10.04.2013 Views

les Auger.pdf

les Auger.pdf

les Auger.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Auger</strong> electrons<br />

<strong>Auger</strong> Electron Spectroscopy AES<br />

Scanning <strong>Auger</strong> Microscopy SAM<br />

1 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


2 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Sec electron


The <strong>Auger</strong> Process<br />

<strong>Auger</strong> Process<br />

The <strong>Auger</strong> effect is named for its discoverer, Pierre <strong>Auger</strong>, who observed a<br />

tertiary effect while studying photoemission processes in the 1920s. <strong>Auger</strong><br />

electrons are emitted at discrete energies that allow the atom of origin to be<br />

identified. The <strong>Auger</strong> process involves three steps:<br />

1. Excitation of the atom causing emission of an electron<br />

2. An electron drops down to fill the vacancy created in step 1<br />

3. The energy released in step 2 causes the emission of an <strong>Auger</strong> electron.<br />

3 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


In general, since the initial ionisation is non-selective and the initial hole may therefore be in various shells, there will be<br />

many possible <strong>Auger</strong> transitions for a given element - some weak, some strong in intensity. AUGER SPECTROSCOPY<br />

is based upon the measurement of the kinetic energies of the emitted electrons. Each element in a sample being<br />

studied will give rise to a characteristic spectrum of peaks at various kinetic energies.<br />

4 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


<strong>Auger</strong> or X-ray Emission!<br />

X-ray Fluorescence <strong>Auger</strong> Electron Emission<br />

X-ray<br />

Photon<br />

Incident<br />

Beam<br />

5 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

<strong>Auger</strong> Electron


<strong>Auger</strong> Transition Probability<br />

The total <strong>Auger</strong> probability is given by the <strong>Auger</strong> emission<br />

versus the X-ray fluorescence such that ρ A + ρ X = 1<br />

This does not indicate the probability of a particular<br />

transition, i.e.,for that there exits the relative probability of<br />

de-excitation from subshells Xa, Yb, Zc A family of <strong>Auger</strong> peaks result from transitions between<br />

subshells.<br />

6 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Probability to desexcitate by X-rays or <strong>Auger</strong><br />

After ionisation<br />

either X-ray or <strong>Auger</strong><br />

ω <strong>Auger</strong>+ ω X-ray =1<br />

A clear transition from electron to photon emission<br />

is evident in this chart for increasing atomic number.<br />

For heavier elements, X-ray yield becomes greater than <strong>Auger</strong> yield,<br />

indicating an increased difficulty in measuring the <strong>Auger</strong> peaks for large Z-values.<br />

Conversely, AES is sensitive to the lighter elements,<br />

and unlike X-ray fluorescence, <strong>Auger</strong> peaks can be detected for elements as light as lithium (Z = 3).<br />

Lithium represents the lower limit for AES sensitivity since the <strong>Auger</strong> effect is a "three state" event necessitating<br />

at least three electrons. Neither H nor He can be detected with this technique.<br />

For K-level based transitions, <strong>Auger</strong> effects are dominant<br />

7 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


<strong>Auger</strong> and Fluorescence Yields<br />

8 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

ρ A + ρ X = 1


ELECTRON BEAM - SAMPLE INTERACTION<br />

Secondary Electrons<br />

Backscattered Electrons<br />

Sample Surface<br />

Atomic No. 3<br />

Characteristic X-rays<br />

> Atomic No. 4<br />

Volume of<br />

Primary<br />

Excitation<br />

Φ


Electron spectrum in case we use primary electrons<br />

Secondary electrons<br />

10 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

<strong>Auger</strong> electrons<br />

Back scattered electrons


<strong>Auger</strong> Electron Spectroscopy Cu element<br />

E KLL = E K - E L - E L’<br />

E f<br />

2p<br />

2s<br />

1s<br />

3/2<br />

1/2<br />

E KLL<br />

<strong>Auger</strong><br />

Electron<br />

LIII LII 11 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

L I<br />

K<br />

Cu MNN<br />

Incident Beam<br />

Cu LMM<br />

EdN(E)/dE<br />

E N(E) x 5<br />

E N(E)<br />

0 500 1000 1500 2000 2500 3000<br />

Kinetic Energy (eV)


Examp<strong>les</strong> of <strong>Auger</strong> spectra<br />

direct mode and derivative mode<br />

N(E) or dN(E)/dE versus E spectrum of C<br />

12 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


The <strong>Auger</strong> electron characteristic energy<br />

depends upon a number of factors:<br />

The chemical element involved<br />

The energy level within which the initial hole was formed<br />

The energy level of the electron which eventually fills the hole<br />

The initial energy level of the electron which eventually becomes the<br />

<strong>Auger</strong> electron (a small energy correction takes into account the fact<br />

that already the atom is ionized<br />

Φ is the work function of the spectrometer (not the material). for<br />

which the detector is calibrated. The energy levels in solids are<br />

conventionally measured with respect to the Fermi-level of the solid,<br />

rather than the vacuum level. This involves a small correction to the<br />

equation given above in order to account for the work function (F) of<br />

the solid<br />

13 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Possible <strong>Auger</strong> transitions<br />

<strong>Auger</strong> are conventionally XYZ called<br />

Possible peaks are related with electron-<br />

electron interactions allowed<br />

given by quantum physics (electron-electron<br />

interactions)<br />

So not all transitions are possible like with X-rays<br />

This is perfectly known for the <strong>Auger</strong> transitions<br />

of all the elements<br />

14 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


15 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Possible <strong>Auger</strong><br />

Transitions


Possible <strong>Auger</strong> Transitions for<br />

element Al<br />

Transitions Energy ev<br />

KL1L1 1293<br />

KL1L2 1342<br />

KL1L3 1343<br />

KL1M1 1443<br />

KL2L2 1386<br />

KL2L3 1387<br />

KL2M1 1478<br />

KL3L3 1388<br />

KL3M1 1551<br />

L1L2M1 36<br />

L1L3M1 37<br />

L1M1M1 109<br />

L2M1M1 65<br />

L3M1M1 64<br />

16 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Analysis Depth<br />

Surface sensitivity results from the electron inelastic<br />

mean free path, λ, which is the average distance<br />

an electron with a given energy travels before<br />

being inelastically scattered (& therefore losing its<br />

characteristic energy).<br />

λ depends on electron energy & material<br />

λ ~ 1 - 10 monolayers (0.2 - 5 nm)<br />

17 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


<strong>Auger</strong> Mean Free Path<br />

18 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Surface sensitivity in AES arises from the<br />

fact that emitted electrons usually have<br />

energies ranging from 50 eV to 3 keV and<br />

at these values, electrons have a short<br />

mean free path in a solid. The escape<br />

depth of electrons is therefore localized to<br />

within a few nanometers of the target<br />

surface, giving AES an extreme sensitivity<br />

to surface species.<br />

Due to the low energy of <strong>Auger</strong> electrons,<br />

most AES setups are run under ultra-high<br />

vacuum (UHV) conditions. Such measures<br />

prevent electron scattering off of residual<br />

gas atoms as well as the formation of a thin<br />

"gas (adsorbate) layer" on the surface of<br />

the specimen which degrades analytical<br />

performance


<strong>Auger</strong> Electron Analysis Depth<br />

Various thicknesses of Au on Si. The high energy Si KLL peak has a greater<br />

analysis depth than the low energy Si LMM peak. So you don’ observe the Si<br />

LMM transition (low energy) for the thick Au film<br />

Au<br />

Au<br />

Si LMM<br />

Si LMM<br />

O<br />

O<br />

19 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Thickest Au<br />

Thinner Au<br />

Clean Si<br />

Au<br />

Si KLL<br />

Au<br />

Si KLL<br />

Si KLL<br />

Au<br />

Au<br />

Au<br />

Au


Intensity of a <strong>Auger</strong> transition<br />

Transmission of the analyser<br />

Mean free path <strong>Auger</strong> electrons<br />

Primary current beam<br />

depends on<br />

Escape probability of the <strong>Auger</strong> transition WXY<br />

Ionisation cross section<br />

Back scattering effects<br />

Number of atoms present in the layer<br />

20 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Analysis Area - Spatial<br />

Resolution<br />

Spatial resolution depends on the analytical measurement and the<br />

definition of resolution<br />

To a first approximation it depends on the diameter of the primary<br />

electron beam so it depends on the quality of the used electron gun<br />

(see previous lectures). This is why the best systems use FE<br />

technology<br />

This is why Scanning <strong>Auger</strong> is one of the best imaging methods in terms<br />

of lateral resolution and providing surface analysis info<br />

May also be affected by <strong>Auger</strong> emission due to backscattered electrons<br />

(this is way it is not better than 7 nm at the moment)<br />

21 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Factors Affecting Spatial<br />

Resolution<br />

Energy of <strong>Auger</strong> electrons<br />

How much energy backscattered electrons can<br />

lose & still cause ionization & subsequent<br />

<strong>Auger</strong> emission<br />

Inelastic mean free path<br />

Sample composition<br />

Sample topography<br />

System vibration & stray magnetic fields<br />

22 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Components of an AES<br />

Instrument<br />

An AES instrument has three main components:<br />

An electron source, this should have variable energy and be capable of<br />

producing a very small spot of electrons.<br />

An electron energy analyser, for example, a spherical sector analyser<br />

A secondary electron detector for the production of SEM's<br />

The measurements must be made in ultra-high vacuum (UHV), for two reasons:<br />

To allow the <strong>Auger</strong> electrons to travel from the surface of the sample to the<br />

detector without striking a gas atom<br />

If a clean surface is prepared for analysis, it would become contaminated if it was<br />

not under UHV.<br />

23 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


<strong>Auger</strong> system<br />

Primary source : electron gun<br />

La 6B<br />

New AES systems are using a Field Emission<br />

guns<br />

Energy of the <strong>Auger</strong> electrons are measured<br />

Electron detector : cylindrical mirror- CMA,<br />

hemispherical analyser - HA<br />

24 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Also in the Equipment<br />

Ultra High Vacuum (UHV) system<br />

Sample handling<br />

Quick sample introduction<br />

5 axis sample manipulator<br />

Ion sputter gun<br />

Hot filament - inert gas<br />

Hollow cathode plasma source<br />

duoplasmatron - inert & reactive gases<br />

25 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Equipment CMA based<br />

26 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


27 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

PHI 680


Cylindrical Mirror Analyser<br />

Relative Energy Resolution<br />

typically 0,25 % ∆E/E so not so good<br />

Ideal for geometry as electron gun is placed<br />

coaxial<br />

28 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


<strong>Auger</strong> Instrumentation<br />

Electron Column & Electron Energy Analyzer<br />

Field Emission<br />

Electron Source<br />

Multi-Channel<br />

Detector<br />

Cylindrical<br />

Mirror Analyzer<br />

Sample<br />

29 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Eight concentric<br />

ring anodes<br />

Ion Gun


30 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Analysis Area - Defects on Al<br />

Metallization<br />

Pseudocolor <strong>Auger</strong> Map of Cu, showing the<br />

concentration of Cu in the nodu<strong>les</strong><br />

SEM image Cu <strong>Auger</strong> map<br />

31 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

<strong>Auger</strong> maps resolve 100 nm Cu partic<strong>les</strong>


Scanning <strong>Auger</strong> microscopy, Scanning <strong>Auger</strong> Microprobe HA based<br />

Electrons can be focused to a spot of < 1 nanometer<br />

32 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Scanning electron microscope<br />

column<br />

Penetration depth and scattering within solid typically limit resolution<br />

to ~20 nanometer. Recent instruments claim resolution of ~ 6 nm.<br />

Often use hemispherical analyzer because of its better geometric properties<br />

Electron energy<br />

Analyzer


33 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Jeol equipment


Hemispherical Analyser<br />

Variable energy resolution from 0.05% to<br />

0.6% so very good compared to CMA<br />

But electron gun is not coaxial<br />

34 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Information contained in the<br />

<strong>Auger</strong> spectrum<br />

If we measure the energy of the ejected <strong>Auger</strong> electrons we can learn<br />

some important facts about the sample under investigation:<br />

The elements from which it is made<br />

The relative quantity of each element<br />

The chemical state of the elements present (provided the energy is<br />

measured with sufficient resolution)<br />

The lateral distribution of the elements<br />

The depth distribution of the elements<br />

35 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Quantification from first princip<strong>les</strong><br />

I i = I P N i σ i γ i (1+r) λ icosθ F T D R<br />

I i = <strong>Auger</strong> intensity (current) for ABC transition of element i<br />

N i = # atoms of element i per unit volume<br />

I P = Primary electron beam current<br />

σ i = Ionization cross-section for the A level of element i<br />

γ i = <strong>Auger</strong> transition probability for the ABC transition of element i<br />

r = Secondary ionization for the A level of element i by scattered<br />

electrons (backscatter factor = 1+r)<br />

λ i = Inelastic mean free path of emitted <strong>Auger</strong> electron in the matrix<br />

θ = Angle between <strong>Auger</strong> electron and surface normal<br />

F = Analyzer solid angle of acceptance<br />

T = Analyzer transmission function<br />

D = Detector efficiency<br />

R = Surface roughness factor (0


Quantification<br />

Sensitivity Factors<br />

Assuming <strong>Auger</strong> yield varies linearly with concentration<br />

Assuming homogeneous distribution<br />

C X = (I X / S X) / (Σ i (I i / S i)<br />

S X may depend on sample matrix & chemistry, as well as<br />

specific analytical instrument<br />

37 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


On this level ???<br />

38 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Standards


39 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Sensitivity factors


Concentration calculation<br />

40 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Sputtering used for cleaning<br />

41 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

+depth profiling


Depth Profiling measures AES intensity as function<br />

of sputter time while in reality one wants<br />

concentration as function of depth<br />

42 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


x 104<br />

3<br />

2<br />

1<br />

0<br />

c/s<br />

-1<br />

-2<br />

-3<br />

Depth profile of Chromate-fluoride conversion layer<br />

on Al<br />

F<br />

C Cr<br />

P Cr<br />

Al<br />

O<br />

200 400 600 800 1000 1200 1400 1600 1800<br />

Kinetic Energy (eV)<br />

43 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Al<br />

P<br />

100<br />

Intensity<br />

(%)<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

C<br />

P<br />

O<br />

Cr<br />

F<br />

Alox<br />

Alm<br />

0 5 10 15 20<br />

Sputter time (min)


Zalar Depth Profiling<br />

Many materials exhibit increases in surface<br />

roughness under extended ion bombardment<br />

The roughness is often characterized by the<br />

formation of “cones” that grow in the direction of<br />

ion bombardment<br />

Zalar rotation involves the physical rotation of a<br />

sample during ion bombardment to minimize cone<br />

formation<br />

The use of Zalar rotation improves the quality of<br />

<strong>Auger</strong> compositional depth profi<strong>les</strong><br />

44 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Zalar Depth Profiling<br />

Blanket thin film structure<br />

<strong>Auger</strong> depth profile results<br />

without and with Zalar rotation<br />

Aluminum (500 nm)<br />

SiO 2 (20 nm)<br />

Silicon (substrate)<br />

45 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Aluminum<br />

Oxygen<br />

Without Zalar rotation<br />

Silicon<br />

Aluminum Silicon<br />

Aluminum<br />

Oxide<br />

Oxygen<br />

With Zalar rotation<br />

Silicon<br />

Oxide


10 µm Via Contact Depth Profile<br />

5000X<br />

46 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Without Rotation<br />

Atomic Concentration Concentration (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

O<br />

Al in oxide<br />

Al metal<br />

Without rotation interface is broad<br />

0<br />

0 50 100 150 200 250 300<br />

Sputter Time (min)<br />

Si


Depth Profile With Compucentric Zalar<br />

5000X<br />

47 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

Rotation<br />

Atomic Atomic Concentration (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

O<br />

Al in oxide<br />

Al metal<br />

0<br />

0 50 100 150 200 250 300<br />

Sputter Time (min)<br />

With Zalar Rotation there is a much sharper interface<br />

Because of size of bond pad, compucentric Zalar control is required<br />

Si


EdN(E)/dE<br />

Chemical Information summary slide<br />

Energy position<br />

Line shape<br />

Loss Structure<br />

Graphitic C<br />

W Carbide<br />

C KLL<br />

230 240 250 260 270 280 290 300<br />

Kinetic Energy (eV)<br />

C KLL<br />

Core-Valence-Valence<br />

48 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

EdN(E)/dE<br />

EdN(E)/dE<br />

Elemental Al<br />

Al LMM<br />

Al Oxide<br />

40 50 60 70 80 90<br />

Kinetic Energy (eV)<br />

Elemental Si<br />

Si Oxide<br />

50 60 70 80 90 100 110<br />

Kinetic Energy (eV)<br />

Si LMM<br />

EdN(E)/dE<br />

EdN(E)/dE<br />

Elemental Al<br />

Al Oxide<br />

Al KLL<br />

1280 1300 1320 1340 1360 1380 1400 1420<br />

Kinetic Energy (eV)<br />

Elemental Si<br />

Si Oxide<br />

1500 1520 1540 1560 1580 1600 1620 1640<br />

Kinetic Energy (eV)<br />

Si KLL


Chemical Information<br />

High Energy Resolution or Numerical Analysis may be used to<br />

distinguish chemical components<br />

In many cases numerical analysis is required even with high energy<br />

resolution<br />

High energy resolution reduces the count rate and sensitivity of the<br />

measurement<br />

High energy resolution often requires a priori knowledge of the chemistry<br />

High energy resolution does provide sharp spectral line shapes<br />

49 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Chemical Information<br />

Variations in an element’s chemical state may affect:<br />

Binding energies<br />

Relaxation energies<br />

<strong>Auger</strong> transition probabilities<br />

Valence band density of states<br />

Conduction band density of states<br />

Bulk and surface plasmons<br />

These variations are reflected in the <strong>Auger</strong> spectrum<br />

<strong>Auger</strong> peak energy position<br />

<strong>Auger</strong> line shape<br />

Loss structure<br />

50 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Chemical shift of the energy levels results in<br />

netto “small”shift of the <strong>Auger</strong> energy<br />

51 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Chemical shift on Al KLL <strong>Auger</strong> lines for three<br />

different components Al-pure, Al 2O 3<br />

amorphous, Al 2O 3 ceramic mineral polymer<br />

52 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


New LVV <strong>Auger</strong> peaks combining<br />

energy levels of two neighbours atoms<br />

53 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

eg Si, Al, Mg oxides<br />

EdN(E)/dE<br />

Elemental Al<br />

Al LMM<br />

Al Oxide<br />

40 50 60 70 80 90<br />

Kinetic Energy (eV)


Valence band transitions where energy levels<br />

of the valence band participates. Density of<br />

States is reflected in shape of the peaks<br />

54 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Carbon CVV <strong>Auger</strong> transition<br />

55 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Cation effect on the S LVV<br />

56 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />

transition


Si KLL Transition taken with high energy resolution<br />

57 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


In summary chemical Information<br />

Measurements have been made for:<br />

TiN composition<br />

C: diamond, graphite, carbide<br />

Si: elemental, oxide, and silicide<br />

Metal oxides:<br />

Al, Si, Mg, Cu, Ce, Ti, Sn.<br />

Metal silicides<br />

Ti, W, Mo<br />

58 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Limitation of <strong>Auger</strong><br />

In most cases <strong>Auger</strong> analysis is limited to conductive<br />

samp<strong>les</strong> as a primary electron beam is used and<br />

conductive coating as used with SEM-EDX is not possible<br />

here due to the strong absorption of the low energy<br />

electrons<br />

Some experiments are performed on non conducting<br />

samp<strong>les</strong> done by tilting the samp<strong>les</strong> to grazing ang<strong>les</strong>.<br />

Also some positive charge compensations is done by<br />

using the ion gun at low energies<br />

Some experiments are done based on X-rays XAES called<br />

but this limits the lateral resolution<br />

59 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


Possible Electron Beam Effects<br />

Sample Charging<br />

Desorption<br />

Adsorption<br />

Oxidation<br />

Reduction<br />

Dissociation<br />

Decomposition<br />

Erosion<br />

Diffusion<br />

60 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


<strong>Auger</strong> Electron Spectroscopy<br />

<strong>Auger</strong> Electron Spectroscopy is an analytical technique that provides compositional<br />

information from the top few monolayers<br />

Sample restrictions conductive samp<strong>les</strong> as primary electrons are used<br />

Detect all elements above He<br />

Detection limits: ~0.1 - 1 atomic %<br />

Surface sensitive: top 0.4-5 nm<br />

Spatial resolution:7 nm imaging<br />

Semi-quantitative: relative sensitivity factors<br />

Distribution of the elements<br />

Line Scans<br />

Depth Profi<strong>les</strong><br />

Maps<br />

Limited chemical info based on the chemical info resolved either in the chemical<br />

shits of the peaks or peak shape (for Valence band transitions)<br />

61 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy


References<br />

Slides provided by PHI company<br />

D. Briggs and M.P. Seah "Practical Surface Analysis", Vol 1,<br />

"<strong>Auger</strong> and X-ray Spectroscopy", Wiley, Chichester, 2nd<br />

Ed, 1980. Vol 2 “Ion and Neutral Spectroscopy”<br />

T.A. Carlson "Photoelectron an <strong>Auger</strong> Spectroscopy" Plenen<br />

Press, New York, 1975<br />

“X-ray Photoelectron and <strong>Auger</strong> Electron Spectroscopy”<br />

TERRYN H. and HUBIN A. Chapter in “Non-destructive<br />

Microanalysis of Cultural Heritage Materials”,<br />

Comprehensive Analytical Chemistry, XLII, Edited by K.<br />

Janssens, R. Van Grieken, Elsevier Science, (2004).<br />

62 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!