23.02.2013 Views

Understanding ESP Controls - Quick Overview

Understanding ESP Controls - Quick Overview

Understanding ESP Controls - Quick Overview

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

WPCA – AMEREN <strong>ESP</strong><br />

SEMINAR<br />

<strong>Understanding</strong> <strong>ESP</strong> <strong>Controls</strong><br />

By John Knapik<br />

© 2004, General Electric Company


Efficiency vs. Specific Corona Power<br />

KNOW WHERE YOUR <strong>ESP</strong> RUNS ON<br />

THE CURVE<br />

GE<br />

Proprietary<br />

Collection<br />

Efficiency<br />

(Percent)<br />

99.9<br />

99.0<br />

80.0<br />

0 100 200 300 400 500 600<br />

Corona Power – Watts/1000 ACFM<br />

2


AVC Cabinet, CLR & T/R Set<br />

GE<br />

Proprietary<br />

3


Typical SCR-CLR Electrical System<br />

GE<br />

Proprietary<br />

+ +<br />

-<br />

L - 1<br />

L - 2<br />

SCR Stack<br />

Firing<br />

Circuit<br />

Automatic<br />

Voltage Control<br />

Microprocessor(s)<br />

Control<br />

Module<br />

Current Limiting<br />

Reactor (CLR)<br />

Primary Voltage<br />

Meter<br />

CT<br />

Primary<br />

Current Meter<br />

A<br />

V<br />

mA<br />

Transformer/Rectifier<br />

(T/R) Set<br />

Secondary<br />

mA Current<br />

Master<br />

Signal<br />

Resistor<br />

Secondary<br />

Voltage<br />

KV<br />

Meter<br />

Precipitator<br />

Field<br />

4


Just Remember, the Primary of a T-R<br />

Set is Rated in Units of RMS, the<br />

Secondary is in Average<br />

• 400 V AC RMS<br />

• 120 A AC RMS<br />

• 45 KV DC Average<br />

• 750 mA DC Average<br />

Therefore use an RMS Reading Meter to<br />

Calibrate the Primary Meters<br />

GE<br />

Proprietary<br />

5


Note! How Do You Tell The<br />

Difference?<br />

GE<br />

Proprietary<br />

Iron Vane<br />

Movement<br />

RMS<br />

D’Arsonval<br />

Average<br />

The Meter Scale Distance is not the<br />

Same on the RMS Meter.<br />

6


Primary Current Meter<br />

GE<br />

Proprietary<br />

+ +<br />

-<br />

L - 1<br />

L - 2<br />

SCR Stack<br />

Firing<br />

Circuit<br />

Automatic<br />

Voltage Control<br />

Microprocessor(s)<br />

Control<br />

Module<br />

Current Limiting<br />

Reactor (CLR)<br />

Primary Voltage<br />

Meter<br />

CT<br />

Primary<br />

Current Meter<br />

A<br />

V<br />

mA<br />

Transformer/Rectifier<br />

(T/R) Set<br />

Secondary<br />

mA Current<br />

Master<br />

Signal<br />

Resistor<br />

Secondary<br />

Voltage<br />

KV<br />

Meter<br />

Precipitator<br />

Field<br />

7


Finding the Primary Current Waveform<br />

GE<br />

Proprietary<br />

8


Primary Current – A Chopped Sine<br />

Wave<br />

GE<br />

Proprietary<br />

9


Primary Current Waveform - Positive<br />

and Negative Half-Cycles = SCR 1 and<br />

SCR 2


Secondary Current Meter<br />

GE<br />

Proprietary<br />

+ +<br />

-<br />

L - 1<br />

L - 2<br />

SCR Stack<br />

Firing<br />

Circuit<br />

Automatic<br />

Voltage Control<br />

Microprocessor(s)<br />

Control<br />

Module<br />

Current Limiting<br />

Reactor (CLR)<br />

Primary Voltage<br />

Meter<br />

CT<br />

Primary<br />

Current Meter<br />

A<br />

V<br />

mA<br />

Transformer/Rectifier<br />

(T/R) Set<br />

Secondary<br />

mA Current<br />

Master<br />

Signal<br />

Resistor<br />

Secondary<br />

Voltage<br />

KV<br />

Meter<br />

Precipitator<br />

Field<br />

11


Finding the mA Signal<br />

GE<br />

Proprietary<br />

12


Secondary Current – Pulsating DC<br />

GE<br />

Proprietary<br />

13


Typical Primary and Secondary<br />

Current<br />

GE<br />

Proprietary<br />

14


Secondary Voltage Meter<br />

GE<br />

Proprietary<br />

+ +<br />

-<br />

L - 1<br />

L - 2<br />

SCR Stack<br />

Firing<br />

Circuit<br />

Automatic<br />

Voltage Control<br />

Microprocessor(s)<br />

Control<br />

Module<br />

Current Limiting<br />

Reactor (CLR)<br />

Primary Voltage<br />

Meter<br />

CT<br />

Primary<br />

Current Meter<br />

A<br />

V<br />

mA<br />

Transformer/Rectifier<br />

(T/R) Set<br />

Secondary<br />

mA Current<br />

Master<br />

Signal<br />

Resistor<br />

Secondary<br />

Voltage<br />

KV<br />

Meter<br />

Precipitator<br />

Field<br />

15


Current Limit - mA & KV<br />

GE<br />

Proprietary<br />

16


Secondary Voltage Waveforms – True<br />

Negative<br />

GE<br />

Proprietary<br />

KVmi<br />

n<br />

KVpeak<br />

mA<br />

17


Next – The Automatic Voltage Control<br />

GE<br />

Proprietary<br />

+ +<br />

-<br />

L - 1<br />

L - 2<br />

SCR Stack<br />

Firing<br />

Circuit<br />

Automatic<br />

Voltage Control<br />

Microprocessor(s)<br />

Control<br />

Module<br />

Current Limiting<br />

Reactor (CLR)<br />

Primary Voltage<br />

Meter<br />

CT<br />

Primary<br />

Current Meter<br />

A<br />

V<br />

mA<br />

Transformer/Rectifier<br />

(T/R) Set<br />

Secondary<br />

mA Current<br />

Master<br />

Signal<br />

Resistor<br />

Secondary<br />

Voltage<br />

KV<br />

Meter<br />

Precipitator<br />

Field<br />

18


The AVC<br />

is the BRAINS<br />

of the <strong>ESP</strong>


Older Analog AVC<br />

GE<br />

Proprietary<br />

20


Microprocesso<br />

r Based<br />

AVC<br />

GE<br />

Proprietary<br />

21


The AVC has 2 Jobs to Execute<br />

• Control the amount of sparking in the <strong>ESP</strong>.<br />

• If a T/R set is not sparking, then its AVC<br />

should be pushing that T/R set to one of its<br />

pre-set, healthy limits (volts, amps, KV, ma,<br />

or firing angle).<br />

• I’ll explain what is meant by “healthy” in a<br />

minute<br />

GE<br />

Proprietary<br />

22


The AVC has 2 Jobs to Execute…<br />

But how does the AVC know<br />

what’s happening in the<br />

<strong>ESP</strong>?


GE<br />

Proprietary<br />

Transformer Rectifier Set<br />

Ground<br />

Return<br />

Leg<br />

Plate<br />

(+)<br />

mA Meter<br />

(Precipitator<br />

Current)<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e e<br />

e e<br />

e<br />

e<br />

e<br />

mA<br />

e<br />

e<br />

e<br />

e e e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

The mA signal is its eyes!<br />

e<br />

e<br />

e e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

KV<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

KV Meter<br />

(Precipitator<br />

Voltage)<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

Free Electrons =<br />

e<br />

e<br />

e<br />

Positive & Negative Ions =<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

e<br />

Charged Particles =<br />

+<br />

+<br />

+<br />

+<br />

+<br />

Electrode<br />

+<br />

e<br />

e<br />

e<br />

e<br />

24


AVC Cabinet, CLR & T/R Set<br />

GE<br />

Proprietary<br />

25


AVC Spark Response<br />

GE<br />

Proprietary<br />

SPARK<br />

SETBACK<br />

QUENCH FAST RAMP SPARK RATE<br />

26


Good Initial Settings for an AVC<br />

1. Quench = 1 Full Cycle<br />

2. Fast Ramp = 5 or 6 Half Cycles<br />

3. Setback = 15 to 20%<br />

4. Spark Rate = 30SPM<br />

GE<br />

Proprietary<br />

27


Proper AVC Response to Sparking<br />

GE<br />

Proprietary<br />

28


Spark Response - Secondary Current<br />

Waveform<br />

GE<br />

Proprietary<br />

29


Spark Response - Secondary Current<br />

and Voltage Waveforms<br />

GE<br />

Proprietary<br />

30


Typical Spark Response - mA & KV<br />

GE<br />

Proprietary<br />

31


Further Control – A Search Ramp Rate<br />

GE<br />

Proprietary<br />

P<br />

O<br />

New Spark Threshold or T/R Limit<br />

Spark Threshold<br />

Search Ramp<br />

W Setback Slow Ramp (determined by spark rate)<br />

E<br />

R<br />

Fast Ramp<br />

Quench<br />

(Response to Spark)<br />

INTERRUPT<br />

PHASE BACK<br />

PEDESTAL<br />

AUTO PRCS FLWR<br />

RAMP<br />

T I M E<br />

32


Spit Spark Response (mA)<br />

GE<br />

Proprietary<br />

33


Spit Spark Response - Secondary<br />

Current and Voltage Waveforms<br />

GE<br />

Proprietary<br />

34


Examples of AVC ‘s at a Limit


AVC SPARK LIMITED – DOING IT’S JOB<br />

GE<br />

Proprietary<br />

36


T/R Current Limited with Sparking<br />

GE<br />

Proprietary<br />

37


T-R CURRENT LIMITED WITHOUT<br />

SPARKING<br />

GE<br />

Proprietary<br />

38


T-R VOLTAGE LIMITED WITH<br />

SPARKING<br />

GE<br />

Proprietary<br />

39


What is meant by “Healthy Limits?”<br />

• Primary or Secondary Limit is not healthy<br />

when accompanied by a Primary Voltage level<br />

< 90 VAC or a Secondary level < 12KV. It<br />

usually indicates a short circuit.<br />

• Secondary Voltage Limit is not healthy when<br />

there is very little Secondary Current. It usually<br />

indicates an open circuit.<br />

• Neither condition is aiding in particle capture<br />

GE<br />

Proprietary<br />

40


The T-R Set<br />

GE<br />

Proprietary<br />

+ +<br />

-<br />

L - 1<br />

L - 2<br />

SCR Stack<br />

Firing<br />

Circuit<br />

Automatic<br />

Voltage Control<br />

Microprocessor(s)<br />

Control<br />

Module<br />

Current Limiting<br />

Reactor (CLR)<br />

Primary Voltage<br />

Meter<br />

CT<br />

Primary<br />

Current Meter<br />

A<br />

V<br />

mA<br />

Transformer/Rectifier<br />

(T/R) Set<br />

Secondary<br />

mA Current<br />

Master<br />

Signal<br />

Resistor<br />

Secondary<br />

Voltage<br />

KV<br />

Meter<br />

Precipitator<br />

Field<br />

41


Transformer Rectifier (T/R) Set<br />

GE<br />

Proprietary<br />

42


Inside T/R Tank<br />

GE<br />

Proprietary<br />

43


High Voltage Transformer<br />

GE<br />

Proprietary<br />

44


Diode Stack<br />

GE<br />

Proprietary<br />

45


T/R Set -<br />

Low Voltage<br />

Junction Box<br />

GE<br />

Proprietary<br />

46


Low Voltage Junction Box<br />

GE<br />

Proprietary<br />

47


T/R Nameplate<br />

GE<br />

Proprietary<br />

48


The KV Meter<br />

GE<br />

Proprietary<br />

+ +<br />

-<br />

L - 1<br />

L - 2<br />

SCR Stack<br />

Firing<br />

Circuit<br />

Automatic<br />

Voltage Control<br />

Microprocessor(s)<br />

Control<br />

Module<br />

Current Limiting<br />

Reactor (CLR)<br />

Primary Voltage<br />

Meter<br />

CT<br />

Primary<br />

Current Meter<br />

A<br />

V<br />

mA<br />

Transformer/Rectifier<br />

(T/R) Set<br />

Secondary<br />

mA Current<br />

Master<br />

Signal<br />

Resistor<br />

Secondary<br />

Voltage<br />

KV<br />

Meter<br />

Precipitator<br />

Field<br />

49


Voltage Divider<br />

GE<br />

Proprietary<br />

50


SCR’S<br />

GE<br />

Proprietary<br />

+ +<br />

-<br />

L - 1<br />

L - 2<br />

SCR Stack<br />

Firing<br />

Circuit<br />

Automatic<br />

Voltage Control<br />

Microprocessor(s)<br />

Control<br />

Module<br />

Current Limiting<br />

Reactor (CLR)<br />

Primary Voltage<br />

Meter<br />

CT<br />

Primary<br />

Current Meter<br />

A<br />

V<br />

mA<br />

Transformer/Rectifier<br />

(T/R) Set<br />

Secondary<br />

mA Current<br />

Master<br />

Signal<br />

Resistor<br />

Secondary<br />

Voltage<br />

KV<br />

Meter<br />

Precipitator<br />

Field<br />

51


SCR<br />

GE<br />

Proprietary<br />

52


Typical Sine Wave<br />

GE<br />

Proprietary<br />

+<br />

-<br />

SCR<br />

Firing<br />

Angle<br />

(90°)<br />

Power<br />

On<br />

Conduction<br />

Angle<br />

(90°)<br />

Zero Crossings<br />

0° 90° 180° 270° 360°<br />

8.33 milliseconds<br />

Time<br />

53


SCR: Low Voltage to T-R Set<br />

GE<br />

Proprietary<br />

Firing Angle 140°<br />

Conduction angle 40°<br />

54


SCR: High Power to T-R Set<br />

GE<br />

Proprietary<br />

40 0<br />

Firing Angle 40°<br />

Conduction angle 140°<br />

55


The CLR<br />

GE<br />

Proprietary<br />

+ +<br />

-<br />

L - 1<br />

L - 2<br />

SCR Stack<br />

Firing<br />

Circuit<br />

Automatic<br />

Voltage Control<br />

Microprocessor(s)<br />

Control<br />

Module<br />

Current Limiting<br />

Reactor (CLR)<br />

Primary Voltage<br />

Meter<br />

CT<br />

Primary<br />

Current Meter<br />

A<br />

V<br />

mA<br />

Transformer/Rectifier<br />

(T/R) Set<br />

Secondary<br />

mA Current<br />

Master<br />

Signal<br />

Resistor<br />

Secondary<br />

Voltage<br />

KV<br />

Meter<br />

Precipitator<br />

Field<br />

56


Current Limiting Reactor (CLR)<br />

GE<br />

Proprietary<br />

57


Current Limiting Reactor<br />

GE<br />

Proprietary<br />

58


Current Limiting<br />

Reactor at T-R Set<br />

GE<br />

Proprietary<br />

59


SCR’s are why CLR’s are Needed<br />

• The diagram would<br />

represent the<br />

waveform with the<br />

SCRs turning on at 90°.<br />

• If this waveform were<br />

applied to the T/R set,<br />

very inefficient<br />

operation would occur.<br />

• Output power from the<br />

T/R set would be<br />

greatly reduced.<br />

GE<br />

Proprietary<br />

90° 90°<br />

60


Electrical Basics: CLR<br />

To increase the efficiency of the T/R set, a device called a<br />

CLR (current limiting reactor) is used. A CLR is an inductor.<br />

Recall that the property of an inductor is to oppose a change<br />

in current. Because of this property, the shape of the current<br />

waveform is changed and it starts looking more like a sine<br />

wave.<br />

GE<br />

Proprietary<br />

61


CLR Function<br />

• Limit short circuit current<br />

• Shape T/R secondary wave to be more<br />

sinusoidal<br />

• Provide proper form factor<br />

• Protect SCRs and T/R diodes from steep<br />

current rise<br />

• Increase precipitator voltage and current<br />

• Not to be confused with air core reactor<br />

GE<br />

Proprietary<br />

62


CLR – Waveform Changes with<br />

Impedance<br />

GE<br />

Proprietary<br />

63


Proper CLR Sizes for Common T/R<br />

Sets<br />

All T/R primaries are rated at 400V<br />

GE<br />

Proprietary<br />

PRI Current Sec. Current Minimum<br />

(Amps) (mA) (mH)<br />

40 250 13.0<br />

80 500 6.6<br />

120 750 4.4<br />

160 1000 3.3<br />

200 1250 2.6<br />

240 1500 2.2<br />

64


Basic Troubleshooting<br />

GE Energy


TR Nameplate Values<br />

(For this exercise)<br />

Primary Current 160 Amps<br />

Primary Voltage 480 Volts<br />

Secondary Current 1200 mA<br />

Secondary Voltage 45 kV<br />

GE<br />

Proprietary<br />

66


GE<br />

Proprietary<br />

First Indication<br />

160 480 1200 45<br />

Second Indication<br />

Short<br />

67


GE<br />

Proprietary<br />

Close Clearance<br />

160 480 1200 45<br />

68


GE<br />

Proprietary<br />

Conductive Dust, Outlet<br />

Field<br />

160 480 1200 45<br />

69


GE<br />

Proprietary<br />

Bad KV Return<br />

160 480 1200 45<br />

70


GE<br />

Proprietary<br />

Open<br />

160 480 1200 45<br />

71


GE<br />

Proprietary<br />

Normal Running<br />

Condition<br />

160 480 1200 45<br />

72


GE<br />

Proprietary<br />

SCRs Not Firing<br />

160 480 1200 45<br />

73


Questions?<br />

Thank You.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!