25.02.2013 Views

Catalog of solar heliostats - fik - fika.org!

Catalog of solar heliostats - fik - fika.org!

Catalog of solar heliostats - fik - fika.org!

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

T E C H N I C A L R E P O R T<br />

No. III - 1/00<br />

<strong>Catalog</strong> <strong>of</strong> Solar Heliostats<br />

June, 2000<br />

IEA-Solar Power and Chemical Energy Systems<br />

Task III: Solar Technology and Applications


SolarPACES, Operating Agent TASK III<br />

Deutsches Zentrum für Luft- und Raumfahrt e.V.<br />

Solare Energietechnik (DLR, EN-SE)<br />

D-51170 Köln<br />

Telephone: (0)2203-601-2479<br />

Telefax: (0)2203-66 900<br />

E-mail: <strong>solar</strong>e-energietechnik@dlr.de


<strong>Catalog</strong> <strong>of</strong> Solar Heliostats<br />

Editor : Thomas R. Mancini<br />

Sandia National Labotatories<br />

Solar Thermal Technology<br />

Albuquerque, N.M 87185, USA


i<br />

-- i --


ii<br />

FOREWORD<br />

This document was prepared as part <strong>of</strong> the International Energy Agency’s Solar Power<br />

and Chemical Energy Systems (IEA SolarPACES) Task III: Solar Technology<br />

Applications. The principal participants in assembling this material were: Peter Heller,<br />

Scott Jones, Manuel Romero, and Tom Mancini.<br />

There were only two requirements for having a heliostat included in the catalog:<br />

1) it must be available for purchase today; and<br />

2) the detailed information must be provided by the manufacturer <strong>of</strong> the heliostat.<br />

The information presented in this catalog was prepared by the manufacturers <strong>of</strong> the<br />

<strong>heliostats</strong> and has not been edited or changed in any way. Many <strong>of</strong> these <strong>heliostats</strong><br />

have been tested at Solar PACES’ member test facilities and test reports on their<br />

performance may be available on request.<br />

This document is for informational purposes only. The presence <strong>of</strong> a heliostat design in<br />

this catalog is not to be construed as an endorsement <strong>of</strong> the design or a validation <strong>of</strong><br />

the reported performance by SolarPACES or any <strong>of</strong> the member countries.<br />

Editor<br />

-- ii --<br />

December 23, 1999


iii<br />

Table <strong>of</strong> Contents<br />

Section <strong>of</strong> the Report Page No.<br />

Foreword --------------------------------------------------------------------------------- ii<br />

Table <strong>of</strong> Contents --------------------------------------------------------------------- iii<br />

List <strong>of</strong> Figures --------------------------------------------------------------------------- iv<br />

Instructions for Completing the Form ------------------------------------------- v<br />

What are <strong>heliostats</strong>? ------------------------------------------------------------------ 1<br />

What are the component parts <strong>of</strong> a heliostat? ------------------------------- 2<br />

What is the cost <strong>of</strong> a heliostat? --------------------------------------------------- 3<br />

Guidance to readers <strong>of</strong> this catalog.--------------------------------------------- 3<br />

Colon 70 Heliostat --------------------------------------------------------------------- 4<br />

SAIC Multi-Facet Stretched Membrane Heliostat -------------------------- 6<br />

PSI 120 Heliostat ---------------------------------------------------------------------- 8<br />

Sanlucar 90 Heliostat ---------------------------------------------------------------- 10<br />

Hellas 01 Heliostat -------------------------------------------------------------------- 12<br />

ATS H100 Heliostat ------------------------------------------------------------------- 15<br />

ATS H150 Heliostat ------------------------------------------------------------------- 16<br />

ATM 150 Heliostat ---------------------------------------------------------------- 17<br />

-- iii --


iv<br />

List <strong>of</strong> Figures<br />

Fig. 1 Solar Power Tower --------------------------------------------------- 1<br />

Fig. 2 Parts <strong>of</strong> a heliostat --------------------------------------------------- 2<br />

Fig. 3 Front View <strong>of</strong> the Colon 70 Heliostat --------------------------- 5<br />

Fig. 4 Back View <strong>of</strong> the Colon 70 Heliostat --------------------------- 5<br />

Fig. 5 SAIC Faceted Stretched-Membrane Heliostat -------------- 7<br />

Fig. 6 Front View <strong>of</strong> the PSI 120 Heliostat ---------------------------- 9<br />

Fig. 7 Back View <strong>of</strong> the PSI 120 Heliostat ---------------------------- 9<br />

Fig. 8 Finite Element Model <strong>of</strong> the Sanlucar Heliostat ------------ 11<br />

Fig. 9 Front View <strong>of</strong> the Hellas 01 Heliostat -------------------------- 13<br />

Fig. 10 Back View <strong>of</strong> the Hellas 01 Heliostat -------------------------- 13<br />

Fig. 11 The ATS H150 Heliostat ------------------------------------------- 16<br />

-- iv --


v<br />

The following instructions were prepared by the Task III Working Group and distributed<br />

to the heliostat manufacturers.<br />

Instructions for completing the form<br />

Line 1. Provide the name and model number <strong>of</strong> the heliostat. If you have more than one model, please<br />

complete a separate form for each model.<br />

Lines 2 -- 7. List the heliostat manufacturer and contact information for the responsible person. Please provide<br />

name, address, telephone and FAX numbers, email addresses and any other information that you<br />

feel is appropriate.<br />

Line 8. This section is for the physical data describing the heliostat.<br />

Line 9. How many <strong>heliostats</strong> <strong>of</strong> this model have been built? How many are operating in the field today?<br />

Line 10. What is the date <strong>of</strong> this design?<br />

Line 11. What is the area <strong>of</strong> the heliostat? What are its critical dimensions – i.e., length, width, height, etc.<br />

Line 12. How many facets are on the heliostat and what are their sizes?<br />

Line 13. Please describe the construction <strong>of</strong> the facets. How are they made? What are the materials<br />

Line 14. What is the size <strong>of</strong> glass lights used on the heliostat? What is its thickness and who is the glass<br />

manufacturer? If glass is not the reflective surface, please describe the reflective surface.<br />

Line 15. What is the measured reflectivity <strong>of</strong> the glass (or other reflective surface)? What instrument was<br />

used to measure the reflectivity?<br />

Lines 16 - 17. Please describe the azimuth and elevation drives. What kind <strong>of</strong> drives are they? i.e., worm, etc.<br />

Who makes the gear drives?<br />

Line 18. What are the respective gear reduction ratios on the azimuth drive? On the elevation drive?<br />

Line 19. Please describe your heliostat controller and control system. What hardware is used in these<br />

systems? What functional control does the s<strong>of</strong>tware provide? What information is passed back and<br />

forth between the master controller and the local controller? Who owns the s<strong>of</strong>tware?<br />

Line 20. What type <strong>of</strong> support is provided for your heliostat and drives? Please describe the type <strong>of</strong> support<br />

and its dimensions.<br />

Line 21. What is the total weight <strong>of</strong> the heliostat excluding the foundation?<br />

Line 22. Other Information – please provide any additional information that you feel is necessary to describe<br />

your heliostat.<br />

Line 23. In this section, we are asking you to document any test results for the heliostat. If test reports are<br />

available, please provide a complete reference in this section.<br />

Line 24. Where were tests performed and by whom?<br />

Lines 25 - 29. Please provide detailed descriptions <strong>of</strong> the tests and the test results.<br />

Line 30. What is the total heliostat error as characterized by the 1 σ value <strong>of</strong> the slope error distribution?<br />

Line 31. This section addresses the cost <strong>of</strong> the heliostat. This does not include shipping cost but should<br />

include consideration for installation.<br />

Line 32. What fraction <strong>of</strong> the total heliostat cost can be attributed to the facets? To the facet supports? To<br />

the elevation drive? To the azimuth drive? To the pedestal? To the controller? To installation?<br />

Line 33 - 38. This question addresses the cost <strong>of</strong> the heliostat based on the annual production. Please use<br />

production levels for which you have mad detailed calculations.<br />

39. Please provide an electronic photograph <strong>of</strong> your heliostat, if possible in color.<br />

40. Can you identify and briefly describe the top 3 design or technical issues that need addressed in<br />

order to reduce the cost <strong>of</strong> your heliostat below the values shown above? We all recognize that a<br />

large order will result in reduced costs, but please focus your answers to this question on processes,<br />

materials, or component costs.<br />

-- v --


vi<br />

‘<br />

WHAT ARE HELIOSTATS?<br />

Heliostats<br />

Heliostats provide the fuel for a power tower (sometimes referred to as a central<br />

receiver) power plant. Heliostats are named helio for sun and stat for the fact that the<br />

reflected <strong>solar</strong> image is maintained at a fixed position over the course <strong>of</strong> the day. They<br />

are nearly flat mirrors (some curvature is required to focus the sun’s image) that collect<br />

and concentrate the <strong>solar</strong> energy on a tower-mounted receiver located 100 to 1000<br />

meters distant. Figure 1 is a photograph <strong>of</strong> the power tower at Solar Two in Barstow,<br />

CA.<br />

Figure 1. The Solar Power Tower at Barstow, CA<br />

To maintain the sun’s image on the <strong>solar</strong> receiver, <strong>heliostats</strong> must at all times track a<br />

point in the sky that is midway between the sun and the receiver. The <strong>solar</strong> energy is<br />

collected at the receiver and delivered to a storage system or used directly to generate<br />

steam and power a conventional turbine generator. In Figure 1, the receiver is the<br />

small cylinder at the top <strong>of</strong> the tower. On top <strong>of</strong> the receiver is a crane used for its<br />

installation and maintenance. The bright white areas immediately above and below the<br />

receiver are the insulated headers, and the large trapezoidal areas below the receiver<br />

are targets that are used to align the glass facets <strong>of</strong> the <strong>heliostats</strong>. The light areas in<br />

the sky on either side <strong>of</strong> the receiver are the stand-by positions where <strong>heliostats</strong> are<br />

focused before tracking onto the receiver. The structures on the ground around the<br />

tower are the <strong>heliostats</strong>.<br />

Studies have shown that a 100 MW power tower would require nearly one million<br />

square meters <strong>of</strong> glass <strong>heliostats</strong>, corresponding to approximately 10,000, 100-m 2<br />

<strong>heliostats</strong>. The <strong>heliostats</strong> represent 40% to 50% <strong>of</strong> the cost <strong>of</strong> a power tower, so they<br />

-- vi --


2<br />

must be relatively low cost in order for cost <strong>of</strong> power from the plant to compete with that<br />

<strong>of</strong> fossil fuels.<br />

WHAT ARE THE COMPONENT PARTS OF A HELIOSTAT?<br />

The major components <strong>of</strong> a heliostat are shown in Figure 2 and described briefly below.<br />

These components are the mirror assemblies (typically glass and metal), the support<br />

structure, the pedestal and foundation, the tracking control system, and the drives.<br />

The mirror surfaces <strong>of</strong> state-<strong>of</strong>-the-art<br />

<strong>heliostats</strong> are made with thin silvered<br />

glass, which may or may not have a low<br />

iron content for enhanced reflection.<br />

Aluminum and silver polymer films have<br />

been under development for <strong>solar</strong><br />

applications for some time, but these<br />

materials have not yet demonstrated the<br />

ability to survive the 20 to 25 years<br />

required for power plant applications. In<br />

order to provide the proper contour for the<br />

optical surface and for attachment to the<br />

support structure, the glass may be<br />

bonded or otherwise attached to a metal,<br />

honeycomb or slumped-glass substrate<br />

that has been “shaped” to the proper<br />

curvature.<br />

The optical element support structure<br />

positions the mirrors accurately and<br />

carries the weight <strong>of</strong> the structure and<br />

wind loads through the drives to ground.<br />

For a heliostat, it is important that the mirror facets be located relative to one another so<br />

that each <strong>of</strong> their images is focused on the receiver at the top <strong>of</strong> the tower. The major<br />

issues that the heliostat designer must confront are the two requirements, e.g.<br />

maintaining mirror alignment and providing structural strength to carry wind loads<br />

through the structure to ground.<br />

By far the most common type <strong>of</strong> ground support for <strong>solar</strong> concentrators is the pouredin-place<br />

tubular pedestal. This is not the only type <strong>of</strong> tracking structure that has been<br />

used for <strong>heliostats</strong>, however. Alidade-type structures with pintel bearings and polar<br />

tracking structures have also been used (refer to the ASM 150 m 2 heliostat design.<br />

Tracking controls are the electronics and control algorithms that are used to provide the<br />

signals to the drive motors for maintaining the position <strong>of</strong> the concentrator relative to the<br />

sun. Heliostats must always track a point in the sky that is located midway between the<br />

receiver and the sun in order to reflect their images onto the receiver.<br />

The concentrator drive causes the heliostat to track across the sky in two axes, azimuth<br />

and elevation, to maintain the sun’s image at a predetermined location on the tower.<br />

The drive not only provide the tracking but it also must carry the weight <strong>of</strong> the<br />

concentrator and any wind loads to ground through the pedestal and foundation.<br />

-- 2 --<br />

Back<br />

Support<br />

Structure<br />

Torque<br />

Tube<br />

Drive<br />

Pedestal


3<br />

What is the cost <strong>of</strong> a heliostat?<br />

Power towers must have low capital and operations and maintenance costs in order to<br />

compete with the relatively low cost electrical power produced from the combustion <strong>of</strong><br />

fossil fuels. The <strong>heliostats</strong> currently represent 40 – 50% <strong>of</strong> the capital cost <strong>of</strong> a<br />

central receiver power plant.. The relative fraction <strong>of</strong> the total cost <strong>of</strong> a heliostat <strong>of</strong> its<br />

major components is shown in Table 1. below.<br />

Table 1. Concentrator Costs<br />

In mass production, the cost <strong>of</strong> a 100 m 2 heliostat or dish is projected to be from<br />

$12,000 to $15,000.<br />

Guidance to readers <strong>of</strong> this catalog.<br />

Component % <strong>of</strong> Cost<br />

Az and El Drives 30 - 35 %<br />

Mirror Assemblies 25 - 30%<br />

Structural Support 15 - 20%<br />

Assembly and Install 10 - 15%<br />

Pedestal and Foundation 10 - 15%<br />

Controls 5 - 10%<br />

The heliostat designs presented in this document are at various stages <strong>of</strong> development.<br />

Most <strong>of</strong> them are prototypes and, as such, have been tested but have not been<br />

deployed and operated for long periods <strong>of</strong> time. Also, designs and costs change<br />

quickly, so if you are interested in the most up to date information, we strongly<br />

recommend that you contact the manufacturers.<br />

-- 3 --


4<br />

Colon 70 Heliostat<br />

1. Name/Model Number <strong>of</strong> the Heliostat Colon 70<br />

2. Manufacturer Inabensa, Instalaciones Abengoa, S.A.<br />

3. Contact Rafael Osuna Gonzalez-Aguilar<br />

4. Address C/ Manuel Velasco Pando 7<br />

5. 41007 Sevilla<br />

6. SPAIN<br />

7. Telephone 34 954 93 60 00 FAX 34 954 93 60 15 Email rosuna@inabensa.abengoa.com<br />

8. Physical Data<br />

9. Number <strong>heliostats</strong> built 1<br />

10. Date <strong>of</strong> current design 1997<br />

11. Area (h, w) in meters H7.82m x W9.04m<br />

12. Facet (size, number) Facets = H1.1m x W3m = 3.3 m2 Nº Facets = H7 x W3 =21<br />

Reflective Surface = 21 x 3.3 m2= 69.3 m2<br />

13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table<br />

14. Glass (size <strong>of</strong> lights) H1.1m x W3m x 4mm Pilkington / Cristaleria Española<br />

15. Reflectivity 0.93 / 0.92 measured with a bidirectional reflectometer<br />

16. Azimuth drive Winsmith, worm-gear<br />

17. Elevation drive Winsmith, worm-gear<br />

18. Drive ratios (AZ/EL) Az 1:18000 & El 1:18000<br />

19. Controller Type CIEMAT hardware/s<strong>of</strong>tware & master/local controllers<br />

20. Pedestal Type Steel tube 0.5 m ∅<br />

21. Weight (w/o fndat) kg 4000 kg without foundations<br />

22. Other Information<br />

23. Performance<br />

24. Where were tests done? Wind Tunnel. Test Facility Installation at Plataforma Solar de Almeria<br />

25. Types <strong>of</strong> tests? Mechanical & Optical<br />

26. Descriptions Simulations in Wind Tunnel. Real performance at Test Facility during two years<br />

27. Wind perform Ok<br />

28. Elev/Az perform Ok<br />

29. Other test results Ok<br />

30. Heliost slope error (mr) 2.8 mrad (beam) 1.4 mrad (normal)<br />

31. Heliostat costs<br />

32. Cost by component<br />

(facets, facets suppts.,<br />

elev. Drive, azimuth<br />

drive, pedestal, control,<br />

etc.) in %<br />

33. Heliostat costs (build)<br />

34. i.e 1/yr 380 $/m2<br />

35. 100/yr 220 $/m2<br />

36. 1000/yr 130 $/m2<br />

37. /yr<br />

38. /yr<br />

Mirror 5%<br />

Frame 10%<br />

Structure 25%<br />

Drives 50%<br />

Pedestal 5%<br />

Control system 5%<br />

39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />

40. Critical Cost Issues<br />

-- 4 --


5<br />

Figure 3. Front View <strong>of</strong> the Colon 70 Heliostat on test at the PSA in Almeria, Spain<br />

Figure 4. Back structure <strong>of</strong> the Colon 70 heliostat with image shown on tower.<br />

-- 5 --


6<br />

SAIC Multi-Facet Stretched Membrane Heliostat<br />

1. Name/Model Number <strong>of</strong> the Heliostat Multi-Facet Stretched Membrane Heliostat<br />

2. Manufacturer SAIC Energy Products Division<br />

3. Contact Barry Butler<br />

4. Address SAIC<br />

5. 9455 Towne Centre Dr.<br />

6. San Diego, CA 92121<br />

7. Telephone (858)826-6004 FAX (858)826-6335 Email Barry.L.Butler@cpmx.saic.com<br />

8. Physical Data<br />

9. Number <strong>heliostats</strong> built 4<br />

10. Date <strong>of</strong> current design September 1998<br />

11. Area (h, w) in meters 19.3m wide x 13.0m high; Reflective area: 170.72 sq.m<br />

12. Facet (size, number) 22 round mirror facets, each 3.2 m in diameter<br />

13. Facet Construction Stretched membrane: stainless steel rings with welded s.s. membranes;<br />

mirrors adhesively applied to membranes<br />

14. Glass (size <strong>of</strong> lights) Standard is 3/32” float glass, back-silvered; largest tile ~1.2mx1.5m;<br />

Optionally, (about $4000 additional cost) 1 mm low-iron glass with 95.3%<br />

reflectance<br />

15. Reflectivity 89.6% new<br />

16. Azimuth drive Flenders (worm drive with spur gear reduction)<br />

17. Elevation drive Flenders (worm drive with spur gear reduction)<br />

18. Drive ratios (AZ/EL) 18615:1 in drive, 5.5:1 input motor speed reducer; overall: 102382.5:1<br />

19. Controller Type Microprocessor controller, RS-485 network, on/<strong>of</strong>f AC motor control<br />

20. Pedestal Type Flanged 30” diameter steel pipe attached at foundation with bolts; heliostat<br />

structure consists <strong>of</strong> a horizontal torque tube with vertical trusses to which<br />

facets are attached at 3 points each.<br />

21. Weight (w/o fndat) kg 10,000 kg (22,000 lb)<br />

22. Other Information Mirrors may be focused for short focal-length applications; Structure<br />

can be partially populated with facets to create a smaller system<br />

(e.g., 14 facets or 18 facets, instead <strong>of</strong> 22).<br />

23. Performance<br />

24. Where were tests done? NREL and Sandia National Labs<br />

25. Types <strong>of</strong> tests? Tracking, Optics, Wind Effects, Reliability<br />

26. Descriptions Beam Characterization System tests over multiple days; Evaluation <strong>of</strong><br />

tracking errors vs. time; Evaluation <strong>of</strong> tracking errors due to wind<br />

27. Wind perform Operate up to 15 mph; survive 90 mph in stow, 50 mph gust while tracking<br />

28. Elev/Az perform 0.03-0.04 degree std. Deviation from desired tracking point over time<br />

29. Other test results Achieved over 2100 hours <strong>of</strong> automated operation on two systems with<br />

overall availability >90%; Demonstrated operation <strong>of</strong> two networked<br />

systems with ~1000 m communication distance to central computer; test<br />

results in NREL/SR-550-25837 and<br />

30. Heliost slope error (mr) 1.5<br />

31. Heliostat costs<br />

32. Cost by component<br />

(facets, facets suppts.,<br />

elev. Drive, azimuth<br />

drive, pedestal, control,<br />

etc.) in %<br />

33. Heliostat costs (build)<br />

One unit: Facets 41%, Supports 40%, Drive System 11%, Pedestal 5.7%,<br />

Controls 2.3%<br />

2000 Units/year: Facets 26%, Supports 46%, Drive System 20%,<br />

Pedestal 6.6%, Controls 1.4%<br />

-- 6 --


7<br />

34. i.e 1/yr $137,000 total -- $100,000 Materials + $27,000 Installation + $10,000<br />

engineering (1998 US$)<br />

35. 100/yr<br />

36. 2000/yr $28,500 total -- $21,500 Materials + $4,950 Installation + $915<br />

OH/indirect/capital cost amortization (1998 US$)<br />

37. /yr<br />

38. /yr<br />

39. Photograph <strong>of</strong> heliostat<br />

40. Critical Cost Issues Drive systems are expensive and not easily available<br />

Figure 5. SAIC Heliostat on test at the National Renewable Energy Laboratory in Golden, CO, USA.<br />

-- 7 --


8<br />

1. Name/Model Number <strong>of</strong> the Heliostat PSI 120<br />

PSI 120 Heliostat<br />

2. Manufacturer Inabensa, Instalaciones Abengoa, S.A.<br />

3. Contact Rafael Osuna Gonzalez-Aguilar<br />

4. Address C/ Manuel Velasco Pando 7<br />

5. 41007 Sevilla<br />

6. SPAIN<br />

7. Telephone +34 954 93 60 00 FAX +34 954 93 60 15 Email rosuna@inabensa.abengoa.com<br />

8. Physical Data<br />

9. Number <strong>heliostats</strong> built 1<br />

10. Date <strong>of</strong> current design 1996<br />

11. Area (h, w) in meters H10.06m x W12.08m<br />

12. Facet (size, number) Facets = H1.1m x W3m = 3.3 m2 Nº Facets = (H9 x W4) +1 =37<br />

Reflective Surface = 37 x 3.3 m2= 122.1 m2<br />

13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table<br />

14. Glass (size <strong>of</strong> lights) H1.1m x W3m x 4mm Pilkington / Cristalería Española<br />

15. Reflectivity 0.93 / 0.92 measured with a reflectometer<br />

16. Azimuth drive Pujol Muntalá, worm-gear<br />

17. Elevation drive Pujol Muntalá, worm-gear<br />

18. Drive ratios (AZ/EL) Az 1:36000 & El 1:36000<br />

19. Controller Type Paul Scherrer Institut hardware/s<strong>of</strong>tware & master/local controllers<br />

20. Pedestal Type Steel tube 0.6 m ∅<br />

21. Weight (w/o fndat) kg 6500 kg without foundation<br />

22. Other Information<br />

23. Performance<br />

24. Where were tests done? Wind Tunnel & Test Facility installation<br />

25. Types <strong>of</strong> tests? Mechanical & Optical<br />

26. Descriptions Simulations in Wind Tunnel. Real performance at PSITest Facility during two years<br />

27. Wind perform Ok<br />

28. Elev/Az perform Ok<br />

29. Other test results Ok<br />

30. Heliost slope error (mr) 3.0 mrad beam (flat facets)<br />

31. Heliostat costs<br />

32. Cost by component<br />

(facets, facets suppts.,<br />

elev. Drive, azimuth<br />

drive, pedestal, control,<br />

etc.) in %<br />

33. Heliostat costs (build)<br />

34. i.e 1/yr 475 $/m2<br />

35. 100/yr 230 $/m2<br />

36. 1000/yr 150 $/m2<br />

37. /yr<br />

38. /yr<br />

Mirror 5%<br />

Frame 10%<br />

Structure 25%<br />

Drives 50%<br />

Pedestal 5%<br />

Control system 5%<br />

39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />

40. Critical Cost Issues<br />

-- 8 --


9<br />

Figure 6. Front view <strong>of</strong> the PSI 120 heliostat.<br />

Figure 7. Back view <strong>of</strong> the PSI 120 heliostat.<br />

-- 9 --


10<br />

Sanlucar 90 Heliostat<br />

1. Name/Model Number <strong>of</strong> the Heliostat Sanlucar 90<br />

2. Manufacturer Inabensa, Instalaciones Abengoa, S.A.<br />

3. Contact Rafael Osuna Gonzalez-Aguilar<br />

4. Address C/ Manuel Velasco Pando 7<br />

5. 41007 Sevilla<br />

6. SPAIN<br />

7. Telephone +34 954 93 60 00 FAX +34 954 93 60 15 Email rosuna@inabensa.abengoa.com<br />

8. Physical Data<br />

9. Number <strong>heliostats</strong> built Prototype in Construction (Expected by October 1999)<br />

10. Date <strong>of</strong> current design 1999<br />

11. Area (h, w) in meters H9.57m x W9.67m<br />

12. Facet (size, number) Facets = H1.35m x W3.21m = 4.33 m2 Nº Facets = H7 x W3 =21<br />

Reflective Surface = 21 x 4.33 m2= 91.0 m2<br />

13. Facet Construction Mirror fixed to steel frame with steel nails on a facets jig table<br />

14. Glass (size <strong>of</strong> lights) H1.35m x W3.21m x 3mm Cristaleria Española<br />

15. Reflectivity 0.92 measured with a reflectometer<br />

16. Azimuth drive Winsmith, worm-gear / hydraulic<br />

17. Elevation drive Winsmith, worm-gear / hydraulic<br />

18. Drive ratios (AZ/EL) Az 1:18000 & El 1:18000<br />

19. Controller Type CIEMAT hardware/s<strong>of</strong>tware & master/local controllers<br />

20. Pedestal Type Concrete 0.5 m ∅<br />

21. Weight (w/o fndat) kg 3500 kg without foundations<br />

22. Other Information<br />

23. Performance<br />

24. Where were tests done? Planned in Wind Tunnel & in Test Facility Installation<br />

25. Types <strong>of</strong> tests? Mechanical & Optical<br />

26. Descriptions Simulations in Wind Tunnel. Real performance at Test Facility<br />

27. Wind perform<br />

28. Elev/Az perform<br />

29. Other test results<br />

30. Heliost slope error (mr) Expected lower than 2.8 mrad<br />

31. Heliostat costs<br />

32. Cost by component<br />

(facets, facets suppts.,<br />

elev. Drive, azimuth<br />

drive, pedestal, control,<br />

etc.) in %<br />

33. Heliostat costs (build)<br />

34. i.e 1/yr 360 $/m2<br />

35. 100/yr 210 $/m2<br />

36. 1000/yr 130 $/m2<br />

37. /yr<br />

38. /yr<br />

Mirror 5%<br />

Frame 10%<br />

Structure 25%<br />

Drives 50%<br />

Pedestal 5%<br />

Control system 5%<br />

39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />

40. Critical Cost Issues<br />

-- 10 --


11<br />

Figure 8. Support structure for the Sanlucar heliostat.<br />

-- 11 --


12<br />

HELLAS 01 Heliostat<br />

1. Name/Model Number <strong>of</strong> the Heliostat HELLAS ø1<br />

2. Manufacturer GHER S. A<br />

3. Contact MR. PEDRO GRIMALDI<br />

4. Address AV. DEL PUERTO 1-6-E<br />

5. 1006 CADIZ<br />

6. SPAIN<br />

7. Telephone +34-956-289311 FAX +34-956-282202 Email<br />

8. Physical Data<br />

9. Number <strong>heliostats</strong> built TWO<br />

10. Date <strong>of</strong> current design 1999<br />

11. Area (h, w) in meters 3,2 X 6 m (19,2 m²)<br />

12. Facet (size, number) 3,2 X 2 (9,4 m²) ; 3<br />

13. Facet Construction GLAS MIRROR OVER FRAME<br />

14. Glass (size <strong>of</strong> lights) 3,2 X 2 m<br />

15. Reflectivity 94 %<br />

16. Azimuth drive LINEAR ACTUATOR<br />

17. Elevation drive LINEAR ACTUATOR<br />

18. Drive ratios (AZ/EL) N/A / N/A<br />

19. Controller Type MICROPROCESSOR, SELF-SUFFICIENT<br />

20. Pedestal Type CONCRETE PILLAR, INTEGRATED WITH FOUNDATION.<br />

21. Weight (w/o fndat) kg 790 Kg.<br />

22. Other Information<br />

23. Performance<br />

24. Where were tests done? PLATAFORMA SOLAR ALMERIA<br />

25. Types <strong>of</strong> tests? OPTICAL, MECHANICAL, ENERGY CONSUMPTION.<br />

26. Descriptions BEAM QUALITY AND TRACKING CHARACTERISATION.<br />

27. Wind perform O.K<br />

28. Elev/Az perform O.K<br />

29. Other test results<br />

30. Heliost slope error (mr) 1.2 (normal)<br />

31. Heliostat costs<br />

32. Cost by component<br />

(facets, facets suppts.,<br />

elev. Drive, azimuth<br />

drive, pedestal, control,<br />

etc.) in %<br />

33. Heliostat costs (build) We are presently working on the reduction & determination <strong>of</strong> final costs.<br />

34. i.e 1/yr<br />

35. 100/yr<br />

36. /yr<br />

37. /yr<br />

38. /yr<br />

39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />

40. Critical Cost Issues STRUCTURE.<br />

-- 12 --


13<br />

Figure 9. Front view <strong>of</strong> the HELLAS 01 heliostat.<br />

Figure 10. Back view <strong>of</strong> the Hellas 01 heliostat.<br />

-- 13 --


14<br />

1. Name/Model Number <strong>of</strong> the Heliostat H100<br />

ATS H100<br />

2. Manufacturer Advanced Thermal Systems, Inc.<br />

3. Contact David Gorman<br />

4. Address 5031 W. Red Rock Drive<br />

5. Larkspur, CO 80118<br />

6.<br />

7. Telephone (303) 681-9480 FAX (303) 681-2668 Email DNGORMAN@COMPUSERVE.COM<br />

8. Physical Data<br />

9. Number <strong>heliostats</strong> built 2 Heliostats 756 Mirror Enhanced PV Trackers<br />

10. Date <strong>of</strong> current design 1983<br />

11. Area (h, w) in meters 95<br />

12. Facet (size, number) 4ft x 16ft, 16<br />

13. Facet Construction Silvered glass second surface mirrors bonded to formed sheet metal back<br />

14. Glass (size <strong>of</strong> lights) 4ft x 4ft<br />

15. Reflectivity 0.94<br />

16. Azimuth drive Two-stage worm Optional: Eccentric planetary<br />

17. Elevation drive Two-stage worm Optional: Combination worm/ballscrew<br />

18. Drive ratios (AZ/EL) 18,400/18,400 Optional: 16,560/<br />

19. Controller Type Open-loop, by central computer with individual microprocessor packages<br />

20. Pedestal Type 24 inch diameter flanged pipe<br />

21. Weight (w/o fndat) kg 3500<br />

22. Other Information<br />

23. Performance<br />

24. Where were tests done? Taft, CA USA by Arco Solar Inc.<br />

25. Types <strong>of</strong> tests? Structural loading (by Arco)<br />

26. Descriptions Structural: Using hydraulic cylinders to obtain az, el and cross-el loadings<br />

27. Wind perform Tracking capability up to 27 mph, survivable up to 90 mph<br />

28. Elev/Az perform Should be similar to H150<br />

29. Other test results<br />

30. Heliost slope error (mr) Should be similar to H150<br />

31. Heliostat costs<br />

32. Cost by component<br />

(facets, facets suppts.,<br />

elev. Drive, azimuth<br />

drive, pedestal, control,<br />

etc.) in %<br />

33. Heliostat costs (build)<br />

Mirror modules: 25%<br />

Gear-drive assy: 30%<br />

Support Structure: 15%<br />

Controls: 5%<br />

Other: 5%<br />

G&A & pr<strong>of</strong>it: 20%<br />

34. 1,000/yr $18,300 each<br />

35. /yr<br />

36. /yr<br />

37. /yr<br />

38. /yr<br />

39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />

40. Critical Cost Issues Gear drive assembly, glass<br />

-- 14 --


15<br />

1. Name/Model Number <strong>of</strong> the Heliostat H150<br />

ATS H150<br />

2. Manufacturer Advanced Thermal Systems, Inc.<br />

3. Contact David Gorman<br />

4. Address 5031 W. Red Rock Drive<br />

5. Larkspur, CO 80118<br />

6.<br />

7. Telephone (303) 681-9480 FAX (303) 681-2668 Email DNGORMAN@COMPUSERVE.COM<br />

8. Physical Data<br />

9. Number <strong>heliostats</strong> built 2 Heliostats 44 PV Trackers (No mirrors)<br />

10. Date <strong>of</strong> current design 1984<br />

11. Area (h, w) in meters 148<br />

12. Facet (size, number) 4ft x 20ft, 20<br />

13. Facet Construction Silvered glass second surface mirrors bonded to formed sheet metal back<br />

14. Glass (size <strong>of</strong> lights) 4ft x 4ft<br />

15. Reflectivity 0.94<br />

16. Azimuth drive Two-stage worm Optional: Eccentric planetary<br />

17. Elevation drive Two-stage worm Optional: Combination worm/ballscrew<br />

18. Drive ratios (AZ/EL) 18,400/18,400 Optional: 16,560/<br />

19. Controller Type Open-loop, by central computer with individual microprocessor packages<br />

20. Pedestal Type 24 inch diameter flanged pipe<br />

21. Weight (w/o fndat) kg 5000<br />

22. Other Information<br />

23. Performance<br />

24. Where were tests done? Taft, CA USA by Arco Solar Inc., and Albuqureque, NM USA by<br />

Sandia Labs<br />

25. Types <strong>of</strong> tests? Structural loading (by Arco), Tracking & beam quality (by Sandia)<br />

26. Descriptions Structural: Using hydraulic cylinders to obtain az, el and cross-el loadings<br />

Tracking Performance: Using video BCS to obtain tracking error<br />

data<br />

Beam Quality: Using BCS to obtain beam flux distribution data<br />

27. Wind perform Tracking capability up to 27 mph, survivable up to 90 mph<br />

28. Elev/Az perform See Sandia Report SAND92-1381<br />

29. Other test results See Sandia Report SAND92-1381<br />

30. Heliost slope error (mr) See Sandia Report SAND92-1381<br />

31. Heliostat costs<br />

32. Cost by component<br />

(facets, facets suppts.,<br />

elev. Drive, azimuth<br />

drive, pedestal, control,<br />

etc.) in %<br />

33. Heliostat costs (build)<br />

34. i.e 1/yr<br />

35. /yr<br />

36. 1,000 /yr $22,900 each<br />

37. /yr<br />

38. /yr<br />

Mirror modules: 25%<br />

Gear-drive assy: 30%<br />

Support structure: 15%<br />

Controls: 5%<br />

Other: 5%<br />

G&A & pr<strong>of</strong>it.: 20%<br />

39. Photograph <strong>of</strong> heliostat Please provide an electronic photograph <strong>of</strong> your heliostat.<br />

40. Critical Cost Issues Gear drive assembly, glass<br />

-- 15 --


16<br />

Figure 11. Advanced Thermal Systems H150 heliostat on test at Sandia’s NSTTF.<br />

A photograph <strong>of</strong> the H100 was not available but it identical in construction to the H150, except smaller.<br />

-- 16 --


17<br />

AMS H150<br />

1. Name/Model Number <strong>of</strong> the Heliostat ASM-150<br />

2. Manufacturer Babcock Borsig Power Environment<br />

3. Contact Mr. Manfred Schmitz-Goeb<br />

4. Address D 51641 Gummersbach<br />

5.<br />

6. Germany<br />

7. Telephone +49.(0)2261.85.2067 FAX 49.(0)2261.85.2067 Email maschmit@steinmueller.<br />

de<br />

8. Physical Data<br />

9. Number <strong>heliostats</strong> built 1 built, 1 operated<br />

10. Date <strong>of</strong> current design 1995<br />

11. Area (h, w) in meters Circular heliostat ( r≅7m, A=150m² )<br />

12. Facet (size, number) Single element<br />

13. Facet Construction Metal stretched membrane<br />

14. Glass (size <strong>of</strong> lights) Thin glass mirror 0.9mm<br />

15. Reflectivity 0.94<br />

16. Azimuth drive Electric driven turn table with absolute position encoder<br />

17. Elevation drive Electric driven spoke wheel with absolute position encoder<br />

18. Drive ratios (AZ/EL) (AZ) 270° / (EL) 180°<br />

19. Controller Type Pulse-width modulated 4-quadrant servo controller using measured sun<br />

vector as input; resolution <strong>of</strong> 40000 increments/360° per axis<br />

20. Pedestal Type Platform or concrete ring and central core<br />

21. Weight (w/o fndat) kg


18<br />

39. Photograph <strong>of</strong> heliostat<br />

40. Critical Cost Issues<br />

-- 18 --


SSPS TECHNICAL REPORTS/<br />

SOLARPACES TECHNICAL REPORTS<br />

SSPS TR-1/79 - Martin Marietta Corp.; Heliostat Field and Data Acquisition<br />

Subsystem for CRS, December 1979<br />

SSPS TR-2/79 - McDonnell Douglas Corp.; CRS-Heliostat Field, Interface Control and<br />

Data Acquisition System, December 1979<br />

SSPS TR-1/80 - Sandia and DFVLR; Collector Qualification Tests for the IEA<br />

500 kWe Distributed Collector System, July 1980<br />

SSPS TR-2/80 - Belgonucleaire; Analysis <strong>of</strong> Special Hydraulical Effects in the SHTS<br />

Piping System, November 1980<br />

SSPS TR-3/80 - Interatom; Redesign <strong>of</strong> the CRS - Almeria Receiver Aperture and<br />

Comparison <strong>of</strong> Interatom and MMC Reference Heliostat Field Performance<br />

Calculations, November 1980<br />

SSPS TR-1/81 - Belgonucleaire; Tabernas Meteo Data Analysis Based on Evaluated<br />

Data Prepared by the SSPS-O.A., June 1981<br />

SSPS TR-2/81 - Belgonucleaire; DCS Instrumentation Review, June 1981<br />

SSPS TR-3/81 - Belgonucleaire; CRS Instrumentation Review, June 1981<br />

SSPS TR-4/81 - A. F. Baker, Sandia; IEA Small Solar Power Systems (SSPS),<br />

Project Review (January 1981), July 1981<br />

SSPS TR-5/81 - DFVLR; Device for the Measurement <strong>of</strong> Heat Flux Distributions<br />

(HFD) near the Receiver Aperture Plane <strong>of</strong> the Almeria CRS Solar Power Stations,<br />

November 1981<br />

SSPS TR-6/81 - DFVLR; Determination <strong>of</strong> the Spectral Reflectivity and the<br />

Bidirectional Reflectance Characteristics <strong>of</strong> Some White Surfaces, December 1981<br />

SSPS TR-1/82 - SSPS Workshop on Functional and Performance Characteristics <strong>of</strong><br />

Solar Thermal Pilot Plants, April 1982<br />

Part 1: A. Kalt - Results <strong>of</strong> the DCS-Plant Session<br />

Part 2: M. Becker - Results <strong>of</strong> the Tower Facilities Session<br />

SSPS TR-2/82 - G. von Tobel, Ch. Schelders and M. Real, E.I.R.; Concentrated Solar<br />

Flux Measurements at the IEA-SSPS Solar Central Receiver Power Plant, Tabernas-<br />

Almeria, April 1982<br />

SSPS TR-3/82 - G. Lemperle, DFVLR; Effect <strong>of</strong> Sunshape on Flux Distribution and<br />

Intercept Factor <strong>of</strong> the Solar Tower Power Plant at Almeria, September 1982


SSPS TR-1/83 - A. Kalt and J. G. Martin (editors);<br />

DCS-Midterm Workshop Proceedings (December 9+10, 1982), February 1983<br />

SSPS TR-2/83 - G. Lensch, K. Brudi and P. Lippert, Fachhochschule Wedel; FH-PTL<br />

Wedel Reflectometer, Type 02-1 No. 3, Final Report and Report on the Test Program,<br />

March 1983<br />

SSPS TR-3/83 - AGIP Nucleare and FRANCO TOSI; The Advanced Sodium Receiver<br />

(ASR) - Topic Reports, May 1983<br />

SSPS TR-4/83 - M. Becker, DFVLR (editor);<br />

SSPS-CRS Midterm Workshop, Tabernas, April 19+20, 1983, June 1983<br />

SSPS TR-5/83 - W. Bucher, DFVLR (editor); Investigations and Findings Concerning<br />

the Sodium Tank Leakages, July 1983<br />

SSPS TR-6/83 - Th. van Steenberghe, ITET; First Year Average Performance <strong>of</strong> the<br />

SSPS-DCS Plant, July 1983<br />

SSPS TR-7/83 - H. Jacobs, ITET; Thermal Losses <strong>of</strong> the Sodium Storage Vessels <strong>of</strong><br />

the Central Receiver System, November 1983<br />

SSPS TR-1/84 - C. S. Selvage (ITET); Executive Summary - IEA SSPS-CRS<br />

Workshop (April 1983), March 1984<br />

SSPS TR-2/84 - C. S. Selvage and J. G. Martin, (ITET); SSPS-DCS Proceedings <strong>of</strong><br />

the International Workshop "The First Term", Tabernas, December 6-8, 1983, May 1984<br />

SSPS TR-3/84 - J. P. Fabry, H. Richel, H. Lamotte, M. Vereb and P. Brusselaers;<br />

SESAM-DCS, A Computer Code for Solar System Modelling, March 1984<br />

Part 1: Analysis Report<br />

Part 2: How to use<br />

SSPS TR-4/84 - R. Carmona and J. G. Martin; The Control <strong>of</strong> Large Collector Arrays:<br />

The SSPS Experience, June 1984<br />

SSPS TR-5/84 - P. Wattiez, J. G. Martin and M. Andersson; SSPS-DCS Plant<br />

Performance "The Stair Step", June 1984<br />

SSPS TR-6/84 - B. Wong Swanson, Univ. <strong>of</strong> Arizona; Availability and Operation<br />

Frequency <strong>of</strong> Solar Thermal Systems, December 1984<br />

SSPS TR-7/84 - A. Brinner, DFVLR; IEA SSPS-CRS Calibration Report, Calibration<br />

<strong>of</strong> Relevant Measuring Sensors, December 1984


SSPS TR-1/85 - M. Becker, DFVLR (editor); Proceedings <strong>of</strong> the IEA-SSPS Experts<br />

Meeting on High Temperature Technology and Application, Atlanta, USA (June 18-21,<br />

1985), June 1985<br />

SSPS TR-2/85 - G. Lemperle, DFVLR; ASR-Thermodynamics, Results <strong>of</strong> a Numerical<br />

Simulation and Surface Temperature Measurements, October 1985<br />

SSPS TR-1/86 - M. Sanchez, R. Carmona and E. Zarza; Behavior <strong>of</strong> DCS Fields in a<br />

Wide Temperature Range. Present Status <strong>of</strong> Test Campaigns and Preliminary Results,<br />

May 1986<br />

SSPS TR-2/86 - M. Geyer, DFVLR (editor); Proceedings <strong>of</strong> the First IEA-SSPS Task<br />

IV Status Meeting on High Temperature Thermal Storage, Tabernas, July 3-4, 1986,<br />

Sept. 1986<br />

SSPS TR-3/86 - R. Carmona, F. Rosa, H. Jacobs and M. Sanchez; Evaluation <strong>of</strong><br />

Advanced Sodium Receiver Losses During Operation, December 1986<br />

SSPS TR-1/87 - M. Sanchez, R. Carmona, E. Zarza; Behavior <strong>of</strong> DCS Fields in a<br />

Wide Temperature Range, March 1987<br />

SSPS TR-2/87 - M. Becker, M. Böhmer, DFVLR (editors); Proceedings <strong>of</strong> the Third<br />

Meeting <strong>of</strong> SSPS - TASK III - Working Group on "High Temperature Receiver -<br />

Technology", Albuquerque, N.M., USA, March 3+4, 1987, June 1987<br />

SSPS TR-3/87 - Motor Columbus Consulting Engineers Inc., Baden, Switzerland;<br />

Lessons from the SSPS-CRS Sodium Fire Incident; June 1987<br />

SSPS TR-4/87 - Proceedings <strong>of</strong> the 2nd IEA-SSPS TASK IV Status Meeting on "High<br />

Temperature Thermal Storage", at SERI, August 24/25, 1987 (edited by M. Geyer), Nov.<br />

1987<br />

SSPS TR-5/87 - M. Geyer, K. Werner, F. Dinter; Evaluation <strong>of</strong> the Dual Medium<br />

Storage Tank (DMST) at the IEA-SSPS Project in Almeria (Spain), November 1987<br />

SSPS TR-1/88 - M. Becker, M. Böhmer, DLR (editors) Proceedings <strong>of</strong> the Fourth<br />

Meeting <strong>of</strong> SSPS - TASK III - Working Group on "High Temperature Receiver -<br />

Technology", Denver, Co., USA, June 20, 1988, September 1988<br />

SSPS TR-1/89 - F. Rosa, A. Valverde, J.M. Aranda, J. Aranda; Solar Furnace at the<br />

CESA-1 Tower: Construction and Applications to the HERMES Tests, March 1989<br />

SSPS TR-2/89 - Report <strong>of</strong> the Wire Pack Volumetric Receiver Tests Performed at the<br />

Plataforma Solar de Almeria, Spain in 1987 and 1988 (SSPS TASK VII - First<br />

Experiment), July 1989


SSPS TR-3/89 - M. Becker, M. Böhmer (DLR) (editors); W. Meinecke, E. v. Unger<br />

(Interatom) (authors); Volumetric Receiver Evaluation, Preparatory Material and<br />

Evaluation Report <strong>of</strong> Experts Meeting, in Cologne, January 1989, December 1989<br />

SSPS TR-1/90 - M. Becker, M. Böhmer (DLR) (editors); Volumetric Metal Foil<br />

Receiver CATREC, Development and Tests, December 1990<br />

SSPS TR-2/90 - M. Becker, M. Böhmer, W. Meinecke (editors); Proceedings <strong>of</strong> the<br />

Fifth Meeting <strong>of</strong> SSPS TASK III Working Group on "High Temperature Receiver<br />

Technology", Davos/CH, September 3rd-4th, 1990, December 1990<br />

SSPS TR-3/90 - M. Böhmer, W. Meinecke (editors); Proceedings <strong>of</strong> the First Meeting<br />

<strong>of</strong> SSPS TASK VIII Working Group on "Concentrator/Generator Systems for Small Solar<br />

Thermal Power Units", Davos/CH, September 3rd, 1990, December 1990<br />

SSPS TR-1/91 - M. Becker, M. Böhmer, S. Cordes (editors); DLR/CeramTec<br />

Volumetric Ceramic Foil Receiver, June 1991<br />

SSPS TR-2/91 - M. Böhmer, W. Meinecke (editors); Proceedings <strong>of</strong> the Volumetric<br />

Receiver Workshop, February 13 -15, 1991, Köln, March 1991<br />

SSPS TR-3/91 - M. Böhmer, U. Langnickel (editors); Proceedings <strong>of</strong> the Workshop on<br />

Methane Reforming, June 11 -13, 1991, Köln, September 1991<br />

SSPS TR-4/91 - M. Becker, M. Böhmer (editors); Proceedings <strong>of</strong> the Sixth Meeting <strong>of</strong><br />

SSPS Task III Working Group on "High Temperature Receiver Technology" and the<br />

Third Meeting <strong>of</strong> SSPS Task IV Working Group on "High Temperature Thermal<br />

Storage", August 16th, 1991, Denver, CO/USA, November 1991<br />

SSPS TR-5/91 - M. Böhmer, M. Becker (editors); Proceedings <strong>of</strong> the Second Meeting<br />

<strong>of</strong> SSPS TASK VIII Working Group on "Concentrator/Generator Systems for Small Solar<br />

Thermal Power Units", August 16th, 1991, Denver, CO/USA, November 1991<br />

SSPS TR-6/91 - R. Tamme, M. Geyer (editors); IEA - SSPS Task IV Report on High<br />

Temperature Thermal Storage, Activities 1988 - 1990, October 1991<br />

SSPS TR-1/92 - W. Meinecke, M. Becker, M. Böhmer (editors); Proceedings <strong>of</strong> the<br />

First Meeting <strong>of</strong> SolarPACES - Task 3 - Working Group on "Solar Technology and<br />

Applications", Almería (E), September 23th, 1992


SolarPACES TR-III-1/94 - M. Sánchez (editor); Proceedings <strong>of</strong> the Task III, Sector 2<br />

(Supporting Tools and Test Facilities) "Heliostat Field Operation Workshop",<br />

September 7 - 9, 1993, Almería/Spain<br />

SolarPACES TR-III-2/94 - A. Neumann; Flux Densities in the Focal Region <strong>of</strong> the PSA<br />

Solar Furnace (Report <strong>of</strong> a Measurement Campaign Performed from March 7 - 25,<br />

1994)<br />

SolarPACES TR-III-3/94 - M. Becker, M. Böhmer, R. Pitz-Paal (editors), Minutes <strong>of</strong> the<br />

Third Task-III-Meeting within IEA-SolarPACES on "Solar Technology and Applications",<br />

June 22 and 23 1994, Köln<br />

SolarPACES TR-III-4/94 - S. Cordes, M. Böhmer, R. Monterreal Espinosa, Test and<br />

Evaluation <strong>of</strong> the Schlaich, Bergermann und Partner Heliostat Prototype Concentrator,<br />

Final Report<br />

SolarPACES TR-III-5/94 - M. Becker, M, Böhmer, A. Neumann (editors), Proceedings<br />

<strong>of</strong> the Fourth Task-III-Meeting within IEA-SolarPACES on "Solar Technology and<br />

Applications", Moscow, September 24th, 1994-<br />

SolarPACES TR-III-1/95 - W. Meinecke, M. Becker, M. Böhmer (editors), Proceedings<br />

<strong>of</strong> the Fifth Meeting within SolarPACES - Task III - Working Group on "Solar Technology<br />

and Applications", PSI, Villigen, March 8th, 1995<br />

SolarPACES TR-III-2/95 - A. Neumann (editor), Proceedings <strong>of</strong> the High Flux and<br />

Temperature Measurement Workshop, DLR, Cologne, March 2 - 3, 1995<br />

SolarPACES TR-III-3/95 - M. Sánchez, E. Zarza, A Guide to Computer Programs<br />

Developed for Solar Thermal Technologies, Plataforma Solar de Almería, June 1995<br />

SolarPACES TR-III-4/95 - G. García Navajas, Technical Development <strong>of</strong> a New Stand-<br />

Alone Heliostat Field Control, Plataforma Solar de Almería, June 1995<br />

SolarPACES TR-III-5/95 - M. Sánchez (editor), The Solar Thermal Test Facilities Report<br />

(in preparation)<br />

SolarPACES TR-III-6/95 - W. Meinecke, M. Böhmer, M. Becker (editors), Proceedings<br />

<strong>of</strong> the Sixth Meeting within SolarPACES Task III - Working Group Meeting on "Solar<br />

Technology and Applications", Golden (USA), September 28th, 1995 and Stuttgart (D),<br />

October 10th, 1995<br />

SolarPACES TR-III-7/95 - J. Hansen (editor) The ANUTECH 400-m² Dish and Its Initial<br />

Applications (in preparation)


SolarPACES TR-III-1/96 - W. Meinecke, M. Böhmer, M. Becker (editors), Proceedings<br />

<strong>of</strong> the Seventh Meeting within SolarPACES Task III - Working Group Meeting on "Solar<br />

Technology and Applications", PSA, Almería (E), April 15th, 1996<br />

SolarPACES TR-III-2/96 - R. Pitz-Paal, Evaluation <strong>of</strong> the Catrec II Receiver Test, May,<br />

1996<br />

SolarPACES TR-III-3/96 - V. Scheglov et al, Investigation <strong>of</strong> the Action <strong>of</strong> Concentrated<br />

Solar Radiation on Material Surface Properties Using Polarization Measurements,<br />

October 1996<br />

SolarPACES TR-III-4/96 - R. Pitz-Paal, B. H<strong>of</strong>fschmidt, M. Böhmer, M. Becker (editors)<br />

Proceedings <strong>of</strong> the Eighth Task III-Meeting within IEA SolarPACES on "Solar<br />

Technology and Applications", Köln, October 15th, 1996<br />

SolarPACES TR-III-5/96 - A. Neumann (editor), Proceedings <strong>of</strong> the 3rd High Flux and<br />

Temperature Measurement Workshop, DLR, Cologne, October 16th, 1996<br />

SolarPACES TR-III-1/97 - W. Meinecke, M. Becker, M. Böhmer (editors), Proceedings<br />

<strong>of</strong> the Ninth Task III-Meeting within IEA SolarPACES on "Solar Technology and<br />

Applications", CNRS-IMP, Odeillo, April 8th and 9th, 1997<br />

SolarPACES TR-III-2/97 - A. Neumann, U. Groer (editors), Proceedings <strong>of</strong> the 4th High<br />

Flux and Temperature Measurement Workshop, Odeillo, April 11, 1997<br />

SolarPACES TR-III-3/97 - A. Roy (chief editor), W. Meinecke and M. Blanco Muriel (coeditors),<br />

Introductory Guidelines for Preparing Reports on Solar Thermal Power<br />

Systems, DLR, Cologne, July 1997<br />

SolarPACES TR-III-4/97 - M. Böhmer (editor) SolarPACES Task III, Solar Technology<br />

and Applications, Project Plans, September 1997<br />

SolarPACES TR-III-5/97 - Klaus Hennecke (editor), Advanced Hybrid Plant Concepts,<br />

DLR, Cologne, 1997<br />

SolarPACES TR-III-6/97 - M. Becker, K. Hennecke (editors) - Proceedings <strong>of</strong> the 10 th<br />

Task III Meeting within IEA SolarPACES on "Solar Technology and Applications",<br />

Sandia, Albuquerque, September 15, 1997<br />

SolarPACES TR-III-1/98 - M. Becker, R. Pitz-Paal (editors) - Proceedings <strong>of</strong> the 11 th<br />

Task III Meeting within IEA SolarPACES on "Solar Technology and Applications",<br />

Aguadulce, March 4 th , 1998<br />

SolarPACES TR-III-2/98 - M. Böhmer (editor) SolarPACES Task III, Solar Technology<br />

and Applications, Project Plans, October,1998


SolarPACES TR-III-3/98 - R. Pitz-Paal (editor), E. E. Shpilrain, O. S. Popel S. E. Frid,<br />

Advanced Solarized Cycles - A Hybrid Solar/Fossil Thermal Power Plant Simulation<br />

Using the TRNSYS S<strong>of</strong>tware', IVTAN, October, 1998<br />

SolarPACES TR-III-4/98 - R. Pitz-Paal, S. Jones, A TRNSYS Model Library for Solar<br />

Thermal Electric Components (STEC) - A Reference Manual, Release 1.0, 10/15/1998,<br />

DLR, October, 1998.<br />

SolarPACES TR-III-1/99 – M. Becker, R. Pitz-Paal, Proceedings <strong>of</strong> the 12 th Task III<br />

Meeting within IEA SolarPACES on “Solar Technology and Applications”, Cuernavaca,<br />

Mexico, October 29 th , 1998<br />

SolarPACES TR-III-2/99 – M. Becker, J. Kaluza, Proceedings <strong>of</strong> the 13 th Task III<br />

Meeting within IEA SolarPACES on “Solar Technology and Applications”, Kibbutz<br />

Shefayim, Israel, July 3rd, 1999<br />

SolarPACES TR-III-1/00 – T. Mancini, <strong>Catalog</strong> <strong>of</strong> Solar Heliostats, June 2000<br />

SolarPACES TR-III-2/00 – K. Hennecke, Proceedings <strong>of</strong> the 14 th Task III Meeting within<br />

IEA SolarPACES on “Solar Technology and Applications”, Sydney University, Australia,<br />

March, 1999


Distribution List<br />

AUS St. Kaneff, ANU, Canberra<br />

K. Lovegrove, ANU, Canberra<br />

W. Meike, NTU, Darwin<br />

W. Stein, Pacific Power Service, Sydney<br />

BRA R. Brito, National Dept. <strong>of</strong> Energy Development, Brasilia<br />

E.S. Camêlo Cavalcanti, CEPEL, Rio de Janeiro<br />

CH H. W. Fricker, Rickenbach<br />

P. Haueter, PSI, Villigen<br />

P. Kesselring, Urdorf<br />

A. Steinfeld, PSI, Villigen<br />

D M. Abele, DLR, Stuttgart<br />

H. Bastek, KFA-BEO, Jülich<br />

M. Becker, DLR, Köln<br />

R. Buck, DLR, Stuttgart<br />

F.-D. Doenitz, Schott-Rohrglas, Mitterteich<br />

G. Eisenbeiß, DLR, Köln<br />

Th. Fend, DLR, Köln<br />

K.-H. Funken, DLR, Köln<br />

M. Geyer, DLR, Almería<br />

W. Grasse, SolarPACES, Gifhorn<br />

K. Hennecke, DLR, Köln<br />

P. Heller, DLR, Almería<br />

B. H<strong>of</strong>fschmidt, DLR, Köln<br />

J. Kaluza, DLR, Köln<br />

R. Kistner, DLR, Almería<br />

H. Müller-Steinhagen, DLR, Stuttgart<br />

P. Nava, Flabeg Solar, Köln<br />

A. Neumann, DLR, Köln<br />

R. Pitz-Paal, DLR, Köln<br />

J. Rheinländer, ZSW, Stuttgart<br />

M. Schmitz-Goeb, Steinmüller, Gummersbach<br />

R. Tamme, DLR, Stuttgart<br />

E M. Blanco Muriel, PSA, Almería<br />

M.-L. Delgado, CIEMAT-IER, Madrid<br />

R. Monterreal Espinosa, PSA, Almeria<br />

R. Osuna, Inabensa, Sevilla<br />

M. Romero Álvarez, CIEMAT-IER, Madrid<br />

M. Sánchez González, CIEMAT-IER, Madrid<br />

A. Valverde Cantón, PSA, Almería<br />

E. Zarza Moya, PSA, Almería<br />

(PSA Reference Room (3 x) PSA, Almería (A. Sarre)<br />

ET M. Abdel Rahman, NREA, Cairo<br />

A. El-Zalabany, NREA, Cairo<br />

A M. Fayek, NREA, Cairo<br />

S. Zannoun, NREA, Cairo<br />

EU M. Sánchez Jiménez, EU, Brussels<br />

Ph. Schild, EU, Brussels<br />

L. Stathakis, EU, Brussels


- 2 -<br />

F A. Ferrière, IMP-CNRS, Odeillo<br />

G. Flamant, IMP-CNRS, Odeillo<br />

G. Olalde, IMP-CNRS, Odeillo<br />

O. Suzanne, IMP-CNRS, Odeillo<br />

IEA H.-J. Neef, IEA, Paris<br />

J. Tilley, IEA, Paris<br />

IL M. Epstein, WIS, Rehovot<br />

D. Faiman, Ben-Gurion Univ., Beer-Sheva<br />

J. Karni, WIS, Rehovot<br />

A. Kribus, WIS, Rehovot<br />

D. Liebermann, WIS, Rehovot<br />

A. Roy, Ben-Gurion Univ., Beer-Sheva<br />

D. Sagie, ROTEM, Beer-Sheva<br />

A. Yogev WIS, Rehovot<br />

MEX R. Almanza, UNAM, Mexico<br />

C. Estrada, Centro de Investigacion en Energia,<br />

Temixco, Morelos<br />

M. Huacuz Villamar, Instituto de Investicaciones Electricas,<br />

Cuernavaca, Moreles<br />

C. Ramos, Instituto de Investicaciones Electricas,<br />

Cuernavaca, Moreles<br />

RUS V.I. Iampolski, SPA Astrophysica, Moscow<br />

Y. Loktionov, INPW, Obninsk<br />

S. Malyshenko, IVTAN, Moscow<br />

O. Popel, IVTAN, Moscow<br />

E. Shpilrain, IVTAN, Moscow<br />

E. Tverianovich, VIESH, Moscow<br />

UK A. Gaye, Solargen, Cambridge<br />

R. Judd, British Gas Technology, Leicestershire<br />

N. Ranzetta, British Gas Technology, Leicestershire<br />

USA G. Burch, DOE, Washington<br />

R. Davenport, SAIC, San Diego<br />

S.D. Frier, KJC, Boron<br />

S. Jones, Sandia, Albuquerque<br />

G. J<strong>org</strong>ensen, NREL, Denver<br />

D. Kearney, Kearney and Associates, Del Mar<br />

G. Kolb, Sandia, Albuquerque<br />

A. Lewandowski, NREL, Denver<br />

T. Mancini, Sandia, Albuquerque<br />

H. Price, NREL, Denver<br />

C. Tyner, Sandia, Albuquerque<br />

T.A. Williams, NREL, Denver<br />

ZA L. van Heerden, ESKOM, South Africa

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!