20.03.2013 Views

Assignment 5 (MATH 215, Q1) 1. Evaluate the triple integral. (a ...

Assignment 5 (MATH 215, Q1) 1. Evaluate the triple integral. (a ...

Assignment 5 (MATH 215, Q1) 1. Evaluate the triple integral. (a ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Assignment</strong> 5 (<strong>MATH</strong> <strong>215</strong>, <strong>Q1</strong>)<br />

<strong>1.</strong> <strong>Evaluate</strong> <strong>the</strong> <strong>triple</strong> <strong>integral</strong>.<br />

(a) <br />

xy dV , where E is <strong>the</strong> solid tetrahedron with vertices (0, 0, 0), (1, 0, 0),<br />

E<br />

(0, 2, 0), and (0, 0, 3).<br />

Solution. The plane containing <strong>the</strong> three points (1, 0, 0), (0, 2, 0), and (0, 0, 3) has an<br />

equation 6x + 3y + 2z = 6. Thus,<br />

<br />

E<br />

1 2−2x (6−6x−3y)/2<br />

xydV =<br />

xy dz dy dx<br />

0<br />

0<br />

1 2−2x<br />

=<br />

0<br />

1<br />

=<br />

0<br />

0<br />

0<br />

1<br />

(6 − 6x − 3y)xy dy dx<br />

2<br />

2(−x 4 + 3x 3 − 3x 2 + x) dx = 1<br />

10 .<br />

(b) <br />

E x dV , where E is bounded by <strong>the</strong> paraboloid x = 4y2 + 4z2 and <strong>the</strong> plane<br />

x = 4.<br />

Solution. We have Q = {(y, z) : y2 + z2 ≤ 1} and<br />

<br />

E<br />

<br />

xdV =<br />

0<br />

Q<br />

4<br />

0<br />

4y 2 +4z 2<br />

<br />

x dx dA =<br />

Q<br />

8 − 8(y 2 + z 2 ) 2 dA<br />

2π 1<br />

= (8 − 8r 4 1<br />

)r dr dθ = 2π (8r − 8r 5 ) dr = 16π<br />

3 .<br />

2. (a) Find <strong>the</strong> volume of <strong>the</strong> region inside <strong>the</strong> cylinder x 2 + y 2 = 9, lying above <strong>the</strong><br />

xy-plane, and below <strong>the</strong> plane z = y + 3.<br />

Solution. We have Q = {(x, y) : x 2 + y 2 ≤ 9} and<br />

<br />

V =<br />

E<br />

<br />

dV =<br />

Q<br />

y+3<br />

0<br />

<br />

dz dA =<br />

0<br />

Q<br />

(y + 3) dA<br />

2π 3<br />

2π<br />

= (r sin θ + 3) r dr dθ = (9 sin θ + 27/2) dθ = 27π.<br />

0<br />

0<br />

(b) Find <strong>the</strong> volume of <strong>the</strong> region bounded by <strong>the</strong> paraboloids z = x 2 + y 2 and<br />

z = 36 − 3x 2 − 3y 2 .<br />

Solution. We have Q = {(x, y) : x 2 + y 2 ≤ 9} and<br />

<br />

V =<br />

E<br />

<br />

dV =<br />

Q<br />

36−3x 2 −3y 2<br />

x 2 +y 2<br />

0<br />

<br />

dz dA =<br />

Q<br />

(36 − 4x 2 − 4y 2 ) dA<br />

2π 3<br />

= (36 − 4r 2 3<br />

)r dr dθ = 2π (36r − 4r 3 ) dr = 162π.<br />

0<br />

0<br />

1<br />

0


3. Use cylindrical coordinates in <strong>the</strong> following problems.<br />

(a) <strong>Evaluate</strong> <br />

E<br />

z = 9 − x2 − y2 and <strong>the</strong> xy-plane.<br />

x 2 + y 2 dV , where E is <strong>the</strong> solid bounded by <strong>the</strong> paraboloid<br />

Solution. In cylindrical coordinates <strong>the</strong> region E is described by<br />

Thus,<br />

<br />

E<br />

x 2 + y 2 dV =<br />

(b) <strong>Evaluate</strong> <strong>the</strong> <strong>integral</strong> <br />

0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π, and 0 ≤ z ≤ 9 − r 2 .<br />

2π 3 2<br />

9−r 2π 3<br />

r · r dz dr dθ = r 2 (9 − r 2 ) dr dθ<br />

0<br />

0<br />

0<br />

0<br />

0<br />

2π 3<br />

= dθ (9r 2 − r 4 ) dθ = 324π<br />

5 .<br />

E x2 dV , where E is <strong>the</strong> solid that lies within <strong>the</strong> cylinder<br />

x 2 + y 2 = 1, above <strong>the</strong> plane z = 0, and below <strong>the</strong> cone z 2 = 4x 2 + 4y 2 .<br />

Solution. In cylindrical coordinates <strong>the</strong> region E is described by<br />

Thus,<br />

<br />

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, and 0 ≤ z ≤ 2r.<br />

E<br />

x 2 2π 1 2r<br />

dV =<br />

(r cos θ) 2 r dz dr dθ<br />

0<br />

0<br />

2π<br />

= cos 2 1<br />

θ dθ<br />

0<br />

0<br />

0<br />

0<br />

0<br />

2r 4 dr = 2π<br />

5 .<br />

4. Use spherical coordinates in <strong>the</strong> following problems.<br />

(a) <strong>Evaluate</strong> <br />

dV , where E is <strong>the</strong> solid that lies between <strong>the</strong> spheres<br />

E x e(x2 +y 2 +z 2 ) 2<br />

x 2 + y 2 + z 2 = 1 and x 2 + y 2 + z 2 = 4 in <strong>the</strong> first octant<br />

{(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0}.<br />

Solution. In spherical coordinates <strong>the</strong> region E is described by<br />

Thus,<br />

<br />

E<br />

x e (x2 +y 2 +z 2 ) 2<br />

1 ≤ ρ ≤ 2, 0 ≤ θ ≤ π/2, 0 ≤ φ ≤ π/2.<br />

π/2 π/2 2<br />

dV =<br />

(ρ sin φ cos θ) e ρ4<br />

ρ 2 sin φ dρ dθ dφ<br />

0<br />

0<br />

π/2<br />

= sin 2 π/2<br />

φ dφ<br />

0<br />

= π<br />

16 (e16 − e).<br />

2<br />

1<br />

0<br />

2<br />

cos θ dθ ρ<br />

1<br />

3 e ρ4<br />


(b) <strong>Evaluate</strong><br />

3<br />

−3<br />

√ 9−x 2<br />

− √ 9−x 2<br />

Solution. The <strong>integral</strong> is equal to <br />

√ 9−x 2 −y 2<br />

0<br />

z x 2 + y 2 + z 2 dz dy dx.<br />

E z x 2 + y 2 + z 2 dV , where<br />

E = {(ρ, θ, φ) : 0 ≤ ρ ≤ 3, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π/2}.<br />

Therefore, <strong>the</strong> <strong>integral</strong> is equal to<br />

π/2 2π 3<br />

(ρ cos φ) ρ · ρ 2 sin φ dρ dθ dφ<br />

0<br />

0<br />

0<br />

π/2<br />

2π<br />

= cos φ sin φ dφ<br />

0<br />

0<br />

3<br />

dθ ρ<br />

0<br />

4 dρ = 243π<br />

5 .<br />

5. (a) Find <strong>the</strong> center of mass of <strong>the</strong> solid S bounded by <strong>the</strong> paraboloid z = 4x 2 + 4y 2<br />

and <strong>the</strong> plane z = 1 if S has constant density K.<br />

Solution. In cylindrical coordinates <strong>the</strong> region E is described by<br />

Thus, <strong>the</strong> mass of <strong>the</strong> solid is<br />

<br />

M =<br />

The moment about <strong>the</strong> xy-plane is<br />

<br />

Mxy =<br />

0 ≤ r ≤ 1/2, 0 ≤ θ ≤ 2π, and 4r 2 ≤ z ≤ 1<br />

E<br />

E<br />

2π 1/2 1<br />

K dV =<br />

0<br />

0<br />

4r 2<br />

2π 1/2 1<br />

zK dV =<br />

0<br />

0<br />

4r 2<br />

Kr dz dr dθ = Kπ<br />

8 .<br />

Kz r dz dr dθ = Kπ<br />

12 .<br />

Similarly, <strong>the</strong> o<strong>the</strong>r two moments are Mxz = Myz = 0. We have Mxy/M = 2/3.<br />

Hence, <strong>the</strong> center of mass is (0, 0, 2/3).<br />

(b) Find <strong>the</strong> mass of a ball given by x 2 + y 2 + z 2 ≤ a 2 if <strong>the</strong> density at any point is<br />

proportional to its distance from <strong>the</strong> z-axis.<br />

Solution. In spherical coordinates <strong>the</strong> region E is described by<br />

0 ≤ ρ ≤ a, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.<br />

The density is kρ sin φ, where k is a constant. Hence, <strong>the</strong> mass is<br />

<br />

M =<br />

E<br />

2π π a<br />

kρ sin φ dV =<br />

0<br />

0<br />

3<br />

0<br />

(kρ sin φ)ρ 2 sin φ dρ dφ dθ = kπ2 a 4<br />

4<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!