Production of Bioactives by Intestinal bacteria:
Production of Bioactives by Intestinal bacteria:
Production of Bioactives by Intestinal bacteria:
Transform your PDFs into Flipbooks and boost your revenue!
Leverage SEO-optimized Flipbooks, powerful backlinks, and multimedia content to professionally showcase your products and significantly increase your reach.
<strong>Production</strong> <strong>of</strong><br />
<strong>Bioactives</strong> <strong>by</strong><br />
<strong>Intestinal</strong> <strong>bacteria</strong>:<br />
As a basis for explaining<br />
probiotic mechanisms<br />
FOOD MICRO, August 31 st , 2010
Gut <strong>bacteria</strong> produce an almost limitless set <strong>of</strong> metabolites<br />
Understanding these may provide the key to unlocking many<br />
heath-promoting functions <strong>of</strong> gut <strong>bacteria</strong>/probiotics<br />
Fergus Shanahan
1.<br />
Bacteriocin production<br />
<strong>Production</strong> <strong>of</strong> Salivaricin <strong>by</strong><br />
Lactobacillus salivarius<br />
Discovery <strong>of</strong> Thuricin: a<br />
bacteriocin which specifically<br />
kills Clostridium dificile<br />
Microbial <strong>Production</strong> <strong>of</strong> <strong>Bioactives</strong><br />
Probiotics versus our resident flora<br />
HOW PROBIOTICS WORK?<br />
Bifidobacterium breve<br />
2.<br />
Fatty acid production<br />
<strong>Production</strong> <strong>of</strong> Conjugated<br />
linoleic acid (CLA),<br />
<strong>Production</strong> <strong>of</strong><br />
DHA and EPA
Probiotics<br />
• Probiotics have mainly<br />
transient effects –<br />
“tourists”<br />
• Anti-infectiveImmunomodulatory<br />
effects<br />
• Out-compete pathogens<br />
Role <strong>of</strong> Resident flora<br />
• Anti-infective/Immunomodulatory<br />
effects<br />
• Key long term role in digestion<br />
• <strong>Production</strong> <strong>of</strong> essential<br />
nutrients<br />
• <strong>Production</strong> <strong>of</strong> bioactive<br />
substances e.g. antimicrobials,<br />
fatty acids, neurotransmitors,<br />
ACE inhibitors etc.
1.<br />
Bacteriocin production<br />
<strong>Production</strong> <strong>of</strong> Salivaricin <strong>by</strong><br />
Lactobacillus salivarius<br />
Discovery <strong>of</strong> Thuricin: a<br />
bacteriocin which specifically<br />
kills Clostridium dificile<br />
Microbial <strong>Production</strong> <strong>of</strong> <strong>Bioactives</strong><br />
Probiotics versus our resident flora<br />
HOW PROBIOTICS WORK?<br />
Bifidobacterium breve<br />
2.<br />
Fatty acid production<br />
<strong>Production</strong> <strong>of</strong> Conjugated<br />
linoleic acid (CLA),<br />
<strong>Production</strong> <strong>of</strong><br />
DHA and EPA
Colin Hill<br />
Many gut <strong>bacteria</strong><br />
produce Bacteriocins<br />
Antimicrobial peptides produced <strong>by</strong><br />
one bacterium which can kill other<br />
<strong>bacteria</strong><br />
Bacteriocins are heat stable, active at<br />
nanomolar range, producers are<br />
immune to their own bacteriocin<br />
Bacteriocin production is widespread<br />
among <strong>bacteria</strong>, including gut<br />
<strong>bacteria</strong>
Class 2<br />
Mode <strong>of</strong> Action<br />
Lipid II<br />
Class 1<br />
Class 3<br />
Bacteriocins: developing innate immunity for food<br />
Cotter el al. 2005
Bacteriocin <strong>Production</strong><br />
as a Probiotic Trait<br />
1. Inhibition <strong>of</strong> pathogens<br />
2. Contribute to dominance<br />
Lactobacillus salivarius strains from different sources commonly produce salivaricins<br />
(O’Shea, FEMS Microbial Lett, 2009)<br />
Salivaricins are two-component bacteriocins which kill Listeria and lactobacilli
Corr S. C. et.al. PNAS 2007;104:7617-7621<br />
Bacteriocin production mediates Lb. salivarius UCC118 protection against L. monocytogenes<br />
infection <strong>of</strong> A/J mice<br />
Placebo Bac +<br />
Lux tagged<br />
Listeria<br />
Corr S. C. et.al. PNAS 2007;104:7617-7621<br />
Bac -
Probiotic for Salmonella Reduction<br />
Lactobacillus pentosus<br />
DPC6004<br />
Lactobacillus salivarius<br />
DPC6005<br />
LIVE5<br />
Lactobacillus murinus<br />
DPC6003<br />
Pediococcus pentosaceus<br />
DPC6006<br />
Lactobacillus murinus<br />
DPC6002
11.6kg<br />
Control<br />
11.7kg<br />
Probiotic 1<br />
(Live 5 suspension)<br />
11.7kg<br />
Probiotic 2<br />
(Live 5 fermentate)<br />
Salmonella challenge<br />
Day post-infection<br />
1 2 3 4 5 6 7<br />
28.6kg<br />
34.1kg<br />
33.2kg
Reduce Salmonella shedding in pigs deliberately infected with S. Typhimurium<br />
Salmonella shedding<br />
(cfu/g faeces)<br />
10 6<br />
10 5<br />
10 4<br />
10 3<br />
10 2<br />
10 1<br />
Salmonella Typhimurium infection<br />
1000 fold<br />
reduction<br />
0 5 10 15 20 25<br />
Control<br />
Live 5 suspension<br />
Live 5 fermentate<br />
Time (days)<br />
Gardiner et al. Appl. Environ. Microbiol 2004<br />
Casey et al. Appl. Environm. Microbiol 2007<br />
Walsh et al, FEMS Microbiol Ecol, 2008
Mean Live5 count in ileum<br />
= 1.3 x 10 5 CFU/g<br />
Live5 detection in small intestine <strong>of</strong> pigs
Intraspecies Diversity: Lactobacillus salivarius<br />
6027<br />
6502<br />
6189<br />
6005<br />
118<br />
6196<br />
7.3<br />
6488
Salivaricin P, 13 kb<br />
Natural Variants from Gut Strains<br />
AP118<br />
ORF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20<br />
Sln1<br />
Sln2<br />
SlnIM<br />
SlnIP<br />
SlnK SlnR SlnT SlnD<br />
<strong>Production</strong>/<br />
immunity<br />
Regulation Transport<br />
UCC118 KNGYGGSGNRWVHCGAGIVGGALIGAIGGPWSAVAGGISGGFTSCR<br />
DPC6196 KNGYGGSGNRWVHCGAGIVGGALIGTIGGPWSAVAGGISGGFISCR<br />
DPC6005 KNGYGGSGNRWVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH
Trypsin Resistant Variants <strong>of</strong> Salivaricin<br />
Pepti<br />
de Amino acid sequence<br />
Lengt<br />
h (aa) MIC50 *<br />
(nM)<br />
Sln1 K R GPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 45 50<br />
Sln1-1 R GPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 44 80<br />
Sln1-2 H GPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 44 200<br />
Sln1-3 KPH GPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 46 100<br />
Sln1-4 HRPGPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 46 130<br />
Sln1-5 KPR PNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGMVGGALTCL 45 80<br />
Sln1-6 K R GPNCVGNFLGGLFAGAAAGVPLGPAGIVGGANLGLVGGALTCL 45 120<br />
Sln2 K NGYGGSGNR WVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH 46 50<br />
Sln2-1 K NGYGGSGNH WVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH 46 200<br />
Sln2-2 KPNGYGGSGNH WVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH 47 200<br />
Sln2-3 H NGYGGSGNH WVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH 46 120<br />
Sln2-4 K NGYGGSGNR 10 -<br />
Sln2-5 RPWVHCGAGIVGGALIGAIGGPWSAVAGGISGGFASCH 38 250<br />
* MIC 50 <strong>of</strong> bacterioicn variant combined with wild type complementary<br />
peptide<br />
The carboxyl side <strong>of</strong> lysine (K) and arginine (R) represent trypsin specific cleavage sites.<br />
MIC = 80nM<br />
MIC = 300nM<br />
O’Shea et al. AEM in press
Abp118 is encoded on megaplasmid pMP118 (242kb)<br />
Lb. salivarius UCC118 genome, 2.3 Mb<br />
Claesson et al, PNAS (2006)
242 kb megaplasmid<br />
1.83 Mb circular chromosome<br />
Microarray based identification <strong>of</strong> novel Lb. salivarius bacteriocins<br />
pSF118_20<br />
Bacteriocin operon<br />
SalivaricinT Paul O’Toole<br />
6488
Salivaricin T genes<br />
4433.90 Da 5655.57 Da 5269.0 Da<br />
MALDI-TOF MS analysis <strong>of</strong> cell free supernatant <strong>of</strong> Lb. salivarius<br />
DPC6488 revealed all 3 potential bacteriocin genes are expressed
Antimicrobial activity <strong>of</strong> salivaricin 6488 component peptides, Sln3 and Sln4<br />
ORF1 2 3 4 5 6 7 8 9 10<br />
sal B<br />
sln3<br />
sal IM<br />
sln4 sal IP<br />
sal IM<br />
sal K<br />
Sln3<br />
Sln3<br />
Sln4<br />
Sln3 + Sln4<br />
Sln3 M----MKEFTILTECELAKVDGGYTPKNCAMAVGGGMLSGAIRGGMSGTVFGVGTGNLAGAFAGAHIGLVAGGLACIGGYLGS--H !<br />
ThmA MNTITICKFDVLDAELLSTVEGGYSGKDCLKDMGGYALAGAGSGALWGAPAG-GVGALPGAFVGAHVGAIAGGFACMGGMIGNKFN !<br />
* : :* :* *:.*:***: *:* :** *:** *.: *: * *.* *.***.***:* :***:**:** :*. : !<br />
Leader sequence Mature peptide (61aa; 5655 Da)<br />
Sln4 M----SYEKLNNEELSKILGGNGINWGAVAGSCASGAVIGAAFGNPL---TGCVANSAFSFSWQAFKNRPRPKKIA!<br />
ThmB MKQYNGFEVLHELDLANVTGGQ-INWGSVVGHCIGGAIIGGAFSGGAAAGVGCLVGSGKAII-----------NGL !<br />
* .:* *:: :*::: **: ****:*.* * .**:**.**.. .**:..*. :: : !<br />
Leader sequence Mature peptide (52aa; 5269 Da)<br />
Sln4
Microbial <strong>Production</strong> <strong>of</strong> <strong>Bioactives</strong><br />
1.<br />
Bacteriocin production as<br />
A probiotic trait<br />
<strong>Production</strong> <strong>of</strong> Salivaricin <strong>by</strong><br />
Lactobacillus salivarius<br />
Discovery <strong>of</strong> Thuricin: a<br />
bacteriocin which specifically<br />
kills C. dificile<br />
HOW PROBIOTICS WORK?<br />
Bifidobacterium breve<br />
2.<br />
Fatty acid production<br />
as a probiotic trait?<br />
<strong>Production</strong> <strong>of</strong> Conjugated<br />
linoleic acid (CLA),<br />
<strong>Production</strong> <strong>of</strong><br />
DHA and EPA
Why C. difficile as target?<br />
• Major GI infectious agent<br />
• Sensitive to metronidazole and vancomycin.<br />
• Increasingly associated with GI disorders<br />
• Causes 15-25% <strong>of</strong> all antibiotic associated diarrhoea<br />
• Toxin producer which can be fatal in the elderly<br />
• Incidence is on the increase
Mary Rea<br />
Bacillus thuringiensis<br />
Rea et al., unpublished<br />
Thuricin CD<br />
Thuricin CD; a two<br />
component<br />
bacteriocin<br />
Overlaid with Clostridium difficile<br />
30,000 sporeformers<br />
Rea et al. PNAS 2010 (1)
Thuricin Spectrum<br />
bacilli<br />
clostridia<br />
listeria<br />
Rea et al. PNAS 2010 (1)
Thuricin contains unusual post-translational modifications<br />
8#+2*44#.?##<br />
@>.A+.B:./,/-#<br />
*/CB0+1.D0*2#<br />
:,:C6,4E#<br />
!&#"%*(#+%<br />
!"#)%*(#+%<br />
!"#$"%$#&'($)*+),&-./"0$
Trn!#<br />
Trn"#<br />
Vederas Group<br />
Rea et al. PNAS 2010 (1)
! # s s s<br />
"# s s s<br />
Rea et al. PNAS 2010 (2)
Distal Colon Model<br />
control<br />
Thuricin CD<br />
(90uM)<br />
20% human faecal slurry<br />
10 6 Clostridium<br />
difficile<br />
control<br />
Vancomycin<br />
(90uM)<br />
Metranidazole<br />
(90uM)<br />
24h 24h 24h 24h 24h<br />
Total DNA purified, amplified V4 region <strong>of</strong> 16S rRNA, pyrosequencing, MEGAN<br />
Rea et al. PNAS 2010 (2)
C. diff<br />
log<br />
8<br />
7<br />
6<br />
5<br />
4<br />
3<br />
Faecal fermentations<br />
Thuricin CD (90 uM) Vancomycin (90 uM) Metranidazole (90 uM)<br />
0 4 8 12 16 20 24 h<br />
C. diff<br />
log<br />
8<br />
7<br />
6<br />
5<br />
4<br />
3<br />
0 4 8 12 16 20 24 h<br />
0 4 8 12 16 20 24 h 0 4 8 12 16 20 24 h 0 4 8 12 16 20 24 h<br />
C. diff<br />
log<br />
8<br />
7<br />
6<br />
5<br />
4<br />
3<br />
0 4 8 12 16 20 24 h<br />
Rea et al. PNAS 2010 (2)
Collateral<br />
damage<br />
16S pr<strong>of</strong>iling<br />
Phylum<br />
Rea et al. PNAS 2010 (2)
Microbial <strong>Production</strong> <strong>of</strong> <strong>Bioactives</strong><br />
1.<br />
Bacteriocin production as<br />
A probiotic trait<br />
<strong>Production</strong> <strong>of</strong> Salivaricin <strong>by</strong><br />
Lactobacillus salivarius<br />
Discovery <strong>of</strong> Thuricin: a<br />
bacteriocin which specifically<br />
kills C. dificile<br />
HOW PROBIOTICS WORK?<br />
Bifidobacterium breve<br />
2.<br />
Fatty acid production<br />
as a probiotic trait?<br />
<strong>Production</strong> <strong>of</strong> Conjugated<br />
linoleic acid (CLA),<br />
Effect on fatty acid<br />
composition
The Importance <strong>of</strong> the Microbiota<br />
Obesity<br />
“Our results indicate that the obese microbiome has an increased<br />
capacity to harvest energy from the diet. Furthermore, this trait is<br />
transmissible”:<br />
“Our findings indicate that obesity has a microbial component,<br />
which might have potential therapeutic implications.”<br />
IBD<br />
Obesity<br />
NAFLD
• Gut microbiota proposed to exert a quantitative influence<br />
on host fat<br />
• Qualitative changes in host fat have not been extensively<br />
studied<br />
• Since some microbial-derived fatty acids are bioactive,<br />
eg conjugated linoleic acid (CLA), we used this as a<br />
marker <strong>of</strong> fat composition<br />
Does the microbiota affect the composition<br />
<strong>of</strong> fat as well as its quantity?<br />
Catherine Stanton
Recombinant Lactobacillus paracasei producing<br />
t10,c12 CLA in vivo -<br />
Lactoacillus paracasei<br />
Expressing CLA isomerase (P. acnes)<br />
Intensity (mV)<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
LA<br />
GLC<br />
t 10, c 12 CLA<br />
0<br />
30 32 34 36 38 40<br />
Retention Time (min)<br />
Increased t10, c12 CLA content <strong>of</strong> adipose tissue following dietary intervention<br />
g/100 g FAME<br />
0.03<br />
0.02<br />
0.01<br />
0.00<br />
Vector<br />
Control<br />
***<br />
CLA<br />
Producing<br />
n = 8<br />
8 weeks
%<br />
Conversion<br />
to CLA<br />
90<br />
80<br />
70<br />
60<br />
50<br />
49<br />
30<br />
20<br />
10<br />
<strong>Production</strong> <strong>of</strong> Bioactive Lipids - CLA<br />
Bifidobacterium breve<br />
LA<br />
GLC<br />
CLA<br />
Bifidobacterium longum<br />
Barret E Applied Environ. Microbiol 2007<br />
Hennessy at al. J. Appl. Micro 2009
Linoleic acid is metabolised <strong>by</strong> B. breve to c9, t11 CLA<br />
in the murine and porcine GIT<br />
Linoleic acid (g/100g FAME)<br />
Linoleic acid (LA) and c9t11 CLA in faeces<br />
r= -0.863<br />
c9, t11 CLA (g/100g FAME)<br />
Linoleic acid + B. breve<br />
Linoleic acid<br />
8 weeks
***<br />
LA + B. breve<br />
LA<br />
BALB/c mice SCID mice<br />
*<br />
*<br />
Pigs<br />
LA + B. breve<br />
Control
LPLs<br />
Anti-inflammatory effect mediated <strong>by</strong> B. breve<br />
NCIMB 702258 in pigs<br />
LA + B. breve<br />
Control<br />
Wall et al. Am. J. Clin. Nutr. 2009
Compositional change is not limited to CLA<br />
EPA (Eicosapentaenoic Acid)<br />
Liver Adipose tissue<br />
n = 8 per group<br />
* = p
Increased EPA content <strong>of</strong> liver following supplementation with !linolenic<br />
acid and B. breve compared to !-linolenic acid alone<br />
n = 8 per group<br />
* = p
Increased DHA content <strong>of</strong> brain following supplementation with !linolenic<br />
acid and B. breve compared to !-linolenic acid alone<br />
Wall et al. Lipids 2010
Liver<br />
Intestine<br />
Luminal production <strong>by</strong><br />
gut microbiota<br />
Bacteria changing food into<br />
Healthy bioactive substances<br />
Adipose<br />
Brain<br />
Wall et al. Am. J. Clin. Nutr. 2009
Conclusions<br />
• Gut flora/probiotics produce a wide<br />
range <strong>of</strong> bioactive substances which may<br />
positively affect human health<br />
• <strong>Production</strong> <strong>of</strong> bacteriocins may facilitate<br />
probiotic dominance and pathogen<br />
inhibition<br />
• Certain bifido<strong>bacteria</strong> can influence fatty<br />
acid composition at different sites in the<br />
body including the liver and the brain<br />
Bifidobacterium breve
FATTY ACIDS<br />
Catherine Stanton<br />
Ger Fitzgerald<br />
Fergus Shanahan<br />
Barry Kiely<br />
Rebecca Wall<br />
Mairead Coakley<br />
Eoin Barrett<br />
Eva Rosberg<br />
Dr. Liam O’Mahony<br />
Seamus Aherne<br />
Katie O’Mahony<br />
Alan Hennessey<br />
Thanks<br />
ANTIMICROBIALS<br />
Colin Hill<br />
Paul Cotter<br />
John Vederas<br />
Mary Rea<br />
Eileen O’Shea<br />
Paula O’Connor<br />
Orla O’Sullivan<br />
Gillian Gardiner<br />
Sinead Corr<br />
Evelyn Clayton<br />
Alleson Dobson<br />
Fiona Crispie<br />
Sheila Morgan
Trn-!<br />
Trn-!<br />
T 0h<br />
T 5h<br />
Trn-! and ! treated with Pepsin<br />
G N A A C V I G C i G S C V I S E G I G S L V G T A F T L G<br />
G W V A C V G A C G T V C L A S G G V G T E F A A A S Y F L<br />
! !<br />
! !<br />
0h 1h<br />
!+!<br />
!+!<br />
T/0h<br />
T/1h
Trn-!<br />
Trn-!<br />
0h<br />
Trn-! +! treated with !-Chymotrypsin<br />
G N A A C V I G C i G S C V I S E G I G S L V G T A F T L G<br />
G W V A C V G A C G T V C L A S G G V G T E F A A A S Y F L<br />
! !<br />
!+!<br />
0h 0h<br />
5h<br />
5h<br />
! !<br />
!+!<br />
1h