27.04.2013 Views

Free radicals, oxidative stress and importance of antioxidants in ...

Free radicals, oxidative stress and importance of antioxidants in ...

Free radicals, oxidative stress and importance of antioxidants in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Review<br />

J M e d A l l i e d S c i 2 0 1 1 ; 1 ( 2 ) : 53- 60<br />

w w w . j m a s . i n<br />

P r i n t I S S N : 2 2 3 1 1696 O n l i n e I S S N : 2231 1 7 0 X<br />

Journal <strong>of</strong><br />

M e d i cal &<br />

Allied Sciences<br />

<strong>Free</strong> <strong>radicals</strong>, <strong>oxidative</strong> <strong>stress</strong> <strong>and</strong> <strong>importance</strong> <strong>of</strong><br />

<strong>antioxidants</strong> <strong>in</strong> human health<br />

Amit Kunwar <strong>and</strong> K.I. Priyadars<strong>in</strong>i<br />

Radiation <strong>and</strong> Photochemistry Division,<br />

Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.<br />

Article history: Abstract<br />

Received 13 March 2011<br />

Revised 04 May 2011<br />

Accepted 14 June 2011<br />

Early onl<strong>in</strong>e 01 July 2011<br />

Pr<strong>in</strong>t 31 July 2011<br />

Correspond<strong>in</strong>g author<br />

Amit Kunwar<br />

Radiation <strong>and</strong> Photochemistry Division,<br />

Bhabha Atomic Research Centre,<br />

Mumbai-400085, India.<br />

Phone: +91 22 25595399<br />

Fax: +91 22 25505151<br />

Email: kamit@barc.gov.<strong>in</strong><br />

eactive oxygen species (ROS) is a collective<br />

term used for a group <strong>of</strong> oxidants, which are<br />

either free <strong>radicals</strong> or molecular species capable<br />

<strong>of</strong> generat<strong>in</strong>g free <strong>radicals</strong>. Intracellular generation<br />

<strong>of</strong> ROS ma<strong>in</strong>ly comprises superoxide (O2 − )<br />

<strong>radicals</strong> <strong>and</strong> nitric oxide (NO ) <strong>radicals</strong>. Under normal<br />

physiologic conditions, nearly 2% <strong>of</strong> the oxygen<br />

consumed by the body is converted <strong>in</strong>to O2 −<br />

through mitochondrial respiration, phagocytosis,<br />

etc 1 . ROS percentage <strong>in</strong>creases dur<strong>in</strong>g <strong>in</strong>fections,<br />

exercise, exposure to pollutants, UV light, ioniz<strong>in</strong>g<br />

radiation, etc. NO , is an endothelial relax<strong>in</strong>g factor<br />

<strong>and</strong> neurotransmitter, produced through nitric oxide<br />

synthase enzymes. NO <strong>and</strong> O2 − R<br />

<strong>radicals</strong>, are converted<br />

to powerful oxidiz<strong>in</strong>g <strong>radicals</strong> like hydroxyl<br />

Reactive oxygen species (ROS) is a collective term used for oxygen<br />

conta<strong>in</strong><strong>in</strong>g free <strong>radicals</strong>, depend<strong>in</strong>g on their reactivity <strong>and</strong> oxidiz<strong>in</strong>g<br />

ability. ROS participate <strong>in</strong> a variety <strong>of</strong> chemical reactions with biomolecules<br />

lead<strong>in</strong>g to a pathological condition known as <strong>oxidative</strong><br />

<strong>stress</strong>. Antioxidants are employed to protect biomolecules from the<br />

damag<strong>in</strong>g effects <strong>of</strong> such ROS. In the beg<strong>in</strong>n<strong>in</strong>g, antioxidant research<br />

was ma<strong>in</strong>ly aimed at underst<strong>and</strong><strong>in</strong>g free radical reactions <strong>of</strong><br />

ROS with <strong>antioxidants</strong> employ<strong>in</strong>g biochemical assays <strong>and</strong> k<strong>in</strong>etic<br />

methods. Later on, studies began to be directed to monitor the ability<br />

<strong>of</strong> anti-oxidants to modulate cellular signal<strong>in</strong>g prote<strong>in</strong>s like receptors,<br />

secondary messengers, transcription factors, etc. Of late several<br />

studies have <strong>in</strong>dicated that <strong>antioxidants</strong> can also have deleterious<br />

effects on human health depend<strong>in</strong>g on dosage <strong>and</strong> bioavailability.<br />

It is therefore, necessary to validate the utility <strong>of</strong> <strong>antioxidants</strong><br />

<strong>in</strong> improvement <strong>of</strong> human health <strong>in</strong> order to take full advantage<br />

<strong>of</strong> their therapeutic potential.<br />

Key words: Reactive oxygen species, <strong>oxidative</strong> <strong>stress</strong>, antioxidant<br />

supplementation<br />

© 2011 Deccan College <strong>of</strong> Medical Sciences. All rights reserved.<br />

radical ( OH), alkoxy <strong>radicals</strong> (RO ), peroxyl <strong>radicals</strong><br />

(ROO ), s<strong>in</strong>glet oxygen ( 1 O2) by complex transformation<br />

reactions. Some <strong>of</strong> the radical species are<br />

converted to molecular oxidants like hydrogen peroxide<br />

(H2O2), peroxynitrite (ONOO ), hypochlorous<br />

acid (HOCl). Sometimes these molecular species<br />

act as source <strong>of</strong> ROS.<br />

For example, H2O2 is converted to OH <strong>radicals</strong> by<br />

Fenton reaction <strong>and</strong> HOCl through its reaction with<br />

H2O2 can be converted to 1 O2. ONOO at physiological<br />

concentrations <strong>of</strong> carbon dioxide becomes a<br />

source <strong>of</strong> carbonate radical anion (CO3 ) 1 . The various<br />

pathways <strong>in</strong>volved <strong>in</strong> the generation <strong>of</strong> ROS are<br />

given <strong>in</strong> fig 1.<br />

53


Kunwar A et al. <strong>Free</strong> <strong>radicals</strong>, <strong>oxidative</strong> <strong>stress</strong> <strong>and</strong> <strong>antioxidants</strong> <strong>in</strong> human health<br />

ROS <strong>in</strong> normal physiology<br />

Typically, low concentration <strong>of</strong> ROS is essential for<br />

normal physiological functions like gene expression,<br />

cellular growth <strong>and</strong> defense aga<strong>in</strong>st <strong>in</strong>fection. Sometimes<br />

they also act as the stimulat<strong>in</strong>g agents for biochemical<br />

processes with<strong>in</strong> the cell 2 . ROS exert their<br />

effects through the reversible oxidation <strong>of</strong> active<br />

sites <strong>in</strong> transcription factors such as nuclear factorkappa<br />

B (NF-kB) <strong>and</strong> activator prote<strong>in</strong>-1 (AP-1) lead<strong>in</strong>g<br />

to gene expression <strong>and</strong> cell growth 3 . ROS can<br />

also cause <strong>in</strong>direct <strong>in</strong>duction <strong>of</strong> transcription factors<br />

by activat<strong>in</strong>g signal transduction pathways 3 . One<br />

example <strong>of</strong> signal transduction molecules activated<br />

by ROS is the mitogen activated prote<strong>in</strong> k<strong>in</strong>ases<br />

(MAPKs). ROS also appear to serve as secondary<br />

messengers <strong>in</strong> many developmental stages. For<br />

example, <strong>in</strong> sea urch<strong>in</strong>s ROS levels are elevated<br />

dur<strong>in</strong>g fertilization. Similarly prenatal <strong>and</strong> embryonic<br />

development <strong>in</strong> mammals has also been suggested<br />

to be regulated by ROS 3 . Apart from these; ROS<br />

also participate <strong>in</strong> the biosynthesis <strong>of</strong> molecules<br />

such as thyrox<strong>in</strong>, prostagl<strong>and</strong><strong>in</strong> that accelerate developmental<br />

processes. It is noteworthy that <strong>in</strong> thyroid<br />

cells, regulation <strong>of</strong> H2O2 concentration is critical<br />

for thyrox<strong>in</strong>e synthesis, as it is needed to catalyze<br />

the b<strong>in</strong>d<strong>in</strong>g <strong>of</strong> iod<strong>in</strong>e atoms to thyroglobul<strong>in</strong> 3 . F<strong>in</strong>ally<br />

ROS are also used by the immune system. For example,<br />

ROS have been shown to trigger proliferation<br />

<strong>of</strong> T cells through NF-кB activation. Macrophages<br />

<strong>and</strong> neutrophils generate ROS <strong>in</strong> order to kill the<br />

bacteria that they engulf by phagocytosis. Furthermore,<br />

tumor necrosis factor (TNF-α) mediates the<br />

cytotoxicity <strong>of</strong> tumor <strong>and</strong> virus <strong>in</strong>fected cells through<br />

ROS generation <strong>and</strong> <strong>in</strong>duction <strong>of</strong> apoptosis 2,3 .<br />

Fig 1. Production <strong>of</strong> free <strong>radicals</strong> via different routes<br />

ROS <strong>in</strong>duced <strong>oxidative</strong> damages<br />

Depend<strong>in</strong>g upon their nature, ROS (for e.g. OH <strong>radicals</strong>)<br />

reactions with biomolecules such as lipid, prote<strong>in</strong><br />

<strong>and</strong> DNA, produce different types <strong>of</strong> secondary<br />

<strong>radicals</strong> like lipid <strong>radicals</strong>, sugar <strong>and</strong> base derived<br />

<strong>radicals</strong>, am<strong>in</strong>o acid <strong>radicals</strong> <strong>and</strong> thiyl <strong>radicals</strong>.<br />

These <strong>radicals</strong> <strong>in</strong> presence <strong>of</strong> oxygen are converted<br />

to peroxyl <strong>radicals</strong>. Peroxyl <strong>radicals</strong> are critical <strong>in</strong><br />

biosystems, as they <strong>of</strong>ten <strong>in</strong>duce cha<strong>in</strong> reactions 1 .<br />

The biological implications <strong>of</strong> such reactions depends<br />

on several factors like site <strong>of</strong> generation, nature<br />

<strong>of</strong> the substrate, activation <strong>of</strong> repair mechanisms,<br />

redox status among many others 4 .<br />

For example, cellular membranes are vulnerable to<br />

the oxidation by ROS due to the presence <strong>of</strong> high<br />

concentration <strong>of</strong> unsaturated fatty acids <strong>in</strong> their lipid<br />

components. ROS reactions with membrane lipids<br />

cause lipid peroxidation, result<strong>in</strong>g <strong>in</strong> formation <strong>of</strong><br />

lipid hydroperoxide (LOOH) which can further decompose<br />

to an aldehyde such as malonaldehyde, 4hydroxy<br />

nonenal (4-HNE) or form cyclic endoperoxide,<br />

isoprotans, <strong>and</strong> hydrocarbons. The consequences<br />

<strong>of</strong> lipid peroxidation are cross l<strong>in</strong>k<strong>in</strong>g <strong>of</strong><br />

membrane prote<strong>in</strong>s, change <strong>in</strong> membrane fluidity<br />

<strong>and</strong> formation <strong>of</strong> lipid-prote<strong>in</strong>, lipid-DNA adduct<br />

which may be detrimental to the function<strong>in</strong>g <strong>of</strong> the<br />

cell 5 .<br />

Prote<strong>in</strong>s can undergo direct <strong>and</strong> <strong>in</strong>direct damage<br />

follow<strong>in</strong>g <strong>in</strong>teraction with ROS result<strong>in</strong>g <strong>in</strong> to peroxidation,<br />

changes <strong>in</strong> their tertiary structure, proteolytic<br />

degradation, prote<strong>in</strong>-prote<strong>in</strong> cross l<strong>in</strong>kages <strong>and</strong><br />

fragmentation 5 . The side cha<strong>in</strong>s <strong>of</strong> all am<strong>in</strong>o acid<br />

residues <strong>of</strong> prote<strong>in</strong>s, <strong>in</strong> particular tryptophan, cyste-<br />

J Med Allied Sci 2011; 1(2) 54


Kunwar A et al. <strong>Free</strong> <strong>radicals</strong>, <strong>oxidative</strong> <strong>stress</strong> <strong>and</strong> <strong>antioxidants</strong> <strong>in</strong> human health<br />

<strong>in</strong>e <strong>and</strong> methion<strong>in</strong>e residues are susceptible to oxidation<br />

by ROS. Prote<strong>in</strong> oxidation products are usually<br />

carbonyls such as aldehydes <strong>and</strong> ketones.<br />

Although DNA is a stable, well-protected molecule,<br />

ROS can <strong>in</strong>teract with it <strong>and</strong> cause several types <strong>of</strong><br />

damage such as modification <strong>of</strong> DNA bases, s<strong>in</strong>gle<br />

<strong>and</strong> double str<strong>and</strong> DNA breaks, loss <strong>of</strong> pur<strong>in</strong>es (apur<strong>in</strong>ic<br />

sites), damage to the deoxyribose sugar, DNAprote<strong>in</strong><br />

cross-l<strong>in</strong>kage <strong>and</strong> damage to the DNA repair<br />

system 5 . Not all ROS can cause DNA damage <strong>and</strong><br />

OH radical is one <strong>of</strong> the potential <strong>in</strong>ducers <strong>of</strong> DNA<br />

damage. A variety <strong>of</strong> adducts are formed on reaction<br />

<strong>of</strong> OH radical with DNA. The OH radical can attack<br />

pur<strong>in</strong>e <strong>and</strong> pyrimid<strong>in</strong>e bases to form OH radical adducts,<br />

which are both oxidiz<strong>in</strong>g <strong>and</strong> reduc<strong>in</strong>g <strong>in</strong> nature.<br />

This <strong>in</strong>duces base modifications <strong>and</strong> sometimes<br />

release <strong>of</strong> bases. Some <strong>of</strong> the important base<br />

modifications <strong>in</strong>clude 8-hydroxydeoxyguanos<strong>in</strong>e (8-<br />

OHdG), 8 (or 4-, 5-)-hydroxyaden<strong>in</strong>e, thym<strong>in</strong>e peroxide,<br />

thym<strong>in</strong>e glycols <strong>and</strong> 5-(hydroxymethyl) uracyl 5 .<br />

<strong>Free</strong> <strong>radicals</strong> can also attack the sugar moiety,<br />

which can produce sugar peroxyl <strong>radicals</strong> <strong>and</strong> subsequently<br />

<strong>in</strong>duc<strong>in</strong>g str<strong>and</strong> brakeage. The consequence<br />

<strong>of</strong> DNA damage is the modification <strong>of</strong> genetic<br />

material result<strong>in</strong>g <strong>in</strong> to cell death, mutagenesis,<br />

carc<strong>in</strong>ogenesis <strong>and</strong> age<strong>in</strong>g.<br />

Antioxidants <strong>and</strong> natural defense from ROS <strong>in</strong>duced<br />

damages<br />

Uncontrolled generation <strong>of</strong> ROS can lead to their<br />

accumulation caus<strong>in</strong>g <strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> the cells.<br />

Therefore, cells have evolved defense mechanisms<br />

for protection aga<strong>in</strong>st ROS mediated <strong>oxidative</strong> damage.<br />

These <strong>in</strong>clude antioxidant defenses to keep a<br />

check on the generation <strong>of</strong> ROS. An antioxidant is a<br />

substance that is present at low concentrations <strong>and</strong><br />

significantly delays or prevents oxidation <strong>of</strong> the oxidizable<br />

substrate 6 . Antioxidants are effective because<br />

they can donate their own electrons to ROS<br />

<strong>and</strong> thereby neutraliz<strong>in</strong>g the adverse effects <strong>of</strong> the<br />

latter. In general, an antioxidant <strong>in</strong> the body may<br />

work at three different levels: (a) prevention - keep<strong>in</strong>g<br />

formation <strong>of</strong> reactive species to a m<strong>in</strong>imum e.g.<br />

desferrioxam<strong>in</strong>e (b) <strong>in</strong>terception - scaveng<strong>in</strong>g reactive<br />

species either by us<strong>in</strong>g catalytic <strong>and</strong> noncatalytic<br />

molecules e.g. ascorbic acid, alphatocopherol<br />

<strong>and</strong> (c) repair - repair<strong>in</strong>g damaged target<br />

molecules e.g. glutathione 6 . The antioxidant systems<br />

are classified <strong>in</strong>to two major groups, enzymatic <strong>antioxidants</strong><br />

<strong>and</strong> non enzymatic <strong>antioxidants</strong>. Enzymatic<br />

<strong>antioxidants</strong> present <strong>in</strong> the body <strong>in</strong>clude superoxide<br />

dismutase (SOD), catalase <strong>and</strong> glutathione peroxidase<br />

(GPx) that act as body’s first l<strong>in</strong>e <strong>of</strong> defense<br />

aga<strong>in</strong>st ROS by catalyz<strong>in</strong>g their conversion to less<br />

reactive or <strong>in</strong>ert species (Fig 2) 7 .<br />

J Med Allied Sci 2011; 1(2)<br />

Fig 2. Removal <strong>of</strong> different reactive oxygen species by antioxidant<br />

enzymes<br />

Several low molecular weight molecules present<br />

<strong>in</strong>side the cell provide secondary defense aga<strong>in</strong>st<br />

free <strong>radicals</strong>. A few examples <strong>of</strong> such molecules<br />

<strong>in</strong>clude glutathione (GSH), α-tocopherol, ascorbate,<br />

bilirub<strong>in</strong>, etc 6 . These agents either scavenge the<br />

ROS directly or prevent the production <strong>of</strong> ROS<br />

through sequestration <strong>of</strong> redox active metals like<br />

iron <strong>and</strong> copper.<br />

Redox state <strong>and</strong> <strong>oxidative</strong> <strong>stress</strong><br />

All forms <strong>of</strong> life ma<strong>in</strong>ta<strong>in</strong> a steady state concentration<br />

<strong>of</strong> ROS determ<strong>in</strong>ed by the balance between<br />

their rates <strong>of</strong> production <strong>and</strong> their rates <strong>of</strong> removal<br />

by various <strong>antioxidants</strong>. Thus each cell is characterized<br />

by a particular concentration <strong>of</strong> reduc<strong>in</strong>g species<br />

like GSH, NADH, FADH, etc. stored <strong>in</strong> many<br />

cellular constituents which determ<strong>in</strong>es the redox<br />

state <strong>of</strong> a cell 6 . By def<strong>in</strong>ition redox state is the total<br />

reduction potential or the reduc<strong>in</strong>g capacity <strong>of</strong> all the<br />

redox couples such as GSSG/2GSH, NAD+/NADH,<br />

Asc •− /AcsH − , etc found <strong>in</strong> biological fluids, organelles,<br />

cells or tissues 8 . Redox state not only describes<br />

the state <strong>of</strong> a redox pair, but also the redox<br />

environment <strong>of</strong> a cell. Under normal conditions, the<br />

redox state <strong>of</strong> a biological system is ma<strong>in</strong>ta<strong>in</strong>ed towards<br />

more negative redox potential values. However,<br />

with <strong>in</strong>crease <strong>in</strong> ROS generation or decrease<br />

<strong>in</strong> antioxidant protection with<strong>in</strong> cells, it is shifted towards<br />

less negative values result<strong>in</strong>g <strong>in</strong> the oxidiz<strong>in</strong>g<br />

environment (Fig 3). This shift from reduc<strong>in</strong>g status<br />

to oxidiz<strong>in</strong>g status is referred as <strong>oxidative</strong> <strong>stress</strong> 6,8 .<br />

Dur<strong>in</strong>g elevated <strong>oxidative</strong> <strong>stress</strong>, there is loss <strong>of</strong> mitochondrial<br />

functions, which results <strong>in</strong> to ATP depletion<br />

<strong>and</strong> necrotic cell death, while moderate oxidation<br />

can trigger apoptosis. There are a few recent<br />

reports have shown evidence that the <strong>in</strong>duction <strong>of</strong><br />

apoptosis or necrosis dur<strong>in</strong>g <strong>oxidative</strong> <strong>stress</strong> is actually<br />

determ<strong>in</strong>ed by the redox state <strong>of</strong> cell 8 . For example<br />

it has been reported that an <strong>in</strong>crease <strong>in</strong> reduction<br />

potential <strong>of</strong> +72 mV <strong>in</strong> HL-60 cells (i.e., from<br />

-239 ± 6 to -167 ± 9 mV) or an <strong>in</strong>crease <strong>of</strong> +65 mV<br />

<strong>in</strong> mur<strong>in</strong>e hybridoma cells (i.e., from -235 ± 5 to -170<br />

55


Kunwar A et al. <strong>Free</strong> <strong>radicals</strong>, <strong>oxidative</strong> <strong>stress</strong> <strong>and</strong> <strong>antioxidants</strong> <strong>in</strong> human health<br />

± 8 mV) would cause <strong>in</strong>duction <strong>of</strong> apoptosis 8 . Oxidative<br />

<strong>stress</strong> has been implicated <strong>in</strong> a number <strong>of</strong> human<br />

diseases like cancer, atherosclerosis, diabetics,<br />

neurological diseases such as Alzheimer's disease,<br />

Park<strong>in</strong>son's disease, etc. as well as <strong>in</strong> the age<strong>in</strong>g<br />

process.<br />

Fig 3. Balance between oxidant <strong>and</strong> antioxidant def<strong>in</strong>es <strong>oxidative</strong><br />

<strong>stress</strong><br />

Antioxidant supplementation<br />

Although cells are equipped with an impressive repertoire<br />

<strong>of</strong> antioxidant enzymes as well as small antioxidant<br />

molecules, these agents may not be sufficient<br />

enough to normalize the redox status dur<strong>in</strong>g<br />

<strong>oxidative</strong> <strong>stress</strong> 9 . Under such conditions supplementation<br />

with exogenous <strong>antioxidants</strong> is required to<br />

restore the redox homeostasis <strong>in</strong> cells. Recent epidemiological<br />

studies have shown an <strong>in</strong>verse correlation<br />

between the levels <strong>of</strong> established <strong>antioxidants</strong><br />

(vitam<strong>in</strong> E <strong>and</strong> C) / phytonutrients present <strong>in</strong> tissue /<br />

blood samples <strong>and</strong> cardiovascular disease, cancer<br />

<strong>and</strong> with mortality due to these diseases 10-12 . S<strong>in</strong>ce<br />

several plant products are rich <strong>in</strong> <strong>antioxidants</strong> <strong>and</strong><br />

micronutrients, it is likely that dietary antioxidant<br />

supplementation protects aga<strong>in</strong>st the <strong>oxidative</strong><br />

<strong>stress</strong> mediated disease development. Therefore, to<br />

ma<strong>in</strong>ta<strong>in</strong> optimal body function, antioxidant supplementation<br />

has become an <strong>in</strong>creas<strong>in</strong>gly popular practice.<br />

Researchers are now attempt<strong>in</strong>g to develop<br />

new <strong>antioxidants</strong> either <strong>of</strong> natural or synthetic orig<strong>in</strong>.<br />

Natural products as <strong>antioxidants</strong><br />

A variety <strong>of</strong> dietary plants <strong>in</strong>clud<strong>in</strong>g grams, legumes,<br />

fruits, vegetables, tea, w<strong>in</strong>e etc. conta<strong>in</strong> <strong>antioxidants</strong>.<br />

The prophylactic properties <strong>of</strong> dietary plants<br />

have been attributed to the <strong>antioxidants</strong> / polyphenols<br />

present <strong>in</strong> them. Polyphenols with over 8000<br />

structural variants are secondary metabolites <strong>of</strong><br />

J Med Allied Sci 2011; 1(2)<br />

plants <strong>and</strong> represent a huge gamut <strong>of</strong> substances<br />

hav<strong>in</strong>g aromatic r<strong>in</strong>g(s) bear<strong>in</strong>g one or more hydroxyl<br />

moieties 13 . Polyphenols are effective ROS scavengers<br />

<strong>and</strong> metal chelators due to the presence <strong>of</strong><br />

multiple hydroxyl groups. Examples <strong>of</strong> polyphenolic<br />

natural <strong>antioxidants</strong> derived from plant sources <strong>in</strong>clude<br />

vitam<strong>in</strong> E, flavonoids, c<strong>in</strong>namic acid derivatives,<br />

curcum<strong>in</strong>, caffe<strong>in</strong>e, catech<strong>in</strong>s, gallic acid derivatives,<br />

salicylic acid derivatives, chlorogenic acid,<br />

resveratrol, folate, anthocyan<strong>in</strong>s <strong>and</strong> tann<strong>in</strong>s 13 . Apart<br />

from polyphenols there are also some plant derived<br />

non-phenolic secondary metabolites such as melaton<strong>in</strong>,<br />

carotenoids, ret<strong>in</strong>al, thiols, jasmonic acid, eicosapentaenoic<br />

acid, ascopyrones <strong>and</strong> allic<strong>in</strong> that<br />

show excellent antioxidant activity 14,15 . Vitam<strong>in</strong> C,<br />

the water soluble natural vitam<strong>in</strong>, plays a crucial role<br />

<strong>in</strong> regenerat<strong>in</strong>g lipid soluble <strong>antioxidants</strong> like vitam<strong>in</strong><br />

E 6 . Both vitam<strong>in</strong> E <strong>and</strong> C are used as st<strong>and</strong>ards for<br />

evaluat<strong>in</strong>g the antioxidant capacity <strong>of</strong> new molecules<br />

6 . As an example, the antioxidant activity <strong>of</strong><br />

curcum<strong>in</strong> has been discussed <strong>in</strong> some detail <strong>in</strong> the<br />

follow<strong>in</strong>g section.<br />

Curcum<strong>in</strong> a well-known natural antioxidant<br />

Curcum<strong>in</strong> is a yellow pigment, the major constituent<br />

<strong>of</strong> turmeric. It is a diferuloyl methane hav<strong>in</strong>g an unsaturated<br />

-diketone, <strong>and</strong> phenolic groups. It exhibits<br />

a variety <strong>of</strong> pharmacological properties such as<br />

anti-<strong>in</strong>flammatory, anti-carc<strong>in</strong>ogenic, anti-microbial,<br />

neuro-protective,cardio-protective,thrombo suppressive<br />

<strong>and</strong> anti-diabetic actions 16,17 . The compound is<br />

considered as a potent anti-cancer agent <strong>and</strong> is currently<br />

be<strong>in</strong>g evaluated <strong>in</strong> different stages <strong>of</strong> cl<strong>in</strong>ical<br />

trials aga<strong>in</strong>st a variety <strong>of</strong> cancers 16 .<br />

Curcum<strong>in</strong> is also a potent antioxidant. Studies from<br />

our laboratory as well as others have shown it to be<br />

an excellent scavenger <strong>of</strong> ROS such as O2 − <strong>radicals</strong>,<br />

lipid peroxyl <strong>radicals</strong>, OH <strong>radicals</strong> <strong>and</strong> nitrogen<br />

dioxide <strong>radicals</strong>, whose production is implicated <strong>in</strong><br />

the <strong>in</strong>duction <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> 18,19 . Its free radical<br />

scaveng<strong>in</strong>g ability is comparable to well known <strong>antioxidants</strong><br />

like vitam<strong>in</strong>s C <strong>and</strong> E 19 . It has been shown<br />

to <strong>in</strong>hibit lipid peroxidation <strong>in</strong> a variety <strong>of</strong> <strong>in</strong> vitro<br />

models such as rat bra<strong>in</strong> homogenates, rat liver microsomes,<br />

erythrocytes, liposomes, <strong>and</strong> macrophages,<br />

where peroxidation is <strong>in</strong>duced by Fenton<br />

reagent, H2O2, radiation <strong>and</strong> 2,2-azo-bis(2amid<strong>in</strong>opropane)<br />

hydrochloride (AAPH) 19 . It has also<br />

been reported to <strong>in</strong>hibit s<strong>in</strong>glet oxygen-stimulated<br />

DNA cleavage <strong>in</strong> plasmid pBR322 DNA, H2O2 <strong>and</strong><br />

AAPH <strong>in</strong>duced hemolysis <strong>of</strong> erythrocytes 19,20 . In epithelial<br />

cells, curcum<strong>in</strong> has been shown to <strong>in</strong>crease<br />

GSH levels which, <strong>in</strong> turn lead to lowered ROS production<br />

21 . It also mediates its anti<strong>oxidative</strong> effects by<br />

elevat<strong>in</strong>g the levels <strong>of</strong> phase II enzymes such as<br />

56


Kunwar A et al. <strong>Free</strong> <strong>radicals</strong>, <strong>oxidative</strong> <strong>stress</strong> <strong>and</strong> <strong>antioxidants</strong> <strong>in</strong> human health<br />

NAD(P)H:qu<strong>in</strong>one reductase (QR) <strong>and</strong> antioxidant<br />

enzymes like SOD, GPx <strong>and</strong> hemeoxygenase<br />

(HO) 21,22 . For example, our previous study have<br />

found that curcum<strong>in</strong> <strong>in</strong>duces the expression <strong>of</strong> SOD,<br />

GPx <strong>and</strong> HO-1 <strong>in</strong> RAW 264.7 (mur<strong>in</strong>e macrophage)<br />

cells contribut<strong>in</strong>g to its antioxidant effects 22 . Similarly,<br />

the <strong>in</strong> vitro <strong>in</strong>cubation <strong>of</strong> bov<strong>in</strong>e aortic endothelial<br />

cells <strong>and</strong> human proximal renal tubular cells with<br />

curcum<strong>in</strong> has been reported to result <strong>in</strong> dose <strong>and</strong><br />

time dependent <strong>in</strong>crease <strong>of</strong> HO-1 mRNA, prote<strong>in</strong><br />

expression <strong>and</strong> enzymatic activity 23 . The postulated<br />

mechanism for these actions <strong>in</strong>volves the activation<br />

<strong>of</strong> PKC pathways <strong>and</strong> antioxidant response element<br />

(ARE) mediated transcriptional <strong>in</strong>duction. Curcum<strong>in</strong><br />

has also been shown to <strong>in</strong>hibit <strong>oxidative</strong> damage <strong>in</strong><br />

different animal models. For example, it <strong>in</strong>hibited<br />

lipid degradation <strong>and</strong> decreased ischemia-<strong>in</strong>duced<br />

biochemical changes <strong>in</strong> heart <strong>in</strong> the fel<strong>in</strong>e model. In<br />

a focal cerebral ischemia model <strong>of</strong> rats, it <strong>of</strong>fered<br />

significant neuroprotection through <strong>in</strong>hibition <strong>of</strong> lipid<br />

peroxidation, <strong>in</strong>crease <strong>in</strong> endogenous antioxidant<br />

defense enzymes <strong>and</strong> reduction <strong>in</strong> peroxynitrite formation<br />

24 . Further, studies on the mechanistic aspects<br />

<strong>of</strong> antioxidant activity revealed that phenolic<br />

hydroxyl groups <strong>of</strong> curcum<strong>in</strong> play a significant role <strong>in</strong><br />

its diverse antioxidant activity 25 . Some reports suggested<br />

that both hydroxyl <strong>and</strong> diketone groups exert<br />

antioxidant properties. The phenolic hydroxyl groups<br />

give ROS scaveng<strong>in</strong>g ability <strong>and</strong> the diketone structure<br />

is considered to be responsible for its ability to<br />

b<strong>in</strong>d to metals. The ability <strong>of</strong> curcum<strong>in</strong> to act as an<br />

antioxidant <strong>in</strong> the presence <strong>of</strong> metals arises ma<strong>in</strong>ly<br />

by prevent<strong>in</strong>g the Fenton chemistry with<strong>in</strong> cells<br />

through chelation <strong>of</strong> free metal ions such as Cu +2 ,<br />

Fe +2 , etc 26 . There are some reports which <strong>in</strong>dicate<br />

that stable metal complexes <strong>of</strong> curcum<strong>in</strong> exhibit<br />

higher antioxidant activity as compared to native<br />

curcum<strong>in</strong> molecule. The manganese complexes <strong>of</strong><br />

curcum<strong>in</strong> were found to show greater SOD activity,<br />

hydroxyl radical scaveng<strong>in</strong>g activity, <strong>and</strong> nitric oxide<br />

radical scaveng<strong>in</strong>g activity than the parent molecules<br />

27 . Similarly, our group has reported that copper<br />

complex <strong>of</strong> curcum<strong>in</strong> also exhibits antioxidant,<br />

superoxide-scaveng<strong>in</strong>g <strong>and</strong> SOD enzyme mimick<strong>in</strong>g<br />

activities superior to those <strong>of</strong> curcum<strong>in</strong> itself 28 .<br />

These copper curcum<strong>in</strong> complexes were found better<br />

than curcum<strong>in</strong> <strong>in</strong> prevent<strong>in</strong>g the γ-radiation <strong>in</strong>duced<br />

<strong>oxidative</strong> <strong>stress</strong> <strong>in</strong> splenic lymphocytes. The<br />

associated mechanisms responsible for above effects<br />

were identified as activation <strong>of</strong> cytoprotective<br />

signal<strong>in</strong>g components like prote<strong>in</strong> k<strong>in</strong>ase C delta<br />

(PKC) <strong>and</strong> nuclear factor-B (NF--B) <strong>in</strong> temporally<br />

relevant manner 29 . Thus, curcum<strong>in</strong> exhibits a variety<br />

<strong>of</strong> antioxidant effects <strong>and</strong> appears to have a significant<br />

potential <strong>in</strong> the treatment <strong>of</strong> multiple diseases<br />

that are mediated through <strong>oxidative</strong> <strong>stress</strong>.<br />

J Med Allied Sci 2011; 1(2)<br />

Interest<strong>in</strong>gly, reports are now appear<strong>in</strong>g about apparently<br />

contradictory pro-<strong>oxidative</strong> effects <strong>of</strong> curcum<strong>in</strong>.<br />

For example, curcum<strong>in</strong> <strong>in</strong>duced DNA fragmentation<br />

<strong>and</strong> base damage <strong>in</strong> the presence <strong>of</strong> copper<br />

<strong>and</strong> isozymes <strong>of</strong> cytochrome p450 (CYP) that<br />

are present <strong>in</strong> lung, lymph, liver, <strong>and</strong> sk<strong>in</strong> 30 . The authors<br />

hypothesized that the damage was the result<br />

<strong>of</strong> CYP-catalyzed O-demethylation <strong>of</strong> curcum<strong>in</strong>,<br />

lead<strong>in</strong>g to the formation <strong>of</strong> an O-demethyl curcum<strong>in</strong><br />

radical, which, <strong>in</strong> the presence <strong>of</strong> copper, formed a<br />

DNA-damag<strong>in</strong>g Cu(I)-hydroperoxo complex. DNA<br />

damage was attenuated when concentrations <strong>of</strong><br />

curcum<strong>in</strong> exceeded those <strong>of</strong> copper, presumably<br />

due to the chelation <strong>of</strong> copper by curcum<strong>in</strong>. Copper<br />

dependent formation <strong>of</strong> 8-hydroxy-deoxyguanos<strong>in</strong>e<br />

<strong>in</strong> response to curcum<strong>in</strong> was also reported (Yosh<strong>in</strong>o<br />

et al., 2004) <strong>and</strong> l<strong>in</strong>ked to apoptotic cell death <strong>in</strong><br />

HL60 cells 31 . Similarly, curcum<strong>in</strong>-mediated DNA<br />

damage was also reported <strong>in</strong> mouse lymphocytes. In<br />

agreement with these reports we also observed that<br />

although curcum<strong>in</strong> <strong>in</strong>hibited that AAPH <strong>in</strong>duced lipid<br />

peroxidation <strong>and</strong> hemolysis <strong>in</strong> erythrocytes, it could<br />

not prevent the leakage <strong>of</strong> K + ions. Rather, curcum<strong>in</strong><br />

itself <strong>in</strong>duced K + ion release <strong>and</strong> GSH depletion at<br />

higher concentration suggest<strong>in</strong>g its pro-oxidant nature<br />

20 . Further, our group has reported that curcum<strong>in</strong><br />

<strong>in</strong>duced the ROS generation <strong>and</strong> GSH depletion <strong>in</strong><br />

RAW 264.7 cells <strong>in</strong> a concentration <strong>and</strong> time dependant<br />

manner 22 . Of late, several reports have<br />

emerged demonstrat<strong>in</strong>g pro-<strong>oxidative</strong> nature <strong>of</strong> curcum<strong>in</strong>,<br />

<strong>in</strong> view <strong>of</strong> its ability to promote <strong>oxidative</strong><br />

<strong>stress</strong> <strong>in</strong> transformed cells <strong>in</strong> culture. These effects<br />

have been correlated with enhanced ROS production,<br />

alteration <strong>of</strong> the cellular redox homeostasis<br />

(e.g., the depletion <strong>of</strong> glutathione), <strong>and</strong> disruption <strong>of</strong><br />

the mitochondrial functions e.g., dissipation <strong>of</strong> mitochondrial<br />

<strong>in</strong>ner transmembrane potential 32-35 . The<br />

enhancement <strong>of</strong> <strong>oxidative</strong> <strong>stress</strong> by curcum<strong>in</strong> <strong>in</strong><br />

transformed cells ultimately results <strong>in</strong> mitochondrialmediated<br />

apoptosis, <strong>and</strong> this has been considered<br />

as one <strong>of</strong> the mechanisms responsible for the anticancer<br />

activity <strong>of</strong> curcum<strong>in</strong> 32-35 . The mechanism by<br />

which curcum<strong>in</strong> mediates its pro-oxidant effects is<br />

not completely understood. However, some reports<br />

suggest that curcum<strong>in</strong> irreversibly b<strong>in</strong>ds to mitochondrial<br />

thioredox<strong>in</strong> reductase, <strong>and</strong> modifies its<br />

activity <strong>in</strong> to NADPH oxidase through alkylation <strong>of</strong><br />

cyste<strong>in</strong>e residue present <strong>in</strong> the catalytically active<br />

site <strong>of</strong> the enzyme 35 . This leads to the production <strong>of</strong><br />

ROS, which accord<strong>in</strong>g to few others is due to the<br />

α,β-unsaturated carbonyl moiety <strong>of</strong> curcum<strong>in</strong> 19 . The<br />

pro-oxidant property is also believed to be due to the<br />

generation <strong>of</strong> phenoxyl <strong>radicals</strong> <strong>of</strong> curcum<strong>in</strong> by<br />

heme peroxidase-H2O2 system. These phenoxyl<br />

<strong>radicals</strong> could be repaired by cellular GSH or NADH.<br />

In this process, the result<strong>in</strong>g GS radical forms<br />

57


Kunwar A et al. <strong>Free</strong> <strong>radicals</strong>, <strong>oxidative</strong> <strong>stress</strong> <strong>and</strong> <strong>antioxidants</strong> <strong>in</strong> human health<br />

GSSG radical <strong>and</strong> this may further reduce O2 to<br />

form O2 radical lead<strong>in</strong>g to elevated ROS levels 36 .<br />

In short, all these published reports support that curcum<strong>in</strong><br />

may switch from antioxidant to pro-oxidant<br />

depend<strong>in</strong>g on cell type, redox environment <strong>and</strong> dosage.<br />

A few reports also suggest that curcum<strong>in</strong> acts<br />

as an antioxidant <strong>in</strong> normal cells while show<strong>in</strong>g preferable<br />

pro-oxidant behavior <strong>in</strong> tumor cells. It is this<br />

differential property <strong>of</strong> curcum<strong>in</strong>, which makes it a<br />

potent anti-tumor agent. The chemical structure <strong>of</strong><br />

curcum<strong>in</strong> <strong>and</strong> its reported antioxidant <strong>and</strong> prooxidant<br />

mechanisms has been shown <strong>in</strong> fig 4.<br />

Synthetic compounds as <strong>antioxidants</strong><br />

The use <strong>of</strong> synthetic compounds possess<strong>in</strong>g antioxidant<br />

activity for the preservation <strong>of</strong> cosmetic,<br />

pharmaceutical <strong>and</strong> food products has been a common<br />

practice. The most commonly used synthetic<br />

<strong>antioxidants</strong> <strong>in</strong> the food <strong>in</strong>dustry are butylated 4hydroxytoluene<br />

(BHT) <strong>and</strong> butylated 4hydroxyanisole<br />

(BHA) 37 . However, the use <strong>of</strong> synthetic<br />

<strong>antioxidants</strong> <strong>in</strong> the health <strong>in</strong>dustry has been<br />

fraught with concerns about the toxicity associated<br />

with synthetic compounds 16 . There are numerous<br />

reports <strong>in</strong>dicat<strong>in</strong>g that polyphenols which are the<br />

major constituent <strong>of</strong> most <strong>of</strong> the natural <strong>antioxidants</strong><br />

are poorly bio-absorbed <strong>and</strong> the concentrations<br />

achieved <strong>in</strong> the target tissues are sub-therapeutic <strong>in</strong><br />

vitro 38 . These f<strong>in</strong>d<strong>in</strong>gs have shifted the attention <strong>of</strong><br />

researches towards the development <strong>of</strong> synthetic,<br />

water soluble, stable <strong>and</strong> nontoxic compounds with<br />

potent antioxidant activity <strong>and</strong> therapeutic application.<br />

Many different <strong>antioxidants</strong> <strong>and</strong> antioxidant<br />

compositions have been developed over the years<br />

based on their mechanism <strong>of</strong> action.<br />

One group <strong>of</strong> such <strong>antioxidants</strong> <strong>in</strong>cludes molecules<br />

that prevent the production <strong>of</strong> ROS through metal<br />

ions sequestration, free radical scaveng<strong>in</strong>g or by<br />

<strong>in</strong>hibit<strong>in</strong>g the ROS produc<strong>in</strong>g enzymes. For example,<br />

desferrioxam<strong>in</strong>e an iron chelator have been<br />

tested for prevent<strong>in</strong>g ROS formation <strong>in</strong> a myocardial<br />

stunn<strong>in</strong>g model system follow<strong>in</strong>g hemorrhagic <strong>and</strong><br />

endotoxic shock 39 . The allopur<strong>in</strong>ol <strong>and</strong> other pyrazolopyrimid<strong>in</strong>es,<br />

which are <strong>in</strong>hibitors <strong>of</strong> xanth<strong>in</strong>e oxidase,<br />

have also been tested under similar disease<br />

model system <strong>and</strong> have been found to be very effective.<br />

Several congeners <strong>of</strong> GSH have been used <strong>in</strong><br />

various animal models to attenuate ROS <strong>in</strong>duced<br />

<strong>in</strong>jury. For example, N-2-mercaptopropionylglyc<strong>in</strong>e<br />

has been found to confer protective effects <strong>in</strong> a can<strong>in</strong>e<br />

model <strong>of</strong> myocardial ischemia <strong>and</strong> reperfusion<br />

<strong>and</strong> N-acetylcyste<strong>in</strong>e (NAC) has been used to treat<br />

endotox<strong>in</strong> toxicity <strong>in</strong> sheep. Dimethyl thiourea<br />

(DMTU) <strong>and</strong> butyl-phenylnitrone (BPN) are believed<br />

to scavenge hydroxyl radical, <strong>and</strong> have been shown<br />

J Med Allied Sci 2011; 1(2)<br />

to reduce ischemia reperfusion <strong>in</strong>jury <strong>in</strong> rat myocardium<br />

<strong>and</strong> <strong>in</strong> rabbits 40 .<br />

Another important group <strong>of</strong> synthetic <strong>antioxidants</strong><br />

<strong>in</strong>cludes molecules that act as antioxidant enzyme<br />

mimic <strong>and</strong> catalytically remove the ROS. For example,<br />

the complex formed between the chelator, desferroxam<strong>in</strong>e<br />

<strong>and</strong> manganese possesses SOD activity<br />

<strong>and</strong> has shown some activity <strong>in</strong> biological models,<br />

but the <strong>in</strong>stability <strong>of</strong> the metal lig<strong>and</strong> complex apparently<br />

precludes its pharmaceutical use. Porphyr<strong>in</strong>manganese<br />

<strong>and</strong> curcum<strong>in</strong>-transition metal complexes<br />

have also shown SOD activity <strong>and</strong> are under development<br />

as SOD mimetic drugs 27 . Ebselen an organoselenium<br />

compound exhibits GPx activity <strong>and</strong><br />

has been tested <strong>in</strong> cl<strong>in</strong>ic as anti-<strong>in</strong>flammatory drug 41 .<br />

Recently our group has also been engaged <strong>in</strong> the<br />

development <strong>of</strong> aliphatic water-soluble selenium<br />

compounds as <strong>antioxidants</strong>. One such compound<br />

diseledipropionic acid showed significant antioxidant<br />

activity <strong>and</strong> potent <strong>in</strong> vivo radioprotection aga<strong>in</strong>st<br />

exposure to lethal dose <strong>of</strong> γ-radiation 42 .<br />

Based on these studies, it is clear that a need exists<br />

for antioxidant agents, which are efficient <strong>in</strong> remov<strong>in</strong>g<br />

ROS, <strong>in</strong>expensive to manufacture, stable, <strong>and</strong><br />

possess advantageous pharmacok<strong>in</strong>etic properties,<br />

such as the ability to cross the blood-bra<strong>in</strong> barrier<br />

<strong>and</strong> penetrate tissues. Such versatile <strong>antioxidants</strong><br />

would f<strong>in</strong>d use as pharmaceuticals <strong>and</strong> possibly as<br />

neutraceuticals.<br />

Limitations <strong>of</strong> antioxidant supplementation<br />

The primary concern regard<strong>in</strong>g antioxidant supplementation<br />

is their potentially deleterious effects on<br />

ROS production (pro-oxidant action) especially when<br />

precise modulation <strong>of</strong> ROS levels are needed to allow<br />

normal cell function 43 . In fact, some negative<br />

effects <strong>of</strong> <strong>antioxidants</strong> when used <strong>in</strong> dietary supplements<br />

(flavanoids, carotenoids, vitam<strong>in</strong> C <strong>and</strong> synthetic<br />

compounds) have emerged <strong>in</strong> the last few<br />

decades 11,12,44 . Mechanistic <strong>in</strong>vestigation has revealed<br />

that <strong>antioxidants</strong> may exhibit pro-oxidant activity<br />

depend<strong>in</strong>g on the specific set <strong>of</strong> conditions. Of<br />

particular <strong>importance</strong> are their dosage, redox conditions<br />

<strong>and</strong> also the presence <strong>of</strong> free transition metals<br />

<strong>in</strong> cellular milieu 36,44 . For example, ascorbate, a wellknown<br />

antioxidant <strong>in</strong> the presence <strong>of</strong> high concentration<br />

<strong>of</strong> ferric iron is a potent mediator <strong>of</strong> lipid peroxidation.<br />

Recent studies suggest that ascorbate<br />

sometimes <strong>in</strong>creases DNA damage <strong>in</strong> humans. Similarly<br />

β-carotene also can behave as a pro-oxidant<br />

<strong>in</strong> the lungs <strong>of</strong> smokers. Of note, natural antioxidant<br />

compounds have relatively poor bioavailability. It is<br />

therefore necessary to take <strong>in</strong>to cognizance the bioavailability<br />

<strong>and</strong> differential activities <strong>of</strong> natural <strong>and</strong><br />

synthetic antioxidant compounds before consider<strong>in</strong>g<br />

58


Kunwar A et al. <strong>Free</strong> <strong>radicals</strong>, <strong>oxidative</strong> <strong>stress</strong> <strong>and</strong> <strong>antioxidants</strong> <strong>in</strong> human health<br />

J Med Allied Sci 2011; 1(2)<br />

Fig 4. Important factors controll<strong>in</strong>g the antioxidant <strong>and</strong> pro-oxidant activities <strong>of</strong> curcum<strong>in</strong><br />

them as therapeutic or pharmacological agents.<br />

Conclusion<br />

In this regard it is worth mention<strong>in</strong>g that at present<br />

several natural as well as synthetic compounds are<br />

available <strong>in</strong> the market as antioxidant supplements<br />

<strong>in</strong> different formulations like capsules, tablets, etc.<br />

with a direction to be consumed under specific diseased<br />

condition. However, as a caution it is advised<br />

to undertake the consumption <strong>of</strong> such supplements<br />

only under a strict medical supervision <strong>in</strong> order to<br />

avoid the dosage related negative effects.<br />

Acknowledgments<br />

The authors are also grateful to Dr. S.K. Sarkar,<br />

Head, RPC Division <strong>and</strong> Dr. T. Mukherjee, Director,<br />

Chemistry Group, BARC for encouragement.<br />

Conflict <strong>of</strong> <strong>in</strong>terest: None<br />

References<br />

1. W<strong>in</strong>terbourn CC. Reconcil<strong>in</strong>g the chemistry <strong>and</strong> biology <strong>of</strong><br />

reactive oxygen species. Nature Chem Biol 2008; 4:278-<br />

286.<br />

2. Droge W. <strong>Free</strong> <strong>radicals</strong> <strong>in</strong> the physiological control <strong>of</strong> cell<br />

function. Physiol Rev 2002; 82:47–95.<br />

3. Schreck R, Baeuerle PA. A role for oxygen <strong>radicals</strong> as<br />

second messengers. Trends Cell Biol 1991; 1:39–42.<br />

4. Sevanian A <strong>and</strong> Urs<strong>in</strong>i F. <strong>Free</strong> Radic Biol Med 2000; 29:306-<br />

311.<br />

5. Beckman KB, Ames BN. Oxidative decay <strong>of</strong> DNA. J Biol<br />

Chem 1997; 272:19633–19636.<br />

6. Kohen R, Nyska A. Oxidation <strong>of</strong> biological systems: <strong>oxidative</strong><br />

<strong>stress</strong> phenomena, <strong>antioxidants</strong>, redox reactions, <strong>and</strong><br />

methods for their quantification. Toxicol Pathol 2002;<br />

30:620-630.<br />

7. Mates JM. Effects <strong>of</strong> antioxidant enzymes <strong>in</strong> the molecular<br />

control <strong>of</strong> reactive oxygen species toxicology. Toxicology<br />

2000; 153:83-104.<br />

8. Schafer FQ, Buettner GR. Redox environment <strong>of</strong> the cell as<br />

viewed through the redox state <strong>of</strong> the glutathione disulfide/glutathione<br />

couple. <strong>Free</strong> Radic Biol Med 2001; 30:1191-<br />

1212.<br />

9. Seifried HE, Anderson DE, Fishera I, et al. A review <strong>of</strong> the<br />

<strong>in</strong>teraction among dietary <strong>antioxidants</strong> <strong>and</strong> reactive oxygen<br />

species. J Nut Biochem 2007; 18:567-579.<br />

10. Cameron E, Paul<strong>in</strong>g L. Supplemental ascorbate <strong>in</strong> the supportive<br />

treatment <strong>of</strong> cancer: prolongation <strong>of</strong> survival times <strong>in</strong><br />

term<strong>in</strong>al human cancer. Proc Natl Acad Sci USA 1976;<br />

73:3685–3689.<br />

11. Willett WC, MacMahon B. Diet <strong>and</strong> cancer—an overview<br />

(second <strong>of</strong> two parts). N Engl J Med 1984; 310:697–703.<br />

12. Radimer KL, B<strong>in</strong>dewald B, Hughes J, et al. Dietary supplement<br />

use by US adults: data from the national health <strong>and</strong><br />

nutrition exam<strong>in</strong>ation Survey, 1999-2000. Am J Epidemio.<br />

2004; 160:339–349.<br />

13. Bors W, Heller W, Michel C, et al. ―Flavonoids <strong>and</strong> Polyphenols:<br />

chemistry <strong>and</strong> biology‖ In H<strong>and</strong>book <strong>of</strong> Antioxidants.<br />

New York, 1996, 409.<br />

14. Bendich A, Olson JA. Biological actions <strong>of</strong> carotenoids. FA-<br />

SEB J 1989; 3:1927-1932.<br />

15. Goldman A. Melaton<strong>in</strong>, a review. Brit J Cl<strong>in</strong> Pharma 1995;<br />

19:258-260.<br />

16. Strimpakos AS, Sharma R. Curcum<strong>in</strong>: Preventive <strong>and</strong> Therapeutic<br />

Properties <strong>in</strong> Laboratory Studies <strong>and</strong> Cl<strong>in</strong>ical Trials.<br />

Antioxid Redox Signal<strong>in</strong>g 2008; 10:512-534.<br />

17. Aggarwal BB, Sung B. Pharmacological basis for the role <strong>of</strong><br />

curcum<strong>in</strong> <strong>in</strong> chronic diseases: an age-old spice with modern<br />

targets. Trends Pharm Sci 2009; 30:85-94.<br />

18. Priyadars<strong>in</strong>i KI. <strong>Free</strong> radical reactions <strong>of</strong> curcum<strong>in</strong> <strong>in</strong> membrane<br />

model. <strong>Free</strong> Radic Biol Med 1997; 23:838-844.<br />

59


Kunwar A et al. <strong>Free</strong> <strong>radicals</strong>, <strong>oxidative</strong> <strong>stress</strong> <strong>and</strong> <strong>antioxidants</strong> <strong>in</strong> human health<br />

19. An<strong>and</strong> P, Thomas SG, Kunnumakkara AB, et al. Biological<br />

activities <strong>of</strong> curcum<strong>in</strong> <strong>and</strong> its analogues (Congeners) made<br />

by man <strong>and</strong> mother nature. Biochem Pharmacol 2008;<br />

76:1590–1611.<br />

20. Banerjee A, Kunwar A, Mishra B, et al. Concentration dependent<br />

antioxidant/pro-oxidant activity <strong>of</strong> curcum<strong>in</strong> studies<br />

from AAPH <strong>in</strong>duced hemolysis <strong>of</strong> RBCs. Chem Biol Interact<br />

2008; 174:134-139.<br />

21. Biswas SK, McClure D, Jimenez LA, et al. Curcum<strong>in</strong> <strong>in</strong>duces<br />

glutathione biosynthesis <strong>and</strong> <strong>in</strong>hibits NF-kappaB activation<br />

<strong>and</strong> <strong>in</strong>terleuk<strong>in</strong>-8 release <strong>in</strong> alveolar epithelial cells: mechanism<br />

<strong>of</strong> free radical scaveng<strong>in</strong>g activity. Antioxid Redox Signal<strong>in</strong>g<br />

2005; 7:32–41.<br />

22. Kunwar A, S<strong>and</strong>ur SK, Krishna M, et al. Curcum<strong>in</strong> mediates<br />

time <strong>and</strong> concentration dependent regulation <strong>of</strong> redox homeostasis<br />

lead<strong>in</strong>g to cytotoxicity <strong>in</strong> macrophage cells. Eur J<br />

Pharmacol 2009; 611:8-16.<br />

23. Hill-Kapturczak N, Thamilselvan V, Liu F, et al. Mechanism<br />

<strong>of</strong> heme oxygenase-1 gene <strong>in</strong>duction by curcum<strong>in</strong> <strong>in</strong> human<br />

renal proximal tubule cells. Am J Physiol Renal Physiol<br />

2001; 281: F851–F859.<br />

24. Thiyagarajan M, Sharma SS. Neuroprotective effect <strong>of</strong> curcum<strong>in</strong><br />

<strong>in</strong> middle cerebral artery occlusion <strong>in</strong>duced focal<br />

cerebral ischemia <strong>in</strong> rats. Life Sciences 2004; 74:969–985.<br />

25. Priyadars<strong>in</strong>i KI, Maity DK, Naik GH, et al. <strong>Free</strong> Radic Biol<br />

Med 2003; 35: 475-484.<br />

26. Jiao Y, Wilk<strong>in</strong>son J, Christ<strong>in</strong>e Pietsch E, et al. Iron chelation<br />

<strong>in</strong> the biological activity <strong>of</strong> curcum<strong>in</strong>. <strong>Free</strong> Radic Biol Med<br />

2006; 40:1152-1160.<br />

27. Vajragupta O, Boonchoong P, Watanabe H, et al. Manganese<br />

complexes <strong>of</strong> curcum<strong>in</strong> <strong>and</strong> its derivatives: evaluation<br />

for the radical scaveng<strong>in</strong>g ability <strong>and</strong> neuroprotective activity.<br />

<strong>Free</strong> Radic Biol Med 2003: 35:1632-1644.<br />

28. Barik A, Mishra B, Shen L, et al. Evaluation <strong>of</strong> a new copper(II)-curcum<strong>in</strong><br />

complexes as superoxide dismutase mimic<br />

<strong>and</strong> its free radical reactions. <strong>Free</strong> Radic Biol Med 2005; 39:<br />

811-822.<br />

29. Kunwar A, Narang H, Priyadars<strong>in</strong>i KI, et al. Delayed activation<br />

<strong>of</strong> PKCdelta <strong>and</strong> NFkappaB <strong>and</strong> higher radioprotection<br />

<strong>in</strong> splenic lymphocytes by copper (II)-Curcum<strong>in</strong> (1:1) complex<br />

as compared to curcum<strong>in</strong>. J Cell Biochem 2007;<br />

102:1214-1224.<br />

30. Sakano K, Kawanishi S. Metal-mediated DNA damage <strong>in</strong>duced<br />

by curcum<strong>in</strong> <strong>in</strong> the presence <strong>of</strong> human cytochrome<br />

P450 isozymes. Arch Biochem Biophys 2002; 405:223–230.<br />

31. Yosh<strong>in</strong>o M, Haneda M, Naruse M, et al. Prooxidant activity<br />

J Med Allied Sci 2011; 1(2)<br />

<strong>of</strong> curcum<strong>in</strong>: Copper-dependent formation <strong>of</strong> 8-hydroxy-2_deoxyguanos<strong>in</strong>e<br />

<strong>in</strong> DNA <strong>and</strong> <strong>in</strong>duction <strong>of</strong> apoptotic cell<br />

death. Toxicol <strong>in</strong> Vitro 2004; 18:783–789.<br />

32. S<strong>and</strong>ur SK, P<strong>and</strong>ey MK, Sung B, et al. Curcum<strong>in</strong>, demethoxycurcum<strong>in</strong>,<br />

bisdemethoxycurcum<strong>in</strong>, tetrahydrocurcum<strong>in</strong><br />

<strong>and</strong> turmerones differentially regulate anti-<strong>in</strong>flammatory <strong>and</strong><br />

anti-proliferative responses through a ROS-<strong>in</strong>dependent<br />

mechanism. Carc<strong>in</strong>ogenesis 2007; 28:1765-1773.<br />

33. S<strong>and</strong>ur SK, Ichikawa H, P<strong>and</strong>ey MK, et al. Role <strong>of</strong> prooxidants<br />

<strong>and</strong> <strong>antioxidants</strong> <strong>in</strong> the anti-<strong>in</strong>flammatory <strong>and</strong> apoptotic<br />

effects <strong>of</strong> curcum<strong>in</strong> (diferuloyalmethane). <strong>Free</strong> Radic<br />

Biol Med 2007; 43:568-580.<br />

34. Syng-Ai C, Kumari AL, Khar, A. Effect <strong>of</strong> curcum<strong>in</strong> on normal<br />

<strong>and</strong> tumor cells: Role <strong>of</strong> glutathione <strong>and</strong> bcl-2. Mol Cancer<br />

Ther 2004; 3:1101–1108.<br />

35. Fang J, Lu J, Holmgren A. Thioredox<strong>in</strong> reductase is irreversibly<br />

modified by curcum<strong>in</strong>: a novel molecular mechanism for<br />

its anticancer activity. J Biol Chem 2005; 280:25284-25290.<br />

36. Galati G, Sabzevari O, Wilson JX, et al. Prooxidant activity<br />

<strong>and</strong> cellular effects <strong>of</strong> the phenoxyl <strong>radicals</strong> <strong>of</strong> dietary flavonoids<br />

<strong>and</strong> other polyphenolics. Toxicology 2002; 177:91–<br />

104.<br />

37. Chung JG. Effects <strong>of</strong> butylated hydroxyanisole (BHA) <strong>and</strong><br />

butylated hydroxytoluene (BHT) on the acetylation <strong>of</strong> 2am<strong>in</strong><strong>of</strong>luorene<br />

<strong>and</strong> DNA-2-am<strong>in</strong><strong>of</strong>luorene adducts <strong>in</strong> the rat.<br />

Toxicol Sci 1999; 51:202-210.<br />

38. Manach C, Scalbert A, Mor<strong>and</strong> C, et al. Polyphenols: food<br />

sources <strong>and</strong> bioavailability. Am J Cl<strong>in</strong> Nutr 2004; 79:727-<br />

747.<br />

39. Van der Kraaij AM, van Eijk HG, Koster JF. Prevention <strong>of</strong><br />

postischemic cardiac <strong>in</strong>jury by the orally active iron chelator<br />

1,2- dimethyl-3-hydroxy-4-pyridone (L1) <strong>and</strong> the antioxidant<br />

(+)- cyanidanol-3. Circulation 1989; 80:158-164.<br />

40. Fox RB. Prevention <strong>of</strong> granulocyte-mediated oxidant lung<br />

<strong>in</strong>jury <strong>in</strong> rats by a hydroxyl radical scavenger, dimethyl thiourea.<br />

J Cl<strong>in</strong> Invest 1984; 74:1456-1464.<br />

41. Parnham MJ, Sies H. Ebselen: Prospective therapy for cerebral<br />

ischemia. Exp Op<strong>in</strong> Invest Drugs 2000; 9:607-619.<br />

42. Kunwar A, Bansal P, Kumar SJ, et al. In vivo radioprotection<br />

studies <strong>of</strong> 3,3'-diselenodipropionic acid, a selenocyst<strong>in</strong>e derivative.<br />

<strong>Free</strong> Radic Biol Med 2010; 48:399-410.<br />

43. Seifried HE, Anderson DE, Milner JA, Greenwald P. New<br />

developments <strong>in</strong> antioxidant research, Nova Science Publishers<br />

Inc., Hauppauge (NY), 2006.<br />

44. Herbert V. The antioxidant supplement myth. Am J Cl<strong>in</strong> Nutr<br />

1994; 60:157–168.<br />

60<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!