The measurement of Total Oxygen in filled BIB wine in filled BIB wine
The measurement of Total Oxygen in filled BIB wine in filled BIB wine
The measurement of Total Oxygen in filled BIB wine in filled BIB wine
Create successful ePaper yourself
Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.
<strong>The</strong> <strong>measurement</strong> <strong>of</strong> <strong>Total</strong> <strong>Oxygen</strong><br />
<strong>in</strong> <strong>filled</strong> <strong>BIB</strong> w<strong>in</strong>e<br />
“<strong>The</strong>re shall be one measure <strong>of</strong> w<strong>in</strong>e throughout our whole realm”<br />
<strong>The</strong> Magna Carta, 1215<br />
By: Patrick Shea vitop <br />
Jean-Claude Vidal<br />
Sophie Vialis<br />
vitop <br />
1
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Summary<br />
Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life, by Patrick Shea, Vitop<br />
1.1) Goal<br />
1.2) Key Parameters<br />
13) 1.3) <strong>The</strong> headspace problem<br />
Annex: O2 <strong>measurement</strong> def<strong>in</strong>itions<br />
Part 2: Measurement technologies, g , by y Jean-Claude Vidal, , INRA<br />
2.1) Ma<strong>in</strong> <strong>measurement</strong> technologies<br />
2.2) <strong>BIB</strong> specificities<br />
PPart t 3: 3 RRecommended d d Procedures, P d by b Sophie S hi Vialis, Vi li Inter-Rhône<br />
I t Rhô<br />
3.1) Problems & solutions<br />
3.2) Measure Headspace volume<br />
3.3) Headspace O 2 and DO<br />
Part 4: Future research, by Patrick Shea, Vitop<br />
Photo credits <strong>of</strong> oxygen sensor <strong>in</strong>struments and <strong>measurement</strong>s: Marc Maupas, Patrick Shea, Sophie Vialis 2
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / Summary<br />
Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life, by Patrick Shea, Vitop<br />
1.1) Goal<br />
1.2) Key Parameters<br />
-W<strong>in</strong>e<br />
-SO2 - Filtration and sterility<br />
- <strong>Oxygen</strong> pickup dur<strong>in</strong>g fill<strong>in</strong>g<br />
- Package permeability<br />
- Damage to barrier film<br />
- Storage temperatures<br />
1.3) <strong>The</strong> headspace problem<br />
Annex: O 2 <strong>measurement</strong> def<strong>in</strong>itions<br />
3
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.1 Goal<br />
Def<strong>in</strong>ition <strong>of</strong> W<strong>in</strong>e <strong>BIB</strong> Shelf Life<br />
Length <strong>of</strong> time before the w<strong>in</strong>e is considered unsuitable for consumption<br />
This is the <strong>in</strong>terval between the fill<strong>in</strong>g <strong>of</strong> the <strong>BIB</strong> and the last glass consumed<br />
Goal for retailers and fillers: reach or exceed a target (ex: average <strong>of</strong> 9 months)<br />
while m<strong>in</strong>imiz<strong>in</strong>g variance<br />
<strong>of</strong> <strong>BIB</strong>Bs<br />
SHELF LIFE GOAL:<br />
Bell curves tightened<br />
N°<br />
(less variance) and/or<br />
shifted<br />
to the right A<br />
Shelf-life (<strong>in</strong> months) 4
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.1 Goal<br />
When is <strong>BIB</strong> w<strong>in</strong>e unacceptable?<br />
•How long can a <strong>BIB</strong> w<strong>in</strong>e hold up?<br />
This depends upon:<br />
- Changes that occur <strong>in</strong> the w<strong>in</strong>e (taste, color, etc.)<br />
- A judgment j g that these changes g are unacceptable p<br />
<strong>The</strong> judgment <strong>of</strong> a <strong>BIB</strong> w<strong>in</strong>e will be more severe if:<br />
→several conditions must be met to “pass” p the test<br />
(for example: free SO2 > 10 mg/l and taste and color acceptable)<br />
→pr<strong>of</strong>essional tasters are used rather than typical consumers<br />
→compared co pa ed to o the e sa same e w<strong>in</strong>e e <strong>in</strong> gglass ass bo bottle e with a sc screw-cap e cap<br />
Even when all key shelf-life parameters are mastered:<br />
→a <strong>BIB</strong> w<strong>in</strong>e may be judged to not last over 9 months if evaluated under severe conditions<br />
→the same w<strong>in</strong>e might be considered acceptable for most w<strong>in</strong>e consumers for up to 12 months<br />
5
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.1 Goal<br />
A special note to importers and retailers<br />
W<strong>in</strong>e importers and retailers should:<br />
- Fix realistic shelf life requirements (for example 9 months max.) that are adjusted<br />
to the particular w<strong>in</strong>e.<br />
- Adopt good practices (low storage and transport temperatures and quick rotation)<br />
- Be more concerned about help<strong>in</strong>g suppliers meet overall shelf-life goals rather<br />
than fix<strong>in</strong>g performance criteria based upon selected parameters, particularly if<br />
<strong>measurement</strong> issues are highly complex and non-standardized. Examples <strong>of</strong><br />
criteria not to <strong>in</strong>clude <strong>in</strong> specifications: requir<strong>in</strong>g that Dissolved <strong>Oxygen</strong> (DO) pickup be<br />
< 0 5 mg/L or that the permeability <strong>of</strong> the bag should be < 0 5 cm3 /m2 < 0.5 mg/L or that the permeability <strong>of</strong> the bag should be < 0.5 cm /m /day /day.<br />
- Refer to the Good <strong>of</strong> Practices for the fill<strong>in</strong>g <strong>of</strong> w<strong>in</strong>e <strong>in</strong> <strong>BIB</strong><br />
6
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.2 Key Parameters<br />
Seven Ways to Extend W<strong>in</strong>e <strong>BIB</strong> Shelf Shelf-Life Life<br />
It is possible to push forward the limits <strong>of</strong> shelf life by:<br />
1) Select<strong>in</strong>g certa<strong>in</strong> types <strong>of</strong> w<strong>in</strong>es<br />
2) Add<strong>in</strong>g appropriate amounts <strong>of</strong> SO 2<br />
3) Proper f<strong>in</strong>al filtration and fill<strong>in</strong>g l<strong>in</strong>e sterility<br />
4) M<strong>in</strong>imiz<strong>in</strong>g oxygen pickup<br />
by y the fill<strong>in</strong>g g pprocess<br />
5) Select<strong>in</strong>g a package<br />
with low gas permeability<br />
6) M<strong>in</strong>imiz<strong>in</strong>g damage<br />
to the barrier film<br />
7) M<strong>in</strong>imiz<strong>in</strong>g storage<br />
temperatures<br />
6 9 12<br />
months<br />
7
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.2 Key Parameters<br />
Shelf Shelf-Life Life Factor 1: <strong>The</strong> W<strong>in</strong>e<br />
Expected shelf-life depends upon the specific w<strong>in</strong>e chosen<br />
On the average <strong>BIB</strong> w<strong>in</strong>es will have a longer shelf life if they:<br />
are red rather than white because reds have more anti-oxidative polyphenols<br />
have high g alcohol and high g acid (low ( pH) p )<br />
have a low level <strong>of</strong> <strong>in</strong>itial dissolved oxygen before bottl<strong>in</strong>g<br />
have not already suffered many oxidative reactions<br />
A w<strong>in</strong>e that is oxidized is permanently damaged!<br />
Series <strong>of</strong><br />
Dim<strong>in</strong>ished w<strong>in</strong>e<br />
O chemical<br />
quality<br />
2 reactions ti<br />
(aromas, color)<br />
O 2<br />
8
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.2 Key Parameters<br />
Shelf Shelf-Life Life Factor 2: SO SO2 • SO 2 added to w<strong>in</strong>e will contribute to extended shelf-life<br />
• <strong>The</strong> level <strong>of</strong> free SO 2 upon fill<strong>in</strong>g is <strong>of</strong>ten 25 to 50 mg/l this will fall over time<br />
• Th <strong>The</strong> id ideal l amount t must t bbe ddeterm<strong>in</strong>ed t i d by b the th w<strong>in</strong>emaker i k and d will ill ddepend d upon:<br />
• “burnt match” odor risk<br />
• CCumulative l ti oxygen ( (measured d or expected) t d)<br />
• shelf life target<br />
• pH <strong>of</strong> the w<strong>in</strong>e<br />
• microbiological risks<br />
• other factors<br />
9
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.2 Key Parameters<br />
Shelf Shelf-Life Life Factor 2: SO SO2 Example <strong>of</strong> the fall <strong>of</strong> <strong>Total</strong> and Free SO 2 for a French Chardonnay <strong>in</strong> <strong>BIB</strong> at 20 <br />
mg/L<br />
SO 2<br />
Drop <strong>in</strong> free<br />
SO2 = 34 mg/L<br />
180<br />
160<br />
140<br />
120<br />
100<br />
80<br />
60<br />
40<br />
20<br />
0<br />
Shelf -life life target = 9 months<br />
<strong>Total</strong> SO 2<br />
Free ee SO 2<br />
Initial free SO 2 = 46 mg/L<br />
free SO 2 after 9 months = 12 mg/L<br />
0 1 2 3 4 5 6 7 8 9 Note: M<strong>in</strong>imum free SO2 left to<br />
protect w<strong>in</strong>e from oxidation:<br />
months<br />
> 10 mg/L<br />
Source: INRA 2004, Study for Performance <strong>BIB</strong> 10
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.2 Key Parameters<br />
Shelf Shelf-Life Life Factor 3: Microbiological Control<br />
W<strong>in</strong>e <strong>BIB</strong> shelf-life can be greatly decreased by <strong>in</strong>adequate f<strong>in</strong>al filtration<br />
or lack <strong>of</strong> sterility dur<strong>in</strong>g the fill<strong>in</strong>g operation<br />
Periodical microbiological analysis + sound hygiene practices can greatly reduce the risk<br />
11
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.2 Key Parameters<br />
Shelf Shelf-Life Life Factor 4: O O2 Pickup Dur<strong>in</strong>g Fill<strong>in</strong>g<br />
Important to m<strong>in</strong>imize s<strong>in</strong>ce 1 extra mg/l <strong>of</strong> O2 reduces shelf life by one month (INRA<br />
2004)!<br />
<strong>Oxygen</strong> pickup dur<strong>in</strong>g fill<strong>in</strong>g = ∆ dissolved O 2 <strong>in</strong> the w<strong>in</strong>e + Air cone O 2<br />
Air cone O 2 is the result <strong>of</strong> both the volume <strong>of</strong> the air cone and the %<strong>of</strong>oxygen<strong>in</strong>side<br />
% <strong>of</strong> oxygen <strong>in</strong>side<br />
• Key factors to control: amount <strong>of</strong> <strong>in</strong>itial O2 <strong>in</strong> the empty package<br />
fill<strong>in</strong>g g valve technology gy fill<strong>in</strong>g g table adjustments j<br />
vacuum pack to remove air nitrogen flush<strong>in</strong>g <strong>of</strong> tap and gland to reduce O 2<br />
12
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.2 Key Parameters<br />
Shelf Shelf-Life Life Factor 5: O O2 Permeation <strong>of</strong> Package<br />
<strong>Total</strong> Life Cycle Package <strong>Oxygen</strong> (see schema page 22)<br />
= O 2 pickup dur<strong>in</strong>g fill<strong>in</strong>g (DO pickup + headspace O O2) 2)<br />
+ Filled Package O2 <strong>in</strong>gress dur<strong>in</strong>g several months after fill<strong>in</strong>g<br />
Quantify y the sources <strong>of</strong> O 2 and p<strong>in</strong>po<strong>in</strong>t p p potential p improvement p areas<br />
Through the<br />
barrier film and<br />
PE film<br />
Trapped <strong>in</strong> the<br />
headspace<br />
Through the<br />
tap<br />
O 2<br />
O 2<br />
O 2<br />
O 2<br />
O 2<br />
Through the tap/gland/weld<br />
<strong>in</strong>terfaces<br />
O 2<br />
Between the two layers<br />
<strong>of</strong> welded PE film<br />
Trapped <strong>in</strong> the w<strong>in</strong>e as Dissolved O 2<br />
13
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.2 Key Parameters<br />
Shelf Shelf-Life Life Factor 6: Damage to Package<br />
Damage to the <strong>BIB</strong> package, particularly to the barrier film, will shorten shelf-life<br />
<strong>BIB</strong> bags can be exam<strong>in</strong>ed periodically after fill<strong>in</strong>g and after they have gone through the<br />
distribution channels<br />
Flex Flex-crack<strong>in</strong>g crack<strong>in</strong>g is normal but if zones <strong>of</strong> excessive damage are identified identified, causes should be<br />
determ<strong>in</strong>ed and corrective action taken<br />
Bag side 1 Bag side 2<br />
Metalized polyester <strong>BIB</strong> bag<br />
exam<strong>in</strong>ed with back-light<br />
by Gilles Doyon,<br />
Agriculture Canada<br />
Tap<br />
Undamaged zones<br />
• It is also important to check the residual space left <strong>in</strong><br />
the box (normally ( y + 0.5 litres for a 3 litre box) ) s<strong>in</strong>ce this<br />
can also have an impact on the jiggl<strong>in</strong>g <strong>of</strong> the <strong>filled</strong> bag<br />
and result<strong>in</strong>g stress on the film<br />
14
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.2 Key Parameters<br />
Shelf Shelf-Life Life Factor 7: Temperature<br />
High storage temperatures are the mortal enemy <strong>of</strong> <strong>BIB</strong> w<strong>in</strong>es!<br />
Research by the INRA <strong>in</strong> France has shown that an <strong>in</strong>crease <strong>in</strong> storage temperature by<br />
10 (from 20 to 30 ) will reduce w<strong>in</strong>e <strong>BIB</strong> shelf-life by half!<br />
This is due to both <strong>in</strong>creased oxygen transmission rates <strong>of</strong> the package<br />
and to <strong>in</strong>creased rates <strong>of</strong> chemical reaction <strong>in</strong> the w<strong>in</strong>e<br />
Storage and transport temperatures should be ma<strong>in</strong>ta<strong>in</strong>ed under 25 <br />
Other research suggests that substantially heat<strong>in</strong>g up a <strong>filled</strong> met-pet <strong>BIB</strong> bag may<br />
permanently dim<strong>in</strong>ish the oxygen barrier <strong>of</strong> the film<br />
15
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.2 Key Parameters<br />
Who can guarantee w<strong>in</strong>e <strong>BIB</strong> shelf life?<br />
Should the <strong>BIB</strong> bag manufacturer<br />
guarantee w<strong>in</strong>e <strong>BIB</strong> shelf shelf-life? life?<br />
No. Because the bag supplier<br />
only controls one <strong>of</strong> the seven key<br />
parameters that determ<strong>in</strong>e shelf shelf-life life<br />
Parameter Who is responsible?<br />
<strong>The</strong> w<strong>in</strong>e W<strong>in</strong>ery<br />
SO 2<br />
Sh Should ld the th <strong>BIB</strong> fill filler guarantee t w<strong>in</strong>e i <strong>BIB</strong> shelf-life? h lf lif ?<br />
Filler<br />
Microbiological control Filler<br />
O 2 pickup dur<strong>in</strong>g fill<strong>in</strong>g Filler<br />
Package O 2 <strong>in</strong>gress Bag manufacturer<br />
Package g damage g<br />
Filler/Distributor<br />
Temperature Filler/Distributor<br />
Partially, but even if the filler also supplies the w<strong>in</strong>e<br />
and buys a quality bag, not all parameters are fully<br />
controllable , s<strong>in</strong>ce damage to the package<br />
or high temperatures can also occur<br />
after the <strong>BIB</strong> w<strong>in</strong>es leave the fill<strong>in</strong>g centre 16
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.3 <strong>The</strong> headspace problem<br />
A graphical representation <strong>of</strong> life cycle O O2 management<br />
<strong>BIB</strong> 3L<br />
17
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.3 <strong>The</strong> headspace problem<br />
A graphical representation <strong>of</strong> life cycle O O2 management<br />
18
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.3 <strong>The</strong> headspace problem<br />
A graphical representation <strong>of</strong> the headspace problem<br />
2O% HS O 2<br />
15% HS O 2<br />
1O% HS O 2<br />
5 % HS O 2<br />
19
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / 1.3 <strong>The</strong> headspace problem<br />
<strong>BIB</strong> size matters<br />
Potential Headspace oxygen problems become more acute with smaller <strong>BIB</strong> sizes. <strong>The</strong><br />
example below assumes that the size <strong>of</strong> the air cone (headspace) and DO levels rema<strong>in</strong>s<br />
constant as the volume <strong>of</strong> the <strong>BIB</strong> package changes. <strong>The</strong> cone generator l<strong>in</strong>e is 6.5 cm and<br />
14.9% air <strong>in</strong>side is O2. Those pack<strong>in</strong>g smaller <strong>BIB</strong> sizes must manage O2 even better and<br />
retailers push<strong>in</strong>g for 11.5 5 L and 2 L <strong>BIB</strong> should accept that shelf-life shelf life is likely to be shortened shortened.<br />
Pay special O2 Management<br />
attention to small<br />
capacity <strong>BIB</strong>s<br />
mg/L O 2<br />
12<br />
10<br />
8<br />
6<br />
4<br />
2<br />
0<br />
1.5<br />
2 3 5 10 20<br />
Headspace <strong>Oxygen</strong><br />
DO pick‐up<br />
Initial DO<br />
W<strong>in</strong>e volume<br />
20<br />
<strong>of</strong> <strong>BIB</strong> (L)
W<strong>in</strong>e <strong>BIB</strong> O2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / Annex: O2 def<strong>in</strong>itions<br />
Def<strong>in</strong>itions for key terms used <strong>in</strong> O2 <strong>measurement</strong>s<br />
y 2<br />
This Annex can be relevant for <strong>measurement</strong> def<strong>in</strong>itions referred to relative to<br />
Current Research (part 3 <strong>of</strong> this presentation)<br />
Dissolved<br />
O <strong>Oxygen</strong> (DO)<br />
<strong>in</strong> w<strong>in</strong>e<br />
right before<br />
fill<strong>in</strong>g<br />
mg/L<br />
Dissolved<br />
Dissolved<br />
O <strong>Oxygen</strong> (DO)<br />
O <strong>Oxygen</strong> (DO)<br />
O2 pickup<br />
+ dur<strong>in</strong>g fill<strong>in</strong>g<br />
mg/L<br />
<strong>in</strong> w<strong>in</strong>e<br />
= right<br />
after fill<strong>in</strong>g<br />
mg/L<br />
O2 Dissolved<br />
<strong>Oxygen</strong> (DO)<br />
<strong>in</strong> w<strong>in</strong>e<br />
right<br />
after fill<strong>in</strong>g<br />
O2 +<br />
Headspace O2 right after fill<strong>in</strong>g<br />
<strong>in</strong> mg/L = (vol<br />
cone ml x % O2 x<br />
1.43 mg/ml)/<br />
mg/L g (vol v<strong>in</strong> L)<br />
=<br />
<strong>Total</strong> Package<br />
<strong>Oxygen</strong> (TPO)<br />
right<br />
after fill<strong>in</strong>g<br />
mg/L<br />
Note: Values surrounded by yellow dashed l<strong>in</strong>e are calculated rather than measured.<br />
O O2 O O2 O 2<br />
Key value<br />
to m<strong>in</strong>imize<br />
21
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / Annex: O 2 def<strong>in</strong>itions<br />
Def<strong>in</strong>itions for key terms used <strong>in</strong> O 2 <strong>measurement</strong>s<br />
y 2<br />
This Annex can be relevant for <strong>measurement</strong> def<strong>in</strong>itions referred to relative to<br />
Future Research (part 4 <strong>of</strong> this presentation)<br />
Key value to<br />
<strong>Total</strong> Package<br />
<strong>Oxygen</strong> (TPO)<br />
right<br />
after fill<strong>in</strong>g<br />
mg/L<br />
<strong>Total</strong> Life<br />
Cycle Package<br />
<strong>Oxygen</strong> dur<strong>in</strong>g<br />
several months<br />
mg/L<br />
O O2 O 2<br />
O 2<br />
O 2<br />
+<br />
O 2<br />
-<br />
Filled Package<br />
O2 i<strong>in</strong>gress<br />
dur<strong>in</strong>g several<br />
months <strong>of</strong><br />
storage mg/L<br />
O 2<br />
=<br />
<strong>Total</strong> Life<br />
CCycle l PPackage k O<br />
<strong>Oxygen</strong> dur<strong>in</strong>g<br />
several months<br />
mg/L<br />
m<strong>in</strong>imize<br />
O 2<br />
O 2<br />
O 2<br />
O 2 O 2<br />
Dissolved <strong>Total</strong> <strong>Oxygen</strong> yg<br />
<strong>Oxygen</strong> (DO)<br />
<strong>in</strong> w<strong>in</strong>e<br />
right before<br />
fill<strong>in</strong>g<br />
mg/L<br />
O 2<br />
=<br />
O 2 mg/L mg/L<br />
Note: Values surrounded by yellow dashed l<strong>in</strong>e are calculated rather than measured.<br />
Pickup (TOP)<br />
dur<strong>in</strong>g<br />
several<br />
months<br />
mg/L<br />
22
W<strong>in</strong>e <strong>BIB</strong> O2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / Annex: O2 def<strong>in</strong>itions<br />
Because <strong>of</strong> the length g <strong>of</strong> the def<strong>in</strong>itions <strong>in</strong> the rema<strong>in</strong><strong>in</strong>g g pages p g <strong>of</strong> this<br />
Annex, it is strongly recommended that the reader go directly to Part 2 and<br />
return to this glossary <strong>of</strong> key terms only if a specific def<strong>in</strong>ition is sought.<br />
Volume Def<strong>in</strong>itions<br />
Nom<strong>in</strong>al liquid Volume (L): <strong>The</strong> volume stated on the label <strong>of</strong> the package (for example 3L).<br />
Actual liquid volume (L): <strong>The</strong> true volume <strong>of</strong> the liquid <strong>in</strong> the package. For <strong>BIB</strong> w<strong>in</strong>e, the actual liquid<br />
volume is supposed to be with<strong>in</strong> 1.5% <strong>of</strong> the nom<strong>in</strong>al liquid volume and the nom<strong>in</strong>al liquid volume is <strong>of</strong>ten<br />
used for O 2 calculations <strong>in</strong>volv<strong>in</strong>g volume, even if this <strong>in</strong>troduces some <strong>measurement</strong> error.<br />
T<strong>Total</strong> t l headspace h d volume l (mL): ( L) th the volume l <strong>of</strong> f th the gaseous ( (air) i ) portion ti <strong>of</strong> f a<br />
closed package space.<br />
Volume capacity <strong>of</strong> the conta<strong>in</strong>er (L): For rigid conta<strong>in</strong>ers (such as glass<br />
bottles), the maximum capacity <strong>of</strong> the conta<strong>in</strong>er may be a useful concept but not<br />
for <strong>BIB</strong> packag<strong>in</strong>g s<strong>in</strong>ce the maximum capacity <strong>of</strong> a <strong>BIB</strong> bag ( i.e. the amount <strong>of</strong><br />
gas or liquid that it can hold) is far <strong>in</strong> excess <strong>of</strong> its nom<strong>in</strong>al volume and depends<br />
upon the particular manufacturer.<br />
T<strong>Total</strong> t l actual t l volume l <strong>in</strong> i package k (L): (L) th the actual t l li liquid id volume l plus l hheadspace d<br />
volume.<br />
mL<br />
L<br />
23
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / Annex: O 2 def<strong>in</strong>itions<br />
Pressure and Headspace % O O2 Def<strong>in</strong>itions<br />
Partial pressure <strong>of</strong> oxygen (hPa*): Partial pressure = total pressure x volume fraction <strong>of</strong> oxygen<br />
component. p Each gas g has a partial p ppressure which is the pressure p which the ggas<br />
would have if it alone<br />
occupied the volume. At 1 bar (=100 kPa = 1000 hPa) and 21% O2, PO2 (the partial pressure <strong>of</strong> oxygen) = 210 hPa.<br />
<strong>Total</strong> pressure (hPa): <strong>The</strong> total pressure <strong>of</strong> a gas mixture is the sum <strong>of</strong> the partial pressures <strong>of</strong> each<br />
<strong>in</strong>dividual gas g <strong>in</strong> the mixture. In most circumstances atmospheric p ppressure is closely y approximated pp by y the<br />
hydrostatic pressure caused by the weight <strong>of</strong> air above the <strong>measurement</strong> po<strong>in</strong>t. Average sea-level<br />
pressure is 1013.25 hPa (1 atm). As elevation <strong>in</strong>creases there is less overly<strong>in</strong>g atmospheric mass, so that<br />
pressure decreases with <strong>in</strong>creas<strong>in</strong>g elevation.<br />
Headspace <strong>Oxygen</strong> (% O2): % <strong>of</strong> free molecular oxygen (O2) <strong>in</strong> the headspace gas. This can also be<br />
expressed as the ratio <strong>of</strong> the partial pressure <strong>of</strong> oxygen to total absolute pressure. For measur<strong>in</strong>g<br />
<strong>in</strong>struments used to compute the % <strong>of</strong> headspace oxygen <strong>in</strong> w<strong>in</strong>e packag<strong>in</strong>g, the pressure generally used<br />
for the calculation (unless ( an adjustment j is made) ) is external ppressure. If it is suspected p that the <strong>in</strong>ternal<br />
pressure with<strong>in</strong> the package is different than the external pressure, then <strong>in</strong>ternal pressure should be<br />
measured and this value should be used for % calculations. For Champagne <strong>in</strong> a glass bottle the <strong>in</strong>ternal<br />
headspace pressure is several times the external pressure but for still w<strong>in</strong>es <strong>in</strong> bag <strong>in</strong> box the <strong>in</strong>ternal<br />
pressure p is ggenerally y very y similar to external ppressure. Headspace p oxygen yg <strong>measurement</strong>s for <strong>BIB</strong><br />
packag<strong>in</strong>g should be taken without apply<strong>in</strong>g pressure aga<strong>in</strong>st the headspace sides dur<strong>in</strong>g the<br />
<strong>measurement</strong>s s<strong>in</strong>ce this could <strong>in</strong>troduce some error when the units are expressed <strong>in</strong> % oxygen.<br />
* Pressure is also <strong>of</strong>ten expressed <strong>in</strong> kPa where 1kPa = 10 hPa<br />
24
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / Annex: O 2 def<strong>in</strong>itions<br />
Headspace O O2 Def<strong>in</strong>itions<br />
Headspace <strong>Oxygen</strong> (mL O 2): <strong>The</strong> % <strong>of</strong> headspace oxygen x headspace volume (mL)<br />
Headspace <strong>Oxygen</strong> (mg O 2): Headspace <strong>Oxygen</strong> (mL O 2) x 1.429 mL O 2/mg O 2<br />
Headspace <strong>Oxygen</strong> per unit <strong>of</strong> <strong>Total</strong> Headspace Volume (mg/L): Headspace <strong>Oxygen</strong>/<strong>Total</strong><br />
HHeadspace d VVolume l expressed d i <strong>in</strong> mg/L /L<br />
Headspace <strong>Oxygen</strong> per unit <strong>of</strong> Nom<strong>in</strong>al Liquid Volume (mg/L) <strong>of</strong> w<strong>in</strong>e:<br />
Headspace Headspace <strong>Oxygen</strong>/Nom<strong>in</strong>al Liquid Volume expressed <strong>in</strong> mg/L.<br />
Headspace <strong>Oxygen</strong> per unit <strong>of</strong> Actual Liquid Volume (mg/L): Actual volume is<br />
to be preferred over nom<strong>in</strong>al (label) volume if accuracy is sought. <strong>The</strong> headspace<br />
oxygen o yge here e e ca can be co considered s de ed as a reserve ese e o<strong>of</strong> O 2 that t at can ca potentially pote ta y eenter te tthe e<br />
liquid conta<strong>in</strong>ed <strong>in</strong> the package.<br />
O 2<br />
25
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / Annex: O 2 def<strong>in</strong>itions<br />
Dissolved <strong>Oxygen</strong> (DO) Def<strong>in</strong>itions<br />
DO or Dissolved <strong>Oxygen</strong> (mg/L): a relative measure <strong>of</strong> the amount <strong>of</strong> molecular oxygen (O2) that is<br />
dissolved or carried <strong>in</strong> a unit volume <strong>of</strong> a solution . Typically, dissolved oxygen concentrations <strong>in</strong> w<strong>in</strong>e are<br />
quoted <strong>in</strong> milligrams per liter (mg/L), where 1 mg/L = 1 part per million (ppm). <strong>The</strong> maximum amount <strong>of</strong><br />
oxygen a w<strong>in</strong>e can conta<strong>in</strong> is around 8 mg/L at 20 , which is known as the saturation level. This<br />
saturation level <strong>in</strong>creases with a decrease <strong>in</strong> temperature.<br />
DO before fill<strong>in</strong>g: If used for calculat<strong>in</strong>g DO pickup dur<strong>in</strong>g fill<strong>in</strong>g fill<strong>in</strong>g, the DO level just before fill<strong>in</strong>g should be<br />
measured for w<strong>in</strong>e <strong>in</strong> the ma<strong>in</strong> storage tank (or at its first exit po<strong>in</strong>t). Any other <strong>measurement</strong> po<strong>in</strong>t (dur<strong>in</strong>g<br />
pump<strong>in</strong>g, hose transport, filtration, buffer tank, etc) is to be considered as partial and should be clearly stated.<br />
DO after fill<strong>in</strong>g: DO level right after fill<strong>in</strong>g fill<strong>in</strong>g, although although, depend<strong>in</strong>g upon the <strong>in</strong>strument<br />
used, <strong>in</strong>itial <strong>measurement</strong>s may not be accurate and a stabilization time must be<br />
imposed before the DO value observed more closely reflects the true DO <strong>in</strong> the w<strong>in</strong>e<br />
DO pickup p p dur<strong>in</strong>g g fill<strong>in</strong>g: g DO after fill<strong>in</strong>g g - DO before fill<strong>in</strong>g g( (see schema ppage g 21). )<br />
This value is the result <strong>of</strong> both the positive additions <strong>of</strong> oxygen and the negative<br />
subtractions <strong>of</strong> oxygen as the w<strong>in</strong>e moves through the entire process from the ma<strong>in</strong><br />
w<strong>in</strong>e tank (via filtration, buffer tank, etc.) to f<strong>in</strong>al capp<strong>in</strong>g <strong>in</strong> the fill<strong>in</strong>g mach<strong>in</strong>e.<br />
Although DO pick-up is generally positive, nitrogen sparg<strong>in</strong>g (bubbl<strong>in</strong>g nitrogen gas<br />
to remove dissolved oxygen from the w<strong>in</strong>e) or O O2 membrane technologies could<br />
potentially result <strong>in</strong> a negative value.<br />
O 2<br />
26
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / Annex: O 2 def<strong>in</strong>itions<br />
General OTR and Dry Test OTR Def<strong>in</strong>itions<br />
OTR (oxygen transmission rate) the <strong>measurement</strong> <strong>of</strong> the amount <strong>of</strong> oxygen gas that passes through a<br />
material (component ( p or total package) p g ) over a given g period p <strong>of</strong> time.<br />
Dry Test (gas/gas) OTR: measures the amount <strong>of</strong> oxygen that passes through a material from an<br />
outside atmosphere (generally composed <strong>of</strong> 20.95% <strong>of</strong> O2 molecules) <strong>in</strong>to an <strong>in</strong>itially oxygen free<br />
chamber (flushed with nitrogen) nitrogen). For a “Mocon Mocon-type type” test test, the permeated gas is carried to a detector<br />
which is an extremely sensitive electrical-based sensor capable <strong>of</strong> detect<strong>in</strong>g m<strong>in</strong>ute amounts <strong>of</strong> oxygen. It<br />
is also possible to use optical or florescence-based gas detection sensors but most cited references for<br />
OTR <strong>in</strong> <strong>BIB</strong> packag<strong>in</strong>g are based upon electrical-based sensors. Values <strong>in</strong> metric units are generally<br />
expressed <strong>in</strong> cm3 /m2 expressed <strong>in</strong> cm /24 hr Standard test conditions are <strong>of</strong>ten 73 (23 ) and 50% RH but these can be<br />
3 /m2 /24 hr. Standard test conditions are <strong>of</strong>ten 73 (23 ) and 50% RH but these can be<br />
made to vary.<br />
Correlation between w<strong>in</strong>e <strong>BIB</strong> shelf-life and Dry Test (gas/gas) OTR results for package components<br />
appears sometimes to be weak <strong>in</strong> part because the tests are <strong>of</strong>ten performed on film before be<strong>in</strong>g<br />
transformed <strong>in</strong>to bags and <strong>filled</strong> but also because true oxygen <strong>in</strong>gress also depends on many other<br />
factors, <strong>in</strong>clud<strong>in</strong>g whether liquid is on the other side <strong>of</strong> the component (the case with <strong>BIB</strong>) and the surface<br />
contact area. Despite these limits, Dry Test (gas/gas) OTR results are very useful for <strong>in</strong>dustrial control<br />
purposes.<br />
27
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / Annex: O 2 def<strong>in</strong>itions<br />
Filled Package O O2 <strong>in</strong>gress def<strong>in</strong>ition<br />
Filled Package O2 <strong>in</strong>gress* is the <strong>measurement</strong> <strong>of</strong> the amount <strong>of</strong> oxygen (<strong>in</strong> mg/L)<br />
that passes p through g apackage p g <strong>filled</strong> with liquid q (but ( also with some headspace p air) )<br />
dur<strong>in</strong>g a period (days, weeks months). <strong>The</strong> outside atmosphere is generally<br />
composed <strong>of</strong> 20.95% <strong>of</strong> O2 molecules. Generally the package is <strong>filled</strong> with high acid<br />
(to keep the micro-organisms at bay), low oxygen water and the change <strong>in</strong> the level<br />
<strong>of</strong> dissolved oxygen yg <strong>in</strong> the water is observed over manyy weeks or months. Because<br />
<strong>of</strong> oxygen <strong>in</strong>itially <strong>in</strong> the headspace or embedded <strong>in</strong> the package components, a very<br />
long stabilization period (<strong>of</strong> a least <strong>of</strong> couple <strong>of</strong> weeks) is generally observed before<br />
an <strong>Oxygen</strong> Transmission Rate (OTR) is calculated. Alcohol is sometimes added to<br />
the solution (when ( w<strong>in</strong>e is be<strong>in</strong>gg simulated) ) but it should be verified that (for ( a<br />
particular <strong>in</strong>strument) the alcohol does not <strong>in</strong>troduce <strong>measurement</strong> errors.<br />
For Filled Package OTR tests, <strong>in</strong>itial headspace (volume and % O2) can be modified and package<br />
components t canbe b sealed l d <strong>of</strong>f ff ( (or elim<strong>in</strong>ated) li i t d) tto seethe th relative l ti contribution tibti <strong>of</strong>f thi this componentt or<br />
headspace to OTR. Changes <strong>in</strong> dissolved oxygen (expressed <strong>in</strong> mg/l or ppm) can be extrapolated to<br />
predict shelf-life but much more work must be done to <strong>in</strong>terpret these curves.<br />
* Referred to also as “Filled Package OTR”<br />
O O2 28<br />
O 2
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / Annex: O 2 def<strong>in</strong>itions<br />
TPO and <strong>Oxygen</strong> pickup dur<strong>in</strong>g fill<strong>in</strong>g def<strong>in</strong>itions<br />
<strong>Total</strong> Package <strong>Oxygen</strong> (TPO) is Headspace <strong>Oxygen</strong> per unit <strong>of</strong> Actual Liquid Volume (mg/L) + DO <strong>in</strong><br />
liquid q (mg/L) ( g ) at anyy given g po<strong>in</strong>t p <strong>in</strong> time, , for example, p , right g after fill<strong>in</strong>g. g Please note that the headspace p<br />
<strong>measurement</strong> value used is liquid volume rather than headspace volume. Note also that TPO observed<br />
right after fill<strong>in</strong>g may not <strong>in</strong>clude some oxygen trapped <strong>in</strong> pockets with<strong>in</strong> the package or film (not yet <strong>in</strong> the<br />
liquid or headspace).<br />
Dissolved<br />
<strong>Oxygen</strong> (DO)<br />
<strong>in</strong> w<strong>in</strong>e<br />
right O 2<br />
after fill<strong>in</strong>g<br />
mg/L<br />
+<br />
Headspace O 2<br />
right after fill<strong>in</strong>g<br />
<strong>in</strong> mg/L = (vol<br />
O 2<br />
=<br />
<strong>Total</strong> Package<br />
<strong>Oxygen</strong> (TPO)<br />
right<br />
after fill<strong>in</strong>g<br />
mg/L<br />
2 cone ml x % O 2 x<br />
O 2<br />
1.43 mg/ml)/<br />
(vol v<strong>in</strong> L)<br />
<strong>Oxygen</strong> pickup dur<strong>in</strong>g fill<strong>in</strong>g is Headspace <strong>Oxygen</strong> per liter <strong>of</strong> liquid volume (mg/L) + DO pickup (DO<br />
after fill<strong>in</strong>gg - DO before fill<strong>in</strong>g) g) <strong>in</strong> the liquid q (mg/L). ( g )<br />
O 2<br />
29
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 1: W<strong>in</strong>e <strong>BIB</strong> shelf life / Annex: O 2 def<strong>in</strong>itions<br />
<strong>Total</strong> Life Cycle Package <strong>Oxygen</strong> and TOP Def<strong>in</strong>itions<br />
<strong>Total</strong> Life Cycle Package <strong>Oxygen</strong> is <strong>Total</strong> Package <strong>Oxygen</strong> (TPO) TOP + Filled Package O2 <strong>in</strong>gress<br />
dur<strong>in</strong>gg storage g <strong>of</strong> several weeks or months. We did not f<strong>in</strong>d a standard expression p for this value so this<br />
term has been <strong>in</strong>vented. This value does not take <strong>in</strong>to account the reductive-oxidative history <strong>of</strong> the w<strong>in</strong>e<br />
before it is measured <strong>in</strong> the ma<strong>in</strong> tank before fill<strong>in</strong>g. Performance <strong>BIB</strong> recommends to m<strong>in</strong>imize <strong>Total</strong> Life<br />
Cycle Package <strong>Oxygen</strong>, but if the w<strong>in</strong>e is already nearly oxidized before fill<strong>in</strong>g, its shelf-life will not be<br />
veryy long. g<br />
<strong>Total</strong> Package<br />
<strong>Oxygen</strong> (TPO)<br />
right<br />
after fill<strong>in</strong>gg<br />
mg/L<br />
Filled Package<br />
O<br />
<strong>Total</strong> Life<br />
2<br />
O2 O2 <strong>in</strong>gress<br />
Cycle Package<br />
dur<strong>in</strong>g several<br />
<strong>Oxygen</strong> dur<strong>in</strong>g<br />
+ months <strong>of</strong> =<br />
O<br />
several months<br />
2 storage mg/L mg/L<br />
<strong>Total</strong> <strong>Oxygen</strong> Pickup (TOP) is the sum <strong>of</strong> the oxygen oxygen pickup dur<strong>in</strong>g fill<strong>in</strong>g (mg/l) + Filled Package O O2 <strong>in</strong>gress dur<strong>in</strong>g its storage (mg/L). It is also the difference between the <strong>Total</strong> Life Cycle Package <strong>Oxygen</strong><br />
and the dissolved oxygen (DO) <strong>in</strong> the w<strong>in</strong>e before fill<strong>in</strong>g (see schema page 22). This covers a period <strong>of</strong><br />
time (extend<strong>in</strong>g over many weeks or months) and represents the total amount <strong>of</strong> oxygen added to a<br />
beverage dur<strong>in</strong>g the fill<strong>in</strong>g process and subsequent storage <strong>of</strong> the packaged product product. Filled Package Test<br />
OTR (mg/L) cannot be measured with w<strong>in</strong>e (because it consumes oxygen) so the oxygen pickup after<br />
fill<strong>in</strong>g part <strong>of</strong> TOP must be measured with a water based solution.<br />
30<br />
O 2<br />
O 2<br />
O O2 O 2<br />
O 2
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / Summary<br />
PPart t 22: MMeasurement t ttechnologies, h l i<br />
by Jean-Claude Vidal, INRA<br />
2.1) Ma<strong>in</strong> technologies<br />
2.2) <strong>BIB</strong> specificities<br />
- View<strong>in</strong>g headspace volume<br />
- HHeadspace/w<strong>in</strong>e d / i ratio ti<br />
- Rapidity <strong>of</strong> headspace O2/DO mix<br />
- Package O2 Permeability<br />
- <strong>BIB</strong> Headspace volume varies over time<br />
-O2 <strong>in</strong>take once package open<br />
31
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.1 Ma<strong>in</strong> technologies<br />
Ma<strong>in</strong> <strong>Oxygen</strong> <strong>measurement</strong> technologies<br />
<strong>The</strong>re are many technologies used to measure oxygen. An oxygen sensor is an electronic<br />
device that measures the proportion <strong>of</strong> oxygen <strong>in</strong> the gas or liquid be<strong>in</strong>g analyzed analyzed.<br />
For <strong>filled</strong> w<strong>in</strong>e packag<strong>in</strong>g , the two ma<strong>in</strong> types <strong>of</strong> oxygen sensors used are electrodes<br />
(electrochemical sensors) and optodes (optical sensors). This can be used for both oxygen<br />
pickup and oxygen packag<strong>in</strong>g <strong>in</strong>gress studies.<br />
In addition to these direct <strong>measurement</strong>s <strong>of</strong> oxygen, it is also possible to <strong>in</strong>directly measure<br />
oxygen by measur<strong>in</strong>g color changes <strong>in</strong> a liquid <strong>in</strong>dicat<strong>in</strong>g oxygen <strong>in</strong>gress <strong>in</strong>gress.<br />
Direct O2 <strong>measurement</strong>s<br />
Indirect O2 <strong>measurement</strong>s<br />
Optodes Electodes<br />
Colorimetric<br />
32
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.1 Ma<strong>in</strong> technologies<br />
Colorimetric measure <strong>of</strong> O O2 Several colorimetric methods have been applied to w<strong>in</strong>e bottles, but to our<br />
knowledge knowledge, none so far to <strong>BIB</strong> packag<strong>in</strong>g packag<strong>in</strong>g. <strong>The</strong>se techniques are used for<br />
w<strong>in</strong>e packag<strong>in</strong>g to measure oxygen <strong>in</strong>gress rather than oxygen pickup<br />
dur<strong>in</strong>g fill<strong>in</strong>g.<br />
- Ribereau-Gayon’s y <strong>in</strong>digo g carm<strong>in</strong>e method, based on the color<br />
change from the oxidation-reduction reaction <strong>of</strong> <strong>in</strong>digo carm<strong>in</strong>e.<br />
- AWRI’s BPAA method us<strong>in</strong>g two reagents <strong>in</strong> a model w<strong>in</strong>e: BPAA<br />
as an oxygen trap and methylene blue and light as a sensitizer.<br />
33
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s/ Part 2: Measurement technologies/ 2.1 Ma<strong>in</strong> technologies<br />
Example <strong>of</strong> BPAA colorimetric method applied to w<strong>in</strong>e bottle OTR<br />
Dissolved<br />
O2 (mL)<br />
0.9<br />
0.8<br />
07 0.7<br />
0.6<br />
0.5<br />
0.4<br />
0.3<br />
02 0.2<br />
0.1<br />
0<br />
y = 0.005x + 0.401<br />
R 2 = 0.99<br />
<strong>Oxygen</strong> <strong>in</strong>gress via closure<br />
<strong>Oxygen</strong> entrapped <strong>in</strong> closure<br />
com<strong>in</strong>g out and <strong>in</strong>gress via closure<br />
<strong>Oxygen</strong> <strong>in</strong> headspace<br />
and solution<br />
Source: Skouroumounis et al (2007) AWITC.<br />
0 20 40 60 80 100 120<br />
Time (days)<br />
<strong>The</strong> graph above was presented by Mai Nygaard at the 26 November 2007 Performance <strong>BIB</strong> meet<strong>in</strong>g <strong>in</strong> Nîmes 34
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.1 Ma<strong>in</strong> technologies<br />
O electrodes<br />
2<br />
<strong>The</strong> Clark-type electrode is a very commonly used oxygen sensor. Molecular oxygen<br />
passes trough a permeable membrane creat<strong>in</strong>g a measurable electrical current and<br />
the <strong>in</strong>tensity <strong>of</strong> the current rises with a rise <strong>in</strong> the partial pressure <strong>of</strong> the oxygen PO2 35
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.1 Ma<strong>in</strong> technologies<br />
O electrodes DO<br />
2<br />
Examples <strong>of</strong> the <strong>measurement</strong> <strong>of</strong> DO <strong>in</strong><br />
w<strong>in</strong>e with an electrode electrode.<br />
Arrival <strong>of</strong> liquid<br />
Circulation chamber<br />
O2 probe<br />
Flowmeter<br />
Measurement<br />
<strong>BIB</strong><br />
Height =<br />
>1 meter<br />
SSource: INRA<br />
36
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.1 Ma<strong>in</strong> technologies<br />
O electrodes Headspace<br />
2<br />
Electrodes can also be used to measure headspace oxygen<br />
37
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.1 Ma<strong>in</strong> technologies<br />
O optodes: How does it work?<br />
2<br />
Blue light from LED is transmitted through transparent packag<strong>in</strong>g to the surface <strong>of</strong> sensor<br />
spot spot, where it is absorbed by plat<strong>in</strong>um or ruthenium molecules<br />
In the absence <strong>of</strong> oxygen the plat<strong>in</strong>um or ruthenium molecules will emit red light, which is<br />
detected by the optode. <strong>The</strong> average time between the absorption <strong>of</strong> the blue light and<br />
the release <strong>of</strong> the red light allows for the calculation <strong>of</strong> the oxygen content.<br />
Ruthenium or Plat<strong>in</strong>um<br />
molecules <strong>in</strong> the <strong>Oxygen</strong><br />
sensitive coat<strong>in</strong>g <strong>of</strong> the spot<br />
Blue LED signal g sent<br />
through package onto spot<br />
Box with hardware and<br />
s<strong>of</strong>tware to calculate<br />
O2 content based<br />
delays <strong>of</strong> light signals.<br />
O2 meter<br />
O2 O 2 2<br />
If excited Ruthenium<br />
or Plat<strong>in</strong>um molecules<br />
transfer energy to O2 mate, then little or no<br />
red fluorescence<br />
signal is sent back to<br />
detector<br />
If the excited Ruthenium or Plat<strong>in</strong>um<br />
molecules rema<strong>in</strong> alone there is no<br />
energy transfer to O2 molecules and red<br />
light is sent back to detector<br />
O 2<br />
Where<br />
are<br />
you?<br />
38
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.1 Ma<strong>in</strong> technologies<br />
Optodes<br />
39
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.2 <strong>BIB</strong> specificities<br />
Bottle headspace easier to see and measure than <strong>BIB</strong><br />
40
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.2 <strong>BIB</strong> specificities<br />
Bottle vs <strong>BIB</strong> headspace<br />
% <strong>of</strong> headspace relative to w<strong>in</strong>e volume for bottle and <strong>BIB</strong> packag<strong>in</strong>g<br />
Headspace<br />
volume (mL)<br />
W<strong>in</strong>e volume (L)<br />
Bottle <strong>BIB</strong><br />
0.75 1.5 3 5 10<br />
Cork<br />
5 0.7%<br />
Length <strong>of</strong> <strong>BIB</strong><br />
Screwcap<br />
(Bottle)<br />
9<br />
14<br />
65<br />
1,2% ,<br />
1.9%<br />
4.3% 2.2% 1.3% 0.7%<br />
cone<br />
generator l<strong>in</strong>e<br />
6.3 cm<br />
100 67% 6.7% 33% 3.3% 20% 2.0% 10% 1.0% 74cm 7.4 cm<br />
400 26.7% 13.3% 8.0% 4.0% 12.0 cm<br />
41
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.2 <strong>BIB</strong> specificities<br />
<strong>BIB</strong> headspace volume varies over time<br />
Gases that were dissolved (such as CO2) can come out <strong>of</strong> w<strong>in</strong>e <strong>in</strong> gas form, add<strong>in</strong>g to<br />
the bubble (air cone) <strong>in</strong>side the bag bag. It is thought that after 3 to 5 months the amount <strong>of</strong><br />
CO2 permeat<strong>in</strong>g from the air cone out through the package will be greater than the CO2 com<strong>in</strong>g out <strong>of</strong> solution and the size <strong>of</strong> the air cone will beg<strong>in</strong> to decrease.<br />
Below are the results <strong>of</strong> the 2004 INRA study for Performance <strong>BIB</strong> which showed the<br />
headspace volume (mL) <strong>in</strong> function <strong>of</strong> storage temperature over a n<strong>in</strong>e month period.<br />
Head-<br />
Space p<br />
(mL)<br />
160<br />
140<br />
120<br />
100<br />
80<br />
60<br />
40<br />
20<br />
0<br />
15°C 20°C 25°C 30°C<br />
T0 1 month 3 months 6 months 9 months<br />
42
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.2 <strong>BIB</strong> specificities<br />
Bottle headspace mixes less rapidly than <strong>BIB</strong> headspace<br />
O2 <strong>in</strong> <strong>BIB</strong> headspace mixes more quickly with the w<strong>in</strong>e because the bag falls more violently<br />
<strong>in</strong>to the box than bottles be<strong>in</strong>g placed <strong>in</strong>to boxes on the fill<strong>in</strong>g l<strong>in</strong>e l<strong>in</strong>e.<br />
43
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.2 <strong>BIB</strong> specificities<br />
Glass bottles are less permeable to oxygen<br />
Flexible <strong>BIB</strong> package is more permeable to oxygen than glass as oxygen can enter <strong>in</strong><br />
through the film, film the closure and weld <strong>in</strong>terfaces <strong>in</strong>terfaces.<br />
For a glass w<strong>in</strong>e bottle, zero oxygen enters <strong>in</strong> via the glass and the permeability is<br />
essentially l<strong>in</strong>ked to the closure with oxygen go<strong>in</strong>g <strong>in</strong>to the w<strong>in</strong>e:<br />
- directly through the closure<br />
- through the closure/glass bottle <strong>in</strong>terface<br />
- which is released from with<strong>in</strong> the closure itself<br />
44
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 2: Measurement technologies / 2.2 <strong>BIB</strong> specificities<br />
Less O <strong>in</strong>take <strong>in</strong> <strong>BIB</strong> once opened<br />
2<br />
As w<strong>in</strong>e is poured from a <strong>filled</strong> <strong>BIB</strong> the flexible film collapses around the w<strong>in</strong>e and no air<br />
enters dur<strong>in</strong>g the pour<strong>in</strong>g process. process For most <strong>BIB</strong> taps taps, closure after use is automatic and<br />
the w<strong>in</strong>e <strong>in</strong>side will stay fresh for several weeks after open<strong>in</strong>g.<br />
For glass bottles, PET bottles, beverage<br />
cartons and alum<strong>in</strong>um cans, once the<br />
closure is opened, air enters the package<br />
and shelf shelf-life life is considerably reduced reduced.<br />
Closure after use is manual rather than<br />
automatic.<br />
45
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 3: Recommended Procedures / Summary<br />
PPart t 33: RRecommended d d PProcedures, d<br />
by Sophie Vialis, Inter-Rhône<br />
3.1) Problems & solutions<br />
3.2) ) Measure Headspace p volume<br />
3.3) Headspace O2 and DO<br />
46
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s/Part 3: Recommended Procedures/3.1 Problems & solutions<br />
<strong>The</strong> Performance <strong>BIB</strong> O O2 <strong>measurement</strong> project context<br />
1st problem: For optical <strong>measurement</strong>s, f<strong>in</strong>d a better way to ma<strong>in</strong>ta<strong>in</strong> the sensor spots<br />
<strong>in</strong>side the <strong>BIB</strong> s<strong>in</strong>ce they come unstuck when glued to flexible PE film film. It was also important<br />
to avoid <strong>in</strong>troduc<strong>in</strong>g a lot <strong>of</strong> air <strong>in</strong>to the bag while glu<strong>in</strong>g the spot, to avoid mak<strong>in</strong>g a hole <strong>in</strong><br />
the bag (when fix<strong>in</strong>g a view<strong>in</strong>g w<strong>in</strong>dow, for example) and to keep as close to realistic fill<br />
conditions as possible.<br />
Solution: Use <strong>of</strong> a transparent Vitop tap with spot glued <strong>in</strong>side tap to measure w<strong>in</strong>e or<br />
headspace oxygen after fill<strong>in</strong>g the <strong>BIB</strong>.<br />
47
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s/Part 3: Recommended Procedures/3.1 Problems & solutions<br />
<strong>The</strong> Performance <strong>BIB</strong> O O2 <strong>measurement</strong> project context<br />
2 nd problem: Standardize O 2 <strong>measurement</strong> protocol after fill<strong>in</strong>g<br />
Solution: Conduct both lab and field tests and suggest protocol based upon experience<br />
48
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s/Part 3: Recommended Procedures/3.1 Problems & solutions<br />
<strong>The</strong> Performance <strong>BIB</strong> O O2 <strong>measurement</strong> project context<br />
3rd problem: Increase the precision and simplicity <strong>of</strong> the the <strong>measurement</strong> <strong>of</strong> headspace<br />
volume<br />
Solution: Creation <strong>of</strong> the Bib Cone Meter<br />
49
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 3: Recommended Procedures / 3.2 Headspace volume<br />
<strong>The</strong> birth <strong>of</strong> the <strong>BIB</strong> cone meter<br />
1 st stage: Determ<strong>in</strong>ation <strong>of</strong> the true angle <strong>of</strong> the air cone <strong>in</strong> a <strong>filled</strong> <strong>BIB</strong> package<br />
This was done by develop<strong>in</strong>g a protoype cone meter that exactly fit the angle created by the<br />
two sides and then measur<strong>in</strong>g the angle with a protractor. This was further verified<br />
mathematically mathematically. <strong>The</strong> true angle is very close to 56° 56<br />
B<br />
C A<br />
If AB = 5.3, CB = 6 and angle b = 90° then<br />
angle y = 27 27.95 95 95° and<br />
α = 2 y = 55.90 55.90°<br />
50
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 3: Recommended Procedures / 3.2 Headspace volume<br />
<strong>The</strong> birth <strong>of</strong> the <strong>BIB</strong> cone meter<br />
2nd stage: Determ<strong>in</strong>ation <strong>of</strong> the relationship between the length <strong>of</strong> the cone<br />
generator l<strong>in</strong>e and the volume <strong>of</strong> the air cone (headspace)<br />
This was done by add<strong>in</strong>g a pre-determ<strong>in</strong>ed quantity <strong>of</strong> liquid <strong>in</strong>to the bag (for example 50<br />
mL) and read<strong>in</strong>g out the length <strong>of</strong> the side <strong>of</strong> the cone generator l<strong>in</strong>e (for example 55.75 75 cm)<br />
for a wide range <strong>of</strong> liquid volumes. This was repeated for several nom<strong>in</strong>al volumes.<br />
51
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 3: Recommended Procedures / 3.2 Headspace volume<br />
<strong>The</strong> birth <strong>of</strong> the <strong>BIB</strong> cone meter<br />
3rd stage: Establish<strong>in</strong>g a power equation to express the correlation<br />
Thi This was done d on the th bbasis i <strong>of</strong> f all ll th the real l results lt gathered th d i<strong>in</strong> stage t 2<br />
(mL)<br />
Volume<br />
120<br />
110<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
0<br />
y = 0.363x 2.816<br />
R² = 0.999<br />
Average <strong>of</strong> 5 results for each volume<br />
moyennes des 5 mesures<br />
All results for each volume<br />
po<strong>in</strong>ts <strong>in</strong>itiaux<br />
0 2 4 6 8 10<br />
Length <strong>of</strong> cone generator l<strong>in</strong>e (cm)<br />
4 th stage: Sett<strong>in</strong>g an upper limit: 12 cm max. (almost 400 mL <strong>of</strong> air!)<br />
52
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 3: Recommended Procedures / 3.2 Headspace volume<br />
<strong>The</strong> birth <strong>of</strong> the <strong>BIB</strong> cone meter<br />
5th stage: Validation <strong>of</strong> <strong>BIB</strong> bags <strong>of</strong><br />
different nom<strong>in</strong>al volumes (1.5 (1 5 to 20L) with<br />
bags from several different manufacturers.<br />
6th 6 stage: Pr<strong>in</strong>t<strong>in</strong>g <strong>of</strong> the <strong>BIB</strong> Cone Meter on<br />
a plastic support (about the thickness <strong>of</strong> a credit<br />
card).<br />
53
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
At what po<strong>in</strong>ts are oxygen pickup measured?<br />
<strong>Oxygen</strong> pickup is measured between two po<strong>in</strong>ts <strong>in</strong> the fill<strong>in</strong>g process<br />
We suggest that <strong>BIB</strong> w<strong>in</strong>e O O2 pickup dur<strong>in</strong>g fill<strong>in</strong>g be def<strong>in</strong>ed as the difference between the <strong>Total</strong> Package<br />
<strong>Oxygen</strong> (TPO) <strong>of</strong> the <strong>filled</strong> <strong>BIB</strong> (very close to the filler) and the <strong>in</strong>itial DO <strong>of</strong> the w<strong>in</strong>e <strong>in</strong> the ma<strong>in</strong> tank (or<br />
close to it).<br />
Other po<strong>in</strong>ts <strong>in</strong>-between (before and after filtration, exit buffer tank, entry filler, <strong>BIB</strong> still held by gripper<br />
ja jaws s <strong>of</strong> fill<strong>in</strong>g mach<strong>in</strong>e etc etc.) ) ma may help identif identify pick pickup p so sources rces bbut t these represent only onl partial pick pickup p<br />
po<strong>in</strong>ts. It is important to agree on terms!<br />
54
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Be prepared<br />
It is preferable to use transparent bags for O2 tests s<strong>in</strong>ce visual control <strong>of</strong> headspace is<br />
much easier with transparent bags bags. For both optical and electrochemical <strong>measurement</strong>s <strong>measurement</strong>s, the<br />
w<strong>in</strong>ery should refer to the user manual for guidance. For optical <strong>measurement</strong>s it is also<br />
recommended to:<br />
- Use a transparent tap as a support for the sensor spot and preferably a tap which<br />
has been modified so that it can be removed from its gland after the <strong>measurement</strong><br />
has been taken and used (with its glued spot) for other tests.<br />
- Verify that the sensor spots have not exceeded their date or use limits.<br />
- Gl Glue th the sensor spot t severall hhours bbefore f use, choos<strong>in</strong>g h i a place l on th the i<strong>in</strong>side id<br />
<strong>of</strong> the tap which is accessible (from the outside <strong>of</strong> the tap) by the optical cable.<br />
- Store the spots (or taps with spots) away from light light.<br />
Test w<strong>in</strong>e bags should be clearly identified as not for commercial use.<br />
55
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Calibration<br />
For all O 2 <strong>measurement</strong> technologies, proper calibration is recommended to <strong>in</strong>crease precision.<br />
For optical technologies, there are two sources <strong>of</strong> obta<strong>in</strong><strong>in</strong>g calibration values:<br />
First option is to use the values supplied by the manufacturer for each lot <strong>of</strong> sensor spots<br />
delivered.<br />
Second option is for the user to perform calibration, tak<strong>in</strong>g <strong>in</strong>to account local conditions to<br />
<strong>in</strong>crease ceasepecso precision.<br />
<strong>The</strong> values for the first option are determ<strong>in</strong>ed under the laboratory conditions <strong>of</strong> the manufacturer (not<br />
tak<strong>in</strong>g <strong>in</strong>to account the ag<strong>in</strong>g <strong>of</strong> the spots, the support upon which it is glued, the length <strong>of</strong> the optical<br />
cable used used, etc etc.). ) A calibration by the user allows for an adjustment to these local conditions conditions.<br />
It is good practice to ma<strong>in</strong>ta<strong>in</strong> a traceability <strong>of</strong> spots (and taps hav<strong>in</strong>g specific spots glued to them) and<br />
their calibration values, and to enter their right calibration values for each new test with an optical<br />
<strong>in</strong>strument.<br />
56
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Calibration<br />
Calibration is performed generally with two po<strong>in</strong>ts: for example at 0 % oxygen (low po<strong>in</strong>t)<br />
and 21% oxygen v/v (high po<strong>in</strong>t) po<strong>in</strong>t).<br />
<strong>The</strong> user can either apply the <strong>in</strong>structions <strong>of</strong> the manufacturer or develop their own<br />
calibration method. <strong>The</strong> easiest (for ( the low po<strong>in</strong>t) p ) is to create 0% % O 2 <strong>in</strong> a small chamber<br />
which can be <strong>in</strong> part the tap itself, held open (for nitrogen flush<strong>in</strong>g) by a connector.<br />
57
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Initial DO <strong>measurement</strong>s <strong>in</strong> the ma<strong>in</strong> w<strong>in</strong>e tank* tank<br />
<strong>The</strong>re are three ma<strong>in</strong> sampl<strong>in</strong>g techniques:<br />
-Inside the tank: A dipp<strong>in</strong>g probe can be fed <strong>in</strong>to the tank from above, with <strong>measurement</strong>s at the bottom,<br />
the top and the middle <strong>of</strong> the tank to test homogenity and to obta<strong>in</strong> an average value.<br />
- At the tank ma<strong>in</strong> exit: For optodes, optodes a sensor spot can be glued on a transparent glass w<strong>in</strong>dow one one<br />
<strong>of</strong> the connection l<strong>in</strong>ks at the exit <strong>of</strong> the w<strong>in</strong>e tank. If a glass w<strong>in</strong>dow is used, it should be transparent and<br />
not too thick (< 12 mm). If the w<strong>in</strong>e is too cold, condensation on the glass can prevent the correct<br />
<strong>measurement</strong> from be<strong>in</strong>g taken. Some optodes (with <strong>in</strong>tegrated sensor spots) require a liquid circulation<br />
chamber connected to the exit <strong>of</strong> the ma<strong>in</strong> w<strong>in</strong>e tank tank.<br />
For electrodes, w<strong>in</strong>e can be drawn <strong>in</strong>to the <strong>in</strong>strument (from a deviation l<strong>in</strong>k placed <strong>in</strong> the exit hose) and<br />
measured.<br />
- Draw a sample from the tast<strong>in</strong>g tap. For optodes, the w<strong>in</strong>e can be placed <strong>in</strong> a small glass recipient<br />
(fushed previously with <strong>in</strong>ert gas) with a sensor spot. This method is not recommended if other options<br />
are available. For electrodes, the <strong>measurement</strong> can be taken by directly mak<strong>in</strong>g the w<strong>in</strong>e flow from the<br />
tast<strong>in</strong>g tap.<br />
* By ma<strong>in</strong> w<strong>in</strong>e tank, we mean the ma<strong>in</strong> tank used for fill<strong>in</strong>g, before f<strong>in</strong>al filtration and any buffer tank.<br />
58
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Initial DO <strong>measurement</strong>s directly<br />
<strong>in</strong>to the ma<strong>in</strong> w<strong>in</strong>e tank<br />
<strong>The</strong> <strong>in</strong>-tank dipp<strong>in</strong>g method for opical <strong>measurement</strong>s: Dipp<strong>in</strong>g probe fed <strong>in</strong>to the tank<br />
from above or via a side tank (shown). It is best to stir the probe while it is the tank to<br />
decrease stabilisation time.<br />
59
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Initial DO <strong>measurement</strong>s exit from the ma<strong>in</strong> w<strong>in</strong>e tank<br />
This can be conducted directly at the exit <strong>of</strong> the ma<strong>in</strong> w<strong>in</strong>e tank with an optical <strong>in</strong>strument.<br />
For some optical technologies technologies, a sopt can be glued on the other side <strong>of</strong> a transparent<br />
w<strong>in</strong>dow to allow this <strong>measurement</strong> to take place..<br />
60
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Initial DO <strong>measurement</strong>s exit from the ma<strong>in</strong> w<strong>in</strong>e tank<br />
Results from several <strong>measurement</strong> technologies can be compared at the same po<strong>in</strong>t <strong>of</strong> exit.<br />
2 optodes<br />
Circulation chamber for optical<br />
<strong>measurement</strong> with <strong>in</strong>tegrated spot<br />
Transparent<br />
w<strong>in</strong>dow with<br />
spots for<br />
optical<br />
<strong>measurement</strong>s<br />
Flow unit for<br />
electrochemical<br />
method th d<br />
61
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
TPO <strong>measurement</strong>s after fill<strong>in</strong>g<br />
For all <strong>measurement</strong> technologies it is not easy to take the first <strong>measurement</strong> (after fill<strong>in</strong>g<br />
and capp<strong>in</strong>g) while the w<strong>in</strong>e <strong>BIB</strong> is still held by the grippers <strong>of</strong> the fill<strong>in</strong>g mach<strong>in</strong>e mach<strong>in</strong>e.<br />
For this reason it is recommended to take the <strong>BIB</strong><br />
sample right after it has been <strong>filled</strong> and tapped but<br />
to gently catch it as soon as it is released by the<br />
grippers but before the bag has fallen <strong>in</strong>to the box.<br />
This generally implies that the mach<strong>in</strong>e must be<br />
temporarily stopped when the sample is taken taken.<br />
When the <strong>BIB</strong> is taken, it should be gently<br />
transported p (hold<strong>in</strong>g ( g the tap p on top) p) to a test table<br />
located close to the fill<strong>in</strong>g mach<strong>in</strong>e. <strong>The</strong> <strong>BIB</strong> should be<br />
readied first for headspace analysis (for optical<br />
<strong>measurement</strong>s) without mix<strong>in</strong>g the w<strong>in</strong>e.<br />
62
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
TPO <strong>measurement</strong>s after fill<strong>in</strong>g<br />
Because the same sensor spot can be used for headspace oxygen and for DO (by<br />
revers<strong>in</strong>g the position <strong>of</strong> the <strong>BIB</strong>) <strong>BIB</strong>), there is a need for only one <strong>BIB</strong> for each optical sample<br />
set.<br />
63
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Measur<strong>in</strong>g headspace volume<br />
- Prepare an ample work space with cone meter<br />
- For optodes: calculate headspace volume right after headspace oxygen has been<br />
measured and just before the DO <strong>measurement</strong>s for the w<strong>in</strong>e.<br />
-For electrodes: measure headspace volume before headspace oxygen.<br />
- Squeeze the headspace air gently <strong>in</strong>to the form <strong>of</strong> a cone<br />
64
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Measur<strong>in</strong>g headspace volume<br />
Position the <strong>BIB</strong> Cone Meter and measure the two sides <strong>of</strong> the cone (<strong>in</strong> cm)<br />
Calculate the average <strong>in</strong> cm and read the correspond<strong>in</strong>g volume <strong>of</strong> the cone <strong>in</strong> mL from the<br />
<strong>BIB</strong> Cone Meter.<br />
Abracadabra!<br />
ml cm<br />
44.1 5.50<br />
50 50.00 575 5.75<br />
56.4 6.00<br />
63.3 6.25<br />
70.6 6.50<br />
78.6 6.75<br />
87 87.00 700 7.00<br />
65
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Measur<strong>in</strong>g headspace volume<br />
For the special case <strong>of</strong> metallized bags,<br />
remove the outer metallised film layer with the help <strong>of</strong> a cutter and a pair <strong>of</strong> scissors –<br />
preferably without pierc<strong>in</strong>g the bag!<br />
66
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Measur<strong>in</strong>g headspace volume<br />
For the special cases <strong>of</strong> bags:<br />
- with rounded corners (welds), measure the full cone to the apex and then deduct the<br />
volume <strong>of</strong> the miss<strong>in</strong>g corner (generally < 2 mL)<br />
- <strong>filled</strong> with a lot <strong>of</strong> foam, preferably wait for the average foam thickness to settle under<br />
5 mm and then measure from the bottom <strong>of</strong> the foam. Alternatively subtract from the<br />
total headspace (measured from the bottom <strong>of</strong> the foam) the liquid equivalent <strong>of</strong> the<br />
ffoam. This Thi liquid li id equivalent i l t iis calculated l l t d bby estimat<strong>in</strong>g ti ti th the volume l <strong>of</strong> f th the f foam ( (us<strong>in</strong>g i th the<br />
cone meter) and multiply<strong>in</strong>g the foam volume by a coefficient (we use 15%).<br />
67
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
A simple rule <strong>of</strong> thumb us<strong>in</strong>g the <strong>BIB</strong> cone<br />
meter Bag‐<strong>in</strong>‐Box ®<br />
Cone meter<br />
Green Zone:<br />
UUp tto 5 cm<br />
Excellent!<br />
Yellow Zone:<br />
>5 > 5 cm tto 7 cm<br />
OK but improve!!<br />
Red zone:<br />
> 7 cm D Danger!!! !!!<br />
(unless your % <strong>of</strong> oxygen is very low)<br />
68
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Measur<strong>in</strong>g headspace oxygen with electrodes<br />
- Place some tape on the aircone <strong>in</strong> the spot where it is to be pierced.<br />
- Pull an air sample slowly <strong>in</strong>to a syr<strong>in</strong>ge and <strong>in</strong>ject immediately (but slowly) <strong>in</strong>to<br />
<strong>measurement</strong> chamber for % O2 read<strong>in</strong>g.<br />
- there is an underly<strong>in</strong>g hypothesis that the <strong>in</strong>ternal pressure <strong>of</strong> the <strong>BIB</strong> aircone is similar<br />
to the pressure <strong>in</strong>side the <strong>measurement</strong> chambre but this is probably the case for <strong>BIB</strong> <strong>BIB</strong>.<br />
69
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Measur<strong>in</strong>g headspace oxygen with an optode<br />
Us<strong>in</strong>g optical <strong>in</strong>struments:<br />
- Carry the <strong>BIB</strong> gently from the fill<strong>in</strong>g mach<strong>in</strong>e to a <strong>measurement</strong> table located as close as<br />
possible to the fill<strong>in</strong>g mach<strong>in</strong>e<br />
- For the <strong>measurement</strong>, secure the <strong>BIB</strong> (with the tap above) with the help <strong>of</strong> a hold<strong>in</strong>g<br />
clamp<br />
- Make the <strong>measurement</strong>s immediately after fill<strong>in</strong>g<br />
70
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Measur<strong>in</strong>g headspace oxygen with an optode<br />
Us<strong>in</strong>g optical <strong>in</strong>struments:<br />
- We consider the values to be acceptably stabilized with<strong>in</strong> 2 m<strong>in</strong>utes for most<br />
situations<br />
- Record the oxygen result <strong>in</strong> %. <strong>The</strong> simplicity <strong>of</strong> us<strong>in</strong>g a value <strong>in</strong> % could be a source<br />
<strong>of</strong> error if the total pressure p <strong>in</strong>side the ppackage g was very y different than the total ppressure<br />
used for the calculations (by the optode) but this is generally not the case with <strong>BIB</strong><br />
packag<strong>in</strong>g.<br />
71
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Calculate headspace oxygen <strong>in</strong> mg/L<br />
After hav<strong>in</strong>g measured the % <strong>of</strong> oxygen <strong>in</strong> the cone us<strong>in</strong>g an oxygen sensor (= % O 2):<br />
Calculate the quantity <strong>of</strong> oxygen <strong>in</strong> the cone (mg/L) us<strong>in</strong>g the follow<strong>in</strong>g formula:<br />
(% O 2) x (volume headspace mL ) x (1.429 mg O 2/mL O 2)<br />
-------------------------------------------------------------------------volume<br />
<strong>BIB</strong> (L w<strong>in</strong>e)<br />
<strong>The</strong> result is an expression <strong>of</strong> the reserve <strong>of</strong> O 2 <strong>in</strong> the cone that could potentially be<br />
transferred to the w<strong>in</strong>e.<br />
72
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Calculate DO with electrodes<br />
Us<strong>in</strong>g electrochemical <strong>in</strong>struments:<br />
- Put the <strong>BIB</strong> <strong>in</strong> a box with the tap below below, at a<br />
height <strong>of</strong> about 1 meter above the O2 meter.<br />
- <strong>The</strong> debit <strong>of</strong> the w<strong>in</strong>e exit<strong>in</strong>g the O2 meter should<br />
be regular and sufficient (10 L/h) L/h). If not add a<br />
peristaltic pump after O2 meter.<br />
- Wait until the circuit is purged <strong>of</strong> any air<br />
- When the measures are stable stable, record them <strong>in</strong><br />
ppm (mg/L)<br />
73
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Calculate DO with optodes<br />
Us<strong>in</strong>g optical <strong>in</strong>struments:<br />
- Hold the <strong>BIB</strong> with the tap below below, with the help <strong>of</strong> a hold<strong>in</strong>g clamp <strong>in</strong> such a way so that<br />
only w<strong>in</strong>e (and no air) is fill<strong>in</strong>g the tap.<br />
- Make the <strong>measurement</strong>s as soon as possible after the headspace <strong>measurement</strong>s.<br />
74
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Stabilisation time for DO read<strong>in</strong>gs with optodes<br />
This stabilisation period for DO (between the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the masurements and when<br />
they refect reality) must still be further studied studied.<br />
Some sources recommend between 0 and 40 m<strong>in</strong>utes.<br />
This delay must be long enough so as to elim<strong>in</strong>ate the effects <strong>of</strong> any micro-air bubbles on or<br />
around the sensor spot, but the delay must not be so long as to <strong>in</strong>troduce other errors<br />
<strong>in</strong>clud<strong>in</strong>g too much consumption <strong>of</strong> the oxygen by the w<strong>in</strong>e. In addition, w<strong>in</strong>eries practices<br />
generally impose no longer a wait than truly necessary.<br />
At this stage <strong>of</strong> our research, we recommend a stabilisation time <strong>of</strong> 15 m<strong>in</strong>utes for DO<br />
read<strong>in</strong>gs di ( (non agitated i d w<strong>in</strong>e) i ) bbut this hi recommendation d i may change h as ffurther h tests are<br />
conducted.<br />
75
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Stabilisation time for DO read<strong>in</strong>gs with optodes<br />
Typical DO <strong>in</strong> unshaked <strong>BIB</strong>s drops rapidly the first 5 m<strong>in</strong>utes <strong>in</strong> non-skaken <strong>BIB</strong> w<strong>in</strong>e and<br />
then DO drops more slowly as time goes on on. As <strong>in</strong>dicated <strong>in</strong>dicated, our recommended stabilisation<br />
time (wait<strong>in</strong>g period) is15 m<strong>in</strong>utes before accept<strong>in</strong>g that the DO value is valid.<br />
76
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Stabilisation time for Headspace read<strong>in</strong>gs with optodes<br />
Typical headspace read<strong>in</strong>gs appear to be very stable immediately. <strong>The</strong> graph below is for<br />
the same w<strong>in</strong>e <strong>BIB</strong> as the previous slide (shown for DO)<br />
77
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Stabilisation time for agitated w<strong>in</strong>e with optodes<br />
After agitation (on an orbital shake table at 275 RPM for 4 m<strong>in</strong>utes), TPO (DO +<br />
Headspace) values are very stable immediately immediately. Read<strong>in</strong>gs <strong>of</strong> <strong>in</strong>itial headspace oxygen<br />
before agitation should also be taken.<br />
78
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Recommended stabilisation times<br />
<strong>The</strong> table below summarizes our recommendations:<br />
Type <strong>of</strong><br />
mesurement<br />
Electrochemical<br />
Technologies<br />
Optical technologies (optodes)<br />
(electrodes) With Withoutt agitation it ti With agitation* it ti *<br />
Dissolved O 2 Immediate 15 m<strong>in</strong>utes Immediate<br />
Headspace O 2 Immediate 2 m<strong>in</strong>utes Immediate<br />
* Agitation g with orbital shaker table at 275 RPM for 4 m<strong>in</strong>utes.<br />
79
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Tim<strong>in</strong>g and steps for O O2 <strong>measurement</strong>s with optodes<br />
Times provided below assumes that the <strong>in</strong>strument is already calibrated, sensor spots are<br />
already glued, glued recommended stabilisation times are applied and the tester is experienced<br />
experienced.<br />
<strong>The</strong> <strong>in</strong>itial DO test (if only one <strong>measurement</strong> is taken) will take at least 25 m<strong>in</strong>utes and TPO<br />
(headspace ( p oxygen yg and DO) ) <strong>in</strong> <strong>filled</strong> <strong>BIB</strong>s will take a m<strong>in</strong>imum <strong>of</strong> another 30 m<strong>in</strong>utes pper<br />
<strong>BIB</strong>.<br />
1 st step: Measure <strong>in</strong>itial ma<strong>in</strong> w<strong>in</strong>e tank DO (stabilisation time 15 m<strong>in</strong>utes + set-up and<br />
record<strong>in</strong>g time approx. 10 m<strong>in</strong>utes)<br />
2 nd step: Measure headspace oxygen immediately after fill<strong>in</strong>g (stabilisation time 2 m<strong>in</strong>utes +<br />
set-up and record<strong>in</strong>g time approx. 3 m<strong>in</strong>utes)<br />
3 rd step: Measure headspace volume (set up and <strong>measurement</strong> time: approx. 5 m<strong>in</strong>utes)<br />
4 th step: Measure <strong>of</strong> <strong>filled</strong> package DO level (stablisation time: 15 m<strong>in</strong>utes + set-up and<br />
record<strong>in</strong>g time approx. 5 m<strong>in</strong>utes)<br />
If bit l h k i d ll t ti i h t d b t lt th bt i d<br />
If an orbital shaker is used, overall <strong>measurement</strong> time is shortened but results thus obta<strong>in</strong>ed<br />
may have to be <strong>in</strong>trepreted differently than results from tests without skak<strong>in</strong>g.<br />
80
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s /Part 3: Recommended Procedures /3.3 Headspace O 2 and DO<br />
Some TPO Pr<strong>of</strong>iles<br />
A comparison <strong>of</strong> <strong>Total</strong> Package <strong>Oxygen</strong> (TPO) <strong>in</strong> w<strong>in</strong>e <strong>BIB</strong>s right after fill<strong>in</strong>g, observed<br />
at various w<strong>in</strong>eries<br />
mg/L mg/L O 2<br />
16<br />
14<br />
12<br />
10<br />
8<br />
6<br />
4<br />
2<br />
0<br />
Headspace <strong>Oxygen</strong><br />
DO pick‐up<br />
Initial DO<br />
1 2 3 4 5 6 7 8 8 different pr<strong>of</strong>iles<br />
High Excellence Not OK<br />
81
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 4: Future Research<br />
Part 4: Future research, by Patrick Shea, Vitop<br />
82
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 4: Future Research<br />
Can we accurately predict w<strong>in</strong>e <strong>BIB</strong> shelf life?<br />
Not yet<br />
<strong>BIB</strong> Shelf life correlation has been established:<br />
Reasonably well for: -SO2levels - Microbiological growth<br />
- DO pickup dur<strong>in</strong>g fill<strong>in</strong>g<br />
- Temperature<br />
Somewhat for: - <strong>The</strong> type <strong>of</strong> w<strong>in</strong>e<br />
- Package damage<br />
Very little for: - Air cone oxygen<br />
- Package OTR<br />
Shelf-life predictions do not appear to work very well when based upon gas/gas O 2<br />
transmission rates <strong>of</strong> the barrier film and tap and we know little about the real impact <strong>of</strong><br />
vary<strong>in</strong>g levels <strong>of</strong> air cone oxygen (volume or % O 2).<br />
83
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 4: Future Research<br />
<strong>The</strong> <strong>BIB</strong> <strong>in</strong>dustry needs to improve its O O2 metrics!<br />
“Dry Test (gas/gas)” OTR results do not reflect real conditions for liquid packag<strong>in</strong>g and <strong>of</strong>ten<br />
do not appear to be very good <strong>in</strong>dicators <strong>of</strong> expected shelf-life shelf-life.<br />
Although some studies do show an overall correlation between “Dry Test<br />
(gas/gas)” OTR results and shelf life, we also have:<br />
- <strong>The</strong> extensive 2004 INRA test<strong>in</strong>g for Performance <strong>BIB</strong> where a special<br />
seal<strong>in</strong>g wax placed over the tap reduced gas/gas OTR by about 42%<br />
relative to the unsealed taps. No impact on w<strong>in</strong>e shelf life was observed.<br />
- Several shelf life tests with various films hav<strong>in</strong>g very different “Dry Test<br />
(gas/gas)” OTR results but with little impact on w<strong>in</strong>e <strong>BIB</strong> shelf life.<br />
Left: comparison p between two<br />
types <strong>of</strong> <strong>BIB</strong> bags (<strong>in</strong>serted or not<br />
<strong>in</strong> boxes) hav<strong>in</strong>g different “Dry<br />
Test (gas/gas)” OTR results with<br />
no difference <strong>in</strong> shelf life.<br />
Presented by CC. Schussler<br />
(Geisenheim W<strong>in</strong>e Research<br />
Centre) at Performance <strong>BIB</strong><br />
general meet<strong>in</strong>g <strong>in</strong> 2008. 84
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 4: Future Research<br />
Need for future research<br />
Create model solution (for example, low oxygen, high acid water) <strong>in</strong> <strong>BIB</strong> package.<br />
Conduct parallel tests with w<strong>in</strong>e to determ<strong>in</strong>e the true correlation between <strong>Total</strong> Life Cycle Package<br />
<strong>Oxygen</strong> (see schema page 22) <strong>in</strong> the model solution (<strong>in</strong> mg/L) and w<strong>in</strong>e <strong>BIB</strong> shelf-life (and also<br />
establish<strong>in</strong>g the degree <strong>of</strong> correlation with Dry Test OTR results).<br />
Vary key parameters (headspace oxygen % and<br />
volume, DO, CO2 levels, film barrier properties, etc.) <strong>in</strong><br />
both the model solution and <strong>BIB</strong>s <strong>filled</strong> with w<strong>in</strong>e to<br />
3,50<br />
establish clear correlations between changes g <strong>in</strong> DO 3,00<br />
levels <strong>in</strong> the model solution and changes <strong>in</strong> the w<strong>in</strong>e. 2,50<br />
2,00<br />
<strong>The</strong> w<strong>in</strong>e would be evaluated both analytically and 1,50<br />
sensorial, , us<strong>in</strong>g g also the same w<strong>in</strong>e <strong>in</strong> a glass g<br />
1,00 ,<br />
bottles as a benchmark. This can build upon the <strong>filled</strong> 0,50<br />
package research already pioneered by Georges<br />
Crochiere, Aurélie Peychès Bach, Jean-Claude Vidal<br />
and others.<br />
0,00<br />
mgg/L<br />
or ppmm<br />
O2 <strong>BIB</strong> Bag 1<br />
<strong>BIB</strong> Bag 2<br />
0 10 20 30 40 50<br />
days<br />
85
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / Part 4: Future Research<br />
Need for future research<br />
Through better oxygen <strong>measurement</strong> systems, we can p<strong>in</strong>po<strong>in</strong>t further<br />
areas <strong>of</strong> improvement and extend w<strong>in</strong>e <strong>BIB</strong> shelf-life<br />
N° <strong>of</strong> <strong>BIB</strong>s<br />
<strong>Total</strong> Life Cycle Package <strong>Oxygen</strong> goal:<br />
Bell curves tightened (less variance)<br />
and/or shifted to the left<br />
O 2<br />
O 2<br />
O 2<br />
O 2<br />
N° <strong>of</strong> <strong>BIB</strong>s<br />
Shelf life goal:<br />
Bell curves tightened (less variance)<br />
and/or shifted to the right<br />
mg/L Shelf-life (<strong>in</strong> months)<br />
A<br />
86
W<strong>in</strong>e <strong>BIB</strong> O 2 <strong>measurement</strong>s / End<br />
For more <strong>in</strong>formation contact:<br />
Patrick SHEA<br />
Tel Tel. +33467598218<br />
+33 4 67 59 82 18<br />
ps@vitop.fr<br />
Sophie VIALIS<br />
Tel. +33 4 90 11 46 00<br />
svialis@<strong>in</strong>ter-rhone.com<br />
Jean-Claude VIDAL<br />
Tel. +33 4 68 49 44 00<br />
vidaljc@supagro.<strong>in</strong>ra.fr<br />
vitop <br />
Photo:<br />
Office de Tourisme de Bordeaux<br />
T. Sanson<br />
87