Series Convergence/Divergence Flow Chart
Series Convergence/Divergence Flow Chart
Series Convergence/Divergence Flow Chart
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
<strong>Series</strong> <strong>Convergence</strong>/<strong>Divergence</strong> <strong>Flow</strong> <strong>Chart</strong><br />
TEST FOR DIVERGENCE<br />
Does limn→∞ an = 0?<br />
p-SERIES<br />
Does an = 1/np YES<br />
, n ≥ 1?<br />
NO<br />
GEOMETRIC SERIES<br />
Does an = ar n−1 , n ≥ 1?<br />
NO<br />
ALTERNATING SERIES<br />
Does an = (−1) n bn or<br />
an = (−1) n−1 bn, bn ≥ 0?<br />
NO<br />
YES<br />
YES<br />
YES<br />
TELESCOPING SERIES<br />
Do subsequent terms cancel out previous terms in the<br />
sum? May have to use partial fractions, properties<br />
of logarithms, etc. to put into appropriate form.<br />
NO<br />
TAYLOR SERIES<br />
Does an = f(n) (a)<br />
n! (x − a) n ?<br />
NO<br />
Try one or more of the following tests:<br />
COMPARISON TEST<br />
Pick {bn}. Does bn converge?<br />
LIMIT COMPARISON TEST<br />
Pick {bn}. Does lim<br />
n→∞<br />
c finite & an, bn > 0?<br />
an<br />
bn<br />
= c > 0<br />
INTEGRAL TEST<br />
Does an = f(n), f(x) is continuous,<br />
positive & decreasing on<br />
[a, ∞)?<br />
RATIO TEST<br />
YES<br />
YES<br />
NO<br />
NO<br />
YES<br />
YES<br />
NO<br />
Is p > 1?<br />
Is |r| < 1?<br />
Is bn+1 ≤ bn & lim<br />
n→∞ bn = 0?<br />
YES<br />
Does<br />
lim<br />
n→∞ sn = s<br />
s finite?<br />
Is x in interval of convergence?<br />
Does<br />
Does<br />
Is 0 ≤ an ≤ bn?<br />
Is 0 ≤ bn ≤ an?<br />
∞<br />
∞<br />
bn converge?<br />
n=1<br />
Is limn→∞ |an+1/an| = 1? Is lim <br />
n→∞<br />
an+1<br />
YES<br />
an<br />
ROOT TEST<br />
Is limn→∞ n |an| = 1?<br />
YES<br />
a<br />
f(x)dx converge?<br />
<br />
<br />
<br />
<br />
< 1?<br />
<br />
n Is lim |an| < 1?<br />
n→∞<br />
YES<br />
NO<br />
YES<br />
NO<br />
YES<br />
YES<br />
YES<br />
YES<br />
NO<br />
YES<br />
NO<br />
YES<br />
NO<br />
YES<br />
NO<br />
YES<br />
NO<br />
YES<br />
NO<br />
an Diverges<br />
an Converges<br />
an Diverges<br />
∞<br />
n=1 an = a<br />
1−r<br />
an Diverges<br />
an Converges<br />
an = s<br />
an Diverges<br />
∞<br />
n=0 an = f(x)<br />
an Diverges<br />
an Converges<br />
an Diverges<br />
an Converges<br />
an Diverges<br />
∞<br />
n=a an Converges<br />
an Diverges<br />
an Abs. Conv.<br />
an Diverges<br />
an Abs. Conv.<br />
an Diverges
Problems 1-38 from Stewart’s Calculus, page 784<br />
1.<br />
2.<br />
3.<br />
4.<br />
5.<br />
6.<br />
7.<br />
8.<br />
9.<br />
10.<br />
11.<br />
12.<br />
13.<br />
∞<br />
n=1<br />
∞<br />
n=1<br />
∞<br />
n=1<br />
n 2 − 1<br />
n 2 + n<br />
n − 1<br />
n 2 + n<br />
1<br />
n 2 + n<br />
∞<br />
n−1 n − 1<br />
(−1)<br />
n2 + n<br />
n=1<br />
∞ (−3) n+1<br />
n=1<br />
∞<br />
n=1<br />
∞<br />
n=2<br />
∞<br />
k=1<br />
∞<br />
k=1<br />
∞<br />
n=1<br />
∞<br />
n=2<br />
2 3n<br />
n 3n<br />
1 + 8n<br />
1<br />
n ln(n)<br />
2 k k!<br />
(k + 2)!<br />
k 2 e −k<br />
n 2 e −n3<br />
(−1) n+1<br />
n ln(n)<br />
∞<br />
(−1) n n<br />
n2 + 25<br />
n=1<br />
∞ 3nn2 n=1<br />
n!<br />
14.<br />
15.<br />
16.<br />
17.<br />
18.<br />
19.<br />
20.<br />
21.<br />
22.<br />
23.<br />
24.<br />
25.<br />
26.<br />
∞<br />
sin(n)<br />
n=1<br />
∞<br />
n=0<br />
∞<br />
n=1<br />
∞<br />
n=1<br />
∞<br />
n=2<br />
n!<br />
2 · 5 · 8 · · · · · (3n + 2)<br />
n 2 + 1<br />
n 3 + 1<br />
(−1) n 2 1/n<br />
(−1) n−1<br />
√ n − 1<br />
∞<br />
n ln(n)<br />
(−1) √<br />
n<br />
n=1<br />
∞<br />
k=1<br />
k + 5<br />
5 k<br />
∞ (−2) 2n<br />
n=1<br />
∞<br />
n=1<br />
n n<br />
√ n 2 − 1<br />
n 3 + 2n 2 + 5<br />
∞<br />
tan(1/n)<br />
n=1<br />
∞<br />
n=1<br />
∞<br />
e<br />
n=1<br />
n2<br />
∞<br />
n=1<br />
cos(n/2)<br />
n 2 + 4n<br />
n!<br />
n 2 + 1<br />
5 n<br />
27.<br />
28.<br />
29.<br />
30.<br />
31.<br />
32.<br />
33.<br />
34.<br />
35.<br />
36.<br />
37.<br />
38.<br />
∞<br />
k=1<br />
∞<br />
n=1<br />
∞<br />
n=1<br />
k ln(k)<br />
(k + 1) 3<br />
e 1/n<br />
n 2<br />
tan −1 (n)<br />
n √ n<br />
∞<br />
(−1) j<br />
√<br />
j<br />
j + 5<br />
j=1<br />
∞<br />
k=1<br />
∞<br />
n=1<br />
∞<br />
n=1<br />
∞<br />
n=1<br />
∞<br />
n=1<br />
∞<br />
n=2<br />
5 k<br />
3 k + 4 k<br />
(2n) n<br />
n 2n<br />
sin(1/n)<br />
√ n<br />
1<br />
n + n cos 2 (n)<br />
2<br />
n<br />
n<br />
n + 1<br />
1<br />
(ln(n)) ln(n)<br />
∞<br />
( n√ 2 − 1) n<br />
n=1<br />
∞<br />
( n√ 2 − 1)<br />
n=1