25.03.2013 Views

Series Convergence/Divergence Flow Chart

Series Convergence/Divergence Flow Chart

Series Convergence/Divergence Flow Chart

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Series</strong> <strong>Convergence</strong>/<strong>Divergence</strong> <strong>Flow</strong> <strong>Chart</strong><br />

TEST FOR DIVERGENCE<br />

Does limn→∞ an = 0?<br />

p-SERIES<br />

Does an = 1/np YES<br />

, n ≥ 1?<br />

NO<br />

GEOMETRIC SERIES<br />

Does an = ar n−1 , n ≥ 1?<br />

NO<br />

ALTERNATING SERIES<br />

Does an = (−1) n bn or<br />

an = (−1) n−1 bn, bn ≥ 0?<br />

NO<br />

YES<br />

YES<br />

YES<br />

TELESCOPING SERIES<br />

Do subsequent terms cancel out previous terms in the<br />

sum? May have to use partial fractions, properties<br />

of logarithms, etc. to put into appropriate form.<br />

NO<br />

TAYLOR SERIES<br />

Does an = f(n) (a)<br />

n! (x − a) n ?<br />

NO<br />

Try one or more of the following tests:<br />

COMPARISON TEST<br />

Pick {bn}. Does bn converge?<br />

LIMIT COMPARISON TEST<br />

Pick {bn}. Does lim<br />

n→∞<br />

c finite & an, bn > 0?<br />

an<br />

bn<br />

= c > 0<br />

INTEGRAL TEST<br />

Does an = f(n), f(x) is continuous,<br />

positive & decreasing on<br />

[a, ∞)?<br />

RATIO TEST<br />

YES<br />

YES<br />

NO<br />

NO<br />

YES<br />

YES<br />

NO<br />

Is p > 1?<br />

Is |r| < 1?<br />

Is bn+1 ≤ bn & lim<br />

n→∞ bn = 0?<br />

YES<br />

Does<br />

lim<br />

n→∞ sn = s<br />

s finite?<br />

Is x in interval of convergence?<br />

Does<br />

Does<br />

Is 0 ≤ an ≤ bn?<br />

Is 0 ≤ bn ≤ an?<br />

∞<br />

∞<br />

bn converge?<br />

n=1<br />

Is limn→∞ |an+1/an| = 1? Is lim <br />

n→∞<br />

an+1<br />

YES<br />

an<br />

ROOT TEST<br />

Is limn→∞ n |an| = 1?<br />

YES<br />

a<br />

f(x)dx converge?<br />

<br />

<br />

<br />

<br />

< 1?<br />

<br />

n Is lim |an| < 1?<br />

n→∞<br />

YES<br />

NO<br />

YES<br />

NO<br />

YES<br />

YES<br />

YES<br />

YES<br />

NO<br />

YES<br />

NO<br />

YES<br />

NO<br />

YES<br />

NO<br />

YES<br />

NO<br />

YES<br />

NO<br />

an Diverges<br />

an Converges<br />

an Diverges<br />

∞<br />

n=1 an = a<br />

1−r<br />

an Diverges<br />

an Converges<br />

an = s<br />

an Diverges<br />

∞<br />

n=0 an = f(x)<br />

an Diverges<br />

an Converges<br />

an Diverges<br />

an Converges<br />

an Diverges<br />

∞<br />

n=a an Converges<br />

an Diverges<br />

an Abs. Conv.<br />

an Diverges<br />

an Abs. Conv.<br />

an Diverges


Problems 1-38 from Stewart’s Calculus, page 784<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

9.<br />

10.<br />

11.<br />

12.<br />

13.<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

n 2 − 1<br />

n 2 + n<br />

n − 1<br />

n 2 + n<br />

1<br />

n 2 + n<br />

∞<br />

n−1 n − 1<br />

(−1)<br />

n2 + n<br />

n=1<br />

∞ (−3) n+1<br />

n=1<br />

∞<br />

n=1<br />

∞<br />

n=2<br />

∞<br />

k=1<br />

∞<br />

k=1<br />

∞<br />

n=1<br />

∞<br />

n=2<br />

2 3n<br />

n 3n<br />

1 + 8n<br />

1<br />

n ln(n)<br />

2 k k!<br />

(k + 2)!<br />

k 2 e −k<br />

n 2 e −n3<br />

(−1) n+1<br />

n ln(n)<br />

∞<br />

(−1) n n<br />

n2 + 25<br />

n=1<br />

∞ 3nn2 n=1<br />

n!<br />

14.<br />

15.<br />

16.<br />

17.<br />

18.<br />

19.<br />

20.<br />

21.<br />

22.<br />

23.<br />

24.<br />

25.<br />

26.<br />

∞<br />

sin(n)<br />

n=1<br />

∞<br />

n=0<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

∞<br />

n=2<br />

n!<br />

2 · 5 · 8 · · · · · (3n + 2)<br />

n 2 + 1<br />

n 3 + 1<br />

(−1) n 2 1/n<br />

(−1) n−1<br />

√ n − 1<br />

∞<br />

n ln(n)<br />

(−1) √<br />

n<br />

n=1<br />

∞<br />

k=1<br />

k + 5<br />

5 k<br />

∞ (−2) 2n<br />

n=1<br />

∞<br />

n=1<br />

n n<br />

√ n 2 − 1<br />

n 3 + 2n 2 + 5<br />

∞<br />

tan(1/n)<br />

n=1<br />

∞<br />

n=1<br />

∞<br />

e<br />

n=1<br />

n2<br />

∞<br />

n=1<br />

cos(n/2)<br />

n 2 + 4n<br />

n!<br />

n 2 + 1<br />

5 n<br />

27.<br />

28.<br />

29.<br />

30.<br />

31.<br />

32.<br />

33.<br />

34.<br />

35.<br />

36.<br />

37.<br />

38.<br />

∞<br />

k=1<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

k ln(k)<br />

(k + 1) 3<br />

e 1/n<br />

n 2<br />

tan −1 (n)<br />

n √ n<br />

∞<br />

(−1) j<br />

√<br />

j<br />

j + 5<br />

j=1<br />

∞<br />

k=1<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

∞<br />

n=1<br />

∞<br />

n=2<br />

5 k<br />

3 k + 4 k<br />

(2n) n<br />

n 2n<br />

sin(1/n)<br />

√ n<br />

1<br />

n + n cos 2 (n)<br />

2<br />

n<br />

n<br />

n + 1<br />

1<br />

(ln(n)) ln(n)<br />

∞<br />

( n√ 2 − 1) n<br />

n=1<br />

∞<br />

( n√ 2 − 1)<br />

n=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!