26.03.2013 Views

Voltage Sag mitigation in Electric Arc Furnace with - International ...

Voltage Sag mitigation in Electric Arc Furnace with - International ...

Voltage Sag mitigation in Electric Arc Furnace with - International ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>International</strong> <strong>Electric</strong>al Eng<strong>in</strong>eer<strong>in</strong>g Journal (IEEJ)<br />

Vol. 2 (2011) No. 2, pp. 536-542<br />

ISSN 2078-2365<br />

<strong>Voltage</strong> <strong>Sag</strong> <strong>mitigation</strong> <strong>in</strong> <strong>Electric</strong> <strong>Arc</strong> <strong>Furnace</strong><br />

<strong>with</strong> D-STATCOM<br />

<br />

Abstract— <strong>Arc</strong> furnace represents one of the most <strong>in</strong>tensive<br />

and disturb<strong>in</strong>g loads <strong>in</strong> the electric power system. Utilities are<br />

concerned about these effects and try to take precautions to<br />

m<strong>in</strong>imize them. Therefore, an accurate model of an arc furnace<br />

is needed to test and verify proposed solutions to this end. This<br />

paper, presents the results of a study, where furnace arc is<br />

modeled us<strong>in</strong>g both chaotic and determ<strong>in</strong>istic elements. <strong>Voltage</strong><br />

fluctuations (<strong>Sag</strong>), is captured us<strong>in</strong>g the well-studied circuit<br />

whereas a dynamic model <strong>in</strong> the form of differential equation is<br />

used for the electric arc. Simulation of developed model is done<br />

<strong>in</strong> Sim-Power-System environment of the MATLAB 7.1<br />

Version.<br />

Index Terms— <strong>Electric</strong> <strong>Arc</strong> <strong>Furnace</strong>, Simul<strong>in</strong>k, <strong>Voltage</strong><br />

Flicker<br />

I. INTRODUCTION<br />

<strong>Electric</strong> <strong>Arc</strong> <strong>Furnace</strong> (EAF) is a widely used device <strong>in</strong><br />

metallurgical and process<strong>in</strong>g <strong>in</strong>dustries. It is a nonl<strong>in</strong>ear time<br />

vary<strong>in</strong>g load, which can cause many problems to the power<br />

system quality such as unbalance, harmonic <strong>in</strong>ter harmonic<br />

and voltage flicker. Thus study of electric arc furnaces has<br />

potential benefits for both customers and utilities. An accurate<br />

model<strong>in</strong>g of an EAF will help <strong>in</strong> deal<strong>in</strong>g <strong>with</strong> the problems<br />

caused by its operation. M<strong>in</strong>imization of the undesirable<br />

impact of EAFs can improve electric efficiency and reduce<br />

power fluctuations <strong>in</strong> the system.<br />

The description of an arc furnace load depends on the<br />

follow<strong>in</strong>g parameters: arc voltage, arc current and arc length<br />

(which is determ<strong>in</strong>ed by the position of the electrodes). Based<br />

on the study of above essential parameters, many models are<br />

set up for the purpose of harmonic and flicker analysis. In<br />

general, they may be classified as follows, a) Time doma<strong>in</strong><br />

analysis method (Characteristic Method, Time Doma<strong>in</strong><br />

Equivalent Nonl<strong>in</strong>ear Circuit Method), and b) Frequency<br />

Saji Chacko, Shri Shankaracharya College of Eng<strong>in</strong>eer<strong>in</strong>g &<br />

Technology, Department of <strong>Electric</strong>al & Electronics, Junwani, Bhilai (CG)<br />

490020, INDIA. e-mail: chackosaji68@gmail.com, Ph: +919893174845<br />

Naveen Goel, Shri Shankaracharya College of Eng<strong>in</strong>eer<strong>in</strong>g &<br />

Technology, Department of <strong>Electric</strong>al & Electronics, Junwani, Bhilai (CG)<br />

490020, INDIA. e-mail: ngoel_18@rediffmail.com. Ph: +917828699244<br />

Saji Chacko, Naveen Goel<br />

Doma<strong>in</strong> analysis method (Harmonic <strong>Voltage</strong> Source Model,<br />

Harmonic doma<strong>in</strong> Solution of nonl<strong>in</strong>ear differential<br />

equation). Each method has its own advantages and<br />

disadvantages. Comparison and commendation of different<br />

arc furnace models were presented <strong>in</strong> [1]. Most of the exist<strong>in</strong>g<br />

models make some k<strong>in</strong>ds of approximation on the<br />

characteristic of arc. There have been two general approaches<br />

to the problem of arc furnace model<strong>in</strong>g: stochastic and<br />

chaotic. In most of the previous studies, stochastic ideas are<br />

used to capture the periodic, nonl<strong>in</strong>ear, and time-vary<strong>in</strong>g<br />

behavior of arc furnaces [2]–[4]. In [2], the arc furnace load is<br />

modeled as a voltage source. The model is based on<br />

representation of the V-I characteristics us<strong>in</strong>g s<strong>in</strong>usoidal<br />

variations of arc resistance and band limited white noise. Here<br />

empirical formulas related to the arc<strong>in</strong>g process are used.<br />

Recent study shows that, the electrical fluctuations <strong>in</strong> the<br />

arc furnace voltage have proven to be chaotic <strong>in</strong> nature. Some<br />

chaos-based models reported <strong>in</strong> specialized literature [5]–[6]<br />

have been applied to simulate ac [7]-[8] and dc arc furnaces<br />

[9]. In [7] the Lorenz chaotic model has been used to<br />

represent the highly vary<strong>in</strong>g behavior of currents <strong>in</strong> an ac arc<br />

furnace and a tun<strong>in</strong>g procedure is applied to obta<strong>in</strong> the model<br />

parameters.<br />

In this work <strong>in</strong>stead of us<strong>in</strong>g s<strong>in</strong>gle valued piece-wise<br />

l<strong>in</strong>ear V-I characteristics of the arc furnace load, a dynamic<br />

and multi-valued V-I characteristics are obta<strong>in</strong>ed by us<strong>in</strong>g<br />

correspond<strong>in</strong>g differential equations [8]. The output of<br />

dynamic model developed is modulated <strong>with</strong> low frequency<br />

chaos signal to produce the arc furnace model. The model<br />

developed is connected to sample power system to study the<br />

voltage fluctuation.<br />

II. ARC FURNACE OPERATION<br />

<strong>Electric</strong> arc furnaces are available <strong>in</strong> both alternat<strong>in</strong>g current<br />

(AC) and Direct current (DC) models. A transformer directly<br />

energizes furnace electrodes <strong>in</strong> a high current circuit <strong>in</strong> arc<br />

furnaces, whereas dc furnaces employ a controlled rectifier to<br />

supply dc to the furnace electrodes. <strong>Arc</strong> furnace operation<br />

may be classified <strong>in</strong>to stages, depend<strong>in</strong>g on the status of the<br />

536


Saji et al. <strong>Voltage</strong> <strong>Sag</strong> <strong>mitigation</strong> <strong>in</strong> <strong>Electric</strong> <strong>Arc</strong> <strong>Furnace</strong> <strong>with</strong> D-STATCOM<br />

melt and the time lapse from the <strong>in</strong>itial energization of the<br />

unit.<br />

Consider the case of the process<strong>in</strong>g of scrap steel <strong>in</strong> an ac<br />

EAF. Dur<strong>in</strong>g the melt<strong>in</strong>g period, pieces of steel create<br />

momentary short circuits on the secondary side of the furnace<br />

transformer. These load changes affect the arc characteristics,<br />

caus<strong>in</strong>g fluctuations of current. The current fluctuations cause<br />

variations <strong>in</strong> reactive power, which cause a momentary<br />

voltage drop or flicker, both at the supply bus and at nearby<br />

buses <strong>in</strong> the <strong>in</strong>terconnected system. The arc currents are more<br />

uniform dur<strong>in</strong>g the ref<strong>in</strong><strong>in</strong>g period and result <strong>in</strong> less impact on<br />

the power quality of the system. <strong>Arc</strong> furnaces also create<br />

harmonic load currents and asynchronous spectral<br />

components. Harmonics represent an important power quality<br />

issue, because they may cause undesirable operat<strong>in</strong>g<br />

conditions such as excess losses <strong>in</strong> transformers maloperation<br />

of drive controllers etc.[12]. Figure.1 shows typical<br />

<strong>in</strong>stallation of EAF.<br />

Substation transformer EAF transformer<br />

Transmission system<br />

xsc HV/MV<br />

MV/LV<br />

Generat<strong>in</strong>g source<br />

Xe Re<br />

<strong>Electric</strong> arc furnace<br />

Fig. 1 Typical <strong>in</strong>stallation of EAF<br />

III. CHAOTIC DYNAMICS IN ELECTRIC ARC FURNACES<br />

Chaos, also known as the strange attractor, does not<br />

generally have an accepted precise mathematical def<strong>in</strong>ition.<br />

Usually from a practical view po<strong>in</strong>t, it can be def<strong>in</strong>ed as the<br />

bounded steady-state behavior that does not fall <strong>in</strong>to the<br />

categories of the other three steady-state behaviors i.e. the<br />

equilibrium po<strong>in</strong>ts, periodic solutions, and quasi periodic<br />

solutions [6]. The equilibrium po<strong>in</strong>ts are zero dimensional<br />

and periodic solutions are one dimensional ,where as strange<br />

attractors are more complex and their dimension is a fraction.<br />

A chaotic system is a determ<strong>in</strong>istic system that exhibits<br />

random movement and it is a nonl<strong>in</strong>ear system that exhibits<br />

extreme sensitivity <strong>in</strong> the state trajectory <strong>with</strong> respect to the<br />

<strong>in</strong>itial conditions. It has been observed that the electric<br />

fluctuations <strong>in</strong> an arc furnace are chaotic <strong>in</strong> nature.<br />

The chaotic component of the arc furnace voltage is<br />

obta<strong>in</strong>ed from the chaotic circuit of Chua [8]. To exhibit<br />

chaos, the circuit consist<strong>in</strong>g of resistors capacitors and<br />

<strong>in</strong>ductors has to conta<strong>in</strong> the follow<strong>in</strong>g:<br />

(i) At least one locally active reactor<br />

(ii) At least one nonl<strong>in</strong>ear element.<br />

(iii) At least three energy storage elements<br />

Chuas circuit satisfies the above requirements.<br />

The arc furnace model is composed of two ma<strong>in</strong> parts.<br />

The first po<strong>in</strong>t is about the use of dynamic multi valued<br />

voltage current characteristic of the electric arc. The second<br />

po<strong>in</strong>t makes use of the chaotic current.<br />

The dynamic V-I characteristics of arc furnace load is<br />

obta<strong>in</strong>ed by us<strong>in</strong>g a general dynamic arc model <strong>in</strong> the form of<br />

a differential equation derived as<br />

n dr k3<br />

2<br />

k1r k2r<br />

i m<br />

2<br />

dt r<br />

where r stands for the arc radius and is chosen as the state<br />

variable. The arc voltage is given by<br />

i<br />

v <br />

g<br />

where g is def<strong>in</strong>ed as arc conductance and is given by the<br />

follow<strong>in</strong>g equation<br />

m 2<br />

r<br />

g <br />

k<br />

IV. ARC FURNACE MODEL<br />

The development of general dynamic arc model <strong>in</strong> the form<br />

of a differential equation is based on the pr<strong>in</strong>ciple of<br />

conservation of energy. The approach is fundamentally<br />

different from those methods where some empirical relation is<br />

used to represents the electrical arc. In the dynamic model<br />

such relations which are implicit for steady state conditions<br />

are not pre def<strong>in</strong>ed and gives result for different conditions<br />

depend<strong>in</strong>g on both frequency and current magnitude. Here the<br />

arc furnace is modeled <strong>in</strong> two stages. First dynamic electric<br />

arc model<strong>in</strong>g is done and the obta<strong>in</strong>ed arc voltage is then<br />

modulated <strong>with</strong> chaotic signal to produce f<strong>in</strong>al arc furnace<br />

model.<br />

The power balance equation for the arc is<br />

p p <br />

1<br />

2<br />

Where, p1 represents the power transmitted <strong>in</strong> the form of<br />

heat to the external environment, p2 represents the power,<br />

which <strong>in</strong>creases the <strong>in</strong>ternal energy <strong>in</strong> the arc, and which<br />

therefore affects its radius, and p3 represents the total power<br />

developed <strong>in</strong> the arc and converted <strong>in</strong>to heat. The above<br />

equation can be represented <strong>in</strong> the form of differential<br />

equation [10] of the arc:<br />

n dr k3<br />

2<br />

k1r k2r<br />

i m<br />

2<br />

dt r (2)<br />

Here ―r‖ stands for the arc radius which is chosen as a state<br />

variable <strong>in</strong>stead of tak<strong>in</strong>g arc resistance or conductance. The<br />

arc voltage is then given by<br />

i<br />

v (3)<br />

g<br />

Where g is def<strong>in</strong>ed as arc conductance and given by the<br />

m 2<br />

equation<br />

r<br />

g (4)<br />

k3<br />

It is possible to represent the different stages of the arc<strong>in</strong>g<br />

process by simply modify<strong>in</strong>g the parameters of m and n <strong>in</strong> (2).<br />

The complete set of comb<strong>in</strong>ation of these parameters for<br />

different stages of electric arc can be found <strong>in</strong> [7].<br />

3<br />

p<br />

3<br />

(1)<br />

537 | P a g e


<strong>International</strong> <strong>Electric</strong>al Eng<strong>in</strong>eer<strong>in</strong>g Journal (IEEJ)<br />

Vol. 2 (2011) No. 2, pp. 536-542<br />

ISSN 2078-2365<br />

N<br />

Source<br />

A<br />

B<br />

C<br />

Discrete ,<br />

Ts = 5e-005 s.<br />

A<br />

B<br />

C<br />

RL<br />

A<br />

B<br />

C<br />

RLC Load<br />

A<br />

B<br />

C<br />

A<br />

B<br />

C<br />

Vabc<br />

Measurement 1<br />

A<br />

B<br />

C<br />

a<br />

b<br />

c<br />

Sequence Analyzer 2<br />

a<br />

b<br />

c<br />

Breaker1<br />

abc<br />

Mag<br />

Phase<br />

-C-<br />

a<br />

b<br />

c<br />

A<br />

B<br />

C<br />

Measurement<br />

A<br />

B<br />

C<br />

N<br />

Vs<br />

a2<br />

b2<br />

c2<br />

a3<br />

b3<br />

c3<br />

Transformer 1<br />

Transformer<br />

Fig. 3 Control Scheme and test system us<strong>in</strong>g MATLAB/ Simul<strong>in</strong>k<br />

stics of electric <strong>Arc</strong> <strong>Furnace</strong><br />

a<br />

b<br />

c<br />

A<br />

B<br />

C<br />

Fig. 2 Dynamic characteri<br />

Conn 1<br />

Conn 2<br />

Conn 3<br />

In 1<br />

DSTATCOM1<br />

A<br />

Vabc<br />

Iabc<br />

B a<br />

C<br />

b<br />

c<br />

Measurement 2<br />

Iarc<br />

A<br />

B<br />

C<br />

Breaker<br />

a<br />

b<br />

c<br />

Ia<br />

<strong>Arc</strong>furnace Conn 3<br />

538<br />

Conn 2<br />

Conn 1


Saji et al. <strong>Voltage</strong> <strong>Sag</strong> <strong>mitigation</strong> <strong>in</strong> <strong>Electric</strong> <strong>Arc</strong> <strong>Furnace</strong> <strong>with</strong> D-STATCOM<br />

The dynamic voltage/current characteristic of the<br />

electric arc furnace fig. 2 us<strong>in</strong>g the above equations is<br />

implemented us<strong>in</strong>g Simul<strong>in</strong>k blockset as shown <strong>in</strong> fig. 4. This<br />

model is then comb<strong>in</strong>ed <strong>with</strong> the band limit white noise to<br />

create the chaotic nature of the arc furnace voltage and<br />

current parameters as shown <strong>in</strong> fig. 5.<br />

Unit<br />

Delay<br />

1<br />

z<br />

1/s<br />

Integrator<br />

1 Unit<br />

z Delay<br />

1/s<br />

Integrator<br />

-K-<br />

Ga<strong>in</strong><br />

-K-<br />

f(u) Fcn2<br />

7 Ga<strong>in</strong>1<br />

1/(u^2)<br />

Fcn1<br />

Fcn<br />

(u^2)<br />

-K-<br />

Ga<strong>in</strong>2<br />

Fig. 4.Control Structure of <strong>Arc</strong> <strong>Furnace</strong><br />

f(u) Fcn2<br />

7<br />

1/(u^2)<br />

Fcn1<br />

Fcn<br />

(u^2)<br />

-K-<br />

Band-Limited<br />

White Noise<br />

In1<br />

1<br />

1<br />

In1<br />

1<br />

Fig. 5 Control Structure of <strong>Arc</strong> <strong>Furnace</strong> <strong>with</strong> Chaotic nature<br />

1<br />

Out1<br />

s<br />

+<br />

-<br />

Controlled<br />

<strong>Voltage</strong> Source<br />

1<br />

Conn1<br />

The MATLAB implementation for a 3 phase EAF model that<br />

<strong>in</strong>cludes dynamic arc model and chaotic circuit is shown <strong>in</strong><br />

Fig. 2.<br />

V. SHUNT VOLTAGE CONTROLLER:<br />

DISTRIBUTION STATIC COMPENSATOR (DSTATCOM)<br />

A D-STATCOM, which is schematically depicted <strong>in</strong> Fig. 6<br />

consists of a voltage source converter (VSC) shunt connected<br />

to the distribution network through a coupl<strong>in</strong>g transformer.<br />

This configuration allows the device to absorb or generate<br />

controllable reactive power. The D-STATCOM has been<br />

utilized for voltage regulation, correction of power factor and<br />

elim<strong>in</strong>ation of current harmonics. In distribution voltage<br />

level, the switch<strong>in</strong>g element is usually the IGBT (Integrated<br />

Gate Bipolar Transistor) due to its lower switch<strong>in</strong>g losses and<br />

reduced size.<br />

Moreover, the power rat<strong>in</strong>g of custom power devices is<br />

relatively low. Consequently, the output voltage control may<br />

be executed through PWM (Pulse Width Modulation)<br />

switch<strong>in</strong>g method.<br />

It is also capable of flicker and harmonics <strong>mitigation</strong>. A<br />

D-STATCOM is connected <strong>in</strong> parallel <strong>with</strong> the distribution<br />

feeder. It generates a current <strong>in</strong>jection, which is summed to<br />

the non-s<strong>in</strong>usoidal load current. Thus the phase currents<br />

taken from the grid will be nearly s<strong>in</strong>e wave. If<br />

D-STATCOM does not conta<strong>in</strong> any active power storage it<br />

only <strong>in</strong>jects or draws reactive power. Limited voltage sag<br />

<strong>mitigation</strong> is possible <strong>with</strong> the <strong>in</strong>jection of reactive power<br />

only, but active power is needed if both magnitude and phase<br />

angle of the pre-event voltage need to be kept constant. The<br />

device rat<strong>in</strong>g determ<strong>in</strong>es the maximum total current which<br />

can be <strong>in</strong>jected. In case an energy storage is connected to the<br />

D-STATCOM its capacity also needs to be rated.<br />

D-STATCOM equipped <strong>with</strong> energy storage and additional<br />

high-speed switchgear is able to <strong>in</strong>ject also active power and<br />

thus support the load even dur<strong>in</strong>g an <strong>in</strong>terruption on the grid<br />

side. The steady state model of analyz<strong>in</strong>g the rms voltages<br />

and currents, fundamental frequency power and energy<br />

flows, applies to D-STATCOM.<br />

Operat<strong>in</strong>g modes of D-STATCOM<br />

This is shunt connected device operates <strong>in</strong> two control<br />

modes<br />

Current Control: In this mode D-STATCOM acts as active<br />

filter, power factor controller, load balance etc. These<br />

functions are called load compensation.<br />

<strong>Voltage</strong> Control: In this mode a D-STATCOM can regulate<br />

voltage aga<strong>in</strong>st any distortion, <strong>Sag</strong>/ Swells, unbalance and<br />

even short duration <strong>in</strong>terruptions.<br />

<strong>Voltage</strong> <strong>Sag</strong> Correction by D-STATCOM<br />

The schematic diagram of a D-STATCOM is shown <strong>in</strong><br />

Fig. 3. In this diagram, the shunt <strong>in</strong>jected current corrects the<br />

voltage sag by adjust<strong>in</strong>g the voltage drop across the system<br />

impedance Z. The value of current can be controlled by<br />

adjust<strong>in</strong>g the output voltage of the converter. The shunt<br />

<strong>in</strong>jected current can be written as:<br />

Vth jX th<br />

Rth L V<br />

Is<br />

D-STATCOM<br />

volate source<br />

converter<br />

Energy storage<br />

Fig. 6 Schematic representation of the D-STATCOM<br />

Ish = (IL – IS ) = IL – (VTH / ZTH ) ……….(1)<br />

VL = VL<br />

Ish = Ish ∠η<br />

Ish<br />

PL jQL<br />

539 | P a g e


<strong>International</strong> <strong>Electric</strong>al Eng<strong>in</strong>eer<strong>in</strong>g Journal (IEEJ)<br />

Vol. 2 (2011) No. 2, pp. 536-542<br />

ISSN 2078-2365<br />

IL = IL ∠-φ<br />

VTH = VTH ∠δ<br />

ZTH = ZTH ∠β<br />

Put this value <strong>in</strong> equation (1)<br />

ISh∠η= IL∠- φ – (VTH ∠δ - VL ∠0) / ZTH ∠ β)<br />

ISh∠η= IL∠- φ – (VTH ∠(δ- β ) / ZTH ) + (VL ∠- β )/ ZTH<br />

………….………..(2)<br />

The complex power <strong>in</strong>jection of the D-STATCOM can be<br />

expressed as<br />

SSh = VL ISh * ……………….…….. (3)<br />

It may be mentioned here that the effectiveness of the<br />

D-STATCOM <strong>in</strong> correct<strong>in</strong>g voltage sag depends on the value<br />

of Z or fault level of the load bus. When the shunt <strong>in</strong>jected<br />

current I is kept <strong>in</strong> quadrature <strong>with</strong> the desired voltage<br />

correction can aga<strong>in</strong> be achieved <strong>with</strong>out <strong>in</strong>ject<strong>in</strong>g any active<br />

power <strong>in</strong>to the system. On the other hand when the value of is<br />

m<strong>in</strong>imized, the same voltage correction can be achieved <strong>with</strong><br />

m<strong>in</strong>imum apparent power <strong>in</strong>jection <strong>in</strong>to the system [18-19].<br />

<strong>Voltage</strong> (pu)<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8<br />

Time(sec)<br />

Fig. 7 S<strong>in</strong>gle Phase System <strong>Voltage</strong> (pu) <strong>with</strong>out Statcom<br />

Current (pu)<br />

<strong>Arc</strong> current (pu)<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

-300<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8<br />

1.5<br />

0.5<br />

-0.5<br />

x 104<br />

2<br />

1<br />

0<br />

Time (sec)<br />

Fig. 8 S<strong>in</strong>gle phase System Current <strong>with</strong>out Statcom<br />

-1<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8<br />

Time (sec)<br />

Fig. 9 <strong>Arc</strong> <strong>Furnace</strong> Current <strong>with</strong>out Statcom<br />

540


Saji et al. <strong>Voltage</strong> <strong>Sag</strong> <strong>mitigation</strong> <strong>in</strong> <strong>Electric</strong> <strong>Arc</strong> <strong>Furnace</strong> <strong>with</strong> D-STATCOM<br />

Current (pu)<br />

<strong>Voltage</strong> (pu)<br />

<strong>Arc</strong> Current (pu)<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

-100<br />

-200<br />

Time (sec)<br />

Fig.10 System <strong>Voltage</strong> of s<strong>in</strong>gle phase <strong>with</strong> Statcom<br />

-300<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8<br />

x 106<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

-1<br />

Time (sec)<br />

Fig. 11 System Current of S<strong>in</strong>gle phase <strong>with</strong> Statcom<br />

-1.5<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8<br />

Time (sec)<br />

Fig. 12 <strong>Arc</strong> <strong>Furnace</strong> Current <strong>with</strong> Statcom<br />

VI. CONCLUSION<br />

The ma<strong>in</strong> aim of this Paper is to try to f<strong>in</strong>d out the types of<br />

power disturbances that are occurr<strong>in</strong>g <strong>in</strong> power distribution<br />

system, ma<strong>in</strong>ly due to nonl<strong>in</strong>ear loads <strong>with</strong> special emphasis<br />

on the <strong>Arc</strong> furnace loads. These loads not only <strong>in</strong>troduce<br />

harmonic <strong>in</strong> the power l<strong>in</strong>es but also cause heavy voltage sag<br />

and affect the work<strong>in</strong>g of Critical drive equipments<br />

connected to the Po<strong>in</strong>t of Common Coupl<strong>in</strong>g (PCC). The<br />

paper presents the modell<strong>in</strong>g of arc furnace loads and its<br />

implement<strong>in</strong>g us<strong>in</strong>g MATLAB/Simul<strong>in</strong>k, its effect on the<br />

Power system and how the use of voltage compensation<br />

devices like D-STATCOM improves the voltage stability.<br />

APPENDIX<br />

Parameters of EAF model and sample power system are as<br />

follows,<br />

Source: Ideal s<strong>in</strong>usoidal ac voltage source <strong>with</strong><br />

amplitude=50.6 kV and zero phase shift.<br />

Z Theven<strong>in</strong>: Resistance=0.346 and <strong>in</strong>ductance, L=9.8mH.<br />

Transformer: Three w<strong>in</strong>d<strong>in</strong>gs l<strong>in</strong>ear s<strong>in</strong>gle-phase<br />

transformer.<br />

Nom<strong>in</strong>al power: Pn=60 MVA.<br />

W<strong>in</strong>d<strong>in</strong>g 1 parameters: V1 (Vrms)=46 kV,<br />

R1 (pu)=0.002, L1 (pu)=0.55,<br />

W<strong>in</strong>d<strong>in</strong>g 2 parameters: V2 (Vrms)=770 V,<br />

R2 (pu)=0.002, L2 (pu)=0.55,<br />

Magnetization resistance and reactance: Rm(pu)=500<br />

Lm(pu)=500<br />

<strong>Arc</strong> <strong>Furnace</strong>: (Parameters for correspond<strong>in</strong>g differential<br />

equation) k1=3000.0,k2=1.0,k3=12.5 m=0,n=2.<br />

(Chua’s circuit) C1=200nF,C2=0.2 F,L=3.6m H <strong>with</strong> a<br />

series resistor Ro=12.5,G=5.442E-4 mho.<br />

541 | P a g e


<strong>International</strong> <strong>Electric</strong>al Eng<strong>in</strong>eer<strong>in</strong>g Journal (IEEJ)<br />

Vol. 2 (2011) No. 2, pp. 536-542<br />

ISSN 2078-2365<br />

REFERENCES<br />

[1] T. Zheng, E. B. Makram, and A. A. Girgis, ―Effect of different arc<br />

furnace models on voltage distortion,‖ <strong>in</strong> Proceed<strong>in</strong>gs of the Eighth<br />

<strong>International</strong> Conference on Harmonics and Quality of Power<br />

(ICHPQ), Oct.1998, Pp. 1079–1085<br />

[2] R. C.Bellido and T. Gomez, ―Identification and model<strong>in</strong>g of a three<br />

phase arc furnace for voltage disturbance systems,‖ IEEE Trans.<br />

PWRD. Vol. 12, Pp. 1812–1817, Oct. 1997.<br />

[3] G. C. Montanari, M. Logg<strong>in</strong>i, A. Cavall<strong>in</strong>i, L. Pitti, and D. Zanielli,<br />

―<strong>Arc</strong> furnace model for the study of flicker compensation <strong>in</strong><br />

electrical networks‖ IEEE Trans. Power Delivery, Vol. 8, Pp.<br />

2026–2036, Oct. 1994.<br />

[4] S. Varadan, E. B. Makram, and A. A. Girgis, ―A new time doma<strong>in</strong><br />

voltage source model for an arc furnace us<strong>in</strong>g EMTP,‖ IEEE Trans.<br />

Power Delivery, Vol. 11, Pp. 1685–1690, July 1996.<br />

[5] M. P. Kennedy, ―Three steps to chaos, Part 1:Evolution,‖ IEEE<br />

Trans. Circuit Syst. I, vol. 40, no. 10, Pp. 640–656, October 1993.<br />

[6] M. P. Kennedy ―Three steps to chaos, Part 2:A Chua’s circuit<br />

primer,‖ IEEE Trans. Circuits Syst. I, Vol. 40, pp. 657–674, Oct.<br />

1993.<br />

[7] E. O’Neill-Carrillo, G. Heydt, E. J. Kostelich, S. S. Venkata, and<br />

A.Sundaram, ―Nonl<strong>in</strong>ear determ<strong>in</strong>istic model<strong>in</strong>g of highly vary<strong>in</strong>g<br />

loads,‖ IEEE Trans. Power Delivery, Vol. 14, pp. 537–542, Apr.<br />

1999.<br />

[8] O. Ozgun and A. Abur, ―Development of an arc furnace model for<br />

power quality studies,‖ Proc. IEEE-PES Summer Meet<strong>in</strong>g 1999,<br />

Vol. 1, Pp. 507–511, 1999.<br />

[9] G. Carp<strong>in</strong>elli, F. Iacovone, A. Russo, P. Verde, and D. Zan<strong>in</strong>elli,<br />

―DC arc furnaces: Comparison of arc models to evaluate waveform<br />

distortion and voltage fluctuations,‖ <strong>in</strong> Proc. IEEE Power<br />

Eng<strong>in</strong>eer<strong>in</strong>g Society 33rd Annual North America Power Symp., Pp.<br />

574–580<br />

[10] E. Acha, A. Semlyen, and N. Rajakovic, ―A harmonic doma<strong>in</strong><br />

computational Package for nonl<strong>in</strong>ear problems and its application<br />

to electric arcs,‖ IEEE Trans. Power Delivery, Vol. 5, Pp.<br />

1390–1397, July 1990.<br />

[11] M.M. Morcos, J.C. Gomez “Flicker Sources and Mitigation” IEEE<br />

Power Eng<strong>in</strong>eer<strong>in</strong>g Review, November 2002 P 5-10<br />

[12] M. H. J. Bollen, ―Understand<strong>in</strong>g Power Quality<br />

Problems—<strong>Voltage</strong> <strong>Sag</strong>s and Interruptions‖ Piscataway, New<br />

York: IEEE Press 2000.<br />

[13] O. Ozgun, A Abur ―Flicker study us<strong>in</strong>g a Novel <strong>Arc</strong> <strong>Furnace</strong><br />

Model‖ IEEE Trans. on PWRD, Vol. 17, No. 4, Oct-2002 pp.<br />

1158-1163<br />

[14] Adly A. Girgis, Jhon Stephens and Elam B. Makram<br />

―Measurement and prediction of voltage flicker magnitude and<br />

frequency,‖ IEEE Trans. on Power Delivery, July 1995.<br />

[15] S<strong>in</strong>gh G.K., ―Power System Harmonics Research: A Survey‖,<br />

European Transaction on <strong>Electric</strong>al Power, 2009, 19:151-172.<br />

[16] K. Anuradha, Muni B.P., Rajkumar A.D., ―<strong>Electric</strong> <strong>Arc</strong> <strong>Furnace</strong><br />

Model<strong>in</strong>g and <strong>Voltage</strong> Flicker Mitigation by D Statcom‖, IEEE<br />

Region 10 Collogium and the third ICIIS, Kharagpur, India,<br />

December 8-10, 2008<br />

[17] Chiang H., Liu C., Varaiya P.P., wu F., Lauby M.G. ― Chaos <strong>in</strong> a<br />

Simple Power System‖, IEEE Transaction on Power System, Vol.<br />

8, No. 4, Pp. 1407-1471,Nov.1993<br />

[18] Sung-M<strong>in</strong> Woo, Dae-Wook Kang and Woo-Chol Lee, ―The<br />

Distribution STATCOM for reduc<strong>in</strong>g the Effect of <strong>Voltage</strong> <strong>Sag</strong> and<br />

Swell‖ IECON’01: The 27 th Annual Conference of the IEEE<br />

Industrial Electronic Society, Pages 17-22, 2001<br />

[19] Ar<strong>in</strong>dam Ghosh, and Gerard Ledwich ―Compensation of<br />

Distribution System <strong>Voltage</strong> Us<strong>in</strong>g DVR‖, IEEE Transactions on<br />

Power Delivery, Vol. 17, No. 4, October 2002.<br />

542

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!