Effect of microalga preconditioning on supercritical CO2 ... - ISSF 2012

Effect of microalga preconditioning on supercritical CO2 ... - ISSF 2012 Effect of microalga preconditioning on supercritical CO2 ... - ISSF 2012

03.04.2013 Views

ong>Effectong> ong>ofong> ong>microalgaong> ong>preconditioningong> on supercritical CO2 extraction ong>ofong> astaxanthin from Haematoccus pluvialis Raúl I. Aravena* & José M. del Valle Pontificia Universidad Católica de Chile, Departamento de Ingeniería Química y Bioprocesos, Santiago, Chile * Corresponding autor: riaraven@uc.cl; Phone: (+56) 998220688 ABSTRACT Haematoccocus pluvialis is the main natural source ong>ofong> astaxanthin, a carotenoid with high antioxidant power. We used supercritical CO2 (scCO2) to extract H. pluvialis to minimize the thermal damage ong>ofong> astaxanthin and avoid its contamination with traces ong>ofong> undesirable organic solvents. In addition, because use ong>ofong> a liquid substrate may improve the selectivity ong>ofong> scCO2 extraction and allow continuous processing, we attempted also the extraction ong>ofong> aqueous homogenate samples containing 25% w/w H. pluvialis, and compared it with the extraction ong>ofong> dry powder counterparts. We used cysts ong>ofong> H. pluvialis cultivated in Northern Chile that were disrupted and spray dried by the producer. Results showed that temperature (40 or 70 °C) and pressure (35, 45, or 55 MPa) had both positive effects on astaxanthin recovery from dry powder samples because ong>ofong> the increase in solute volatility with temperature, and the increase in density and solvent power ong>ofong> scCO2 with pressure. Astaxanthin recovery reached a top value ong>ofong> 61% at 70 ºC and 55 MPa when extracting dry powder samples for 4.5 h. The effects ong>ofong> extraction temperature and pressure were not as clear when extracting aqueous H. pluvialis’ homogenate samples, case where top recovery was only 54% at optimal conditions ong>ofong> 70 ºC and 45 MPa following a 10-h treatment. The extraction ong>ofong> aqueous homogenate samples was much slower than that ong>ofong> the dry powder counterparts, because extraction ong>ofong> aqueous samples was solubility-controlled and negatively affected by water; being the solubility ong>ofong> water in scCO2 low, water in aqueous homogenate samples acted as a barrier to mass transfer. However, using aqueous samples as the substrate increased slightly the concentration ong>ofong> astaxanthin in the extract, which in this study reached a maximal value ong>ofong> 7% when extracting homogenate samples at 40 ºC and 45 MPa. INRODUCTION Astaxanthin is a ketocarotenoid that belongs to the xantophyll class and has potent antioxidant activity, higher than that ong>ofong> lutein, β-carotene, or α-tocophero [1]. The potent antioxidant activity ong>ofong> astaxanthin benefits human health, and this has stirred industrial interest in its use as ingredient in nutraceutical and pharmaceutical products [2-4]. Astaxanthin can be chemically synthesized or isolated from natural (biological) sources, but only natural astaxanthin is allowed for human consumption. The main natural source ong>ofong> astaxanthin is the ong>microalgaong>e Haematococcus pluvialis that contains up to 5% astaxanthin in a dry basis [5]. There is consequently a need to recover, isolate and concentrate astaxanthin from H. pluvialis to take full advantage ong>ofong> its bioactivity in the formulation ong>ofong> nutraceutical and pharmaceutical products. Supercritical CO2 (scCO2) extraction is an alternative for the recovery ong>ofong> high-value natural compounds such as H. pluvialis’ astaxanthin. scCO2 has been amply studied as an alternative ong>ofong> organic solvents for the extraction ong>ofong> natural products due to its high selectivity, nontoxicity (GRAS status), and reduced thermal damage ong>ofong> the substrate or extract [6]. scCO2 extraction can be applied to either solid or liquid samples. Particularly, the use ong>ofong> a liquid sample as substrate may improve selectivity and allow continuous processing, thus reducing solvent requirements. There are reports in literature on the scCO2 extraction ong>ofong> astaxanthin from H. pluvialis’ powder [7- 10] but not on the recovery ong>ofong> astaxanthin from (liquid) H. pluvialis’ homogenate. These previous studies evaluated the effect on astaxanthin extraction ong>ofong> system temperature (40-80 °C), system pressure (20-55 MPa), and extraction time (1-4 h), that influence positively extraction rate and yield, but had not always a positive effect on extraction selectivity.

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>microalga</str<strong>on</strong>g> <str<strong>on</strong>g>prec<strong>on</strong>diti<strong>on</strong>ing</str<strong>on</strong>g> <strong>on</strong> <strong>supercritical</strong> <strong>CO2</strong><br />

extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin from Haematoccus pluvialis<br />

Raúl I. Aravena* & José M. del Valle<br />

P<strong>on</strong>tificia Universidad Católica de Chile, Departamento de Ingeniería Química y Bioprocesos, Santiago, Chile<br />

* Corresp<strong>on</strong>ding autor: riaraven@uc.cl; Ph<strong>on</strong>e: (+56) 998220688<br />

ABSTRACT<br />

Haematoccocus pluvialis is the main natural source <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin, a carotenoid with high antioxidant power.<br />

We used <strong>supercritical</strong> <strong>CO2</strong> (sc<strong>CO2</strong>) to extract H. pluvialis to minimize the thermal damage <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin and<br />

avoid its c<strong>on</strong>taminati<strong>on</strong> with traces <str<strong>on</strong>g>of</str<strong>on</strong>g> undesirable organic solvents. In additi<strong>on</strong>, because use <str<strong>on</strong>g>of</str<strong>on</strong>g> a liquid substrate<br />

may improve the selectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> sc<strong>CO2</strong> extracti<strong>on</strong> and allow c<strong>on</strong>tinuous processing, we attempted also the<br />

extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous homogenate samples c<strong>on</strong>taining 25% w/w H. pluvialis, and compared it with the<br />

extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dry powder counterparts. We used cysts <str<strong>on</strong>g>of</str<strong>on</strong>g> H. pluvialis cultivated in Northern Chile that were<br />

disrupted and spray dried by the producer. Results showed that temperature (40 or 70 °C) and pressure (35, 45,<br />

or 55 MPa) had both positive effects <strong>on</strong> astaxanthin recovery from dry powder samples because <str<strong>on</strong>g>of</str<strong>on</strong>g> the increase<br />

in solute volatility with temperature, and the increase in density and solvent power <str<strong>on</strong>g>of</str<strong>on</strong>g> sc<strong>CO2</strong> with pressure.<br />

Astaxanthin recovery reached a top value <str<strong>on</strong>g>of</str<strong>on</strong>g> 61% at 70 ºC and 55 MPa when extracting dry powder samples for<br />

4.5 h. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong> temperature and pressure were not as clear when extracting aqueous H. pluvialis’<br />

homogenate samples, case where top recovery was <strong>on</strong>ly 54% at optimal c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 70 ºC and 45 MPa<br />

following a 10-h treatment. The extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous homogenate samples was much slower than that <str<strong>on</strong>g>of</str<strong>on</strong>g> the dry<br />

powder counterparts, because extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous samples was solubility-c<strong>on</strong>trolled and negatively affected by<br />

water; being the solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> water in sc<strong>CO2</strong> low, water in aqueous homogenate samples acted as a barrier to<br />

mass transfer. However, using aqueous samples as the substrate increased slightly the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

astaxanthin in the extract, which in this study reached a maximal value <str<strong>on</strong>g>of</str<strong>on</strong>g> 7% when extracting homogenate<br />

samples at 40 ºC and 45 MPa.<br />

INRODUCTION<br />

Astaxanthin is a ketocarotenoid that bel<strong>on</strong>gs to the xantophyll class and has potent antioxidant activity, higher<br />

than that <str<strong>on</strong>g>of</str<strong>on</strong>g> lutein, β-carotene, or α-tocophero [1]. The potent antioxidant activity <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin benefits human<br />

health, and this has stirred industrial interest in its use as ingredient in nutraceutical and pharmaceutical products<br />

[2-4]. Astaxanthin can be chemically synthesized or isolated from natural (biological) sources, but <strong>on</strong>ly natural<br />

astaxanthin is allowed for human c<strong>on</strong>sumpti<strong>on</strong>. The main natural source <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin is the <str<strong>on</strong>g>microalga</str<strong>on</strong>g>e<br />

Haematococcus pluvialis that c<strong>on</strong>tains up to 5% astaxanthin in a dry basis [5]. There is c<strong>on</strong>sequently a need to<br />

recover, isolate and c<strong>on</strong>centrate astaxanthin from H. pluvialis to take full advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> its bioactivity in the<br />

formulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutraceutical and pharmaceutical products.<br />

Supercritical <strong>CO2</strong> (sc<strong>CO2</strong>) extracti<strong>on</strong> is an alternative for the recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> high-value natural compounds such as<br />

H. pluvialis’ astaxanthin. sc<strong>CO2</strong> has been amply studied as an alternative <str<strong>on</strong>g>of</str<strong>on</strong>g> organic solvents for the extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

natural products due to its high selectivity, n<strong>on</strong>toxicity (GRAS status), and reduced thermal damage <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

substrate or extract [6]. sc<strong>CO2</strong> extracti<strong>on</strong> can be applied to either solid or liquid samples. Particularly, the use <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a liquid sample as substrate may improve selectivity and allow c<strong>on</strong>tinuous processing, thus reducing solvent<br />

requirements. There are reports in literature <strong>on</strong> the sc<strong>CO2</strong> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin from H. pluvialis’ powder [7-<br />

10] but not <strong>on</strong> the recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin from (liquid) H. pluvialis’ homogenate. These previous studies<br />

evaluated the effect <strong>on</strong> astaxanthin extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> system temperature (40-80 °C), system pressure (20-55 MPa),<br />

and extracti<strong>on</strong> time (1-4 h), that influence positively extracti<strong>on</strong> rate and yield, but had not always a positive<br />

effect <strong>on</strong> extracti<strong>on</strong> selectivity.


The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this work was to compare the sc<strong>CO2</strong> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin from an aqueous H. pluvialis<br />

homogenate with that from a dry powder counterpart.<br />

MATERIALS and METHODS<br />

Sample and sample analysis<br />

Disrupted dried cysts <str<strong>on</strong>g>of</str<strong>on</strong>g> H. pluvialis c<strong>on</strong>taining 4% water were supplied by Atacama BioNatural Products S.A.<br />

(Iquique, Chile). They were vacuum-packed and stored in a freezer at -15 ºC in the dark. The astaxanthin c<strong>on</strong>tent<br />

in H. pluvialis’ powder was measured by extracti<strong>on</strong> with acet<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 mg samples to exhausti<strong>on</strong> in several<br />

stages (up to the point where they were discolored). Prior to further analysis, the acet<strong>on</strong>e c<strong>on</strong>tained in extract<br />

samples was removed in a nitrogen atmosphere.<br />

Supercritical <strong>CO2</strong> extracti<strong>on</strong><br />

The extracti<strong>on</strong> process was carried out in a <strong>on</strong>e-pass, laboratory device (Thar Designs SFE-1L, Pittsburgh, PA)<br />

using food-grade (99.8% pure) <strong>CO2</strong> (AGA S.A, Santiago, Chile). Dry powder H. pluvialis’ samples (1 g) mixed<br />

with 1.5 g <str<strong>on</strong>g>of</str<strong>on</strong>g> celite (Merck, Darmstadt, Germany) or aqueous homogenate samples (4 g suspensi<strong>on</strong>s c<strong>on</strong>taining<br />

25% w/w <str<strong>on</strong>g>of</str<strong>on</strong>g> H. pluvialis’ powder) were loaded in a extracti<strong>on</strong> vessel (50 cm 3 ) that was filled with glass spheres.<br />

Extracti<strong>on</strong>s were carried out using 10 g/min <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CO2</strong> at 40 or 70 °C and 35, 45, or 55 MPa. Cumulative yields <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

total extract and astaxanthin were determined as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> process time by collecting, weighing, and<br />

analyzing extract samples in 1 h intervals up to a total extracti<strong>on</strong> time <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 h in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous homogenate<br />

samples. Extract aliquots were collected in variable-time intervals during 4.5 h in sc<strong>CO2</strong> extracti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> powder<br />

samples. Prior to further analyses, extracts were dried in a nitrogen atmosphere as d<strong>on</strong>e with acet<strong>on</strong>e extract<br />

samples.<br />

Astaxanthin quantificati<strong>on</strong><br />

Astaxanthin c<strong>on</strong>tent in acet<strong>on</strong>e or sc<strong>CO2</strong> extracts was determined in a UV/VIS spectrophotometer (Hach<br />

dr/2000, Loveland, CO) after dissolving them in acet<strong>on</strong>e. The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin in the soluti<strong>on</strong>s was<br />

estimated using its optical extincti<strong>on</strong> coefficient at λ = 470 nm in acet<strong>on</strong>e (E 1% 1cm=2100) using eq. 1 [11]:<br />

x=Ay/ E 1% 1cm x 100<br />

where x is the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> pigment (g), A is the absorbance, and y the added amount <str<strong>on</strong>g>of</str<strong>on</strong>g> acet<strong>on</strong>e (cm 3 ).<br />

RESULTS AND DISCUSSION<br />

Figure 1 shows cumulative extracti<strong>on</strong> curves for astaxanthin as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specific <strong>CO2</strong> c<strong>on</strong>sumpti<strong>on</strong> for the<br />

extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> powder samples, and Table 1 summarizes values <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin recovery and c<strong>on</strong>centrati<strong>on</strong> in<br />

extract samples for the 4.5-h extracti<strong>on</strong>s. Disrupted H. pluvialis’ cysts c<strong>on</strong>tained 32% w/w acet<strong>on</strong>e extract, and<br />

1.92% w/w astaxanthin. Results indicate a positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> system temperature and pressure <strong>on</strong> astaxanthin<br />

recovery that reached a maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> ca. 61% at 70°C and 55 MPa. The positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature can be<br />

explained by an increase in the vapor pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> the solute with temperature, which facilitates its transfer to the<br />

sc<strong>CO2</strong> phase. On the other hand, the positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure is due possibly to the increase in density and<br />

solvent power <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CO2</strong> that increases the solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> oleoresin and astaxanthin in it. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a 30 ºC<br />

increase in temperature outweighs the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a 20 MPa increase in pressure within our experimental regi<strong>on</strong>.<br />

The positive effects <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature and pressure are c<strong>on</strong>sistent with those reported by others [7-10], although the<br />

magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> these effects varies from study to study. For example, Machmudah et al. [9] reported that an<br />

increase in temperature from 40 to 70 °C at 55 MPa imcreases astaxanthin recovery from ca. 15 to 78% (a 5-fold<br />

increase), a much larger effect that observed by us (an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly ca. 5%). On the other hand, an increase<br />

in pressure from 40 to 55 MPa at 70 °C increases astaxanthin recovery from ca. 25 to 78% (a 3-fold increase)<br />

[9], which is also much higher than the 7-17% increase observed in this work. The differences between studies


y (mg astaxantina/gr <str<strong>on</strong>g>microalga</str<strong>on</strong>g>)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

550, 70<br />

450,70<br />

350, 70<br />

550,40<br />

450, 40<br />

350,40<br />

0<br />

0 0,5 1 1,5 2 2,5<br />

F (kg <strong>CO2</strong>/gr <str<strong>on</strong>g>microalga</str<strong>on</strong>g>)<br />

Figure 1. Cumulative extracti<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> dry Haematococcus pluvialis powder samples as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong><br />

temperature and pressure.<br />

Table 1. Recovery and c<strong>on</strong>centrati<strong>on</strong> in extract <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin from Haematococcus pluvialis as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s.<br />

Temperature Pressure Astaxanthin recovery (%) Astaxanthin c<strong>on</strong>centrati<strong>on</strong> (%)<br />

(ºC) (MPa) Dry powder Homogenate Dry powder Homogenate<br />

40 35 51.72 39.16 5.95 5.65<br />

40 45 51.99 50.68 5.6 6.77<br />

40 75 58.11 48.84 5.24 6.54<br />

70 35 51.72 54.84 5.31 4.73<br />

70 45 56.86 54.19 5.96 4.88<br />

70 75 60.75 48.45 5.34 3.87<br />

can be explained by differences between samples in cyst rupture degree, which affects extracti<strong>on</strong> performance<br />

str<strong>on</strong>gly [7].<br />

Other important factor to c<strong>on</strong>sider is the selectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the extracti<strong>on</strong>, characterized by the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

astaxanthin in extract samples (Table 1) or purity. In our experiments <strong>on</strong> dry H. pluvialis powder extracti<strong>on</strong>, the<br />

purity <str<strong>on</strong>g>of</str<strong>on</strong>g> extracts samples changed little, being the highest (ca. 6%) at an intermediate c<strong>on</strong>diti<strong>on</strong> (70°C and 45<br />

MPa) that did not coincided with that for highest astaxanthin recovery. Unlike in this study, Machmudah et al.<br />

[9] reported a str<strong>on</strong>g dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> in extract purity <strong>on</strong> extracti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s; as an example, it increases from<br />

ca. 3.5 to 12.5% (a 3.5-fold increase) when increasing temperature from 40 to 70°C at 55 MPa.<br />

Figure 2 shows cumulative extracti<strong>on</strong> curves for astaxanthin as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> specific <strong>CO2</strong> c<strong>on</strong>sumpti<strong>on</strong> for the<br />

extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous homogenate samples, and Table 1 summarizes values <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin recovery and<br />

c<strong>on</strong>centrati<strong>on</strong> in extract samples for the 10-h extracti<strong>on</strong>s. In this case, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong> temperature and<br />

pressure <strong>on</strong> extracti<strong>on</strong> rate and yield is not as evident or as easily explainable as in the extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> powder<br />

samples (Fig. 1). Initial extracti<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> homogenates were smaller than those <str<strong>on</strong>g>of</str<strong>on</strong>g> dry powder samples, and<br />

extracti<strong>on</strong> curves were S-shaped. The lag-period when extracting homogenates may be associated to a negative


y (mg astaxantina/gr <str<strong>on</strong>g>microalga</str<strong>on</strong>g>)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

550, 70<br />

450, 70<br />

350,70<br />

550, 40<br />

450,40<br />

350, 40<br />

0<br />

0 1 2 3 4 5 6<br />

F (kg de <strong>CO2</strong>/ g <str<strong>on</strong>g>microalga</str<strong>on</strong>g>)<br />

Figure 2. Cumulative extracti<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous Haematococcus pluvialis homogenate samples as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong><br />

temperature and pressure.<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the water layer that is not very soluble in sc<strong>CO2</strong> and may retard extracti<strong>on</strong>. Water is extracted, however,<br />

and its removal can explain the subsequent increase in extracti<strong>on</strong> rate following the initial lag period. Dry<br />

pockets may have developed during extracti<strong>on</strong> that exposed H. pluvialis to sc<strong>CO2</strong> and facilitated removal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

astaxanthin and other comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> the extract [12]. Following the initial lag period, as water is being removed<br />

from homogenates, the extracti<strong>on</strong> rate remains approximately c<strong>on</strong>stant, which suggest that this process is<br />

solubility-c<strong>on</strong>trolled. A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong>al solubilities (Table 2), defined as the slope <str<strong>on</strong>g>of</str<strong>on</strong>g> cumulative<br />

extracti<strong>on</strong> curves in Figure 1 and Figure 2 in the z<strong>on</strong>es where the extracti<strong>on</strong> rate is c<strong>on</strong>stant, shows that this is<br />

much higher when extracting dried powder than aqueous homogenate samples. This highlights the negative<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> water <strong>on</strong> the solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> the lipidic (hydrophobic) comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> H. pluvialis extract.<br />

Table 2. Operati<strong>on</strong>al solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin in <strong>supercritical</strong> CO 2 (mg/kg) as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extracti<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s.<br />

Temperature Pressure Operati<strong>on</strong>al solubility<br />

(ºC) (MPa) Dry powder Homogenate<br />

40 35 14 1,3<br />

40 45 19 1,6<br />

40 75 36 1,7<br />

70 35 17 1,6<br />

70 45 33 1,8<br />

70 75 65 1,5<br />

Astaxanthin c<strong>on</strong>centrati<strong>on</strong> in the extracts <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous homogenate samples depended also str<strong>on</strong>gly <strong>on</strong> extracti<strong>on</strong><br />

c<strong>on</strong>diti<strong>on</strong>s (Table 1). In this case, the purity <str<strong>on</strong>g>of</str<strong>on</strong>g> extracts decreased with extracti<strong>on</strong> temperature and was the<br />

highest at an intermediate pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 45 MPa. Furthermore, the extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> homogenates allowed higher


purities than the extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dry powder samples. C<strong>on</strong>sequently, astaxanthin c<strong>on</strong>centrati<strong>on</strong> reached a top value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> ca. 7% when extracting an homogenate sample at 40°C and 45 MPa.<br />

CONCLUSIONS AND PERSPECTIVES<br />

Results showed that sc<strong>CO2</strong> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin from a H. pluvialis’ cysts is slower when using aqueous<br />

homogenate than dry powder samples, possibly due to an increase in the mass transfer resistance and a reducti<strong>on</strong><br />

in the operati<strong>on</strong>al solubility <str<strong>on</strong>g>of</str<strong>on</strong>g> astaxanthin in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> water. Nevertheless, sc<strong>CO2</strong> extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

homogenates permits a small increase in purity. So, the challenge remains to overcome the disadvantage <str<strong>on</strong>g>of</str<strong>on</strong>g> slow<br />

extracti<strong>on</strong> to take advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> increased selectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous homogenate samples. An<br />

alternative may be feeding homogenates c<strong>on</strong>tinually to a countercurrent c<strong>on</strong>tact column so as to improve the<br />

<strong>CO2</strong> / homogenate c<strong>on</strong>tact and increase productivity as compared to the batch extracti<strong>on</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> static<br />

samples.<br />

REFERENCES<br />

[1] Higuera-Ciapara, I., Félix-Valenzuela, L., Goycolea, F., Critical Reviews in Food Science and Nutriti<strong>on</strong>,<br />

2006, 46, p.185.<br />

[2] Dufossé, L., Galauo, P., Yar<strong>on</strong>, A., Malis, S., Blanc, P., Chidambara, KN., Ravishankar, G.A., Trends in<br />

Food Science & Technology, 16, 2005, p. 389.<br />

[3] Hussein, G., Sankawa, U., Goto, H., Matsumoto K., Watanabe, H., Journal Natural Products, 2006, 69, p.<br />

443.<br />

[4] Yoshida, H., Yanai, H., Ito, K., Tom<strong>on</strong>o, Y., Koikeda, T., Tsukahara, H., Atherosclerosis, 209, 2010, p.520.<br />

[5] Park, J.S., Chyun, J,H, Kim, Y.K., Line, L.L., Chew, B.P., Nutriti<strong>on</strong> Metabolism, 7, 2011, p.18.<br />

[6] Reverch<strong>on</strong>, E., de Marco, I., Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Supercritical Fluids, 38, 2006, p.146.<br />

[7] Valderrama, J.O., Perrut, M., Majewski, W., Journal Chemical & Engineering Data, 48, 2003, p.827.<br />

[8] Nobre, B., Marcelo, F., Passos, R., Beirao, L., Palavra, A., Gouveia, L., European Food Research<br />

Technology, 223, 2006, p.787.<br />

[9] Machmudah, S., Shotipruk, A., Goto, M., Sasaki, M., Hirose, T., Industrial Engineering Chemistry<br />

Research, 45, 2006, p.3652.<br />

[10] Thana P., Machmudah, S., Goto, M., Sasaki, M., Pavasant, P., Shotipruk, A., Bioresource Technology, 99,<br />

2008, p.3110.<br />

[11] Mendes-Pinto, M.M., Raposo, M.F., Bowen, J., Young, A.J., Morais, R., Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Phycology, 13,<br />

2001, p.19.<br />

[12] Machmudah, S., Martin, A., Sasaki, M., Goto, M., Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Supercritical Fluids, 2011, in press.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!