Extrusion and Drawing of Metals
Extrusion and Drawing of Metals
Extrusion and Drawing of Metals
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
1<br />
<strong>Extrusion</strong><br />
<strong>Extrusion</strong> <strong>and</strong> <strong>Drawing</strong> <strong>of</strong> <strong>Metals</strong><br />
Slides based on Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian <strong>and</strong><br />
Steven R. Schmid.<br />
ISBN 0-13-148965-8. © 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
2<br />
<strong>Extrusion</strong><br />
Direct-<strong>Extrusion</strong><br />
Figure 15.1 Schematic illustration <strong>of</strong> the direct-extrusion process.
3<br />
Plastic deformation process<br />
starts from a billet <strong>and</strong> makes long right half<br />
products<br />
Metal is pushed through a die with a narrow<br />
A reduction <strong>of</strong> metal section is happening<br />
Solid sections, bars <strong>and</strong> rods<br />
Tubes <strong>and</strong> hollow sections<br />
Very complex dies<br />
<strong>Extrusion</strong> breaks casted structure<br />
Developed 19 th Century for Pb <strong>and</strong> later Cu<br />
Hot <strong>and</strong> Cold <strong>Extrusion</strong><br />
<strong>Extrusion</strong><br />
Basic principle
4<br />
<strong>Extrusion</strong><br />
<strong>Extrusion</strong> Parameters<br />
Metal properties (alloys, homogeneous)<br />
Temperature <strong>of</strong> the container, die, billet (preheating), stem (heat loss<br />
is controlled)<br />
<strong>Extrusion</strong> velocity<br />
<strong>Extrusion</strong> ratio (10-30)<br />
Direct <strong>of</strong> indirect extrusion<br />
Pressure (push up, breakthrough, max possible pressure, …)<br />
Size <strong>and</strong> shape <strong>of</strong> the container (round or )<br />
Friction between die <strong>and</strong> container<br />
Design <strong>of</strong> the die (inlet angle, passl ength, laskamer, position <strong>of</strong><br />
holes<br />
Length <strong>of</strong> the block
5<br />
<strong>Extrusion</strong><br />
<strong>Extrusion</strong> parameters (schema)
6<br />
<strong>Extrusion</strong><br />
Plastic deformation<br />
Usually the billet is heated (Al 300 en 500°C) to help plastic<br />
deformation process<br />
System build up stress, forces, pressure en energy<br />
Simpel model one has to pass level for flow stress <strong>of</strong> the metal<br />
<strong>Extrusion</strong> is a shear systems with gliding in the crystal structure<br />
(Al versus Steel)<br />
By friction the outer part <strong>of</strong> the metal flows slower than inner part<br />
resulting in a shear process<br />
So the outer part is feeling more shear stress<br />
Cold deformation if the deformation temperature is below<br />
recrystallisation temperature
7<br />
Dead zone<br />
A dead zone is created at the angles <strong>of</strong> the<br />
die. There the metal is not moving<br />
The metal shears <strong>of</strong>f at this plane<br />
Conic form <strong>of</strong> shearing<br />
Dark part are oxides <strong>and</strong> inclusions<br />
Surface <strong>and</strong> subsurface defects occur<br />
(delamination, blister)<br />
<strong>Extrusion</strong>
8<br />
α=f(EV,σ,m,m’)<br />
<strong>Extrusion</strong> ratio<br />
m friction between billet <strong>and</strong><br />
<strong>and</strong> container<br />
m’ friction between billet <strong>and</strong><br />
die<br />
σ critical flow stress<br />
<strong>Extrusion</strong><br />
Angle <strong>of</strong> the dead zone
9<br />
10-15 % <strong>of</strong> the length <strong>of</strong> the billet<br />
Usually cut <strong>of</strong>f<br />
Size depends on the extrusion<br />
process <strong>and</strong> metal<br />
Direct extrusion skin <strong>of</strong> the cast is<br />
collected<br />
Usually sufficient metal is cut <strong>of</strong>f<br />
<strong>Extrusion</strong><br />
Butt
10<br />
<strong>Extrusion</strong><br />
Direct <strong>and</strong> Indirect <strong>Extrusion</strong>
11<br />
<strong>Extrusion</strong><br />
Direct extrusion<br />
Stem pushes the billet through the die<br />
Friction between billet <strong>and</strong> container<br />
Loading billet pressure builds up<br />
Pressure drops one the billet passes the<br />
die<br />
At the end the pressure builds up again<br />
Flow pattern is irregular (pressing a<br />
banana)<br />
Usable for s<strong>of</strong>t alloys
12<br />
In indirect extrusion die moves into<br />
the billet<br />
No friction between billet <strong>and</strong><br />
container<br />
Different built up <strong>of</strong> pressure<br />
Flow pattern is more uniform<br />
Force is lower good for harder<br />
alloys<br />
Casted metal has to be scalped<br />
<strong>Extrusion</strong><br />
Indirect extrusion
13<br />
Advantages <strong>of</strong> indirect extrusion<br />
• Long billets = higher efficiency<br />
Indirect vs Direct <strong>Extrusion</strong><br />
• Higher extrusion speed possible (less temperature raise no friction)<br />
• Equal pressure over the process, better tolerance<br />
Disadvantages <strong>of</strong> indirect extrusion<br />
• Higher surface risk (delamination under the surface)<br />
• Smaller die surface hollow stem<br />
• Hollow stem, so quenching is difficult. So separate heat treatments necessary.<br />
• Higher cost<br />
• More complicated process<br />
<strong>Extrusion</strong>
14<br />
<strong>Extrusion</strong><br />
<strong>Extrusion</strong>s <strong>and</strong> Products Made from <strong>Extrusion</strong>s<br />
Figure 15.2 <strong>Extrusion</strong>s <strong>and</strong><br />
examples <strong>of</strong> products made by<br />
sectioning <strong>of</strong>f extrusions.<br />
Source: Courtesy <strong>of</strong> Kaiser<br />
Aluminum.
15<br />
<strong>Extrusion</strong><br />
Types <strong>of</strong> <strong>Extrusion</strong><br />
Figure 15.3 Types <strong>of</strong> extrusion: (a) indirect; (b) hydrostatic; (c) lateral;
16<br />
<strong>Extrusion</strong><br />
Process Variables in Direct<br />
<strong>Extrusion</strong><br />
Figure 15.4 Process variables in direct extrusion. The die angle, reduction in cross-section,<br />
extrusion speed, billet temperature, <strong>and</strong> lubrication all affect the extrusion pressure.
17<br />
<strong>Extrusion</strong><br />
<strong>Extrusion</strong> Force<br />
<strong>Extrusion</strong> force, F = Aol ln A ⎛ ⎞<br />
o<br />
⎜ ⎟<br />
⎝ A f ⎠<br />
Figure 15.5 <strong>Extrusion</strong> constant k for<br />
various metals at different<br />
temperatures. Source: After P.<br />
Loewenstein
18<br />
<strong>Extrusion</strong><br />
Types <strong>of</strong> Metal Flow in <strong>Extrusion</strong> with Square Dies<br />
Figure 15.6 Types <strong>of</strong> metal flow in extruding with square dies. (a) Flow pattern obtained at<br />
low friction or in indirect extrusion. (b) Pattern obtained with high friction at the billetchamber<br />
interfaces. (c) Pattern obtained at high friction or with coiling <strong>of</strong> the outer regions <strong>of</strong><br />
the billet in the chamber. This type <strong>of</strong> pattern, observed in metals whose strength increases<br />
rapidly with decreasing temperature, leads to a defect known as pipe (or extrusion) defect.
19<br />
<strong>Extrusion</strong><br />
<strong>Extrusion</strong> Temperature Ranges
20<br />
<strong>Extrusion</strong><br />
<strong>Extrusion</strong>-Die Configurations<br />
Figure 15.7 Typical extrusion-die configurations: (a) die for nonferrous metals; (b) die<br />
for ferrous metals; (c) die for a T-shaped extrusion made <strong>of</strong> hot-work die steel <strong>and</strong><br />
used with molten glass as a lubricant. Source: (c) Courtesy <strong>of</strong> LTV Steel Company.
21<br />
<strong>Extrusion</strong><br />
<strong>Extrusion</strong> in Creation <strong>of</strong> Intricate Parts<br />
Figure 15.8 (a) An extruded 6063-T6 aluminum-ladder lock for aluminum extension ladders.<br />
This part is 8 mm (5/16 in.) thick <strong>and</strong> is sawed from the extrusion (see Fig. 15.2). (b-d)<br />
Components <strong>of</strong> various dies for extruding intricate hollow shapes. Source: (b-d) After K.<br />
Laue <strong>and</strong> H. Stenger
22<br />
<strong>Extrusion</strong> <strong>of</strong> Heat Sinks<br />
Figure 15.10 (a) Aluminum extrusion used as a heat sink for a printed circuit board. (b)<br />
Die <strong>and</strong> resulting heat sink pr<strong>of</strong>iles. Source: Courtesy <strong>of</strong> Aluminum Extruders Council.<br />
<strong>Extrusion</strong>
23<br />
<strong>Extrusion</strong><br />
Chevron Cracking<br />
Figure 15.16 (a) Chevron cracking (central burst) in extruded round steel bars.<br />
Unless the products are inspected, such internal defects may remain undetected<br />
<strong>and</strong> later cause failure <strong>of</strong> the parts in service. This defect can also develop in<br />
the drawing <strong>of</strong> rod, <strong>of</strong> wire, <strong>and</strong> <strong>of</strong> tubes. (b) Schematic illustration <strong>of</strong> rigid <strong>and</strong><br />
plastic zones in extrusion. The tendency toward chevron cracking increases if<br />
the two plastic zones do not meet. Note that the plastic zone can be made larger<br />
either by decreasing the die angle or by increasing the reduction in crosssection<br />
(or both). Source: After B. Avitzur.
24<br />
<strong>Extrusion</strong><br />
9-MN (1000-ton) Hydraulic-<br />
<strong>Extrusion</strong> Press<br />
Figure 15.17 General view <strong>of</strong> a 9-MN (1000-ton) hydraulic-extrusion press.<br />
Source: Courtesy <strong>of</strong> Jones & Laughlin Steel Corporation.
25<br />
<strong>Extrusion</strong><br />
Process Variables in Wire <strong>Drawing</strong><br />
Figure 15.18 Process variables in wire drawing. The die angle, the reduction in crosssectional<br />
area per pass, the speed <strong>of</strong> drawing, the temperature, <strong>and</strong> the lubrication all affect<br />
the drawing force, F.
26<br />
<strong>Extrusion</strong><br />
Tube-<strong>Drawing</strong> Operations<br />
Figure 15.19 Examples <strong>of</strong> tube-drawing operations, with <strong>and</strong> without an internal<br />
m<strong>and</strong>rel. Note that a variety <strong>of</strong> diameters <strong>and</strong> wall thicknesses can be produced<br />
from the same initial tube stock (which has been made by other processes).
27<br />
Figure 15.20 Terminology <strong>of</strong> a<br />
typical die used for drawing a<br />
round rod or wire.<br />
<strong>Extrusion</strong><br />
<strong>Drawing</strong> Dies<br />
Figure 15.21 Tungsten-carbide die<br />
insert in a steel casing. Diamond<br />
dies used in drawing thin wire are<br />
encased in a similar manner.
28<br />
<strong>Extrusion</strong><br />
Extruded Channel on a Draw Bench<br />
Figure 15.22 Cold drawing <strong>of</strong> an extruded channel on a draw bench to<br />
reduce its cross-section. Individual lengths <strong>of</strong> straight rods or <strong>of</strong> crosssections<br />
are drawn by this method. Source: Courtesy <strong>of</strong> The Babcock <strong>and</strong><br />
Wilcox Company, Tubular Products Division.
29<br />
<strong>Extrusion</strong><br />
Multistage Wire-drawing Machine<br />
Figure 15.23 Two views <strong>of</strong> a multistage wire-drawing machine that typically is used<br />
in the making <strong>of</strong> copper wire for electrical wiring. Source: After H. Auerswald
30<br />
Gegoten perspalen<br />
<strong>Extrusion</strong>
31<br />
<strong>Extrusion</strong>
32<br />
<strong>Extrusion</strong>
33<br />
<strong>Extrusion</strong>
34<br />
<strong>Extrusion</strong>
35<br />
<strong>Extrusion</strong>
36<br />
<strong>Extrusion</strong>
37<br />
<strong>Extrusion</strong>
38<br />
<strong>Extrusion</strong>
39<br />
<strong>Extrusion</strong>
40<br />
<strong>Extrusion</strong><br />
Transport
41<br />
<strong>Extrusion</strong><br />
Transport
42<br />
<strong>Extrusion</strong><br />
ABS<br />
PSA<br />
Monotube Shock-Absorber &<br />
Strut<br />
Renault<br />
Automotive<br />
Transmission Valves<br />
General Motors<br />
Daimler Chrysler<br />
Airbag<br />
PSA<br />
Forged Pressure Regulator<br />
Daimler Chrysler<br />
Brake Piston & Regulator<br />
Renault & PSA<br />
Ford / BMW
43<br />
<strong>Extrusion</strong><br />
Civil
44<br />
<strong>Extrusion</strong><br />
Sport, Engineering