Catalog of solar heliostats - fik - fika.org!
Catalog of solar heliostats - fik - fika.org!
Catalog of solar heliostats - fik - fika.org!
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
T E C H N I C A L R E P O R T<br />
No. III - 1/00<br />
<strong>Catalog</strong> <strong>of</strong> Solar Heliostats<br />
June, 2000<br />
IEA-Solar Power and Chemical Energy Systems<br />
Task III: Solar Technology and Applications
SolarPACES, Operating Agent TASK III<br />
Deutsches Zentrum für Luft- und Raumfahrt e.V.<br />
Solare Energietechnik (DLR, EN-SE)<br />
D-51170 Köln<br />
Telephone: (0)2203-601-2479<br />
Telefax: (0)2203-66 900<br />
E-mail: <strong>solar</strong>e-energietechnik@dlr.de
<strong>Catalog</strong> <strong>of</strong> Solar Heliostats<br />
Editor : Thomas R. Mancini<br />
Sandia National Labotatories<br />
Solar Thermal Technology<br />
Albuquerque, N.M 87185, USA
i<br />
-- i --
ii<br />
FOREWORD<br />
This document was prepared as part <strong>of</strong> the International Energy Agency’s Solar Power<br />
and Chemical Energy Systems (IEA SolarPACES) Task III: Solar Technology<br />
Applications. The principal participants in assembling this material were: Peter Heller,<br />
Scott Jones, Manuel Romero, and Tom Mancini.<br />
There were only two requirements for having a heliostat included in the catalog:<br />
1) it must be available for purchase today; and<br />
2) the detailed information must be provided by the manufacturer <strong>of</strong> the heliostat.<br />
The information presented in this catalog was prepared by the manufacturers <strong>of</strong> the<br />
<strong>heliostats</strong> and has not been edited or changed in any way. Many <strong>of</strong> these <strong>heliostats</strong><br />
have been tested at Solar PACES’ member test facilities and test reports on their<br />
performance may be available on request.<br />
This document is for informational purposes only. The presence <strong>of</strong> a heliostat design in<br />
this catalog is not to be construed as an endorsement <strong>of</strong> the design or a validation <strong>of</strong><br />
the reported performance by SolarPACES or any <strong>of</strong> the member countries.<br />
Editor<br />
-- ii --<br />
December 23, 1999
iii<br />
Table <strong>of</strong> Contents<br />
Section <strong>of</strong> the Report Page No.<br />
Foreword --------------------------------------------------------------------------------- ii<br />
Table <strong>of</strong> Contents --------------------------------------------------------------------- iii<br />
List <strong>of</strong> Figures --------------------------------------------------------------------------- iv<br />
Instructions for Completing the Form ------------------------------------------- v<br />
What are <strong>heliostats</strong>? ------------------------------------------------------------------ 1<br />
What are the component parts <strong>of</strong> a heliostat? ------------------------------- 2<br />
What is the cost <strong>of</strong> a heliostat? --------------------------------------------------- 3<br />
Guidance to readers <strong>of</strong> this catalog.--------------------------------------------- 3<br />
Colon 70 Heliostat --------------------------------------------------------------------- 4<br />
SAIC Multi-Facet Stretched Membrane Heliostat -------------------------- 6<br />
PSI 120 Heliostat ---------------------------------------------------------------------- 8<br />
Sanlucar 90 Heliostat ---------------------------------------------------------------- 10<br />
Hellas 01 Heliostat -------------------------------------------------------------------- 12<br />
ATS H100 Heliostat ------------------------------------------------------------------- 15<br />
ATS H150 Heliostat ------------------------------------------------------------------- 16<br />
ATM 150 Heliostat ---------------------------------------------------------------- 17<br />
-- iii --
iv<br />
List <strong>of</strong> Figures<br />
Fig. 1 Solar Power Tower --------------------------------------------------- 1<br />
Fig. 2 Parts <strong>of</strong> a heliostat --------------------------------------------------- 2<br />
Fig. 3 Front View <strong>of</strong> the Colon 70 Heliostat --------------------------- 5<br />
Fig. 4 Back View <strong>of</strong> the Colon 70 Heliostat --------------------------- 5<br />
Fig. 5 SAIC Faceted Stretched-Membrane Heliostat -------------- 7<br />
Fig. 6 Front View <strong>of</strong> the PSI 120 Heliostat ---------------------------- 9<br />
Fig. 7 Back View <strong>of</strong> the PSI 120 Heliostat ---------------------------- 9<br />
Fig. 8 Finite Element Model <strong>of</strong> the Sanlucar Heliostat ------------ 11<br />
Fig. 9 Front View <strong>of</strong> the Hellas 01 Heliostat -------------------------- 13<br />
Fig. 10 Back View <strong>of</strong> the Hellas 01 Heliostat -------------------------- 13<br />
Fig. 11 The ATS H150 Heliostat ------------------------------------------- 16<br />
-- iv --
v<br />
The following instructions were prepared by the Task III Working Group and distributed<br />
to the heliostat manufacturers.<br />
Instructions for completing the form<br />
Line 1. Provide the name and model number <strong>of</strong> the heliostat. If you have more than one model, please<br />
complete a separate form for each model.<br />
Lines 2 -- 7. List the heliostat manufacturer and contact information for the responsible person. Please provide<br />
name, address, telephone and FAX numbers, email addresses and any other information that you<br />
feel is appropriate.<br />
Line 8. This section is for the physical data describing the heliostat.<br />
Line 9. How many <strong>heliostats</strong> <strong>of</strong> this model have been built? How many are operating in the field today?<br />
Line 10. What is the date <strong>of</strong> this design?<br />
Line 11. What is the area <strong>of</strong> the heliostat? What are its critical dimensions – i.e., length, width, height, etc.<br />
Line 12. How many facets are on the heliostat and what are their sizes?<br />
Line 13. Please describe the construction <strong>of</strong> the facets. How are they made? What are the materials<br />
Line 14. What is the size <strong>of</strong> glass lights used on the heliostat? What is its thickness and who is the glass<br />
manufacturer? If glass is not the reflective surface, please describe the reflective surface.<br />
Line 15. What is the measured reflectivity <strong>of</strong> the glass (or other reflective surface)? What instrument was<br />
used to measure the reflectivity?<br />
Lines 16 - 17. Please describe the azimuth and elevation drives. What kind <strong>of</strong> drives are they? i.e., worm, etc.<br />
Who makes the gear drives?<br />
Line 18. What are the respective gear reduction ratios on the azimuth drive? On the elevation drive?<br />
Line 19. Please describe your heliostat controller and control system. What hardware is used in these<br />
systems? What functional control does the s<strong>of</strong>tware provide? What information is passed back and<br />
forth between the master controller and the local controller? Who owns the s<strong>of</strong>tware?<br />
Line 20. What type <strong>of</strong> support is provided for your heliostat and drives? Please describe the type <strong>of</strong> support<br />
and its dimensions.<br />
Line 21. What is the total weight <strong>of</strong> the heliostat excluding the foundation?<br />
Line 22. Other Information – please provide any additional information that you feel is necessary to describe<br />
your heliostat.<br />
Line 23. In this section, we are asking you to document any test results for the heliostat. If test reports are<br />
available, please provide a complete reference in this section.<br />
Line 24. Where were tests performed and by whom?<br />
Lines 25 - 29. Please provide detailed descriptions <strong>of</strong> the tests and the test results.<br />
Line 30. What is the total heliostat error as characterized by the 1 σ value <strong>of</strong> the slope error distribution?<br />
Line 31. This section addresses the cost <strong>of</strong> the heliostat. This does not include shipping cost but should<br />
include consideration for installation.<br />
Line 32. What fraction <strong>of</strong> the total heliostat cost can be attributed to the facets? To the facet supports? To<br />
the elevation drive? To the azimuth drive? To the pedestal? To the controller? To installation?<br />
Line 33 - 38. This question addresses the cost <strong>of</strong> the heliostat based on the annual production. Please use<br />
production levels for which you have mad detailed calculations.<br />
39. Please provide an electronic photograph <strong>of</strong> your heliostat, if possible in color.<br />
40. Can you identify and briefly describe the top 3 design or technical issues that need addressed in<br />
order to reduce the cost <strong>of</strong> your heliostat below the values shown above? We all recognize that a<br />
large order will result in reduced costs, but please focus your answers to this question on processes,<br />
materials, or component costs.<br />
-- v --
vi<br />
‘<br />
WHAT ARE HELIOSTATS?<br />
Heliostats<br />
Heliostats provide the fuel for a power tower (sometimes referred to as a central<br />
receiver) power plant. Heliostats are named helio for sun and stat for the fact that the<br />
reflected <strong>solar</strong> image is maintained at a fixed position over the course <strong>of</strong> the day. They<br />
are nearly flat mirrors (some curvature is required to focus the sun’s image) that collect<br />
and concentrate the <strong>solar</strong> energy on a tower-mounted receiver located 100 to 1000<br />
meters distant. Figure 1 is a photograph <strong>of</strong> the power tower at Solar Two in Barstow,<br />
CA.<br />
Figure 1. The Solar Power Tower at Barstow, CA<br />
To maintain the sun’s image on the <strong>solar</strong> receiver, <strong>heliostats</strong> must at all times track a<br />
point in the sky that is midway between the sun and the receiver. The <strong>solar</strong> energy is<br />
collected at the receiver and delivered to a storage system or used directly to generate<br />
steam and power a conventional turbine generator. In Figure 1, the receiver is the<br />
small cylinder at the top <strong>of</strong> the tower. On top <strong>of</strong> the receiver is a crane used for its<br />
installation and maintenance. The bright white areas immediately above and below the<br />
receiver are the insulated headers, and the large trapezoidal areas below the receiver<br />
are targets that are used to align the glass facets <strong>of</strong> the <strong>heliostats</strong>. The light areas in<br />
the sky on either side <strong>of</strong> the receiver are the stand-by positions where <strong>heliostats</strong> are<br />
focused before tracking onto the receiver. The structures on the ground around the<br />
tower are the <strong>heliostats</strong>.<br />
Studies have shown that a 100 MW power tower would require nearly one million<br />
square meters <strong>of</strong> glass <strong>heliostats</strong>, corresponding to approximately 10,000, 100-m 2<br />
<strong>heliostats</strong>. The <strong>heliostats</strong> represent 40% to 50% <strong>of</strong> the cost <strong>of</strong> a power tower, so they<br />
-- vi --
2<br />
must be relatively low cost in order for cost <strong>of</strong> power from the plant to compete with that<br />
<strong>of</strong> fossil fuels.<br />
WHAT ARE THE COMPONENT PARTS OF A HELIOSTAT?<br />
The major components <strong>of</strong> a heliostat are shown in Figure 2 and described briefly below.<br />
These components are the mirror assemblies (typically glass and metal), the support<br />
structure, the pedestal and foundation, the tracking control system, and the drives.<br />
The mirror surfaces <strong>of</strong> state-<strong>of</strong>-the-art<br />
<strong>heliostats</strong> are made with thin silvered<br />
glass, which may or may not have a low<br />
iron content for enhanced reflection.<br />
Aluminum and silver polymer films have<br />
been under development for <strong>solar</strong><br />
applications for some time, but these<br />
materials have not yet demonstrated the<br />
ability to survive the 20 to 25 years<br />
required for power plant applications. In<br />
order to provide the proper contour for the<br />
optical surface and for attachment to the<br />
support structure, the glass may be<br />
bonded or otherwise attached to a metal,<br />
honeycomb or slumped-glass substrate<br />
that has been “shaped” to the proper<br />
curvature.<br />
The optical element support structure<br />
positions the mirrors accurately and<br />
carries the weight <strong>of</strong> the structure and<br />
wind loads through the drives to ground.<br />
For a heliostat, it is important that the mirror facets be located relative to one another so<br />
that each <strong>of</strong> their images is focused on the receiver at the top <strong>of</strong> the tower. The major<br />
issues that the heliostat designer must confront are the two requirements, e.g.<br />
maintaining mirror alignment and providing structural strength to carry wind loads<br />
through the structure to ground.<br />
By far the most common type <strong>of</strong> ground support for <strong>solar</strong> concentrators is the pouredin-place<br />
tubular pedestal. This is not the only type <strong>of</strong> tracking structure that has been<br />
used for <strong>heliostats</strong>, however. Alidade-type structures with pintel bearings and polar<br />
tracking structures have also been used (refer to the ASM 150 m 2 heliostat design.<br />
Tracking controls are the electronics and control algorithms that are used to provide the<br />
signals to the drive motors for maintaining the position <strong>of</strong> the concentrator relative to the<br />
sun. Heliostats must always track a point in the sky that is located midway between the<br />
receiver and the sun in order to reflect their images onto the receiver.<br />
The concentrator drive causes the heliostat to track across the sky in two axes, azimuth<br />
and elevation, to maintain the sun’s image at a predetermined location on the tower.<br />
The drive not only provide the tracking but it also must carry the weight <strong>of</strong> the<br />
concentrator and any wind loads to ground through the pedestal and foundation.<br />
-- 2 --<br />
Back<br />
Support<br />
Structure<br />
Torque<br />
Tube<br />
Drive<br />
Pedestal
3<br />
What is the cost <strong>of</strong> a heliostat?<br />
Power towers must have low capital and operations and maintenance costs in order to<br />
compete with the relatively low cost electrical power produced from the combustion <strong>of</strong><br />
fossil fuels. The <strong>heliostats</strong> currently represent 40 – 50% <strong>of</strong> the capital cost <strong>of</strong> a<br />
central receiver power plant.. The relative fraction <strong>of</strong> the total cost <strong>of</strong> a heliostat <strong>of</strong> its<br />
major components is shown in Table 1. below.<br />
Table 1. Concentrator Costs<br />
In mass production, the cost <strong>of</strong> a 100 m 2 heliostat or dish is projected to be from<br />
$12,000 to $15,000.<br />
Guidance to readers <strong>of</strong> this catalog.<br />
Component % <strong>of</strong> Cost<br />
Az and El Drives 30 - 35 %<br />
Mirror Assemblies 25 - 30%<br />
Structural Support 15 - 20%<br />
Assembly and Install 10 - 15%<br />
Pedestal and Foundation 10 - 15%<br />
Controls 5 - 10%<br />
The heliostat designs presented in this document are at various stages <strong>of</strong> development.<br />
Most <strong>of</strong> them are prototypes and, as such, have been tested but have not been<br />
deployed and operated for long periods <strong>of</strong> time. Also, designs and costs change<br />
quickly, so if you are interested in the most up to date information, we strongly<br />
recommend that you contact the manufacturers.<br />
-- 3 --
4<br />
Colon 70 Heliostat<br />
1. Name/Model Number <strong>of</strong> the Heliostat Colon 70<br />
2. Manufacturer Inabensa, Instalaciones Abengoa, S.A.<br />
3. Contact Rafael Osuna Gonzalez-Aguilar<br />
4. Address C/ Manuel Velasco Pando 7<br />
5. 41007 Sevilla<br />
6. SPAIN<br />
7. Telephone 34 954 93 60 00 FAX 34 954 93 60 15 Email rosuna@inabensa.abengoa.com<br />
8. Physical Data<br />
9. Number <strong>heliostats</strong> built 1<br />
10. Date <strong>of</strong> current design 1997<br />
11. Area (h, w) in meters H7.82m x W9.04m<br />
12. Facet (size, number) Facets = H1.1m x W3m = 3.3 m2 Nº Facets = H7 x W3 =21<br />
Reflective Surface = 21 x 3.3 m2= 69.3 m2<br />
13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table<br />
14. Glass (size <strong>of</strong> lights) H1.1m x W3m x 4mm Pilkington / Cristaleria Española<br />
15. Reflectivity 0.93 / 0.92 measured with a bidirectional reflectometer<br />
16. Azimuth drive Winsmith, worm-gear<br />
17. Elevation drive Winsmith, worm-gear<br />
18. Drive ratios (AZ/EL) Az 1:18000 & El 1:18000<br />
19. Controller Type CIEMAT hardware/s<strong>of</strong>tware & master/local controllers<br />
20. Pedestal Type Steel tube 0.5 m ∅<br />
21. Weight (w/o fndat) kg 4000 kg without foundations<br />
22. Other Information<br />
23. Performance<br />
24. Where were tests done? Wind Tunnel. Test Facility Installation at Plataforma Solar de Almeria<br />
25. Types <strong>of</strong> tests? Mechanical & Optical<br />
26. Descriptions Simulations in Wind Tunnel. Real performance at Test Facility during two years<br />
27. Wind perform Ok<br />
28. Elev/Az perform Ok<br />
29. Other test results Ok<br />
30. Heliost slope error (mr) 2.8 mrad (beam) 1.4 mrad (normal)<br />
31. Heliostat costs<br />
32. Cost by component<br />
(facets, facets suppts.,<br />
elev. Drive, azimuth<br />
drive, pedestal, control,<br />
etc.) in %<br />
33. Heliostat costs (build)<br />
34. i.e 1/yr 380 $/m2<br />
35. 100/yr 220 $/m2<br />
36. 1000/yr 130 $/m2<br />
37. /yr<br />
38. /yr<br />
Mirror 5%<br />
Frame 10%<br />
Structure 25%<br />
Drives 50%<br />
Pedestal 5%<br />
Control system 5%<br />
39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />
40. Critical Cost Issues<br />
-- 4 --
5<br />
Figure 3. Front View <strong>of</strong> the Colon 70 Heliostat on test at the PSA in Almeria, Spain<br />
Figure 4. Back structure <strong>of</strong> the Colon 70 heliostat with image shown on tower.<br />
-- 5 --
6<br />
SAIC Multi-Facet Stretched Membrane Heliostat<br />
1. Name/Model Number <strong>of</strong> the Heliostat Multi-Facet Stretched Membrane Heliostat<br />
2. Manufacturer SAIC Energy Products Division<br />
3. Contact Barry Butler<br />
4. Address SAIC<br />
5. 9455 Towne Centre Dr.<br />
6. San Diego, CA 92121<br />
7. Telephone (858)826-6004 FAX (858)826-6335 Email Barry.L.Butler@cpmx.saic.com<br />
8. Physical Data<br />
9. Number <strong>heliostats</strong> built 4<br />
10. Date <strong>of</strong> current design September 1998<br />
11. Area (h, w) in meters 19.3m wide x 13.0m high; Reflective area: 170.72 sq.m<br />
12. Facet (size, number) 22 round mirror facets, each 3.2 m in diameter<br />
13. Facet Construction Stretched membrane: stainless steel rings with welded s.s. membranes;<br />
mirrors adhesively applied to membranes<br />
14. Glass (size <strong>of</strong> lights) Standard is 3/32” float glass, back-silvered; largest tile ~1.2mx1.5m;<br />
Optionally, (about $4000 additional cost) 1 mm low-iron glass with 95.3%<br />
reflectance<br />
15. Reflectivity 89.6% new<br />
16. Azimuth drive Flenders (worm drive with spur gear reduction)<br />
17. Elevation drive Flenders (worm drive with spur gear reduction)<br />
18. Drive ratios (AZ/EL) 18615:1 in drive, 5.5:1 input motor speed reducer; overall: 102382.5:1<br />
19. Controller Type Microprocessor controller, RS-485 network, on/<strong>of</strong>f AC motor control<br />
20. Pedestal Type Flanged 30” diameter steel pipe attached at foundation with bolts; heliostat<br />
structure consists <strong>of</strong> a horizontal torque tube with vertical trusses to which<br />
facets are attached at 3 points each.<br />
21. Weight (w/o fndat) kg 10,000 kg (22,000 lb)<br />
22. Other Information Mirrors may be focused for short focal-length applications; Structure<br />
can be partially populated with facets to create a smaller system<br />
(e.g., 14 facets or 18 facets, instead <strong>of</strong> 22).<br />
23. Performance<br />
24. Where were tests done? NREL and Sandia National Labs<br />
25. Types <strong>of</strong> tests? Tracking, Optics, Wind Effects, Reliability<br />
26. Descriptions Beam Characterization System tests over multiple days; Evaluation <strong>of</strong><br />
tracking errors vs. time; Evaluation <strong>of</strong> tracking errors due to wind<br />
27. Wind perform Operate up to 15 mph; survive 90 mph in stow, 50 mph gust while tracking<br />
28. Elev/Az perform 0.03-0.04 degree std. Deviation from desired tracking point over time<br />
29. Other test results Achieved over 2100 hours <strong>of</strong> automated operation on two systems with<br />
overall availability >90%; Demonstrated operation <strong>of</strong> two networked<br />
systems with ~1000 m communication distance to central computer; test<br />
results in NREL/SR-550-25837 and<br />
30. Heliost slope error (mr) 1.5<br />
31. Heliostat costs<br />
32. Cost by component<br />
(facets, facets suppts.,<br />
elev. Drive, azimuth<br />
drive, pedestal, control,<br />
etc.) in %<br />
33. Heliostat costs (build)<br />
One unit: Facets 41%, Supports 40%, Drive System 11%, Pedestal 5.7%,<br />
Controls 2.3%<br />
2000 Units/year: Facets 26%, Supports 46%, Drive System 20%,<br />
Pedestal 6.6%, Controls 1.4%<br />
-- 6 --
7<br />
34. i.e 1/yr $137,000 total -- $100,000 Materials + $27,000 Installation + $10,000<br />
engineering (1998 US$)<br />
35. 100/yr<br />
36. 2000/yr $28,500 total -- $21,500 Materials + $4,950 Installation + $915<br />
OH/indirect/capital cost amortization (1998 US$)<br />
37. /yr<br />
38. /yr<br />
39. Photograph <strong>of</strong> heliostat<br />
40. Critical Cost Issues Drive systems are expensive and not easily available<br />
Figure 5. SAIC Heliostat on test at the National Renewable Energy Laboratory in Golden, CO, USA.<br />
-- 7 --
8<br />
1. Name/Model Number <strong>of</strong> the Heliostat PSI 120<br />
PSI 120 Heliostat<br />
2. Manufacturer Inabensa, Instalaciones Abengoa, S.A.<br />
3. Contact Rafael Osuna Gonzalez-Aguilar<br />
4. Address C/ Manuel Velasco Pando 7<br />
5. 41007 Sevilla<br />
6. SPAIN<br />
7. Telephone +34 954 93 60 00 FAX +34 954 93 60 15 Email rosuna@inabensa.abengoa.com<br />
8. Physical Data<br />
9. Number <strong>heliostats</strong> built 1<br />
10. Date <strong>of</strong> current design 1996<br />
11. Area (h, w) in meters H10.06m x W12.08m<br />
12. Facet (size, number) Facets = H1.1m x W3m = 3.3 m2 Nº Facets = (H9 x W4) +1 =37<br />
Reflective Surface = 37 x 3.3 m2= 122.1 m2<br />
13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table<br />
14. Glass (size <strong>of</strong> lights) H1.1m x W3m x 4mm Pilkington / Cristalería Española<br />
15. Reflectivity 0.93 / 0.92 measured with a reflectometer<br />
16. Azimuth drive Pujol Muntalá, worm-gear<br />
17. Elevation drive Pujol Muntalá, worm-gear<br />
18. Drive ratios (AZ/EL) Az 1:36000 & El 1:36000<br />
19. Controller Type Paul Scherrer Institut hardware/s<strong>of</strong>tware & master/local controllers<br />
20. Pedestal Type Steel tube 0.6 m ∅<br />
21. Weight (w/o fndat) kg 6500 kg without foundation<br />
22. Other Information<br />
23. Performance<br />
24. Where were tests done? Wind Tunnel & Test Facility installation<br />
25. Types <strong>of</strong> tests? Mechanical & Optical<br />
26. Descriptions Simulations in Wind Tunnel. Real performance at PSITest Facility during two years<br />
27. Wind perform Ok<br />
28. Elev/Az perform Ok<br />
29. Other test results Ok<br />
30. Heliost slope error (mr) 3.0 mrad beam (flat facets)<br />
31. Heliostat costs<br />
32. Cost by component<br />
(facets, facets suppts.,<br />
elev. Drive, azimuth<br />
drive, pedestal, control,<br />
etc.) in %<br />
33. Heliostat costs (build)<br />
34. i.e 1/yr 475 $/m2<br />
35. 100/yr 230 $/m2<br />
36. 1000/yr 150 $/m2<br />
37. /yr<br />
38. /yr<br />
Mirror 5%<br />
Frame 10%<br />
Structure 25%<br />
Drives 50%<br />
Pedestal 5%<br />
Control system 5%<br />
39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />
40. Critical Cost Issues<br />
-- 8 --
9<br />
Figure 6. Front view <strong>of</strong> the PSI 120 heliostat.<br />
Figure 7. Back view <strong>of</strong> the PSI 120 heliostat.<br />
-- 9 --
10<br />
Sanlucar 90 Heliostat<br />
1. Name/Model Number <strong>of</strong> the Heliostat Sanlucar 90<br />
2. Manufacturer Inabensa, Instalaciones Abengoa, S.A.<br />
3. Contact Rafael Osuna Gonzalez-Aguilar<br />
4. Address C/ Manuel Velasco Pando 7<br />
5. 41007 Sevilla<br />
6. SPAIN<br />
7. Telephone +34 954 93 60 00 FAX +34 954 93 60 15 Email rosuna@inabensa.abengoa.com<br />
8. Physical Data<br />
9. Number <strong>heliostats</strong> built Prototype in Construction (Expected by October 1999)<br />
10. Date <strong>of</strong> current design 1999<br />
11. Area (h, w) in meters H9.57m x W9.67m<br />
12. Facet (size, number) Facets = H1.35m x W3.21m = 4.33 m2 Nº Facets = H7 x W3 =21<br />
Reflective Surface = 21 x 4.33 m2= 91.0 m2<br />
13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table<br />
14. Glass (size <strong>of</strong> lights) H1.35m x W3.21m x 3mm Cristaleria Española<br />
15. Reflectivity 0.92 measured with a reflectometer<br />
16. Azimuth drive Winsmith, worm-gear / hydraulic<br />
17. Elevation drive Winsmith, worm-gear / hydraulic<br />
18. Drive ratios (AZ/EL) Az 1:18000 & El 1:18000<br />
19. Controller Type CIEMAT hardware/s<strong>of</strong>tware & master/local controllers<br />
20. Pedestal Type Concrete 0.5 m ∅<br />
21. Weight (w/o fndat) kg 3500 kg without foundations<br />
22. Other Information<br />
23. Performance<br />
24. Where were tests done? Planned in Wind Tunnel & in Test Facility Installation<br />
25. Types <strong>of</strong> tests? Mechanical & Optical<br />
26. Descriptions Simulations in Wind Tunnel. Real performance at Test Facility<br />
27. Wind perform<br />
28. Elev/Az perform<br />
29. Other test results<br />
30. Heliost slope error (mr) Expected lower than 2.8 mrad<br />
31. Heliostat costs<br />
32. Cost by component<br />
(facets, facets suppts.,<br />
elev. Drive, azimuth<br />
drive, pedestal, control,<br />
etc.) in %<br />
33. Heliostat costs (build)<br />
34. i.e 1/yr 360 $/m2<br />
35. 100/yr 210 $/m2<br />
36. 1000/yr 130 $/m2<br />
37. /yr<br />
38. /yr<br />
Mirror 5%<br />
Frame 10%<br />
Structure 25%<br />
Drives 50%<br />
Pedestal 5%<br />
Control system 5%<br />
39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />
40. Critical Cost Issues<br />
-- 10 --
11<br />
Figure 8. Support structure for the Sanlucar heliostat.<br />
-- 11 --
12<br />
HELLAS 01 Heliostat<br />
1. Name/Model Number <strong>of</strong> the Heliostat HELLAS ø1<br />
2. Manufacturer GHER S. A<br />
3. Contact MR. PEDRO GRIMALDI<br />
4. Address AV. DEL PUERTO 1-6-E<br />
5. 1006 CADIZ<br />
6. SPAIN<br />
7. Telephone +34-956-289311 FAX +34-956-282202 Email<br />
8. Physical Data<br />
9. Number <strong>heliostats</strong> built TWO<br />
10. Date <strong>of</strong> current design 1999<br />
11. Area (h, w) in meters 3,2 X 6 m (19,2 m²)<br />
12. Facet (size, number) 3,2 X 2 (9,4 m²) ; 3<br />
13. Facet Construction GLAS MIRROR OVER FRAME<br />
14. Glass (size <strong>of</strong> lights) 3,2 X 2 m<br />
15. Reflectivity 94 %<br />
16. Azimuth drive LINEAR ACTUATOR<br />
17. Elevation drive LINEAR ACTUATOR<br />
18. Drive ratios (AZ/EL) N/A / N/A<br />
19. Controller Type MICROPROCESSOR, SELF-SUFFICIENT<br />
20. Pedestal Type CONCRETE PILLAR, INTEGRATED WITH FOUNDATION.<br />
21. Weight (w/o fndat) kg 790 Kg.<br />
22. Other Information<br />
23. Performance<br />
24. Where were tests done? PLATAFORMA SOLAR ALMERIA<br />
25. Types <strong>of</strong> tests? OPTICAL, MECHANICAL, ENERGY CONSUMPTION.<br />
26. Descriptions BEAM QUALITY AND TRACKING CHARACTERISATION.<br />
27. Wind perform O.K<br />
28. Elev/Az perform O.K<br />
29. Other test results<br />
30. Heliost slope error (mr) 1.2 (normal)<br />
31. Heliostat costs<br />
32. Cost by component<br />
(facets, facets suppts.,<br />
elev. Drive, azimuth<br />
drive, pedestal, control,<br />
etc.) in %<br />
33. Heliostat costs (build) We are presently working on the reduction & determination <strong>of</strong> final costs.<br />
34. i.e 1/yr<br />
35. 100/yr<br />
36. /yr<br />
37. /yr<br />
38. /yr<br />
39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />
40. Critical Cost Issues STRUCTURE.<br />
-- 12 --
13<br />
Figure 9. Front view <strong>of</strong> the HELLAS 01 heliostat.<br />
Figure 10. Back view <strong>of</strong> the Hellas 01 heliostat.<br />
-- 13 --
14<br />
1. Name/Model Number <strong>of</strong> the Heliostat H100<br />
ATS H100<br />
2. Manufacturer Advanced Thermal Systems, Inc.<br />
3. Contact David Gorman<br />
4. Address 5031 W. Red Rock Drive<br />
5. Larkspur, CO 80118<br />
6.<br />
7. Telephone (303) 681-9480 FAX (303) 681-2668 Email DNGORMAN@COMPUSERVE.COM<br />
8. Physical Data<br />
9. Number <strong>heliostats</strong> built 2 Heliostats 756 Mirror Enhanced PV Trackers<br />
10. Date <strong>of</strong> current design 1983<br />
11. Area (h, w) in meters 95<br />
12. Facet (size, number) 4ft x 16ft, 16<br />
13. Facet Construction Silvered glass second surface mirrors bonded to formed sheet metal back<br />
14. Glass (size <strong>of</strong> lights) 4ft x 4ft<br />
15. Reflectivity 0.94<br />
16. Azimuth drive Two-stage worm Optional: Eccentric planetary<br />
17. Elevation drive Two-stage worm Optional: Combination worm/ballscrew<br />
18. Drive ratios (AZ/EL) 18,400/18,400 Optional: 16,560/<br />
19. Controller Type Open-loop, by central computer with individual microprocessor packages<br />
20. Pedestal Type 24 inch diameter flanged pipe<br />
21. Weight (w/o fndat) kg 3500<br />
22. Other Information<br />
23. Performance<br />
24. Where were tests done? Taft, CA USA by Arco Solar Inc.<br />
25. Types <strong>of</strong> tests? Structural loading (by Arco)<br />
26. Descriptions Structural: Using hydraulic cylinders to obtain az, el and cross-el loadings<br />
27. Wind perform Tracking capability up to 27 mph, survivable up to 90 mph<br />
28. Elev/Az perform Should be similar to H150<br />
29. Other test results<br />
30. Heliost slope error (mr) Should be similar to H150<br />
31. Heliostat costs<br />
32. Cost by component<br />
(facets, facets suppts.,<br />
elev. Drive, azimuth<br />
drive, pedestal, control,<br />
etc.) in %<br />
33. Heliostat costs (build)<br />
Mirror modules: 25%<br />
Gear-drive assy: 30%<br />
Support Structure: 15%<br />
Controls: 5%<br />
Other: 5%<br />
G&A & pr<strong>of</strong>it: 20%<br />
34. 1,000/yr $18,300 each<br />
35. /yr<br />
36. /yr<br />
37. /yr<br />
38. /yr<br />
39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />
40. Critical Cost Issues Gear drive assembly, glass<br />
-- 14 --
15<br />
1. Name/Model Number <strong>of</strong> the Heliostat H150<br />
ATS H150<br />
2. Manufacturer Advanced Thermal Systems, Inc.<br />
3. Contact David Gorman<br />
4. Address 5031 W. Red Rock Drive<br />
5. Larkspur, CO 80118<br />
6.<br />
7. Telephone (303) 681-9480 FAX (303) 681-2668 Email DNGORMAN@COMPUSERVE.COM<br />
8. Physical Data<br />
9. Number <strong>heliostats</strong> built 2 Heliostats 44 PV Trackers (No mirrors)<br />
10. Date <strong>of</strong> current design 1984<br />
11. Area (h, w) in meters 148<br />
12. Facet (size, number) 4ft x 20ft, 20<br />
13. Facet Construction Silvered glass second surface mirrors bonded to formed sheet metal back<br />
14. Glass (size <strong>of</strong> lights) 4ft x 4ft<br />
15. Reflectivity 0.94<br />
16. Azimuth drive Two-stage worm Optional: Eccentric planetary<br />
17. Elevation drive Two-stage worm Optional: Combination worm/ballscrew<br />
18. Drive ratios (AZ/EL) 18,400/18,400 Optional: 16,560/<br />
19. Controller Type Open-loop, by central computer with individual microprocessor packages<br />
20. Pedestal Type 24 inch diameter flanged pipe<br />
21. Weight (w/o fndat) kg 5000<br />
22. Other Information<br />
23. Performance<br />
24. Where were tests done? Taft, CA USA by Arco Solar Inc., and Albuqureque, NM USA by<br />
Sandia Labs<br />
25. Types <strong>of</strong> tests? Structural loading (by Arco), Tracking & beam quality (by Sandia)<br />
26. Descriptions Structural: Using hydraulic cylinders to obtain az, el and cross-el loadings<br />
Tracking Performance: Using video BCS to obtain tracking error<br />
data<br />
Beam Quality: Using BCS to obtain beam flux distribution data<br />
27. Wind perform Tracking capability up to 27 mph, survivable up to 90 mph<br />
28. Elev/Az perform See Sandia Report SAND92-1381<br />
29. Other test results See Sandia Report SAND92-1381<br />
30. Heliost slope error (mr) See Sandia Report SAND92-1381<br />
31. Heliostat costs<br />
32. Cost by component<br />
(facets, facets suppts.,<br />
elev. Drive, azimuth<br />
drive, pedestal, control,<br />
etc.) in %<br />
33. Heliostat costs (build)<br />
34. i.e 1/yr<br />
35. /yr<br />
36. 1,000 /yr $22,900 each<br />
37. /yr<br />
38. /yr<br />
Mirror modules: 25%<br />
Gear-drive assy: 30%<br />
Support structure: 15%<br />
Controls: 5%<br />
Other: 5%<br />
G&A & pr<strong>of</strong>it.: 20%<br />
39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />
40. Critical Cost Issues Gear drive assembly, glass<br />
-- 15 --
16<br />
Figure 11. Advanced Thermal Systems H150 heliostat on test at Sandia’s NSTTF.<br />
A photograph <strong>of</strong> the H100 was not available but it identical in construction to the H150, except smaller.<br />
-- 16 --
17<br />
AMS H150<br />
1. Name/Model Number <strong>of</strong> the Heliostat ASM-150<br />
2. Manufacturer Babcock Borsig Power Environment<br />
3. Contact Mr. Manfred Schmitz-Goeb<br />
4. Address D 51641 Gummersbach<br />
5.<br />
6. Germany<br />
7. Telephone +49.(0)2261.85.2067 FAX 49.(0)2261.85.2067 Email maschmit@steinmueller.<br />
de<br />
8. Physical Data<br />
9. Number <strong>heliostats</strong> built 1 built, 1 operated<br />
10. Date <strong>of</strong> current design 1995<br />
11. Area (h, w) in meters Circular heliostat ( r≅7m, A=150m² )<br />
12. Facet (size, number) Single element<br />
13. Facet Construction Metal stretched membrane<br />
14. Glass (size <strong>of</strong> lights) Thin glass mirror 0.9mm<br />
15. Reflectivity 0.94<br />
16. Azimuth drive Electric driven turn table with absolute position encoder<br />
17. Elevation drive Electric driven spoke wheel with absolute position encoder<br />
18. Drive ratios (AZ/EL) (AZ) 270° / (EL) 180°<br />
19. Controller Type Pulse-width modulated 4-quadrant servo controller using measured sun<br />
vector as input; resolution <strong>of</strong> 40000 increments/360° per axis<br />
20. Pedestal Type Platform or concrete ring and central core<br />
21. Weight (w/o fndat) kg
18<br />
39. Photograph <strong>of</strong> heliostat<br />
40. Critical Cost Issues<br />
-- 18 --
SSPS TECHNICAL REPORTS/<br />
SOLARPACES TECHNICAL REPORTS<br />
SSPS TR-1/79 - Martin Marietta Corp.; Heliostat Field and Data Acquisition<br />
Subsystem for CRS, December 1979<br />
SSPS TR-2/79 - McDonnell Douglas Corp.; CRS-Heliostat Field, Interface Control and<br />
Data Acquisition System, December 1979<br />
SSPS TR-1/80 - Sandia and DFVLR; Collector Qualification Tests for the IEA<br />
500 kWe Distributed Collector System, July 1980<br />
SSPS TR-2/80 - Belgonucleaire; Analysis <strong>of</strong> Special Hydraulical Effects in the SHTS<br />
Piping System, November 1980<br />
SSPS TR-3/80 - Interatom; Redesign <strong>of</strong> the CRS - Almeria Receiver Aperture and<br />
Comparison <strong>of</strong> Interatom and MMC Reference Heliostat Field Performance<br />
Calculations, November 1980<br />
SSPS TR-1/81 - Belgonucleaire; Tabernas Meteo Data Analysis Based on Evaluated<br />
Data Prepared by the SSPS-O.A., June 1981<br />
SSPS TR-2/81 - Belgonucleaire; DCS Instrumentation Review, June 1981<br />
SSPS TR-3/81 - Belgonucleaire; CRS Instrumentation Review, June 1981<br />
SSPS TR-4/81 - A. F. Baker, Sandia; IEA Small Solar Power Systems (SSPS),<br />
Project Review (January 1981), July 1981<br />
SSPS TR-5/81 - DFVLR; Device for the Measurement <strong>of</strong> Heat Flux Distributions<br />
(HFD) near the Receiver Aperture Plane <strong>of</strong> the Almeria CRS Solar Power Stations,<br />
November 1981<br />
SSPS TR-6/81 - DFVLR; Determination <strong>of</strong> the Spectral Reflectivity and the<br />
Bidirectional Reflectance Characteristics <strong>of</strong> Some White Surfaces, December 1981<br />
SSPS TR-1/82 - SSPS Workshop on Functional and Performance Characteristics <strong>of</strong><br />
Solar Thermal Pilot Plants, April 1982<br />
Part 1: A. Kalt - Results <strong>of</strong> the DCS-Plant Session<br />
Part 2: M. Becker - Results <strong>of</strong> the Tower Facilities Session<br />
SSPS TR-2/82 - G. von Tobel, Ch. Schelders and M. Real, E.I.R.; Concentrated Solar<br />
Flux Measurements at the IEA-SSPS Solar Central Receiver Power Plant, Tabernas-<br />
Almeria, April 1982<br />
SSPS TR-3/82 - G. Lemperle, DFVLR; Effect <strong>of</strong> Sunshape on Flux Distribution and<br />
Intercept Factor <strong>of</strong> the Solar Tower Power Plant at Almeria, September 1982
SSPS TR-1/83 - A. Kalt and J. G. Martin (editors);<br />
DCS-Midterm Workshop Proceedings (December 9+10, 1982), February 1983<br />
SSPS TR-2/83 - G. Lensch, K. Brudi and P. Lippert, Fachhochschule Wedel; FH-PTL<br />
Wedel Reflectometer, Type 02-1 No. 3, Final Report and Report on the Test Program,<br />
March 1983<br />
SSPS TR-3/83 - AGIP Nucleare and FRANCO TOSI; The Advanced Sodium Receiver<br />
(ASR) - Topic Reports, May 1983<br />
SSPS TR-4/83 - M. Becker, DFVLR (editor);<br />
SSPS-CRS Midterm Workshop, Tabernas, April 19+20, 1983, June 1983<br />
SSPS TR-5/83 - W. Bucher, DFVLR (editor); Investigations and Findings Concerning<br />
the Sodium Tank Leakages, July 1983<br />
SSPS TR-6/83 - Th. van Steenberghe, ITET; First Year Average Performance <strong>of</strong> the<br />
SSPS-DCS Plant, July 1983<br />
SSPS TR-7/83 - H. Jacobs, ITET; Thermal Losses <strong>of</strong> the Sodium Storage Vessels <strong>of</strong><br />
the Central Receiver System, November 1983<br />
SSPS TR-1/84 - C. S. Selvage (ITET); Executive Summary - IEA SSPS-CRS<br />
Workshop (April 1983), March 1984<br />
SSPS TR-2/84 - C. S. Selvage and J. G. Martin, (ITET); SSPS-DCS Proceedings <strong>of</strong><br />
the International Workshop "The First Term", Tabernas, December 6-8, 1983, May 1984<br />
SSPS TR-3/84 - J. P. Fabry, H. Richel, H. Lamotte, M. Vereb and P. Brusselaers;<br />
SESAM-DCS, A Computer Code for Solar System Modelling, March 1984<br />
Part 1: Analysis Report<br />
Part 2: How to use<br />
SSPS TR-4/84 - R. Carmona and J. G. Martin; The Control <strong>of</strong> Large Collector Arrays:<br />
The SSPS Experience, June 1984<br />
SSPS TR-5/84 - P. Wattiez, J. G. Martin and M. Andersson; SSPS-DCS Plant<br />
Performance "The Stair Step", June 1984<br />
SSPS TR-6/84 - B. Wong Swanson, Univ. <strong>of</strong> Arizona; Availability and Operation<br />
Frequency <strong>of</strong> Solar Thermal Systems, December 1984<br />
SSPS TR-7/84 - A. Brinner, DFVLR; IEA SSPS-CRS Calibration Report, Calibration<br />
<strong>of</strong> Relevant Measuring Sensors, December 1984
SSPS TR-1/85 - M. Becker, DFVLR (editor); Proceedings <strong>of</strong> the IEA-SSPS Experts<br />
Meeting on High Temperature Technology and Application, Atlanta, USA (June 18-21,<br />
1985), June 1985<br />
SSPS TR-2/85 - G. Lemperle, DFVLR; ASR-Thermodynamics, Results <strong>of</strong> a Numerical<br />
Simulation and Surface Temperature Measurements, October 1985<br />
SSPS TR-1/86 - M. Sanchez, R. Carmona and E. Zarza; Behavior <strong>of</strong> DCS Fields in a<br />
Wide Temperature Range. Present Status <strong>of</strong> Test Campaigns and Preliminary Results,<br />
May 1986<br />
SSPS TR-2/86 - M. Geyer, DFVLR (editor); Proceedings <strong>of</strong> the First IEA-SSPS Task<br />
IV Status Meeting on High Temperature Thermal Storage, Tabernas, July 3-4, 1986,<br />
Sept. 1986<br />
SSPS TR-3/86 - R. Carmona, F. Rosa, H. Jacobs and M. Sanchez; Evaluation <strong>of</strong><br />
Advanced Sodium Receiver Losses During Operation, December 1986<br />
SSPS TR-1/87 - M. Sanchez, R. Carmona, E. Zarza; Behavior <strong>of</strong> DCS Fields in a<br />
Wide Temperature Range, March 1987<br />
SSPS TR-2/87 - M. Becker, M. Böhmer, DFVLR (editors); Proceedings <strong>of</strong> the Third<br />
Meeting <strong>of</strong> SSPS - TASK III - Working Group on "High Temperature Receiver -<br />
Technology", Albuquerque, N.M., USA, March 3+4, 1987, June 1987<br />
SSPS TR-3/87 - Motor Columbus Consulting Engineers Inc., Baden, Switzerland;<br />
Lessons from the SSPS-CRS Sodium Fire Incident; June 1987<br />
SSPS TR-4/87 - Proceedings <strong>of</strong> the 2nd IEA-SSPS TASK IV Status Meeting on "High<br />
Temperature Thermal Storage", at SERI, August 24/25, 1987 (edited by M. Geyer), Nov.<br />
1987<br />
SSPS TR-5/87 - M. Geyer, K. Werner, F. Dinter; Evaluation <strong>of</strong> the Dual Medium<br />
Storage Tank (DMST) at the IEA-SSPS Project in Almeria (Spain), November 1987<br />
SSPS TR-1/88 - M. Becker, M. Böhmer, DLR (editors) Proceedings <strong>of</strong> the Fourth<br />
Meeting <strong>of</strong> SSPS - TASK III - Working Group on "High Temperature Receiver -<br />
Technology", Denver, Co., USA, June 20, 1988, September 1988<br />
SSPS TR-1/89 - F. Rosa, A. Valverde, J.M. Aranda, J. Aranda; Solar Furnace at the<br />
CESA-1 Tower: Construction and Applications to the HERMES Tests, March 1989<br />
SSPS TR-2/89 - Report <strong>of</strong> the Wire Pack Volumetric Receiver Tests Performed at the<br />
Plataforma Solar de Almeria, Spain in 1987 and 1988 (SSPS TASK VII - First<br />
Experiment), July 1989
SSPS TR-3/89 - M. Becker, M. Böhmer (DLR) (editors); W. Meinecke, E. v. Unger<br />
(Interatom) (authors); Volumetric Receiver Evaluation, Preparatory Material and<br />
Evaluation Report <strong>of</strong> Experts Meeting, in Cologne, January 1989, December 1989<br />
SSPS TR-1/90 - M. Becker, M. Böhmer (DLR) (editors); Volumetric Metal Foil<br />
Receiver CATREC, Development and Tests, December 1990<br />
SSPS TR-2/90 - M. Becker, M. Böhmer, W. Meinecke (editors); Proceedings <strong>of</strong> the<br />
Fifth Meeting <strong>of</strong> SSPS TASK III Working Group on "High Temperature Receiver<br />
Technology", Davos/CH, September 3rd-4th, 1990, December 1990<br />
SSPS TR-3/90 - M. Böhmer, W. Meinecke (editors); Proceedings <strong>of</strong> the First Meeting<br />
<strong>of</strong> SSPS TASK VIII Working Group on "Concentrator/Generator Systems for Small Solar<br />
Thermal Power Units", Davos/CH, September 3rd, 1990, December 1990<br />
SSPS TR-1/91 - M. Becker, M. Böhmer, S. Cordes (editors); DLR/CeramTec<br />
Volumetric Ceramic Foil Receiver, June 1991<br />
SSPS TR-2/91 - M. Böhmer, W. Meinecke (editors); Proceedings <strong>of</strong> the Volumetric<br />
Receiver Workshop, February 13 -15, 1991, Köln, March 1991<br />
SSPS TR-3/91 - M. Böhmer, U. Langnickel (editors); Proceedings <strong>of</strong> the Workshop on<br />
Methane Reforming, June 11 -13, 1991, Köln, September 1991<br />
SSPS TR-4/91 - M. Becker, M. Böhmer (editors); Proceedings <strong>of</strong> the Sixth Meeting <strong>of</strong><br />
SSPS Task III Working Group on "High Temperature Receiver Technology" and the<br />
Third Meeting <strong>of</strong> SSPS Task IV Working Group on "High Temperature Thermal<br />
Storage", August 16th, 1991, Denver, CO/USA, November 1991<br />
SSPS TR-5/91 - M. Böhmer, M. Becker (editors); Proceedings <strong>of</strong> the Second Meeting<br />
<strong>of</strong> SSPS TASK VIII Working Group on "Concentrator/Generator Systems for Small Solar<br />
Thermal Power Units", August 16th, 1991, Denver, CO/USA, November 1991<br />
SSPS TR-6/91 - R. Tamme, M. Geyer (editors); IEA - SSPS Task IV Report on High<br />
Temperature Thermal Storage, Activities 1988 - 1990, October 1991<br />
SSPS TR-1/92 - W. Meinecke, M. Becker, M. Böhmer (editors); Proceedings <strong>of</strong> the<br />
First Meeting <strong>of</strong> SolarPACES - Task 3 - Working Group on "Solar Technology and<br />
Applications", Almería (E), September 23th, 1992
SolarPACES TR-III-1/94 - M. Sánchez (editor); Proceedings <strong>of</strong> the Task III, Sector 2<br />
(Supporting Tools and Test Facilities) "Heliostat Field Operation Workshop",<br />
September 7 - 9, 1993, Almería/Spain<br />
SolarPACES TR-III-2/94 - A. Neumann; Flux Densities in the Focal Region <strong>of</strong> the PSA<br />
Solar Furnace (Report <strong>of</strong> a Measurement Campaign Performed from March 7 - 25,<br />
1994)<br />
SolarPACES TR-III-3/94 - M. Becker, M. Böhmer, R. Pitz-Paal (editors), Minutes <strong>of</strong> the<br />
Third Task-III-Meeting within IEA-SolarPACES on "Solar Technology and Applications",<br />
June 22 and 23 1994, Köln<br />
SolarPACES TR-III-4/94 - S. Cordes, M. Böhmer, R. Monterreal Espinosa, Test and<br />
Evaluation <strong>of</strong> the Schlaich, Bergermann und Partner Heliostat Prototype Concentrator,<br />
Final Report<br />
SolarPACES TR-III-5/94 - M. Becker, M, Böhmer, A. Neumann (editors), Proceedings<br />
<strong>of</strong> the Fourth Task-III-Meeting within IEA-SolarPACES on "Solar Technology and<br />
Applications", Moscow, September 24th, 1994-<br />
SolarPACES TR-III-1/95 - W. Meinecke, M. Becker, M. Böhmer (editors), Proceedings<br />
<strong>of</strong> the Fifth Meeting within SolarPACES - Task III - Working Group on "Solar Technology<br />
and Applications", PSI, Villigen, March 8th, 1995<br />
SolarPACES TR-III-2/95 - A. Neumann (editor), Proceedings <strong>of</strong> the High Flux and<br />
Temperature Measurement Workshop, DLR, Cologne, March 2 - 3, 1995<br />
SolarPACES TR-III-3/95 - M. Sánchez, E. Zarza, A Guide to Computer Programs<br />
Developed for Solar Thermal Technologies, Plataforma Solar de Almería, June 1995<br />
SolarPACES TR-III-4/95 - G. García Navajas, Technical Development <strong>of</strong> a New Stand-<br />
Alone Heliostat Field Control, Plataforma Solar de Almería, June 1995<br />
SolarPACES TR-III-5/95 - M. Sánchez (editor), The Solar Thermal Test Facilities Report<br />
(in preparation)<br />
SolarPACES TR-III-6/95 - W. Meinecke, M. Böhmer, M. Becker (editors), Proceedings<br />
<strong>of</strong> the Sixth Meeting within SolarPACES Task III - Working Group Meeting on "Solar<br />
Technology and Applications", Golden (USA), September 28th, 1995 and Stuttgart (D),<br />
October 10th, 1995<br />
SolarPACES TR-III-7/95 - J. Hansen (editor) The ANUTECH 400-m² Dish and Its Initial<br />
Applications (in preparation)
SolarPACES TR-III-1/96 - W. Meinecke, M. Böhmer, M. Becker (editors), Proceedings<br />
<strong>of</strong> the Seventh Meeting within SolarPACES Task III - Working Group Meeting on "Solar<br />
Technology and Applications", PSA, Almería (E), April 15th, 1996<br />
SolarPACES TR-III-2/96 - R. Pitz-Paal, Evaluation <strong>of</strong> the Catrec II Receiver Test, May,<br />
1996<br />
SolarPACES TR-III-3/96 - V. Scheglov et al, Investigation <strong>of</strong> the Action <strong>of</strong> Concentrated<br />
Solar Radiation on Material Surface Properties Using Polarization Measurements,<br />
October 1996<br />
SolarPACES TR-III-4/96 - R. Pitz-Paal, B. H<strong>of</strong>fschmidt, M. Böhmer, M. Becker (editors)<br />
Proceedings <strong>of</strong> the Eighth Task III-Meeting within IEA SolarPACES on "Solar<br />
Technology and Applications", Köln, October 15th, 1996<br />
SolarPACES TR-III-5/96 - A. Neumann (editor), Proceedings <strong>of</strong> the 3rd High Flux and<br />
Temperature Measurement Workshop, DLR, Cologne, October 16th, 1996<br />
SolarPACES TR-III-1/97 - W. Meinecke, M. Becker, M. Böhmer (editors), Proceedings<br />
<strong>of</strong> the Ninth Task III-Meeting within IEA SolarPACES on "Solar Technology and<br />
Applications", CNRS-IMP, Odeillo, April 8th and 9th, 1997<br />
SolarPACES TR-III-2/97 - A. Neumann, U. Groer (editors), Proceedings <strong>of</strong> the 4th High<br />
Flux and Temperature Measurement Workshop, Odeillo, April 11, 1997<br />
SolarPACES TR-III-3/97 - A. Roy (chief editor), W. Meinecke and M. Blanco Muriel (coeditors),<br />
Introductory Guidelines for Preparing Reports on Solar Thermal Power<br />
Systems, DLR, Cologne, July 1997<br />
SolarPACES TR-III-4/97 - M. Böhmer (editor) SolarPACES Task III, Solar Technology<br />
and Applications, Project Plans, September 1997<br />
SolarPACES TR-III-5/97 - Klaus Hennecke (editor), Advanced Hybrid Plant Concepts,<br />
DLR, Cologne, 1997<br />
SolarPACES TR-III-6/97 - M. Becker, K. Hennecke (editors) - Proceedings <strong>of</strong> the 10 th<br />
Task III Meeting within IEA SolarPACES on "Solar Technology and Applications",<br />
Sandia, Albuquerque, September 15, 1997<br />
SolarPACES TR-III-1/98 - M. Becker, R. Pitz-Paal (editors) - Proceedings <strong>of</strong> the 11 th<br />
Task III Meeting within IEA SolarPACES on "Solar Technology and Applications",<br />
Aguadulce, March 4 th , 1998<br />
SolarPACES TR-III-2/98 - M. Böhmer (editor) SolarPACES Task III, Solar Technology<br />
and Applications, Project Plans, October,1998
SolarPACES TR-III-3/98 - R. Pitz-Paal (editor), E. E. Shpilrain, O. S. Popel S. E. Frid,<br />
Advanced Solarized Cycles - A Hybrid Solar/Fossil Thermal Power Plant Simulation<br />
Using the TRNSYS S<strong>of</strong>tware', IVTAN, October, 1998<br />
SolarPACES TR-III-4/98 - R. Pitz-Paal, S. Jones, A TRNSYS Model Library for Solar<br />
Thermal Electric Components (STEC) - A Reference Manual, Release 1.0, 10/15/1998,<br />
DLR, October, 1998.<br />
SolarPACES TR-III-1/99 – M. Becker, R. Pitz-Paal, Proceedings <strong>of</strong> the 12 th Task III<br />
Meeting within IEA SolarPACES on “Solar Technology and Applications”, Cuernavaca,<br />
Mexico, October 29 th , 1998<br />
SolarPACES TR-III-2/99 – M. Becker, J. Kaluza, Proceedings <strong>of</strong> the 13 th Task III<br />
Meeting within IEA SolarPACES on “Solar Technology and Applications”, Kibbutz<br />
Shefayim, Israel, July 3rd, 1999<br />
SolarPACES TR-III-1/00 – T. Mancini, <strong>Catalog</strong> <strong>of</strong> Solar Heliostats, June 2000<br />
SolarPACES TR-III-2/00 – K. Hennecke, Proceedings <strong>of</strong> the 14 th Task III Meeting within<br />
IEA SolarPACES on “Solar Technology and Applications”, Sydney University, Australia,<br />
March, 1999
Distribution List<br />
AUS St. Kaneff, ANU, Canberra<br />
K. Lovegrove, ANU, Canberra<br />
W. Meike, NTU, Darwin<br />
W. Stein, Pacific Power Service, Sydney<br />
BRA R. Brito, National Dept. <strong>of</strong> Energy Development, Brasilia<br />
E.S. Camêlo Cavalcanti, CEPEL, Rio de Janeiro<br />
CH H. W. Fricker, Rickenbach<br />
P. Haueter, PSI, Villigen<br />
P. Kesselring, Urdorf<br />
A. Steinfeld, PSI, Villigen<br />
D M. Abele, DLR, Stuttgart<br />
H. Bastek, KFA-BEO, Jülich<br />
M. Becker, DLR, Köln<br />
R. Buck, DLR, Stuttgart<br />
F.-D. Doenitz, Schott-Rohrglas, Mitterteich<br />
G. Eisenbeiß, DLR, Köln<br />
Th. Fend, DLR, Köln<br />
K.-H. Funken, DLR, Köln<br />
M. Geyer, DLR, Almería<br />
W. Grasse, SolarPACES, Gifhorn<br />
K. Hennecke, DLR, Köln<br />
P. Heller, DLR, Almería<br />
B. H<strong>of</strong>fschmidt, DLR, Köln<br />
J. Kaluza, DLR, Köln<br />
R. Kistner, DLR, Almería<br />
H. Müller-Steinhagen, DLR, Stuttgart<br />
P. Nava, Flabeg Solar, Köln<br />
A. Neumann, DLR, Köln<br />
R. Pitz-Paal, DLR, Köln<br />
J. Rheinländer, ZSW, Stuttgart<br />
M. Schmitz-Goeb, Steinmüller, Gummersbach<br />
R. Tamme, DLR, Stuttgart<br />
E M. Blanco Muriel, PSA, Almería<br />
M.-L. Delgado, CIEMAT-IER, Madrid<br />
R. Monterreal Espinosa, PSA, Almeria<br />
R. Osuna, Inabensa, Sevilla<br />
M. Romero Álvarez, CIEMAT-IER, Madrid<br />
M. Sánchez González, CIEMAT-IER, Madrid<br />
A. Valverde Cantón, PSA, Almería<br />
E. Zarza Moya, PSA, Almería<br />
(PSA Reference Room (3 x) PSA, Almería (A. Sarre)<br />
ET M. Abdel Rahman, NREA, Cairo<br />
A. El-Zalabany, NREA, Cairo<br />
A M. Fayek, NREA, Cairo<br />
S. Zannoun, NREA, Cairo<br />
EU M. Sánchez Jiménez, EU, Brussels<br />
Ph. Schild, EU, Brussels<br />
L. Stathakis, EU, Brussels
- 2 -<br />
F A. Ferrière, IMP-CNRS, Odeillo<br />
G. Flamant, IMP-CNRS, Odeillo<br />
G. Olalde, IMP-CNRS, Odeillo<br />
O. Suzanne, IMP-CNRS, Odeillo<br />
IEA H.-J. Neef, IEA, Paris<br />
J. Tilley, IEA, Paris<br />
IL M. Epstein, WIS, Rehovot<br />
D. Faiman, Ben-Gurion Univ., Beer-Sheva<br />
J. Karni, WIS, Rehovot<br />
A. Kribus, WIS, Rehovot<br />
D. Liebermann, WIS, Rehovot<br />
A. Roy, Ben-Gurion Univ., Beer-Sheva<br />
D. Sagie, ROTEM, Beer-Sheva<br />
A. Yogev WIS, Rehovot<br />
MEX R. Almanza, UNAM, Mexico<br />
C. Estrada, Centro de Investigacion en Energia,<br />
Temixco, Morelos<br />
M. Huacuz Villamar, Instituto de Investicaciones Electricas,<br />
Cuernavaca, Moreles<br />
C. Ramos, Instituto de Investicaciones Electricas,<br />
Cuernavaca, Moreles<br />
RUS V.I. Iampolski, SPA Astrophysica, Moscow<br />
Y. Loktionov, INPW, Obninsk<br />
S. Malyshenko, IVTAN, Moscow<br />
O. Popel, IVTAN, Moscow<br />
E. Shpilrain, IVTAN, Moscow<br />
E. Tverianovich, VIESH, Moscow<br />
UK A. Gaye, Solargen, Cambridge<br />
R. Judd, British Gas Technology, Leicestershire<br />
N. Ranzetta, British Gas Technology, Leicestershire<br />
USA G. Burch, DOE, Washington<br />
R. Davenport, SAIC, San Diego<br />
S.D. Frier, KJC, Boron<br />
S. Jones, Sandia, Albuquerque<br />
G. J<strong>org</strong>ensen, NREL, Denver<br />
D. Kearney, Kearney and Associates, Del Mar<br />
G. Kolb, Sandia, Albuquerque<br />
A. Lewandowski, NREL, Denver<br />
T. Mancini, Sandia, Albuquerque<br />
H. Price, NREL, Denver<br />
C. Tyner, Sandia, Albuquerque<br />
T.A. Williams, NREL, Denver<br />
ZA L. van Heerden, ESKOM, South Africa