07.04.2013 Views

Fourier series coefficients for a rectified sine wave

Fourier series coefficients for a rectified sine wave

Fourier series coefficients for a rectified sine wave

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

EE 341 Fall 2004<br />

Consider the signal<br />

|sin (ω 1 t)|<br />

sin (ω 1 t)<br />

A<br />

0<br />

−A<br />

A<br />

0<br />

−A<br />

EE 341<br />

<strong>Fourier</strong> Series <strong>for</strong> Rectified Sine Wave<br />

x(t) = A| sin(ω1 t)|<br />

Rectified Sine and Sine<br />

−2 T −T 0 T 2 T<br />

−T1 0 T1<br />

The period of the sinusoid (inside the absolute value symbols) is T1 = 2π/ω1. The period of the <strong>rectified</strong><br />

sinusoid is one half of this, or T = T1/2 = π/ω1. There<strong>for</strong>e,<br />

Thus we can write<br />

The <strong>Fourier</strong> <strong>series</strong> <strong>coefficients</strong> are:<br />

c x k<br />

1<br />

=<br />

T<br />

= 1<br />

T<br />

ω1 = 2π<br />

T1<br />

= π<br />

T<br />

<br />

<br />

x(t) = A <br />

sin T<br />

0<br />

T<br />

0<br />

= ωo<br />

2<br />

<br />

ωo t <br />

2<br />

x(t) e −jkωot dt<br />

<br />

<br />

A <br />

sin <br />

ωo t <br />

e<br />

2<br />

−jkωot dt<br />

From 0 to T , |sin(ωo t/2)| = sin(ωo t/2). Also, replace ωo by 2π/T :<br />

c x k = 1<br />

T<br />

T<br />

0<br />

A sin<br />

<br />

π t<br />

e<br />

T<br />

−j2πkt/T dt<br />

1


EE 341 Fall 2004<br />

c x k = A<br />

T<br />

T<br />

= A<br />

j2T<br />

= A<br />

j2T<br />

= − A<br />

2T<br />

0<br />

T<br />

<br />

ejπt/T − e−jπt/T e<br />

j2<br />

−j2πkt/T dt<br />

<br />

e jπt(1−2k)/T <br />

−jπt(1+2k)/T<br />

− e dt<br />

0<br />

e jπt(1−2k)/T<br />

jπ(1 − 2k)/T<br />

<br />

ejπ(1−2k) π(1 − 2k)/T<br />

T e−jπt(1+2k)/T<br />

−<br />

jπ(1 + 2k)/T<br />

0<br />

+ e−jπ(1+2k)<br />

π(1 + 2k)/T −<br />

1<br />

π(1 − 2k)/T −<br />

<br />

1<br />

π(1 + 2k)/T<br />

But e jπ(1−2k) = e jπ e −j2πk . e jπ = −1 and e −j2πk = 1, so e jπ(1−2k) = −1. Similarly, e −jπ(1+2k) = −1,<br />

so:<br />

For k = 0<br />

c x k<br />

<br />

A −1<br />

= −<br />

2T π(1 − 2k)/T +<br />

−1<br />

π(1 + 2k)/T −<br />

1<br />

π(1 − 2k)/T −<br />

<br />

1<br />

π(1 + 2k)/T<br />

= − A<br />

<br />

−2<br />

2 π(1 − 2k) −<br />

<br />

2<br />

π(1 + 2k)<br />

= A<br />

<br />

<br />

1 1<br />

+<br />

π 1 − 2k 1 + 2k<br />

= 2A<br />

<br />

1<br />

π 1 − 4k2 <br />

T <br />

π t<br />

A sin dt<br />

0 T<br />

= A<br />

T<br />

− cos(πt/T )<br />

T π/T 0<br />

= 2A<br />

π<br />

c x 0 = 1<br />

T<br />

Note: Because the signal is even, you could also find c x k by:<br />

For an odd signal,<br />

c x k<br />

c x k = 2<br />

T<br />

= −j2<br />

T<br />

T/2<br />

0<br />

T/2<br />

0<br />

x(t) cos(kωot) dt<br />

x(t) sin(kωot) dt<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!