25.03.2013 Views

Homebrew HF SWR/Power Meter - 285 TechConnect Radio Club

Homebrew HF SWR/Power Meter - 285 TechConnect Radio Club

Homebrew HF SWR/Power Meter - 285 TechConnect Radio Club

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5/4/2012<br />

<strong>Homebrew</strong> <strong>HF</strong> <strong>SWR</strong>/<strong>Power</strong> <strong>Meter</strong><br />

Bill Leonard<br />

NØCU<br />

NAØTC - <strong>285</strong> <strong>TechConnect</strong> <strong>Radio</strong> <strong>Club</strong><br />

http://www.naØtc.org/


•Standing Waves<br />

Theory<br />

<strong>SWR</strong> = 3:1<br />

Dynamic Demo: http://www.walter-fendt.de/ph14e/stwaverefl.htm<br />

5/4/2012


•<strong>SWR</strong> Calculation<br />

•Not a direct measurement<br />

5/4/2012<br />

<strong>SWR</strong> =<br />

1+<br />

1-<br />

P R<br />

P F<br />

P R<br />

P F<br />

Theory<br />

=<br />

E F<br />

+<br />

E F -<br />

E F = Forward Voltage<br />

E R = Reverse Voltage<br />

P F = Forward <strong>Power</strong><br />

P R = Reverse Voltage<br />

<strong>SWR</strong> accuracy is only as good as the power measurement<br />

accuracy (both Forward & Reflected)<br />

E R<br />

E R


Theory<br />

•How should RF <strong>Power</strong> be measured?<br />

1. RF voltmeter connected at the output of the transmitter<br />

5/4/2012


Theory<br />

•How should RF <strong>Power</strong> be measured?<br />

1. RF voltmeter connected at the output of the transmitter<br />

No!<br />

5/4/2012<br />

1. Voltage reading is dependent upon load impedance at the point<br />

of measurement<br />

• <strong>Power</strong> meters on Ameritron <strong>Power</strong> Amplifiers<br />

2. To determine power, we need independent measurements of<br />

voltage and current


Theory<br />

•How should RF <strong>Power</strong> be measured?<br />

1. RF voltmeter connected at the output of the transmitter<br />

2. Use a TRUE POWER meter that can measure both current<br />

and voltage of both the forward and reflected waves<br />

5/4/2012


5/4/2012<br />

RF<br />

IN<br />

Sensor<br />

Directional<br />

Coupler<br />

X X<br />

Envelope<br />

Detectors<br />

RF <strong>Power</strong> <strong>Meter</strong> Components<br />

Forward<br />

Reflected<br />

RF <strong>Power</strong> <strong>Meter</strong><br />

*<strong>Meter</strong> can be:<br />

• Analog or digital<br />

• Current or voltage<br />

•0-100 uA typical (non-powered)<br />

Switch<br />

<strong>Meter</strong>*<br />

RF<br />

OUT


5/4/2012<br />

RF<br />

IN<br />

Sensor<br />

Directional<br />

Coupler<br />

X X<br />

Envelope<br />

Detectors<br />

<strong>SWR</strong>/<strong>Power</strong> <strong>Meter</strong> - Digital<br />

Forward<br />

Reflected<br />

Digital<br />

Processor<br />

Digital<br />

Display<br />

RF<br />

OUT


5/4/2012<br />

Alpha 4520 Digital <strong>Power</strong>/<strong>SWR</strong> <strong>Meter</strong>


5/4/2012<br />

RF<br />

IN<br />

Sensor<br />

Directional<br />

Coupler<br />

X X<br />

Envelope<br />

Detectors<br />

<strong>SWR</strong>/<strong>Power</strong> <strong>Meter</strong> - Digital<br />

RF<br />

OUT<br />

Forward<br />

Reflected<br />

Processor<br />

Digital<br />

Display


5/4/2012<br />

RF<br />

IN<br />

Sensor<br />

Directional<br />

Coupler<br />

X X<br />

Envelope<br />

Detectors<br />

<strong>SWR</strong>/<strong>Power</strong> <strong>Meter</strong> - Digital<br />

RF<br />

OUT<br />

Forward<br />

Reflected


5/4/2012<br />

My Digital <strong>Power</strong> <strong>Meter</strong><br />

uV<br />

Resolution:<br />

100W/40000 uV = 0.025 W/uV


Sensor<br />

Forward<br />

Reflected<br />

5/4/2012<br />

Digital <strong>Power</strong>/<strong>SWR</strong> <strong>Meter</strong>s<br />

What is the main difference?<br />

Alpha 4520


Sensor<br />

Forward<br />

Reflected<br />

~$0-50<br />

5/4/2012<br />

Digital <strong>Power</strong>/<strong>SWR</strong> <strong>Meter</strong>s<br />

$30 up<br />

Cost!<br />

Alpha 4520<br />

$800


Sensor<br />

Forward<br />

Reflected<br />

Digital <strong>Power</strong>/<strong>SWR</strong> <strong>Meter</strong>s<br />

Accuracy varies from ~5% to ?<br />

•<strong>Power</strong> reading accuracy is very dependent on Sensor<br />

calibration accuracy (both Forward & Reflected)<br />

Accuracy: 5-10% achievable<br />

5/4/2012<br />

Alpha 4520<br />

Accuracy Spec =


Ultimate Limit on Accuracy?<br />

•Sensor Calibration!<br />

•Initial CAL accuracy<br />

•Volts out vs <strong>Power</strong> In<br />

•<strong>SWR</strong> is a calculation, not a measurement<br />

•Volts out vs Frequency<br />

•Traceable to NIST?<br />

•Drift with time<br />

•Load impedance drift with heating (1-3 KW???)<br />

•Having a digital readout:<br />

•Doesn’t improve accuracy<br />

•Improves resolution<br />

•May improve repeatability<br />

•Having a digital processor does allow for better<br />

calibration of sensor characteristics<br />

5/4/2012


Telepost LP-100A Digital Vector Wattmeter<br />

•Accuracy:<br />

•Same specs as Alpha 4520<br />

•5% maximum<br />

•3% (typical)<br />

•NIST traceable factory calibration<br />

•What does this mean?<br />

•eHam rating: 5.0/5 (121 reviews)<br />

•$435<br />

5/4/2012


5/4/2012<br />

RF<br />

IN<br />

Sensor<br />

Directional<br />

Coupler<br />

X X<br />

Directional Coupler<br />

RF <strong>Power</strong> <strong>Meter</strong><br />

RF<br />

OUT


Directional Coupler<br />

•Only couples power flowing in one direction<br />

•Only couples a small sample of the power flowing in the desired direction<br />

RF<br />

IN<br />

Green = desired coupling<br />

Red = undesired coupling<br />

X<br />

Forward<br />

Coupler<br />

X<br />

•Coupling factor represents the primary property of a directional coupler<br />

•To reduce 100 w to 100 mw => Coupling factor = -30 dB<br />

•Directivity is the measure of how well a coupler isolates two oppositetravelling<br />

(forward and reverse) signals<br />

•Creates region of uncertainty around all measurements<br />

•Bird 43: Directivity >30 dB<br />

5/4/2012<br />

Forward<br />

RF<br />

OUT


RF<br />

IN<br />

Green = desired coupling<br />

Red = undesired coupling<br />

5/4/2012<br />

Dual Directional Coupler<br />

X<br />

Forward<br />

Coupler<br />

X X X<br />

Reverse<br />

Coupler<br />

Forward Reflected<br />

RF<br />

OUT


Coupled Transmission Line Coupler<br />

5/4/2012<br />

Common Directional Couplers<br />

Bird 43


Tandem Match Coupler<br />

Bruene Bridge*<br />

5/4/2012<br />

Common Directional Couplers<br />

*Most common type<br />

found in commercial<br />

amateur transmitters


Tandem Match Coupler<br />

Bruene Bridge*<br />

5/4/2012<br />

Common Directional Couplers<br />

How do we get Voltage & Current?<br />

*Most common type<br />

found in commercial<br />

amateur transmitters


Tandem Match Coupler<br />

Bruene Bridge*<br />

5/4/2012<br />

Common Directional Couplers


Tandem Match Coupler<br />

Bruene Bridge*<br />

5/4/2012<br />

Common Directional Couplers<br />

Null adjustment


Common Sensors<br />

•Tandem Match Coupler<br />

•This coupler has some nice features:<br />

•Simplicity, excellent directivity<br />

•Scalable to other power levels, and<br />

•50-Ω load impedances on all ports<br />

•Covering 1.8-30 MHz requires careful transformer design<br />

•Input V<strong>SWR</strong> can degrade rapidly as frequency drops below 7 MHz<br />

•Bruene Bridge<br />

•Requires comparatively little space<br />

•Most commonly used design by Ham equipment manufacturers<br />

•Primary challenges with this design:<br />

1. Parasitic lead inductance associated with C2<br />

2. High values for C2<br />

3. Excessive secondary wire length on T1, and<br />

4. Impedance control in the bifilar secondary winding<br />

•The lead inductance and C2 result in a series resonance that<br />

progressively deteriorates bridge balance as the frequency is raised<br />

5/4/2012


5/4/2012<br />

Tandem Match Coupler<br />

<strong>SWR</strong> Sensor (from 2010 ARRL Antenna Handbook)


5/4/2012<br />

Tandem Match Coupler<br />

Shield on coax used as a Faraday shield (grounded on one end only)<br />

<strong>SWR</strong> Sensor (from 2010 ARRL Antenna Handbook)<br />

Any small signal diode will work<br />

(Germaniums are best for QRP)<br />

At 100 watts, I FWDOUT (into a short) > 6 mA<br />

At 100 watts, V FWDOUT (into an open) > 2.0 vdc


Caution: Germanium diodes don’t like heat<br />

5/4/2012<br />

Tandem Match Coupler


5/4/2012<br />

Tandem Match Coupler Using Balun Core<br />

DX Zone.com ”Digital QRP <strong>SWR</strong>/ <strong>Power</strong> <strong>Meter</strong>” by KD1JV<br />

Compensation Diodes<br />

(I don’t recommend)


Processor/Display<br />

DX Zone.com ”Digital QRP <strong>SWR</strong>/ <strong>Power</strong> <strong>Meter</strong>” by KD1JV<br />

“Whitman’s Sampler” tin<br />

•http://kd1jv.qrpradio.com/<br />

•http://www.dxzone.com/cgi-bin/dir/jump2.cgi?ID=18048<br />

5/4/2012


5/4/2012<br />

RF<br />

IN<br />

Sensor<br />

X X<br />

Envelope<br />

Detectors<br />

Envelope Detector<br />

RF <strong>Power</strong> <strong>Meter</strong><br />

RF<br />

OUT


Forward<br />

Reflected<br />

5/4/2012<br />

51<br />

51<br />

Diode<br />

0.01 uF<br />

Diode<br />

0.01 uF<br />

Common Envelope Detector<br />

100K<br />

100K<br />

Diodes:<br />

•Type not critical<br />

•Germanium best for QRP<br />

•Matched is desirable, but not required


Diode Options<br />

Silicon:<br />

•1N3600 => V D ~0.7 volt<br />

Germanium:<br />

•1N34, 1N60, 1N270 => V D ~ 0.3 volt<br />

5/4/2012


VDC<br />

5/4/2012<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

Diode Matching -Tandem Match Coupler<br />

Diode type dependent<br />

?<br />

No matching attempted<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Watts<br />

1N34A-1<br />

1N34A-2


Forward<br />

Reflected<br />

2 vdc<br />

5/4/2012<br />

Source<br />

51<br />

51<br />

Diode<br />

0.01 uF<br />

Diode<br />

~ 300 ohm<br />

0.01 uF<br />

Isolated <strong>Meter</strong> Circuit<br />

1 uF<br />

100K<br />

100K<br />

3<br />

2<br />

5<br />

6<br />

+<br />

- 1 4<br />

1<br />

Forward OUT<br />

11<br />

1<br />

+<br />

- 2 Reflected OUT<br />

+X VDC<br />

7<br />

780X<br />

1 uF<br />

+V IN<br />

LM324 or equivalent<br />

3<br />

4


Forward<br />

Reflected<br />

5/4/2012<br />

51<br />

51<br />

Diode<br />

0.01 uF<br />

Diode<br />

0.01 uF<br />

1 uF<br />

100K<br />

100K<br />

<strong>Meter</strong> Adjustment<br />

3<br />

2<br />

5<br />

6<br />

+<br />

- 1 4<br />

1<br />

Level<br />

Forward OUT<br />

11<br />

+<br />

+X VDC<br />

FWD<br />

Adjust<br />

REF<br />

780X<br />

1 uF<br />

- 2 7<br />

Level<br />

Reflected OUT<br />

Adjust<br />

+V IN


5/4/2012<br />

A SIMPLE <strong>SWR</strong> METER FOR QRP (1 WATT) LEVELS<br />

Not required<br />

X<br />

X<br />

X


<strong>Homebrew</strong><br />

(Tandem Match)<br />

Bird<br />

(Coupled Line/Digital)<br />

5/4/2012<br />

Pride<br />

(Breune)<br />

Performance – <strong>Power</strong> Measurement<br />

VDC<br />

mVDC<br />

Watts<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 2 5 10 20 30 40 50 60 70 80 90 95 100<br />

2 5 10 20 30 40 50 60 70 80 90 95<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Watts<br />

Diode type dependent


5/4/2012<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

Performance – <strong>SWR</strong> Measurement<br />

25 ohm Load @ P F = 60 watts<br />

1.8 MHz<br />

14 MHz<br />

28 MHz<br />

Tandem<br />

Bird<br />

Breune


Reflected<br />

Forward<br />

5/4/2012<br />

100K<br />

100K<br />

5<br />

6<br />

3<br />

1 uF<br />

2<br />

200K<br />

Latch<br />

Treshold<br />

+<br />

- 2<br />

FWD<br />

+<br />

- 1<br />

4<br />

11<br />

7<br />

LM324<br />

1<br />

<strong>SWR</strong> Protection Circuit<br />

150K<br />

+8 VDC<br />

REF<br />

Reflected<br />

<strong>Power</strong><br />

0.1 uF<br />

15K<br />

15K<br />

1.21M<br />

Foldback<br />

Treshold<br />

1.0 uF<br />

1K<br />

10K<br />

12<br />

13<br />

+<br />

- 4<br />

To<br />

+4 VDC<br />

7808<br />

0.1 uF<br />

~1 sec Delay<br />

to Latch<br />

1.0 uF<br />

15K<br />

+1.6 VDC<br />

14<br />

+4 VDC<br />

1N3600<br />

1 uF<br />

10<br />

9<br />

5.1K<br />

+<br />

- 3<br />

Reset<br />

0.1 uF<br />

5.1K<br />

1.1K<br />

8<br />

2N3501<br />

+12 VDC<br />

To<br />

+8 VDC<br />

17 mA<br />

10K<br />

1N3600<br />

100<br />

1N3600<br />

2N3501<br />

13<br />

1<br />

16<br />

2N3501<br />

390<br />

½ W<br />

Latch<br />

Relay1<br />

11<br />

9<br />

+<br />

-<br />

2N3501<br />

Latch Relay1<br />

6<br />

8<br />

+<br />

-<br />

4<br />

<strong>SWR</strong> LED<br />

<strong>Radio</strong> Shack<br />

276-0017<br />

+13.5<br />

VDC<br />

To <strong>SWR</strong><br />

Shutdown<br />

To<br />

+13.5 VDC

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!