les Auger.pdf
les Auger.pdf
les Auger.pdf
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
<strong>Auger</strong> electrons<br />
<strong>Auger</strong> Electron Spectroscopy AES<br />
Scanning <strong>Auger</strong> Microscopy SAM<br />
1 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
2 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Sec electron
The <strong>Auger</strong> Process<br />
<strong>Auger</strong> Process<br />
The <strong>Auger</strong> effect is named for its discoverer, Pierre <strong>Auger</strong>, who observed a<br />
tertiary effect while studying photoemission processes in the 1920s. <strong>Auger</strong><br />
electrons are emitted at discrete energies that allow the atom of origin to be<br />
identified. The <strong>Auger</strong> process involves three steps:<br />
1. Excitation of the atom causing emission of an electron<br />
2. An electron drops down to fill the vacancy created in step 1<br />
3. The energy released in step 2 causes the emission of an <strong>Auger</strong> electron.<br />
3 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
In general, since the initial ionisation is non-selective and the initial hole may therefore be in various shells, there will be<br />
many possible <strong>Auger</strong> transitions for a given element - some weak, some strong in intensity. AUGER SPECTROSCOPY<br />
is based upon the measurement of the kinetic energies of the emitted electrons. Each element in a sample being<br />
studied will give rise to a characteristic spectrum of peaks at various kinetic energies.<br />
4 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
<strong>Auger</strong> or X-ray Emission!<br />
X-ray Fluorescence <strong>Auger</strong> Electron Emission<br />
X-ray<br />
Photon<br />
Incident<br />
Beam<br />
5 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
<strong>Auger</strong> Electron
<strong>Auger</strong> Transition Probability<br />
The total <strong>Auger</strong> probability is given by the <strong>Auger</strong> emission<br />
versus the X-ray fluorescence such that ρ A + ρ X = 1<br />
This does not indicate the probability of a particular<br />
transition, i.e.,for that there exits the relative probability of<br />
de-excitation from subshells Xa, Yb, Zc A family of <strong>Auger</strong> peaks result from transitions between<br />
subshells.<br />
6 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Probability to desexcitate by X-rays or <strong>Auger</strong><br />
After ionisation<br />
either X-ray or <strong>Auger</strong><br />
ω <strong>Auger</strong>+ ω X-ray =1<br />
A clear transition from electron to photon emission<br />
is evident in this chart for increasing atomic number.<br />
For heavier elements, X-ray yield becomes greater than <strong>Auger</strong> yield,<br />
indicating an increased difficulty in measuring the <strong>Auger</strong> peaks for large Z-values.<br />
Conversely, AES is sensitive to the lighter elements,<br />
and unlike X-ray fluorescence, <strong>Auger</strong> peaks can be detected for elements as light as lithium (Z = 3).<br />
Lithium represents the lower limit for AES sensitivity since the <strong>Auger</strong> effect is a "three state" event necessitating<br />
at least three electrons. Neither H nor He can be detected with this technique.<br />
For K-level based transitions, <strong>Auger</strong> effects are dominant<br />
7 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
<strong>Auger</strong> and Fluorescence Yields<br />
8 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
ρ A + ρ X = 1
ELECTRON BEAM - SAMPLE INTERACTION<br />
Secondary Electrons<br />
Backscattered Electrons<br />
Sample Surface<br />
Atomic No. 3<br />
Characteristic X-rays<br />
> Atomic No. 4<br />
Volume of<br />
Primary<br />
Excitation<br />
Φ
Electron spectrum in case we use primary electrons<br />
Secondary electrons<br />
10 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
<strong>Auger</strong> electrons<br />
Back scattered electrons
<strong>Auger</strong> Electron Spectroscopy Cu element<br />
E KLL = E K - E L - E L’<br />
E f<br />
2p<br />
2s<br />
1s<br />
3/2<br />
1/2<br />
E KLL<br />
<strong>Auger</strong><br />
Electron<br />
LIII LII 11 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
L I<br />
K<br />
Cu MNN<br />
Incident Beam<br />
Cu LMM<br />
EdN(E)/dE<br />
E N(E) x 5<br />
E N(E)<br />
0 500 1000 1500 2000 2500 3000<br />
Kinetic Energy (eV)
Examp<strong>les</strong> of <strong>Auger</strong> spectra<br />
direct mode and derivative mode<br />
N(E) or dN(E)/dE versus E spectrum of C<br />
12 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
The <strong>Auger</strong> electron characteristic energy<br />
depends upon a number of factors:<br />
The chemical element involved<br />
The energy level within which the initial hole was formed<br />
The energy level of the electron which eventually fills the hole<br />
The initial energy level of the electron which eventually becomes the<br />
<strong>Auger</strong> electron (a small energy correction takes into account the fact<br />
that already the atom is ionized<br />
Φ is the work function of the spectrometer (not the material). for<br />
which the detector is calibrated. The energy levels in solids are<br />
conventionally measured with respect to the Fermi-level of the solid,<br />
rather than the vacuum level. This involves a small correction to the<br />
equation given above in order to account for the work function (F) of<br />
the solid<br />
13 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Possible <strong>Auger</strong> transitions<br />
<strong>Auger</strong> are conventionally XYZ called<br />
Possible peaks are related with electron-<br />
electron interactions allowed<br />
given by quantum physics (electron-electron<br />
interactions)<br />
So not all transitions are possible like with X-rays<br />
This is perfectly known for the <strong>Auger</strong> transitions<br />
of all the elements<br />
14 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
15 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Possible <strong>Auger</strong><br />
Transitions
Possible <strong>Auger</strong> Transitions for<br />
element Al<br />
Transitions Energy ev<br />
KL1L1 1293<br />
KL1L2 1342<br />
KL1L3 1343<br />
KL1M1 1443<br />
KL2L2 1386<br />
KL2L3 1387<br />
KL2M1 1478<br />
KL3L3 1388<br />
KL3M1 1551<br />
L1L2M1 36<br />
L1L3M1 37<br />
L1M1M1 109<br />
L2M1M1 65<br />
L3M1M1 64<br />
16 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Analysis Depth<br />
Surface sensitivity results from the electron inelastic<br />
mean free path, λ, which is the average distance<br />
an electron with a given energy travels before<br />
being inelastically scattered (& therefore losing its<br />
characteristic energy).<br />
λ depends on electron energy & material<br />
λ ~ 1 - 10 monolayers (0.2 - 5 nm)<br />
17 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
<strong>Auger</strong> Mean Free Path<br />
18 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Surface sensitivity in AES arises from the<br />
fact that emitted electrons usually have<br />
energies ranging from 50 eV to 3 keV and<br />
at these values, electrons have a short<br />
mean free path in a solid. The escape<br />
depth of electrons is therefore localized to<br />
within a few nanometers of the target<br />
surface, giving AES an extreme sensitivity<br />
to surface species.<br />
Due to the low energy of <strong>Auger</strong> electrons,<br />
most AES setups are run under ultra-high<br />
vacuum (UHV) conditions. Such measures<br />
prevent electron scattering off of residual<br />
gas atoms as well as the formation of a thin<br />
"gas (adsorbate) layer" on the surface of<br />
the specimen which degrades analytical<br />
performance
<strong>Auger</strong> Electron Analysis Depth<br />
Various thicknesses of Au on Si. The high energy Si KLL peak has a greater<br />
analysis depth than the low energy Si LMM peak. So you don’ observe the Si<br />
LMM transition (low energy) for the thick Au film<br />
Au<br />
Au<br />
Si LMM<br />
Si LMM<br />
O<br />
O<br />
19 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Thickest Au<br />
Thinner Au<br />
Clean Si<br />
Au<br />
Si KLL<br />
Au<br />
Si KLL<br />
Si KLL<br />
Au<br />
Au<br />
Au<br />
Au
Intensity of a <strong>Auger</strong> transition<br />
Transmission of the analyser<br />
Mean free path <strong>Auger</strong> electrons<br />
Primary current beam<br />
depends on<br />
Escape probability of the <strong>Auger</strong> transition WXY<br />
Ionisation cross section<br />
Back scattering effects<br />
Number of atoms present in the layer<br />
20 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Analysis Area - Spatial<br />
Resolution<br />
Spatial resolution depends on the analytical measurement and the<br />
definition of resolution<br />
To a first approximation it depends on the diameter of the primary<br />
electron beam so it depends on the quality of the used electron gun<br />
(see previous lectures). This is why the best systems use FE<br />
technology<br />
This is why Scanning <strong>Auger</strong> is one of the best imaging methods in terms<br />
of lateral resolution and providing surface analysis info<br />
May also be affected by <strong>Auger</strong> emission due to backscattered electrons<br />
(this is way it is not better than 7 nm at the moment)<br />
21 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Factors Affecting Spatial<br />
Resolution<br />
Energy of <strong>Auger</strong> electrons<br />
How much energy backscattered electrons can<br />
lose & still cause ionization & subsequent<br />
<strong>Auger</strong> emission<br />
Inelastic mean free path<br />
Sample composition<br />
Sample topography<br />
System vibration & stray magnetic fields<br />
22 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Components of an AES<br />
Instrument<br />
An AES instrument has three main components:<br />
An electron source, this should have variable energy and be capable of<br />
producing a very small spot of electrons.<br />
An electron energy analyser, for example, a spherical sector analyser<br />
A secondary electron detector for the production of SEM's<br />
The measurements must be made in ultra-high vacuum (UHV), for two reasons:<br />
To allow the <strong>Auger</strong> electrons to travel from the surface of the sample to the<br />
detector without striking a gas atom<br />
If a clean surface is prepared for analysis, it would become contaminated if it was<br />
not under UHV.<br />
23 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
<strong>Auger</strong> system<br />
Primary source : electron gun<br />
La 6B<br />
New AES systems are using a Field Emission<br />
guns<br />
Energy of the <strong>Auger</strong> electrons are measured<br />
Electron detector : cylindrical mirror- CMA,<br />
hemispherical analyser - HA<br />
24 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Also in the Equipment<br />
Ultra High Vacuum (UHV) system<br />
Sample handling<br />
Quick sample introduction<br />
5 axis sample manipulator<br />
Ion sputter gun<br />
Hot filament - inert gas<br />
Hollow cathode plasma source<br />
duoplasmatron - inert & reactive gases<br />
25 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Equipment CMA based<br />
26 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
27 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
PHI 680
Cylindrical Mirror Analyser<br />
Relative Energy Resolution<br />
typically 0,25 % ∆E/E so not so good<br />
Ideal for geometry as electron gun is placed<br />
coaxial<br />
28 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
<strong>Auger</strong> Instrumentation<br />
Electron Column & Electron Energy Analyzer<br />
Field Emission<br />
Electron Source<br />
Multi-Channel<br />
Detector<br />
Cylindrical<br />
Mirror Analyzer<br />
Sample<br />
29 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Eight concentric<br />
ring anodes<br />
Ion Gun
30 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Analysis Area - Defects on Al<br />
Metallization<br />
Pseudocolor <strong>Auger</strong> Map of Cu, showing the<br />
concentration of Cu in the nodu<strong>les</strong><br />
SEM image Cu <strong>Auger</strong> map<br />
31 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
<strong>Auger</strong> maps resolve 100 nm Cu partic<strong>les</strong>
Scanning <strong>Auger</strong> microscopy, Scanning <strong>Auger</strong> Microprobe HA based<br />
Electrons can be focused to a spot of < 1 nanometer<br />
32 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Scanning electron microscope<br />
column<br />
Penetration depth and scattering within solid typically limit resolution<br />
to ~20 nanometer. Recent instruments claim resolution of ~ 6 nm.<br />
Often use hemispherical analyzer because of its better geometric properties<br />
Electron energy<br />
Analyzer
33 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Jeol equipment
Hemispherical Analyser<br />
Variable energy resolution from 0.05% to<br />
0.6% so very good compared to CMA<br />
But electron gun is not coaxial<br />
34 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Information contained in the<br />
<strong>Auger</strong> spectrum<br />
If we measure the energy of the ejected <strong>Auger</strong> electrons we can learn<br />
some important facts about the sample under investigation:<br />
The elements from which it is made<br />
The relative quantity of each element<br />
The chemical state of the elements present (provided the energy is<br />
measured with sufficient resolution)<br />
The lateral distribution of the elements<br />
The depth distribution of the elements<br />
35 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Quantification from first princip<strong>les</strong><br />
I i = I P N i σ i γ i (1+r) λ icosθ F T D R<br />
I i = <strong>Auger</strong> intensity (current) for ABC transition of element i<br />
N i = # atoms of element i per unit volume<br />
I P = Primary electron beam current<br />
σ i = Ionization cross-section for the A level of element i<br />
γ i = <strong>Auger</strong> transition probability for the ABC transition of element i<br />
r = Secondary ionization for the A level of element i by scattered<br />
electrons (backscatter factor = 1+r)<br />
λ i = Inelastic mean free path of emitted <strong>Auger</strong> electron in the matrix<br />
θ = Angle between <strong>Auger</strong> electron and surface normal<br />
F = Analyzer solid angle of acceptance<br />
T = Analyzer transmission function<br />
D = Detector efficiency<br />
R = Surface roughness factor (0
Quantification<br />
Sensitivity Factors<br />
Assuming <strong>Auger</strong> yield varies linearly with concentration<br />
Assuming homogeneous distribution<br />
C X = (I X / S X) / (Σ i (I i / S i)<br />
S X may depend on sample matrix & chemistry, as well as<br />
specific analytical instrument<br />
37 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
On this level ???<br />
38 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Standards
39 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Sensitivity factors
Concentration calculation<br />
40 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Sputtering used for cleaning<br />
41 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
+depth profiling
Depth Profiling measures AES intensity as function<br />
of sputter time while in reality one wants<br />
concentration as function of depth<br />
42 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
x 104<br />
3<br />
2<br />
1<br />
0<br />
c/s<br />
-1<br />
-2<br />
-3<br />
Depth profile of Chromate-fluoride conversion layer<br />
on Al<br />
F<br />
C Cr<br />
P Cr<br />
Al<br />
O<br />
200 400 600 800 1000 1200 1400 1600 1800<br />
Kinetic Energy (eV)<br />
43 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Al<br />
P<br />
100<br />
Intensity<br />
(%)<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
0<br />
C<br />
P<br />
O<br />
Cr<br />
F<br />
Alox<br />
Alm<br />
0 5 10 15 20<br />
Sputter time (min)
Zalar Depth Profiling<br />
Many materials exhibit increases in surface<br />
roughness under extended ion bombardment<br />
The roughness is often characterized by the<br />
formation of “cones” that grow in the direction of<br />
ion bombardment<br />
Zalar rotation involves the physical rotation of a<br />
sample during ion bombardment to minimize cone<br />
formation<br />
The use of Zalar rotation improves the quality of<br />
<strong>Auger</strong> compositional depth profi<strong>les</strong><br />
44 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Zalar Depth Profiling<br />
Blanket thin film structure<br />
<strong>Auger</strong> depth profile results<br />
without and with Zalar rotation<br />
Aluminum (500 nm)<br />
SiO 2 (20 nm)<br />
Silicon (substrate)<br />
45 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Aluminum<br />
Oxygen<br />
Without Zalar rotation<br />
Silicon<br />
Aluminum Silicon<br />
Aluminum<br />
Oxide<br />
Oxygen<br />
With Zalar rotation<br />
Silicon<br />
Oxide
10 µm Via Contact Depth Profile<br />
5000X<br />
46 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Without Rotation<br />
Atomic Concentration Concentration (%)<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
O<br />
Al in oxide<br />
Al metal<br />
Without rotation interface is broad<br />
0<br />
0 50 100 150 200 250 300<br />
Sputter Time (min)<br />
Si
Depth Profile With Compucentric Zalar<br />
5000X<br />
47 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
Rotation<br />
Atomic Atomic Concentration (%)<br />
100<br />
90<br />
80<br />
70<br />
60<br />
50<br />
40<br />
30<br />
20<br />
10<br />
O<br />
Al in oxide<br />
Al metal<br />
0<br />
0 50 100 150 200 250 300<br />
Sputter Time (min)<br />
With Zalar Rotation there is a much sharper interface<br />
Because of size of bond pad, compucentric Zalar control is required<br />
Si
EdN(E)/dE<br />
Chemical Information summary slide<br />
Energy position<br />
Line shape<br />
Loss Structure<br />
Graphitic C<br />
W Carbide<br />
C KLL<br />
230 240 250 260 270 280 290 300<br />
Kinetic Energy (eV)<br />
C KLL<br />
Core-Valence-Valence<br />
48 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
EdN(E)/dE<br />
EdN(E)/dE<br />
Elemental Al<br />
Al LMM<br />
Al Oxide<br />
40 50 60 70 80 90<br />
Kinetic Energy (eV)<br />
Elemental Si<br />
Si Oxide<br />
50 60 70 80 90 100 110<br />
Kinetic Energy (eV)<br />
Si LMM<br />
EdN(E)/dE<br />
EdN(E)/dE<br />
Elemental Al<br />
Al Oxide<br />
Al KLL<br />
1280 1300 1320 1340 1360 1380 1400 1420<br />
Kinetic Energy (eV)<br />
Elemental Si<br />
Si Oxide<br />
1500 1520 1540 1560 1580 1600 1620 1640<br />
Kinetic Energy (eV)<br />
Si KLL
Chemical Information<br />
High Energy Resolution or Numerical Analysis may be used to<br />
distinguish chemical components<br />
In many cases numerical analysis is required even with high energy<br />
resolution<br />
High energy resolution reduces the count rate and sensitivity of the<br />
measurement<br />
High energy resolution often requires a priori knowledge of the chemistry<br />
High energy resolution does provide sharp spectral line shapes<br />
49 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Chemical Information<br />
Variations in an element’s chemical state may affect:<br />
Binding energies<br />
Relaxation energies<br />
<strong>Auger</strong> transition probabilities<br />
Valence band density of states<br />
Conduction band density of states<br />
Bulk and surface plasmons<br />
These variations are reflected in the <strong>Auger</strong> spectrum<br />
<strong>Auger</strong> peak energy position<br />
<strong>Auger</strong> line shape<br />
Loss structure<br />
50 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Chemical shift of the energy levels results in<br />
netto “small”shift of the <strong>Auger</strong> energy<br />
51 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Chemical shift on Al KLL <strong>Auger</strong> lines for three<br />
different components Al-pure, Al 2O 3<br />
amorphous, Al 2O 3 ceramic mineral polymer<br />
52 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
New LVV <strong>Auger</strong> peaks combining<br />
energy levels of two neighbours atoms<br />
53 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
eg Si, Al, Mg oxides<br />
EdN(E)/dE<br />
Elemental Al<br />
Al LMM<br />
Al Oxide<br />
40 50 60 70 80 90<br />
Kinetic Energy (eV)
Valence band transitions where energy levels<br />
of the valence band participates. Density of<br />
States is reflected in shape of the peaks<br />
54 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Carbon CVV <strong>Auger</strong> transition<br />
55 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Cation effect on the S LVV<br />
56 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy<br />
transition
Si KLL Transition taken with high energy resolution<br />
57 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
In summary chemical Information<br />
Measurements have been made for:<br />
TiN composition<br />
C: diamond, graphite, carbide<br />
Si: elemental, oxide, and silicide<br />
Metal oxides:<br />
Al, Si, Mg, Cu, Ce, Ti, Sn.<br />
Metal silicides<br />
Ti, W, Mo<br />
58 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Limitation of <strong>Auger</strong><br />
In most cases <strong>Auger</strong> analysis is limited to conductive<br />
samp<strong>les</strong> as a primary electron beam is used and<br />
conductive coating as used with SEM-EDX is not possible<br />
here due to the strong absorption of the low energy<br />
electrons<br />
Some experiments are performed on non conducting<br />
samp<strong>les</strong> done by tilting the samp<strong>les</strong> to grazing ang<strong>les</strong>.<br />
Also some positive charge compensations is done by<br />
using the ion gun at low energies<br />
Some experiments are done based on X-rays XAES called<br />
but this limits the lateral resolution<br />
59 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
Possible Electron Beam Effects<br />
Sample Charging<br />
Desorption<br />
Adsorption<br />
Oxidation<br />
Reduction<br />
Dissociation<br />
Decomposition<br />
Erosion<br />
Diffusion<br />
60 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
<strong>Auger</strong> Electron Spectroscopy<br />
<strong>Auger</strong> Electron Spectroscopy is an analytical technique that provides compositional<br />
information from the top few monolayers<br />
Sample restrictions conductive samp<strong>les</strong> as primary electrons are used<br />
Detect all elements above He<br />
Detection limits: ~0.1 - 1 atomic %<br />
Surface sensitive: top 0.4-5 nm<br />
Spatial resolution:7 nm imaging<br />
Semi-quantitative: relative sensitivity factors<br />
Distribution of the elements<br />
Line Scans<br />
Depth Profi<strong>les</strong><br />
Maps<br />
Limited chemical info based on the chemical info resolved either in the chemical<br />
shits of the peaks or peak shape (for Valence band transitions)<br />
61 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy
References<br />
Slides provided by PHI company<br />
D. Briggs and M.P. Seah "Practical Surface Analysis", Vol 1,<br />
"<strong>Auger</strong> and X-ray Spectroscopy", Wiley, Chichester, 2nd<br />
Ed, 1980. Vol 2 “Ion and Neutral Spectroscopy”<br />
T.A. Carlson "Photoelectron an <strong>Auger</strong> Spectroscopy" Plenen<br />
Press, New York, 1975<br />
“X-ray Photoelectron and <strong>Auger</strong> Electron Spectroscopy”<br />
TERRYN H. and HUBIN A. Chapter in “Non-destructive<br />
Microanalysis of Cultural Heritage Materials”,<br />
Comprehensive Analytical Chemistry, XLII, Edited by K.<br />
Janssens, R. Van Grieken, Elsevier Science, (2004).<br />
62 Surface Analysis: Scanning <strong>Auger</strong> Electron Spectroscopy