . . . . . . . . . . 139<br />
Optim<strong>is</strong>ation function (solar) . . . . . . . . . . . . . . . . . . 29<br />
Overvoltage protection<br />
Control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br />
P<br />
Pasteur<strong>is</strong>ation control . . . . . . . . . . . . . . . . . . . . 87, 89<br />
Pipework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108, 118<br />
Pre-cooling vessel . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br />
Pre-heat cylinder<br />
Logasol SAT-VWS system . . . . . . . . . . . . . . . . . . . 45, 90<br />
pre-heat cylinder<br />
Logasol SAT-VWS system . . . . . . . . . . . . . . . . . . . . . . 88<br />
Sample system . . . . . . . . . . . . . . . . . . . . . 62–63, 65–66<br />
Pressure drop<br />
Collector row . . . . . . . . . . . . . . . . . . . . . . . . . . 102, 106<br />
Connection in parallel . . . . . . . . . . . . . . . . . . . . . . . 104<br />
Connection in series . . . . . . . . . . . . . . . . . . . . . . . . . 103<br />
145
7<br />
Appendix<br />
Connection in series and in parallel . . . . . . . . . . . . . .105<br />
Logasol KS... compact station . . . . . . . . . . . . . . . . . .109<br />
Pipework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108<br />
Solar cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109<br />
Primary energy saving . . . . . . . . . . . . . . . . . . . . . . .29<br />
Pump sizing (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . .56<br />
Q<br />
Questionnaire for detached houses<br />
and two-family homes (fax) . . . . . . . . . . . . . .142–143<br />
R<br />
Reheating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3, 58<br />
Reheating optim<strong>is</strong>ation . . . . . . . . . . . . . . . . . . . . . . .29<br />
Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59<br />
Roof integration . . . . . . . . . . . . . . . . . . . . . . . . .92–93<br />
Rooftop installation . . . . . . . . . . . 92–93, 123–126, 129<br />
RW return temperature limiter . . . . . . . . . . . . . . . . .55<br />
S<br />
Safety regulations . . . . . . . . . . . . . . . . . . . . . . . . . . .59<br />
Sizing<br />
Diaphragm expansion vessel, . . . . . . 111–112, 116–117<br />
Logasol KS... compact station (selection) . . . . . . . . . .109<br />
Solar heating system for detached house/<br />
two-family home (DHW) . . . . . . . . . . . . . . . . .80, 82–83<br />
Solar heating system for detached house/<br />
two-family home (DHW+HTG) . . . . . . . . . . . . . . .84, 86<br />
Solar heating system, apartment block<br />
with 3 to 5 residential units (DHW) . . . . . . . . . . . . . . .87<br />
Solar heating system, apartment block<br />
with up to 30 residential units (DHW) . . . . . . . . . .88–90<br />
Space required for flat roof installation . . . . . . . . . . . .94<br />
Space required for rooftop installation and roof<br />
integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93<br />
Space requirement with rooftop installation and roof<br />
integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92<br />
Space requirement, wall mounting . . . . . . . . . . . . . . .96<br />
Swimming pool water heating . . . . . . . . . . . . . . . . . .91<br />
Solar collector Logasol SKN3.0<br />
Design and function . . . . . . . . . . . . . . . . . . . . . . . . . . .4<br />
Dimensions and specification . . . . . . . . . . . . . . . . . . . .5<br />
Installation times . . . . . . . . . . . . . . . . . . . . . . . .139, 141<br />
Solar collector Logasol SKS4.0<br />
Design and function . . . . . . . . . . . . . . . . . . . . . . . . . . .6<br />
Dimensions and specification . . . . . . . . . . . . . . . . . . . .8<br />
Installation times . . . . . . . . . . . . . . . . . . . . . . . .139, 141<br />
Solar collector Vaciosol CPC...<br />
Design and function . . . . . . . . . . . . . . . . . . . . . . . . . . .9<br />
Dimensions and specification . . . . . . . . . . . . . . . . . . .11<br />
Solar control unit<br />
Solar control unit SC10 . . . . . . . . . . . . . . . . . . . . . . . .33<br />
Solar control unit SC20 . . . . . . . . . . . . . . . . . .34–35, 46<br />
Solar control unit SC40 . . . . . . . . . . . . . . . . . .35–40, 46<br />
146<br />
Solar function module FM244 . . . . . . . . . . . . 29–30, 46<br />
Solar function module FM443 . . . 28–29, 31, 41–43, 46<br />
Solar function module SM10 . . . . . . . . . . . . . 28–29, 46<br />
Selection aids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />
Solar fluid L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50–51<br />
Solar heating system enquiry for detached houses<br />
and two-family homes (fax) . . . . . . . . . . . . . . 142–143<br />
Solar optim<strong>is</strong>ation function . . . . . . . . . . . . . . . . . . . 29<br />
Solid fuel boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />
Sample system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />
Space requirement<br />
Flat roof installation . . . . . . . . . . . . . . . . . . . . . . . . . . 94<br />
Rooftop installation and roof integration . . . . . . . 92–93<br />
Wall mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96<br />
Stagnation temperature . . . . . . . . . . . . . . . . . . 5, 8, 11<br />
Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />
Static requirements<br />
Flat roof installation . . . . . . . . . . . . . . . . . . . . . . . . . 136<br />
Roof integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131<br />
Rooftop installation . . . . . . . . . . . . . . . . . . . . . . . . . 128<br />
Wall installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138<br />
Swimming pool water heat exchanger SWT . . . . . . 56<br />
Swimming pool water heating (sizing) . . . . . . . . . . 91<br />
System volume (solar part) . . . . . . . . . . . . . . . . . . 110<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
T<br />
<strong>Technical</strong> rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br />
Temperature differential control . . . . . . . . . . . . . . . 27<br />
Testing the solar fluid . . . . . . . . . . . . . . . . . . . . . . . 51<br />
Thermal insulation . . . . . . . . . . . . . . . . . . . . . . . . . 118<br />
Thermal store<br />
See Logalux PL... thermosiphon thermal store<br />
Thermostatic DHW mixer assembly . . . . . . . . . . 52–54<br />
Twin-Tube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />
Two consumers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />
Tyfocor LS (solar fluid) . . . . . . . . . . . . . . . . . . . . . . . 51<br />
V<br />
Vaciosol CPC...<br />
See Vaciosol CPC... solar collector<br />
Vap<strong>our</strong> safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br />
Volume of a solar heating system . . . . . . . . . . . . . 110<br />
W<br />
Wall installation . . . . . . . . . . . . . . . . . . . . . . . 138–139<br />
Wall mounted boiler . . . . . . . . . . . . . . . . . . . . . . . . 58<br />
Detailed hydraulic scheme . . . . . . . . . . . . . . . . . . . . . 78<br />
Sample system . . . . . . . . . . . . 61, 63–65, 68–69, 71, 74<br />
Wall mounting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Water connections<br />
Rooftop installation . . . . . . . . . . . . . . . . . . . . . . . . . .128<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Appendix 7<br />
147
7<br />
Appendix<br />
L<strong>is</strong>t of abbreviations<br />
Abb. Description<br />
AK Cold water outlet (buffer system)<br />
AV Shut-off valve<br />
AW/AB DHW outlet<br />
E Air vent valve<br />
EH Immersion heater<br />
EK Cold water inlet<br />
EL Drain<br />
EW DHW inlet (primary system)<br />
EZ DHW circulation inlet<br />
FA Outside temperature sensor<br />
FE Fill & drain valve<br />
FK Boiler water temperature sensor<br />
FR Return temperature sensor<br />
FSK Collector temperature sensor<br />
FP Thermal store temperature sensor<br />
FPO Thermal store temperature sensor, top<br />
FPU Thermal store temperature sensor, bottom<br />
FSB Swimming pool water temperature sensor<br />
FSS1 Cylinder temperature sensor (1st consumer)<br />
FSS2 Cylinder temperature sensor (2nd consumer)<br />
FSW1 <strong>Heat</strong> meter temperature sensor Flow<br />
FSW2 <strong>Heat</strong> meter temperature sensor return<br />
FSX<br />
FSX1<br />
FSX2<br />
FSX3<br />
148<br />
Cylinder temperature sensor or threshold sensor for<br />
thermosiphon cylinder for High-Flow-/Low-Flow<br />
operation with solar function module FM443 or<br />
SM10<br />
(Cylinder connection set AS1, AS16 or DHW<br />
temperature sensor FB or FW)<br />
FV Flow temperature sensor<br />
HK <strong>Heat</strong>ing circuit<br />
HS (-E)<br />
<strong>Heat</strong>ing circuit quick assembly set, optionally with<br />
self-regulating electronic pump<br />
HSM (-E)<br />
HS with actuator (mixer), optionally with selfregulating<br />
electronic pump<br />
HZG HZG set for central heating backup<br />
Abb. Description<br />
Measuring point (e.g. cylinder), motor (e.g.<br />
M<br />
actuator)<br />
MB Domestic hot water measuring point<br />
MAG Diaphragm expansion vessel<br />
PH <strong>Heat</strong>ing circuit pump<br />
PS Cylinder primary pump<br />
PSB Swimming pool water pump<br />
PSS Solar circuit pump<br />
PUM Stratification pump<br />
PWT <strong>Heat</strong> exchanger pump<br />
PZ DHW circulation pump<br />
R Return; solar return<br />
RK Boiler return<br />
RS Cylinder return<br />
RSB Swimming pool control unit<br />
RW Return temperature limiter<br />
SA Line regulating and shut-off valve<br />
SH <strong>Heat</strong>ing circuit actuator<br />
SMF Dirt filter<br />
SP1 Overvoltage protection<br />
SU Diverter valve<br />
SV Safety valve<br />
SWT Swimming pool water heat exchanger<br />
TW Drinking water/DHW<br />
TWE Domestic hot water heating<br />
ÜV Overflow valve<br />
V Flow; solar flow<br />
VK Boiler flow<br />
VS Cylinder flow<br />
VS-SU Diverter valve to 2nd consumer VS-SU<br />
<strong>Heat</strong><br />
s<strong>our</strong>ce<br />
Residential unit<br />
WT <strong>Heat</strong> exchanger<br />
WMZ<br />
<strong>Heat</strong> meter set WMZ1.2 in conjunction with solar<br />
function module FM443<br />
WWM Thermostatically controlled DHW mixer<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Appendix 7<br />
149
7 Appendix<br />
150<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007<br />
Appendix 7<br />
151
7 Appendix<br />
152<br />
<strong>Technical</strong> <strong>guide</strong> - Logasol solar technology for domestic hot water heating and central heating backup - 06/2007
High grade heating technology requires professional installation and maintenance. <strong>Buderus</strong>, therefore, supplies its<br />
complete range only through approved heating engineers. Ask y<strong>our</strong> local heating contractor for <strong>Buderus</strong> heating<br />
technology, inform y<strong>our</strong>self at one of <strong>our</strong> sales offices or v<strong>is</strong>it <strong>our</strong> website.<br />
Branch Post Code/Town Street Telephone Fax Responsible<br />
service centre<br />
1. Aachen 52080 Aachen Hergelsbendenstr. 30 (0241) 9 68 24-0 (0241) 9 68 24-99 Trier<br />
2. Augsburg 86156 Augsburg Werner-He<strong>is</strong>enberg-Str. 1 (0821) 4 44 81-0 (0821) 4 44 81-50 München<br />
3. Berlin-Tempelhof 12103 Berlin-Tempelhof Bessemerstr. 76 a (030) 7 54 88-0 (030) 7 54 88-1 60 Berlin<br />
4. Berlin/Brandenburg 16727 Velten Berliner Str. 1 (03304) 3 77-0 (03304) 3 77-1 99 Berlin<br />
5. Bielefeld 33719 Bielefeld Oldermanns Hof 4 (0521) 20 94-0 (0521) 20 94-2 28/2 26 Hannover<br />
6. Bremen 28816 Stuhr L<strong>is</strong>e-Meitner-Str. 1 (0421) 89 91-0 (0421) 89 91-2 35/2 70 Hamburg<br />
7. Dortmund 44319 Dortmund Zeche-Norm-Str. 28 (0231) 92 72-0 (0231) 92 72-2 80 Dortmund<br />
8. Dresden 01458 Ottendorf-Okrilla Jakobsdorfer Str. 4-6 (035205) 55-0 (035205) 55-1 11/2 22 Leipzig<br />
9. Düsseldorf 40231 Düsseldorf Höher Weg 268 (0211) 7 38 37-0 (0211) 7 38 37-21 Dortmund<br />
10. Erfurt 99091 Erfurt Alte Mittelhäuser Straße 21 (0361) 7 79 50-0 (0361) 73 54 45 Leipzig<br />
11. Dining 45307 Essen Eckenbergstr. 8 (0201) 5 61-0 (0201) 56 1-2 79 Dortmund<br />
12. Esslingen 73730 Esslingen Wolf-Hirth-Str. 8 (0711) 93 14-5 (0711) 93 14-6 69/6 49/6 29 Esslingen<br />
13. Frankfurt 63110 Rodgau Hermann-Staudinger-Str. 2 (06106) 8 43-0 (06106) 8 43-2 03/2 63 Gießen<br />
14. Freiburg 79108 Freiburg Stübeweg 47 (0761) 5 10 05-0 (0761) 5 10 05-45/47 Esslingen<br />
15. Gießen 35394 Gießen Rödgener Str. 47 (0641) 4 04-0 (0641) 4 04-2 21/2 22 Gießen<br />
16. Goslar 38644 Goslar Magdeburger Kamp 7 (05321) 5 50-0 (05321) 5 50-1 14/1 39 Hannover<br />
17. Hamburg 21035 Hamburg Wilhelm-Iwan-Ring 15 (040) 7 34 17-0 (040) 7 34 17-2 67/2 31/2 62 Hamburg<br />
18. Hannover 30916 Isernhagen Stahlstr. 1 (0511) 77 03-0 (0511) 77 03-2 42/2 59 Hannover<br />
19. Heilbronn 74078 Heilbronn Pfaffenstr. 55 (07131) 91 92-0 (07131) 91 92-2 11 Esslingen<br />
20. Ingolstadt 85098 Großmehring Max-Planck-Str. 1 (08456) 9 14-0 (08456) 9 14-2 22 München<br />
21. Ka<strong>is</strong>erslautern 67663 Ka<strong>is</strong>erslautern Opelkre<strong>is</strong>el 24 (0631) 35 47-0 (0631) 35 47-1 07 Trier<br />
22. Karlsruhe 76185 Karlsruhe Hardeckstr. 1 (0721) 9 50 85-0 (0721) 9 50 85-33 Esslingen<br />
23. Kempten 87437 Kempten He<strong>is</strong>inger Str. 21 (0831) 5 75 26-0 (0831) 5 75 26-50 München<br />
24. Kiel 24145 Kiel-Wellsee Ed<strong>is</strong>onstr. 29 (0431) 6 96 95-0 (0431) 6 96 95-95 Hamburg<br />
25. Koblenz 56220 Bassenheim Am Gülser Weg 15-17 (02625) 9 31-0 (02625) 9 31-2 24 Gießen<br />
26. Köln 50858 Köln Toyota-Allee 97 (02234) 92 01-0 (02234) 92 01-2 37 Dortmund<br />
27. Kulmbach 95326 Kulmbach Aufeld 2 (09221) 9 43-0 (09221) 9 43-2 92 Nürnberg<br />
28. Leipzig 04420 Markranstädt Handelsstr. 22 (0341) 9 45 13-00 (0341) 9 42 00 62/89 Leipzig<br />
29. Magdeburg 39116 Magdeburg Sudenburger Wuhne 63 (0391) 60 86-0 (0391) 60 86-2 15 Berlin<br />
30. Mainz 55129 Mainz Carl-Ze<strong>is</strong>s-Str. 16 (06131) 92 25-0 (06131) 92 25-92 Trier<br />
31. Meschede 59872 Meschede Zum Rohland 1 (0291) 54 91-0 (0291) 66 98 Gießen<br />
32. München 81379 München Boschetsrieder Str. 80 (089) 7 80 01-0 (089) 7 80 01-2 58/2 71 München<br />
33. Münster 48159 Münster Haus Uhlenkotten 10 (0251) 7 80 06-0 (0251) 7 80 06-2 21/2 31 Dortmund<br />
34. Neubrandenburg 17034 Neubrandenburg Feldmark 9 (0395) 45 34-0 (0395) 4 22 87 32 Berlin<br />
35. Neu-Ulm 89231 Neu-Ulm Böttgerstr. 6 (0731) 7 07 90-0 (0731) 7 07 90-92 München<br />
36. Norderstedt 22848 Norderstedt Gutenbergring 53 (040) 50 09 14 17 (040) 50 09 - 14 80 Hamburg<br />
37. Nürnberg 90425 Nürnberg Kilianstr. 112 (0911) 36 02-0 (0911) 36 02-2 74 Nürnberg<br />
38. Osnabrück 49078 Osnabrück Am Schürholz 4 (0541) 94 61-0 (0541) 94 61-2 22 Hannover<br />
39. Ravensburg 88069 Tettnang Dr. Klein-Str. 17-21 (07542) 5 50-0 (07542) 5 50-2 22 Esslingen<br />
40. Regensburg 93092 Barbing Carl-Ze<strong>is</strong>s-Str. 16 (09401) 8 88-0 (09401) 8 88-92 Nürnberg<br />
41. Rostock 18182 Bentw<strong>is</strong>ch Hansestr. 5 (0381) 6 09 69-0 (0381) 6 86 51 70 Berlin<br />
42. Saarbrücken 66130 Saarbrücken Kurt-Schumacher-Str. 38 (0681) 8 83 38-0 (0681) 8 83 38-33 Trier<br />
43. Schwerin 19075 Pampow Fährweg 10 (03865) 78 03-0 (03865) 32 62 Hamburg<br />
44. Traunstein 83278 Traunstein/Haslach Falkensteinstr. 6 (0861) 20 91-0 (0861) 20 91-2 22 München<br />
45. Trier 54343 Föhren Europa-Allee 24 (06502) 9 34-0 (06502) 9 34-2 22 Trier<br />
46. Viernheim 68519 Viernheim Erich-Kästner-Allee 1 (06204) 91 90-0 (06204) 91 90-2 21 Trier<br />
47. Villingen-Schwenningen 78652 Deißlingen Baarstr. 23 (07420) 9 22-0 (07420) 9 22-2 22 Esslingen<br />
48. Wesel 46485 Wesel Am Schornacker 119 (0281) 9 52 51-0 (0281) 9 52 51-20 Dortmund<br />
49. Würzburg 97228 Rottendorf Edekastr. 8 (09302) 9 04-0 (09302) 9 04-1 11 Nürnberg<br />
50. Zwickau 08058 Zwickau Berthelsdorfer Str. 12 (0375) 44 10-0 (0375) 47 59 96 Leipzig<br />
Service-Center Telephone Fax<br />
Berlin: (0180) 3 22 34 00 (030) 75 48 82 02<br />
Dortmund: (0180) 3 67 14 04 (0231) 9 27 22 88<br />
Berlin: (0180) 3 22 34 00 (030) 75 48 82 02<br />
Esslingen: (0180) 3 67 14 02 (0711) 9 31 47 16<br />
Gießen: (0180) 3 22 34 34 (06441) 4 18 27 97<br />
Hamburg: (0180) 3 67 14 00 (040) 73 41 73 20<br />
Hannover: (0180) 3 67 14 01 (0511) 7 70 31 03<br />
Leipzig: (0180) 3 67 14 06 (0341) 9 45 14 22<br />
München: (0180) 3 22 34 01 (089) 78 00 14 30<br />
Nürnberg: (0180) 3 67 14 03 (0911) 3 60 22 31<br />
Trier: (0180) 3 67 14 05 (06502) 93 44 20<br />
BBT Thermotechnik GmbH<br />
<strong>Buderus</strong> Deutschland<br />
35573 Wetzlar<br />
www.buderus.de<br />
info@buderus.de<br />
48 7<br />
11<br />
9<br />
26<br />
1<br />
45<br />
42<br />
33<br />
25<br />
21<br />
14<br />
38<br />
30<br />
46<br />
5<br />
15<br />
6<br />
13<br />
19<br />
18<br />
24<br />
36<br />
17 17<br />
49<br />
10 10<br />
43<br />
16 29<br />
37<br />
27<br />
22 20<br />
47<br />
31<br />
12<br />
39<br />
23<br />
35<br />
2<br />
41<br />
40<br />
32<br />
28<br />
34<br />
4<br />
3<br />
50<br />
44<br />
8<br />
7 747 011 220 (20) Brühl 07/2007 Printed in Germany.<br />
Subject to technical modifications.