25.03.2013 Views

Production of Bioactives by Intestinal bacteria:

Production of Bioactives by Intestinal bacteria:

Production of Bioactives by Intestinal bacteria:

SHOW MORE
SHOW LESS

Transform your PDFs into Flipbooks and boost your revenue!

Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.

<strong>Production</strong> <strong>of</strong><br />

<strong>Bioactives</strong> <strong>by</strong><br />

<strong>Intestinal</strong> <strong>bacteria</strong>:<br />

As a basis for explaining<br />

probiotic mechanisms<br />

FOOD MICRO, August 31 st , 2010


Gut <strong>bacteria</strong> produce an almost limitless set <strong>of</strong> metabolites<br />

Understanding these may provide the key to unlocking many<br />

heath-promoting functions <strong>of</strong> gut <strong>bacteria</strong>/probiotics<br />

Fergus Shanahan


1.<br />

Bacteriocin production<br />

<strong>Production</strong> <strong>of</strong> Salivaricin <strong>by</strong><br />

Lactobacillus salivarius<br />

Discovery <strong>of</strong> Thuricin: a<br />

bacteriocin which specifically<br />

kills Clostridium dificile<br />

Microbial <strong>Production</strong> <strong>of</strong> <strong>Bioactives</strong><br />

Probiotics versus our resident flora<br />

HOW PROBIOTICS WORK?<br />

Bifidobacterium breve<br />

2.<br />

Fatty acid production<br />

<strong>Production</strong> <strong>of</strong> Conjugated<br />

linoleic acid (CLA),<br />

<strong>Production</strong> <strong>of</strong><br />

DHA and EPA


Probiotics<br />

• Probiotics have mainly<br />

transient effects –<br />

“tourists”<br />

• Anti-infectiveImmunomodulatory<br />

effects<br />

• Out-compete pathogens<br />

Role <strong>of</strong> Resident flora<br />

• Anti-infective/Immunomodulatory<br />

effects<br />

• Key long term role in digestion<br />

• <strong>Production</strong> <strong>of</strong> essential<br />

nutrients<br />

• <strong>Production</strong> <strong>of</strong> bioactive<br />

substances e.g. antimicrobials,<br />

fatty acids, neurotransmitors,<br />

ACE inhibitors etc.


1.<br />

Bacteriocin production<br />

<strong>Production</strong> <strong>of</strong> Salivaricin <strong>by</strong><br />

Lactobacillus salivarius<br />

Discovery <strong>of</strong> Thuricin: a<br />

bacteriocin which specifically<br />

kills Clostridium dificile<br />

Microbial <strong>Production</strong> <strong>of</strong> <strong>Bioactives</strong><br />

Probiotics versus our resident flora<br />

HOW PROBIOTICS WORK?<br />

Bifidobacterium breve<br />

2.<br />

Fatty acid production<br />

<strong>Production</strong> <strong>of</strong> Conjugated<br />

linoleic acid (CLA),<br />

<strong>Production</strong> <strong>of</strong><br />

DHA and EPA


Colin Hill<br />

Many gut <strong>bacteria</strong><br />

produce Bacteriocins<br />

Antimicrobial peptides produced <strong>by</strong><br />

one bacterium which can kill other<br />

<strong>bacteria</strong><br />

Bacteriocins are heat stable, active at<br />

nanomolar range, producers are<br />

immune to their own bacteriocin<br />

Bacteriocin production is widespread<br />

among <strong>bacteria</strong>, including gut<br />

<strong>bacteria</strong>


Class 2<br />

Mode <strong>of</strong> Action<br />

Lipid II<br />

Class 1<br />

Class 3<br />

Bacteriocins: developing innate immunity for food<br />

Cotter el al. 2005


Bacteriocin <strong>Production</strong><br />

as a Probiotic Trait<br />

1. Inhibition <strong>of</strong> pathogens<br />

2. Contribute to dominance<br />

Lactobacillus salivarius strains from different sources commonly produce salivaricins<br />

(O’Shea, FEMS Microbial Lett, 2009)<br />

Salivaricins are two-component bacteriocins which kill Listeria and lactobacilli


Corr S. C. et.al. PNAS 2007;104:7617-7621<br />

Bacteriocin production mediates Lb. salivarius UCC118 protection against L. monocytogenes<br />

infection <strong>of</strong> A/J mice<br />

Placebo Bac +<br />

Lux tagged<br />

Listeria<br />

Corr S. C. et.al. PNAS 2007;104:7617-7621<br />

Bac -


Probiotic for Salmonella Reduction<br />

Lactobacillus pentosus<br />

DPC6004<br />

Lactobacillus salivarius<br />

DPC6005<br />

LIVE5<br />

Lactobacillus murinus<br />

DPC6003<br />

Pediococcus pentosaceus<br />

DPC6006<br />

Lactobacillus murinus<br />

DPC6002


11.6kg<br />

Control<br />

11.7kg<br />

Probiotic 1<br />

(Live 5 suspension)<br />

11.7kg<br />

Probiotic 2<br />

(Live 5 fermentate)<br />

Salmonella challenge<br />

Day post-infection<br />

1 2 3 4 5 6 7<br />

28.6kg<br />

34.1kg<br />

33.2kg


Reduce Salmonella shedding in pigs deliberately infected with S. Typhimurium<br />

Salmonella shedding<br />

(cfu/g faeces)<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

Salmonella Typhimurium infection<br />

1000 fold<br />

reduction<br />

0 5 10 15 20 25<br />

Control<br />

Live 5 suspension<br />

Live 5 fermentate<br />

Time (days)<br />

Gardiner et al. Appl. Environ. Microbiol 2004<br />

Casey et al. Appl. Environm. Microbiol 2007<br />

Walsh et al, FEMS Microbiol Ecol, 2008


Mean Live5 count in ileum<br />

= 1.3 x 10 5 CFU/g<br />

Live5 detection in small intestine <strong>of</strong> pigs


Intraspecies Diversity: Lactobacillus salivarius<br />

6027<br />

6502<br />

6189<br />

6005<br />

118<br />

6196<br />

7.3<br />

6488


Salivaricin P, 13 kb<br />

Natural Variants from Gut Strains<br />

AP118<br />

ORF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20<br />

Sln1<br />

Sln2<br />

SlnIM<br />

SlnIP<br />

SlnK SlnR SlnT SlnD<br />

<strong>Production</strong>/<br />

immunity<br />

Regulation Transport<br />

UCC118 KNGYGGSGNRWVHCGAGIVGGALIGAIGGPWSAVAGGISGGFTSCR<br />

DPC6196 KNGYGGSGNRWVHCGAGIVGGALIGTIGGPWSAVAGGISGGFISCR<br />

DPC6005 KNGYGGSGNRWVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH


Trypsin Resistant Variants <strong>of</strong> Salivaricin<br />

Pepti<br />

de Amino acid sequence<br />

Lengt<br />

h (aa) MIC50 *<br />

(nM)<br />

Sln1 K R GPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 45 50<br />

Sln1-1 R GPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 44 80<br />

Sln1-2 H GPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 44 200<br />

Sln1-3 KPH GPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 46 100<br />

Sln1-4 HRPGPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 46 130<br />

Sln1-5 KPR PNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 45 80<br />

Sln1-6 K R GPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGLVGGALTCL 45 120<br />

Sln2 K NGYGGSGNR WVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH 46 50<br />

Sln2-1 K NGYGGSGNH WVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH 46 200<br />

Sln2-2 KPNGYGGSGNH WVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH 47 200<br />

Sln2-3 H NGYGGSGNH WVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH 46 120<br />

Sln2-4 K NGYGGSGNR 10 -<br />

Sln2-5 RPWVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH 38 250<br />

* MIC 50 <strong>of</strong> bacterioicn variant combined with wild type complementary<br />

peptide<br />

The carboxyl side <strong>of</strong> lysine (K) and arginine (R) represent trypsin specific cleavage sites.<br />

MIC = 80nM<br />

MIC = 300nM<br />

O’Shea et al. AEM in press


Abp118 is encoded on megaplasmid pMP118 (242kb)<br />

Lb. salivarius UCC118 genome, 2.3 Mb<br />

Claesson et al, PNAS (2006)


242 kb megaplasmid<br />

1.83 Mb circular chromosome<br />

Microarray based identification <strong>of</strong> novel Lb. salivarius bacteriocins<br />

pSF118_20<br />

Bacteriocin operon<br />

SalivaricinT Paul O’Toole<br />

6488


Salivaricin T genes<br />

4433.90 Da 5655.57 Da 5269.0 Da<br />

MALDI-TOF MS analysis <strong>of</strong> cell free supernatant <strong>of</strong> Lb. salivarius<br />

DPC6488 revealed all 3 potential bacteriocin genes are expressed


Antimicrobial activity <strong>of</strong> salivaricin 6488 component peptides, Sln3 and Sln4<br />

ORF1 2 3 4 5 6 7 8 9 10<br />

sal B<br />

sln3<br />

sal IM<br />

sln4 sal IP<br />

sal IM<br />

sal K<br />

Sln3<br />

Sln3<br />

Sln4<br />

Sln3 + Sln4<br />

Sln3 M----MKEFTILTECELAKVDGGYTPKNCAMAVGGGMLSGAIRGGMSGTVFGVGTGNLAGAFAGAHIGLVAGGLACIGGYLGS--H !<br />

ThmA MNTITICKFDVLDAELLSTVEGGYSGKDCLKDMGGYALAGAGSGALWGAPAG-GVGALPGAFVGAHVGAIAGGFACMGGMIGNKFN !<br />

* : :* :* *:.*:***: *:* :** *:** *.: *: * *.* *.***.***:* :***:**:** :*. : !<br />

Leader sequence Mature peptide (61aa; 5655 Da)<br />

Sln4 M----SYEKLNNEELSKILGGNGINWGAVAGSCASGAVIGAAFGNPL---TGCVANSAFSFSWQAFKNRPRPKKIA!<br />

ThmB MKQYNGFEVLHELDLANVTGGQ-INWGSVVGHCIGGAIIGGAFSGGAAAGVGCLVGSGKAII-----------NGL !<br />

* .:* *:: :*::: **: ****:*.* * .**:**.**.. .**:..*. :: : !<br />

Leader sequence Mature peptide (52aa; 5269 Da)<br />

Sln4


Microbial <strong>Production</strong> <strong>of</strong> <strong>Bioactives</strong><br />

1.<br />

Bacteriocin production as<br />

A probiotic trait<br />

<strong>Production</strong> <strong>of</strong> Salivaricin <strong>by</strong><br />

Lactobacillus salivarius<br />

Discovery <strong>of</strong> Thuricin: a<br />

bacteriocin which specifically<br />

kills C. dificile<br />

HOW PROBIOTICS WORK?<br />

Bifidobacterium breve<br />

2.<br />

Fatty acid production<br />

as a probiotic trait?<br />

<strong>Production</strong> <strong>of</strong> Conjugated<br />

linoleic acid (CLA),<br />

<strong>Production</strong> <strong>of</strong><br />

DHA and EPA


Why C. difficile as target?<br />

• Major GI infectious agent<br />

• Sensitive to metronidazole and vancomycin.<br />

• Increasingly associated with GI disorders<br />

• Causes 15-25% <strong>of</strong> all antibiotic associated diarrhoea<br />

• Toxin producer which can be fatal in the elderly<br />

• Incidence is on the increase


Mary Rea<br />

Bacillus thuringiensis<br />

Rea et al., unpublished<br />

Thuricin CD<br />

Thuricin CD; a two<br />

component<br />

bacteriocin<br />

Overlaid with Clostridium difficile<br />

30,000 sporeformers<br />

Rea et al. PNAS 2010 (1)


Thuricin Spectrum<br />

bacilli<br />

clostridia<br />

listeria<br />

Rea et al. PNAS 2010 (1)


Thuricin contains unusual post-translational modifications<br />

8#+2*44#.?##<br />

@>.A+.B:./,/-#<br />

*/CB0+1.D0*2#<br />

:,:C6,4E#<br />

!&#"%*(#+%<br />

!"#)%*(#+%<br />

!"#$"%$#&'($)*+),&-./"0$


Trn!#<br />

Trn"#<br />

Vederas Group<br />

Rea et al. PNAS 2010 (1)


! # s s s<br />

"# s s s<br />

Rea et al. PNAS 2010 (2)


Distal Colon Model<br />

control<br />

Thuricin CD<br />

(90uM)<br />

20% human faecal slurry<br />

10 6 Clostridium<br />

difficile<br />

control<br />

Vancomycin<br />

(90uM)<br />

Metranidazole<br />

(90uM)<br />

24h 24h 24h 24h 24h<br />

Total DNA purified, amplified V4 region <strong>of</strong> 16S rRNA, pyrosequencing, MEGAN<br />

Rea et al. PNAS 2010 (2)


C. diff<br />

log<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

Faecal fermentations<br />

Thuricin CD (90 uM) Vancomycin (90 uM) Metranidazole (90 uM)<br />

0 4 8 12 16 20 24 h<br />

C. diff<br />

log<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

0 4 8 12 16 20 24 h<br />

0 4 8 12 16 20 24 h 0 4 8 12 16 20 24 h 0 4 8 12 16 20 24 h<br />

C. diff<br />

log<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

0 4 8 12 16 20 24 h<br />

Rea et al. PNAS 2010 (2)


Collateral<br />

damage<br />

16S pr<strong>of</strong>iling<br />

Phylum<br />

Rea et al. PNAS 2010 (2)


Microbial <strong>Production</strong> <strong>of</strong> <strong>Bioactives</strong><br />

1.<br />

Bacteriocin production as<br />

A probiotic trait<br />

<strong>Production</strong> <strong>of</strong> Salivaricin <strong>by</strong><br />

Lactobacillus salivarius<br />

Discovery <strong>of</strong> Thuricin: a<br />

bacteriocin which specifically<br />

kills C. dificile<br />

HOW PROBIOTICS WORK?<br />

Bifidobacterium breve<br />

2.<br />

Fatty acid production<br />

as a probiotic trait?<br />

<strong>Production</strong> <strong>of</strong> Conjugated<br />

linoleic acid (CLA),<br />

Effect on fatty acid<br />

composition


The Importance <strong>of</strong> the Microbiota<br />

Obesity<br />

“Our results indicate that the obese microbiome has an increased<br />

capacity to harvest energy from the diet. Furthermore, this trait is<br />

transmissible”:<br />

“Our findings indicate that obesity has a microbial component,<br />

which might have potential therapeutic implications.”<br />

IBD<br />

Obesity<br />

NAFLD


• Gut microbiota proposed to exert a quantitative influence<br />

on host fat<br />

• Qualitative changes in host fat have not been extensively<br />

studied<br />

• Since some microbial-derived fatty acids are bioactive,<br />

eg conjugated linoleic acid (CLA), we used this as a<br />

marker <strong>of</strong> fat composition<br />

Does the microbiota affect the composition<br />

<strong>of</strong> fat as well as its quantity?<br />

Catherine Stanton


Recombinant Lactobacillus paracasei producing<br />

t10,c12 CLA in vivo -<br />

Lactoacillus paracasei<br />

Expressing CLA isomerase (P. acnes)<br />

Intensity (mV)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

LA<br />

GLC<br />

t 10, c 12 CLA<br />

0<br />

30 32 34 36 38 40<br />

Retention Time (min)<br />

Increased t10, c12 CLA content <strong>of</strong> adipose tissue following dietary intervention<br />

g/100 g FAME<br />

0.03<br />

0.02<br />

0.01<br />

0.00<br />

Vector<br />

Control<br />

***<br />

CLA<br />

Producing<br />

n = 8<br />

8 weeks


%<br />

Conversion<br />

to CLA<br />

90<br />

80<br />

70<br />

60<br />

50<br />

49<br />

30<br />

20<br />

10<br />

<strong>Production</strong> <strong>of</strong> Bioactive Lipids - CLA<br />

Bifidobacterium breve<br />

LA<br />

GLC<br />

CLA<br />

Bifidobacterium longum<br />

Barret E Applied Environ. Microbiol 2007<br />

Hennessy at al. J. Appl. Micro 2009


Linoleic acid is metabolised <strong>by</strong> B. breve to c9, t11 CLA<br />

in the murine and porcine GIT<br />

Linoleic acid (g/100g FAME)<br />

Linoleic acid (LA) and c9t11 CLA in faeces<br />

r= -0.863<br />

c9, t11 CLA (g/100g FAME)<br />

Linoleic acid + B. breve<br />

Linoleic acid<br />

8 weeks


***<br />

LA + B. breve<br />

LA<br />

BALB/c mice SCID mice<br />

*<br />

*<br />

Pigs<br />

LA + B. breve<br />

Control


LPLs<br />

Anti-inflammatory effect mediated <strong>by</strong> B. breve<br />

NCIMB 702258 in pigs<br />

LA + B. breve<br />

Control<br />

Wall et al. Am. J. Clin. Nutr. 2009


Compositional change is not limited to CLA<br />

EPA (Eicosapentaenoic Acid)<br />

Liver Adipose tissue<br />

n = 8 per group<br />

* = p


Increased EPA content <strong>of</strong> liver following supplementation with !linolenic<br />

acid and B. breve compared to !-linolenic acid alone<br />

n = 8 per group<br />

* = p


Increased DHA content <strong>of</strong> brain following supplementation with !linolenic<br />

acid and B. breve compared to !-linolenic acid alone<br />

Wall et al. Lipids 2010


Liver<br />

Intestine<br />

Luminal production <strong>by</strong><br />

gut microbiota<br />

Bacteria changing food into<br />

Healthy bioactive substances<br />

Adipose<br />

Brain<br />

Wall et al. Am. J. Clin. Nutr. 2009


Conclusions<br />

• Gut flora/probiotics produce a wide<br />

range <strong>of</strong> bioactive substances which may<br />

positively affect human health<br />

• <strong>Production</strong> <strong>of</strong> bacteriocins may facilitate<br />

probiotic dominance and pathogen<br />

inhibition<br />

• Certain bifido<strong>bacteria</strong> can influence fatty<br />

acid composition at different sites in the<br />

body including the liver and the brain<br />

Bifidobacterium breve


FATTY ACIDS<br />

Catherine Stanton<br />

Ger Fitzgerald<br />

Fergus Shanahan<br />

Barry Kiely<br />

Rebecca Wall<br />

Mairead Coakley<br />

Eoin Barrett<br />

Eva Rosberg<br />

Dr. Liam O’Mahony<br />

Seamus Aherne<br />

Katie O’Mahony<br />

Alan Hennessey<br />

Thanks<br />

ANTIMICROBIALS<br />

Colin Hill<br />

Paul Cotter<br />

John Vederas<br />

Mary Rea<br />

Eileen O’Shea<br />

Paula O’Connor<br />

Orla O’Sullivan<br />

Gillian Gardiner<br />

Sinead Corr<br />

Evelyn Clayton<br />

Alleson Dobson<br />

Fiona Crispie<br />

Sheila Morgan


Trn-!<br />

Trn-!<br />

T 0h<br />

T 5h<br />

Trn-! and ! treated with Pepsin<br />

G N A A C V I G C i G S C V I S E G I G S L V G T A F T L G<br />

G W V A C V G A C G T V C L A S G G V G T E F A A A S Y F L<br />

! !<br />

! !<br />

0h 1h<br />

!+!<br />

!+!<br />

T/0h<br />

T/1h


Trn-!<br />

Trn-!<br />

0h<br />

Trn-! +! treated with !-Chymotrypsin<br />

G N A A C V I G C i G S C V I S E G I G S L V G T A F T L G<br />

G W V A C V G A C G T V C L A S G G V G T E F A A A S Y F L<br />

! !<br />

!+!<br />

0h 0h<br />

5h<br />

5h<br />

! !<br />

!+!<br />

1h

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!