30.04.2013 Views

Finite Volume Methods for Advection Diffusion on Moving Interfaces ...

Finite Volume Methods for Advection Diffusion on Moving Interfaces ...

Finite Volume Methods for Advection Diffusion on Moving Interfaces ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Mathematics: Numerical analysis and<br />

scientific computing<br />

<str<strong>on</strong>g>Finite</str<strong>on</strong>g> <str<strong>on</strong>g>Volume</str<strong>on</strong>g> <str<strong>on</strong>g>Methods</str<strong>on</strong>g> <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Advecti<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>Diffusi<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>Moving</strong> <strong>Interfaces</strong><br />

and Applicati<strong>on</strong> <strong>on</strong><br />

Surfactant Driven Thin Film Flow<br />

Dissertati<strong>on</strong><br />

zur Erlangung des Doktorgrades (Dr. rer. nat.)<br />

der Mathematisch-Naturwissenschaftlichen Fakultät<br />

der Rheinischen Friedrich-Wilhelms-Universität B<strong>on</strong>n<br />

vorgelegt v<strong>on</strong> Simplice Firmin Nemadjieu<br />

aus Bafang (Kamerun)<br />

B<strong>on</strong>n, May 2012


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen<br />

Friedrich-Wilhelms-Universität B<strong>on</strong>n<br />

am Institut für Numerische Simulati<strong>on</strong>.<br />

1. Gutachter: Prof. Dr. Martin Rumpf<br />

2. Gutachter: Prof. Robert Eymard<br />

3. Gutachter: Prof. Dr. Werner Ballmann<br />

4. Gutachter: Prof. Dr. Helmut Schmitz<br />

Tag der Promoti<strong>on</strong>: 12. July 2012<br />

Erscheinungsjahr: 2012<br />

2


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

C<strong>on</strong>tents<br />

Acknowledgment iii<br />

Nomenclature v<br />

General introducti<strong>on</strong> vii<br />

I <str<strong>on</strong>g>Finite</str<strong>on</strong>g> volume method <strong>on</strong> evolving surfaces 1<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces 3<br />

1.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

1.3 Derivati<strong>on</strong> of the finite volume scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

1.4 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

1.5 C<strong>on</strong>vergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

1.5.1 Geometric approximati<strong>on</strong> estimates . . . . . . . . . . . . . . . . . . . . . . . 12<br />

1.5.2 C<strong>on</strong>sistency estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

1.5.3 Proof of Theorem 1.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

1.6 Coupled reacti<strong>on</strong> diffusi<strong>on</strong> and advecti<strong>on</strong> model . . . . . . . . . . . . . . . . . . . . . 19<br />

1.7 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces 27<br />

2.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

2.2 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

2.3 Surface approximati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

2.4 Derivati<strong>on</strong> of the finite volume scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

2.4.1 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

2.4.2 The discrete gradient operator . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

2.4.3 <str<strong>on</strong>g>Finite</str<strong>on</strong>g> <str<strong>on</strong>g>Volume</str<strong>on</strong>g>s discretizati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br />

2.4.4 Maximum principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42<br />

2.4.5 Implementati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

2.5 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br />

2.6 C<strong>on</strong>vergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br />

2.6.1 Geometric approximati<strong>on</strong> estimates . . . . . . . . . . . . . . . . . . . . . . . 48<br />

2.6.2 C<strong>on</strong>sistency estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br />

2.6.3 Proof of Theorem 2.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54<br />

2.7 Coupled reacti<strong>on</strong> diffusi<strong>on</strong> and advecti<strong>on</strong> model . . . . . . . . . . . . . . . . . . . . . 57<br />

2.8 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60<br />

II Modeling and simulati<strong>on</strong> of surfactant driven thin-film flow <strong>on</strong> moving<br />

surfaces 67<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces 69<br />

i


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

C<strong>on</strong>tents<br />

3.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69<br />

3.2 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71<br />

3.3 Geometry setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

3.3.1 Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73<br />

3.3.2 N<strong>on</strong>dimensi<strong>on</strong>alizati<strong>on</strong>/scaling and basic tensor calculus . . . . . . . . . . . . 74<br />

3.4 Derivati<strong>on</strong> of surfactant and thin-film equati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . 84<br />

3.4.1 Velocity and its derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84<br />

3.4.2 Scaled surfactant equati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />

3.4.3 Model reducti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> the thin-film equati<strong>on</strong> using lubricati<strong>on</strong> approximati<strong>on</strong> . 86<br />

4 Simulati<strong>on</strong> of surfactant driven thin-film flow <strong>on</strong> moving surfaces 93<br />

4.1 Introducti<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93<br />

4.2 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94<br />

4.3 Derivati<strong>on</strong> of the scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96<br />

4.3.1 Re<str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 96<br />

4.3.2 Geometric setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br />

4.3.3 Discrete gradient operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99<br />

4.3.4 <str<strong>on</strong>g>Finite</str<strong>on</strong>g> volume discretizati<strong>on</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103<br />

4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br />

C<strong>on</strong>clusi<strong>on</strong> and perspectives 121<br />

Bibliography 123<br />

ii


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Acknowledgment<br />

I am extremely thankful to Prof. Dr. Martin Rumpf <str<strong>on</strong>g>for</str<strong>on</strong>g> the supervisi<strong>on</strong> of this thesis and <str<strong>on</strong>g>for</str<strong>on</strong>g> the<br />

opportunities he has given me throughout to visit and participate actively in outstanding c<strong>on</strong>ferences<br />

where my mind got opened with regards to several aspects of the finite volume method as well as<br />

many other mathematical topics. I would also like to thank him <str<strong>on</strong>g>for</str<strong>on</strong>g> the opportunity he gave me to<br />

visit Prof. Robert Eymard who methodically introduced me to the new trends in the finite volume<br />

method. This deeply reoriented my development; may Prof. Eymard finds here the expressi<strong>on</strong> of<br />

my profound gratitude. I am particularly indebted to Martin Lenz, <str<strong>on</strong>g>for</str<strong>on</strong>g> his patient hearing, the<br />

fruitful mathematical discussi<strong>on</strong>s, the proofreading of parts of this thesis, his assistance in hardware<br />

setup and his involvement in the programming of the visualizati<strong>on</strong> tools GRAPE mainly used in<br />

this thesis; the same goes to Orestis Vantzos <str<strong>on</strong>g>for</str<strong>on</strong>g> fruitful mathematical discussi<strong>on</strong>s, the proofreading<br />

of parts of this thesis and the introducti<strong>on</strong> to Mathematica. I would like to thank Ole Schween<br />

and Benedikt Geihe <str<strong>on</strong>g>for</str<strong>on</strong>g> their assistance in the hardware setting. Many thanks to Ms Sodoge Stork<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> her assistance in administrative issues, Martina Teusner, Abigail Wacher, Evaristus Fuh Chuo,<br />

Stefan Steinerberger and Prof. Dr. Hans-Peter Helfrich <str<strong>on</strong>g>for</str<strong>on</strong>g> their proofreading. I am very grateful<br />

to all the colleagues of the group of Prof. Dr. Martin Rumpf <str<strong>on</strong>g>for</str<strong>on</strong>g> the nice scientific collaborative<br />

envir<strong>on</strong>ment.<br />

I am deeply grateful to my family, particularly my late father Tchamani Bernard and my mother<br />

Sigou Rosalie who despite the particularly difficult times of African developing countries in the<br />

Nineties have never spared any ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t to provide me with a good educati<strong>on</strong>. May they find here<br />

a particular sign of love. I would like to thank my friends Leopold Wandji, David Jialeu, Patrice<br />

Kouemou, Patrice N<strong>on</strong>gni, Richard Kamda, Severin Koumene, Jean Bernard Noujep, Aline Mboussi<br />

and Franck Olivier Tchatchoua who have always given me a hand at needed time. My thanks go also<br />

to my friends Catalin I<strong>on</strong>escu, Irene Paniccia, João Carreira, Habiba Kalantarova, Major Poungom,<br />

Hugues Kamalieu, Armel Poungom and Eric Yamdjeu <str<strong>on</strong>g>for</str<strong>on</strong>g> their c<strong>on</strong>stant encouragement. Finally<br />

I would like to thank my compani<strong>on</strong> in life Evelyne Chouandjeu who has sacrificed a lot <str<strong>on</strong>g>for</str<strong>on</strong>g> the<br />

accomplishment of this work.<br />

May all these pers<strong>on</strong>s find here the expressi<strong>on</strong> of my profound gratitude.<br />

Of course, all these has been possible <strong>on</strong>ly with the blessing of God.<br />

I am there<str<strong>on</strong>g>for</str<strong>on</strong>g>e infinitely grateful to the Almighty.<br />

iii


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Acknowledgment<br />

iv


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Nomenclature<br />

t time<br />

Γt Family of oriented surfaces<br />

ν Normal to the surface Γt<br />

Γ k : Γtk Surface at time tk<br />

N t Neighborhood of the surface Γt<br />

Nk : N tk Neighborhood of the surface Γ k<br />

ν k Normal to the surface Γ k<br />

vΓ<br />

Velocity of material point<br />

s1, s2<br />

Local parametric variables of the surface Γt<br />

Xt, s1, s2<br />

F St<br />

rt, s1, s2<br />

νF S<br />

Local parameterizati<strong>on</strong> of the surface Γt<br />

Free surface<br />

Local parameterizati<strong>on</strong> of the free surface F St<br />

Normal to the free surface F St<br />

vF S,pt<br />

¯H<br />

Velocity of a material point <strong>on</strong> the free surface<br />

N<strong>on</strong> scaled thin-film height<br />

H Scaled thin-film height<br />

H Vertical lenght scale<br />

L<br />

ɛ :<br />

Horiz<strong>on</strong>tal lenght scale<br />

H<br />

1<br />

L<br />

¯K N<strong>on</strong> scaled curvature tensor of the surface Γt<br />

K Scaled curvature tensor of the surface Γt<br />

K : tr K Trace of K (Mean curvature of the surface Γt)<br />

K2 : tr K 2 Trace of K 2<br />

K3 : tr K 3 Trace of K 3<br />

R¯H : Id ¡ ¯ H ¯ K ¡1<br />

R H : Id ¡ ɛHK ¡1<br />

∇Γ N<strong>on</strong> scaled surface gradient<br />

∇Γ Scaled surface gradient<br />

Γ <br />

<br />

t t vΓ ¤ ∇<br />

PF S,ν : Id ¡ ν ν ¡ ɛRH∇ΓH Material derivative<br />

Projecti<strong>on</strong> operator <strong>on</strong>to the free surface tangent plane<br />

in the directi<strong>on</strong> of the surface normal ν<br />

Pe<br />

Peclet number<br />

∇F S<br />

N<strong>on</strong> scaled free surface gradient<br />

∇F S<br />

Scaled free surface gradient<br />

∆Γ K F S<br />

Scaled surface divergence (Laplace-Beltrami operator)<br />

N<strong>on</strong> scaled free surface mean curvature<br />

KF S<br />

Scaled free surface mean curvature<br />

Πeq<br />

¯Π<br />

x <br />

Equilibrium c<strong>on</strong>centrati<strong>on</strong> of surfactant<br />

Surfactant c<strong>on</strong>centrati<strong>on</strong> in the maximum packing limit<br />

Πeq<br />

¯Π<br />

R<br />

Surfactant coverage<br />

Universal gas c<strong>on</strong>stant<br />

Ta<br />

Absolute temperature in Kelvin<br />

Π Surfactant c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> the free-surface<br />

v


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Nomenclature<br />

vi<br />

¯γ0<br />

vF S<br />

vRF S<br />

v Γ<br />

v Γ,ν : v Γ,ν ¤ ν<br />

v Γ,tan : v Γ ¡ νv Γ,ν<br />

γ Surface tensi<strong>on</strong><br />

g Unit gravity vector<br />

g ν : g ¤ ν<br />

g tan : g ¡ g ¤ νν<br />

Surface tensi<strong>on</strong> of the clean surface (Π 0)<br />

Dimensi<strong>on</strong>less velocity of the fluid particle <strong>on</strong> F St<br />

Relative velocity of the fluid particle at the free surface<br />

Velocity of a substrate material point<br />

A Dimensi<strong>on</strong>less Hamaker c<strong>on</strong>stant<br />

B0 B<strong>on</strong>d number<br />

C Inverse capillary number<br />

φ : AH ¡3<br />

η H ¡<br />

Disjoining pressure<br />

1<br />

2ɛH2K 1<br />

6ɛ2 H 3 ¨ 2 K ¡ K2 Fluid density above the substrate Γt


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

General introducti<strong>on</strong><br />

In the present thesis, we are devoted to the design and analysis of finite volume schemes <str<strong>on</strong>g>for</str<strong>on</strong>g> timedependent<br />

partial differential equati<strong>on</strong>s (PDEs) <strong>on</strong> evolving surfaces as well as the modeling and<br />

simulati<strong>on</strong> of surfactant driven thin film flow <strong>on</strong> moving curved surfaces; thus our work is divided<br />

into two main parts. The first part “<str<strong>on</strong>g>Finite</str<strong>on</strong>g> volume method <strong>on</strong> evolving surfaces” discusses two finite<br />

volume schemes <str<strong>on</strong>g>for</str<strong>on</strong>g> the simulati<strong>on</strong> of time-dependent c<strong>on</strong>vecti<strong>on</strong>-diffusi<strong>on</strong> and reacti<strong>on</strong> problem<br />

while the sec<strong>on</strong>d part “Modeling and simulati<strong>on</strong> of surfactant driven thin-film flow <strong>on</strong> moving surfaces”<br />

deals with a reduced model <str<strong>on</strong>g>for</str<strong>on</strong>g> a coupled free boundary problem from fluid dynamics and its<br />

simulati<strong>on</strong> via the schemes defined in the first part.<br />

The finite volume method has become <strong>on</strong>e of the most popular simulati<strong>on</strong> tools <str<strong>on</strong>g>for</str<strong>on</strong>g> PDEs during the<br />

last two decades. The method has been extensively studied mathematically and has been applied<br />

to complicated problems and to challenging situati<strong>on</strong>s such as simulati<strong>on</strong> <strong>on</strong> str<strong>on</strong>g anisotropic and<br />

n<strong>on</strong>c<strong>on</strong><str<strong>on</strong>g>for</str<strong>on</strong>g>mal meshes. We refer to the symposium reports <str<strong>on</strong>g>Finite</str<strong>on</strong>g> <str<strong>on</strong>g>Volume</str<strong>on</strong>g>s <str<strong>on</strong>g>for</str<strong>on</strong>g> Complex Applicati<strong>on</strong>s<br />

I-VI <str<strong>on</strong>g>for</str<strong>on</strong>g> the advances in the field. The main attracti<strong>on</strong>s of the method reside in its local c<strong>on</strong>servati<strong>on</strong><br />

properties, its ability to be applied <strong>on</strong> general meshes, the good adaptati<strong>on</strong> to c<strong>on</strong>vecti<strong>on</strong> dominated<br />

problems and the fact that it is relatively easy to implement. Un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunately, the applicati<strong>on</strong> of finite<br />

volume method <str<strong>on</strong>g>for</str<strong>on</strong>g> direct simulati<strong>on</strong> of PDEs <strong>on</strong> curved surfaces is less understood and is a recent<br />

field of investigati<strong>on</strong>. So far, <strong>on</strong>ly few research works have been devoted to this issue. Let us point<br />

out <str<strong>on</strong>g>for</str<strong>on</strong>g> example [19] where the authors discuss a finite volume <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> problems <strong>on</strong><br />

spherical domains. Here the authors <str<strong>on</strong>g>for</str<strong>on</strong>g>mulate a finite volume scheme <strong>on</strong> logically rectangular grids<br />

based <strong>on</strong> a local parameterizati<strong>on</strong> of the sphere. This work is later extended in [18] to c<strong>on</strong>vecti<strong>on</strong>diffusi<strong>on</strong>-reacti<strong>on</strong><br />

problems <strong>on</strong> surfaces having curved or spherical domains. We would also like<br />

to menti<strong>on</strong> [33, 76, 34] where the authors successively study the finite volume method <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong><br />

problem <strong>on</strong> the sphere, then <strong>on</strong> general surfaces and later the fourth orther partial differential<br />

equati<strong>on</strong> <strong>on</strong> general surfaces. In these works, the curved surface is approximated by Vor<strong>on</strong>oi meshes<br />

which are based <strong>on</strong> a particularly good triangulati<strong>on</strong> of the surfaces; the vertices of the triangulati<strong>on</strong><br />

being bounded to the surface. Similar to these works, existing paper that come to our knowledge<br />

discussing finite volume <strong>on</strong> surfaces rely <strong>on</strong> particular polyg<strong>on</strong>izati<strong>on</strong> of the substrate (surface) and<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> those treating diffusi<strong>on</strong> problems, they c<strong>on</strong>centrate <strong>on</strong> isotropic diffusi<strong>on</strong>. In the first part of the<br />

present work, we discuss two finite volume methods <str<strong>on</strong>g>for</str<strong>on</strong>g> the simulati<strong>on</strong> of PDEs <strong>on</strong> curved surfaces<br />

am<strong>on</strong>g which <strong>on</strong>e is devoted to the simulati<strong>on</strong> <strong>on</strong> general polyg<strong>on</strong>al approximati<strong>on</strong> of surfaces. The<br />

first method (Chapter I) has been already published in SIAM Journal of Numerical Analysis [86].<br />

It extends a finite volume method by Eymard, Gallouët, and Herbin in [45] <strong>on</strong> evolving curved<br />

surfaces. We c<strong>on</strong>sider the parabolic problem<br />

u u∇Γ ¤ v ¡ ∇Γ ¤ D∇Γu g <strong>on</strong> Γt, (0.1)<br />

a sequence of triangular surfaces approximating the time-dependent curved surface Γt at different<br />

time steps with nodes living <strong>on</strong> the respective smooth surfaces, and derive a finite volumes scheme<br />

based <strong>on</strong> the two points flux approximati<strong>on</strong> discussed in [45]. By u d<br />

dtut, xt we denote the<br />

(advective) material derivative of the scalar density u, ∇Γ ¤ v the surface divergence of the vector<br />

field v, ∇Γu the surface gradient of u, g a source term, and D a symmetric and elliptic diffusi<strong>on</strong><br />

tensor <strong>on</strong> the tangent bundle of Γt. We assume a Lagrangian representati<strong>on</strong> of the surface where<br />

the approximated surface at a time step tk 1 is obtained by evolving the node of the approximated<br />

surface at the previous time step tk with the surface velocity, and study the Eulerian evoluti<strong>on</strong> of<br />

u <strong>on</strong> the evolving triangular representati<strong>on</strong> of Γt. The triangular surfaces are assumed to be so<br />

vii


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

General introducti<strong>on</strong><br />

close to the respective curved surfaces that the orthog<strong>on</strong>al projecti<strong>on</strong> of meshes <strong>on</strong> the respective<br />

c<strong>on</strong>tinuous surfaces define an evolving curved mesh. Then our finite volume scheme is derived<br />

by approximating the integral of (0.1) <strong>on</strong> the path of each evolving curved cell using the Leibniz<br />

integral <str<strong>on</strong>g>for</str<strong>on</strong>g>mula <str<strong>on</strong>g>for</str<strong>on</strong>g> the parabolic part and the divergence theorem <strong>on</strong> curved surfaces <str<strong>on</strong>g>for</str<strong>on</strong>g> the space<br />

integrati<strong>on</strong> of the diffusive part. An implicit discrete time integrati<strong>on</strong> is c<strong>on</strong>sidered <str<strong>on</strong>g>for</str<strong>on</strong>g> both diffusive<br />

and source terms. The derived scheme is implicit, stable and c<strong>on</strong>vergent. We also extend the scheme<br />

to the c<strong>on</strong>vecti<strong>on</strong>-diffusi<strong>on</strong> and reacti<strong>on</strong> problem<br />

u u∇ Γ ¤ v ¡ ∇ Γ ¤ D∇ Γu ∇ Γ ¤ wu gu <strong>on</strong> Γ Γt, . (0.2)<br />

where w is an additi<strong>on</strong>al tangential velocity <strong>on</strong> the surface, which transports the density u al<strong>on</strong>g the<br />

moving interface Γt and the reacti<strong>on</strong> term g now depends <strong>on</strong> u. We discretize the additi<strong>on</strong>al advecti<strong>on</strong><br />

term using the first order upwinding procedure similar to the <strong>on</strong>e used <strong>on</strong> flat surfaces. The<br />

advantage here is that we work <strong>on</strong> the surface without any attempt to use a particular parameterizati<strong>on</strong><br />

of the surface, nor computing any geometric feature of the surface; thus the method is suitable<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> any curved surface. The limits of the method resides <strong>on</strong> the choice of triangles center points<br />

where the unknowns are located. In fact, these points have to satisfy a particular perpendicularity<br />

c<strong>on</strong>diti<strong>on</strong> introduced <strong>on</strong> each cell by the tensor D ¡1 which can be satisfied <str<strong>on</strong>g>for</str<strong>on</strong>g> str<strong>on</strong>g anisotropic<br />

tensors <strong>on</strong>ly if care has been taken during the c<strong>on</strong>structi<strong>on</strong> of the mesh. Also, in real world applicati<strong>on</strong>s,<br />

many meshes are generated either from scanning devices or from meshing tools and are<br />

not necessarily triangular. Furthermore such processes are error pr<strong>on</strong>e and the obtained meshes are<br />

rarely satisfactory; thus they most often go through a remeshing machinery <str<strong>on</strong>g>for</str<strong>on</strong>g> optimizati<strong>on</strong> which<br />

increases the error <strong>on</strong> the vertices coordinates. In the c<strong>on</strong>text of moving surfaces, we will also notice<br />

that <str<strong>on</strong>g>for</str<strong>on</strong>g> surfaces described implicitly through PDEs as <str<strong>on</strong>g>for</str<strong>on</strong>g> interface flows, meshes automatically<br />

c<strong>on</strong>tain error from their numerical computati<strong>on</strong>. Thus, a more rigorous analysis of schemes designed<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> direct simulati<strong>on</strong> of PDEs <strong>on</strong> surfaces should take into account such uncertainty. These lacks are<br />

taken into account in Chapter II where we derive a new finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> general polyg<strong>on</strong>al<br />

surfaces based <strong>on</strong> a proper rec<strong>on</strong>structi<strong>on</strong> of the gradient of u around vertices of the mesh. Here we<br />

subdivide our finite volume cells into subcells attached to vertices and assume a linear rec<strong>on</strong>structi<strong>on</strong><br />

of our functi<strong>on</strong> u <strong>on</strong> subcells; thus c<strong>on</strong>stant gradient rec<strong>on</strong>structi<strong>on</strong> <strong>on</strong> subcells. The gradient rec<strong>on</strong>structi<strong>on</strong><br />

<strong>on</strong> subcells incorporates already the flux c<strong>on</strong>tinuity through edges, and the integrati<strong>on</strong><br />

menti<strong>on</strong>ed above gives the finite volume scheme. We introduce <str<strong>on</strong>g>for</str<strong>on</strong>g> (0.2) a sec<strong>on</strong>d order upwinding<br />

based <strong>on</strong> our gradient rec<strong>on</strong>structi<strong>on</strong>. In fact after we have c<strong>on</strong>structed the gradient <strong>on</strong> the subcells,<br />

we define using the minmod procedure, a new piecewise c<strong>on</strong>stant gradient of minimum norm that<br />

approximates the gradient of the u <strong>on</strong> cells. The values <strong>on</strong> edges are then chosen using the Taylor<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mula and the upwinding procedure. The obtained finite volume is suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> discretizati<strong>on</strong> <strong>on</strong><br />

any evolving curved surface. No surface parameterizati<strong>on</strong> is needed, nor any geometric quantity.<br />

In the sec<strong>on</strong>d part, we first model in Chapter III the coupled surfactant driven thin film flow <strong>on</strong><br />

an evolving surface using lubricati<strong>on</strong> approximati<strong>on</strong>. A thin film flowing <strong>on</strong> an evolving curved<br />

surface is c<strong>on</strong>sidered, <strong>on</strong> top of which a layer of surfactant diffuses. Such a system is present in<br />

the mammalian lungs. The thin film is represented by the lining while the surfactant is represented<br />

by lipid m<strong>on</strong>olayers. The surfactant plays an important role in the respiratory system. During the<br />

expirati<strong>on</strong> phase <str<strong>on</strong>g>for</str<strong>on</strong>g> example, it lowers the surface tensi<strong>on</strong> to prevent the surface to collapse and also<br />

facilitate the inspirati<strong>on</strong>. A lack of surfactant would require a lot of energy to reopen the alveoli and<br />

alow the ventilati<strong>on</strong>. Let us menti<strong>on</strong> too that often, the lung of prematurely born infants cannot<br />

produce enough surfactant to regulate the respiratory system; this leads to the so called respiratory<br />

distress syndrome (RDS) often cured by surfactant replacement therapy (SRT) which c<strong>on</strong>sists of<br />

installing the surfactant in the trachea of the patient where the substance is transported in the<br />

large airways. We refere to [15, 63, 66, 78] <str<strong>on</strong>g>for</str<strong>on</strong>g> more reading in the topic of lung surfactant. Thin<br />

films occur also in engineering (aircraft de-icing films), in geology (lava) am<strong>on</strong>gst other. In order<br />

to describe the evoluti<strong>on</strong> of such a fluid, we rewrite the momentum incompressible Navier-Stokes<br />

equati<strong>on</strong> in a curvilinear coordinate system attached to the substrate using some basic tensor cal-<br />

viii


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

culus. This operati<strong>on</strong> leads to the expressi<strong>on</strong> of the velocity comp<strong>on</strong>ent of the fluid particle tangent<br />

to the substrate as an ordinary differential equati<strong>on</strong> of its height, that we later solve using power<br />

series at the lubricati<strong>on</strong> approximati<strong>on</strong> order (Oɛ 2 ); the quantity ɛ represents the ratio between<br />

the substrate tangential length scale and the height scale and is assumed to be very small. The final<br />

equati<strong>on</strong> which expresses the height’s evoluti<strong>on</strong> of the film is obtained by rewriting the c<strong>on</strong>servati<strong>on</strong><br />

of mass in the curvilinear coordinate system using the derived equati<strong>on</strong> of the velocity comp<strong>on</strong>ent<br />

parallel to the substrate. We chose a surfactant diffusi<strong>on</strong> equati<strong>on</strong> model adopted by St<strong>on</strong>e in [113]<br />

to describe the evoluti<strong>on</strong> of the surfactant <strong>on</strong> the free surface interface. Previous work in this domain<br />

include the work of Roy, Roberts and Simps<strong>on</strong> in [107], which models the thin film <strong>on</strong> static curved<br />

surface using center manifold theory and computer algebra. Howell in [67], models thin film <strong>on</strong><br />

evolving curved surfaces. In fact, he is <strong>on</strong>ly able to derived equati<strong>on</strong>s specific to particular phases<br />

of the evoluti<strong>on</strong> corresp<strong>on</strong>ding to the status of the surface. The most recent work in the domain is<br />

probably the work of Uwe Fermum, who in his PhD thesis [48] derived an equati<strong>on</strong> describing the<br />

evoluti<strong>on</strong> of the film density <strong>on</strong> the evolving curved surface using a weak <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong>. Our model<br />

here coincides with the model in [107] <strong>on</strong> fixed surfaces and is more precise than the model in [67]<br />

when applicable. Finally in Chapter IV we extend our finite volume method described in Chapter II<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> the simulati<strong>on</strong> of the fourth order system of degenerated equati<strong>on</strong>s obtained here. In particular<br />

we combine the operator splitting procedure adopted in [62], the c<strong>on</strong>vecti<strong>on</strong> splitting procedure in<br />

[57] with our finite volume methodology to derive a c<strong>on</strong>servative and less dissipative scheme <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

the simulati<strong>on</strong> of a fourth order problem. The surfactant equati<strong>on</strong> is trans<str<strong>on</strong>g>for</str<strong>on</strong>g>med to a c<strong>on</strong>vecti<strong>on</strong><br />

diffusi<strong>on</strong> equati<strong>on</strong> <strong>on</strong> a ghost free surface displacing <strong>on</strong>ly in the normal directi<strong>on</strong>, and an appropriate<br />

projecti<strong>on</strong> of the scheme in Chapter II <strong>on</strong> the free surface ensures it discretizati<strong>on</strong>. To the best of<br />

our knowledge, there is no work treating this simulati<strong>on</strong> in the literature. We end the thesis with<br />

a c<strong>on</strong>cluding remark. Let us menti<strong>on</strong> that in order to keep the chapters self-c<strong>on</strong>tained, we will be<br />

repeating some important noti<strong>on</strong>s.<br />

ix


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

General introducti<strong>on</strong><br />

x


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Part I<br />

<str<strong>on</strong>g>Finite</str<strong>on</strong>g> volume method <strong>on</strong> evolving<br />

surfaces<br />

1


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

1.1 Introducti<strong>on</strong><br />

In many applicati<strong>on</strong>s in material science, biology and geometric modeling, evoluti<strong>on</strong> problems do<br />

not reside <strong>on</strong> a flat Euclidean domain but <strong>on</strong> a curved hypersurface. Frequently, this surface is itself<br />

evolving in time driven by some velocity field. In general, the induced transport is not normal to the<br />

surface but incorporates a tangential moti<strong>on</strong> of the geometry and thus a corresp<strong>on</strong>ding tangential<br />

advecti<strong>on</strong> process <strong>on</strong> the evolving surface. In [37] Dziuk and Elliot proposed a finite element scheme<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> the numerical simulati<strong>on</strong> of diffusi<strong>on</strong> processes <strong>on</strong> such evolving surfaces. In this chapter, we<br />

pick up the finite volume methodology introduced by Eymard, Gallouët, and Herbin in [45] <strong>on</strong> fixed<br />

Euclidean domains and discuss a generalizati<strong>on</strong> in case of transport and diffusi<strong>on</strong> processes <strong>on</strong> curved<br />

and evolving surfaces. The general motivati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> a finite volume <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> is the potential of a<br />

further extensi<strong>on</strong> to coupled diffusi<strong>on</strong> and dominating n<strong>on</strong>linear advecti<strong>on</strong> models. Here, we restrict<br />

to linear transport.<br />

Applicati<strong>on</strong>s of the c<strong>on</strong>sidered model are the diffusi<strong>on</strong> of densities <strong>on</strong> biological membranes or<br />

reacti<strong>on</strong> diffusi<strong>on</strong> equati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> texture generati<strong>on</strong> <strong>on</strong> surfaces [120]. Frequently, partial differential<br />

equati<strong>on</strong>s <strong>on</strong> the surface are coupled to the evoluti<strong>on</strong> of the geometry itself. Examples are the<br />

spreading of thin liquid films or coatings <strong>on</strong> surfaces [107], transport and diffusi<strong>on</strong> of a surfactant<br />

<strong>on</strong> interfaces in multiphase flow [73], surfactant driven thin film flow [60] <strong>on</strong> the enclosed surface<br />

of lung alveoli coupled with the expansi<strong>on</strong> or c<strong>on</strong>tracti<strong>on</strong> of the alveoli, and diffusi<strong>on</strong> induced grain<br />

boundary moti<strong>on</strong> [17]. In this chapter, we assume the evoluti<strong>on</strong> of the surface to be given a priori<br />

and study the finite volume discretizati<strong>on</strong> of diffusi<strong>on</strong> <strong>on</strong> the resulting family of evolving surfaces<br />

as a model problem. The evolving surfaces are discretized by simplicial meshes, where grid nodes<br />

are assumed to be transported al<strong>on</strong>g moti<strong>on</strong> trajectories of the underlying flow field. The approach<br />

applies to evolving polyg<strong>on</strong>al curves and triangulated surfaces. In the presentati<strong>on</strong> we focus <strong>on</strong> the<br />

case of moving two-dimensi<strong>on</strong>al surfaces. <str<strong>on</strong>g>Finite</str<strong>on</strong>g> volume methods <strong>on</strong> curved geometries have been<br />

discussed recently in [19, 33], but to the best of our knowledge they have so far not been analyzed<br />

<strong>on</strong> evolving surfaces.<br />

An alternative approach would be to c<strong>on</strong>sider a level set representati<strong>on</strong> via an evolving level set<br />

functi<strong>on</strong>. In this case, projecti<strong>on</strong>s of the derivatives <strong>on</strong>to the embedded tangent space provide a<br />

mechanism <str<strong>on</strong>g>for</str<strong>on</strong>g> computing geometric differential operators [10] <strong>on</strong> fixed level set surfaces. <str<strong>on</strong>g>Finite</str<strong>on</strong>g><br />

elements in this c<strong>on</strong>text are discussed in [16], a narrow band approach with a very thin fitted mesh<br />

is presented in [30], and in [56] an improved approximati<strong>on</strong> of tangential differential operators is<br />

presented. Furthermore, in [38] a finite element level set method is introduced <str<strong>on</strong>g>for</str<strong>on</strong>g> the soluti<strong>on</strong> of<br />

parabolic PDEs <strong>on</strong> a family of evolving implicit surfaces.<br />

Our finite volume method is closely related to the finite element approach by Dziuk and Elliott<br />

[37]. They c<strong>on</strong>sider a moving triangulati<strong>on</strong>, where the nodes are propagating with the actual moti<strong>on</strong><br />

velocity, which effectively leads to space time finite element basis functi<strong>on</strong>s similar to the Eulerian-<br />

Lagrangian localized adjoint method (ELLAM) approach [65]. We c<strong>on</strong>sider as well a family of<br />

triangulated surfaces with nodes located <strong>on</strong> moti<strong>on</strong> trajectories where the triangles are treated as<br />

finite volume cells. The resulting scheme immediately incorporates mass c<strong>on</strong>servati<strong>on</strong>. An overview<br />

<strong>on</strong> computati<strong>on</strong>al approaches which use moving meshes to solve PDEs is given in [89]. Here, the<br />

moving mesh reflects the Eulerian coordinates underlying the evoluti<strong>on</strong> problem but <strong>on</strong> a fixed<br />

3


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

computati<strong>on</strong>al domain.<br />

The chapter is organized as follows. In Secti<strong>on</strong> 1.2, the mathematical model is discussed, and<br />

in Secti<strong>on</strong> 1.3 we derive the finite volume scheme <strong>on</strong> simplicial grids. Discrete a priori estimates<br />

c<strong>on</strong>sistently <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated in terms of the evolving geometry are established in Secti<strong>on</strong> 1.4. In Secti<strong>on</strong><br />

1.5 we state and prove the main c<strong>on</strong>vergence result. Finally, Secti<strong>on</strong> 1.6 discusses an operator<br />

splitting scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> the coupling of diffusive and advective transport so far not encoded in the<br />

surface moti<strong>on</strong> itself, and in Secti<strong>on</strong> 1.7 numerical results are presented.<br />

1.2 Mathematical model<br />

We c<strong>on</strong>sider a family of compact, smooth, and oriented hypersurfaces Γt R n (n 2, 3) <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

t 0, tmax generated by an evoluti<strong>on</strong> Φ : 0, tmax ¢ Γ 0 R n defined <strong>on</strong> a reference surface Γ 0<br />

with Φt, Γ 0 Γt. Let us assume that Γ 0 is C 3 smooth and that Φ C 1 0, tmax , C 3 Γ0. For<br />

simplicity we assume the reference surface Γ 0 to coincide with the initial surface Γ0 (cf. Figure<br />

1.5).<br />

We denote by v tΦ the velocity of material points and assume the decompositi<strong>on</strong> v vnν vtan<br />

into a scalar normal velocity vn in directi<strong>on</strong> of the surface normal ν and a tangential velocity vtan.<br />

The evoluti<strong>on</strong> of a c<strong>on</strong>servative material quantity u with ut, ¤ : Γt R, which is propagated<br />

with the surface and simultaneously undergoes a linear diffusi<strong>on</strong> <strong>on</strong> the surface, is governed by the<br />

parabolic equati<strong>on</strong><br />

u u∇ Γ ¤ v ¡ ∇ Γ ¤ D∇ Γu g <strong>on</strong> Γ Γt , (1.1)<br />

where u d<br />

dt ut, xt is the (advective) material derivative of u, ∇ Γ ¤ v the surface divergence<br />

of the vector field v, ∇ Γu the surface gradient of the scalar field u, g a source term with gt, ¤ :<br />

Γt R, and D is a diffusi<strong>on</strong> tensor <strong>on</strong> the tangent bundle. Here we assume a symmetric,<br />

uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly coercive C 2 diffusi<strong>on</strong> tensor field <strong>on</strong> whole R n to be given, whose restricti<strong>on</strong> <strong>on</strong> the<br />

tangent plane is then effectively incorporated in the model. With a slight misuse of notati<strong>on</strong>, we<br />

denote this global tensor field also by D. Furthermore, we impose an initial c<strong>on</strong>diti<strong>on</strong> u0, ¤ u0<br />

at time 0. Let us assume that the mappings t, x ut, Φt, x, vt, Φt, x, and gt, Φt, x are<br />

C 1 0, tmax , C 3 Γ0, C 0 0, tmax , C 3 Γ0, and C 1 0, tmax , C 1 Γ0 regular, respectively. For<br />

the ease of presentati<strong>on</strong> we restrict here to the case of a closed surface without boundary. Our<br />

results can easily be generalized to surfaces with boundary, <strong>on</strong> which we either impose a Dirichlet or<br />

Neumann boundary c<strong>on</strong>diti<strong>on</strong>. For a discussi<strong>on</strong> of existence, uniqueness, and regularity of soluti<strong>on</strong>s<br />

we refer to [37] and the references therein.<br />

1.3 Derivati<strong>on</strong> of the finite volume scheme<br />

For the ease of presentati<strong>on</strong>, we restrict ourselves to the case of two-dimensi<strong>on</strong>al surfaces in R3 . A<br />

generalizati<strong>on</strong> of the numerical analysis presented here is straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward. We c<strong>on</strong>sider a sequence<br />

of regular surface triangulati<strong>on</strong>s interpolating Γtk <str<strong>on</strong>g>for</str<strong>on</strong>g> tk kτ and kmax τ tmax (cf. Dziuk and<br />

Elliott [37] <str<strong>on</strong>g>for</str<strong>on</strong>g> the same setup with respect to a finite element discretizati<strong>on</strong>). Here, h indicates the<br />

maximal diameter of a triangle <strong>on</strong> the whole sequence of triangulati<strong>on</strong>s, τ is the time step size, and<br />

k is the index of a time step. All triangulati<strong>on</strong>s share the same grid topology, and given the set of<br />

vertices x0 j <strong>on</strong> the initial triangular surface Γ0 h , the vertices of Γk h lie <strong>on</strong> moti<strong>on</strong> trajectories. Thus,<br />

they are evaluated based <strong>on</strong> the flux functi<strong>on</strong> Φ, i.e., xjtk Φtk, x0 j (cf. Figure 1.1). Single<br />

closed triangles or edges of the topological grid Γh are denoted by S and σ, respectively. Upper<br />

indices denote the explicit geometric realizati<strong>on</strong> at the corresp<strong>on</strong>ding time step.<br />

Thus, a closed triangle of the triangulated surface geometry Γk h is denoted by Sk . We assume that<br />

the triangulati<strong>on</strong>s Γk h are regular; i.e., there exist c<strong>on</strong>stants c, C 0 such that ch2 mk S Ch2<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> all S and all k, where mk S denotes the area of Sk . As in the Euclidean case discussed in [45],<br />

4


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Figure 1.1: Sequence of triangulati<strong>on</strong>s Γ k h<br />

1.3 Derivati<strong>on</strong> of the finite volume scheme<br />

interpolating a fourfold symmetric object in its evoluti<strong>on</strong>.<br />

we also assume that <str<strong>on</strong>g>for</str<strong>on</strong>g> all time steps tk, where k 0, . . . kmax , and all simplices S k Γ k h there<br />

exists a point X k S Sk and <str<strong>on</strong>g>for</str<strong>on</strong>g> each edge σ k S k a point X k σ σ k such that the vector <br />

X k S X k σ is<br />

perpendicular to σ k with respect to the scalar product induced by the inverse of the diffusi<strong>on</strong> tensor<br />

<strong>on</strong> the triangle S k at the point X k σ, i.e.,<br />

DX k σ ¨ ¡1 X k S ¡ X k σ ¤ V 0, (1.2)<br />

where V is a vector parallel to the edge σ k . Furthermore, we assume that these points can be<br />

chosen such that <str<strong>on</strong>g>for</str<strong>on</strong>g> two adjacent simplices Sk and Lk the corresp<strong>on</strong>ding points <strong>on</strong> the comm<strong>on</strong><br />

edge σk Sk Lk k 1<br />

coincide (cf. Figure 1.2). The point XS at the following time step need not be<br />

the c<strong>on</strong>sistently transported point Xk S under the flow Φ. It will turn out that <str<strong>on</strong>g>for</str<strong>on</strong>g> the error analysis<br />

the later stated c<strong>on</strong>diti<strong>on</strong> (1.16) is sufficient. This allows us to choose the points Xk S in a way that<br />

fulfills these requirements without changing the grid topology between time steps, as described in the<br />

paragraph after equati<strong>on</strong> (1.16). For a later comparis<strong>on</strong> of discrete quantities <strong>on</strong> the triangulati<strong>on</strong> Γk h<br />

S k<br />

X k S<br />

Figure 1.2: A sketch of the local c<strong>on</strong>figurati<strong>on</strong> of points X k S , Xk L , and Xk σ <strong>on</strong> two adjacent simplices<br />

S k and L k , which in general do not lie in the same plane.<br />

and c<strong>on</strong>tinuous quantities <strong>on</strong> Γtk we define a lifting operator from Γk h <strong>on</strong>to Γtk via the orthog<strong>on</strong>al<br />

projecti<strong>on</strong> Pk <strong>on</strong>to Γtk in directi<strong>on</strong> of the surface normal ν of Γtk. For sufficiently small h this<br />

projecti<strong>on</strong> is uniquely defined and smooth; we also assume it to be bijective. By Sl,k : PkS k we<br />

define the projecti<strong>on</strong> of a triangle Sk <strong>on</strong> Γtk and by Sl,kt : Φt, Φ ¡1tk, Sl,k the temporal<br />

evoluti<strong>on</strong> of Sl,k , which we will take into account <str<strong>on</strong>g>for</str<strong>on</strong>g> t tk, tk 1. Furthermore, we can estimate the<br />

relative change of area of triangles by m<br />

k 1<br />

S mkS X k σ<br />

σ<br />

X k L<br />

L k<br />

1 Oτ ¨ <str<strong>on</strong>g>for</str<strong>on</strong>g> all simplices S k and all k because<br />

of the smoothness of the flux functi<strong>on</strong> Φ.<br />

Based <strong>on</strong> these notati<strong>on</strong>al preliminaries, we can now derive a suitable finite volume discretizati<strong>on</strong>.<br />

Thus, let us integrate (1.1) <strong>on</strong> t, x t tk, tk 1, x S l,k t:<br />

k 1<br />

where GS gtk 1, Pk 1 k 1<br />

XS tk 1<br />

<br />

k 1 1<br />

S<br />

Gk<br />

tk Sl,k g da dt τm S , (1.3)<br />

t<br />

. Using the Leibniz <str<strong>on</strong>g>for</str<strong>on</strong>g>mula d <br />

Sl,k u da t Sl,kt u u∇Γ ¤v da<br />

dt<br />

5


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

(cf. [37]), we obtain <str<strong>on</strong>g>for</str<strong>on</strong>g> the material derivative<br />

tk 1<br />

tk<br />

<br />

S l,k t<br />

u u∇ Γ ¤ v da dt <br />

<br />

S l,k tk 1<br />

<br />

u da ¡<br />

Sl,k u da<br />

tk<br />

k 1<br />

mS utk 1, P k 1 k 1<br />

X<br />

S ¡ m k Sutk, P k X k S . (1.4)<br />

Next, integrating the elliptic term again over the temporal evoluti<strong>on</strong> of a lifted triangular patch<br />

and applying Gauss’s theorem we derive the following approximati<strong>on</strong>:<br />

tk 1<br />

tk<br />

<br />

τ <br />

σS<br />

S l,k t<br />

k 1<br />

m<br />

∇ Γ ¤ D∇ Γu da dt <br />

σ λ<br />

tk 1<br />

tk Sl,kt k 1 utk 1, P<br />

Sσ<br />

k 1 k 1 Xσ ¡ utk 1, Pk 1 k 1<br />

XS k 1<br />

dSσ <br />

D∇ Γu ¤ n S l,k t dl dt (1.5)<br />

where nSl,kt is the unit outer c<strong>on</strong>ormal <strong>on</strong> Sl,kt tangential to Γt, σk 1 an edge of Sk 1 k 1 , mσ the length of σk 1 k 1<br />

1 1<br />

k 1<br />

1 1<br />

, d : Xk ¡Xk , and λ : Dk nk . The discrete diffusi<strong>on</strong> tensor<br />

Sσ S σ<br />

Sσ Sσ Sσ<br />

k 1<br />

is defined by DSσ : ¨ k 1 T k 1 k 1<br />

k 1<br />

PS DXσ PS , where PS is the orthog<strong>on</strong>al projecti<strong>on</strong> <strong>on</strong>to the<br />

plane given by Sk 1 k 1<br />

and nSσ is the unit outer c<strong>on</strong>ormal to Sk 1 <strong>on</strong> the edge σ. Indeed, the orthog-<br />

k 1 k 1<br />

k 1 1<br />

<strong>on</strong>ality assumpti<strong>on</strong> (1.2) implies that Xσ ¡ XS is parallel to DSσ nk<br />

Sσ . Hence, ∇Γu ¤ nSl,kt k 1 utk 1,P<br />

can c<strong>on</strong>sistently be approximated by the difference quotient λSσ k 1 k 1<br />

Xσ ¡utk 1,P k 1 k 1<br />

X S<br />

k 1<br />

.<br />

d<br />

Sσ ¨ k 1 k 1 T k 1 k 1<br />

Alternatively, <strong>on</strong>e could introduce a diffusi<strong>on</strong> tensor DS : PS DXS PS <strong>on</strong> trian-<br />

k 1<br />

gles and modify (1.2) and the definiti<strong>on</strong> of λSσ accordingly. We will comment <strong>on</strong> this alternative<br />

approach in the c<strong>on</strong>text of the c<strong>on</strong>vergence analysis in Secti<strong>on</strong> 1.5.2.<br />

Now we introduce discrete degrees of freedom U k S and U k σ <str<strong>on</strong>g>for</str<strong>on</strong>g> uP k X k S and uPk X k σ, respectively.<br />

The values U k S are the actual degrees of freedom; they will be compiled into a functi<strong>on</strong> U k that is<br />

c<strong>on</strong>stant <strong>on</strong> each cell Sk and is an element of the discrete soluti<strong>on</strong> space Vk h which is defined in (1.8)<br />

below. The U k σ are <strong>on</strong>ly auxiliary degrees of freedom; cf. (1.6). Then the discrete counterpart of the<br />

c<strong>on</strong>tinuous flux balance<br />

<br />

S l,k tL l,k t<br />

D∇ Γu S l,k t ¤ n S l,k t da ¡<br />

<br />

S l,k tL l,k t<br />

<strong>on</strong> S l,k t L l,k t <str<strong>on</strong>g>for</str<strong>on</strong>g> two adjacent simplices S k and L k is given by<br />

<br />

,<br />

D∇ Γu L l,k t ¤ n L l,k t da<br />

k 1 k 1<br />

k 1 k 1<br />

k 1 Uσ ¡ US k 1<br />

1 Uσ ¡ UL k 1<br />

mσ λ k 1 Sσ ¡mk σ<br />

λ k 1 Lσ<br />

dSσ dLσ <str<strong>on</strong>g>for</str<strong>on</strong>g> the edge σ k S k L k . Let us emphasize that this flux balance holds independently of the tilt<br />

of S k and L k at σ k . Hence, we can cancel out the degrees of freedom<br />

k 1<br />

U<br />

k 1 S d<br />

Uσ k Lσλk Sσ<br />

k 1<br />

UL dk Sσλk Lσ<br />

d k Lσ λk Sσ dk Sσ λk Lσ<br />

<strong>on</strong> edges and based <strong>on</strong> the approximati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> the parabolic term in (1.4) and the elliptic term in<br />

(1.5), we finally obtain the finite volume scheme<br />

6<br />

m<br />

k 1 k 1<br />

S US ¡ mkSU k S ¡ τ <br />

σS<br />

where M k σ :<br />

k 1<br />

mσ Mσ k 1<br />

k 1 k 1<br />

UL ¡ US k 1<br />

dSL τm<br />

λk Sσλk Lσ dk SL<br />

dk Lσλk Sσ dk Sσλk , d<br />

Lσ<br />

k SL : dkSσ dkLσ .<br />

k 1 1<br />

S<br />

Gk<br />

(1.6)<br />

S , (1.7)


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1.3 Derivati<strong>on</strong> of the finite volume scheme<br />

k 1<br />

This requires the soluti<strong>on</strong> of a linear system of equati<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> the cellwise soluti<strong>on</strong> values U<br />

k 0, . . . kmax ¡ 1 and <str<strong>on</strong>g>for</str<strong>on</strong>g> given initial data U 0 S at time t0 0.<br />

Remark. Different from the finite volume method <strong>on</strong> Euclidean domains in [45], all coefficients<br />

depend <strong>on</strong> the geometric evoluti<strong>on</strong> and thus in particular change in time. A comparis<strong>on</strong> of the<br />

discrete and c<strong>on</strong>tinuous soluti<strong>on</strong> requires a mapping from the sequence of triangulati<strong>on</strong>s Γk h <strong>on</strong>to<br />

the c<strong>on</strong>tinuous family of surfaces Γtt0,tmax .<br />

Figure 1.3: On the left an isotropic mesh <str<strong>on</strong>g>for</str<strong>on</strong>g> a torus is shown together with a zoom in with indicated<br />

points X k S <strong>on</strong> the triangles and Xk σ <strong>on</strong> edges. On the right an anisotropic mesh corre-<br />

sp<strong>on</strong>ding to an anisotropic diffusi<strong>on</strong> tensor D diag 1<br />

25 , 1, 1 is rendered together with<br />

the corresp<strong>on</strong>ding zoom. One observes in the blow up of the anisotropic mesh geometry<br />

a transiti<strong>on</strong> from the str<strong>on</strong>gly anisotropic regime close to the center plane of the torus<br />

<strong>on</strong> the right and the more isotropic mesh <strong>on</strong> the left.<br />

Figure 1.3 shows two different triangulati<strong>on</strong>s of a (rotating) torus (cf. Figure 1.7, 1.8, and 1.9<br />

below <str<strong>on</strong>g>for</str<strong>on</strong>g> corresp<strong>on</strong>ding numerical results). In the first case the underlying diffusi<strong>on</strong> is isotropic;<br />

hence an isotropic mesh is used <str<strong>on</strong>g>for</str<strong>on</strong>g> the simulati<strong>on</strong> of the evoluti<strong>on</strong> problem. In the sec<strong>on</strong>d case<br />

an anisotropic diffusi<strong>on</strong> tensor D diag 1<br />

25 , 1, 1 is taken into account. To enable the definiti<strong>on</strong> of<br />

c<strong>on</strong>sistent triangle nodes Xk S and edge nodes Xk σ, an anisotropic mesh has been generated. Even<br />

though D is c<strong>on</strong>stant <strong>on</strong> R3,3 , the induced tangential diffusivity varies <strong>on</strong> the surface. This variati<strong>on</strong><br />

is properly reflected by the generated mesh. We refer to Secti<strong>on</strong> 1.7 <str<strong>on</strong>g>for</str<strong>on</strong>g> some remarks <strong>on</strong> the mesh<br />

generati<strong>on</strong>.<br />

Let us associate with the comp<strong>on</strong>ents U k S <strong>on</strong> the simplices Sk of the triangulati<strong>on</strong> Γk h a piecewise<br />

c<strong>on</strong>stant functi<strong>on</strong> U k with U kS k U k S , and let<br />

V k §<br />

k k §<br />

h : U : Γh R § U k Sk c<strong>on</strong>st S k Γ k <br />

h<br />

(1.8)<br />

be the space of these functi<strong>on</strong>s <strong>on</strong> Γ k h . Analogously, we denote by Gk the corresp<strong>on</strong>ding piecewise<br />

c<strong>on</strong>stant functi<strong>on</strong> with GkS k Gk S . On the functi<strong>on</strong> space Vk h , we can define a discrete energy<br />

seminorm based <strong>on</strong> a weighted sum of squared difference quotients.<br />

Definiti<strong>on</strong> 1.3.1 (Discrete energy seminorm) For U k V k h<br />

U k 1,Γk :<br />

h<br />

£ <br />

σSL<br />

m k σM k σ<br />

we define<br />

S<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g><br />

k UL ¡ U k¨2 S<br />

dk 1<br />

2<br />

. (1.9)<br />

SL<br />

7


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

Be<str<strong>on</strong>g>for</str<strong>on</strong>g>e we prove suitable a priori estimates, let us verify the existence and uniqueness of the discrete<br />

soluti<strong>on</strong>.<br />

Propositi<strong>on</strong> 1.3.2 The discrete problem (1.7) has a unique soluti<strong>on</strong>.<br />

Proof The system (1.7) has a unique soluti<strong>on</strong> U k 1 if the kernel of the corresp<strong>on</strong>ding linear operator<br />

is trivial. To prove this, we assume U k 0 and Gk 1 0 in (1.7); then multiply each equati<strong>on</strong><br />

k 1<br />

by the the corresp<strong>on</strong>ding US <str<strong>on</strong>g>for</str<strong>on</strong>g> the triangle Sk 1 k 1<br />

Γh . Summing up over all simplices and<br />

taking into account the symmetry of the sec<strong>on</strong>d term in (1.7) with respect to the two simplices Sk and Lk intersecting at the edge σk 1 Sk 1 Lk 1 we obtain<br />

U k 1 2<br />

L2 k 1<br />

Γ<br />

from which U k 1 0 follows immediately.<br />

h τU k 1 2<br />

k 1<br />

1,Γh Indeed, Propositi<strong>on</strong> 1.3.2 is a direct c<strong>on</strong>sequence of Theorem 1.4.1 to be proved in the next secti<strong>on</strong>.<br />

1.4 A priori estimates<br />

In what follows we will prove discrete counterparts of c<strong>on</strong>tinuous a priori estimates. They are related<br />

to the discrete energy estimates given in [45] in the case of finite volume methods <strong>on</strong> fixed Euclidean<br />

domains.<br />

Theorem 1.4.1 (Discrete LL2, L2H1 energy estimate) Let U kk1,...kmax be the discrete<br />

soluti<strong>on</strong> of (1.7) <str<strong>on</strong>g>for</str<strong>on</strong>g> given discrete initial data U 0 V0 h . Then there exists a c<strong>on</strong>stant C depending<br />

solely <strong>on</strong> tmax such that<br />

max U<br />

k1,...kmax<br />

k 2<br />

L2Γk h<br />

kmax <br />

k1<br />

τU k 2<br />

1,Γk C<br />

h<br />

£<br />

0,<br />

U 0 2<br />

L 2 Γ 0<br />

h<br />

τ<br />

kmax <br />

k1<br />

G k 2 L 2<br />

k 1<br />

Proof As in the proof of Propositi<strong>on</strong> 1.3.2, we multiply (1.7) by US to obtain (again using the symmetry of the sec<strong>on</strong>d term in (1.7))<br />

sum over all S k Γ k h<br />

which leads to<br />

8<br />

<br />

S<br />

τ <br />

S<br />

¡ m k 1<br />

S<br />

m<br />

¨2 k 1 k<br />

US ¡mSU k k 1<br />

SUS k 1 1 k 1<br />

S<br />

Gk<br />

S U<br />

© τ <br />

U k 1 2<br />

L2 k 1<br />

Γ h<br />

τU k 1 2<br />

k 1<br />

1,Γh U k L2Γk h £ 1<br />

k 2<br />

mS max<br />

U<br />

S<br />

k 1 L2 k 1<br />

Γh σSL<br />

k 1 k 1<br />

mσ Mσ <br />

<br />

. (1.10)<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> every cell S k Γ k h and<br />

U k 1<br />

L<br />

k 1<br />

¡ U<br />

d<br />

S<br />

k 1<br />

SL<br />

S , (1.11)<br />

k 1<br />

mS τGk 1 L2 k 1<br />

Γh ¨2<br />

U k 1 L2 k 1<br />

Γ .<br />

h


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Then, by Young’s inequality and the estimate maxk maxS<br />

1<br />

2 U k 1 2<br />

L2 k 1<br />

Γ<br />

1<br />

2 U k 2<br />

L2Γk h<br />

h τU k 1 2<br />

C<br />

k 1<br />

1,Γh §<br />

2 τU k 1 2<br />

L2 k 1<br />

Γ<br />

Using the notati<strong>on</strong> ak U k2 L2Γk h and bk Gk2 ak ak¡1 Cτak τbk that<br />

Since<br />

L2Γk h<br />

§ mk<br />

S<br />

k 1<br />

mS h 1<br />

§<br />

1.4 A priori estimates<br />

¡ 1§<br />

C τ, <strong>on</strong>e obtains<br />

2 τGk 1 2<br />

L2 k 1<br />

Γh , <strong>on</strong>e can deduce from<br />

ak 1 ¡ Cτ ¡1 ak¡1 τbk ¤ ¤ ¤ 1 ¡ Cτ ¡k a0 τ<br />

1 ¡ Cτ ¡k <br />

£¢ k Ctk<br />

¡ Ct Ctk k<br />

1 ¡<br />

k<br />

k<br />

j1<br />

.<br />

bj .<br />

(1.12)<br />

is bounded from above by 2eCtk <str<strong>on</strong>g>for</str<strong>on</strong>g> sufficiently small τ, we immediately get the desired bound <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

U k2 L2Γk h :<br />

U k 2<br />

L2Γk 2eCtk<br />

h<br />

£<br />

U 0 2<br />

L 2 Γ 0<br />

h τ<br />

k<br />

j1<br />

G j 2 L 2<br />

We sum (1.12) over k 0, . . . kmax ¡ 1 and compensate the terms U k2 L2Γk h<br />

<strong>on</strong> the right hand<br />

<br />

side <str<strong>on</strong>g>for</str<strong>on</strong>g> k 1, . . . kmax ¡ 1 with those <strong>on</strong> the left, and using the already established estimate <str<strong>on</strong>g>for</str<strong>on</strong>g> the<br />

L2 norm gives the bound <str<strong>on</strong>g>for</str<strong>on</strong>g> kmax k1 τU k2 .<br />

1,Γk h<br />

Theorem 1.4.2 (Discrete H1L2, LH 1 energy estimate) Let U kk1,...kmax be the discrete<br />

soluti<strong>on</strong> of (1.11) with given initial data U 0 . Then there exist a c<strong>on</strong>stant C such that<br />

kmax <br />

k1<br />

τ τ t U k 2<br />

L 2 Γ k<br />

h<br />

where τ t U k : U k ¡U k¡1<br />

τ<br />

τ <br />

S<br />

k 1<br />

mS max U<br />

k1,...kmax<br />

k 2<br />

1,Γk h<br />

C<br />

£<br />

U 0 2<br />

L 2 Γ 0<br />

h<br />

U 0 2<br />

1,Γ 0<br />

h<br />

is defined as a difference quotient in time.<br />

<br />

τ<br />

.<br />

kmax <br />

k1<br />

G k 2<br />

L 2 Γ k<br />

h<br />

<br />

<br />

, (1.13)<br />

Proof We multiply (1.7) by τ t U k 1 <str<strong>on</strong>g>for</str<strong>on</strong>g> every triangle Sk Γk h and sum over all simplices to obtain<br />

£ 2 k 1<br />

US <br />

¡ U k S<br />

τ<br />

k 1 k 1<br />

mσ Mσ σSL<br />

<br />

S<br />

£<br />

k 1<br />

dSL £ U k 1<br />

L<br />

k k 1<br />

mS ¡ mS ¡ U<br />

k 1<br />

d<br />

SL<br />

¨ U k S<br />

2 k 1<br />

S<br />

£ U k 1<br />

S<br />

¡<br />

¡ U k S<br />

τ<br />

£ U k 1<br />

S<br />

<br />

k 1<br />

¡ U<br />

k 1<br />

dSL L<br />

τ <br />

m<br />

S<br />

<br />

k<br />

US ¡ U k¨ L<br />

<br />

k 1 1<br />

S<br />

Gk<br />

S<br />

£ U k 1<br />

S<br />

¡ U k S<br />

τ<br />

<br />

.<br />

9


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

Using the notati<strong>on</strong><br />

a k SL :<br />

d k SL m k σM k σ<br />

<br />

<br />

c k SL : dk 1 k 1<br />

SLmk σ Mσ k 1<br />

dSL mkσM k σ<br />

this can be written as<br />

τ ¨2 ¢¡<br />

k 1<br />

k 1<br />

bS aSL σSL<br />

and<br />

S<br />

Noting that<br />

¡ © 2<br />

k 1<br />

aSL © 2<br />

k 1<br />

¡ aSL ckSL ak 1<br />

SL <br />

2<br />

<br />

σSL<br />

¡ a k SL<br />

£ U k S ¡ U k L<br />

d k SL<br />

,<br />

<br />

k 1<br />

¡ aSL ckSL ak <br />

SL<br />

<br />

£<br />

k mS S<br />

¡ 1 k 1<br />

mS <br />

k 1<br />

k 1<br />

, bS : mS m<br />

¢¡ © 2 ¡<br />

k 1 k<br />

aSL ¡ aSL © 2<br />

U k 2<br />

1,Γk h<br />

, <br />

S<br />

k 1<br />

S<br />

m k S<br />

£ U k 1<br />

S<br />

¡ U k S<br />

τ<br />

<br />

mk SU k k 1<br />

SbS τ <br />

¤ ¡ © 2<br />

© k 1<br />

2<br />

k ¦ aSL 1 ¡ cSL ¥<br />

2<br />

¨2 k τ<br />

bS t U k 1 2<br />

L2 k 1<br />

Γh we apply Cauchy’s inequality and Young’s inequality, and we finally obtain<br />

¡ 1<br />

2 U k 2<br />

1,Γ k<br />

h<br />

S<br />

,<br />

<br />

,<br />

<br />

k 1 1<br />

mS Gk<br />

¡ a k SL<br />

k 1<br />

S bS .<br />

τ τ t U k 1 2<br />

L2 k 1<br />

Γh 1<br />

2 U k 1 2<br />

k 1<br />

1,Γh ¡<br />

k 1 2<br />

Cτ U k 1 U<br />

1,Γh k 2<br />

1,Γk h<br />

U k L2 k<br />

Γh Gk 1 ¨ τ<br />

L2 k 1<br />

Γh <br />

t U k 1 ©<br />

L2 k 1<br />

Γh <br />

. (1.14)<br />

Here, we have taken into account that 1 ¡ ck k 1<br />

mk m<br />

S S<br />

SL Cτ and 1 ¡ k 1 Cτ. Next, as in<br />

mS mk S<br />

Theorem 1.4.1 we apply Young’s inequality, sum over all time steps and obtain<br />

kmax <br />

k1<br />

¢ τ<br />

2 τ t U k 2<br />

L 2 Γ k<br />

h<br />

1<br />

2 U k 2<br />

1,Γk ¡<br />

h<br />

1<br />

2 U 0 2<br />

1,Γ0 <br />

h<br />

<br />

C<br />

2 τ<br />

kmax<br />

k1<br />

¡ U k 2<br />

1,Γ k<br />

h<br />

U k¡1 2<br />

1,Γ k¡1<br />

h<br />

Finally, an applicati<strong>on</strong> of Theorem 1.4.1 leads us to the desired estimate.<br />

10<br />

2<br />

© 2<br />

<br />

<br />

<br />

U k¡1 2<br />

L2Γ k¡1<br />

h Gk 2<br />

L2Γk ©<br />

. (1.15)<br />

h


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1.5 C<strong>on</strong>vergence<br />

1.5 C<strong>on</strong>vergence<br />

In this secti<strong>on</strong> we will prove an error estimate <str<strong>on</strong>g>for</str<strong>on</strong>g> the finite volume soluti<strong>on</strong> U k Vk h . At first,<br />

we have to state how to compare a discrete soluti<strong>on</strong> defined <strong>on</strong> the sequence of triangulati<strong>on</strong>s Γk h<br />

and the c<strong>on</strong>tinuous soluti<strong>on</strong> defined <strong>on</strong> the evolving family of smooth surfaces Γt. Here, we will<br />

take into account the lifting operator from the discrete surfaces Γ k h<br />

<strong>on</strong>to the c<strong>on</strong>tinuous surfaces<br />

Γtk already introduced in Secti<strong>on</strong> 1.3. As <str<strong>on</strong>g>for</str<strong>on</strong>g> the error analysis of a finite element approach in<br />

[37], we use a pull back from the c<strong>on</strong>tinuous surface <strong>on</strong>to a corresp<strong>on</strong>ding triangulati<strong>on</strong> to compare<br />

the c<strong>on</strong>tinuous soluti<strong>on</strong> utk at time tk with the discrete soluti<strong>on</strong> U k S U k S χ S k , where χ S k<br />

indicates the characteristic functi<strong>on</strong> of the triangle S k . In explicit, we c<strong>on</strong>sider the pull back of the<br />

c<strong>on</strong>tinuous soluti<strong>on</strong> u at time tk under this lift u ¡ltk, Xk S : u tk, PkX k S¨ and investigate the<br />

error u ¡l tk, Xk¨ k<br />

S ¡ US at the cell nodes Xk S as the value of a piecewise c<strong>on</strong>stant error functi<strong>on</strong> <strong>on</strong><br />

the associated cells Sk .<br />

Obviously, the c<strong>on</strong>sistency of the scheme depends <strong>on</strong> the behavior of the mesh during the evoluti<strong>on</strong><br />

and a proper, in particular, time coherent choice of the nodes Xk S . Let us assume that<br />

Υ k,k 1 X k k 1<br />

S ¡ XS Chτ , (1.16)<br />

where Υk,k 1X k S denotes the point <strong>on</strong> Sk 1 with the same barycentric coordinates <strong>on</strong> Sk 1 as the<br />

node Xk S <strong>on</strong> Sk . (cf. (1.19) below). This c<strong>on</strong>diti<strong>on</strong> is obviously true <str<strong>on</strong>g>for</str<strong>on</strong>g> Xk S being the orthocenter<br />

of Sk , which is admissible <str<strong>on</strong>g>for</str<strong>on</strong>g> D Id <strong>on</strong> acute meshes. In case of an anisotropic diffusivity or<br />

n<strong>on</strong>acute meshes, <strong>on</strong>e chooses nodes Xk S close to the barycenters in the least square sense, given the<br />

orthog<strong>on</strong>ality relati<strong>on</strong> (1.2). Algorithmically, a mesh optimizati<strong>on</strong> strategy enables a corresp<strong>on</strong>ding<br />

choice of nodes (cf. Secti<strong>on</strong> 1.7).<br />

Finally, the following c<strong>on</strong>vergence theorem holds.<br />

Theorem 1.5.1 (Error estimate) Suppose that the assumpti<strong>on</strong>s listed in Secti<strong>on</strong> 1.2 and 1.3 and<br />

in (1.16) hold, and define the piecewise c<strong>on</strong>stant error functi<strong>on</strong>al <strong>on</strong> Γk h <str<strong>on</strong>g>for</str<strong>on</strong>g> k 1, . . . kmax<br />

E k : ¡l<br />

u tk, X k¨ ¨ k<br />

S ¡ US χS<br />

k<br />

S<br />

measuring the defect between the pull back u ¡ltk, ¤ of the c<strong>on</strong>tinuous soluti<strong>on</strong> utk, ¤ of (1.1) at<br />

time tk and the finite volume soluti<strong>on</strong> U k of (1.7). Thus, the error functi<strong>on</strong> Ek is actually an<br />

element of the same space Vk h of piecewise c<strong>on</strong>stant functi<strong>on</strong>s <strong>on</strong> Γk h as the discrete soluti<strong>on</strong>s U k ;<br />

cf. (1.8). Furthermore, let us assume that E0L2 k C h. Then the error estimate<br />

Γh max E<br />

k1,...kmax<br />

k 2<br />

L2Γk h<br />

τ<br />

kmax <br />

k1<br />

E k 2<br />

1,Γk C h τ<br />

h<br />

2<br />

holds <str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>stant C depending <strong>on</strong> the regularity assumpti<strong>on</strong>s and the time tmax .<br />

(1.17)<br />

This error estimate is a generalizati<strong>on</strong> of the estimate given in [45], where the same type of first<br />

order c<strong>on</strong>vergence with respect to the time step size and the grid size are established <str<strong>on</strong>g>for</str<strong>on</strong>g> a finite<br />

volume scheme <strong>on</strong> a fixed planar domain. As usual in the c<strong>on</strong>text of finite volume schemes, the<br />

c<strong>on</strong>vergence proof is based <strong>on</strong> c<strong>on</strong>sistency estimates <str<strong>on</strong>g>for</str<strong>on</strong>g> the difference terms in the discrete scheme<br />

(1.7). In the c<strong>on</strong>text of evolving surfaces c<strong>on</strong>sidered here, these c<strong>on</strong>sistency errors significantly rely<br />

<strong>on</strong> geometric approximati<strong>on</strong> estimates. Thus, Secti<strong>on</strong> 1.5.1 we first investigate a set of relevant<br />

geometric estimates. Afterwards, in Secti<strong>on</strong> 1.5.2 these estimates will be used to establish suitable<br />

c<strong>on</strong>sistency results. Finally, the actual c<strong>on</strong>vergence result is established in Secti<strong>on</strong> 1.5.3.<br />

11


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

1.5.1 Geometric approximati<strong>on</strong> estimates<br />

In this paragraph, we first extend the definiti<strong>on</strong> of the projecti<strong>on</strong> P k to a time c<strong>on</strong>tinuous operator<br />

Pt, ¤ which, <str<strong>on</strong>g>for</str<strong>on</strong>g> each t 0, tmax , projects points orthog<strong>on</strong>ally <strong>on</strong>to Γt (cf. Figure 1.5.1). This<br />

operator is well defined in a neighborhood of Γt.<br />

Φt, p0<br />

Φt, p2<br />

Pt, Xt<br />

Xt<br />

Φt, p1<br />

Figure 1.4: In a sketch we depict here a fan of evolving triangles, the transported vertices Φt, p0,<br />

Φt, p1, and Φt, p2 of <strong>on</strong>e specific moving triangle S k t, and the projecti<strong>on</strong> Pt, Xt<br />

of a point Xt in S k t <strong>on</strong>to Γt.<br />

We denote by p0, p1, p2 the vertices of a triangle S k , and we c<strong>on</strong>sider ξ0x, ξ1x, ξ2x the<br />

barycentric coordinates of a point x <strong>on</strong> S k ; i.e., x ξ0xp0 ξ1xp1 ξ2xp2 and ξ0x ξ1x<br />

ξ2x 1. Furthermore, let us now introduce the time c<strong>on</strong>tinuous lift<br />

Ψ k t, ¤ : S k S l,k t, x Ψ k t, x Φt, Φ ¡1 tk, P k x (1.18)<br />

and the discrete surface evoluti<strong>on</strong><br />

Υ k t, ¤ : S k S k t, x <br />

2<br />

i0<br />

ξixΨ k t, pi, (1.19)<br />

which will be used to go back and <str<strong>on</strong>g>for</str<strong>on</strong>g>th between evolving domains Γt and the evolving discrete<br />

surface Γht, where S k t is the triangle generated via the moti<strong>on</strong> of the vertices p of S k al<strong>on</strong>g the<br />

trajectories Φ¤, p and Γht the time c<strong>on</strong>tinuous triangular surface c<strong>on</strong>sisting of these simplices.<br />

Let us remark that Υk,k 1X k S in c<strong>on</strong>diti<strong>on</strong> (1.16) equals Υktk 1, Xk S. Figure 1.5.1 depicts a<br />

Φ ¡1 tk, ¤<br />

Γ 0 Γ k Γtk 1<br />

S k<br />

Φtk 1, ¤<br />

S k tk 1<br />

Figure 1.5: A single triangle and the nearby surface patch are shown in the initial c<strong>on</strong>figurati<strong>on</strong> and<br />

at two c<strong>on</strong>secutive time steps.<br />

12


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1.5 C<strong>on</strong>vergence<br />

sketch of the involved geometric c<strong>on</strong>figurati<strong>on</strong>. It is also important to notice here that the smoothness<br />

of these functi<strong>on</strong>s depends <strong>on</strong>ly <strong>on</strong> the regularity of Φ¤, ¤.<br />

We now introduce an estimate <str<strong>on</strong>g>for</str<strong>on</strong>g> the distance between the c<strong>on</strong>tinuous surface and the triangulati<strong>on</strong><br />

and <str<strong>on</strong>g>for</str<strong>on</strong>g> the ratio between cell areas and their lifted counterparts.<br />

Lemma 1.5.2 Let dt, x be the signed distance from a point x to the surface Γt, taking to be<br />

positive in the directi<strong>on</strong> of the surface normal ν, and let m l,k<br />

S denote the measure of the lifted<br />

triangle Sl,k , ml,k σ the measure of the lifted edge σl,k . Then the estimates<br />

sup<br />

0ttmax<br />

dt, ¤ L Γht Ch 2 , sup<br />

k,S<br />

§<br />

§ 1 ¡ ml,k<br />

S<br />

mk S<br />

§<br />

§ Ch2 , sup<br />

hold <str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>stant C depending <strong>on</strong>ly <strong>on</strong> the regularity assumpti<strong>on</strong>s.<br />

§<br />

§ k,σ<br />

1 ¡ ml,k σ<br />

mk σ<br />

§<br />

§ Ch2<br />

Proof Notice that the functi<strong>on</strong> dt, ¤ is zero at vertices of the triangulati<strong>on</strong>. Thus the piecewise<br />

affine Lagrangian interpolati<strong>on</strong> of dt, ¤ vanishes, and the first estimate immediately follows<br />

from standard interpolati<strong>on</strong> estimates. Using the smoothness of d and the fact that, because<br />

of the regularity of the mesh, the normal directi<strong>on</strong> <strong>on</strong> each triangle differs from the normals<br />

to the respective curved triangle <strong>on</strong>ly to the order h, we deduce from ∇ Γtdt, ¤ 0 <strong>on</strong> Γt<br />

that ∇ S k tdt, ¤ L Γht Ch, where ∇ S k tdt, ¤ is the comp<strong>on</strong>ent of ∇dt, ¤ tangential to<br />

S k t. For the sec<strong>on</strong>d estimate, we fix a triangle S k and assume without any restricti<strong>on</strong> that<br />

S k ξ, 0 ξ R 2 . Furthermore, we extend the projecti<strong>on</strong> P k <strong>on</strong>to a neighborhood of S k in the<br />

following way:<br />

P k extξ, ζ ξ, 0 ζ ¡ d tk, ξ, 0 ∇d T tk, ξ, 0 .<br />

Obviously, P k ext P k <strong>on</strong> S k . From d tk, ξ, 0 Ch 2 and ∇ S kd tk, ξ, 0 Ch, we deduce<br />

that § § § §det DP k extξ, 0 ¨§ § ¡ 1 § § Ch 2 ,<br />

where DP k ext denotes the Jacobian of P k ext. Hence, taking into account that the third column of the<br />

Jacobian ζP k extξ, 0 ∇d T tk, ξ, 0 has length 1 and is normal to Γtk at P k ξ, 0, we observe<br />

that § § det DP k extξ, 0 ¨§ § c<strong>on</strong>trols the trans<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of area under the projecti<strong>on</strong> P k from S k to S l,k ,<br />

which proves the claim.<br />

The third estimate follows al<strong>on</strong>g the same line as the sec<strong>on</strong>d estimate based <strong>on</strong> a straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward<br />

adaptati<strong>on</strong> of the argument.<br />

Next, we c<strong>on</strong>trol the area defect between a transported lifted versus a lifted transported triangle.<br />

Lemma 1.5.3 For each triangle S k <strong>on</strong> Γ k h and all x in Sk the estimate<br />

§ Pt, Υ k t, x ¡ Ψ k t, x § § Cτ h 2<br />

holds <str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>stant C depending <strong>on</strong>ly the regularity assumpti<strong>on</strong>s. Furthermore, <str<strong>on</strong>g>for</str<strong>on</strong>g> the symmetric<br />

difference between S l,k tk 1 and S l,k 1 with A△B : AB BA <strong>on</strong>e obtains<br />

H n¡1 S l,k tk 1△S l,k 1¨ Cτ h m<br />

where H n¡1 is the n ¡ 1-dimensi<strong>on</strong>al Hausdorff measure of the c<strong>on</strong>sidered c<strong>on</strong>tinuous surface<br />

difference.<br />

k 1<br />

S<br />

,<br />

<br />

13


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

Proof At first, we notice that the functi<strong>on</strong> Ψ k t, ¤ defined in (1.18) parametrizes the lifted and then<br />

transported triangle S l,k t over S k and Pt, Υ k t, ¤ with Υ k t, ¤ defined in (1.19) parametrizes<br />

the transported and then lifted triangle Pt, S k t over S k . These two functi<strong>on</strong>s share the same<br />

Lagrangian interpolati<strong>on</strong> Υ k t, ¤ <str<strong>on</strong>g>for</str<strong>on</strong>g> any t , which implies the estimate<br />

§<br />

§Pt, Υ k t, x ¡ Ψ k t, x § § βth 2<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> every x S k . Here, βt is a n<strong>on</strong> negative and smooth functi<strong>on</strong> in time. From S l,k tk S l,k<br />

<strong>on</strong>e deduces that β¤ can be chosen such that βt Ct ¡ tk holds. Furthermore, Cτh 2 is also<br />

a bound <str<strong>on</strong>g>for</str<strong>on</strong>g> the maximum norm of the displacement functi<strong>on</strong> Pt, Υkt, ¤ ¡ Ψkt, ¤ <strong>on</strong> edges σk .<br />

Thus, taking into account that h mk σ Cmk S , we obtain as a direct c<strong>on</strong>sequence the sec<strong>on</strong>d claim.<br />

<br />

Based <strong>on</strong> this estimate, we immediately obtain the following corollary.<br />

Corollary 1.5.4 For any triangle Sk <strong>on</strong> Γk h and any Lipschitz c<strong>on</strong>tinuous functi<strong>on</strong> ωt, ¤ defined<br />

<strong>on</strong> Γt <strong>on</strong>e obtains<br />

§ <br />

§<br />

Sl,k ωtk 1, x da ¡<br />

tk 1<br />

<br />

Sl,k 1<br />

ωtk 1, x da<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>stant C depending <strong>on</strong>ly <strong>on</strong> the regularity assumpti<strong>on</strong>s.<br />

1.5.2 C<strong>on</strong>sistency estimates<br />

§<br />

§ Cτ h mk 1<br />

S<br />

Next, with these geometric preliminaries at hand, we are able to derive a priori bounds <str<strong>on</strong>g>for</str<strong>on</strong>g> various<br />

c<strong>on</strong>sistency errors in c<strong>on</strong>juncti<strong>on</strong> with the finite volume approximati<strong>on</strong> (1.7) of the c<strong>on</strong>tinuous evoluti<strong>on</strong><br />

(1.1).<br />

Lemma 1.5.5 Let Sk be a triangle in Γk h and t tk, tk 1. Then <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

¨ <br />

l,k<br />

S t : ∇Γt ¤ D∇Γtut, ¤ ¨ da<br />

R1<br />

we obtain the estimate § § R1<br />

¡<br />

<br />

S l,k t<br />

S l,k tk 1<br />

S l,k t ¨§ § C τ 1 C h 2 m k 1<br />

S .<br />

∇ Γtk 1 ¤ D∇ Γtk 1utk 1, ¤ ¨ da<br />

Proof We recall that ∇Γtut, x ∇uextt, x ¡ ∇uextt, x ¤ νt, x νt, x, where uextt, ¤ is<br />

a c<strong>on</strong>stant extensi<strong>on</strong> of ut, ¤ in the normal directi<strong>on</strong> νt, ¤ of Γt. Any c<strong>on</strong>tinuous and differentiable<br />

vector field vt, ¤ <strong>on</strong> Γt can be extended in the same way <str<strong>on</strong>g>for</str<strong>on</strong>g> each comp<strong>on</strong>ent. Then we<br />

obtain <str<strong>on</strong>g>for</str<strong>on</strong>g> the surface divergence of vt, ¤ at a point x <strong>on</strong> Γt the representati<strong>on</strong> ∇Γt ¤ vt, a <br />

tr Id ¡ νt, x νt, x ∇vextt, x . Thus, we deduce from our regularity assumpti<strong>on</strong>s in Secti<strong>on</strong><br />

1.2 that the functi<strong>on</strong> t, x ∇Γt ¤ D∇Γtut, x ¨ is Lipschitz in the time and space variable. This<br />

observati<strong>on</strong> allows us to estimate § ¨§ l,k<br />

R1 S t § l,k 1<br />

by C τ mS . Finally, taking into account Lemma<br />

1.5.2 we obtain the postulated estimate.<br />

14


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Lemma 1.5.6 For the edge σ k between two adjacent triangles S k and L k the term<br />

R2<br />

S l,k L l,k ¨ :<br />

<br />

σl,k D∇Γtkutk, ¤ ¨ ¤ µ l,k<br />

S dl ¡ mkσM k σ<br />

dk SL<br />

with σ l,k S l,k L l,k , obeys the estimated § § R2<br />

Proof At first, we split the error term R2<br />

S l,k L l,k ¨§ § Cm k σh.<br />

1.5 C<strong>on</strong>vergence<br />

u ¡l tk, X k L ¡ u ¡l tk, X k S ¨ ,<br />

S l,k L l,k ¨ into corresp<strong>on</strong>ding c<strong>on</strong>sistency errors <strong>on</strong><br />

the two adjacent triangles S k and L k , taking into account the flux c<strong>on</strong>diti<strong>on</strong> at the edge σ l,k , the<br />

definiti<strong>on</strong> of Mk σ λk<br />

Sσλk Lσ dk<br />

SL<br />

dk Lσ λk<br />

Sσ dk<br />

Sσ λk , and the identity d<br />

Lσ<br />

k SL dk Sσ<br />

where<br />

R2<br />

R2<br />

S l,k σ l,k ¨ :<br />

S l,k L l,k ¨ mk σM k σ<br />

d k SL<br />

<br />

σ l,k<br />

£ d k Sσ<br />

m k σλ k Sσ<br />

R2<br />

D∇Γtkutk, ¤ ¨ ¤ µ S l,k dl ¡ m k σ<br />

Next, we estimate these error terms separately and obtain<br />

<br />

R2<br />

σ l,k<br />

S l,k σ l,k ¨ <br />

l,k l,k<br />

S σ ¨ ¡ dk Lσ<br />

mk σλk R2<br />

Lσ<br />

D∇Γtkutk, ¤ ¨ ¤ µ S l,k ¡ D∇ Γtku ¨ ¤ µ S l,k<br />

D∇Γtku ¨ <br />

¤ µ l,k<br />

S Ptk, X k σ ¡ D∇Γtku ¡l¨ ¤ µ l,k<br />

S D∇Γtku ¡l¨ <br />

¤ µ l,k<br />

S tk, X k σ m l,k<br />

σ ¡ m k¨ σ<br />

¡<br />

D∇Γtku ¡l¨ <br />

¤ µ l,k<br />

S tk, X k <br />

σ ¡ D∇Γtku ¡l¨ ¤ µ k Sσ<br />

<br />

tk, X k <br />

σ ¡ D∇Sku ¡l¨ ¤ µ k Sσ<br />

¡<br />

D∇tku ¡l¨ ¤ µ k Sσ<br />

£<br />

∇Sku ¡l tk, X k ¡<br />

k<br />

σ ¤ DSσ µ k Sσ<br />

dk Lσ . In fact, we obtain<br />

L l,k σ l,k ¨<br />

,<br />

u ¡ltk, Xk σ ¡ u ¡ltk, Xk S dk λ<br />

Sσ<br />

k Sσ . (1.20)<br />

<br />

Ptk, X k σ ¨ dl<br />

<br />

tk, X k σ ¨ m l,k<br />

σ<br />

<br />

tk, X k ©<br />

k<br />

σ mσ <br />

tk, X k ©<br />

k<br />

σ mσ © ¡ u ¡l tk, X k σ ¡ u ¡l tk, X k S <br />

d k Sσ<br />

D k Sσ µk Sσ <br />

Taking into account our regularity assumpti<strong>on</strong> from Secti<strong>on</strong> 1.2, Lemma 1.5.2, and the fact that<br />

Dk Sσ µk <br />

Sσ is imposed to be parallel to X k SX k σ by (1.2) – indeed, even Dk Sσ µk SσDk Sσ µk Sσ <br />

Xk σ ¡ Xk Sdk Sσ – we finally observe that each term can be estimated from above by Cmkσh <str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

c<strong>on</strong>stant C, which depends <strong>on</strong>ly <strong>on</strong> the regularity assumpti<strong>on</strong>s. This proves the claim.<br />

The proof can be easily adapted to the case where the discrete diffusi<strong>on</strong> tensor is defined <strong>on</strong><br />

triangles as menti<strong>on</strong>ed in secti<strong>on</strong> 1.3.<br />

Lemma 1.5.7 For a cell S k and the residual error term<br />

R3<br />

S l,k S l,k 1 ¨ <br />

<strong>on</strong>e obtains the estimate § § R3<br />

<br />

S l,k tk 1<br />

u da ¡<br />

<br />

S l,k tk<br />

k 1<br />

¡ mS u¡l tk 1, XS S l,k S l,k 1 ¨§ § Cτhm k 1<br />

S .<br />

u da<br />

¨ k 1 k<br />

¡ mS u ¡l tk, X k S<br />

¨¨<br />

<br />

m k σ .<br />

<br />

15


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

Proof At first, let us recall that Ψkt, ¤, Υkt, ¤, and P tk 1, Υktk 1, ¤ ¨ parametrize Sl,kt, Skt, and Sl,k 1 over the triangle Sk . Via standard quadrature error estimates and due to the<br />

regularity assumpti<strong>on</strong>s <strong>on</strong> Φ and u given in Secti<strong>on</strong> 1.2, we obtain <str<strong>on</strong>g>for</str<strong>on</strong>g> the smooth quadrature error<br />

functi<strong>on</strong><br />

<br />

Qt : ut, x da ¡ ut, Pt, Υ k t, X k SH n¡1 S l,k t ¨<br />

S l,k t<br />

the estimate Qt ¡ Qtk ˜ βt h Hn¡1 Sl,kt ¨ , where ˜ β is a smooth, n<strong>on</strong> negative functi<strong>on</strong> in<br />

time. From Qtk ¡ Qtk 0 we deduce that ˜ βt C t ¡ tk (cf. also the proof of Lemma 1.5.3).<br />

Based <strong>on</strong> an analogous argument we obtain <str<strong>on</strong>g>for</str<strong>on</strong>g> the c<strong>on</strong>tinuity modulus of ˜ Qt : Pt,Sk da ¡<br />

t<br />

Sk da that<br />

t<br />

˜Qtk 1 ¡ ˜ Qtk Cτ h 2 m k S .<br />

Making use of our notati<strong>on</strong> we observe that the left hand side equals m<br />

We now split the residual into<br />

R3<br />

S l,k S l,k 1 ¨ Qtk 1 ¡ Qtk<br />

utk 1, Ptk 1, Υ k tk 1, X k S<br />

l,k 1 k 1<br />

S ¡ mS ¡ m l,k<br />

S ¡ mkS .<br />

¡ H n¡1 S l,k tk 1 ¨ ¡ m<br />

utk 1, Ptk 1, Υ k tk 1, X k S ¡ u ¡l k 1<br />

tk 1, XS u ¡l tk 1, X<br />

u ¡l tk 1, X<br />

k 1<br />

S<br />

<br />

k 1<br />

S<br />

¡ m l,k 1<br />

S<br />

¡ m<br />

k 1<br />

S<br />

© ¡<br />

l,k<br />

¡ m<br />

S ¡ mk S<br />

¡ u ¡l tk 1, Υ k tk 1, X k S ¨¡ m l,k<br />

¨ m<br />

u ¡l tk 1, Υ k tk 1, X k S ¡ u ¡l tk, X k S ¨¡ m l,k<br />

S ¡ mk S<br />

Finally, applying the above estimates, (1.16), Lemmas 1.5.2 and 1.5.3, we get<br />

§ R3<br />

S l,k S l,k 1 ¨§ § C τ h 2 m k 1<br />

Cτ h m<br />

Lemma 1.5.8 For a cell S k and the residual error term<br />

R4<br />

S l,k S l,k 1 ¨ <br />

<strong>on</strong>e achieves the estimate § § R4<br />

Proof We expand the residual by<br />

16<br />

©<br />

l,k 1<br />

S<br />

l,k 1<br />

S<br />

© .<br />

S ¡ mk S<br />

S τ h m k S<br />

k 1<br />

τ h mS τ h 2 k 1<br />

mS τ h 3 m k S τ h 2 m k k 1<br />

S .<br />

S<br />

tk 1<br />

tk<br />

<br />

S l,k t<br />

l,k l,k 1 S S ¨§ § k 1<br />

Cττ hmS .<br />

k 1<br />

g da dt ¡ τmS g ¡l k 1<br />

tk 1, XS ¨<br />

©<br />

©<br />

<br />

¨


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

R4<br />

S l,k S l,k 1 ¨ <br />

tk 1<br />

tk<br />

τ<br />

£<br />

¢<br />

£<br />

Sl,k gt, x da ¡<br />

t<br />

Sl,k gtk 1, x da ¡<br />

tk 1<br />

τ<br />

Sl,k 1<br />

¡<br />

l,k 1<br />

τ m ¡ m<br />

S<br />

<br />

Sl,k gtk 1, x da<br />

tk 1<br />

<br />

1.5 C<strong>on</strong>vergence<br />

<br />

gtk 1, x da<br />

Sl,k 1<br />

gtk 1, x da ¡ g ¡l k 1<br />

tk 1, XS k 1<br />

S<br />

© g ¡l tk 1, X<br />

k 1<br />

S<br />

.<br />

m<br />

l,k 1<br />

S<br />

Now we use a standard quadrature estimate, Lemmas 1.5.2 and 1.5.3, and Corollary 1.5.4, which<br />

yields<br />

§<br />

§R4<br />

l,k l,k 1<br />

S S ¨§ § Cτ 2 H n¡1 S l,k tk 1 τ 2 k 1<br />

h m<br />

k 1<br />

Cττ hmS .<br />

1.5.3 Proof of Theorem 1.5.1<br />

S τ h m<br />

<br />

dt<br />

<br />

k 1<br />

S τ h 2 k 1<br />

m<br />

As in Secti<strong>on</strong> 1.2 (cf. (1.3), (1.4), and (1.5)), let us c<strong>on</strong>sider the following trianglewise flux <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong><br />

of the c<strong>on</strong>tinuous problem (1.1):<br />

<br />

S l,k tk 1<br />

<br />

u da ¡<br />

S l,k tk<br />

tk 1<br />

u da ¡<br />

tk<br />

<br />

S l,k t<br />

D∇ Γu ¤ n S l,k t dl dt <br />

From this equati<strong>on</strong> we subtract the discrete counterpart (1.7)<br />

m<br />

k 1<br />

and multiply this with ES k 1 k 1<br />

S US ¡ mkSU k S ¡ τ <br />

σS<br />

R3<br />

¢ tk 1<br />

¡<br />

u¡l k 1<br />

tk 1, XS l,k l,k 1<br />

S S ¨ k 1<br />

ES m<br />

tk<br />

¡τ <br />

σS<br />

R1<br />

k 1<br />

mσ Mσ k 1<br />

k 1 k 1<br />

UL ¡ US k 1<br />

dSL τm<br />

¨ k 1<br />

¡ U . Hence, we obtain<br />

k 1<br />

S<br />

S<br />

S<br />

¨2 k 1 k<br />

ES ¡ mSE ¨<br />

<br />

l,k k 1<br />

S t dt E ¡ τ<br />

k 1 mσ Mσ k 1<br />

dSL k 1<br />

Now we sum over all simplices and obtain<br />

<br />

S<br />

k 1<br />

mS ¡ <br />

S<br />

τ <br />

S<br />

¡ R3<br />

¨2 <br />

k 1<br />

ES τ<br />

<br />

σS<br />

S l,k S l,k 1 ¨ ¡<br />

R2<br />

k 1<br />

EL 1<br />

¡ Ek<br />

S<br />

E<br />

σS<br />

k 1<br />

S<br />

R2<br />

R4<br />

k 1<br />

S<br />

k 1 k 1<br />

mσ Mσ k 1 1<br />

E k 1 L ¡ Ek<br />

S<br />

σSL dSL tk 1<br />

tk<br />

S l,k 1 L l,k 1 ¨ E<br />

R1<br />

k 1<br />

S<br />

S l,k t ¨ dt ¡ R4<br />

.<br />

Ek S<br />

tk 1<br />

tk<br />

<br />

S l,k t<br />

k 1 1<br />

S<br />

Gk<br />

S<br />

l,k 1 l,k 1<br />

S L ¨ k 1<br />

ES S l,k S l,k 1 ¨ E<br />

k 1<br />

S<br />

2 <br />

m k SE<br />

S<br />

.<br />

S <br />

g da dt.<br />

k 1<br />

S<br />

Ek S<br />

S l,k S l,k 1 ¨© E k 1<br />

S<br />

<br />

17


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

l,k 1 l,k 1 Observing that R2 S L ¨ ¡R2<br />

be rewritten and estimated as follows:<br />

<br />

σSL<br />

<br />

C<br />

R2<br />

£ <br />

£ <br />

σSL<br />

S<br />

l,k 1 l,k 1<br />

S L ¨ k 1<br />

dSL k 1<br />

m<br />

R2<br />

k 1<br />

mS h2<br />

k 1<br />

Here, we have used Lemma 1.5.6 and the estimate m<br />

L l,k 1 S l,k 1 ¨ the last term <strong>on</strong> the right hand side can<br />

m k 1<br />

k 1 k 1 1<br />

σ Mσ EL ¡ Ek<br />

S <br />

k 1<br />

σ Mσ k 1<br />

dSL l,k 1 l,k 1<br />

S L ¨2<br />

1<br />

k 1<br />

2<br />

dSL E k 1 k 1<br />

mσ Mσ k 1 k 1<br />

1,Γh 1<br />

2<br />

E k 1 k 1<br />

1,Γ C h H<br />

h<br />

n¡1 k 1<br />

Γh 1<br />

2 E k 1 k 1<br />

1,Γ .<br />

h<br />

σ h Cm<br />

k 1<br />

S<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> σ S. Now we take into<br />

account the c<strong>on</strong>sistency results from Corollary 1.5.4, Lemmas 1.5.5, 1.5.7 and 1.5.8, apply Young’s<br />

inequality and Cauchy’s inequality and achieve the estimate<br />

E k 1 2<br />

L2 k 1<br />

Γ h τEk 1 2<br />

k 1<br />

1,Γh 1<br />

2 Ek 1 2<br />

L2 k 1<br />

Γ<br />

h 1<br />

2 Ek 2<br />

L2Γk h 1<br />

2 max<br />

k max<br />

S<br />

§<br />

§<br />

§ 1 ¡ mkS k 1<br />

m § S<br />

Ek 2<br />

L2Γk h C τ h τ 2 1 C h 2 ττ hH n¡1 k 1<br />

Γh 1<br />

2 E k 1 L2 k 1<br />

Γ<br />

C τh H n¡1 k 1<br />

Γh 1<br />

2 E k 1 k 1<br />

1,Γh Based <strong>on</strong> our assumpti<strong>on</strong> that the triangulati<strong>on</strong> is advected in time, we can estimate §1 ¡ mk<br />

S<br />

k 1§<br />

<br />

mS C τ. Again applying Young’s inequality to the last two terms <strong>on</strong> the right hand side we get<br />

C τ h τ 2 1 C h 2 ττ hH n¡1 k 1<br />

Γh 1 1<br />

2<br />

CτE k 1 2<br />

L2 k 1<br />

Γ h Cττ h2H n¡1 k 1<br />

Γ<br />

.<br />

h ,<br />

C τh H n¡1 k 1<br />

Γh 1<br />

2 E k 1 k 1<br />

1,Γ <br />

h<br />

τ<br />

2 Ek 1 2<br />

k 1<br />

1,Γh 2 Ek 1 L2 k 1<br />

Γh τC2 h 2<br />

<br />

h<br />

<br />

k 1<br />

§<br />

2 Hn¡1Γh .<br />

Hence, taking into account that Hn¡1 k 1<br />

Γh is uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly bounded we obtain the estimate<br />

1¡CτE k 1 2<br />

L2 k 1<br />

Γ<br />

h τ<br />

2 Ek 1 2<br />

k 1<br />

1,Γh 1 CτE k 2<br />

L 2 Γ k<br />

h Cττ h2 . (1.21)<br />

At first, we skip the sec<strong>on</strong>d term <strong>on</strong> the left hand side, use the inequality<br />

1 C τ<br />

1¡C τ<br />

§<br />

1 c τ <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

sufficiently small time step τ and a c<strong>on</strong>stant c 0, and obtain via iterati<strong>on</strong> (cf. also the proof of<br />

Theorem 1.4.1)<br />

18<br />

E k 1 2<br />

L2 k 1<br />

Γ<br />

h 1 c τEk 2<br />

L2Γk C ττ h2<br />

h<br />

¤ ¤ ¤ 1 c τ k 1 E 0 2<br />

L 2 Γ 0<br />

h <br />

c tk e<br />

This implies the first claim of the theorem:<br />

¡ E 0 2<br />

L 2 Γ 0<br />

h tk τ h 2<br />

© .<br />

k<br />

i1<br />

τ1 c τ i¡1 τ h 2


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1.6 Coupled reacti<strong>on</strong> diffusi<strong>on</strong> and advecti<strong>on</strong> model<br />

max E<br />

k1,...kmax<br />

k 2<br />

L2Γk h C τ h2 .<br />

Finally, taking into account this estimate and summing over k 0, . . . kmax ¡1 in (1.21) we obtain<br />

also the claimed estimate <str<strong>on</strong>g>for</str<strong>on</strong>g> the discrete H 1 -norm of the error:<br />

<br />

k1,...kmax<br />

τE k 2<br />

1,Γk C τ h<br />

h<br />

2 .<br />

1.6 Coupled reacti<strong>on</strong> diffusi<strong>on</strong> and advecti<strong>on</strong> model<br />

In what follows, we will generalize our finite volume approach by c<strong>on</strong>sidering a source term g which<br />

depends <strong>on</strong> the soluti<strong>on</strong> and an additi<strong>on</strong>al tangential advecti<strong>on</strong> term ∇ Γ ¤ wu. Here, w is an<br />

additi<strong>on</strong>al tangential transport velocity <strong>on</strong> the surface, which transports the density u al<strong>on</strong>g the<br />

moving interface Γ instead of just passively advecting it with the interface. We assume the mapping<br />

t, x wt, Φt, x to be in C 1 0, tmax , C 1 Γ0. Furthermore, we suppose g to be Lipschitz<br />

c<strong>on</strong>tinuous. An extensi<strong>on</strong> to a reacti<strong>on</strong> term which also explicitly depends <strong>on</strong> time and positi<strong>on</strong> is<br />

straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward. Hence, we investigate the evoluti<strong>on</strong> problem<br />

u u∇ Γ ¤ v ¡ ∇ Γ ¤ D∇ Γu ∇ Γ ¤ wu gu <strong>on</strong> Γ Γt . (1.22)<br />

In what follows, let us c<strong>on</strong>sider an appropriate discretizati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> both terms. For the reacti<strong>on</strong> term,<br />

we c<strong>on</strong>sider the time-explicit approximati<strong>on</strong><br />

tk 1<br />

tk<br />

<br />

S l,k t<br />

and then replace utk, P k X k S by U k S<br />

gut, x da dt τm k Sgutk, P k X k S (1.23)<br />

in the actual numerical scheme. Furthermore, we take into<br />

account an upwind discretizati<strong>on</strong> of the additi<strong>on</strong>al transport term to ensure robustness also in a<br />

regime where the transport induced by w dominates the diffusi<strong>on</strong>. Here, we c<strong>on</strong>fine to a classical first<br />

order upwind discretizati<strong>on</strong>. Thus, <strong>on</strong> each edge σ k S k L k of a triangle S k facing to the adjacent<br />

triangle L k we define an averaged outward pointing c<strong>on</strong>ormal n k SL nS ¡ nL ¡1 nS ¡ nL. In<br />

particular n k SL ¡nk LS holds. If nk SL ¤ w¡l tk, X k σ 0, the upwind directi<strong>on</strong> is pointing inward<br />

and we define u tk, Xk σ : u ¡ltk, Xk S, otherwise u tk, Xk σ : u ¡ltk, Xk L. Once the upwind<br />

directi<strong>on</strong> is identified, we take into account the classical approach by Engquist and Osher [43] and<br />

obtain the approximati<strong>on</strong><br />

tk 1<br />

tk<br />

<br />

Sl,k ∇Γ ¤ wu da dt τ<br />

t<br />

<br />

σS<br />

Finally, we again replace u ¡l tk, X k S by the discrete nodal values U k S<br />

the sake of completeness let us resume the following resulting scheme:<br />

m<br />

k 1 k 1<br />

S US ¡ mkSU k S τ <br />

σS<br />

m k σ<br />

k 1<br />

mσ Mσ k 1<br />

τ m k S gU k S ¡ τ <br />

n k σ,S ¤ w ¡l tk, X k σ ¨ . u tk, X k σ. (1.24)<br />

k 1 k 1<br />

UL ¡ US k 1<br />

dSL σS<br />

m k σ<br />

<br />

and denote these by U k,<br />

σ . For<br />

¡ n k SL ¤ w ¡l tk, X k σ<br />

© U k,<br />

σ . (1.25)<br />

19


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

Obviously, due to the fully explicit discretizati<strong>on</strong> of the additi<strong>on</strong>al terms, Propositi<strong>on</strong> 1.3.2 still<br />

applies and guarantees the existence and uniqueness of a discrete soluti<strong>on</strong>. Furthermore, the c<strong>on</strong>vergence<br />

result can be adapted, and the error estimate postulated in Theorem 1.5.1 holds. To see<br />

this, let us first c<strong>on</strong>sider the n<strong>on</strong>linear source term gu and estimate<br />

<br />

tk 1<br />

tk<br />

tk 1<br />

tk<br />

τ<br />

¡<br />

<br />

τ m k S<br />

S l,k t<br />

¡<br />

S l,k<br />

S l,k t<br />

gut, x da dt ¡ τm k SgU k S<br />

<br />

gut, x da ¡<br />

Sl,k ©<br />

gutk, x da dt<br />

©<br />

dt<br />

l,k<br />

τ m<br />

gutk, x da ¡ m l,k<br />

S gu¡l tk, X k S<br />

gu ¡l tk, X k S ¡ gU k S ¨<br />

C τ 2 H n¡1 S l,k τ h m k S τ h 2 m k S CLipg τ m k SE k S<br />

S ¡ mk Sgu ¡l tk, X k S<br />

where CLipg denotes the Lipschitz c<strong>on</strong>stant of g. In the proof of Theorem 1.5.1 we already have<br />

treated terms identical to the first three <strong>on</strong> the right hand side. For the last term, we obtain after<br />

k 1<br />

multiplicati<strong>on</strong> with the nodal error ES and a summati<strong>on</strong> over all cells S,<br />

£<br />

k mS CLipg τ <br />

S<br />

m k SE k k 1<br />

SES CLipg τ max<br />

S<br />

¡<br />

k 2<br />

C τ E L2Γhtk ¨ ,<br />

1<br />

2<br />

E k 1<br />

mS k L2ΓhtkE k 1 L2Γhtk Ek 1 2 L 2 Γhtk 1<br />

Taking into account these additi<strong>on</strong>al error terms, the estimate (1.21) remains unaltered. Next, we<br />

investigate the error due to the additi<strong>on</strong>al advecti<strong>on</strong> term and rewrite<br />

tk 1<br />

tk<br />

tk 1<br />

<br />

tk<br />

Sl,k ∇Γ ¤ wu da dt ¡ τ<br />

t<br />

<br />

<br />

Sl,k ∇Γ ¤ wu da dt ¡ τ<br />

t<br />

<br />

σS<br />

σSL<br />

τR5<br />

<br />

σS<br />

m k σ<br />

© .<br />

n k σ,S ¤ w ¡l tk, X k σ ¨ U k,<br />

σ<br />

Sl,k ∇Γ ¤ wu da<br />

S l,k L l,k ¨ τF S l,k L l,k¨ E k,<br />

σ<br />

where R5<br />

F Sl,kLl,k¨ mk σwltk, Xk σ ¤ µ k SL is a flux term <strong>on</strong> the edge σl,k Sl,k Ll,k , and Ek, σ <br />

u tk, Xk σ ¡ U k,<br />

σ is a piecewise c<strong>on</strong>stant upwind error functi<strong>on</strong> <strong>on</strong> the discrete surface Γk h . The<br />

first term in the above error representati<strong>on</strong> can again be estimates by C τ 2Hn¡1S l,k. From<br />

u tk, Xk σ ¡ u ¡ltk, Xk σ C h, we deduce by similar arguments as in the proof of Lemma<br />

l,k l,k 1.5.6 that R5 S L ¨ C hmk l,k l,k<br />

σ. Furthermore, the antisymmetry relati<strong>on</strong>s R5 S L ¨ <br />

l,k l,k<br />

¡R5 L S ¨ and F Sl,kLl,k¨ ¡F Ll,kS l,k¨ l,k l,k hold (cf. the same relati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> R2 S L ¨ ).<br />

k 1<br />

After multiplicati<strong>on</strong> with the nodal error ES and summati<strong>on</strong> over all cells S we obtain<br />

τ <br />

l,k l,k<br />

R5 S L<br />

S σS<br />

σSL<br />

¨ τF S l,k L l,k¨ E k, ¨ k 1<br />

σ ES τ <br />

l,k l,k<br />

R5 S L ¨ k 1 1<br />

ES ¡ Ek<br />

L F S l,k L l,k¨ E k, k 1 1<br />

σ ES ¡ Ek<br />

L ¨<br />

20<br />

S l,k L l,k ¨ σ l,k n S l,k ¤ w u dl ¡ m k σw ¡l tk, X k σ ¤ µ k SL u tk, X k σ is an edge residual,<br />

σSL<br />

¨ ,


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

¡ <br />

τ<br />

C τ<br />

R5<br />

σSL ¡<br />

n¡1 k<br />

h H Γh 1 <br />

2<br />

τ<br />

4 Ek 1 2<br />

k 1<br />

1,Γh S l,k L l,k ¨ F S l,k L l,k¨ E k,<br />

σ<br />

σSL<br />

m k SE k,<br />

σ <br />

C τ h 2 C τ E k 2<br />

L2Γk h<br />

1 2¨ 2<br />

.<br />

¨ 2<br />

m<br />

k 1<br />

dSL k 1<br />

σ Mσ © E k 1 1,Γ k 1<br />

h<br />

k 1<br />

1.7 Numerical results<br />

© 1<br />

2<br />

E k 1 1,Γ k 1<br />

h<br />

Here, we have applied the straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward estimate E k, L 2 Γ k<br />

h CE k L 2 Γ k<br />

h and Young’s in-<br />

equality. Again, taking into account these error terms due to the added advecti<strong>on</strong> in the original<br />

error estimate (1.21), solely the c<strong>on</strong>stant in fr<strong>on</strong>t of the term Ek 12 <strong>on</strong> the left hand side of<br />

k 1<br />

1,Γh (1.21) is slightly reduced.<br />

Thus, both the explicit discretizati<strong>on</strong> of a n<strong>on</strong>linear reacti<strong>on</strong> term and the upwind discretizati<strong>on</strong><br />

of the additi<strong>on</strong>al tangential advecti<strong>on</strong> still allow us to establish the error estimate postulated in<br />

Theorem 1.5.1.<br />

1.7 Numerical results<br />

To numerically simulate the evoluti<strong>on</strong> problem (1.1), we first have to setup a family of triangular<br />

meshes, which are c<strong>on</strong>sistent with the assumpti<strong>on</strong> made above. We generate these meshes based <strong>on</strong><br />

an implicit descripti<strong>on</strong> of the underlying initial surface and apply an adaptive polyg<strong>on</strong>izati<strong>on</strong> method<br />

proposed by de Araújo and Jorge in [29, 28]. This method polyg<strong>on</strong>izes implicit surfaces al<strong>on</strong>g an<br />

evolving fr<strong>on</strong>t with triangles whose sizes are adapted to the local radius of curvature. Afterward,<br />

using a technique similar to the <strong>on</strong>e developed by Perss<strong>on</strong> in [99] we modify triangles to ensure<br />

the orthog<strong>on</strong>ality c<strong>on</strong>diti<strong>on</strong> (1.2). We refer also to [36] <str<strong>on</strong>g>for</str<strong>on</strong>g> a computati<strong>on</strong>al approach to anisotropic<br />

centroidal Vor<strong>on</strong>oi meshes. Already in Figures 1.1 and 1.3 we have depicted a corresp<strong>on</strong>ding family<br />

of meshes.<br />

As a first example, we c<strong>on</strong>sider a family of expanding and collapsing spheres with radius rt <br />

1 sin 2 πt, and a functi<strong>on</strong> ut, θ, λ 1<br />

r2t exp<br />

¡ t 1 ¡6 0 r2τ dτ<br />

©<br />

¤ sin2θ cosλ, where θ is the<br />

inclinati<strong>on</strong> and λ is the azimuth. The functi<strong>on</strong> u solves (1.1) <strong>on</strong> this family of spheres <str<strong>on</strong>g>for</str<strong>on</strong>g> D Id<br />

and g 0. We compute the numerical soluti<strong>on</strong> <strong>on</strong> successively refined surface triangulati<strong>on</strong>s <strong>on</strong> the<br />

time interval 0, 1. Table 1.1 presents the different grids and the errors in the discrete LL2 norm<br />

and discrete energy seminorm (1.9), respectively. Indeed, the observed error decay is c<strong>on</strong>sistent with<br />

the c<strong>on</strong>vergence result in Theorem 1.5.1.<br />

norm of the error<br />

h0 max ht L<br />

t0,1<br />

L2 LH1 0.2129 0.4257 32.941 ¤ 10 ¡4 22.999 ¤ 10 ¡3<br />

0.1069 0.2138 8.036 ¤ 10 ¡4 8.348 ¤ 10 ¡3<br />

0.0535 0.1070 1.764 ¤ 10 ¡4 2.950 ¤ 10 ¡3<br />

0.0268 0.0536 0.423 ¤ 10 ¡4 1.047 ¤ 10 ¡3<br />

Table 1.1: On the left, the different triangulati<strong>on</strong>s used <str<strong>on</strong>g>for</str<strong>on</strong>g> the c<strong>on</strong>vergence test are depicted. The<br />

table <strong>on</strong> the right displays the numerical error <strong>on</strong> these grids in two different norms when<br />

compared to the explicit soluti<strong>on</strong>. The time discretizati<strong>on</strong> was chosen as τ 132000 h 2<br />

in all four computati<strong>on</strong>s.<br />

21


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

Next, we c<strong>on</strong>sider <strong>on</strong> the same geometry the advecti<strong>on</strong> vector<br />

ωt, x 0, 0, 30 ¡ νt, x ¤ 0, 0, 30 νt, x with νt, x being the normal to the surface Γt,<br />

and the source term<br />

gt, θ, λ 2ct ¡ sin2θ cosλωt, x ¤ νt, x cos2θ cosλ ω ¤ eθ ¡ cosθ sinλ ω ¤ eλ,<br />

where eθ cosθ cosλ, cosθ sinλ, ¡ sinθ ¨ , eλ ¡ sinλ, cosλ, 0 ¨ , and<br />

ct 1<br />

r3t exp<br />

¡ t 1 ¡6 0 r2τ dτ<br />

©<br />

1<br />

. The functi<strong>on</strong> ut, θ, λ r2t exp<br />

¡ t 1 ¡6 0 r2τ dτ<br />

© ¤ sin2θ cosλ<br />

now solves (1.22). In fact ω has been chosen to be at the limit of the CFL c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> the finest grid,<br />

characterizing the strength of the advecti<strong>on</strong>. Table 1.2 presents the errors in the discrete L L 2 <br />

norm and discrete energy seminorm (1.9), using the same triangulati<strong>on</strong>s as above. The observed<br />

error decay is again c<strong>on</strong>sistent with the c<strong>on</strong>vergence result in Theorem 1.5.1. In fact, even though<br />

the soluti<strong>on</strong> – and thus its interpolati<strong>on</strong> properties – are identical to the previous example, we see a<br />

reduced order of c<strong>on</strong>vergence due to the transport part of the equati<strong>on</strong>. In general, we could improve<br />

the order of c<strong>on</strong>vergence by using a higher order slope limiting and replacing c<strong>on</strong>diti<strong>on</strong> (1.16) by<br />

Υ k,k 1 X k S ¡ X<br />

k 1<br />

S<br />

Ch 2 τ .<br />

norm of the error<br />

h0 max ht L<br />

t0,1<br />

L2 LH1 0.2129 0.4257 25.53 ¤ 10 ¡2 11.615 ¤ 10 ¡1<br />

0.1069 0.2138 14.26 ¤ 10 ¡2 7.089 ¤ 10 ¡1<br />

0.0535 0.1070 7.61 ¤ 10 ¡2 3.985 ¤ 10 ¡1<br />

0.0268 0.0536 3.95 ¤ 10 ¡2 2.125 ¤ 10 ¡1<br />

Table 1.2: The table displays the numerical error when compared to the explicit soluti<strong>on</strong> in the<br />

advecti<strong>on</strong> dominated setting <strong>on</strong> the same grids as in Table 1.1. The time discretizati<strong>on</strong><br />

was chosen as τ 132000 h 2 in all four computati<strong>on</strong>s.<br />

Figure 1.6 shows the finite volume soluti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> the heat equati<strong>on</strong> without source term. In the<br />

first row the sphere expands with c<strong>on</strong>stant velocity in normal directi<strong>on</strong> and initial data have local<br />

support, while in the sec<strong>on</strong>d row the sphere expands into an ellipsoid and initial data are c<strong>on</strong>stant.<br />

Furthermore, we have computed isotropic and anisotropic diffusi<strong>on</strong> <strong>on</strong> a rotating torus with zero<br />

initial data and time c<strong>on</strong>stant or time periodic source term, respectively. Figures 1.7 and 1.8<br />

dem<strong>on</strong>strate the different joint effects of transport and isotropic diffusi<strong>on</strong>, similar to Figures 2<br />

and 3 in [38]. In Figure 1.9 we c<strong>on</strong>sider the same problem as in Figure 1.8 except that this time<br />

the underlying is diffusi<strong>on</strong> tensor is anisotropic; i.e., we have chosen the tensor<br />

D <br />

¤<br />

¥ 1<br />

25 0 0<br />

0 1 0<br />

0 0 1<br />

in R 3,3 whose restricti<strong>on</strong> <strong>on</strong> the tangent bundle is c<strong>on</strong>sidered as the diffusi<strong>on</strong> in (1.1). The underlying<br />

grids have already been rendered in Figure 1.3. Finally, we combine the diffusi<strong>on</strong> process <strong>on</strong> evolving<br />

surfaces with an additi<strong>on</strong>al (gravity-type) advecti<strong>on</strong> term. As evolving geometry, we have selected<br />

<strong>on</strong>e with an initial fourfold symmetry undergoing a transiti<strong>on</strong> to the sphere (cf. Figure 1.1 <str<strong>on</strong>g>for</str<strong>on</strong>g> a<br />

corresp<strong>on</strong>ding triangular mesh, which is further refined <str<strong>on</strong>g>for</str<strong>on</strong>g> the actual computati<strong>on</strong>). The advecti<strong>on</strong><br />

directi<strong>on</strong> is the projecti<strong>on</strong> of a downward pointing gravity vector al<strong>on</strong>g the symmetry line <strong>on</strong> the<br />

tangent plane. Figure 1.10 shows the results <strong>on</strong> the evolving geometry, whereas Figure 1.11 allows<br />

22


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1.7 Numerical results<br />

Figure 1.6: In the top row the heat equati<strong>on</strong> (D Id) is solved <strong>on</strong> an expanding sphere <str<strong>on</strong>g>for</str<strong>on</strong>g> initial<br />

data with local support <strong>on</strong> a relatively coarse evolving grid c<strong>on</strong>sisting of 956 triangles.<br />

The density is color coded from blue to red at different time steps. In the bottom row, an<br />

anisotropic expansi<strong>on</strong> and later reverse c<strong>on</strong>tracti<strong>on</strong> of a sphere with c<strong>on</strong>stant initial data<br />

computed <strong>on</strong> an evolving surface are depicted. Here a significantly finer discretizati<strong>on</strong><br />

c<strong>on</strong>sisting of 18462 triangles is taken into account. Again we plot the density at different<br />

time steps. One clearly observes an inhomogeneous density with maxima <strong>on</strong> the less<br />

stretched poles during the expansi<strong>on</strong> phase followed by an advective c<strong>on</strong>centrati<strong>on</strong> of<br />

density close to the symmetry plane during the c<strong>on</strong>tracti<strong>on</strong> phase.<br />

Figure 1.7: The soluti<strong>on</strong> of the isotropic heat equati<strong>on</strong> is computed <strong>on</strong> a torus with smaller radius<br />

1 and larger radius 4. The torus is triangulated with 21852 triangles and 10926 points,<br />

and it rotates around its center twice during the evoluti<strong>on</strong> process. As initial data,<br />

we c<strong>on</strong>sider u0 0 and take into account a source term g with local support inside<br />

a geodesic ball of radius 0.5. The source term is c<strong>on</strong>sidered to be time independent.<br />

The surface velocity implies a transport which together with the source term and the<br />

isotropic diffusi<strong>on</strong> lead to the observed trace-type soluti<strong>on</strong> pattern.<br />

a comparis<strong>on</strong> of the same evoluti<strong>on</strong> law <strong>on</strong> a fixed surface. One clearly notices the impact of the<br />

surface evoluti<strong>on</strong> <strong>on</strong> the diffusi<strong>on</strong> and advecti<strong>on</strong> process caused by the temporal variati<strong>on</strong> of the<br />

angle of attack of the gravity <str<strong>on</strong>g>for</str<strong>on</strong>g>ce.<br />

23


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

Figure 1.8: A similar computati<strong>on</strong> as in Figure 1.7 has been per<str<strong>on</strong>g>for</str<strong>on</strong>g>med, but with a pulsating source g<br />

with 10 pulses during a complete rotati<strong>on</strong> of the torus. The source is located at a slightly<br />

different positi<strong>on</strong>, and in order to pr<strong>on</strong>ounce the effect of the dynamics, the color scale<br />

is logarithmic.<br />

Figure 1.9: As in Figure 1.8, diffusi<strong>on</strong> <strong>on</strong> a rotating torus with a pulsating source is investigated.<br />

This time the diffusi<strong>on</strong> is anisotropic with a smaller diffusi<strong>on</strong> coefficient in the directi<strong>on</strong><br />

perpendicular to the torus’ center plane. Again the color scale is logarithmic. The<br />

different diffusi<strong>on</strong> lengths in the different directi<strong>on</strong>s can be clearly observed in the shape<br />

and distance of the isolines at later times and further away from the source.<br />

Figure 1.10: The evoluti<strong>on</strong> of a density governed by a diffusi<strong>on</strong> and advecti<strong>on</strong> process <strong>on</strong> an evolving<br />

geometry with a localized source term is shown at different time steps. The underlying<br />

grid c<strong>on</strong>sists of 21960 triangles and 10982 vertices.<br />

24


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1.7 Numerical results<br />

Figure 1.11: As in Figure 1.10, the evoluti<strong>on</strong> of a density under diffusi<strong>on</strong> and advecti<strong>on</strong> by gravity<br />

is investigated. This time the underlying geometry is fixed.<br />

25


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

1 A c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> evolving surfaces<br />

26


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

general moving hypersurfaces<br />

2.1 Introducti<strong>on</strong><br />

In Chapter I, we have defined a c<strong>on</strong>sistent and c<strong>on</strong>vergent finite volume scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> the simulati<strong>on</strong><br />

of diffusi<strong>on</strong> and advecti<strong>on</strong> processes <strong>on</strong> moving surfaces. Although the proposed scheme is stable<br />

and c<strong>on</strong>vergent, it is subject to str<strong>on</strong>g c<strong>on</strong>straints <strong>on</strong> the mesh, namely the orthog<strong>on</strong>ality c<strong>on</strong>diti<strong>on</strong><br />

which is related to the diffusi<strong>on</strong> tensor. This makes the mesh used in the algorithm problemdependent<br />

and it becomes difficult to couple interdependent phenomena involving many spatially<br />

varying anisotropic diffusi<strong>on</strong> tensors <strong>on</strong> the same mesh. Also, even <strong>on</strong> fixed surfaces, it would be<br />

difficult using this algorithm to simulate problems with time and space dependent diffusi<strong>on</strong> tensors<br />

when variati<strong>on</strong>s <strong>on</strong> eigenvectors of diffusi<strong>on</strong> tensors become important as time evolves. In this case<br />

<strong>on</strong>e is obliged to remesh the substrate often as needed. This might introduce some inaccuracy in the<br />

result depending <strong>on</strong> the remeshing method and the approximati<strong>on</strong> method used to reallocate values<br />

<strong>on</strong> cells. In the last two decades, researchers have invested a lot of ef<str<strong>on</strong>g>for</str<strong>on</strong>g>t in developing finite volume<br />

schemes <str<strong>on</strong>g>for</str<strong>on</strong>g> anisotropic diffusi<strong>on</strong> problems <strong>on</strong> unstructured meshes which tackle the best these issues.<br />

Un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunately, focus has been put <strong>on</strong> planar 2-dimensi<strong>on</strong>al and <strong>on</strong> 3-dimensi<strong>on</strong>al problems. We refer<br />

to the benchmark parts of [47] and [49], Proceedings of <str<strong>on</strong>g>Finite</str<strong>on</strong>g> <str<strong>on</strong>g>Volume</str<strong>on</strong>g>s <str<strong>on</strong>g>for</str<strong>on</strong>g> Complex Applicati<strong>on</strong>s V<br />

and VI, <str<strong>on</strong>g>for</str<strong>on</strong>g> the state of art <strong>on</strong> research in this domain. Nevertheless, the methods developed in the<br />

c<strong>on</strong>text of finite volumes rely <strong>on</strong> a suitable approximati<strong>on</strong> of fluxes across edges of c<strong>on</strong>trol volumes.<br />

One c<strong>on</strong>structs fluxes either using <strong>on</strong>ly the two unknowns across interfaces or a set of unknowns<br />

around edges. The first strategy is referred to as the two-point flux approximati<strong>on</strong> method while<br />

the sec<strong>on</strong>d is known as the multi-point flux approximati<strong>on</strong> method. The method defined in Chapter<br />

I is an example of the two-point flux approximati<strong>on</strong> method <strong>on</strong> curved surfaces and <strong>on</strong>e will find<br />

in [45] a more extended descripti<strong>on</strong> and analysis of the method applied <strong>on</strong> various problems <strong>on</strong> flat<br />

surfaces. As already said above, it is un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunately very restrictive in terms of meshes and problems<br />

<strong>on</strong> which it can be applied. The multi-point flux approximati<strong>on</strong> is the up-to-date strategy in the<br />

finite volume simulati<strong>on</strong> and is much more flexible. It can be divided into two main groups:<br />

The Discrete Duality <str<strong>on</strong>g>Finite</str<strong>on</strong>g> <str<strong>on</strong>g>Volume</str<strong>on</strong>g>s: In this class of methods, <strong>on</strong>e interplays simultaneously between<br />

two meshes; the primal mesh and the dual mesh. The computati<strong>on</strong> is d<strong>on</strong>e here <strong>on</strong> the two<br />

nested meshes and the degrees of freedom include the center points of the primal mesh as well as its<br />

vertices which are in fact the center points of the dual mesh. We refer to [32, 64, 77, 94] <str<strong>on</strong>g>for</str<strong>on</strong>g> more<br />

insight in the methodology.<br />

The Mixed or Hybrid <str<strong>on</strong>g>Finite</str<strong>on</strong>g> <str<strong>on</strong>g>Volume</str<strong>on</strong>g>s: Here, the degrees of freedom are maintained at the cell<br />

centers and <strong>on</strong>e explicitly c<strong>on</strong>structs the gradient operators using different strategies: O-Method<br />

[1, 85, 87], L-Method [1], scheme using stabilizati<strong>on</strong> and hybrid interfaces [46], finite element strategy<br />

[2], least square rec<strong>on</strong>structi<strong>on</strong> [96] am<strong>on</strong>g others.<br />

Since most of these schemes use properties valid <strong>on</strong>ly in Cartesian geometry, they cannot be directly<br />

transferred to curved surfaces. Also, the fact that a general curved geometry can <strong>on</strong>ly be<br />

approximated requires a special treatment of schemes <strong>on</strong> curved surfaces since <strong>on</strong>e should combine<br />

the accuracy of the geometric approximati<strong>on</strong> and the accuracy of the scheme. Nevertheless, the<br />

methodology in [2] has been analyzed <strong>on</strong> curved surfaces in [34, 76]. We should also menti<strong>on</strong> the<br />

finite volume approach <strong>on</strong> logically rectangular grids studied in [19] <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> and advecti<strong>on</strong> in<br />

circular and spherical domains. As in these few papers, the few works devoted to finite volumes<br />

27


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

<strong>on</strong> curved surfaces encountered in the literature rely either <strong>on</strong> a good triangulati<strong>on</strong> of the domain<br />

or <strong>on</strong> a special partiti<strong>on</strong>ing of the curved geometry; this restricts their domain of applicati<strong>on</strong>. In<br />

this chapter, we present a finite volume type O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general polyg<strong>on</strong>al meshes <strong>on</strong> curved and<br />

moving surfaces. Our method is close to the <strong>on</strong>es developed by Le Potier in [85] and K. Lipnikov,<br />

M. Shashkov and I. Yotov in [87]. Similar to these authors, we first partiti<strong>on</strong> each cell of the given<br />

discrete domain into subcells attached to cells vertices; this implies a partiti<strong>on</strong> of each edge into<br />

two subedges and a virtually refined domain where the subcells are effectively the new cells and are<br />

grouped around vertices. Next around each vertex, we c<strong>on</strong>struct an approximate c<strong>on</strong>stant gradient<br />

of our soluti<strong>on</strong> <strong>on</strong> surrounding subcells using surrounding cell center unknowns and the c<strong>on</strong>tinuity<br />

of fluxes <strong>on</strong> subedges. We also take into account worse situati<strong>on</strong>s that can occur when the diffusi<strong>on</strong><br />

coefficients become almost degenerate, by using a suitable minimizati<strong>on</strong> process which c<strong>on</strong>trols the<br />

norm of the chosen soluti<strong>on</strong> gradients around vertices. These gradients are latter included properly<br />

in the flux <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> of the diffusi<strong>on</strong> operator to obtain its discretizati<strong>on</strong>. Finally, we use the<br />

approximate gradients issued from the identity operator <strong>on</strong> surfaces to c<strong>on</strong>struct a slope limited<br />

gradient of the soluti<strong>on</strong> functi<strong>on</strong> <strong>on</strong> each c<strong>on</strong>trol volume. These last gradients approximati<strong>on</strong> are<br />

used to develop a sec<strong>on</strong>d order upwind scheme <str<strong>on</strong>g>for</str<strong>on</strong>g> the advecti<strong>on</strong> part of our model equati<strong>on</strong>. Since<br />

the stencil of our slope limited gradients remains unchanged during the process, we experimentally<br />

have a sec<strong>on</strong>d order space c<strong>on</strong>vergence of the whole scheme. We should menti<strong>on</strong> that our method is<br />

identical to the methods developed in [85, 87] <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> flat surfaces and to the method discussed<br />

in [76] <str<strong>on</strong>g>for</str<strong>on</strong>g> diffusi<strong>on</strong> <strong>on</strong> curved surfaces when applied with the same parameters, but the scope<br />

of meshes that we can handle in that case is wider. Nevertheless, we would like to emphasize that<br />

we primarily deal with moving curved surfaces. This includes surfaces whose evoluti<strong>on</strong> is implicitly<br />

defined through partial differential equati<strong>on</strong>s and surfaces whose evoluti<strong>on</strong> is explicitly given am<strong>on</strong>g<br />

others. Let us also menti<strong>on</strong> that this method can be reduced to the method discussed in Chapter I<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> appropriate meshes designed <str<strong>on</strong>g>for</str<strong>on</strong>g> this purpose. In the following, we explicitly introduce the model<br />

problem discussed in this chapter, next we present the method and give a possible implementati<strong>on</strong><br />

algorithm. Furthermore, we prove some stability results and the c<strong>on</strong>vergence of the scheme and finally<br />

we present some numerical results to validate the theory. For the purpose of self c<strong>on</strong>tainment,<br />

we will reproduce some proofs from Chapter I.<br />

2.2 Problem setting<br />

We c<strong>on</strong>sider a family of compact hypersurfaces Γt R n n 2, 3, ¤ ¤ ¤ <str<strong>on</strong>g>for</str<strong>on</strong>g> t 0, tmax generated<br />

by a time-dependent functi<strong>on</strong> Φ : 0, tmax ¢ Γ 0 R n defined <strong>on</strong> a reference frame Γ 0<br />

with Φt, Γ 0 Γt. We assume that Φt, ¤ is the restricti<strong>on</strong> of a functi<strong>on</strong> that we abusively call<br />

Φt, ¤ : N0 N 0 N t, where N0 and N t are respectively neighborhoods of Γ 0 and Γt in<br />

R n . We also take Γ 0 to be C 3 smooth and Φ C 1 0, tmax , C 3 N0 ¨ . For simplicity, we assume<br />

the reference surface Γ 0 to coincide with the initial surface Γ0. We denote by v tΦ the velocity<br />

of material points and assume the decompositi<strong>on</strong> v vnν v tan into a scalar normal velocity vn in<br />

the directi<strong>on</strong> of the surface normal ν and a tangential velocity v tan. The evoluti<strong>on</strong> of a c<strong>on</strong>servative<br />

material quantity u with ut, ¤ : Γt R, which is propagated with the surface and at the same<br />

time, undergoes a linear diffusi<strong>on</strong> <strong>on</strong> the surface, is governed by the parabolic equati<strong>on</strong><br />

u u∇Γ ¤ v ¡ ∇Γ ¤ D∇Γu g <strong>on</strong> Γt, (2.1)<br />

where u d<br />

dt ut, xt is the (advective) material derivative of u, ∇Γ ¤ v the surface divergence of the<br />

vector field v, ∇Γu the surface gradient of the scalar field u, g a source term with gt, ¤ : Γt R<br />

and D the diffusi<strong>on</strong> tensor <strong>on</strong> the tangent bundle. Here we assume a symmetric, uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly coercive<br />

C 2 diffusi<strong>on</strong> tensor field <strong>on</strong> whole R n to be given, whose restricti<strong>on</strong> <strong>on</strong> the tangent plane is then effectively<br />

incorporated in the model. With slight misuse of notati<strong>on</strong>, we denote this global tensor also<br />

by D. Furthermore, we impose an initial c<strong>on</strong>diti<strong>on</strong> u0, ¤ u0 at time t 0. Since we have already<br />

introduced the subject in Chapter I in a relative simple setup, we will treat in this chapter a more<br />

28


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.3 Surface approximati<strong>on</strong><br />

general case of surfaces with boundary. Surfaces without boundary fall into this setup since they are<br />

merely surfaces with empty boundary. Then in case of surfaces with n<strong>on</strong>empty boundary, we impose<br />

a Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>. We will nevertheless menti<strong>on</strong> how more general boundary c<strong>on</strong>diti<strong>on</strong>s<br />

can be included in the algorithm. We assume that the mappings t, x u t, Φt, x , vt, Φ t, x<br />

and gt, Φt, x are C 1 0, tmax , C 3 Γ 0 ¨ , C 0<br />

¡ 0, tmax , C 3 Γ 0 ¨ 3 © , and C 1 0, tmax , C 1 Γ 0 ¨ ,<br />

respectively. For the discussi<strong>on</strong> <strong>on</strong> existence, uniqueness and regularity, we refer to [37] and references<br />

therein.<br />

2.3 Surface approximati<strong>on</strong><br />

We introduce in this part a more general noti<strong>on</strong> of surface approximati<strong>on</strong>.<br />

Definiti<strong>on</strong> 2.3.1 (Cell, cell center and vertices) Let p 1 , p 2 , ¤ ¤ ¤ , p nS and XS be nS 1 distinct<br />

points in R 3 . We call cell S the closed fan of triangles S i,j XS, p i , p j j i mod nS 1<br />

where XS is the shared vertex. The point XS is called cell center or center point and the points p i<br />

the vertices of the cell and are not necessarily coplanar. Figure 2.1 shows an example of a cell.<br />

p4<br />

p3<br />

S 3,4<br />

S 4,5<br />

XS<br />

p5<br />

S 2,3<br />

S 5,1<br />

S 1,2<br />

Figure 2.1: Cell S made of subtriangles S i,i 1.<br />

In the following, we adopt the notati<strong>on</strong> j i 1 <str<strong>on</strong>g>for</str<strong>on</strong>g> the cyclic additi<strong>on</strong> j i mod nS 1 if<br />

there is no c<strong>on</strong>fusi<strong>on</strong>.<br />

Definiti<strong>on</strong> 2.3.2 (Admissible cell)<br />

Let S be a cell, XS its center point and pi i 1, ¤ ¤ ¤ , nS its nS vertices. For a given vertex<br />

<br />

pi we denote by νSi,i 1 XSpi <br />

XSpi 1 <br />

XSpi <br />

XSpi 1 the oriented normal of the triangle<br />

XS, pi , pi 1 if the triangle has a n<strong>on</strong>zero measure and we define a pseudo-normal to the cell by<br />

¡ i <br />

νS XSpi © <br />

XSpi 1 i XSpi <br />

XSpi 1. We will then call the cell admissible if <str<strong>on</strong>g>for</str<strong>on</strong>g> any i,<br />

m and r 1, 2, ¤ ¤ ¤ , nS, <br />

pmpr and νSi,i 1 ¤ νS 0 <str<strong>on</strong>g>for</str<strong>on</strong>g> well defined normals.<br />

¡ i<br />

νS :<br />

XSp i maxm,r <br />

XSpi © <br />

XSpi 1 i XSpi <br />

XSpi 1 i prpi ¨ <br />

prpi 1 i prpi prpi 1. Remark 2.3.3 The vector νS depends <strong>on</strong>ly <strong>on</strong> the vertices and not <strong>on</strong> XS. In fact r 1, 2, ¤ ¤ ¤ , nS<br />

<br />

<br />

<br />

<br />

Definiti<strong>on</strong> 2.3.4 (admissible polyg<strong>on</strong>al surface)<br />

We define an admissible polyg<strong>on</strong>al surface as a uni<strong>on</strong> of admissible cells which <str<strong>on</strong>g>for</str<strong>on</strong>g>m a partiti<strong>on</strong> of a<br />

C 0 surface Γh. Also, the normals νSi and νSj of two different cells Si, Sj Γh with Si Sj ,<br />

must satisfy νSi ¤ νSj 0. We refer to Figure 2.2 <str<strong>on</strong>g>for</str<strong>on</strong>g> an example of admissible mesh (polyg<strong>on</strong>al<br />

surface). The index h in Γh represents the maximum distance between two points in a given cell<br />

S Γh.<br />

p2<br />

p1<br />

29


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

Figure 2.2: Admissible polyg<strong>on</strong>al surface<br />

In the sequel, we assume <str<strong>on</strong>g>for</str<strong>on</strong>g> surfaces with n<strong>on</strong>empty boundary a piecewise C 2 boundary. In that<br />

case, we assume Γ 0 to be part of a larger surface Ω0 N0 with the same properties as Γ 0 , and which<br />

is trans<str<strong>on</strong>g>for</str<strong>on</strong>g>med by the map Φ¤, ¤ to Ωt, ¤ as time evolves. We also denote by C a generic c<strong>on</strong>stant.<br />

Definiti<strong>on</strong> 2.3.5 (m, h¡polyg<strong>on</strong>al approximati<strong>on</strong> of a surface)<br />

We will say that the polyg<strong>on</strong>al surface Γ 0 h is an m, h ¡ approximati<strong>on</strong> (m 2) of the surface Γ0 if<br />

and <strong>on</strong>ly if Γ 0 h is admissible and there exists a neighborhood Nδ,0 : x dx, Ω0 infpΩ0 px δ<br />

(δ Ch 2 ) of Ω0 Γ 0 which satisfies the following c<strong>on</strong>diti<strong>on</strong>s:<br />

i) Γ0 h Nδ,0.<br />

ii) The perpendicular lines to Ω0 at two different points do not intersect within Nδ,0.<br />

iii) The orthog<strong>on</strong>al projecti<strong>on</strong> PΓ0 h of Γ0 h <strong>on</strong>to Ω0 is a bijecti<strong>on</strong> between Γ0 h and its image.<br />

iv) The orthog<strong>on</strong>al projecti<strong>on</strong> of any cell of Γ 0 h <strong>on</strong>to Ω0 intersects Γ 0 .<br />

v) There exists Γ 0 rest Γ 0 and Γ 0 ext Γ 0 satisfying Γ 0 rest PΓ 0 h Γ0 ext Ω0 (cf. Figure 2.3) and<br />

mΓ 0 extΓ 0 rest Ch 2 where m¤ represents the n ¡ 1 ¡ dimensi<strong>on</strong>al Hausdorff measure.<br />

vi) Let us denote by PΓ0 : x y argmin dx, Γ0 the map that projects points orthog<strong>on</strong>ally <strong>on</strong><br />

the boundary Γ0 of Γ0 . This map should be well defined in a neighborhood of Γ0 c<strong>on</strong>taining<br />

Γ0 extΓ0 rest, and its restricti<strong>on</strong> <strong>on</strong> PΓ0 h should be bijective. Furthermore, we assume that<br />

the reverse image of a vertex of Γ0 <strong>on</strong>to PΓ0 h is the projecti<strong>on</strong> of a vertex of Γ0 h <strong>on</strong>to Γ0ext (cf. Figure 2.3).<br />

vii) For two different vertices pi and pj of the same cell S, we have Ch pipj h.<br />

viii) For any cell S, there exists a point p S S and a vector b S such that the trace <strong>on</strong> S of the<br />

cylinder with principal axis p S , b S and the radius Ch do not intersect the boundary of S.<br />

ix) The distance between a vertex and its projecti<strong>on</strong> <strong>on</strong> Γ 0 ext is less than Ch m .<br />

Remark 2.3.6 In the above definiti<strong>on</strong>,<br />

30<br />

• v) expresses the c<strong>on</strong>vergence of PΓ 0 h toward Γ0 as h tends to 0.<br />

• i), iii) and v) ensure the c<strong>on</strong>vergence of the discrete surface Γ 0 h toward Γ0 as h tends to 0.<br />

• ii) will allow <str<strong>on</strong>g>for</str<strong>on</strong>g> an extensi<strong>on</strong> of functi<strong>on</strong>s defined <strong>on</strong> the reference surface Γ 0 <strong>on</strong>to a narrow<br />

band around Γ 0 which includes Γ 0 h .


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Γ 0 rest Pp 4 <br />

p 4<br />

Γ 0 ext<br />

Pp 1 <br />

XS<br />

PΓ0 h Γ0 Ω0 PΓ0 Pp1 Pp1 2.4 Derivati<strong>on</strong> of the finite volume scheme<br />

Pp3 p3 PXS <br />

Pp2 P Γ0 Pp 2 Pp 2 <br />

Figure 2.3: Representati<strong>on</strong> of Γ 0 Ω0, Γ 0 h , PΓ0 h , Γ0 rest and Γ 0 ext delimited respectively by Γ 0<br />

(green line), Γ 0 h (hidden behind the surface), PΓ0 h (gray line), Γ0 rest (inner brown<br />

line) and Γ 0 ext (outer brown line).<br />

• vii) ensures the n<strong>on</strong>degeneracy of sides while viii) ensures the n<strong>on</strong>degeneracy of cells. For<br />

usual triangular meshes, viii) is expressed as C1h 2 mS C2h 2 S Γ 0 h where C1, C2 are<br />

some fixed c<strong>on</strong>stants and mS is the n ¡ 1 ¡ dimensi<strong>on</strong>al measure of S.<br />

• iv) ensures that there is no unnecessary cell.<br />

• ix) allows us to see that the best paraboloid that can be fitted to a closed set of points will<br />

be an m ¡ order approximati<strong>on</strong> of the original surface. In fact, if some intrinsic properties<br />

have to be computed, we will need a good approximati<strong>on</strong> of vertices. This is <str<strong>on</strong>g>for</str<strong>on</strong>g> example the<br />

case in the fourth example c<strong>on</strong>sidered in this chapter where we have to discretize an additi<strong>on</strong>al<br />

advecti<strong>on</strong> term which involves the curvature tensor. To evaluate the curvature tensor at center<br />

points, the best method in the literature to do such a computati<strong>on</strong> at a desired order <strong>on</strong><br />

a parametric surface is the least square fitting. Of course the c<strong>on</strong>sistency of the fitting is at<br />

most the c<strong>on</strong>sistency of points used which should be m 3 in this case. Furthermore, this<br />

general setting is much closer to the real world applicati<strong>on</strong> than c<strong>on</strong>sidering vertices bound to<br />

the original surface. Most often, the movement of surfaces are described by another partial<br />

differential equati<strong>on</strong>; the mean curvature flow c<strong>on</strong>sidered in the fourth example of this chapter<br />

is an illustrati<strong>on</strong>. Another example is the two phase flow problem presented in Chapter<br />

IV; the Surfactant spreads <strong>on</strong> top of a thin film which at the same time evolves <strong>on</strong> a moving<br />

surface. In this last case, there is no way to tackle the exact positi<strong>on</strong> of free surface points;<br />

hence the importance of introducing some inaccuracy <strong>on</strong> points used to approximate the surface.<br />

2.4 Derivati<strong>on</strong> of the finite volume scheme<br />

2.4.1 General setting<br />

We c<strong>on</strong>sider a family of admissible polyg<strong>on</strong>al surfaces Γk hk0,¤¤¤ , kmax , with Γk h approximating<br />

Γtk Ωk N tk <str<strong>on</strong>g>for</str<strong>on</strong>g> tk kτ and kmaxτ tmax. Here Ωk : Ωtk Φtk, Ω0 is a sequence<br />

of two dimensi<strong>on</strong>al surfaces as defined above in Secti<strong>on</strong> 2.3 and, as in Chapter I, h denotes the<br />

maximum diameter of a cell <strong>on</strong> the whole family of polyg<strong>on</strong>izati<strong>on</strong>s, τ the time step size and k the<br />

index of a time step. Successive polyg<strong>on</strong>izati<strong>on</strong>s share the same grid topology and given the set of<br />

1<br />

, the vertices of Γk lie <strong>on</strong> moti<strong>on</strong> trajectories; thus they are<br />

vertices p k j <strong>on</strong> the polyg<strong>on</strong>al surface Γk h<br />

k 1<br />

evaluated based <strong>on</strong> the flux functi<strong>on</strong> Φ, i.e., pj Φ<br />

¡ h<br />

tk 1, Φ ¡1<br />

¡<br />

k pj , tk<br />

©© . Upper indices denote the<br />

time steps and foot indices “ j ” are vertex indices. Let us <str<strong>on</strong>g>for</str<strong>on</strong>g> the moment merely assume the center<br />

points being chosen at each time step such that the discrete surfaces remain uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly admissible<br />

31


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

2, h¡polyg<strong>on</strong>izati<strong>on</strong>s of the original surfaces; i.e., the c<strong>on</strong>stants in Definiti<strong>on</strong> 2.3.5 remain the<br />

same <str<strong>on</strong>g>for</str<strong>on</strong>g> all time steps. In Secti<strong>on</strong> 2.5, we will give more detail precisi<strong>on</strong>s <strong>on</strong> their choice. Next, at<br />

each time step tk, we c<strong>on</strong>sider a virtual subdivisi<strong>on</strong> of each cell Sk into nS subcells (virtual cells)<br />

Sk pi i 1, ¤ ¤ ¤ , nS which share the comm<strong>on</strong> vertex Xk S as depicted <strong>on</strong> Figure 2.4. We recall that nS<br />

p k 4<br />

S k p4<br />

p k 3<br />

S k p3<br />

S k p5<br />

p k 5<br />

X k S<br />

S k p2<br />

S k p1<br />

p k 2<br />

σ k p1,32<br />

Figure 2.4: Subdivisi<strong>on</strong> of cell S k into polyg<strong>on</strong>al subcells S k pi and subedges σk p1,12 : qk p1,12 , pk 1,<br />

q k p 1,32<br />

σ k p1,32 : qk p1,32 , pk 1 induced by S k p1 around pk 1.<br />

denotes the number of vertices of the cell S k . This subdivisi<strong>on</strong>, as we can notice again <strong>on</strong> Figure 2.4,<br />

induces a partiti<strong>on</strong> of each edge σ p k i , pk i 1 Sk into two subedges σ k pi,l¡12 : qk pi,l¡12 , pk i <br />

and σk pi 1,m 12 : qk pi 1,m 12 , pk i 1; qk pi,l¡12 qk pi 1,m 12 : Sk pi Sk pi 1 pi , pi 1, l and m<br />

are subindices used to reference the cell Sk around the vertices pk i and pk i 1 respectively. We will<br />

come back <strong>on</strong> how these indices are built in Secti<strong>on</strong> 2.4.2. We furthermore assume that two virtual<br />

cells Sk pi and Lkpi of two different cells Sk and Lk , which have the vertex pk i in comm<strong>on</strong>, share<br />

either a comm<strong>on</strong> subedge or the <strong>on</strong>ly vertex pk i as depicted <strong>on</strong> Figure 2.5. For later comparis<strong>on</strong><br />

p k 4<br />

p k 3<br />

X k S1<br />

p k 5<br />

p k 2<br />

S k p1,1 p k 1<br />

S k p1,2<br />

p k 9<br />

X k S2<br />

X k S4<br />

S k p1,4<br />

q k p 1,12<br />

σ k p1,12<br />

p k 1<br />

S k p1,3<br />

p k 6<br />

X k S3<br />

Figure 2.5: Cells and subcells around a vertex.<br />

of discrete quantities <strong>on</strong> polyg<strong>on</strong>al surfaces Γ k h and c<strong>on</strong>tinuous surfaces Γk Γtk, we first extend<br />

functi<strong>on</strong>s defined <strong>on</strong> Γ k or Γ k h in their neighborhood N tk. The resulting functi<strong>on</strong>s still bear their<br />

original names and will be understood from the c<strong>on</strong>text. A functi<strong>on</strong> utk, ¤ defined <strong>on</strong> Γ k is then<br />

extended by requiring ∇utk, ¤ ¤ ∇d¤, Γ k 0; d¤, Γ k being a signed distance functi<strong>on</strong> from Γ k .<br />

This means in other words that, given a point x N tk, the extended functi<strong>on</strong> utk, ¤ is c<strong>on</strong>stant<br />

al<strong>on</strong>g the shortest line segment from x to the surface Γ k . The restricti<strong>on</strong> of this new functi<strong>on</strong><br />

<strong>on</strong> Γk h will be denoted u¡ltk, ¤ or shortly u ¡l,k . On the other hand, the extensi<strong>on</strong> of a functi<strong>on</strong><br />

uhtk, ¤ defined <strong>on</strong> Γk h is d<strong>on</strong>e in two steps. We first extend as c<strong>on</strong>stant al<strong>on</strong>g the normal ν to<br />

PkΓk h; Pk¤ being the orthog<strong>on</strong>al projecti<strong>on</strong> operator <strong>on</strong>to Ωk . The resulting functi<strong>on</strong>, still called<br />

uhtk, ¤, is finally extended by requirering ∇uhtk, ¤ ¤ ∇d¤, PkΓk h 0. The restricti<strong>on</strong> of the final<br />

32<br />

p k 8<br />

p k 7


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.4 Derivati<strong>on</strong> of the finite volume scheme<br />

extended functi<strong>on</strong> <strong>on</strong> Γk will be termed ul htk, ¤ or simply ul,k and the operati<strong>on</strong> which trans<str<strong>on</strong>g>for</str<strong>on</strong>g>ms<br />

uhtk, ¤ to ul htk, ¤ will be called “ lift ” operator. These extensi<strong>on</strong> operati<strong>on</strong>s are by definiti<strong>on</strong><br />

well defined in a neighborhood of Γtk in which Γk h lies, thus the lift operator is well defined. We<br />

will also refer to the orthog<strong>on</strong>al projecti<strong>on</strong> as a lift operator; and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e lift operators will be<br />

understood from the c<strong>on</strong>text. We denote by S l,k : P k S k the orthog<strong>on</strong>al projecti<strong>on</strong> of S k <strong>on</strong>to Ω k ,<br />

by S l,k t Φ t, Φ ¡1 tk, S l,k¨¨ the temporal evoluti<strong>on</strong> of S l,k and by m k S the area of Sk . We should<br />

menti<strong>on</strong> here that the symbol “ l ” written as upper index is meant <str<strong>on</strong>g>for</str<strong>on</strong>g> the “ lift ” operator; there<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

x l,k will literally mean lift of x k <strong>on</strong>to the surface Ω k . Al<strong>on</strong>g the same line, we will call S l,k<br />

pi : P k S k pi<br />

the orthog<strong>on</strong>al projecti<strong>on</strong> of S k pi <strong>on</strong>to Ωk . So defined, the subcells S l,k<br />

pi <str<strong>on</strong>g>for</str<strong>on</strong>g>m a curved mesh <strong>on</strong> S l,k .<br />

The key of our approach will be to define <strong>on</strong> these subcells a reas<strong>on</strong>able approximati<strong>on</strong> of the surface<br />

gradient operators ∇ Γu, and deduce a suitable approximati<strong>on</strong> of ∇ Γ ¤ D Γ∇ Γu in the cells S k . Our<br />

algorithm can be identified as a hybrid algorithm between mixed finite volume and the usual finite<br />

volume procedure. The mixed finite volume defines fluxes or even v D Γ∇ Γu as unknowns which<br />

have to be found together with the soluti<strong>on</strong> u. This often leads to a system of equati<strong>on</strong>s that has to<br />

be stabilized via some restricti<strong>on</strong> <strong>on</strong> meshes and some appropriate techniques. In our case we define<br />

an approximate gradient ∇k hu of ∇ <br />

k<br />

Γutk, ¤ as a piecewise c<strong>on</strong>stant gradient ∇pi,J pi,Su <strong>on</strong><br />

pi,S<br />

subcells Sk <br />

pi ; J pi, S being the local index of subcell S<br />

pi,S k pi around pi. The c<strong>on</strong>structi<strong>on</strong> of ∇k hu is d<strong>on</strong>e locally around vertices pi via a proper use of the flux c<strong>on</strong>tinuity c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> subedges as<br />

will be explained below. This procedure leads to a local system of equati<strong>on</strong>s which in some worse<br />

case senario (very bad mesh and highly anisotropic tensor) is underdetermined. In that case, a<br />

suitable minimizati<strong>on</strong> procedure is used to stabilize the system which is thereafter partially solved<br />

and introduced into the global system of equati<strong>on</strong>s that represents (2.1) to obtain a cell center<br />

scheme. The procedure of restricting <strong>on</strong>eself around vertices to c<strong>on</strong>struct subfluxes in the finite<br />

volume procedure has already been used in [1, 85, 87] <str<strong>on</strong>g>for</str<strong>on</strong>g> finite volumes <strong>on</strong> flat surfaces. Restricting<br />

to that case, the method developed in [85] is a particular case of the present <strong>on</strong>e. In fact, it looses<br />

c<strong>on</strong>sistency <str<strong>on</strong>g>for</str<strong>on</strong>g> polyg<strong>on</strong>al meshes having very de<str<strong>on</strong>g>for</str<strong>on</strong>g>med quadrangles or n<strong>on</strong>c<strong>on</strong>vex starshaped cells<br />

(flat versi<strong>on</strong> of admissible cells which are not c<strong>on</strong>vex), while the present method produces good<br />

results in those cases. Let us now introduce the c<strong>on</strong>structi<strong>on</strong> of the piecewise gradient operator.<br />

2.4.2 The discrete gradient operator<br />

Let us first c<strong>on</strong>sider a vertex pi . We locally reorder the cells Sk j , the subcells Sk pi,j and the subedges<br />

σk pi,j¡12 counterclockwise around the normal at pi . The subedges are reordered in a way that<br />

σk pi,j¡12 and σk pi,j 12 are subedges of the cell Sk j and the subcell Sk pi,j . We also locally rename by<br />

Xk pi,j the center point of Sk j . We refer to Figure 2.4 and Figure 2.5 <str<strong>on</strong>g>for</str<strong>on</strong>g> the illustrati<strong>on</strong> of this setup.<br />

Next, we define <strong>on</strong> each subedge σk pi,j¡12 the virtual point Xk pi,j¡12 and <strong>on</strong> each subcell Sk pi,j , we<br />

define the covariant vectors ek pi,jj¡12 : Xk pi,j¡12 ¡ Xk pi,j and ek pi,jj 12 : Xk pi,j 12 ¡ Xk pi,j which<br />

<br />

k : Span epi,jj¡12 , ek <br />

pi,jj 12 to points<br />

are used to define the local approximate tangent plane T k pi,j<br />

of the subcell S l,k<br />

pi,j . We also define <strong>on</strong> T k pi,j the c<strong>on</strong>travariant (dual) basis µk pi,jj¡12 , µk pi,jj 12 such<br />

that ek pi,jj¡12 ¤ µk pi,jj¡12 1, ek pi,jj¡12 ¤ µk pi,jj 12 0, ek pi,jj 12 ¤ µk pi,jj¡12 0, and<br />

ek pi,jj 12 ¤ µk pi,jj 12 1. Figure 2.6 illustrates this setup. Using this dual system of vectors, we<br />

define <str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>tinuous and derivable scalar functi<strong>on</strong> utk, ¤ <strong>on</strong> Γk , c<strong>on</strong>stant gradients ∇k pi,ju which<br />

approximate ∇utk, ¤ l,k<br />

S , restricti<strong>on</strong>s of ∇utk, ¤ <strong>on</strong> S<br />

pi ,j<br />

l,k<br />

pi,j Γk .<br />

∇ k pi,ju :<br />

¡ U k pi,j¡12 ¡ U k pi,j<br />

© µ k pi,jj¡12<br />

¡ U k pi,j 12 ¡ U k pi,j<br />

© µ k pi,jj 12<br />

(2.2)<br />

33


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

p k 4<br />

Tangent plane T k p1,j<br />

p k 3<br />

X k S<br />

p k 5<br />

e k p1,jj 12<br />

p k 2<br />

e k p1,jj¡12<br />

µ k p1,jj 12<br />

µ k p1,jj¡12<br />

p k 1<br />

n k p1,jj 12<br />

n k p1,jj¡12<br />

Figure 2.6: Approximate tangent plane T k pi,j<br />

to Sl,k<br />

pi,j .<br />

¡<br />

tk, PkX k pi,j¡12 ©<br />

,<br />

where U k pi,j¡12 , U k pi,j 12 , U k pi,j , are appropriate approximati<strong>on</strong>s of u<br />

¡<br />

u tk, PkX k pi,j 12 ©<br />

and u tk, PkX k pi,j¨ respectively. In this notati<strong>on</strong>, if a point Xk is <strong>on</strong> the<br />

boundary of Γk h , u tk, PkX k ¨ will be taken to be the value of u at the closest point of Γk to<br />

PkX k. The definiti<strong>on</strong> of our piecewise c<strong>on</strong>stant gradient will be completed if we give the explicit<br />

expressi<strong>on</strong> of the virtual unknowns U k pi,j¡12 . For this purpose, let us introduce without proof the<br />

following propositi<strong>on</strong>.<br />

Propositi<strong>on</strong> 2.4.1 Let Ω be an open and bounded set in Γt, made up of two disjoint open sets<br />

Ω1 and Ω2 which share a curved segment σ l : Ω1 Ω2 as border. Let v be a tangential vector<br />

functi<strong>on</strong> which is C 1 <strong>on</strong> Ω1 and Ω2. v has a weak tangential divergence in L 2 Ω if and <strong>on</strong>ly if its<br />

normal comp<strong>on</strong>ent through σ l is c<strong>on</strong>tinuous.<br />

The prerequisites in this propositi<strong>on</strong> can also be weakened by assuming v being H 1 <strong>on</strong> Ω1 and Ω2.<br />

In that case, the c<strong>on</strong>tinuity in the c<strong>on</strong>clusi<strong>on</strong> becomes a c<strong>on</strong>tinuity almost everywhere.<br />

Also, <str<strong>on</strong>g>for</str<strong>on</strong>g> a line segment σk Γk h we define<br />

σ l,k<br />

: y x ¡ dx, Γt∇d T x, Γtk, x σ k .<br />

It is worth menti<strong>on</strong>ing here that σ l,k can be different from P k σ k in some cases. For example,<br />

c<strong>on</strong>sidering the line segment σ k : p 1 , p 2 <strong>on</strong> Figure 2.3, σ l,k is the blue curve joining Pp 1 and<br />

Pp 2 . Let us now c<strong>on</strong>sider a subcell S l,k<br />

pi,j<br />

(2.1) <strong>on</strong> S l,k<br />

pi,j by<br />

D k pi,j : Id ¡ ν k pi,j ν k pi,j<br />

of a cell Sl,k<br />

j . We approximate the diffusi<strong>on</strong> tensor D in<br />

¨ £ 1<br />

mS l,k<br />

j <br />

<br />

S l,k<br />

j<br />

D dS l,k<br />

j<br />

<br />

k<br />

Id ¡ νpi,j ν k ¨<br />

pi,j ,<br />

where νk pi,j :<br />

¡<br />

k epi,jj 12 ek ©<br />

k<br />

pi,jj¡12 epi,jj 12 ek pi,jj¡12 is the normal to T k pi,j that we<br />

take as the approximati<strong>on</strong> of the oriented normal ν to S l,k<br />

pi,j . We also approximate the unit outer<br />

¡ © l<br />

¡ © l<br />

k k σpi,j¡12 σpi,j 12 by nk pi,jj¡12 and nk pi,jj 12 ,<br />

c<strong>on</strong>ormals to σ l,k<br />

pi,j¡12 :<br />

and σ l,k<br />

pi,j 12 :<br />

respectively. These are vectors of T k pi,j which are respectively normal to σk pi,j¡12 and σk pi,j 12 (cf.<br />

Figure 2.6) and which point outward from the projecti<strong>on</strong> in the directi<strong>on</strong> of ν of S l,k<br />

pi,j <strong>on</strong>to T k pi,j .<br />

34


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.4 Derivati<strong>on</strong> of the finite volume scheme<br />

Finally, we approximate m l,k<br />

pi,j¡12 , the measure of σl,k<br />

pi,j¡12 , by mk pi,j¡12 , the measure of σk pi,j¡12 .<br />

Since D∇Γu has a weak divergence in L2Γ, we apply a discrete versi<strong>on</strong> of Propositi<strong>on</strong> 2.4.1 <strong>on</strong><br />

subcells surrounding vertices pk i ; Namely,<br />

m k pi,j¡12 Dk pi,j¡1∇ k pi,j¡1u ¤ n k pi,j¡1j¡12 mk pi,j¡12 Dk pi,j∇ k pi,ju ¤ n k pi,jj¡12<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> the subedge σ k pi,j¡12 . Rewriting the system of equati<strong>on</strong>s given by (2.3) around pk i<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>m gives<br />

0 (2.3)<br />

in the matrix<br />

M k U pi<br />

k pi,σ N k U pi<br />

k pi , (2.4)<br />

where U k<br />

pi,σ : U k pi,12 , U k pi,32 , ¤ ¤ ¤ , U k<br />

pi : U k pi,1, U k pi,2, ¤ ¤ ¤ , and the entries of M k pi and N k pi are<br />

¨ k<br />

Mpi m<br />

j,j¡1 k pi,j¡12λkpi,j¡32j¡1j¡12 ,<br />

¨ k<br />

Mpi m<br />

j,j k pi,j¡12λkpi,j¡1j¡12 λkpi,jj¡12, ¨ k<br />

Mpi m<br />

j,j 1 k pi,j¡12λkpi,j 12jj¡12 ,<br />

¨ k<br />

Npi m<br />

j,j¡1 k pi,j¡12λkpi,j¡1j¡12 ¨ k<br />

Npi m<br />

j,j k pi,j¡12λkpi,jj¡12 λk pi,j 12jj¡12, and 0 elsewhere; with<br />

λk pi,j¡32j¡1j¡12 ,<br />

λ k pi,jj¡12 n k pi,jj¡12 ¤ Dk pi,jµ k pi,jj¡12 , λk pi,j 12jj¡12 nk pi,jj¡12 ¤ Dk pi,jµ k pi,jj 12 ,<br />

λ k pi,j¡12jj 12 nkpi,jj 12 ¤ Dk pi,jµ k pi,jj¡12 , λkpi,jj 12 nkpi,jj 12 ¤ Dk pi,jµ k pi,jj 12 .<br />

If pk i is a boundary point, making use of the Dirichlet boundary c<strong>on</strong>diti<strong>on</strong>, we rewrite (2.4) using<br />

the same notati<strong>on</strong> M k U pi<br />

k pi,σ N k U pi<br />

k pi with U k<br />

pi,σ : U k pi,32 , ¤ ¤ ¤ , U k pi,np ¡12 i ,<br />

U k pi : U k pi,12 , U k pi,1, ¤ ¤ ¤ , U k pi,np , U<br />

i<br />

k pi,np 12 i . npi denotes the number of cells around pk i and<br />

U k pi,12 : utk, PkX k pi,12, U k pi,np 12 i : utk, PkX k pi,np 12 at the boundary. The matrix<br />

i<br />

M k pi is then a square matrix whose dimensi<strong>on</strong> is the number of subedges around pk i <strong>on</strong> which we<br />

have unknowns while the matrix N k pi is a square matrix <str<strong>on</strong>g>for</str<strong>on</strong>g> interior vertices (vertices which do not<br />

bel<strong>on</strong>g to the boundary) and a rectangular matrix <str<strong>on</strong>g>for</str<strong>on</strong>g> boundary vertices. We should menti<strong>on</strong> here<br />

that <str<strong>on</strong>g>for</str<strong>on</strong>g> c<strong>on</strong>sistency reas<strong>on</strong>s, the subedge points Xk pi,j¡12 should be chosen in such a way that the<br />

angle θ k pi,j : ∢Xk pi,j¡12 Xk j Xk pi,j 12 between ek pi,jj 12 and ek pi,jj¡12<br />

is always greater than a<br />

threshold angle θ during the entire process. This c<strong>on</strong>diti<strong>on</strong> also leads to the invertibility of M k pi when<br />

the diffusi<strong>on</strong> tensors Dk pi,j involved in the system are uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly elliptic <strong>on</strong> corresp<strong>on</strong>ding tangent<br />

plane, with the elliptic c<strong>on</strong>stant far from 0, and the incident angles at pk i acute and far from 0 and<br />

π (0 ∢Xk pi,j 12 pk i Xk pi,j¡12 π). In that case, equati<strong>on</strong> (2.4) will be trans<str<strong>on</strong>g>for</str<strong>on</strong>g>med to<br />

U k pi,σ M k pi<br />

¨¡1 k<br />

N U pi<br />

k pi . (2.5)<br />

If there exist a subcell S l,k<br />

pi,j in which Dk pi,j is almost <strong>on</strong>e dimensi<strong>on</strong>al, <str<strong>on</strong>g>for</str<strong>on</strong>g> example<br />

Dk pi,j : Id¡νk pi,jνk pi,j ¤<br />

¥ 1 0 0<br />

<br />

0 α 0<br />

Id¡ν<br />

0 0 α<br />

k pi,jνk pi,j, α 110000, M k pi can become n<strong>on</strong>invertible<br />

as well as the center<br />

if the mesh is not aligned with the anisotropy and the virtual points X k pi,j¡12<br />

points Xk j chosen c<strong>on</strong>sequently. Simulati<strong>on</strong> of str<strong>on</strong>g anisotropic flow <strong>on</strong> such a general moving mesh<br />

will often encounter this problem if we did not take care from the beginning by trying to produce<br />

an adequate mesh near to what has been described in Chapter I <str<strong>on</strong>g>for</str<strong>on</strong>g> the triangular case. By doing<br />

so, we limit a lot the possibilities of the actual scheme. Then if M k pi is singular, we will first make<br />

sure that the choice of the virtual points <strong>on</strong> subedges guarantees that the range of N k pi is a subset<br />

of the range of M k pi ; i.e ImN k pi ImM k pi. Thereafter, we choose U k<br />

pi,σ as the soluti<strong>on</strong> of (2.4)<br />

whose the induced discrete gradient around pk i has the minimum H10-norm. The problem of finding<br />

35


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

U k pi,σ is then stated numerically as follows:<br />

<br />

<br />

<br />

Find U k pi,σ in B k pi :<br />

U k pi,σ argmin<br />

V k p i ,σ Bk p i<br />

<br />

j<br />

<br />

V k<br />

pi,σ : V k k<br />

pi,12 , V<br />

m k pi,j<br />

<br />

<br />

V k<br />

pi,j¡12 ¡ U k pi,j<br />

pi,32 , ¤ ¤ ¤ M k pi<br />

µ k pi,jj¡12<br />

V k<br />

pi,σ N k U pi<br />

k <br />

pi such that<br />

<br />

k<br />

Vpi,j 12 ¡ U k <br />

k<br />

pi,j µ pi,jj 12<br />

<br />

<br />

2<br />

, (2.6)<br />

where mk pi,j : mSk pi,j approximates mSl,k pi,j. One easily verifies that this problem is equivalent<br />

to the following least square problem<br />

<br />

Find U k<br />

pi,σ in B k pi :<br />

<br />

V k<br />

pi,σ : V k k<br />

pi,12 , Vpi,32 , ¤ ¤ ¤ M k V pi<br />

k<br />

pi,σ N k U pi<br />

k <br />

pi such that<br />

<br />

<br />

U k pi,σ argmin<br />

V k p i ,σ Bk p i<br />

<br />

<br />

<br />

<br />

B k pi<br />

V k<br />

pi,σ ¡<br />

¡ B k pi<br />

©¡1<br />

C k pi<br />

<br />

where Bk pi is the square root of the symmetric positive definite matrix Bk pi (i.e.<br />

defined by<br />

B k pi<br />

B k pi<br />

and Ck pi the matrix defined by<br />

C k pi<br />

U k pi<br />

¨ j,j m k pi,j¡1µ k pi,j¡1j¡12 2 m k pi,jµ k pi,jj¡12 2 ,<br />

¨ j 1,j B k pi<br />

C k pi<br />

¨ j,j m k pi,j<br />

¨ j 1,j m k pi,j<br />

<br />

<br />

<br />

<br />

¨ j,j 1 m k pi,jµ k pi,jj¡12 ¤ µk pi,jj 12 ;<br />

2<br />

¡ µ k pi,jj¡12 2 µ k jj¡12 ¤ µk pi,jj 12<br />

¡ µ k pijj 12 2 µ k jj¡12 ¤ µk pi,jj 12<br />

,<br />

© ,<br />

© .<br />

B k pi<br />

B k pi B k pi )<br />

Our aim here is not to solve this least square problem at this stage but to build a relati<strong>on</strong> between<br />

the soluti<strong>on</strong> U k pi,σ and the cell center values U k pi . Lars Eldén discussed the soluti<strong>on</strong> of this class<br />

of problems extensively in [41] and it turns out that this problem has a unique soluti<strong>on</strong> if the<br />

intersecti<strong>on</strong> of the null space of Bk pi and the null space of M k pi is the null vector. This is the case<br />

<br />

here since Bk pi is invertible. The use of the new variable W k<br />

pi,σ : Bk V pi<br />

k<br />

¡<br />

pi,σ ¡ Bk pi<br />

reduces the problem to<br />

<br />

<br />

<br />

Find W k pi,σ in ¯ B k pi :<br />

M k pi<br />

¡ B k pi<br />

©¡1<br />

V k<br />

pi,σ <br />

<br />

V k<br />

pi,σ : V k k<br />

pi,12 , Vpi,32 , ¤ ¤ ¤ <br />

¡ N k pi ¡ M k pi<br />

B k pi<br />

¨¡1 C k pi<br />

© U k pi<br />

such that W k pi,σ argmin<br />

V k p i ,σ ¯ B k p i<br />

© ¡1<br />

Ck U pi<br />

k pi<br />

From the soluti<strong>on</strong> of this last problem, <strong>on</strong>e easily deduces the soluti<strong>on</strong> to the original problem<br />

where Coef k pi <br />

¢ M k pi<br />

¡ B k pi<br />

© ¡1 <br />

¡ B k pi<br />

©¡1 ¢ M k pi<br />

<br />

<br />

V k<br />

<br />

<br />

pi,σ<br />

2<br />

U k pi,σ Coef k U pi<br />

k pi , (2.7)<br />

¡ B k pi<br />

©¡1 ¡ N k pi ¡ M k pi<br />

is the Moore-Penrose inverse of M k pi<br />

¡ B k pi<br />

B k pi<br />

Penrose inverse of a matrix A is the unique matrix A that satisfies<br />

36<br />

¨¡1 C k pi<br />

AA A A, A AA A ,<br />

© B k pi<br />

¨¡1 C k pi<br />

.<br />

(2.8)<br />

© ¡1<br />

. We recall that the Moore-<br />

tr AA ¨ tr A tr A ¨ , tr A A ¨ tr A ¨ tr A ;


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.4 Derivati<strong>on</strong> of the finite volume scheme<br />

tr ¤ being the trace operator. The Moore-Penrose inverse coincides with the usual inverse of an<br />

invertible matrix; thus (2.5) is recovered in (2.7) and we can c<strong>on</strong>sider the least square problem as<br />

being the problem to be solve to find the virtual unknowns. We refer to [20, 24, 27, 40, 41, 79,<br />

102, 116] <str<strong>on</strong>g>for</str<strong>on</strong>g> details <strong>on</strong> the general topic of generalized inverse of matrices. Let us remark that<br />

the sum of line element of the matrix Coef k pi is 1, i.e Coef k pi 1pi 1pi,σ where 1pi : 1, 1, ¤ ¤ ¤ ,<br />

1pi,σ : 1, 1, ¤ ¤ ¤ are respectively vector of <strong>on</strong>es with the same length as U k pi and U k pi,σ.In fact,<br />

1pi,σ is the unique soluti<strong>on</strong> of the above least square problem <str<strong>on</strong>g>for</str<strong>on</strong>g> U k pi 1pi . There<str<strong>on</strong>g>for</str<strong>on</strong>g>e U k pi,j 12 can<br />

be seen as a barycenter of the values U k pi . Such an idea to introduce the barycenter of values at cell<br />

centers to approximate values <strong>on</strong> edges in the finite volume c<strong>on</strong>text was already used by Eymard,<br />

Gallouët and Herbin in [46]. Un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunately, due to the random choice of the barycentric coefficients,<br />

their resulting fluxes were poorly approximated, did not respect the flux c<strong>on</strong>tinuity in the usual<br />

sense of finite volume methods and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e needed extra treatment to guarantee good accuracy<br />

of the simulati<strong>on</strong> result. This is a reas<strong>on</strong> of our special treatment of virtual unknowns. Also, by<br />

minimizing the gradient, we try to avoid extra extrema <strong>on</strong> edges which would cause oscillati<strong>on</strong>s while<br />

keeping the c<strong>on</strong>sistency of the approximati<strong>on</strong>s. This en<str<strong>on</strong>g>for</str<strong>on</strong>g>ces the m<strong>on</strong>ot<strong>on</strong>icity whenever possible.<br />

On the other hand, (2.2), (2.7) and (2.8) define a special quadrature rule to c<strong>on</strong>struct the gradient<br />

of a functi<strong>on</strong> <strong>on</strong> subcells around a vertex p k i<br />

knowing the surrounding cell center values. In <strong>on</strong>e<br />

dimensi<strong>on</strong>, this is exactly the usual finite volume procedure. One can easily extend the procedure<br />

to three dimensi<strong>on</strong>s.<br />

Remark 2.4.2<br />

a) Let us point out some trivial setup <strong>on</strong> triangular meshes.<br />

i) First we assume the center points at the isobarycenter of triangles and subcells c<strong>on</strong>structed<br />

such that the edges are divided exactely in the middle. We assume the virtual subedge points<br />

Xk pi,j¡12 being placed such that pk i Xk pi,j¡12 23mk pi,j¡12 (cf. Figure 2.7); then (2.7)<br />

reduces to (2.5).<br />

qk X<br />

p1,12<br />

k p1,12<br />

p k 2<br />

p k 1<br />

X k p1,32<br />

q k p1,32<br />

Figure 2.7: Subdivisi<strong>on</strong> of triangle cell using isobarycenter and the middle of edges.<br />

ii) Sec<strong>on</strong>dly, we assume the setup defined in Chapter I; namely, the center points Xk S and the<br />

subcells are c<strong>on</strong>structed such that the boundary points qk pi,j¡12 <strong>on</strong> σk pi,j¡12 with pk i qk pi,j¡12 <br />

mk pi,j¡12 satisfy the orthog<strong>on</strong>ality c<strong>on</strong>diti<strong>on</strong>s Dk ¨ ¡1 <br />

pi,j¡1 X k pi,j¡1 qk pi,j¡12¤ pk i qk pi,j¡12 0<br />

and Dk ¨ ¡1 <br />

pi,j X k pi,j qk <br />

pi,j¡12 ¤ pk i qk pi,j¡12 0 (cf. Figure 2.8). If we choose Xk pi,j¡12 <br />

qk pi,j¡12 , (2.7) reduces to (2.5). Here, (2.3) links the virtual unknown U k pi,j¡12 <strong>on</strong>ly to the<br />

cells unknowns U k pi,j¡1 and U k pi,j across the subedge σk pi,j¡12 ; thus the local matrices M k pi<br />

are diag<strong>on</strong>al.<br />

iii) We could also define Dk pi,j as being c<strong>on</strong>stant around vertices pk i ; <str<strong>on</strong>g>for</str<strong>on</strong>g> instance<br />

D k pi,j D k pi :<br />

£<br />

1 <br />

m k <br />

<br />

pi,j D dS l,k<br />

pi,j .<br />

j<br />

p k 3<br />

j<br />

S l,k<br />

j<br />

37


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

S k<br />

X k S<br />

Figure 2.8: A sketch of the local c<strong>on</strong>figurati<strong>on</strong> of center points and subedge points satisfying the<br />

orthog<strong>on</strong>ality c<strong>on</strong>diti<strong>on</strong>. The two neighboring cells are not always coplanar.<br />

X k σ<br />

σ<br />

i.e., The summati<strong>on</strong> is d<strong>on</strong>e <strong>on</strong> subcells around pk i . Let us restrict ourselves to triangular<br />

meshes <strong>on</strong> flat surfaces. We c<strong>on</strong>sider the dual mesh obtained by first joining the center points<br />

of triangles sharing a comm<strong>on</strong> edge, sec<strong>on</strong>dly join the middle of triangle edges σk that bel<strong>on</strong>g<br />

to the mesh boundary (σk Γk h ) to the center of the coresp<strong>on</strong>ding triangles. This setup is<br />

depicted <strong>on</strong> Figure 2.9. We adopt the vertices of the previous mesh as the center points of this<br />

new mesh. Each interior vertex of the dual mesh is surrounded by exactly three subcells and<br />

Figure 2.9: A sketch of a triangular mesh (delimited by thin line) and its dual (delimited by thick<br />

line).<br />

(2.7) reduces to (2.5) since there is <strong>on</strong>ly <strong>on</strong>e way to build a gradient from three n<strong>on</strong>colinear<br />

points.<br />

b) If we had to treat the case of Neumann boundary c<strong>on</strong>diti<strong>on</strong> or mixed boundary c<strong>on</strong>diti<strong>on</strong> (Dirichlet-<br />

Neumann), then <str<strong>on</strong>g>for</str<strong>on</strong>g> any subedge σk pi,j Γk h , <strong>on</strong>ly <strong>on</strong>e type of boundary c<strong>on</strong>diti<strong>on</strong> should be defined<br />

<strong>on</strong> σ l,k<br />

pi,j . We obtain (2.4) by adding extra equati<strong>on</strong>s to (2.3) which corresp<strong>on</strong>d to the realizati<strong>on</strong><br />

of the Neumann boundary c<strong>on</strong>diti<strong>on</strong> at corresp<strong>on</strong>ding subedge virtual points.<br />

Based <strong>on</strong> these preliminaries, we can now introduce the finite volume discretizati<strong>on</strong>.<br />

2.4.3 <str<strong>on</strong>g>Finite</str<strong>on</strong>g> <str<strong>on</strong>g>Volume</str<strong>on</strong>g>s discretizati<strong>on</strong><br />

Let us integrate (2.1) <strong>on</strong> t, xt tk, tk 1, x S l,k t Γt , where S l,k t : Φt, Φ ¡1 tk, S l,k .<br />

tk<br />

tk 1<br />

tk<br />

<br />

S l,k tΓt<br />

X k L<br />

L k<br />

g da dt τ m<br />

k 1 1<br />

S<br />

Gk<br />

S , (2.9)<br />

k 1<br />

where GS : g t, Pk 1 ¨ k 1<br />

XS . As in Chapter I, the use of the Leibniz <str<strong>on</strong>g>for</str<strong>on</strong>g>mula leads to the<br />

following approximati<strong>on</strong> of the material derivative<br />

tk 1<br />

Sl,k <br />

u u∇Γv da dt <br />

tΓt<br />

Sl,k <br />

u da ¡<br />

tk 1Γtk 1<br />

Sl,k u da<br />

tkΓtk<br />

38<br />

m<br />

k 1 k 1<br />

S U<br />

S ¡ mk SU k S, (2.10)


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.4 Derivati<strong>on</strong> of the finite volume scheme<br />

where we recall that the discrete quantities U k k 1<br />

S and US approximate u tk, PkX k¨ S and<br />

u tk 1, Pk 1 ¨ k 1<br />

XS , respectively. Integrating the elliptic term again over the temporal evoluti<strong>on</strong> of<br />

a lifted cell and applying the Gauss’ theorem, leads to the following approximati<strong>on</strong><br />

tk 1<br />

tk<br />

τ <br />

<br />

piS k<br />

Sl,k ∇Γ ¤ D∇Γu da dt <br />

tΓt<br />

¡<br />

k 1<br />

mpi,J pi,S¡12Dk 1<br />

pi,J pi,S∇k tk 1<br />

tk<br />

pi,J pi,S<br />

<br />

S l,k tΓt<br />

u ¤ nk 1<br />

pi,J pi,SJ pi,S¡12<br />

k 1<br />

mpi,J pi,S 12Dk 1<br />

1<br />

pi,J pi,S∇k pi,J u ¤ nk<br />

pi,S pi,J pi,SJ pi,S 12<br />

D∇Γu ¤ n S l,k tΓtdl dt<br />

© . (2.11)<br />

where n S l,k tΓt is the unit outer c<strong>on</strong>ormal to the curved boundary S l,k t Γt ¨ of<br />

¨ l,k S t Γt . We recall that J pi , Sk denotes the local number of the cell Sk around pk i . Combining<br />

(2.2), (2.9), (2.10) and (2.11) gives the finite volume scheme<br />

mS ¡ τ <br />

k 1 k 1<br />

US ¡ mkSU k S<br />

piS k<br />

k 1<br />

mpi,J pi,S¡12<br />

τ m<br />

k 1<br />

mpi,J pi,S 12<br />

k 1<br />

mpi,J pi,S 12<br />

m k 1<br />

pi,J pi,S¡12<br />

k 1 1<br />

S<br />

Gk<br />

¡ U k 1<br />

¡ ©<br />

k 1<br />

k 1<br />

k 1<br />

Upi,J pi,S¡12 ¡ Upi,J λ pi,S pi,J pi,SJ pi,S¡12<br />

k 1<br />

pi,J pi,S 12 ¡ Upi,J pi,S<br />

¡ U k 1<br />

k 1<br />

pi,J pi,S¡12 ¡ Upi,J pi,S<br />

¡ U k 1<br />

pi,J pi,S 12<br />

k 1<br />

where the subedge virtual unknowns U<br />

k 1<br />

in terms of cells unknowns Upi,J pi,S<br />

the initial data U 0 S : ut0, P0X 0 S<br />

¡ U k 1<br />

pi,J pi,S<br />

© λ k 1<br />

© λ k 1<br />

pi,J pi,S 12J pi,SJ pi,S¡12<br />

© λ k 1<br />

pi,J pi,SJ pi,S 12<br />

pi,J pi,S¡12J pi,SJ pi,S 12<br />

S . (2.12)<br />

pi,J pi,S¡12<br />

k 1<br />

and Upi,J pi,S 12 are given by equati<strong>on</strong> (2.7)<br />

. The system of equati<strong>on</strong>s (2.12) is completely determined by<br />

. Let us now associate to cells unknowns and subedges virtual<br />

unknowns the piecewise c<strong>on</strong>stant functi<strong>on</strong>s U k defined <strong>on</strong> Γ k h with U k S U k S , and U k Γ defined<br />

<strong>on</strong> Γ k h with U k Γ σ k<br />

p i ,12<br />

U k pi,12 , U k Γ σ k<br />

p i ,np i 12<br />

U k pi,np i 12 <str<strong>on</strong>g>for</str<strong>on</strong>g> any boundary vertex p i<br />

<br />

and its<br />

surrounding boundary subedges σk pi,12 and σk pi,np 12 . We denote by<br />

i<br />

V k h : U k : Γ k h R S k Γ k h, U k Sk c<strong>on</strong>st <br />

(2.13)<br />

V k <br />

k<br />

Γ : UΓ : Γ k h R pk i Γkh, U k Γσ k c<strong>on</strong>st, U<br />

pi ,12<br />

k <br />

Γσ k c<strong>on</strong>st (2.14)<br />

pi ,np 12<br />

i<br />

the sets of such functi<strong>on</strong>s. (2.2) can be c<strong>on</strong>sidered as a quadrature rule that builds an approximate<br />

gradient of a c<strong>on</strong>tinuous functi<strong>on</strong> <strong>on</strong> Γk out of its projecti<strong>on</strong> (representant) in Vk h Vk Γ . We wish to<br />

build a seminorm <strong>on</strong> Vk h . For this sake, we first denote by<br />

Ŋ k S<br />

:<br />

1<br />

<br />

mk S piSk ¡ m k pi,J pi,S¡12 D k pi,J pi,S ∇k pi,J pi,S u ¤ nk pi,J pi,SJ pi,S¡12<br />

m k pi,J pi,S 12 Dk pi,J pi,S ∇k pi,J pi,S u ¤ nk pi,J pi,SJ pi,S 12<br />

©<br />

(2.15)<br />

the approximati<strong>on</strong> of S l,k tkΓtk ∇Γ ¤ D∇Γu da. We thereafter multiply each equati<strong>on</strong> of (2.15)<br />

by the corresp<strong>on</strong>ding cell center value ¡U k S<br />

virtual unknown U k pi,j¡12<br />

, and each equati<strong>on</strong> of (2.3) by the corresp<strong>on</strong>ding subedge<br />

. Finally, we sum the resulting equati<strong>on</strong>s over all cells and subedges and<br />

39


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

obtain<br />

¡ <br />

S k<br />

m k S U k S Ŋ k S<br />

where Qk ¡<br />

k<br />

Qpi,J pi,Sk ¡<br />

k<br />

Q<br />

¡ Q k<br />

¡ Q k<br />

©<br />

<br />

<br />

Sk pk i Sk<br />

Q k<br />

¡ <br />

pi,J pi,S k ,sym <br />

pi,J pi,S k <br />

pi,J pi,S k <br />

pi,J pi,S k <br />

©<br />

©<br />

©<br />

11<br />

12<br />

21<br />

22<br />

p k i Γk<br />

h<br />

<br />

k<br />

Upi,J pi,Sk 12 ¡ U k ¡<br />

k<br />

S, Upi,J pi,Sk¡12 ¡ U k ©<br />

S<br />

<br />

k<br />

Upi,J pi,Sk 12 ¡ U k S,<br />

¡<br />

k<br />

mpi,12 U k pi,12 Dk pi,1∇ k pi,1u ¤ n k pi,112<br />

pi,J pi,S k ,sym<br />

¡<br />

k<br />

Upi,J pi,Sk¡12 ¡ U k © S<br />

m k pi,np 12 i U k pi,np 12 i Dk pi,np ∇<br />

i<br />

k pi,np u ¤ n<br />

i<br />

k pi,np np 12<br />

i i<br />

¡ Q k<br />

pi,J pi,S k <br />

Qk<br />

pi,J pi,S k <br />

© 2 with<br />

: m k<br />

pi,J pi,S k ¡12 λk<br />

pi,J pi,S k J pi,S k ¡12 ,<br />

: m k<br />

pi,J pi,S k ¡12 λk<br />

pi,J pi,S k 12J pi,S k J pi,S k ¡12 ,<br />

: m k<br />

pi,J pi,S k 12 λk<br />

pi,J pi,S k ¡12J pi,S k J pi,S k 12 ,<br />

: m k<br />

pi,J pi,S k 12 λk<br />

pi,J pi,S k J pi,S k 12 .<br />

© ,<br />

(2.16)<br />

We rewrite (2.16) in a matrix <str<strong>on</strong>g>for</str<strong>on</strong>g>m using (2.7) as follows<br />

¡ <br />

Sk m k S U k S Ŋ k S <br />

piΓk ¡ © <br />

U k<br />

pi A<br />

h<br />

k U pi<br />

k <br />

pi ¡<br />

pk i Γk<br />

¡<br />

k<br />

mpi,12 U<br />

h<br />

k pi,12 Dk pi,1∇ k pi,1u ¤ n k pi,112<br />

©<br />

, (2.17)<br />

m k pi,np 12 i U k pi,np 12 i Dk pi,np ∇<br />

i<br />

k pi,np u ¤ n<br />

i<br />

k pi,np np 12<br />

i i<br />

where Ak pi is defined by:<br />

Ak pi : Akpi,c ¡ Ak pi,σCoef k pi with Akpi,c being a diag<strong>on</strong>al matrix and Ak pi,σ a sparse matrix whose<br />

n<strong>on</strong>zero elements are given by<br />

A k pi,cj,j : m k pi,j¡12 λk pi,jj¡12 λk pi,j 12jj¡12 <br />

m k pi,j 12 λk pi,jj 12 λk pi,j¡12jj 12 ,<br />

A k pi,σj,j : m k pi,j¡12 λk pi,jj¡12 mk pi,j 12 λk pi,j¡12jj 12 ,<br />

A k pi,σj,j 1 : m k pi,j¡12 λk pi,j 12jj¡12 mk pi,j 12 λk pi,jj 12 ,<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> interior points. For boundary points,<br />

A k pi : Ak pi,c ¡ A k pi,σCoef k pi with Ak pi,c being a sparse square matrix and A k pi,σ a sparse rectangular<br />

matrix whose n<strong>on</strong>zero elements are given by<br />

40<br />

A k pi,c1,1 : m k pi,12 λk pi,112 ,<br />

A k pi,c1,2 : ¡m k pi,12 λk pi,112 λk pi,32112 ,<br />

A k pi,c2,1 : ¡m k pi,12 λk pi,112 mk pi,32 λk pi,12132 ,<br />

A k pi,cj,j : m k pi,j¡12 λk pi,jj¡12 λk pi,j 12jj¡12 <br />

m k pi,j 12 λkpi,jj 12 λkpi,j¡12jj 12, j 2, 3, ¤ ¤ ¤ , npi 1,<br />

A k pi,cnp i 1,np i 2 : ¡m k pi,np i ¡12 λk pi,np i 12np i np i ¡12 mk pi,np i 12 λk pi,np i np i 12 ,<br />

A k pi,cnp i 2,np i 1 : ¡m k pi,np i 12 λk pi,np i ¡12np i np i 12 λk pi,np i np i 12 ,<br />

A k pi,cnp i 2,np i 2 : m k pi,np i 12 λk pi,np i np i 12 ,


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

A k pi,σ1,1 : ¡m k pi,12 λk pi,32112 ,<br />

A k pi,σ2,1 : m k pi,12 λk pi,32112 mk pi,32 λk pi,132 ,<br />

A k pi,σj 2,j : m k pi,j¡12 λk pi,jj¡12 , mk pi,j 12 λk pi,j¡12jj 12 ,<br />

2.4 Derivati<strong>on</strong> of the finite volume scheme<br />

A k pi,σj 2,j 1 : m k pi,j¡12 λk pi,j 12jj¡12 , mk pi,j 12 λk pi,jj 12 , j 1, 2, ¤ ¤ ¤ , npi ¡ 2,<br />

A k pi,σnp i 1,np i ¡1 : m k pi,np i ¡12 λk pi,np i np i ¡12 mk pi,np i 12 λk pi,np i ¡12np i np i 12 ,<br />

A k pi,σnp i 2,np i ¡1 : ¡m k pi,np i 12 λk pi,np i ¡12np i np i 12 .<br />

Since Coef k pi is not defined <str<strong>on</strong>g>for</str<strong>on</strong>g> npi 1, Akpi : Akpi,c in that case.<br />

The submatrices Ak pi satisfy Akpi 1pi 0pi , where 1pi : 1, 1, ¤ ¤ ¤ and 0pi : 0, 0, ¤ ¤ ¤ . This is<br />

due to the minimizati<strong>on</strong> procedure introduced in the interpolati<strong>on</strong> of the virtual values <strong>on</strong> subedges.<br />

The procedure <str<strong>on</strong>g>for</str<strong>on</strong>g>ces the system to pick the soluti<strong>on</strong> of minimum gradient norm. Let us also<br />

remark that if the submatrices A k pi<br />

piΓ k<br />

h<br />

¡ U k pi<br />

© <br />

A k pi<br />

1pi 1pi npi are positive semi-definite <str<strong>on</strong>g>for</str<strong>on</strong>g> all vertices,<br />

U k pi defines a seminorm <strong>on</strong> Vk h Vk Γ . Also, if the submatrices Ak pi<br />

are strictly positive definite <str<strong>on</strong>g>for</str<strong>on</strong>g> all vertices, piΓ k<br />

h<br />

where 0 V k<br />

Γ<br />

¡ U k pi<br />

1pi<br />

1pi npi<br />

© <br />

Ak U pi<br />

k pi will define a norm <strong>on</strong> Vk h 0V k ,<br />

Γ<br />

basically depend<br />

0, 0, ¤ ¤ ¤ , 0 is the zero element of Vk Γ . Since the submatrices Akpi <strong>on</strong> the choice of the subedges virtual points and the discrete cell tensor Dk pi,j around pk i , we can<br />

assume the virtual points being chosen such that the submatrices Ak pi<br />

1pi 1pinpi are strictly<br />

positive definite as the diffusi<strong>on</strong> tensors are supposed to be strictly positive definite. Although this<br />

assumpti<strong>on</strong> is reas<strong>on</strong>able, it is not useful to require its realizati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> all the vertices. In case a highly<br />

anisotropic tensor is involved in the computati<strong>on</strong> and the mesh very distorted too, the c<strong>on</strong>diti<strong>on</strong><br />

might not be satisfied. We will then weaken the assumpti<strong>on</strong> by introducing a slight modificati<strong>on</strong> of<br />

the algorithm. Let us assume the center points being chosen in advance.<br />

Definiti<strong>on</strong> 2.4.3 (Regular vertex and uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular vertex)<br />

We will say that a vertex pk i is regular if the following is satisfied:<br />

i) It is possible to choose the virtual subcells Sk pi,j and the subedge virtual points Xk pi,j¡12 around<br />

pk i such that Akpi 1pi 1pinpi is strictly elliptic,<br />

ii) If p k i<br />

is an interior vertex, then it is surrounded by at least three cells.<br />

Any vertex which does not fulfill these requirements will be called n<strong>on</strong>regular.<br />

A vertex will be called uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular if it is regular <str<strong>on</strong>g>for</str<strong>on</strong>g> any time step k.<br />

Definiti<strong>on</strong> 2.4.4 (Regular polyg<strong>on</strong>isati<strong>on</strong> and uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular polyg<strong>on</strong>isati<strong>on</strong>)<br />

We will say that an admissible polyg<strong>on</strong>al surface Γk h is regular if any of its n<strong>on</strong>regular vertex is<br />

surrounded by regular vertices.<br />

Γk h will be called uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular if it is regular and any of its regular vertex is uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular.<br />

In the sequel we assume our polyg<strong>on</strong>al surfaces to be uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular. We now introduce a slight<br />

modificati<strong>on</strong> of the scheme. For any n<strong>on</strong>regular vertex pi , we assume that the surrounding subcells<br />

have zero measure; which means that the subedges σk pi,j¡12 around pk i have zero measure. Thus<br />

there is no equati<strong>on</strong> written around that vertex. We will also assume the submatrices<br />

Ak pi 1pi 1pinpi to be uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly strictly elliptic <str<strong>on</strong>g>for</str<strong>on</strong>g> all regular points (i.e. α 0 pk i , U k pi ,<br />

¨ k ¨ k k Upi Api 1pi 1pinpi Upi αU k pi2 ). The resulting scheme remains the same, except that<br />

the summati<strong>on</strong> over vertices will be d<strong>on</strong>e over regular vertices. From now <strong>on</strong>, any summati<strong>on</strong> over<br />

41


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

vertices will simply mean summati<strong>on</strong> over regular vertices unless specified otherwise. A straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward<br />

example of meshes needing this setup can be found <strong>on</strong> Figure 2.5, when we c<strong>on</strong>sider the<br />

dual mesh to our primary mesh. Let us menti<strong>on</strong> here that the dual mesh of a primal mesh is the<br />

mesh whose cells are the uni<strong>on</strong> of virtual subcells around vertices and center points the vertices of<br />

the primal mesh. Here the points qk pi,j¡12 <strong>on</strong> edges which limit the virtual subcells of the primal<br />

mesh (cf. Figure 2.4) are n<strong>on</strong>regular vertices of the dual mesh and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e will be subject to this<br />

treatment. We then define a discrete energy seminorm <strong>on</strong> Vk h Vk Γ .<br />

Definiti<strong>on</strong> 2.4.5 (Discrete H1 0 seminorm) For U k Vk and U k Γ Vk Γ , we define<br />

U k 2<br />

1,Γ k<br />

h<br />

<br />

We also define the discrete L 2 norm as follows<br />

pi<br />

¡ U k pi<br />

© <br />

A k U pi<br />

k pi<br />

Definiti<strong>on</strong> 2.4.6 (Discrete L2 norm) For U k Vk we define<br />

U k 2 <br />

m k ¨2 k<br />

S US L2Γk h<br />

S<br />

(2.18)<br />

(2.19)<br />

Propositi<strong>on</strong> 2.4.7 (Existence and uniqueness) The discrete problem (2.12) has a unique soluti<strong>on</strong>.<br />

Proof The system (2.12) has a unique soluti<strong>on</strong> U k Vk if the kernel of the corresp<strong>on</strong>ding linear<br />

operator is trivial. To prove this, we c<strong>on</strong>sider the homogeneous system obtained by assuming<br />

U k 0, Gk k 1<br />

0 and the homogeneous Dirichlet boundary c<strong>on</strong>diti<strong>on</strong> UΓ 0. Next, we multiply<br />

k 1<br />

each equati<strong>on</strong> of (2.12) by the corresp<strong>on</strong>ding cell center unknown US and sum over all cells. Taking<br />

into account (2.17), we obtain<br />

from which U k 1 0 follows.<br />

2.4.4 Maximum principle<br />

U k 1 2<br />

L2Γk h τU k 1 2<br />

1,Γk 0,<br />

h<br />

Let us c<strong>on</strong>sider around each uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular vertex pk i , the matrix Wk pi<br />

by ¨ k Wpi : m<br />

j,j k pi,j¡12λk jj¡12<br />

mk pi,j 12λk j¡12jj 12 ,<br />

¨ k Wpi : m<br />

j,j 1 k pi,j¡12λk j 12jj¡12<br />

mk pi,j 12λk jj 12 ,<br />

<br />

whose entries are defined<br />

and 0 elsewhere. We also c<strong>on</strong>sider the column vector epi,j of length the number of columns of Coef k pi<br />

with comp<strong>on</strong>ents epi,jj :1 and 0 elsewhere (i.e. epi,j :0, ¤ ¤ ¤, 0, 1, 0, ¤ ¤ ¤, 0 ) and the augmented<br />

matrix of coefficients ACoef k pi defined by ACoef k pi : Coef k pi if pk i is an interior uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular<br />

point. For boundary points, ACoef k <br />

pi : epi,1 ; Coef k pi ; ¨ <br />

epi,np 1 , c<strong>on</strong>catenati<strong>on</strong> of the<br />

i<br />

vector epi,1 , the matrix Coef k pi , and the vector epi,np 1 i<br />

Propositi<strong>on</strong> 2.4.8 If S, U 0 S 0 and at any time step tk, U k ¨<br />

Γ 0 i, G i k S 0 S, and the<br />

matrices Wk piACoef k ¢¡<br />

k<br />

pi are positive WpiACoef k © <br />

k<br />

pi 0 i, j , then US 0 k, S.<br />

42<br />

i,j<br />

¨ .


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.4 Derivati<strong>on</strong> of the finite volume scheme<br />

Proof Let us first assume the uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular vertices p i of a given cell S being numbered by<br />

sp i . We define <str<strong>on</strong>g>for</str<strong>on</strong>g> the cell S the column vectors eS,j of length the number of subcells <strong>on</strong> S, with<br />

comp<strong>on</strong>ents eS,jj : 1 and 0 elsewhere (i.e. eS,j : 0, ¤ ¤ ¤, 0, 1, 0, ¤ ¤ ¤, 0 ). The system (2.12) can<br />

be rewritten as<br />

m<br />

τ m<br />

k 1 k 1<br />

S US ¡ mkSU k S ¡ τ <br />

piSk k 1 1<br />

S<br />

Gk<br />

¨ ¡ k 1 k 1<br />

eS,spi Wpi ACoef pi<br />

©<br />

k 1 k 1<br />

U ¡ U<br />

S . (2.20)<br />

Let us assume that U k S 0 Sk , the minimum of U k 1 k 1<br />

minS US k 1<br />

k 1<br />

that U : minS U S0<br />

S<br />

k 1 k 1<br />

of the vector Upi ¡ US 1pi<br />

is reached in a cell S0 , and<br />

1<br />

0; then (2.20) cannot be satisfied <str<strong>on</strong>g>for</str<strong>on</strong>g> the cell Sk 0 since all comp<strong>on</strong>ents<br />

¨ k 1<br />

are n<strong>on</strong>negative. Hence, we c<strong>on</strong>clude that U 0.<br />

This propositi<strong>on</strong> will be of great importance in the next paragraph, especially when <strong>on</strong>e of our aim<br />

will be to satisfy the maximum principle.<br />

2.4.5 Implementati<strong>on</strong><br />

Let us first c<strong>on</strong>sider the setups defined <str<strong>on</strong>g>for</str<strong>on</strong>g> triangular meshes in Remark 2.4.2 a) part i) and ii). For<br />

these setups, the submatrices Qk pi,j defined <str<strong>on</strong>g>for</str<strong>on</strong>g> equati<strong>on</strong> (2.16) are symmetric and strictly positive<br />

definite; thus the vertices pk i are uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular. Hence the scheme works <str<strong>on</strong>g>for</str<strong>on</strong>g> any triangular mesh<br />

as l<strong>on</strong>g as cells do not degenerate. Restricting to the flat case and using the setup in Remark 2.4.2 a)<br />

part i), the present scheme coincides exactly with the scheme proposed by K. Lipnikov, M. Shashkov<br />

and I. Yotov in [87] and as already said, is identical to the <strong>on</strong>e presented by Le Potier in [85]. We<br />

should also menti<strong>on</strong> that <str<strong>on</strong>g>for</str<strong>on</strong>g> the setup presented in Remark 2.4.2 a) part ii), we obtain exactly<br />

the scheme presented in Chapter I; moreover, the hypotheses of Propositi<strong>on</strong> 2.4.8 are satisfied and<br />

the resulting matrix is a M ¡ matrix. This last property is not evident <str<strong>on</strong>g>for</str<strong>on</strong>g> all meshes. We can<br />

nevertheless en<str<strong>on</strong>g>for</str<strong>on</strong>g>ce it whenever possible. This will be <strong>on</strong>e of our goals when trying to build <strong>on</strong> a<br />

given mesh, a setup <strong>on</strong> which the present scheme can be applied. Next, we c<strong>on</strong>sider a dual mesh of a<br />

triangular mesh. As defined above, this is c<strong>on</strong>structed from the primal mesh and its virtual subcells<br />

to <str<strong>on</strong>g>for</str<strong>on</strong>g>m the cells of the dual mesh. We refer<br />

by grouping the virtual subcells around each vertex pk i<br />

again to Figure 2.9 <str<strong>on</strong>g>for</str<strong>on</strong>g> an example of a triangular dual mesh in a flat case. We should nevertheless<br />

menti<strong>on</strong> that in the curved case, virtual subcells around the vertices are not coplanar. For these<br />

meshes, virtual subcells of primal meshes are also c<strong>on</strong>sidered as virtual subcells of dual meshes. As<br />

already menti<strong>on</strong>ed in Remark 2.4.2 a) part iii), each new vertex Xk S , center of the triangle Sk , is<br />

surrounded by exactly three virtual subcells and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e the c<strong>on</strong>structi<strong>on</strong> of the gradient does not<br />

need any regularizati<strong>on</strong>. Also, the points Xk S are uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular points; c<strong>on</strong>sequently, any mesh<br />

which is the dual of a triangular mesh is suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> the scheme. If we restrict ourselves to fixed<br />

surfaces, this last setup gives exactly the scheme presented by Lili Ju and Qiang Du in [76] when the<br />

diffusi<strong>on</strong> tensor is taken to be c<strong>on</strong>stant <strong>on</strong> triangles. As already reported there, if the triangles edge<br />

points qk pi,j¡12 that limit the subcells are taken to be the middle of triangles edges and the diffusi<strong>on</strong><br />

tensor taken to be c<strong>on</strong>stant <strong>on</strong> triangles, the resulting matrix is a symmetric M ¡matrix. In some<br />

cases it can be advantageous to use the dual mesh since <strong>on</strong>e can reduce the number of variables.<br />

Except in the trivial case of triangular meshes where <strong>on</strong>e has some trivial choices of discrete points,<br />

we do need a good algorithm which always delivers the discrete points in such a way that the surface<br />

remains a uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular polyg<strong>on</strong>isati<strong>on</strong> and the angle c<strong>on</strong>diti<strong>on</strong> in Secti<strong>on</strong> 2.4.2 satisfied <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

appropriate virtual points Xk pi,j¡12 around vertices. Also, <str<strong>on</strong>g>for</str<strong>on</strong>g> some problems, especially in the field<br />

of chemistry, <strong>on</strong>e needs to have additi<strong>on</strong>ally the maximum principle satisfied by the scheme. We<br />

give in the sequel an algorithm to c<strong>on</strong>struct the discrete points such that the maximum principle is<br />

pi<br />

S0<br />

S<br />

1pi<br />

¨<br />

k 1<br />

<br />

43


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

satisfied if possible. To begin with, we chose the center points in such a way that the surface of our<br />

cell is minimal. This is d<strong>on</strong>e by minimizing <str<strong>on</strong>g>for</str<strong>on</strong>g> each cell S k the energy functi<strong>on</strong>al<br />

E k S : <br />

i1:nS<br />

X ¡ p k<br />

i<br />

¨ p k<br />

i 1<br />

over X. This energy is in fact the sum of the square measure of the triangles X, pk i , pk i 1; pk i and<br />

pk i 1 being two c<strong>on</strong>secutive vertices of Sk . The resulting Xk S : argminXR3Ek S guarantees the status<br />

of admissible cell to Sk and when the vertices are coplanar, Xk S is the isobarycenter <str<strong>on</strong>g>for</str<strong>on</strong>g> triangular<br />

cells, rectangular cells and regular polyg<strong>on</strong>al cells. Next, we define the edge points Xk σ that limit<br />

the subcells <strong>on</strong> cell’s boundary σ as the mid point of σ; but if an interior vertex pk i is surrounded by<br />

less than three cells, then all the points Xk σ around the given vertex are set to pk i . We refer to Figure<br />

2.10 <str<strong>on</strong>g>for</str<strong>on</strong>g> more illustrati<strong>on</strong>. We shall now fix the subedge virtual points. From Propositi<strong>on</strong> 2.4.8,<br />

X k σ1<br />

S k 1<br />

S k 2<br />

σ1<br />

X k σ2<br />

X k σ3<br />

σ3<br />

Sk 3<br />

σ2 σ4<br />

Figure 2.10: Representati<strong>on</strong> of edge points X k σj<br />

pi<br />

σ5<br />

¡ pk<br />

i<br />

¨ 2<br />

X k σ4 Xk σ5<br />

and center points in cells.<br />

k 1 k 1<br />

ACoef<br />

the scheme will satisfy the maximum principle if the submatrices Wpi pi defined around<br />

uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly regular points are positive. To en<str<strong>on</strong>g>for</str<strong>on</strong>g>ce this, we find the virtual points by minimizing the<br />

energy<br />

E k ¡<br />

k 1 k 1<br />

3 : tr W ACoef pi ¡ α 1pi,S<br />

©¡<br />

k 1 k 1<br />

1pi W ACoef pi ¡ α 1pi,S<br />

© <br />

1pi<br />

under the c<strong>on</strong>straints that Ak pi<br />

1pi 1pinpi is strictly elliptic and the angles<br />

θk pi,j : ∢Xk pi,j¡12 Xk j Xk pi,j 12 between the covariant vectors ek pi,jj 12 and ek pi,jj¡12 are greater<br />

than a threshold angle θ as requested in Secti<strong>on</strong> 2.4.2. Here, α is a positive c<strong>on</strong>stant and 1pi,S <br />

1, 1, ¤ ¤ ¤ is a vector of <strong>on</strong>es with length npi . This process tries to pull the coefficients of the<br />

k 1 k 1<br />

submatrices Wpi ACoef pi near α as possible. Finally, if the symmetric property of the global<br />

matrix is important, <strong>on</strong>e can impose it here by setting the symmetry of the submatrices Qk pi,j as a<br />

c<strong>on</strong>straint in this last minimizati<strong>on</strong> problem.<br />

2.5 A priori estimates<br />

We will now give the discrete counterparts of c<strong>on</strong>tinuous a-priori estimates. They obviously depend<br />

<strong>on</strong> the behavior of the mesh during the evoluti<strong>on</strong> and a proper, in particular time coherent choice of<br />

center points X k S , subedge points Xk pi,j¡12 and edge points Xk σ. Let us assume that the center points<br />

Xk S describe a time c<strong>on</strong>tinuous C1 curve γt, X0 S (i.e. Xk St : γt, γ¡1tk, Xk S) during the time<br />

evoluti<strong>on</strong>. The algorithm described in Secti<strong>on</strong> 2.4.5 provides such a curve. We refer to [103, 112]<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> reading about the regularity of the soluti<strong>on</strong> of parametric minimizati<strong>on</strong> problems. One can also<br />

imagine Xk S being transported by Φ (i.e. Xk St : Φt, Φ¡1tk, Xk S); of course, with the resulting<br />

44<br />

pi


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.5 A priori estimates<br />

Xk St satisfying the necessary c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> the scheme to be applied. Let us identify a point x <strong>on</strong><br />

the triangle Xk S , pk i , pk i 1 Sk by its barycentric coordinates βk Sx, βk S,ix, βk S,i 1x with respect<br />

to Xk S , pk i , and pk i 1 respectively (i.e. x βk SxXk S βk S,ixpk i βk S,i 1xpk i 1 ). We c<strong>on</strong>struct the<br />

following map that trans<str<strong>on</strong>g>for</str<strong>on</strong>g>ms the cells during the time evoluti<strong>on</strong>:<br />

Υ k t, ¤ : S k R 3 , x xt : β k SxX k St β k S,ixpk i t βk S,i 1xpk i 1t, (2.21)<br />

where pk i t : Φt, Φ¡1tk, pk i . We also assume<br />

Υ k tk 1, X k,i<br />

j 12<br />

1,i<br />

¡ Xk<br />

j 12<br />

Chτ (2.22)<br />

k 1<br />

mpi,j 12 ¡ mkpi,j 12 Chτ. (2.23)<br />

These c<strong>on</strong>diti<strong>on</strong>s are obviously satisfied <str<strong>on</strong>g>for</str<strong>on</strong>g> the setups described in Secti<strong>on</strong> 2.4.5. Thanks to the<br />

§<br />

c<strong>on</strong>diti<strong>on</strong>s above, <strong>on</strong>e easily establishes that maxk maxS § mk<br />

S §<br />

k 1 ¡ 1§<br />

C τ, and the 2¡norm<br />

m <br />

S<br />

<br />

¨ k 1 12 ¨ k ¨ ¡<br />

k 1 12 ¨ ©<br />

k 1 12<br />

¨<br />

<br />

k 1 12<br />

Api,sym Api,sym Api,sym ¡ Api,sym A <br />

pi,sym Cτ.<br />

Theorem 2.5.1 Discrete LL2, L2H1 energy estimate ¨ . Let U kk1,¤¤¤ ,kmax be the discrete<br />

soluti<strong>on</strong> of (2.12) <str<strong>on</strong>g>for</str<strong>on</strong>g> a given discrete initial data U 0 V0 h and the homogenous boundary c<strong>on</strong>diti<strong>on</strong><br />

U k Γk1,¤¤¤ ,kmax 0, then there exists a c<strong>on</strong>stant C depending solely <strong>on</strong> tmax such that<br />

max U<br />

k1,¤¤¤ ,kmax<br />

k 2<br />

L2Γk h kmax <br />

k1<br />

τU k 2<br />

1,Γk C<br />

h<br />

£<br />

§<br />

U 0 2<br />

L 2 Γ 0<br />

h <br />

§<br />

τ<br />

2<br />

kmax <br />

k1<br />

G k 2<br />

L 2 Γ k<br />

h <br />

<br />

. (2.24)<br />

Proof As in the proof of Propositi<strong>on</strong> 2.4.7, we multiply each equati<strong>on</strong> of (2.12) by the corresp<strong>on</strong>ding<br />

k 1<br />

cell center value unknown US and sum up the resulting equati<strong>on</strong>s. Thanks to (2.17), we obtain<br />

¡<br />

¨2 k 1 k 1 k<br />

mS US ¡ mSU k ©<br />

k 1<br />

k 1 2<br />

SUS τU k 1 1 k 1<br />

mS Gk<br />

S US , (2.25)<br />

S<br />

and using Young’s inequality and the estimate maxk maxS<br />

1<br />

2 U k 1 2<br />

L 2 Γ k<br />

h <br />

1<br />

2 U k 2<br />

L 2 Γ k<br />

h <br />

τU k 1 2<br />

1,Γ k<br />

h<br />

C<br />

2 τU k 1 2<br />

L2 k 1<br />

Γ<br />

1,Γ k<br />

h<br />

§<br />

§ mk<br />

S<br />

k 1<br />

mS h 1<br />

The rest follows exactly as in the proof of Theorem 4.1 in Chapter I.<br />

S<br />

§<br />

¡ 1§<br />

C τ, <strong>on</strong>e obtains<br />

2 τGk 1 2<br />

L2 k 1<br />

Γ h<br />

. (2.26)<br />

Theorem 2.5.2 Discrete H1L2, LH1 energy estimate ¨ . Let us assume the submatrices Ak pi<br />

around regular vertices to be symmetric. We also c<strong>on</strong>sider U kk1,¤¤¤ ,kmax, the discrete soluti<strong>on</strong> of<br />

(2.12) <str<strong>on</strong>g>for</str<strong>on</strong>g> given discrete initial data U 0 V0 h and the homogenous boundary c<strong>on</strong>diti<strong>on</strong><br />

U k Γk1,¤¤¤ ,kmax 0, then there exists a c<strong>on</strong>stant C depending solely <strong>on</strong> tmax such that<br />

kmax <br />

k1<br />

where τ t U k U k ¡U k¡1<br />

τ<br />

τ τ t U k 2<br />

L2Γk h max U<br />

k1,¤¤¤ ,kmax<br />

k 2<br />

1,Γk h<br />

C<br />

£<br />

U 0 2<br />

L 2 Γ 0<br />

h <br />

U 0 2<br />

1,Γ 0<br />

h<br />

is defined as a difference quotient in time.<br />

τ<br />

kmax <br />

k1<br />

G k 2<br />

L 2 Γ k<br />

h <br />

<br />

<br />

, (2.27)<br />

45


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

Proof We multiply each equati<strong>on</strong> of (2.12) by the corresp<strong>on</strong>ding cell center difference quotient<br />

value τ k 1<br />

t US τ t U k 1S, each equati<strong>on</strong> of (2.3) by the corresp<strong>on</strong>ding subedge difference quotient<br />

k 1<br />

U<br />

pi ,j 12<br />

value ¡<br />

¡ © <br />

k<br />

¡ © U <br />

¡ © <br />

pi ,j 12<br />

k<br />

τ , where the values Upi,j 12 , comp<strong>on</strong>ents of the vector U k<br />

pi,σ , are<br />

interpolati<strong>on</strong> of the comp<strong>on</strong>ents of U k k 1<br />

1<br />

pi <strong>on</strong> subedges σpi,j 12 around pk i through <str<strong>on</strong>g>for</str<strong>on</strong>g>mula (2.7)<br />

¡ © <br />

(i.e. U k k 1<br />

pi,σ Coef U pi<br />

k pi ). Next, we sum the resulting equati<strong>on</strong>s over all cells and subedges to<br />

obtain<br />

τ <br />

<br />

S<br />

Sk 1<br />

k 1<br />

mS £ U k 1<br />

S<br />

k k 1<br />

mS ¡ mS ¨ U k S<br />

¡ U k S<br />

τ<br />

2<br />

k 1<br />

US ¡ U k S<br />

τ<br />

<br />

p k i<br />

¡ U k 1<br />

pi<br />

τ <br />

m<br />

S<br />

© <br />

A<br />

k 1<br />

pi<br />

U k 1 ¡<br />

¡ U k 1<br />

pi<br />

k 1<br />

k 1 1 US S<br />

Gk<br />

S<br />

¡ U k S<br />

τ<br />

Since the matrices Ak pik 0, 1, 2, ¤ ¤ ¤ are symmetric and have the same kernel,<br />

Sk 1<br />

k 1<br />

A<br />

pi A<br />

k 1<br />

pi<br />

¡ A k pi<br />

¨12 © A k pi<br />

where Ak ¨12 k<br />

pi is the symmetric matrix satisfying Api Ak pi<br />

inequality to equati<strong>on</strong> (2.28) gives<br />

τ <br />

£<br />

k 1<br />

k 1 US mS ¡ U k 2 S<br />

U<br />

τ<br />

k 1 2<br />

k 1<br />

1,Γh 1<br />

2 U k 2<br />

1,Γ k<br />

h<br />

<br />

p k i<br />

Taking into account that<br />

k 1<br />

Api A<br />

<br />

k 1<br />

pi<br />

S<br />

¨ k k 1<br />

Api Api <br />

¨12 k 1<br />

A<br />

1<br />

2<br />

<br />

p k i<br />

k k 1<br />

mS ¡ mS pi<br />

¡ Ak 1<br />

pi<br />

¨12 A k pi<br />

¡ U k 1<br />

pi<br />

¨ U k S<br />

© <br />

k 1<br />

Api A k pi<br />

k 1<br />

US ¡ U k S<br />

τ<br />

pi<br />

¨ A k 1<br />

¨12 ,<br />

© <br />

A<br />

k 1 U pi<br />

k<br />

. (2.28)<br />

¨12 ¨ k 12<br />

Api . Now, applying Young’s<br />

pi<br />

τ <br />

m<br />

pi<br />

S<br />

U<br />

k 1<br />

k 1<br />

k 1 1 US S<br />

Gk<br />

S<br />

¡ U k S<br />

τ<br />

¨ ¨12 ¡ ¨12 k 1<br />

k 1<br />

A ¡ A © <br />

k 1<br />

Api <br />

the 2¡norm ¨ k 1 12 ¨ k ¨ ¡<br />

k 1 12 ¨ ©<br />

k 1 12<br />

<br />

k 1<br />

Api Api Api ¡ Api Api § mk<br />

S<br />

mk 1 § k 1 § mS ¡ 1§<br />

Cτ, we deduce the inequality<br />

mk S<br />

τ 1<br />

2 τ t U k 1 2 1<br />

2 U k 1 2<br />

k 1 <br />

1,Γh 1<br />

2 U k 2<br />

1,Γk h<br />

C<br />

2 τ<br />

¡<br />

k 1 2<br />

U <br />

<br />

<br />

¨12 <br />

2<br />

k 1<br />

1,Γh ¨12<br />

Cτ, and<br />

U k 2<br />

Γ k<br />

h<br />

<br />

¨12 k 1<br />

A ,<br />

pi<br />

.<br />

G k 1 2<br />

k 1<br />

Γh Finally, summing over all time steps and using Theorem 2.5.1 gives the desired result.<br />

46<br />

©


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.6 C<strong>on</strong>vergence<br />

2.6 C<strong>on</strong>vergence<br />

In this secti<strong>on</strong>, we prove an error estimate <str<strong>on</strong>g>for</str<strong>on</strong>g> the finite volume soluti<strong>on</strong> U k Vk h . At first, we have<br />

and a<br />

to state how to compare a discrete soluti<strong>on</strong> defined <strong>on</strong> the sequence of polyg<strong>on</strong>izati<strong>on</strong>s Γk h<br />

c<strong>on</strong>tinuous soluti<strong>on</strong> defined <strong>on</strong> the evolving family of smooth surfaces Γt. Here, we will take into<br />

account the lifting operator from the discrete surfaces Γk h <strong>on</strong>to the c<strong>on</strong>tinuous surfaces Γtk already<br />

introduced in Secti<strong>on</strong> 2.4.1. As <str<strong>on</strong>g>for</str<strong>on</strong>g> the error analysis in Chapter I, we use the pull back from the<br />

c<strong>on</strong>tinuous surface <strong>on</strong>to a corresp<strong>on</strong>ding polyg<strong>on</strong>izati<strong>on</strong> to compare the c<strong>on</strong>tinuous soluti<strong>on</strong> utk at<br />

time tk with the discrete soluti<strong>on</strong> U k S U k SχS k where χSk is the characteristic functi<strong>on</strong> of the cell<br />

Sk . To be explicit, we c<strong>on</strong>sider the pull back u ¡ltk, Xk S of the c<strong>on</strong>tinuous soluti<strong>on</strong> u at time tk and<br />

investigate the error u ¡l tk, X k S ¡ U k S at the cell node Xk S<br />

. As already menti<strong>on</strong>ed, the c<strong>on</strong>sistency<br />

of the scheme depends <strong>on</strong> the proper choice of center points, edge points and the behavior of the<br />

mesh during the evoluti<strong>on</strong>; there<str<strong>on</strong>g>for</str<strong>on</strong>g>e we assume (2.22), (2.23) and the following extra c<strong>on</strong>diti<strong>on</strong> <strong>on</strong><br />

X k S and Xk pi,j 12 :<br />

A3 There exists C 0 and θ 0, π2 such that <str<strong>on</strong>g>for</str<strong>on</strong>g> two c<strong>on</strong>secutive vertices p k i , pk i 1 of<br />

any cell S k<br />

1) if mX k S , pk i , pk i 1 0, then there exist three points xk pi,1, x k pi,2, x k pi,3 in the intersecti<strong>on</strong><br />

of the c<strong>on</strong>vex hull of S k and the plane generated by the points X k S , pk i , pk i 1 <br />

satisfying x k pi,1x k pi,2 Ch, x k pi,1x k pi,3 Ch and θ ∢ <br />

x k pi,1x k pi,2, <br />

x k pi,1x k pi,3 π ¡ θ.<br />

Here ∢ <br />

x k pi,1x k pi,2, <br />

x k pi,1x k pi,3 represents the oriented angle between the vectors <br />

x k pi,1x k pi,2<br />

and <br />

x k pi,1x k pi,3, taken around the axis<br />

<br />

X k Spk <br />

X k Spk i<br />

i 1 .<br />

2) there exists three points yk pi,1, yk pi,2, yk pi,3 in the intersecti<strong>on</strong> of the c<strong>on</strong>vex hull of<br />

Sk and the plane generated by the points Xk S , Xk J pi,S 12 , Xk J pi,S¡12 satisfying<br />

y k pi,1y k pi,2 Ch, y k pi,1y k pi,3 Ch, and θ ∢ <br />

y k pi,1y k pi,2, <br />

y k pi,1y k pi,3 π ¡ θ. As above,<br />

∢ <br />

y k pi,1y k pi,2, <br />

y k pi,1y k pi,3 represents the oriented angle between the vectors <br />

y k pi,1y k pi,2 and<br />

<br />

y k pi,1y k pi,3 taken around <br />

X k SX k <br />

J pi,S 12 X k SX k J pi,S¡12. We recall that J pi , S is the local index of the cell Sk around the vertex pk i . We also assume that<br />

θ ∢ <br />

X k SX k <br />

J pi,S 12 , X k SX k J pi,S¡12 π ¡ θ, and <str<strong>on</strong>g>for</str<strong>on</strong>g> closed cells Sk intersecting the boundary<br />

Γk h and any edge unknown x Xk J pi,S 12 or x Xk J pi,S¡12 in Sk Γk h , Xk S ¡ x Ch.<br />

We shall precise here that the assumpti<strong>on</strong> A3 part 1) aims at having cells whose surfaces approximate<br />

correctly (in the sense of Lemma 2.6.2) the surface of their lifted counterparts. If the vertices of<br />

S k are coplanar, this assumpti<strong>on</strong> is true <str<strong>on</strong>g>for</str<strong>on</strong>g> any star-shaped point x X k S Sk (point whose any<br />

line c<strong>on</strong>necti<strong>on</strong> to a vertex of S k is entirely in S k ); but in general, <strong>on</strong> curved surface meshes, <strong>on</strong>e<br />

must pay a careful attenti<strong>on</strong>. On the other hand, A3 part 2) will guaranty the c<strong>on</strong>sistency of the<br />

approximati<strong>on</strong>s of surface normals and gradient operators. We refer to Secti<strong>on</strong> 2.4.5, <str<strong>on</strong>g>for</str<strong>on</strong>g> an example<br />

of an algorithm enabling the choice of nodes X k S and the subedge virtual points Xk pi,j 12 .<br />

Finally, the following c<strong>on</strong>vergence theorem holds:<br />

Theorem 2.6.1 (Error estimate). Suppose that the assumpti<strong>on</strong>s listed from Secti<strong>on</strong> 2.4 hold and<br />

define the piecewise c<strong>on</strong>stant error functi<strong>on</strong>al <strong>on</strong> Γk h <str<strong>on</strong>g>for</str<strong>on</strong>g> k 1, ¤ ¤ ¤ , kmax<br />

E k : <br />

¨<br />

χSk S k<br />

u ¡l tk, X k ¡ U k S<br />

measuring the pull back u ¡l tk, ¤ of the c<strong>on</strong>tinuous soluti<strong>on</strong> utk, ¤ of (2.1) at time tk and the finite<br />

volume soluti<strong>on</strong> U k V k h of (2.12). Furthermore, let us assume that E0 L 2 Γ 0<br />

h C h, then the<br />

47


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

error estimate<br />

max<br />

k1,¤¤¤ , kmax<br />

<br />

E k 2<br />

L 2 Γ k<br />

h<br />

τ<br />

kmax <br />

k1<br />

<br />

E k 2<br />

1, Γ k<br />

h<br />

C h τ 2<br />

holds <str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>stant C depending <strong>on</strong> the regularity assumpti<strong>on</strong>s and the time tmax.<br />

(2.29)<br />

This error estimate generalizes the error estimate given in Chapter I. As already menti<strong>on</strong>ed there,<br />

it depends <strong>on</strong> the c<strong>on</strong>sistency estimates of different terms which rely <strong>on</strong> geometric estimates; thus<br />

the proof of this theorem will follow the same procedure. The main difference here is that cells are<br />

not necessarily triangular and vertices are not necessarily bound to the surface, but we will always<br />

re<str<strong>on</strong>g>for</str<strong>on</strong>g>mulate the results in order to use the gains of Chapter I. In what follows, we first establish<br />

the relevant geometric estimates, then prove the c<strong>on</strong>sistency of the scheme and finally establish the<br />

c<strong>on</strong>vergence result.<br />

2.6.1 Geometric approximati<strong>on</strong> estimates<br />

Let us first extend the definiti<strong>on</strong> of P k into a time c<strong>on</strong>tinuous operator Pt, ¤ which <str<strong>on</strong>g>for</str<strong>on</strong>g> each time<br />

t 0, tmax, projects points orthog<strong>on</strong>ally <strong>on</strong>to Γt. This operator is well defined in a neighborhood<br />

of Γt. We also introduce the time c<strong>on</strong>tinuous lift operator<br />

Ψ k t, ¤ : S k S l,k t, x Ψ k t, x : Φt, Φ ¡1 tk, P k x (2.30)<br />

which helps to follow the transported lifted cell S l,k t : Ψ k t, S k . We then introduce an estimate<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> the distance between the c<strong>on</strong>tinuous surface and the polyg<strong>on</strong>izati<strong>on</strong> and <str<strong>on</strong>g>for</str<strong>on</strong>g> the ratio between<br />

cell areas and their lifted counterparts.<br />

Lemma 2.6.2 Let dt, x be the signed distance from a point x to the surface Ωt taken to be<br />

positive in the directi<strong>on</strong> of the surface normal ν, Γht an m, h ¡ approximati<strong>on</strong> of Γt Ωt,<br />

and let m l,k<br />

S denote the measure of the lifted cell Sl,k , m l,k<br />

pi,j 12 the measure of the lifted subedge<br />

. The estimates<br />

σ k pi,j 12<br />

sup<br />

0ttmax<br />

dt, ¤ L Γht Ch 2 , sup<br />

k, S<br />

§<br />

§ 1 ¡ ml,k<br />

S<br />

mk S<br />

§<br />

§ Ch2 , sup<br />

§<br />

§<br />

i, j, k § 1 ¡ ml,k<br />

pi,j 12<br />

mk pi,j 12<br />

§<br />

§ Ch2<br />

hold <str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>stant C depending <strong>on</strong>ly <strong>on</strong> the regularity assumpti<strong>on</strong>s. Let us also c<strong>on</strong>sider the planes<br />

T k Si,i 1 generated by the center point Xk S , and the vertices pk i , pk i 1 of Sk ; and the plane T k pi,S<br />

generated by Xk S and the virtual points Xk pi,j¡12 and Xk pi,j 12 around pk i . There exists a c<strong>on</strong>stant<br />

C depending <strong>on</strong>ly <strong>on</strong> the regularity assumpti<strong>on</strong>s such that<br />

max<br />

xSk ∇T k dtk, x Ch and max<br />

Si,i 1<br />

xS<br />

i,i 1<br />

k ∇T k dtk, xCh.<br />

pi ,S<br />

pi ,j<br />

We recall that S k i,i 1 is the triangle Xk S , pk i , pk i 1 and Sk pi,j is the virtual subcell of Sk c<strong>on</strong>taining<br />

p k i .<br />

Proof First notice that dt, ¤ is a C2 functi<strong>on</strong>. Let us c<strong>on</strong>sider a cell Skt : Υt, Sk with center<br />

Xk St and vertices Ψkt, pk i , a point x βk SxXk St βk S,ixΨkt, pk i βk S,i 1xΨkt, pk i 1 where<br />

βk Sx, βk S,ix, and βk S,i 1x are barycentric coordinates of x with respect to Xk St, Ψkt, pk i , and<br />

Ψkt, pk i 1 respectively. The Taylor expressi<strong>on</strong> of dt, ¤ at each vertex y of the triangle<br />

can be expressed in terms of dt, x as<br />

X k S t, Ψk t, p k i , Ψk t, p k i 1<br />

48<br />

dt, y dt, x y ¡ x ¤ ∇dt, x Oy ¡ x 2 .


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.6 C<strong>on</strong>vergence<br />

Finally, multiplying each of these equati<strong>on</strong>s by the corresp<strong>on</strong>ding barycentric coefficients and summing<br />

up all the equati<strong>on</strong>s, <strong>on</strong>e obtains that dt, x Oh2 since the barycentric coefficients are<br />

bounded and we have assumed that Γht is an m, h¡polyg<strong>on</strong>izati<strong>on</strong> of Γt. Next, the points<br />

xk pi,j T k Si,i 1 and yk pi,j T k pi,S (j 1, 2, 3) provided by assumpti<strong>on</strong> A3 satisfy<br />

∇T k dtk, x<br />

Si,i 1<br />

k pi,j Ch and ∇T k dtk, y<br />

pi ,S<br />

k pi,1 Ch. Since these points are in the c<strong>on</strong>vex hull<br />

of S k , <strong>on</strong>e c<strong>on</strong>cludes that max S k<br />

i,i 1 ∇ T k<br />

S i,i 1<br />

where we recall that S k i,i 1 is the triangle Xk S , pk i , pk i 1 .<br />

dtk, x Ch and maxSk pi ,j ∇T k dtk, x Ch,<br />

pi ,S<br />

For the sec<strong>on</strong>d estimate, we c<strong>on</strong>sider the triangle Sk i,i 1 and assume without any restricti<strong>on</strong> that<br />

S k i,i 1 ξ, 0ξ R2 . As in the proof of Lemma 1.5.2, we define P k ext in a neighborhood of<br />

Sk i,i 1 as follows<br />

Obviously, P k ext P k <strong>on</strong> S k i,j<br />

P k extξ, ζ ξ, 0 ζ ¡ dtk, ξ, 0∇d T tk, ξ, 0.<br />

and from the results above, we deduce that<br />

§ § § detDP k extξ, 0 § § ¡ 1 § § Ch 2 ,<br />

where DP k ext is the Jacobian of P k ext. We can clearly see that § § detDP k extξ, 0 § § c<strong>on</strong>trols the trans-<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of the area under the projecti<strong>on</strong> Pk from Sk i,i 1<br />

third column of the Jacobian ζP k extξ, 0 ∇dT tk, ξ, 0 has length 1 and is normal to Γtk at<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>m a partiti<strong>on</strong><br />

to Sl,k<br />

i,i 1 : PkS k i,i 1; since the<br />

Pkξ, 0. The claim is there<str<strong>on</strong>g>for</str<strong>on</strong>g>e proven since the subcells S l,k<br />

i,i 1 as well as Sk i,i 1<br />

of Sl,k and Sk , respectively.<br />

The third estimate is obtained via an adaptati<strong>on</strong> of arguments of the sec<strong>on</strong>d estimate.<br />

Let us also give the following lemma which states the c<strong>on</strong>sistency of the approximati<strong>on</strong> of c<strong>on</strong>ormals<br />

to curved boundaries.<br />

Lemma 2.6.3 Let pk i and pk i 1 be two c<strong>on</strong>secutive vertices of a cell Sk , Xk S its center and σk pi,j¡12<br />

the subedge around pk i satisfying σk pi,j¡12 pk i , pk i 1. We also c<strong>on</strong>sider σl,k<br />

pi,j¡12 the coresp<strong>on</strong>ding<br />

curved boundary <strong>on</strong> Γtk and Xk pi,j¡12 , Xk pi,j 12 the subedge points of Sk around pk i . Finally, we<br />

assume Xk pi,j¡12 σk pi,j¡12 , then the c<strong>on</strong>ormal to σl,k<br />

pi,j¡12 outward from Sl,k Γk is given by<br />

where n k pi,jj¡12 :<br />

ɛxCh.<br />

¢ k pi 1 ¡pk<br />

i<br />

pk i 1 ¡pk<br />

i νk pi,j<br />

n l,k<br />

pi,jj¡12 x nk pi,jj¡12<br />

<br />

<br />

<br />

<br />

pk<br />

i 1 ¡pk<br />

i<br />

pk i 1 ¡pk<br />

i νk pi,j<br />

<br />

<br />

<br />

<br />

ɛx<br />

and ɛx is a vector satisfying<br />

Proof We will distinguish the case where σk pi,j 12 is a boundary subedge (σk pi,j 12 Γk h ) and<br />

the case where σk pi,j 12 is an interior subedge (σk pi,j 12 Γk hΓk h ).<br />

Let us c<strong>on</strong>sider the first case where σk pi,j 12 Γk h . We define the following map<br />

η k S,ii 1<br />

: x : pk<br />

i<br />

α pk i 1 ¡ pk i<br />

p k i 1 ¡ pk i ηk S,ii 1 x : x ¡ dtk, x∇d T tk, x<br />

¡ dP k x, Γ k ∇d T P k x, Γ k ,<br />

<br />

49


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

where α 0, pk i 1 ¡ pk i . Since this map trans<str<strong>on</strong>g>for</str<strong>on</strong>g>ms σk pi,j¡12<br />

σ l,k<br />

pi,j¡12 is given by<br />

ϖ k S,ii 1ηk S,ii 1x pk i 1 ¡ pk i<br />

pk i 1 ¡ pk ¡<br />

i <br />

£<br />

∇d T tk, x ¤ pk i 1 ¡ pk i<br />

p k i 1 ¡ pk i <br />

¡ dtk, x ∇ ∇d T tk, x ¨ pk i 1 ¡ pk i<br />

pk i 1 ¡ pki <br />

¡<br />

£<br />

∇d T P k x, Γ k ¤ pk i 1 ¡ pk i<br />

p k i 1 ¡ pk i <br />

to σl,k<br />

pi,j¡12 , a tangent vector to<br />

<br />

<br />

∇d T tk, x<br />

∇d T P k x, Γ k <br />

¡ dP k x, Γ k ∇ ∇d T P k x, Γ k ¨ pk i 1 ¡ pk i<br />

p k i 1 ¡ pk i <br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> points x where ηk S,ii 1 has enough regularity. Since ηk S,ii 1 is regular enough almost everywhere<br />

and referring to the assumpti<strong>on</strong> (v) and (vi) <strong>on</strong> the surface approximati<strong>on</strong> in Definiti<strong>on</strong> 2.3.5 as well<br />

as to Lemma 2.6.2, <strong>on</strong>e c<strong>on</strong>cludes that<br />

ϖ k S,ii 1ηk S,ii 1x pk i 1 ¡ pk i<br />

pk i 1 ¡ pk ɛ1x,<br />

i <br />

where ɛ1x is a vector satisfying ɛ1x Ch. Next, <strong>on</strong>e deduces from the last two inequalities of<br />

Lemma 2.6.2 that<br />

ν k pi,j ¤ pk i 1 ¡ pk i<br />

pk i 1 ¡ pk Oh<br />

i <br />

and the normal νηk S,ii 1x to the surface Γk at ηk S,ii 1x is given by<br />

νη k S,ii 1 x νk pi,j ɛ2x,<br />

where ɛ2x is a vector satisfying ɛ2x Ch. Finally, <strong>on</strong>e deduces that the unit normal to σ l,k<br />

pi,j 12<br />

outward from S l,k Γ k is given by<br />

ϖ k S,ii 1 ηk S,ii 1 x νηk S,ii 1 x nk pi,jj¡12 ɛx.<br />

where ɛx is a vector satisfying ɛx Ch.<br />

For the sec<strong>on</strong>d case, ηk S,ii 1¤ is merely P¤ and the above proof remains valid.<br />

Next we c<strong>on</strong>trol the area defect between the transported lifted versus a lifted transported cell.<br />

Lemma 2.6.4 For each cell S k <strong>on</strong> Γ k h , and all x in Sk , the estimate<br />

Pt, Υ k t, x ¡ Ψt, x Cτh 2<br />

holds <str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>stant C depending <strong>on</strong>ly <strong>on</strong> the regularity assumpti<strong>on</strong>s. Furthermore, <str<strong>on</strong>g>for</str<strong>on</strong>g> the symmetric<br />

difference between S l,k and S l,k 1 , <strong>on</strong>e obtains<br />

H n¡1 S l,k tk 1∆S l,k 1 k 1<br />

CτhmS where H n¡1 ¤ represents the n ¡ 1- dimensi<strong>on</strong>al Hausdorff measure. We recall that the symmetric<br />

difference between two sets A and B is defined by A∆B AB BA.<br />

50


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.6 C<strong>on</strong>vergence<br />

Proof The proof here is identical to the proof of Lemma 1.5.3 in Chapter I, up to minor modificati<strong>on</strong>s<br />

due to the fact that vertices are not bound to the surface and the cells are n<strong>on</strong>triangular. In fact,<br />

as in that Lemma, we first notice that the functi<strong>on</strong> Ψkt, ¤ defined in (2.30) parameterizes the<br />

lifted and then transported cell Sl,kt over Sk , and Pt, Υkt, ¤ with Υkt, ¤ defined in (2.21)<br />

parameterizes the transported and then lifted cell Pt, Skt over Sk . Next, <strong>on</strong>e uses the Taylor<br />

expansi<strong>on</strong> of respective functi<strong>on</strong>s at vertices of triangles Sk i,i 1 c<strong>on</strong>sidered as neighboring points of<br />

, and in the same way as in the proof of Lemma 2.6.2, <strong>on</strong>e obtains<br />

a point x S k i,i 1<br />

Pt, Υ k t, x ¡ Ψt, x βth 2 .<br />

Here β¤ is a n<strong>on</strong>negative and smooth functi<strong>on</strong> in time. As in Lemma 1.5.3 in Chapter I, <strong>on</strong>e<br />

deduces from S l,k tk S l,k that β¤ can be chosen such that βt C t ¡ tk holds. This result<br />

shows that the maximum norm of the displacement Pt, Υ k t, ¤ ¡ Ψt, ¤ <strong>on</strong> the boundary σ k is<br />

Cτh 2 . The sec<strong>on</strong>d claim is then obvious.<br />

<br />

Based <strong>on</strong> this estimate, we immediately obtain the following corollary already <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated <str<strong>on</strong>g>for</str<strong>on</strong>g> the<br />

triangular mesh in Chapter I (Corollary 5.4):<br />

Corollary 2.6.5 For any cell Sk <strong>on</strong> Γk h and any Lipschitz c<strong>on</strong>tinuous functi<strong>on</strong> ωt, ¤ defined <strong>on</strong><br />

Γt <strong>on</strong>e obtains<br />

§ <br />

§<br />

Sl,k ωtk 1, ada ¡<br />

tk 1Γtk 1<br />

<br />

S l,k 1 Γtk 1<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> a c<strong>on</strong>stant C depending <strong>on</strong>ly <strong>on</strong> the regularity assumpti<strong>on</strong>s.<br />

2.6.2 C<strong>on</strong>sistency estimates.<br />

§<br />

ωtk 1, ada<br />

§ Cτhmk 1<br />

S<br />

With these geometric preliminaries at hand, we are now able to derive a-priori bounds <str<strong>on</strong>g>for</str<strong>on</strong>g> various<br />

c<strong>on</strong>sistency errors in c<strong>on</strong>juncti<strong>on</strong> with the finite volume approximati<strong>on</strong> (2.12) of the c<strong>on</strong>tinuous<br />

evoluti<strong>on</strong> (2.1). Let us first re<str<strong>on</strong>g>for</str<strong>on</strong>g>mulate Lemma 1.5.5 of Chapter I in this c<strong>on</strong>text.<br />

Lemma 2.6.6 Let S k be a cell in Γ k h and t tk, tk 1, then <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

R1S l,k t Γt :<br />

¡<br />

<br />

<br />

S l,k tΓt<br />

S l,k 1 Γtk 1<br />

∇ Γt ¤ D∇ Γtut, ¤da<br />

we obtain the estimate § § R1S l,k t Γt § § Cτ1 Chm k 1<br />

S .<br />

∇ Γtk 1 ¤ D∇ Γtk 1utk 1, ¤da<br />

This Lemma is proved al<strong>on</strong>g the same line as Lemma 1.5.5 via an adaptati<strong>on</strong> of arguments. Next,<br />

we have the following result.<br />

Lemma 2.6.7 Let the subedge σ l,k<br />

pi,j 12<br />

and S l,k<br />

pi,j 1<br />

be the intersecti<strong>on</strong> between two adjacent subcells Sl,k<br />

pi,j<br />

or, with a slight misuse of notati<strong>on</strong>, the intersecti<strong>on</strong> between Sl,k<br />

pi,j<br />

P k Γ k h Γk¨ of P k Γ k h Γk ; the term<br />

<br />

R2S k pi,jS k pi,j 1 :<br />

σ l,k<br />

D∇Γtku<br />

pi ,j 12<br />

¨ ¤ n l,k<br />

pi,j 12tk, xdx<br />

¡<br />

utk, P k X k pi,j 12 ¡ utk, P k X k ©<br />

k<br />

pi,j λpi,jj 12<br />

¡ m k pi,j 12<br />

¡ m k pi,j 12<br />

¡<br />

utk, P k X k pi,j¡12 ¡ utk, P k X k ©<br />

k<br />

pi,j λpi,j¡12jj 12 ,<br />

and the boundary<br />

51


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

where n l,k<br />

pi,j 12tk, ¤ is the functi<strong>on</strong> describing the outward pointing unit c<strong>on</strong>ormal of S l,k<br />

pi,j<br />

subedge σ l,k<br />

pi,jj 12 and the other terms are defined in Secti<strong>on</strong> 2.4.2, obeys the estimate<br />

§<br />

§R2S k pi,iS k pi,i 1 § § Cm k iS 12 h.<br />

<strong>on</strong> the<br />

Proof As in Lemma 2.6.6, we c<strong>on</strong>sider the c<strong>on</strong>tinuous extensi<strong>on</strong> of ut, ¤, still called ut, ¤. Next,<br />

we write the surface gradient of utk, ¤ at a point x <strong>on</strong> S l,k<br />

pi,j Γk as follows:<br />

∇Γkux ∇u ∇T k ux ∇ux ¤ ν<br />

pi ,S<br />

k ¨ k<br />

pi,S νpi,S. Since ∇T k ux ∇T k ¤ e<br />

pi ,S<br />

pi ,S<br />

k pi,jj¡12µk pi,jj¡12<br />

νx ν k pi,S<br />

∇T k ¤ e<br />

pi ,S<br />

k pi,jj 12µk pi,jj 12 and<br />

ϑjtk, xh with ϑjtk, x C <strong>on</strong> S l,k<br />

pi,j Γk , we obtain using the Taylor expansi<strong>on</strong>,<br />

Definiti<strong>on</strong> 2.3.5 and assumpti<strong>on</strong> A3.2 that<br />

¡<br />

∇Γkux utk, X k pi,j¡12 ¡ utk, X k ©<br />

k<br />

pi,j µ pi,jj¡12<br />

¡<br />

utk, X k pi,j 12 ¡ utk, X k ©<br />

k<br />

pi,j µ pi,jj 12 ¡ ɛtk, x,<br />

where ɛtk, x is a three dimensi<strong>on</strong>al vector satisfying ɛtk, x Ch. Thus, using the regularity<br />

assumpti<strong>on</strong>s <strong>on</strong> D, Lemma 2.6.3 and assumpti<strong>on</strong> A3.2 we obtain<br />

<br />

σ l,k<br />

p i ,j 12<br />

D∇ Γ ku ¤ n l,k<br />

pi,jj 12 dx mk pi,j 12<br />

m k pi,j 12<br />

¡<br />

utk, X k pi,j¡12 ¡ utk, X k ©<br />

k<br />

pi,j λpi,j¡12jj 12<br />

¡<br />

utk, X k pi,j 12 ¡ utk, X k ©<br />

k<br />

pi,j λpi,jj 12<br />

Om k pi,j 12h. (2.31)<br />

We now need to prove that the approximati<strong>on</strong> of the subedge values utk, X k pi,j¡12 are Oh2 <br />

c<strong>on</strong>sistent. To this end, we apply the c<strong>on</strong>tinuous versi<strong>on</strong> of Propositi<strong>on</strong> 2.4.1 <strong>on</strong> the above relati<strong>on</strong><br />

which gives<br />

where U k pi,σ :<br />

M k U pi<br />

k pi,σ N k U pi<br />

k pi v1, (2.32)<br />

¡<br />

utk, Xk pi,12, utk, Xk © <br />

pi,32, ¤ ¤ ¤ , U k<br />

pi : utk, Xk pi,1, utk, Xk pi,2, ¤ ¤ ¤ ¨ and v1 is<br />

a vector satisfying v1 Ch2 . Also, the H1 ¡norm of the c<strong>on</strong>tinuous soluti<strong>on</strong> reads<br />

<br />

j S l,k<br />

pi ,jΓk ∇Γku 2 dx <br />

j S l,k<br />

pi ,jΓk <br />

<br />

¡ utk, X k pi,j¡12 ¡ utk, X k ©<br />

k<br />

pi,j µ pi,jj¡12<br />

¡<br />

utk, X k pi,j 12 ¡ utk, X k © <br />

k <br />

pi,j µ pi,jj 12 ɛtk, x<br />

2<br />

dx.<br />

The c<strong>on</strong>tinuous setup of problem (2.6) is <str<strong>on</strong>g>for</str<strong>on</strong>g>mulated as<br />

52<br />

<br />

<br />

<br />

Find U k pi,σ in ¯ B k pi :<br />

U k pi,σ argmin<br />

V k p i ,σ Bk p i<br />

<br />

j<br />

<br />

V k<br />

pi,σ : V k k<br />

pi,12 , V<br />

S l,k<br />

p i ,j Γk<br />

<br />

<br />

V k<br />

V k<br />

pi,j 12 ¡ U k pi,j<br />

pi,32 , ¤ ¤ ¤ M k pi<br />

pi,j¡12 ¡ <br />

U k k<br />

pi,j µ pi,jj¡12<br />

<br />

k<br />

µ pi,jj 12 ɛtk, x<br />

V k<br />

pi,σ N k U pi<br />

k pi v1<br />

<br />

such that<br />

<br />

<br />

2<br />

dx;


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

which in a simplified setup reads<br />

<br />

<br />

<br />

Find U k pi,σ in ¯ B k pi :<br />

U k pi,σ argmin<br />

V k p i ,σ Bk p i<br />

<br />

<br />

<br />

<br />

B k pi<br />

<br />

V k<br />

pi,σ : V k k<br />

pi,12 , Vpi,32 , ¤ ¤ ¤ M k V pi<br />

k<br />

pi,σ N k U pi<br />

k pi<br />

V k<br />

pi,σ ¡<br />

¡ B k pi<br />

©¡1<br />

k<br />

C U pi<br />

k pi<br />

v2<br />

¨ 2 <br />

<br />

2.6 C<strong>on</strong>vergence<br />

v1<br />

such that<br />

since the error ɛtk, x is assumed to be known. v2 is a vector satisfying v2 Ch 2 . Following the<br />

same procedure as in Secti<strong>on</strong> 2.4.2, <strong>on</strong>e obtains<br />

where v3 <br />

¡ B k pi<br />

© ¡1 ¢ M k pi<br />

¡ B k pi<br />

U k pi,σ Coef k U pi<br />

k pi v3,<br />

© ¡1 ¡v1 ¡ M k pi<br />

B k pi<br />

¨ © ¡1 ¨ k ¡1<br />

v2 Bpi v2. It is clear that<br />

v3 Ch 2 . We have just proven that a perturbati<strong>on</strong> <strong>on</strong> the equati<strong>on</strong> leads to a c<strong>on</strong>sistent soluti<strong>on</strong>.<br />

It is left to prove that the soluti<strong>on</strong> is also c<strong>on</strong>sistent with the expected data (values of functi<strong>on</strong>s at<br />

virtual points). In the flat case, this is evident since the rec<strong>on</strong>structi<strong>on</strong> of affine functi<strong>on</strong>s using this<br />

method is exact if the tensor D is c<strong>on</strong>stant <strong>on</strong> jS l,k<br />

pi,j Γk and Oh 2 c<strong>on</strong>sistent in general. In the<br />

curved case we c<strong>on</strong>sider the closest plane to the center points around p i . There exists h0 such that this<br />

plane is included in N tk <str<strong>on</strong>g>for</str<strong>on</strong>g> any h h0. Next we project <strong>on</strong> the defined plane, in the directi<strong>on</strong> of<br />

the surface normal ν, the whole geometrical setup represented around p i and adopt the new subcells<br />

as discrete subcells. Let us c<strong>on</strong>sider the functi<strong>on</strong> fx utk, X k 1 ∇ Γ kutk, X k 1 ¤x¡X k 1 defined<br />

in a neighborhood of jS l,k<br />

pi,j Γk whose restricti<strong>on</strong> <strong>on</strong> Γ k is c<strong>on</strong>sidered <str<strong>on</strong>g>for</str<strong>on</strong>g> the rec<strong>on</strong>structi<strong>on</strong>. The<br />

above problem posed <strong>on</strong> the new discrete subcells gives an Oh 2 c<strong>on</strong>sistent value of f at projected<br />

virtual points; These values are in an Oh 2 neighborhood of the values of f at the corresp<strong>on</strong>ding<br />

surface points. Also, due to the c<strong>on</strong>sistency of the geometric approximati<strong>on</strong>, the newly stated<br />

problem can be stated as the above problem with an Oh 2 perturbati<strong>on</strong> of the right hand side<br />

which means that the soluti<strong>on</strong> is evidently the soluti<strong>on</strong> of problem (2.6) with an uncertainty of<br />

Oh 2 . This c<strong>on</strong>cludes that the right values of a c<strong>on</strong>tinuous functi<strong>on</strong> is in an Oh 2 neighborhood<br />

of the value proposed by this rec<strong>on</strong>structi<strong>on</strong>’s method. Now, including this result in equati<strong>on</strong> (2.31)<br />

gives the desired estimate.<br />

Finally, Lemma 1.5.7 and Lemma 1.5.8 of Chapter I are also satisfied in this c<strong>on</strong>text and they can<br />

be respectively re<str<strong>on</strong>g>for</str<strong>on</strong>g>mulated as follows<br />

Lemma 2.6.8 For a cell S k and the residual error term<br />

R3S l,k S l,k 1 <br />

<br />

Sl,ktk k 1<br />

1Γ<br />

uda ¡<br />

k 1<br />

¡ mS u¡l k 1<br />

tk 1, XS <strong>on</strong>e obtains the estimate R3Sl,kS l,k 1 k 1<br />

CτhmS .<br />

Lemma 2.6.9 For a cell S k and the residual error term<br />

R4<br />

S l,k S l,k 1 ¨ <br />

<strong>on</strong>e achieves the estimate § § R4<br />

tk 1<br />

tk<br />

<br />

S l,k tΓt<br />

l,k l,k 1 S S ¨§ § k 1<br />

Cττ hmS .<br />

<br />

S l,k tkΓ k<br />

uda<br />

¡ m k Su ¡l tk, X k S<br />

k 1<br />

gt, a da dt ¡ τmS g ¡l k 1<br />

tk 1, XS ¨<br />

<br />

53


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

2.6.3 Proof of Theorem 2.6.1<br />

As in Secti<strong>on</strong> 2.4.3 (cf. (2.9), (2.10) and (2.11)), let us c<strong>on</strong>sider the following cellwise flux <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong><br />

of the c<strong>on</strong>tinuous problem (2.1):<br />

<br />

Sl,ktk k 1<br />

1Γ<br />

u da¡<br />

<br />

S l,k Γ k<br />

u da¡<br />

tk 1<br />

tk<br />

<br />

S l,k tΓt<br />

From this equati<strong>on</strong> we subtract the discrete counterpart (2.12)<br />

mS ¡ τ <br />

k 1 k 1<br />

US ¡ mkSU k S<br />

piS k<br />

k 1<br />

mpi,J pi,S¡12<br />

τ m<br />

k 1<br />

mpi,J pi,S 12<br />

k 1<br />

mpi,J pi,S 12<br />

m k 1<br />

pi,J pi,S¡12<br />

k 1 1<br />

S<br />

Gk<br />

S .<br />

¡ U k 1<br />

D∇ Γtu¤µ S l,k t dl dt <br />

tk 1<br />

tk<br />

<br />

S l,k tΓt<br />

¡ ©<br />

k 1<br />

k 1<br />

k 1<br />

Upi,J pi,S¡12 ¡ Upi,J λ pi,S pi,J pi,SJ pi,S¡12<br />

k 1<br />

pi,J pi,S 12 ¡ Upi,J pi,S<br />

¡ U k 1<br />

k 1<br />

pi,J pi,S¡12 ¡ Upi,J pi,S<br />

¡ U k 1<br />

pi,J pi,S 12<br />

¡ U k 1<br />

pi,J pi,S<br />

© λ k 1<br />

© λ k 1<br />

¨ k 1<br />

¡ US to obtain<br />

R1S l,k <br />

k 1<br />

t Γtdt E<br />

pi,J pi,S 12J pi,SJ pi,S¡12<br />

© λ k 1<br />

pi,J pi,SJ pi,S 12<br />

pi,J pi,S¡12J pi,SJ pi,S 12<br />

k 1<br />

and multiply this with ES u¡l k 1<br />

tk 1, XS R3S l,k S l,k 1 k 1<br />

ES ¡<br />

¡<br />

¢ tk 1<br />

tk<br />

τ<br />

S<br />

<br />

k 1<br />

1<br />

R2Spi,J Sk<br />

pi,S pi,J pi,S 1 k 1<br />

p Sk 1<br />

i<br />

k 1<br />

1<br />

R2Spi,J Sk<br />

pi,S pi,J pi,S¡1 k 1<br />

mS ¡ τ <br />

R4<br />

k 1<br />

ES k 1<br />

p Sk 1<br />

i<br />

¨2 ¡ m k SE k SE<br />

m k 1<br />

k 1<br />

mpi,J pi,S 12<br />

k 1<br />

mpi,J pi,S¡12<br />

k 1<br />

mpi,J pi,S¡12<br />

<br />

E k 1<br />

pi,J pi,S<br />

g da dt.<br />

k 1<br />

S <br />

¡ ©<br />

k 1<br />

1<br />

k 1<br />

1<br />

pi,J pi,S 12 Epi,J pi,S 12 ¡ Ek<br />

pi,J E pi,S pi,J<br />

λk<br />

pi,S pi,J pi,SJ pi,S 12<br />

¡ E k 1<br />

1<br />

pi,J pi,S¡12 ¡ Ek<br />

pi,J pi,S<br />

¡ E k 1<br />

1<br />

pi,J pi,S 12 ¡ Ek<br />

pi,J pi,S<br />

¡ E k 1<br />

pi,J pi,S¡12<br />

¡ Ek 1<br />

pi,J pi,S<br />

© E k 1<br />

© E k 1<br />

pi,J pi,S<br />

λk 1<br />

pi,J pi,S¡12J pi,SJ pi,S 12<br />

1<br />

pi,J<br />

λk<br />

pi,S pi,J pi,S 12J pi,SJ pi,S¡12<br />

© E k 1<br />

pi,J pi,S<br />

λk 1<br />

pi,J pi,SJ pi,S¡12<br />

l,k l,k 1<br />

S S ¨ k 1<br />

ES , (2.33)<br />

k 1<br />

where Epi,J pi,S¡12 :<br />

¡ u ¡l<br />

¡<br />

k 1<br />

tk 1, Xj¡12 © ©<br />

k 1,i<br />

k 1<br />

¡ U and E<br />

j¡12<br />

pi,J pi,S 12<br />

<br />

is defined analogously.<br />

We recall that the summati<strong>on</strong> is always d<strong>on</strong>e <strong>on</strong> regular vertices (cf. Definiti<strong>on</strong> 2.4.3). Next, we<br />

l,k 1<br />

substract from the flux c<strong>on</strong>tinuity equati<strong>on</strong> <strong>on</strong> subedges between neighboring sub-cell S<br />

l,k 1<br />

Spi,J pi,S 1<br />

54<br />

<br />

<br />

l,k 1<br />

σ<br />

pi ,J pi ,S 12<br />

l,k 1<br />

σ<br />

pi ,J pi ,S 12<br />

D∇Γu S l,k 1<br />

p i ,J p i ,S t ¤ µ S<br />

l,k 1<br />

pi ,J pi ,S<br />

t dl<br />

D∇Γu l,k 1<br />

S<br />

pi ,J pi ,S 1 t ¤ µ l,k 1<br />

S<br />

pi ,J pi ,S 1<br />

t dl 0,<br />

pi,J pi,S and


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

its discrete counterpart<br />

k 1<br />

mpi,J pi,S 12<br />

¡ U k 1<br />

¡ U k 1<br />

k 1<br />

pi,J pi,S¡12 ¡ Upi,J pi,S<br />

k 1<br />

mpi,J pi,S 12<br />

¡ U k 1<br />

pi,J pi,S 12<br />

k 1<br />

pi,J pi,S 12 ¡ UJ pi,S<br />

¡ U k 1<br />

© λ k 1,i<br />

k 1,i<br />

pi,J pi,S 32 ¡ UJ pi,S 1<br />

¡ U k 1,i<br />

J pi,S 1<br />

© λ k 1,i<br />

J pi,SJ pi,S 12<br />

©<br />

k 1,i<br />

λ<br />

<br />

0.<br />

pi,J pi,S¡12J pi,SJ pi,S 12<br />

© λ k 1<br />

pi,J pi,S 1J pi,S<br />

k 1<br />

Furthermore, we multiply the result by τEpi,J pi,S 12<br />

k 1<br />

τ mpi,J pi,S 12<br />

k 1<br />

τ mpi,J pi,S 12<br />

k 1<br />

τ mpi,J pi,S 12<br />

k 1<br />

τ mpi,J pi,S 12<br />

¡ E k 1<br />

1<br />

pi,J pi,S 12 ¡ Ek<br />

pi,J pi,S<br />

¡ E k 1<br />

¡ E k 1<br />

pi,J pi,S¡12<br />

¡ Ek 1<br />

pi,J pi,S<br />

1<br />

pi,J pi,S 12 ¡ Ek<br />

pi,J pi,S 1<br />

¡ E k 1<br />

pi,J pi,S 32<br />

¡ Ek 1<br />

pi,J pi,S 1<br />

k 1 1<br />

1<br />

τ R2SJ Sk<br />

pi,S pi,J pi,S 1Ek pi,J pi,S 12<br />

© E k 1<br />

©<br />

k 1<br />

E<br />

©<br />

k 1<br />

E<br />

©<br />

k 1<br />

E<br />

and obtain<br />

pi,J pi,S 12<br />

pi,J pi,S 12<br />

pi,J pi,S 12<br />

pi,J pi,S 12<br />

pi,J pi,S 2J pi,S 1J pi,S<br />

<br />

λk 1<br />

pi,J pi,SJ pi,S 12<br />

2.6 C<strong>on</strong>vergence<br />

λk 1<br />

pi,J pi,S¡12J pi,SJ pi,S 12<br />

λk 1<br />

pi,J pi,S 1J pi,S 12 (2.34)<br />

λk 1<br />

pi,J pi,S 32J pi,S 1J pi,S 12<br />

k 1<br />

1<br />

1<br />

τ R2Spi,J pi,S 1Sk pi,J<br />

Ek<br />

pi,S pi,J pi,S 12 0.<br />

Now, summing up (2.33) and (2.34) respectively over all cells and subedges leads to<br />

<br />

E k 1 2<br />

L2 k 1<br />

Γ <br />

h<br />

τ Ek 1 2<br />

k 1<br />

1,Γ<br />

h<br />

<br />

m<br />

S<br />

k S E k k 1<br />

S ES ¢ tk 1<br />

<br />

S<br />

¡ τ <br />

t k<br />

Sk 1 k 1<br />

p Sk 1<br />

i<br />

Let us denote by E k pi :<br />

<br />

S<br />

R4<br />

¡<br />

S l,k S<br />

R1S l,k <br />

t Γtdt<br />

<br />

<br />

R2S<br />

k 1<br />

1<br />

R2Spi,J p<br />

Sk<br />

i,S J pi,S¡1 ¡ S<br />

k E<br />

pi ,j<br />

k pi,j<br />

the right hand side can be written as follows<br />

Z : ¡τ <br />

Sk 1 k 1<br />

p Sk 1<br />

i<br />

k 1<br />

1<br />

R2Spi,J Sk<br />

pi,S<br />

¡τ <br />

<br />

Sk 1 k 1<br />

p Sk 1<br />

i<br />

¡<br />

k 1<br />

¤ E<br />

¡τ <br />

l,k 1©<br />

k 1<br />

ES ¡<br />

<br />

S<br />

R3S l,k S l,k 1 k 1<br />

ES k<br />

ES 1<br />

k 1<br />

1<br />

pi,J p<br />

Sk<br />

i,S pi,J pi,S 1 ¡<br />

k 1<br />

Epi,J pi,S 12<br />

©<br />

1<br />

¡ Ek<br />

pi,J p .<br />

i,S<br />

©<br />

1<br />

¡ Ek<br />

pi,J pi,S ¡<br />

k 1<br />

Epi,J pi,S¡12 ©<br />

npi the mean value of Ek pi,j around pk i . The last term <strong>on</strong><br />

<br />

k 1<br />

1<br />

R2Spi,J Sk<br />

pi,S pi,J pi,S 1 ¡ ©<br />

k 1<br />

1<br />

Epi,J pi,S 12 ¡ Ek<br />

pi,J pi,S<br />

<br />

k 1<br />

1<br />

R2Spi,J Sk<br />

pi,S<br />

pi,J pi,S¡1 <br />

where R k 1<br />

2,piσ is the vector with comp<strong>on</strong>ents 2,piσ<br />

j<br />

R<br />

k 1<br />

is the vector with comp<strong>on</strong>ents ¨ k 1<br />

R : R 2,pi 2,pi j<br />

¡<br />

k 1<br />

1<br />

Epi,J pi,S¡12 ¡ Ek<br />

pi,J pi,S<br />

pi,J pi,S 1 ¤<br />

pi,J pi,S 12 ¡ Ek 1<br />

pi ¡ Ek<br />

pi,J pi,S ¡ Ek pi k 1<br />

1<br />

R2Spi,J Sk<br />

pi,S pi,J pi,S¡1 ¡<br />

k 1<br />

Epi,J pi,S¡12 ¡ Ek 1<br />

pi ¡ Ek<br />

pi,J pi,S ¡ Ek pi ©<br />

¢¡ © <br />

R k 1<br />

2,piσ Coef<br />

k 1 k 1<br />

p Γ i h<br />

k pi ¡ ¨<br />

R k 1 E k 1 1<br />

2,pi<br />

pi ¡ Ek pi 1pi<br />

¨<br />

, (2.35)<br />

¡ ©<br />

R k 1<br />

k 1 k 1 1<br />

1 k 1 1<br />

: R2 Spi,j Sk pi,j¡1 Rk 2 Spi,j¡1Sk k 1<br />

2<br />

S<br />

©<br />

©<br />

k 1 1<br />

1<br />

pi,j Sk pi,j¡1 Rk 2<br />

S<br />

pi,j ¨ ,<br />

k 1 1<br />

pi,j Sk pi,j 1¨ and<br />

55


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

E k 1<br />

pi<br />

: E<br />

k 1 1<br />

pi,1 , Ek<br />

pi,2 , ¤ ¤ ¤¨ . Of course we have to readjust these vectors around boundary points<br />

according to the boundary c<strong>on</strong>diti<strong>on</strong> in the similar way as in Secti<strong>on</strong> 2.4.4. Next we introduce the<br />

local gradient operator in expressi<strong>on</strong> 2.35 and derive the following estimate<br />

Z ¡τ <br />

k 1 k 1<br />

p Γ i h<br />

¡τ <br />

τ<br />

¢ A k 1<br />

k 1 k 1<br />

p Γ i h<br />

£ <br />

pi 1pi<br />

¢¡ R k 1<br />

2,piσ<br />

© <br />

¢¡ © <br />

R k 1<br />

2,piσ<br />

1pi npi<br />

¢¡ © <br />

R k 1<br />

2,piσ<br />

k 1 k 1<br />

p Γ i h<br />

¢¡ © <br />

R k 1<br />

2,piσ<br />

k 1 since Api 1pi 0 ¤ 1pi and 1pi k 1 Api k 1<br />

Coef k pi ¡ ¨<br />

R k 1<br />

2,pi<br />

E k 1<br />

pi<br />

1<br />

¡ Ek pi 1pi<br />

¨<br />

Coef k pi ¡ ¢ ¡1<br />

¨<br />

R k 1<br />

k 1<br />

A 2,pi<br />

pi<br />

1pi 1pinpi E k 1<br />

pi<br />

1<br />

¡ Ek pi 1pi<br />

¨<br />

Coef k pi ¡ ¨<br />

R k 1<br />

2,pi<br />

Coef k pi ¡ ¡12£<br />

¨<br />

R <br />

k 1<br />

2,pi<br />

A k 1<br />

pi 1pi<br />

k 1 k 1<br />

p Γ i h<br />

¨ E k 1 k 1<br />

pi Api 1pi npi<br />

E<br />

k 1<br />

pi<br />

¨¡1<br />

¡12<br />

0 ¤ 1pi . Finally, using Lemma 2.6.7, the estimate<br />

h2 CmS , the fact that the number of cell’s vertices is uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly bounded and the submatrices<br />

k 1 Api 1pi 1pinpi are uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly elliptic, we obtain<br />

Z τC<br />

£ <br />

Sk 1<br />

k 1<br />

mS h2<br />

12<br />

E<br />

k 1<br />

S k 1<br />

1,Γh τCh H n¡1 k 1<br />

Γ<br />

h ¨12 k 1<br />

ES k 1<br />

1,Γh Now, we take into account the c<strong>on</strong>sistency results from Lemma 2.6.6, Lemma 2.6.8, Lemma 2.6.9,<br />

apply Young’s and Cauchy’s inequality and achieve the result<br />

E k 1 2<br />

L2 k 1<br />

Γ h τEk 1 2<br />

k 1<br />

1,Γh 1<br />

2 Ek 1 2<br />

L2 k 1<br />

Γ<br />

h 1<br />

2 Ek 2<br />

L2Γk h 1<br />

2 max<br />

S<br />

max<br />

k<br />

C ττ h τh τ 2 1 Ch ¨ H n¡1 k 1<br />

Γ<br />

Cτh H n¡1 k 1<br />

Γ<br />

§<br />

§<br />

h ¨12 k 1<br />

E 1,Γk 1<br />

h<br />

.<br />

§<br />

§<br />

§ 1 ¡ mkS k 1<br />

m § S<br />

Ek 2<br />

L2Γk h h ¨12 k 1<br />

E L2 k 1<br />

Γ h<br />

Based <strong>on</strong> the fact that the center points XS describe a C1 c<strong>on</strong>tinuous curve XSt : γt, XS, <strong>on</strong>e<br />

§<br />

easily proves that §1 ¡ mk<br />

S §<br />

k 1§<br />

Cτ as already menti<strong>on</strong>ed in Secti<strong>on</strong> 2.5. Again, applying Young’s<br />

mS inequality to the last two terms <strong>on</strong> the right side gives<br />

C ττ h τh τ 2 1 Ch ¨ H n¡1 k 1<br />

Γ<br />

C<br />

2 ττ h2H n¡1 k 1<br />

Γ<br />

h C<br />

2 τEk 1 2<br />

L2 k 1<br />

Γh h ¨12 k 1<br />

E L2 k 1<br />

Γ h<br />

Cτh H n¡1 k 1<br />

Γh ¨12 k 1<br />

E 1,Γk 1 <br />

h<br />

C2τ 2 h2H n¡1 k 1<br />

Γ<br />

,<br />

h τ<br />

2 Ek 1 2<br />

k 1<br />

1,Γh Now, taking into account that Hn¡1 k 1<br />

Γh is uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly bounded, we obtain the estimate<br />

1 ¡ CτE k 1 2<br />

L2 k 1<br />

Γ<br />

56<br />

h τ<br />

2 Ek 1 2<br />

k 1<br />

1,Γh 1 Cτ 1<br />

2 Ek 2<br />

L 2 Γ k<br />

h Cττ h2H n¡1 k 1<br />

Γ<br />

.<br />

.<br />

h . (2.36)


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.7 Coupled reacti<strong>on</strong> diffusi<strong>on</strong> and advecti<strong>on</strong> model<br />

Next, we first skip the sec<strong>on</strong>d term <strong>on</strong> the left hand side, use the inequality<br />

sufficiently small τ and a c<strong>on</strong>stant c 0 and obtain via iterati<strong>on</strong><br />

since E02 L2Γ0 h<br />

E k 1 2<br />

L2 k 1<br />

Γ<br />

h 1 cτEk 2<br />

¤ ¤ ¤ ¤ ¤ ¤<br />

1 cτ k 1 E 0 2<br />

L2Γ0 h<br />

Ce ctk τ h 2<br />

L2Γk Cττ h2<br />

h<br />

C<br />

k<br />

i1<br />

Ch. This implies the first claim of the theorem<br />

max E<br />

k1,¤¤¤ ,kmax<br />

k 2<br />

L2Γk h Cτ h2 .<br />

1 Cτ<br />

1¡Cτ<br />

1 cτ i¡1 ττ h 2<br />

1 cτ <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

Finally, taking into account this estimate and summing over k 1, ¤ ¤ ¤ , kmax in (2.36), we also<br />

obtain the claim <str<strong>on</strong>g>for</str<strong>on</strong>g> the discrete H 1 0¡norm of the error<br />

<br />

τE<br />

k1,¤¤¤ ,kmax<br />

k 1 2<br />

k 1<br />

1,Γh Cτ h 2 .<br />

Remark 2.6.10 It is worth menti<strong>on</strong>ing here that the exact soluti<strong>on</strong> of Equati<strong>on</strong> 2.7 did not intervene<br />

in the actual development; thus Theorem 2.5.1, Theorem 2.5.2 and Theorem 2.6.1 remain valid<br />

even when Equati<strong>on</strong> 2.7 is not satisfied. In that case the soluti<strong>on</strong> will not be locally c<strong>on</strong>servative<br />

in the usual sense of finite volumes anymore. This situati<strong>on</strong> was already reported in [46] where<br />

they also use barycentric coefficients to approximate soluti<strong>on</strong> values <strong>on</strong> edges. An advantage of our<br />

approach is that we reduce the residual of the menti<strong>on</strong>ed equati<strong>on</strong> in a way to avoid any undesirable<br />

oscillati<strong>on</strong> <strong>on</strong> the soluti<strong>on</strong>. Nevertheless, we have not found any experimental evidence where this<br />

situati<strong>on</strong> happens but, we have also not deeply studied the local matrices to be able to know whether<br />

this worst case scenario is even plausible.<br />

2.7 Coupled reacti<strong>on</strong> diffusi<strong>on</strong> and advecti<strong>on</strong> model<br />

In this part, we wish to extend our method to the more general case of reacti<strong>on</strong> diffusi<strong>on</strong> and advecti<strong>on</strong><br />

problems. We then c<strong>on</strong>sider a source term g which depends <strong>on</strong> the soluti<strong>on</strong> and an additi<strong>on</strong>al<br />

tangential advecti<strong>on</strong> term ∇ Γ¤wu. Here, w is an additi<strong>on</strong>al tangential transport velocity <strong>on</strong> the surface,<br />

which transports the density u al<strong>on</strong>g the moving interface Γ instead of just passively advecting<br />

it with the interface. We assume the mapping t, x wt, Φt, x to be in C 1 0, tmax , C 1 Γ0.<br />

Furthermore, we suppose g to be Lipschitz c<strong>on</strong>tinuous. An extensi<strong>on</strong> to a reacti<strong>on</strong> term which<br />

also explicitly depends <strong>on</strong> time and positi<strong>on</strong> is straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward. Hence, we investigate the evoluti<strong>on</strong><br />

problem<br />

u u∇ Γ ¤ v ¡ ∇ Γ ¤ D∇ Γu ∇ Γ ¤ wu gu <strong>on</strong> Γ Γt . (2.37)<br />

In what follows, let us c<strong>on</strong>sider an appropriate discretizati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> both terms. For the reacti<strong>on</strong> term,<br />

we c<strong>on</strong>sider the time explicit approximati<strong>on</strong><br />

tk 1<br />

tk<br />

<br />

S l,k tΓt<br />

gut, x da dt τ m k S gutk, P k X k S (2.38)<br />

and then replace utk, PkX k S by U k S in the actual numerical scheme. Furthermore, we take into account<br />

an upwind discretizati<strong>on</strong> of the additi<strong>on</strong>al transport term to ensure robustness also in a regime<br />

where the transport induced by w dominates the diffusi<strong>on</strong>. Different from Chapter I, we introduce<br />

57


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

here a sec<strong>on</strong>d order slope limiting upwind discretizati<strong>on</strong> derived from the above described method.<br />

Thus, since the soluti<strong>on</strong> u of problem 2.37 is H1 <strong>on</strong> Γt and ∇Γtu has a weak divergence, we use<br />

the procedure described in Secti<strong>on</strong> 2.4.2 to c<strong>on</strong>struct the subgradients ∇k pi,J pi,Su of u around the<br />

vertices pk i . In this last procedure, we keep the center points obtained <str<strong>on</strong>g>for</str<strong>on</strong>g> the discretizati<strong>on</strong> of the<br />

diffusi<strong>on</strong> operator while the virtual subedge points might vary. Let us now c<strong>on</strong>sider a cell Sk , the<br />

pseudo unit normal ek 3,S :<br />

¡ p<br />

kS i kpki ¡ pk 1 pk i 1 ¡ pk 1 © <br />

pk i Skpki ¡ pk 1 pk i 1 ¡ pk 1 of<br />

Sk , the vectors ek 1,S : pk 1 ¡ Xk S ¡ pk 1 ¡ Xk S ¤ ek ¨ ¨ k<br />

3,S e3,S pk 1 ¡ Xk S ¡ pk 1 ¡ Xk S ¤ ek ¨ k<br />

3,S e <br />

¨ 3,S<br />

k e3,S ,<br />

and ek 2,S : ek3,Sek1,S . We define ∇kS u : ∇k Su ¤ ek ¨ k<br />

1,S e1,S ∇k Su ¤ ek ¨ k<br />

2,S e2,S ∇k Su ¤ ek3,S the slope limited gradient <strong>on</strong> Sk <br />

as follows: j 1, 2, 3<br />

<br />

∇ k Su ¤ e k ¡<br />

k<br />

j,S : sign ∇p1,J p1,Su ¤ e k ©<br />

j,S minpkS i k<br />

§<br />

¡<br />

k<br />

if sign ∇pi,J pi,Su ¤ e k ©<br />

j,S c<strong>on</strong>st pi,<br />

<br />

§<br />

<br />

§∇ k pi,J pi,S u ¤ ek j,S<br />

∇ k Su ¤ e k j,S : 0 else.<br />

This gradient rec<strong>on</strong>structi<strong>on</strong> is similar to the minmod gradient rec<strong>on</strong>structi<strong>on</strong> method (cf. [8, 55,<br />

100]). Let us now c<strong>on</strong>sider an edge σk comm<strong>on</strong> boundary of two cells Sk and Lk (i.e. σk Sk Lk ).<br />

We assume σk being delimited by the points pk i and pk i 1 (i.e. σk pk i , pk i 1); we call Sk pi,j , Sk pi,j 1<br />

the respective subcells of Sk and Lk around pk i and Sk pi 1,m, Sk pi 1,m¡1 the respective subcells of Sk and Lk around pk i 1 . We refer to Figure 2.11 <str<strong>on</strong>g>for</str<strong>on</strong>g> the illustrati<strong>on</strong> of this setup.<br />

X k pi 1,m¡12<br />

X k pi 1,m¡32<br />

p k i 1<br />

S k pi 1,m¡1<br />

X k L Xk Sj 1 Xk Sm¡1<br />

X k p,i 1,m 12<br />

S k pi 1,m<br />

X k S Xk Sj Xk Sm<br />

S k pi,j<br />

pk i<br />

Xk pi,j 32<br />

X k pi,j¡12<br />

S k pi,j 1 X k pi,j 12<br />

Figure 2.11: Subcells across the edge σ k p k i , pk i 1 and virtual points around pk i and pk i 1 .<br />

We also denote by n k SL : nk S,σ<br />

nk<br />

pi ,jj 12<br />

nk<br />

pi ,mm¡12 ¡nk<br />

pi ,j 1j 12 ¡nk<br />

pi ,m¡1m¡12<br />

nk pi ,jj 12 nk<br />

pi ,mm¡12 ¡nk<br />

pi ,j 1j 12 ¡nk<br />

pi ,m¡1m¡12<br />

outward pointing c<strong>on</strong>ormal vectors of S k <strong>on</strong> σ k and by p k σ : pk i<br />

pk i 1<br />

§<br />

<br />

the average unit<br />

the middle of σ<br />

2<br />

k . Here<br />

holds. We will later denote by nl,k<br />

S,σa the unit c<strong>on</strong>ormal at a σl,k pointing out-<br />

0, the upwind directi<strong>on</strong> is pointing inward and we define<br />

nk S,σ ¡nkL,σ ward from Sl,k . Now if nk S,σ ¤ wtk, pk σ<br />

u tk, pk σ : u¡ltk, Xk S ∇kS u¤pk σ ¡Xk S, otherwise u tk, pk σ : u¡ltk, Xk L ∇kL u¤pk σ ¡Xk L. If σk is a boundary segment, the average unit outward pointing c<strong>on</strong>ormal of Sk <strong>on</strong> σk is defined by<br />

nk nk<br />

pi ,jj 12<br />

S,σ nk<br />

pi ,mm¡12<br />

nk pi ,jj 12 nk<br />

pi ,mm¡12 ¡1 . In this case too, if nk S,σ ¤wtk, pk σ 0, the upwind directi<strong>on</strong> is pointing<br />

inward and we define u tk, pk σ : u¡ltk, Xk S ∇kS u¤pk σ ¡Xk S, but u tk, pk σ : u¡ltk, pk σ if nk S,σ ¤ wtk, pk σ 0. Once, the upwind directi<strong>on</strong> is identified, we take into account the classical<br />

approach by Engquist and Osher [43] and obtain the approximati<strong>on</strong>:<br />

58<br />

tk 1<br />

tk<br />

<br />

Sl,k ∇Γ ¤ wu da dt τ<br />

tΓt<br />

<br />

σkSk m k σ<br />

k<br />

nS,σ ¤ w ¡l tk, pk σ¨ u tk, pk σ<br />

. (2.39)


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.7 Coupled reacti<strong>on</strong> diffusi<strong>on</strong> and advecti<strong>on</strong> model<br />

Finally, we again replace u ¡ltk, Xk S by the discrete nodal values U k S<br />

u tk, pk k,<br />

σ by Uσ . For the sake of completeness let us resume the resulting scheme:<br />

mS ¡ τ <br />

k 1 k 1<br />

US ¡ mkSU k S<br />

piS k<br />

k 1<br />

mpi,J pi,S¡12<br />

k 1<br />

mpi,J pi,S 12<br />

k 1<br />

mpi,J pi,S 12<br />

τ <br />

σ k S k<br />

m k 1<br />

pi,J pi,S¡12<br />

m k σ<br />

¡ U k 1<br />

and denote the edge values<br />

¡ ©<br />

k 1<br />

k 1<br />

k 1<br />

Upi,J pi,S¡12 ¡ Upi,J λ pi,S pi,J pi,SJ pi,S¡12<br />

k 1<br />

pi,J pi,S 12 ¡ Upi,J pi,S<br />

¡ U k 1<br />

k 1<br />

pi,J pi,S¡12 ¡ Upi,J pi,S<br />

¡ U k 1<br />

pi,J pi,S 12<br />

n k S,σ ¤ w ¡l tk, p k<br />

σ ¨ U σ<br />

¡ U k 1<br />

pi,J pi,S<br />

© λ k 1<br />

© λ k 1<br />

pi,J pi,S 12J pi,SJ pi,S¡12<br />

© λ k 1<br />

pi,J pi,SJ pi,S 12<br />

pi,J pi,S¡12J pi,SJ pi,S 12<br />

τ m k S gU k S. (2.40)<br />

Obviously, due to the fully explicit discretizati<strong>on</strong> of the additi<strong>on</strong>al terms, Propositi<strong>on</strong> 2.4.7 still<br />

applies and guarantees existence and uniqueness of a discrete soluti<strong>on</strong>. Furthermore, the c<strong>on</strong>vergence<br />

result can be adapted and the error estimate postulated in Theorem 2.6.1 holds. To see this, let us<br />

first c<strong>on</strong>sider the n<strong>on</strong>linear source term gu and the following estimate already presented in Chapter<br />

I <str<strong>on</strong>g>for</str<strong>on</strong>g> the triangular mesh;<br />

¡<br />

tk 1<br />

<br />

tk Sl,ktΓt tk 1<br />

τ<br />

tk<br />

¢<br />

τ m k S<br />

S l,k tΓt<br />

S l,k<br />

gut, x da dt ¡ τm k S gU k S<br />

tk 1<br />

£<br />

gut, xda<br />

tk<br />

<br />

gtk, xda ¡<br />

Sl,k gutk, X k <br />

Sda τ<br />

¡l<br />

g utk, X k S ¡ gU k S ¨<br />

Sl,k gut, xda ¡<br />

t<br />

<br />

¡ m l,k<br />

S ¡ mk S<br />

Cτ h m k S τ 2 H n¡1 S l,k τ h m k S τ h 2 m k S CLipg τ m k SE k S,<br />

S l,k<br />

<br />

gutk, xda<br />

© gutk, X k S<br />

where CLipg denotes the Lipschitz c<strong>on</strong>stant of g. In the proof of Theorem 2.6.1 we already have<br />

treated terms identical to the first four <strong>on</strong> the right hand side. For the last term we obtain after<br />

k 1<br />

multiplicati<strong>on</strong> with the nodal error ES and summati<strong>on</strong> over all cells S<br />

£<br />

k mS CLipg τ <br />

S<br />

m k SE k k 1<br />

SES CLipg τ max<br />

S<br />

¡<br />

k 2<br />

C τ E L2Γhtk 1<br />

2<br />

E k 1<br />

mS k L2ΓhtkE k 1 L2Γhtk Ek 1 2 L 2 Γhtk 1<br />

Taking into account these additi<strong>on</strong>al error terms the estimate (2.36) remains unaltered. Next, we<br />

investigate the error due to the additi<strong>on</strong>al advecti<strong>on</strong> term and rewrite<br />

tk 1<br />

tk<br />

tk 1<br />

<br />

tk<br />

Sl,k ∇Γ ¤ wu da dt ¡ τ<br />

tΓt<br />

<br />

<br />

Sl,k ∇Γ ¤ wu da dt ¡ τ<br />

tΓt<br />

<br />

σ k S k<br />

σ k S k L k<br />

τR5<br />

<br />

σ k S k<br />

m k σ<br />

© .<br />

µ k σ,S ¤ w ¡l tk, X k σ ¨ U k,<br />

σ<br />

Sl,k ∇Γ ¤ wu da<br />

Γtk<br />

S l,k L l,k ¨ τF S l,k L l,k¨ E k,<br />

σ<br />

¨ ,<br />

<br />

dt<br />

59


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

l,k l,k where R5 S L ¨ σl,k n l,k<br />

S,σ ¤ w u dl ¡ mkσw ¡ltk, pk σ ¤ nkS,σu tk, pk σ is an edge residual,<br />

F Sl,kLl,k¨ mk σwltk, pk σ ¤ nkS,σ a flux term <strong>on</strong> the edge σl,k Sl,k Ll,k and<br />

Ek, σ u tk, pk k,<br />

σ ¡ Uσ a piecewise c<strong>on</strong>stant upwind error functi<strong>on</strong> <strong>on</strong> the discrete surface<br />

Γk h . For the sake of c<strong>on</strong>sistency in the notati<strong>on</strong>, we have assumed here as in the following any<br />

curved boundary segment σl,k being the intersecti<strong>on</strong> of a curved cell Sl,k Γk and the curved<br />

cell Ll,k : σl,k of measure 0. In this case, the cell’s center value as well as any error comming<br />

from Ll,k are taken to be 0 and the subedges values are known from the boundary c<strong>on</strong>diti<strong>on</strong>.<br />

Now the first term in the above error representati<strong>on</strong> can again be estimated by C τ 2Hn¡1S l,k. From u tk, p k σ ¡ u¡l tk, p k σ C h2 , we deduce by similar arguments as in the proof of Lemma<br />

l,k l,k 2.6.7 that R5 S L ¨ C hmk l,k l,k<br />

σ. Furthermore, the antisymmetry relati<strong>on</strong>s R5 S L ¨ <br />

l,k l,k<br />

¡R5 L S ¨ and F Sl,kLl,k¨ ¡F Ll,kS l,k¨ hold. After multiplicati<strong>on</strong> with the nodal error<br />

k 1<br />

ES and summati<strong>on</strong> over all cells S we obtain<br />

Z τ <br />

l,k l,k<br />

R5 S L ¨ τF S l,k L l,k¨ E k, ¨ k 1<br />

σ ES S<br />

τ <br />

τ <br />

σkSk σkS kLk <br />

R5<br />

σ k S k L k<br />

p k i Γk<br />

h<br />

R k 5,pi<br />

S l,k L l,k ¨ F S l,k L l,k¨ E k,<br />

σ<br />

¨ E k 1<br />

pi<br />

E k 1<br />

S<br />

1<br />

¡ Ek pi 1pi ¨<br />

R k<br />

6,pi E k 1<br />

pi<br />

1<br />

¡ Ek<br />

L <br />

1<br />

¡ Ek pi<br />

where R k<br />

5,pi and R k<br />

6,pi are vectors with entries<br />

¨ R k<br />

5,pi : m<br />

j k pi,j¡12mk pi,j¡12 ¡ ¡<br />

l,k<br />

R5 Spi,jSl,k © ¡<br />

l,k<br />

pi,j¡1 R5 Spi,jSl,k ©©<br />

pi,j 1 and<br />

¨ R k<br />

6,pi : m<br />

j k pi,j¡12mk pi,j¡12 ¡ ¡<br />

F l,k<br />

Spi,jSl,k © ¡<br />

k,<br />

pi,j¡1 E l,k<br />

σpi F S ,j¡12<br />

pi,jSl,k © ©<br />

k,<br />

pi,j 1 Eσpi respec-<br />

,j 12<br />

tively; m k pi,j¡12 being the length of the entire edge σ c<strong>on</strong>taining σk pi,j¡12 and Ek, σ : Ek,<br />

pi ,j 12 σ .<br />

Using similar arguments as in the proof of Theorem 2.6.1 and the definiti<strong>on</strong> of upwind values <strong>on</strong><br />

edges, <strong>on</strong>e deduces that<br />

Z τ<br />

<br />

<br />

τ<br />

C τ<br />

p k i Γk<br />

h<br />

<br />

<br />

£<br />

p k i Γk<br />

h<br />

R k 5,pi<br />

¨ k 1<br />

Api 1pi 1pinpi R k 6,pi<br />

h H n¡1 Γ k h 1<br />

2<br />

τ<br />

4 Ek 1 2<br />

k 1<br />

1,Γh ¨ k 1<br />

Api 1pi 1pinpi ¡ <br />

piΓ k<br />

h<br />

R k 6,pi<br />

¨ R k 6,pi<br />

C τ h 2 C τ E k 2<br />

L2Γk h<br />

.<br />

¨¡1 R k 5,pi<br />

<br />

<br />

¨¡1 R k 6,pi<br />

12 <br />

<br />

<br />

<br />

pk i Γk<br />

h<br />

12 <br />

©<br />

1<br />

2<br />

E k 1 k 1<br />

1,Γh <br />

p k i Γk<br />

h<br />

1pi ,<br />

¨ E k 1 k 1<br />

pi Api E<br />

¨ E k 1 k 1<br />

pi Api Again, taking into account these error terms due to the added advecti<strong>on</strong> in the original error estimate<br />

(2.36) solely the c<strong>on</strong>stant in fr<strong>on</strong>t of the term Ek 12 <strong>on</strong> the left hand side of (2.36) is<br />

k 1<br />

1,Γh slightly reduced. Thus, both the explicit discretizati<strong>on</strong> of a n<strong>on</strong>linear reacti<strong>on</strong> term and the upwind<br />

discretizati<strong>on</strong> of the additi<strong>on</strong>al tangential advecti<strong>on</strong> still allow us to establish the error estimate<br />

postulated in Theorem 2.6.1.<br />

2.8 Numerical results<br />

In this paragraph, we present several simulati<strong>on</strong> results. To begin with, we c<strong>on</strong>sider the time evolving<br />

parametric surface Γt described by the evoluti<strong>on</strong> of the material point<br />

60<br />

k 1<br />

pi<br />

E<br />

<br />

<br />

12<br />

k 1<br />

pi<br />

<br />

<br />

12


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.8 Numerical results<br />

Mt, x, y x, y, ht, x, y , where x, y ¡0.6, 0.6 ¢ ¡0.5, 0.5, ht, x, y x2f1t y3f2t with f1t sinπttmax2 sin2πttmax and f2t sinπttmax2 cos2πttmax; tmax being the<br />

maximum time. We define <strong>on</strong> Γt the surface tangential matrix<br />

D0t, x, y : 1 4x2f1t2 9y4f2t2 ¢<br />

5<br />

0<br />

<br />

0<br />

µ1t, x, y, µ2t, x, y<br />

1<br />

and<br />

1 4f1t 2 9f2t 2 e1t, x, y, e2t, x, y<br />

the tangential vector wt, x, y : 10 e1t, x, y, where e1t, x, y : 1, 0, 2xf1t ,<br />

e2t, x, y : 0, 1, 3y 2 f2t are tangential vectors of Γt and µ1t, µ2t their corresp<strong>on</strong>ding<br />

c<strong>on</strong>travariant counterparts defined through the four equati<strong>on</strong>s e1t, x, y ¤ µ1t, x, y 1, e1t, x, y ¤<br />

µ2t, x, y 0, e2t, x, y ¤ µ1t, x, y 0 and e2t, x, y ¤ µ2t, x, y 1. We approximate <strong>on</strong> successive<br />

refined polyg<strong>on</strong>al meshes (cf. Figure 2.12), the soluti<strong>on</strong> u : ht, x, y 0.5 of Problem 2.37<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> D : D0 D 0 2, w defined above and g computed from the data. The Dirichlet boundary<br />

c<strong>on</strong>diti<strong>on</strong> is c<strong>on</strong>sidered. On Figure 2.12 we present the successively refined polyg<strong>on</strong>al surfaces used<br />

820 polyg<strong>on</strong>s, 508 points. 3292 polyg<strong>on</strong>s, 1959 points. 13240 polyg<strong>on</strong>s, 7765 points.<br />

Figure 2.12: Successively refined polyg<strong>on</strong>al mesh used <str<strong>on</strong>g>for</str<strong>on</strong>g> the c<strong>on</strong>vergence test. At each refined<br />

step, sizes of cells are divided into 2.<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> this simulati<strong>on</strong> test case. At each refined step, edges of the previous step have been divided into<br />

two. The computati<strong>on</strong> is d<strong>on</strong>e <str<strong>on</strong>g>for</str<strong>on</strong>g> t 0, 1 and we present in Figure 2.13 a sequence of frames from<br />

the simulati<strong>on</strong> result. Here, as in the sequel, color shading range from blue to red representing minimum<br />

to maximum values. Finally, in Table 2.1, we display the errors in the discrete L L 2 norm<br />

and discrete energy seminorm (2.18), respectively. Indeed, the observed error decay is c<strong>on</strong>sistent<br />

with the c<strong>on</strong>vergence result in Theorem 2.6.1.<br />

Figure 2.13: Soluti<strong>on</strong> of the first simulati<strong>on</strong> at different time steps.<br />

Next, we compute a sec<strong>on</strong>d example using the same successive initial surfaces and compare the<br />

result to the result of the refined surface. We c<strong>on</strong>sider the evoluti<strong>on</strong> of the surface material point<br />

described by Mt, x, y x, y, ht, x, y , where ht, x, y ft4.5 12 βi exp ¡αi with<br />

i1<br />

ft sinπt ¡ π2 12 and αi : x ¡ P i, 122 V i, 12 y ¡ P i, 222 V i, 22. The variables P , V and β are defined by<br />

¢ 3 22 4 8 12 18 21 0 8 14 10 8<br />

P <br />

24,<br />

3 6 16 16 16 12 21 24 24 5 8 2<br />

¢ 3 2 2 4 4 2 3 2 3 1.5 2 2<br />

V <br />

24 and<br />

3 4 4 2 4 2 3 2 3 1.5 1.5 2<br />

61


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

norm of the error<br />

min ht max ht L<br />

t0,1<br />

t0,1<br />

L2 LH1 0.0294 0.1168 91.617 ¤ 10 ¡5 14.8 ¤ 10 ¡3<br />

0.0119 0.0595 21.269 ¤ 10 ¡5 5.3 ¤ 10 ¡3<br />

0.0041 0.0302 5.768 ¤ 10 ¡5 2.0 ¤ 10 ¡3<br />

Table 2.1: The table displays the numerical error <strong>on</strong> grids presented in Figure 2.12 in two different<br />

norms, when compared to the explicit soluti<strong>on</strong>. The time discretizati<strong>on</strong> was chosen as<br />

τ 130000 in all three computati<strong>on</strong>s.<br />

β 3.5 4 4 2 6 5 3 1.75 4 ¡2.5 ¡ 3 ¡ 2 6.<br />

For t 1, ft 1 and we recover the surface presented <strong>on</strong> Figure 2.2; there<str<strong>on</strong>g>for</str<strong>on</strong>g>e the evoluti<strong>on</strong><br />

c<strong>on</strong>sidered here is obtained by c<strong>on</strong>tinuously scaling the height of the given surface by ft as time<br />

evolves. We also c<strong>on</strong>sider the advecti<strong>on</strong> vector w, tangential comp<strong>on</strong>ent of w0 ¡50 0, 0, 1 and<br />

the source term gt 1 ¡ ft1.5 exp¡α1 exp¡α2 exp¡α3, where<br />

α1 : Mt, x, y ¡ 36, 46, 0 2 0.035 2 , α2 : Mt, x, y ¡ 1824, 1224, 0 2 0.035 2 , and<br />

α3 : Mt, x, y ¡ 16, 46, 0 2 0.035 2 . The functi<strong>on</strong> gt defines three localized sources (cf.<br />

Figure 2.14) whose density reduces as time evolves and vanishes at the end of the process. We depict<br />

<strong>on</strong> Figure 2.14 a sequence frame from the simulati<strong>on</strong> result of problem 2.37 with homogeneous<br />

Dirichlet boundary c<strong>on</strong>diti<strong>on</strong> in the time intervale 0, 1; isolines are also drawn. We can clearly notice<br />

the dominance of the diffusi<strong>on</strong> at the beginning of the process and progressively the dominance<br />

of the advecti<strong>on</strong>.<br />

Figure 2.14: The evoluti<strong>on</strong> of a density under diffusi<strong>on</strong> and advecti<strong>on</strong> by gravity is investigated.<br />

The results have been compared to the soluti<strong>on</strong> obtained <strong>on</strong> the refined mesh in L L 2 norm and<br />

discrete energy seminorm (2.18), respectively. The result is reported in Table 2.2. Comparing these<br />

norm of the error<br />

min ht max ht L<br />

t0,1<br />

t0,1<br />

L2 LH1 0.0294 0.1382 4.85 ¤ 10 ¡4 5.4 ¤ 10 ¡3<br />

0.0119 0.0722 1.28 ¤ 10 ¡4 1.9 ¤ 10 ¡3<br />

Table 2.2: The table displays the numerical error of the soluti<strong>on</strong> <strong>on</strong> the first two grids of Figure 2.12<br />

in two different norms, when compared to the soluti<strong>on</strong> of the last grid (refined grid). The<br />

time discretizati<strong>on</strong> was chosen as τ 160000 in all three computati<strong>on</strong>s.<br />

results to the simulati<strong>on</strong> results of Chapter I, we notice the improvement in the spatial c<strong>on</strong>vergence<br />

which is Oh 2 <str<strong>on</strong>g>for</str<strong>on</strong>g> the L L 2 norm. This is due to the use of barycenter of cells as presented in<br />

Secti<strong>on</strong> 2.4.5 and the slope limiting procedure introduced in Secti<strong>on</strong> 2.7.<br />

62


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2.8 Numerical results<br />

As third example, we c<strong>on</strong>sider the fixed triangulated geometry of an elephant as presented in Figure<br />

2.15 and solve Problem 2.1 in the time ¤ interval 0, 1, with the diffusi<strong>on</strong> tensor D being the tangential<br />

comp<strong>on</strong>ent of the tensor D0 : ¥ 25 0 0<br />

<br />

0 0.1 0 ; the X¡directi<strong>on</strong> points to the right and the<br />

0 0 0.001<br />

Z¡directi<strong>on</strong> points up. Five sources are put in the Y, Z¡plane around the fr<strong>on</strong>t legs as can be<br />

noticed <strong>on</strong> the sec<strong>on</strong>d picture of Figure 2.15 (two at the elephant fr<strong>on</strong>t side, two at the elephant back<br />

side and <strong>on</strong>e at symmetric upper point). We present <strong>on</strong> Figure 2.15 a sequence of frames from this<br />

simulati<strong>on</strong>. One effectively observes a rapid diffusi<strong>on</strong> in the X¡directi<strong>on</strong> and a very slow diffusi<strong>on</strong><br />

in the Z¡directi<strong>on</strong>.<br />

Figure 2.15: Str<strong>on</strong>g anisotropic diffusi<strong>on</strong> of a density <strong>on</strong> a fixed elephant geometry. The polyg<strong>on</strong>al<br />

mesh is made up of 83840 triangles and 41916 points.<br />

Now in our fourth example, we c<strong>on</strong>sider a diffusi<strong>on</strong> advecti<strong>on</strong> problem which involves the curvature<br />

tensor. In fact, we c<strong>on</strong>sider the advecti<strong>on</strong> vector w 13 Id ¡ 0.0015K Id 4 K 0, 0, 1 ,<br />

where K is the curvature tensor of the c<strong>on</strong>sidered surface and K : tr K (trace of K) is the mean<br />

curvature. We also c<strong>on</strong>sider a source term g made up of three localized sources as depicted <strong>on</strong> the<br />

first pictures of Figure 2.16 and Figure 2.17. The intensity of the source is a decreasing functi<strong>on</strong><br />

in time t 0, 1 which vanishes at the end of the process. First we c<strong>on</strong>sider an evoluti<strong>on</strong> by mean<br />

curvature flow Mt, s1, s2t K30νt, s1, s2, where Mt, s1, s2 is the material point of the<br />

surface, νt, s1, s2 the normal at Mt, s1, s2 and s1, s2 some parameters used to locally parameterize<br />

the surface. Here, we use an adaptive time step τ k 1 min1K k 2 10 ¡8 , 13l 2 10.2, where<br />

K k 2 : tr K k 2 is the trace of the squared curvature tensor K 2 at the time step tk and l the<br />

smallest length of the polyg<strong>on</strong>s sides. Noticing that ∇Γz 0, 0, 1 (z being the third spatial<br />

coordinate), we evaluate K and K at cell centers using a weighted least square fitting and then use<br />

the procedure described in Secti<strong>on</strong> 2.4.2 to compute the flux of the advecti<strong>on</strong> vector <strong>on</strong> subedges<br />

while the flux <strong>on</strong> entire edges is obtained by summing the flux <strong>on</strong> subedges as <str<strong>on</strong>g>for</str<strong>on</strong>g> the diffusi<strong>on</strong><br />

operator. There is no need to compute c<strong>on</strong>ormal vectors anymore and our slope limiting procedure<br />

is applied using these fluxes. Since the evaluati<strong>on</strong> of the curvature can <strong>on</strong>ly be c<strong>on</strong>sistent if <strong>on</strong>e has<br />

a 3, h-approximati<strong>on</strong> of the surface, we solve the mean curvature flow equati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> nodal points<br />

using a semi-implicit scheme. Figure 2.16 presents a sequence of frames from this simulati<strong>on</strong>. Due to<br />

the advecti<strong>on</strong> process which is dominant where the tangential comp<strong>on</strong>ent of 0, 0, 1 is pr<strong>on</strong>ounced,<br />

the density would try to c<strong>on</strong>centrate where the Z¡coordinate of the material points presents a local<br />

maximum; but due to the smoothening process,the local maxima of the Z¡coordinate tends to<br />

disappear and the density moves and c<strong>on</strong>centrates at the point of heighest Z¡coordinate.<br />

Next the same simulati<strong>on</strong> is d<strong>on</strong>e <strong>on</strong> the fixed initial surface. We effectively notice the c<strong>on</strong>centati<strong>on</strong><br />

of density at points of local maximum <strong>on</strong> the Z¡coordinate due to the advecti<strong>on</strong> process. Figure<br />

2.17 presents a sequence of the result of this simulati<strong>on</strong>.<br />

Examples of practical use of reacti<strong>on</strong> diffusi<strong>on</strong> equati<strong>on</strong>s include texture generati<strong>on</strong> [120, 123] and bi-<br />

63


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

Figure 2.16: Evoluti<strong>on</strong> of a density under diffusi<strong>on</strong> and advecti<strong>on</strong> <strong>on</strong> a surface moving by mean<br />

curvature. The initial polyg<strong>on</strong>al surface is made up of 26848 triangles and 13426 points.<br />

Figure 2.17: Evoluti<strong>on</strong> of a density under diffusi<strong>on</strong> and advecti<strong>on</strong> <strong>on</strong> a fixed surface.<br />

ological pattern <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> [7, 88, 119]. In these fields, <strong>on</strong>e uses a system of coupled reacti<strong>on</strong>-diffusi<strong>on</strong><br />

equati<strong>on</strong>s introduced by A. Turing in 1952 [119] to explain the <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of patterns <strong>on</strong> animals.<br />

He assumed the existence of two kinds of morphogenes diffusing <strong>on</strong> a surface and interacting with<br />

each other and showed that the presence of diffusi<strong>on</strong> could drive a system instability leading to the<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> of spatial patterns by the morphogenes distributi<strong>on</strong>. Here we c<strong>on</strong>sider the Turing system<br />

u<br />

t cδ∆Γu αu1 ¡ r1v 2 v1 ¡ r2u<br />

v<br />

t δ∆Γv βv1 αr1<br />

uv<br />

β<br />

uγ r2v<br />

presented by R. A. Barrio et al. in [7] and describing the interacti<strong>on</strong> between two morphogenes u<br />

and v. The coefficient c is the ratio of diffusi<strong>on</strong> coefficients, δ is a parameter that can be viewed<br />

either as a relative strength of the diffusi<strong>on</strong> compared to the interacti<strong>on</strong> terms or the measure of<br />

length scale and α, β, γ, r1, r2 are some coefficients. We refer to [7] <str<strong>on</strong>g>for</str<strong>on</strong>g> how these coefficients are<br />

chosen to generate particular patterns. We should nevertheless menti<strong>on</strong> that cubic interacti<strong>on</strong> favors<br />

stripes and quadratic interacti<strong>on</strong> produces spot patterns. We simulate this system <strong>on</strong> the closed<br />

triangulated surface using the coefficients provided in [19] <str<strong>on</strong>g>for</str<strong>on</strong>g> the simulati<strong>on</strong> <strong>on</strong> a sphere. As in this<br />

reference, we chose as initial c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> u and v random values between ¡12 and 12. Figure<br />

2.18 and Figure 2.19 show some sequence of the simulati<strong>on</strong> result of the soluti<strong>on</strong> u which leads to<br />

the striped pattern and the spotted pattern respectively.<br />

Figure 2.18: Striped pattern <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> from the Turing system.<br />

δ 0.0021, c 0.516, r1 3.5, r2 0, α 0.899, β ¡0.91, γ ¡α.<br />

64


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Figure 2.19: Dotted pattern <str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> from the Turing system.<br />

δ 0.0045, c 0.516, r1 0.02, r1 0.2, α 0.899, β ¡0.91, γ ¡α.<br />

2.8 Numerical results<br />

65


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

2 A stable and c<strong>on</strong>vergent O-method <str<strong>on</strong>g>for</str<strong>on</strong>g> general moving hypersurfaces<br />

66


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Part II<br />

Modeling and simulati<strong>on</strong> of<br />

surfactant driven thin-film flow <strong>on</strong><br />

moving surfaces<br />

67


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film<br />

flow <strong>on</strong> moving surfaces<br />

3.1 Introducti<strong>on</strong><br />

Thin liquid films are ubiquitous in nature and technology and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e, understanding their mechanics<br />

is very useful in many applicati<strong>on</strong>s. As reported in [98], they appear in geology as gravity<br />

currents underwater or as lava flows [69, 70], in biophysics as membranes, as lining of mammalian<br />

lungs [58, 74], as tear films in the eyes ([75, 91, 90, 110, 124] and references therein), etc. They also<br />

occur in Langmuir films [50] and in foam dynamics [13, 44, 111, 122, 125]. In engineering, thin-films<br />

serve in heat and mass transfer processes to limit fluxes and to protect surfaces [3]. Applicati<strong>on</strong>s in<br />

this area include flow behavior of paints and other surface coatings, chemical and nuclear reactor<br />

design. However, the comm<strong>on</strong> and probably the simplest thin-film encountered in everyday live<br />

is the flow of a droplet down an inclined plane. At this basic level <strong>on</strong>e observes that the velocity<br />

comp<strong>on</strong>ent parallel to the plane is much larger than the perpendicular comp<strong>on</strong>ent. C<strong>on</strong>sidering<br />

an incompressible fluid, this main characteristic leads to the c<strong>on</strong>siderati<strong>on</strong> that the ratio ɛ HL<br />

between the vertical length scale H and the tangential length scale L is very small (ɛ 1). This<br />

useful remark is usually exploited to reduce the level of complexity of the original free boundary<br />

problem modeled by the Navier-Stokes equati<strong>on</strong>s. There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, <strong>on</strong>e comm<strong>on</strong>ly does a model reducti<strong>on</strong><br />

using lubricati<strong>on</strong> approximati<strong>on</strong> (l<strong>on</strong>g-wave approximati<strong>on</strong>) due to Orchard [97], or applies center<br />

manifold theory [105]. Discussi<strong>on</strong>s of this issue can be found in [80, 82, 95, 98]. There, gravity<br />

driven thin-film flow <strong>on</strong> uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mly smooth planar substrates is discussed and the general equati<strong>on</strong><br />

modeling the fluid with a clean interface (without any c<strong>on</strong>taminant such as the surfactant (surface<br />

active agent)) is derived. The general n<strong>on</strong>dimensi<strong>on</strong>al equati<strong>on</strong> derived by c<strong>on</strong>sidering a no-slip<br />

c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> the substrate-fluid interface, gravity g and c<strong>on</strong>stant surface tensi<strong>on</strong> γ reads<br />

H<br />

t<br />

¡1<br />

3 ∇ Γ ¤ H 3 ∇ ΓCγK F S B 0H 3 g tan H 3 ɛB 0gν∇ΓH ¨ , (3.1)<br />

where ∇Γ represents the surface nabla operator, H the height of the film and KF S ∆ΓH the free<br />

surface mean curvature with ∆Γ being the Laplace-Beltrami operator. B0 is the B<strong>on</strong>d number,<br />

C is the inverse capillary number, gtan the tangential comp<strong>on</strong>ent of the unit gravity vector g and<br />

gν g ¤ ν with ν denoting the unit normal to the substrate. Un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunately, this equati<strong>on</strong> is not<br />

suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> a partially wetted surface since it shows that a n<strong>on</strong>integrable singularity is developed<br />

at the c<strong>on</strong>tact line juncti<strong>on</strong> (Substrate-Fluid-Air line juncti<strong>on</strong>). This prevents any fluid particle at<br />

the c<strong>on</strong>tact line to move. Moreover, <str<strong>on</strong>g>for</str<strong>on</strong>g> any particle at the c<strong>on</strong>tact line, the limit of the velocity<br />

al<strong>on</strong>g the moving free surface (Fluid-Air interface) is n<strong>on</strong>zero [11, 68, 42] while we have set the<br />

velocity <strong>on</strong> the substrate to zero (no-slip boundary c<strong>on</strong>diti<strong>on</strong>). This makes the velocity field being<br />

multi-valued at the c<strong>on</strong>tact line and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e not well defined. This paradox is probably due to<br />

the lack of introducing the surface chemistry into the hydrodynamic model; there<str<strong>on</strong>g>for</str<strong>on</strong>g>e, researchers<br />

agree to add additi<strong>on</strong>al effects <strong>on</strong> the microscopic length scale. The slip boundary c<strong>on</strong>diti<strong>on</strong> and a<br />

precursor layer are then comm<strong>on</strong>ly used in the literature [12, 31, 81, 95] to overcome the problem.<br />

It is also comm<strong>on</strong> to add some disjoining pressure such as van der Waals <str<strong>on</strong>g>for</str<strong>on</strong>g>ces to c<strong>on</strong>trol dewetting<br />

processes. The general equati<strong>on</strong> obtained by c<strong>on</strong>sidering these effects is<br />

H<br />

t ¡ ∇ ¢<br />

1<br />

Γ ¤<br />

3 H3 H 2 β ¡1<br />

<br />

∇Γ ¨ <br />

¡φ C γKF S B0gtan ɛB0gν∇ ΓH , (3.2)<br />

69


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

where φ is the disjoining pressure and β is the slip coefficient. These equati<strong>on</strong>s were first generalized<br />

to curved surfaces by Schwartz and Weidner in 1994 [109]. They mainly c<strong>on</strong>centrated <strong>on</strong> the curve<br />

case and the effect of curvature <strong>on</strong> the flow of thin-films driven by surface tensi<strong>on</strong>. They proved<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> example that short wavelength irregularities are quickly levelled by surface tensi<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>ces while<br />

l<strong>on</strong>g term evoluti<strong>on</strong> of the flow is primarily determined by the curvature of the substrate. They also<br />

extrapolated their results to two dimensi<strong>on</strong>al hypersurfaces. Later <strong>on</strong>, careful analysis of thin-film<br />

flow <strong>on</strong> curved surfaces were undertaken in [72, 93, 98, 107, 115, 121] but the most general and<br />

unified model is probably the <strong>on</strong>e developed by Roy, Roberts and Simps<strong>on</strong> in [107]. We also refer to<br />

these references <str<strong>on</strong>g>for</str<strong>on</strong>g> more precise development in this area. Roy, Roberts and Simps<strong>on</strong> c<strong>on</strong>sidered a<br />

general curved surface with a bounded curvature, defined a curvilinear coordinate system attached<br />

to the substrate and used center manifold theory to derive an equati<strong>on</strong> describing the movement<br />

of the free surface (Fluid-Air interface) in terms of surface variables and derivatives. The effects<br />

c<strong>on</strong>sidered in their results are gravity and c<strong>on</strong>stant surface tensi<strong>on</strong> and the resulting equati<strong>on</strong> using<br />

a proper scaling of variables reads<br />

η<br />

t<br />

¡1<br />

3 ∇Γ ¤<br />

¡ 1<br />

3 B 0<br />

¢ ηH 2 ∇ΓK F S ¡ 1<br />

H 3 gtan ¡ ɛH 4<br />

2 ɛH4 K Id ¡ K ∇ΓK ¢<br />

1<br />

K Id<br />

2 K<br />

<br />

3<br />

ɛH gν∇ΓH , (3.3)<br />

where Id is the identity matrix, K the substrate’s curvature tensor, K : tr K the mean curvature,<br />

1<br />

η : H ¡ ɛKH 6ɛ2K 2 ¡ K2 (K2 : tr K2) is the fluid density above the substrate and KF S :<br />

K ɛK2H ∆ΓH is the free surface mean curvature. As we will see in the next chapter, such setting<br />

is suitable <str<strong>on</strong>g>for</str<strong>on</strong>g> numerical simulati<strong>on</strong>s <strong>on</strong> parametric surfaces. The stability of the resulting equati<strong>on</strong><br />

follows from the theory of center manifolds. We refer to [21, 25, 106] <str<strong>on</strong>g>for</str<strong>on</strong>g> further reading <strong>on</strong> the<br />

applicati<strong>on</strong> of center manifold theory <str<strong>on</strong>g>for</str<strong>on</strong>g> the c<strong>on</strong>structi<strong>on</strong> of low dimensi<strong>on</strong>al systems.<br />

In real world applicati<strong>on</strong>s, the fluids c<strong>on</strong>sidered above c<strong>on</strong>tain almost always chemicals. The most<br />

comm<strong>on</strong> is the surfactant. This substance, distributed <strong>on</strong> top of a thin liquid support, will cause<br />

sp<strong>on</strong>taneous and fast spreading when it creates regi<strong>on</strong> of lower surface tensi<strong>on</strong> than the supporting<br />

fluid [92]. In fact it reduces the surface tensi<strong>on</strong> which gives rise to Marang<strong>on</strong>i effect due to the<br />

gradient in the surface tensi<strong>on</strong>. This main property justifies its presence in the mammalian lung;<br />

by reducing the surface tensi<strong>on</strong> when the alveoli are compressed during expirati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> example,<br />

it prevents alveoli to collapse [63, 108]. The surfactant also imparts an effective elasticity to the<br />

interface and can be used <strong>on</strong> fluids to suppress moti<strong>on</strong> characterized by n<strong>on</strong>zero surface divergence.<br />

This last remark has been used <str<strong>on</strong>g>for</str<strong>on</strong>g> centuries by spear-fishermen, who poured oil <strong>on</strong> the water to<br />

increase their ability to see their prey and by sailors, who would do similarly in an attempt to calm<br />

troubled sea. It is then interesting to incorporate the effect of surfactant in the study of thin-film<br />

flow. This results in the coupling of two partial differential equati<strong>on</strong>s. The basic equati<strong>on</strong> used to<br />

model the evoluti<strong>on</strong> of n<strong>on</strong>soluble surfactant reads<br />

Π<br />

t<br />

∇F S ¤ ΠvF S 1<br />

∆F SΠ, (3.4)<br />

where ∇ F S is the free surface nabla operator, ∆ F S the free surface Laplace-Beltrami operator, Π<br />

the surfactant c<strong>on</strong>centrati<strong>on</strong>, v F S the velocity of the free surface particle and Pe the Peclet number.<br />

This equati<strong>on</strong> is often rewritten in terms of substrate variables using lubricati<strong>on</strong> approximati<strong>on</strong>. For<br />

flat surfaces, the equati<strong>on</strong> obtained c<strong>on</strong>sidering van der Waals <str<strong>on</strong>g>for</str<strong>on</strong>g>ces and no gravity <str<strong>on</strong>g>for</str<strong>on</strong>g> example is<br />

70<br />

H<br />

t<br />

¡1<br />

2 ∇ Γ<br />

Π<br />

t ¡∇ Γ HΠ∇ Γγ ¡ 1<br />

2 ∇ Γ<br />

H 2 ∇Γγ ¨ ¡ 1<br />

3 ∇ Γ<br />

Pe<br />

H 3 ∇Γ¡φ CγK F S ¨<br />

H 2 Π∇Γ ¡φ CγK F S ¨<br />

<br />

(3.5)<br />

1<br />

∆Γ ¤ Π, (3.6)<br />

Pe


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3.2 Problem setting<br />

where K F S : ∆ ΓH represents as above the free surface mean curvature, φ : AH ¡3 is the disjoining<br />

pressure of the van der Waals <str<strong>on</strong>g>for</str<strong>on</strong>g>ce and A is the n<strong>on</strong>dimensi<strong>on</strong>al Hamaker c<strong>on</strong>stant. The relati<strong>on</strong><br />

between Π and γ is given by the Langmuir equati<strong>on</strong> of state and <strong>on</strong>e of its linearized versi<strong>on</strong> using<br />

a proper scaling is γ 1 ¡ Π. One might also c<strong>on</strong>sider a soluble surfactant. We refer to [53, 98]<br />

and references therein <str<strong>on</strong>g>for</str<strong>on</strong>g> further reading <strong>on</strong> the topic. In the present work, we follow the path of<br />

Roy Roberts and Simps<strong>on</strong> in [107] and Howel in [67] to derive a general thin-film equati<strong>on</strong> driven by<br />

surfactant <strong>on</strong> a moving surface. In fact, c<strong>on</strong>sidering a general curvilinear coodinate system attached<br />

to the substrate and evolving in time, we use basic noti<strong>on</strong>s of tensor calculus to derive a general<br />

equati<strong>on</strong>. This method provides a very simple way to reas<strong>on</strong> as in the case of flat surfaces. The whole<br />

complexity of curved surfaces is hidden in the differential operators used. In fact, a simplificati<strong>on</strong> of<br />

the momentum equati<strong>on</strong> of the Navier-Stokes equati<strong>on</strong>s using lubricati<strong>on</strong> approximati<strong>on</strong> will lead<br />

us as in the flat case to a system of ordinary differential equati<strong>on</strong>s (ODEs) al<strong>on</strong>g the vertical line <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

the determinati<strong>on</strong> of the comp<strong>on</strong>ent of the relative velocity tangent to the substrate. This system<br />

of ODEs will be solved at the given order of the lubricati<strong>on</strong> approximati<strong>on</strong> (Oɛ 2 ) using power<br />

series and the result will be incorporated in the c<strong>on</strong>servati<strong>on</strong> of mass equati<strong>on</strong> to obtain an equati<strong>on</strong><br />

describing the free surface profile. The method provides the same results as the <strong>on</strong>e obtained by Roy,<br />

Roberts and Simps<strong>on</strong> in [107] using computer algebra to find the center manifold of the Navier-Stokes<br />

equati<strong>on</strong> in this case. We will not apply the lubricati<strong>on</strong> approximati<strong>on</strong> to the surfactant equati<strong>on</strong><br />

since we aim in the next chapter to use a direct discretizati<strong>on</strong> of this equati<strong>on</strong> using a variant of the<br />

interface tracking method. Howell studied already the evoluti<strong>on</strong> of surface-tensi<strong>on</strong> driven thin-film<br />

flow but used too much simplificati<strong>on</strong> and focused essentially <strong>on</strong> special cases. In fact, he assume the<br />

term ɛK to be of order Oɛ and neglected all terms of that order in the lubricati<strong>on</strong> approximati<strong>on</strong><br />

process. He also could <strong>on</strong>ly derive equati<strong>on</strong>s corresp<strong>on</strong>ding to special behavior of the curvature of<br />

the substrate during the evoluti<strong>on</strong>; Equati<strong>on</strong>s corresp<strong>on</strong>ding to transiti<strong>on</strong> phase between the states<br />

he studied are not presented in his work. Ida and Miksis modeled the surfactant driven thin-film<br />

in [72] using the surface described by the mid height as the reference surface. This might also be<br />

c<strong>on</strong>sidered as moving surface since the moti<strong>on</strong> of the fluid is transferred to the reference surface.<br />

Un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunately, in this case the moti<strong>on</strong> of the reference does not influence the behavior of the thinfilm.<br />

The most recent work in the domain is the work of Uwe Fermum, who in his PhD thesis [48]<br />

used the weak <str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> to model surfactant driven thin-film flow <strong>on</strong> evolving surfaces. The rest<br />

of the chapter is organized as follow: We <str<strong>on</strong>g>for</str<strong>on</strong>g>mulate the problem in Secti<strong>on</strong> 3.2. In Secti<strong>on</strong> 3.3 we<br />

introduce the differential geometry ingredients used and the basic tensor calculus needed. Finally,<br />

in Secti<strong>on</strong> 3.4, we derive the coupled surfactant and thin-film equati<strong>on</strong>s.<br />

3.2 Problem setting<br />

We c<strong>on</strong>sider a family of compact, smooth and oriented hypersurfaces Γt R n (n 2, 3) <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

t 0, tmax generated by a flux functi<strong>on</strong> Φ : 0, tmax ¢ Γ 0 R n defined <strong>on</strong> a reference surface<br />

Γ 0 Γ0 with Γt Φt, Γ 0. We also assume our initial surface Γ 0 to be at least C 5 smooth and<br />

Φ C 1 0, tmax, C 5 Γ 0. We denote by ¯v Γ tΦ the velocity of material points and assume its<br />

decompositi<strong>on</strong> ¯v Γ ¯v Γ,νν ¯v Γ,tan into a scalar velocity ¯v Γ,ν in the directi<strong>on</strong> of the surface normal ν<br />

and a tangential velocity ¯v Γ,tan.<br />

Let us c<strong>on</strong>sider a thin, vicious and incompressible liquid film bounded from below by the substrate<br />

Γt and from above by the air as depicted in Figure 3.1. We assume the presence of an insoluble<br />

surfactant with c<strong>on</strong>centrati<strong>on</strong> ¯ Π at the free surface F S (Fluid-Air interface) and the influence of a<br />

body <str<strong>on</strong>g>for</str<strong>on</strong>g>ce ¯ f <strong>on</strong> the flow of the fluid. The body <str<strong>on</strong>g>for</str<strong>on</strong>g>ce ¯ f models the sum of external <str<strong>on</strong>g>for</str<strong>on</strong>g>ces such as<br />

gravity ¯g and Van der Waals <str<strong>on</strong>g>for</str<strong>on</strong>g>ces am<strong>on</strong>g others. Of course the surface undergoes its movement<br />

while the fluid dynamics is taking place and the surfactant is spreading at the same time <strong>on</strong> the free<br />

surface. A typical example of such a setup is the modeling of the flow of a surfactant driven thin-film<br />

flow <strong>on</strong> the human lung. During the respirati<strong>on</strong> phases (inspirati<strong>on</strong> and expirati<strong>on</strong>) the lung expands<br />

and compresses while the thin-film flows. The spreading of the surfactant <strong>on</strong> the thin-film helps to<br />

71


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

Γ0 Γ0<br />

ν<br />

µ 1<br />

µ 2<br />

Φ¤, t<br />

µ 1<br />

ν<br />

µ 2<br />

Γt<br />

Figure 3.1: Representati<strong>on</strong> of the substrate Γ at the time instants 0 (left) and t (right).<br />

regularize the process. We refer to [66] <str<strong>on</strong>g>for</str<strong>on</strong>g> more in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> <strong>on</strong> this topic.<br />

We model the evoluti<strong>on</strong> of the surfactant c<strong>on</strong>centrati<strong>on</strong> by the time-dependant c<strong>on</strong>vecti<strong>on</strong>-diffusi<strong>on</strong><br />

equati<strong>on</strong><br />

¯ Π<br />

¨¨<br />

∇F S ¤ ¯ Π¯vF S ∇F S ¤ <br />

¯t ¯ DF S∇ ¯<br />

F SΠ <strong>on</strong> the free surface F S (3.7)<br />

derived by St<strong>on</strong>e in [113]. Here ∇ F S represents the tangential nabla operator at the free surface and<br />

¯D F S the surface diffusivity tensor (matrix). The diffusivity tensor is often taken as ¯ D F S ¯c Id where<br />

¯c is a c<strong>on</strong>stant. This setup assumes an isotropic diffusi<strong>on</strong> of the surfactant <strong>on</strong> the free surface but in<br />

general the diffusivity depends <strong>on</strong> the fluid viscosity, the fluid c<strong>on</strong>stituents and many other external<br />

factors. In that case, a full tensor ¯ D F S is the suitable way to model anisotropic behavior. Thus, ¯ D F S<br />

will be c<strong>on</strong>sidered to be a full three dimensi<strong>on</strong>al elliptic tensor whose restricti<strong>on</strong> to the free surface<br />

tangent bundle is the tangential operator incorporated in the model. Since the surfactant spreads<br />

<strong>on</strong>ly <strong>on</strong> the free surface, we close the system by imposing the Neumann boundary c<strong>on</strong>diti<strong>on</strong><br />

¯ D F S∇ F S ¯ Π ¤ n l F S 0 (3.8)<br />

at the c<strong>on</strong>tact line (Substrate-Fluid-Air). n l F S represents the free surface outer unit c<strong>on</strong>ormal.<br />

The flow of the thin-film at its turn is governed by the incompressible Navier-Stokes equati<strong>on</strong>s<br />

∇ ¤ ¯v F 0 (3.9)<br />

¨ d¯v F<br />

µ∇ ¤ ∇¯v F ρ<br />

d¯t ∇ ¯ P ¡ ¯ f, (3.10)<br />

where ¯v F is the fluid particle velocity, µ is the fluid viscosity, ρ is the fluid density, ¯ P is the pressure<br />

and ¯ f is the sum of body <str<strong>on</strong>g>for</str<strong>on</strong>g>ces applied to a fluid particle as said above. We associate to these<br />

equati<strong>on</strong>s the following boundary c<strong>on</strong>diti<strong>on</strong>s:<br />

72<br />

a) On the substrate-fluid interface Γt, we c<strong>on</strong>sider the no-penetrati<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong><br />

¯v F ¡ ¯v Γ ¤ ν 0 and the fricti<strong>on</strong> slip c<strong>on</strong>diti<strong>on</strong> µ T Fν tan ¯ β ¯v F ¡ ¯v Γ where the slip tensor<br />

¯β is a three dimensi<strong>on</strong>al elliptic tensor whose restricti<strong>on</strong> to the ¡ substrate tangent bundle is<br />

¨ © <br />

the tangential tensor incorporated in the model [4, 84], T F : ∇¯vF ∇¯v F is the stress<br />

tensor, and T Fν tan is the tangential comp<strong>on</strong>ent of T Fν.


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3.3 Geometry setting<br />

b) On the fluid-air interface F S (free surface), we c<strong>on</strong>sider the kinematic boundary c<strong>on</strong>diti<strong>on</strong><br />

which states that the fluid particles follow the free surface. We also impose that the shear<br />

stress <strong>on</strong> F S is balanced by the free surface tangential gradient of the surface tensi<strong>on</strong> ¯γ;<br />

µ <br />

T FνF S ∇F S¯γ. The index “F S, tan” refers to the free surface tangent plane.<br />

F S,tan<br />

¨ <br />

νF S<br />

¤ νF S <br />

¯γ ¯ KF,S where ¯ P0 is the ambient pressure (atmospheric pressure in the air phase) and ¯ KF S the<br />

curvature of the free surface.<br />

c) Finally we c<strong>on</strong>sider the Laplace-Young law <strong>on</strong> F S which states that the jump of the normal<br />

stress is proporti<strong>on</strong>al to the mean curvature of F S, i.e., ¡ P ¯ ¡ ¯ P0 µT FνF,S The problem is completely modeled by the knowledge of the equati<strong>on</strong> of state which links the surface<br />

tensi<strong>on</strong> ¯γ and the surfactant c<strong>on</strong>centrati<strong>on</strong> ¯ Π. Many equati<strong>on</strong>s of states exist in the literature but<br />

the most popular is probably the n<strong>on</strong>linear Langmuir equati<strong>on</strong> of states [26, 83, 101, 127]<br />

¯γ ¯γ0 R Ta ¯ Πln1 ¡ ¯ Π ¯ Π (3.11)<br />

that we adopt here. ¯γ0 denotes the surface tensi<strong>on</strong> of a clean film ( ¯ Π 0), R the universal<br />

gas c<strong>on</strong>stant, Ta the absolute (Kelvin) temperature and ¯ Π the surfactant c<strong>on</strong>centrati<strong>on</strong> in the<br />

maximum packing limit. ¯ Π exists because each molecule occupies a finite surface area and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

limits the maximum possible surface c<strong>on</strong>centrati<strong>on</strong>.<br />

As usual, the mathematical study of the properties of a physical process needs first a<br />

n<strong>on</strong>dimensi<strong>on</strong>alizati<strong>on</strong> and a proper scaling of variables. In additi<strong>on</strong> in the c<strong>on</strong>text of fluid mechanics,<br />

the choice of reference frames is very important. A good choice simplifies the work and facilitates<br />

the analysis of the problem. In our case, we will simultaneously use a laboratory frame and a moving<br />

frame attached to the substrate. In what follows, we will define the coordinate system, introduce<br />

the scaling procedure and present the essential parts of tensor theory needed <str<strong>on</strong>g>for</str<strong>on</strong>g> an appropriate<br />

descripti<strong>on</strong> of this problem.<br />

3.3 Geometry setting<br />

3.3.1 Coordinate system<br />

Let us c<strong>on</strong>sider a neighborhood Ω0 Γ0 of a point P0 Γ0 and follow the evoluti<strong>on</strong> of Ω¯t :<br />

Φ¯t, Ω0. We assume Ω0 to be parameterized by ¯ X¯s ¯ X0, ¯s, ¯s ¯s1, ¯s2, and c<strong>on</strong>sequently<br />

¯X¯t, ¯s : Φ¯t, ¯ X¯s parameterizes Ω¯t. Ω0, ¯ X¯t, ¤ ¨ can be seen as a chart of an atlas describing<br />

¢<br />

X¯t, ¯ ¯s<br />

the geometric properties of Γ¯t. We assume the basis µ1¯t, ¯s, µ2¯t, ¯s : ,<br />

¯s1<br />

¯ <br />

X¯t, ¯s<br />

¯s2<br />

of the tangent plane at P ¯t : Φ¯t, P0 to be direct and we define ν¯t, P ¯t ν¯t, ¯s : µ1¯t, ¯s <br />

µ2¯t, ¯sµ1¯t, ¯s µ2¯t, ¯s the unit normal of Γ¯t at P ¯t. So defined, we assume that during the<br />

entire process, lines normal to the substrate do not intersect within the film. This c<strong>on</strong>diti<strong>on</strong> is<br />

fulfilled if and <strong>on</strong>ly if the matrix Id ¡ ¯ H¯t, ¯s ¯ K¯t, ¯s ¨ is strictly positive definite; ¯ H¯t, ¯s being the<br />

distance al<strong>on</strong>g ν¯t, P ¯t from P ¯t to the free surface and ¯ K¯t, ¯s being the Weingarten map at<br />

P ¯t. Then, it is clear that any fluid particle at the point M <strong>on</strong> the axis P ¯t, ν¯t, P ¯t can be<br />

uniquely represented by ¯r¯t, ¯s, ¯y ¯ X¯t, ¯s ¯yν¯t, ¯s, where ¯y <br />

P ¯tM, i.e., 0 ¯y ¯ H¯t, ¯s. It<br />

there<str<strong>on</strong>g>for</str<strong>on</strong>g>e appears that the appropriate way to describe the dynamic of the above stated problem is<br />

to use a curvilinear coordinate system. Be<str<strong>on</strong>g>for</str<strong>on</strong>g>e we c<strong>on</strong>tinue, let us menti<strong>on</strong> here that the functi<strong>on</strong>s<br />

used in this chapter will be time and space dependent unless specified otherwise; thus we will be<br />

omitting variables whenever there is no possible misunderstanding.<br />

Definiti<strong>on</strong> 3.3.1 For t 0, let N 0 N 0 R n 1 be a small open neighborhood of Γ 0 in which the<br />

lines normal to the substrate do not intersect and assume that this includes the domain F occupied<br />

73


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

by the fluid. The map<br />

n 1<br />

N0 R<br />

x νx a unit vector normal to Γ 0 such that<br />

a Γ 0, νx is the normal to Γ 0 at a,<br />

x a xa ¤ νν and x, a N 0<br />

and<br />

is well defined. We also define N ¯t : ¯r¯t, ¯s, ¯y ¯ X¯t, ¯s ¯yν¯t, ¯s ¯ X0, ¯s ¯y ν0, ¯s N0 assume that the lines normal to Γ¯t do not intersect within N ¯t. At each point M with coordinates<br />

¯r¯t, ¯s, ¯y ¯ X¯t, ¯s ¯y ν¯t, ¯s we define the natural basis as follows<br />

t1 ¯t, ¯s, ¯y : ¯r<br />

¯s1<br />

t2 ¯t, ¯s, ¯y : ¯r<br />

We recall that ∇ν¯t, ¯s ¡K¯t, ¯s.<br />

¯s2<br />

¯t, ¯s, ¯y Id ¡ ¯y ¯ K¯t, ¯s ¨ µ1 ¯t, ¯s ,<br />

¯t, ¯s, ¯y Id ¡ ¯y ¯ K¯t, s ¨ µ2 ¯t, ¯s ,<br />

t3 ¯t, ¯s, ¯y : ¯r<br />

¯y ¯t, ¯s, ¯y ν ¯t, ¯s .<br />

3.3.2 N<strong>on</strong>dimensi<strong>on</strong>alizati<strong>on</strong>/scaling and basic tensor calculus<br />

In the c<strong>on</strong>text of thin-film flow, the representati<strong>on</strong> of the fluid particle presents two characteristic<br />

lengths scales: a reference length L measured al<strong>on</strong>g the substrate in the directi<strong>on</strong> of the main flow<br />

and a reference thickness H of the fluid above the substrate Γ¯t. We also scale the time by T . The<br />

n<strong>on</strong>dimensi<strong>on</strong>al variables are then related to their dimensi<strong>on</strong>al counterparts which are written with<br />

overbar by:<br />

¯s Ls where s s1, s2 (i.e ¯s1 Ls1, ¯s2 Ls2), ¯y Hy, ¯t T t, ¯ X¯t, ¯s LXt, s,<br />

¯r¯t, ¯s, ¯y Lrt, s, y. The last relati<strong>on</strong> gives rt, s, y Xt, s ɛyνt, s where ɛ HL is<br />

assumed to be very small compared to 1 (ɛ 1) and y becomes an O1 variable. We should<br />

emphasize that, so defined, the dimensi<strong>on</strong>al surface coordinates ¯s1 and ¯s2 must have the length’s<br />

dimensi<strong>on</strong>, so that care should be taken when the natural parameterizati<strong>on</strong> involves an angle. For<br />

example, <str<strong>on</strong>g>for</str<strong>on</strong>g> a flow <strong>on</strong> a circular cylinder of radius Ra, a natural choice is ¯s1 θ, the cylindrical<br />

polar coordinate, but the correct dimensi<strong>on</strong>al coordinate is the arc-length ¯s1 Raθ.<br />

These definiti<strong>on</strong>s lead to ¯ X X ¯s1 s1 and ¯ X X . With a slight misuse of notati<strong>on</strong>, we de-<br />

¯s2 s2<br />

fine µ1t, s : X<br />

s1 and µ2t, s : X . According to the c<strong>on</strong>text, <strong>on</strong>e will distinguish them from<br />

s2<br />

µ1¯t, ¯s : ¯ X<br />

¯s1 and µ2¯t, ¯s : ¯ X<br />

¯s2 . We can nevertheless notice that µ1¯t, ¯s µ1t, s and µ2¯t, ¯s <br />

µ2t, s; thus ν¯t, ¯s νt, s.<br />

Again, with a slight misuse of notati<strong>on</strong>, we define the corresp<strong>on</strong>ding curvilinear coodinate system<br />

to the n<strong>on</strong>dimensi<strong>on</strong>al flow as follow:<br />

t, s, y Id ¡ ɛyKt, s µ1 t, s<br />

s1<br />

t2 t, s, y : r<br />

t, s, y Id ¡ ɛyKt, s µ2 t, s<br />

s2<br />

t3 t, s, y : r<br />

t, s, y ɛν t, s ,<br />

y<br />

t1 t, s, y : r<br />

where K is the n<strong>on</strong>dimensi<strong>on</strong>al Weingarten map at P t. From the definiti<strong>on</strong> of the shape operator<br />

(Weingarten map), it is easy to see that ¯ K 1LK. This remark allows us to see that<br />

74<br />

t1 ¯t, ¯s, ¯y t1 t, s, y<br />

t2 ¯t, ¯s, ¯y t2 t, s, y


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3.3 Geometry setting<br />

With a misuse of notati<strong>on</strong>, we define the dual basis of the basis µ1¯t, ¯s, µ2¯t, ¯s, ν¯t, ¯s ,<br />

µ1t, s, µ2t, s, νt, s , t1¯t, ¯s, ¯y, t2¯t, ¯s, ¯y, t3¯t, ¯s, ¯y , t1t, s, y, t2t, s, y, t3t, s, y respectively<br />

by µ 1 ¯t, ¯s, µ 2 ¯t, ¯s, ν¯t, ¯s ¨ , µ 1 t, s, µ 2 t, s, νt, s ¨ , t 1 ¯t, ¯s, ¯y, t 2 ¯t, ¯s, ¯y, t 3 ¯t, ¯s, ¯y ¨ ,<br />

t 1 t, s, y, t 2 t, s, y, t 3 t, s, y ¨ such that<br />

µ i ¯t, ¯s ¤ µj¯t, ¯s δ i j, µ i t, s ¤ µjt, s δ i j, i, j 1, 2<br />

and t i ¯t, ¯s, ¯y ¤ tj¯t, ¯s, ¯y δ i j, t i t, s, y ¤ tjt, s, y δ i j, i, j 1, 2, 3.<br />

δ i j is the Kr<strong>on</strong>ecker-Delta symbol, i.e., δi j<br />

Let us define<br />

then<br />

1 if i j and 0 in other cases. It is clear that<br />

µ 1 ¯t, ¯s, µ 2 ¯t, ¯s, ν¯t, ¯s ¨ µ 1 t, s, µ 2 t, s, νt, s ¨ .<br />

Ryt, s, y Id ¡ ɛyKt, s ¡1<br />

, (3.12)<br />

t 1 ¯t, ¯s, ¯y, t 2 ¯t, ¯s, ¯y, t 3 ¯t, ¯s, ¯y ¨ t 1 t, s, y, t 2 t, s, y, 1ɛνt, s ¨<br />

We refer to Figure 3.2 <str<strong>on</strong>g>for</str<strong>on</strong>g> the illustrati<strong>on</strong> of these vectors.<br />

Ryt, s, yµ 1 t, s, Ryt, s, yµ 2 t, s, 1ɛνt, s ¨ .<br />

Definiti<strong>on</strong> 3.3.2 Let us call e1, e2, e3 the can<strong>on</strong>ical basis of R 3 . For any scalar functi<strong>on</strong> η, defined<br />

<strong>on</strong> N ¯t, we define its n<strong>on</strong>scaled gradient by<br />

∇η :<br />

η<br />

e1<br />

x1<br />

η<br />

e2<br />

x2<br />

η<br />

e3 <br />

x3<br />

η<br />

t<br />

¯s1<br />

1<br />

η<br />

t<br />

¯s2<br />

2<br />

η<br />

ν. (3.13)<br />

¯y<br />

Let us call ΓΩ¯y, ¯t the parallel surface to Ω¯t that intersects the axis P ¯t, ν¯s1, ¯s2, ¯t at M. The<br />

dimensi<strong>on</strong>al tangential gradients to Γt and ΓΩ¯y, ¯t are respectively given by:<br />

In the same way, we define the n<strong>on</strong>dimensi<strong>on</strong>al gradient by<br />

∇Γη : η<br />

µ<br />

¯s1<br />

1 η<br />

µ<br />

¯s2<br />

2<br />

(3.14)<br />

and ∇ΓΩ¯y, ¯tη : η<br />

t<br />

¯s1<br />

1 η<br />

t<br />

¯s2<br />

2 . (3.15)<br />

∇η :<br />

and the n<strong>on</strong>dimensi<strong>on</strong>al surface gradients by<br />

η<br />

t 1<br />

s1<br />

η<br />

t 2<br />

s2<br />

∇Γη : η<br />

µ 1<br />

s1<br />

and ∇ΓΩy, tη : η<br />

t 1<br />

s1<br />

η<br />

y t3<br />

η<br />

µ 2<br />

(3.12), (3.13) to (3.18) give the following relati<strong>on</strong> to the above defined operator:<br />

s2<br />

(3.16)<br />

(3.17)<br />

η<br />

t 2 . (3.18)<br />

s2<br />

∇ ΓΩ ¯y, ¯tη 1<br />

L ∇ Γ Ω y, tη 1<br />

L Ry∇ Γη<br />

∇η 1<br />

L Ry∇ Γη<br />

1 η<br />

ɛL y ν<br />

75


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

Tangent plane t 2<br />

Figure 3.2: Representati<strong>on</strong> of natural basis µ1, µ2, t1, t2, and the corresp<strong>on</strong>ding dual basis<br />

µ 1 , µ 2 , t 1 , t 2 , at P and M at time t.<br />

We wish to define the gradient of a vector field in the natural coordinate.<br />

Definiti<strong>on</strong> 3.3.3 Let us c<strong>on</strong>sider a vector field ζ ζtan ζνν defined <strong>on</strong> N ¯t, where ζν ζ ¤ ν.<br />

The n<strong>on</strong>scaled gradient of ζ is the three dimensi<strong>on</strong>al sec<strong>on</strong>d order tensor<br />

∇ζ :<br />

2<br />

i 1<br />

and the n<strong>on</strong>scaled surface gradient is defined by<br />

∇ Γζ :<br />

2<br />

i 1<br />

Their scale counterparts read<br />

respectively.<br />

∇ζ <br />

and ∇ Γζ <br />

ζtan µ<br />

¯si<br />

i ¡<br />

2<br />

si<br />

i 1<br />

2<br />

i 1<br />

ν<br />

M<br />

P<br />

ζ<br />

t<br />

¯si<br />

i<br />

2<br />

i 1<br />

¢ ζtan<br />

¯si<br />

µ 2<br />

t 1<br />

t2<br />

µ2<br />

µ 1<br />

µ1<br />

t1<br />

ζ<br />

ν (3.19)<br />

¯y<br />

<br />

i<br />

¤ ν ν µ<br />

2<br />

i 1<br />

ν<br />

ζν µ<br />

¯si<br />

i . (3.20)<br />

ζ<br />

t i 1 ζ<br />

ν, (3.21)<br />

ɛ y<br />

ζtan µ i 2 ¢ 2<br />

ζtan<br />

i ν<br />

¡<br />

¤ ν ν µ ζν µ i , (3.22)<br />

si<br />

i 1<br />

Note 3.3.4 It can be noticed that these definiti<strong>on</strong>s give the surface derivative tensor of ζ. Some<br />

authors [14] explicitly write<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> the n<strong>on</strong>scaled tangential gradient and<br />

si<br />

∇ Γζ Id ¡ ν ν ∇ζ Id ¡ ν ν<br />

∇ Γζ Id ¡ ν ν ∇ζ Id ¡ ν ν<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> the scaled tangential gradient. Since our functi<strong>on</strong> is defined not just <strong>on</strong> the surface Γ (as it is the<br />

case in [14]), but in a small domain around the surface, this definiti<strong>on</strong> can lead to some c<strong>on</strong>fusi<strong>on</strong><br />

while computing the tangential gradient at a point which isn’t <strong>on</strong> the surface. We there<str<strong>on</strong>g>for</str<strong>on</strong>g>e prefer<br />

the full tensorial expressi<strong>on</strong>.<br />

Lemma 3.3.5 For a given vector field ζ ζ tan<br />

76<br />

i 1<br />

si<br />

ζνν defined <strong>on</strong> N ¯t (ζν ζ ¤ ν); we have<br />

a) ∇ Γζ 1<br />

L ∇ Γζ (3.23)


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

b) The n<strong>on</strong>scaled gradient can be expressed as<br />

∇ζ ∇ΓζtanR¯y ν R¯y∇ Γζν ζtan ν<br />

¯y<br />

3.3 Geometry setting<br />

ζ ν<br />

¯y ν ν ν R¯y ¯ Kζ tan ¡ ζ ν ¯ KR¯y. (3.24)<br />

c) The n<strong>on</strong>scaled gradient is expressed in terms of tangential gradient operator as follows<br />

∇ζ 1<br />

L ∇ Γζ tanRy<br />

1<br />

Lɛ<br />

ζν ν ν<br />

y 1<br />

where R¯y R ¯t, ¯s, ¯y Id ¡ ¯y ¯ K ¯t, ¯s ¨ ¡1<br />

1<br />

L ν Ry∇Γζ ν<br />

1 ζtan ν<br />

Lɛ y<br />

L ν RyKζ tan ¡ 1<br />

L ζνKRy, (3.25)<br />

and Ry R t, s, y Id ¡ ɛyK t, s, y ¡1<br />

.<br />

We will now generalize the above results to a general three dimensi<strong>on</strong>al sec<strong>on</strong>d order tensor.<br />

Definiti<strong>on</strong> 3.3.6 C<strong>on</strong>sidering a sec<strong>on</strong>d order tensor<br />

T <br />

3<br />

i, j 1<br />

T i j ti tj,<br />

the tangential comp<strong>on</strong>ent of T is the surface tensor given by<br />

T tan <br />

2<br />

i, j 1<br />

T i j ti tj.<br />

We use the terms n<strong>on</strong>scaled and scaled tangential gradient of T , respectivey, to denote the third order<br />

surface tensors<br />

∇ ΓT <br />

and ∇ ΓT <br />

2<br />

2<br />

k 1 i, j 1<br />

2<br />

2<br />

k 1 i, j 1<br />

ti tj t j t i T<br />

ti tj t j t i T<br />

µ<br />

¯sk<br />

k<br />

sk<br />

µ k .<br />

Remark 3.3.7 The n<strong>on</strong>scaled and scaled tangential gradient are merely the tangential comp<strong>on</strong>ent<br />

2 T<br />

of the surface gradient µ<br />

¯sk<br />

k 2 T<br />

and µ<br />

sk<br />

k , respectively.<br />

k 1<br />

k 1<br />

Lemma 3.3.8 C<strong>on</strong>sidering a sec<strong>on</strong>d order tensor<br />

T <br />

3<br />

i, j 1<br />

T i j ti tj,<br />

the expressi<strong>on</strong>s of the n<strong>on</strong>scaled and scaled tangential gradient of T are<br />

∇ ΓT <br />

¡<br />

2<br />

k 1<br />

2<br />

k 1<br />

Ttan µ<br />

¯sk<br />

k ¡<br />

2<br />

i 1<br />

¯Kµk T ν tan µ k<br />

ν T <br />

tant i ¯ Kti ¡<br />

2<br />

j 1<br />

Ttant j ν ¯ Ktj ¡ T ν tan ¯ K<br />

(3.26)<br />

77


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

and<br />

∇ ΓT <br />

¡<br />

2<br />

k 1<br />

2<br />

k 1<br />

Ttan µ k ¡<br />

sk<br />

2<br />

i 1<br />

ν T <br />

tant i Kti ¡<br />

2<br />

j 1<br />

Ttant j ν Ktj ¡ T ν tan K<br />

Kµk T ν tan µ k , (3.27)<br />

respectively. We also have the following relati<strong>on</strong><br />

Proof In fact<br />

2<br />

k 1<br />

2<br />

k 1<br />

T<br />

µ<br />

¯sk<br />

k <br />

Ttan µ<br />

¯sk<br />

k <br />

¡<br />

Using the fact that ti<br />

2<br />

2<br />

k 1 i, j 1<br />

¯si<br />

2<br />

k 1<br />

2<br />

k 1<br />

∇ ΓT 1<br />

L ∇ ΓT. (3.28)<br />

2<br />

Ttan µ<br />

¯sk<br />

k<br />

T 3 3ν ν ¨<br />

µ<br />

¯sk<br />

k ,<br />

2<br />

2<br />

k 1 i, j 1<br />

2<br />

2<br />

k 1 i, j 1<br />

2<br />

2<br />

k 1 i, j 1<br />

2<br />

k 1 i 1<br />

T i j ¨<br />

ti tj<br />

¯sk<br />

¢<br />

i j tj<br />

T ¤ ν<br />

¯sk<br />

¢<br />

i j tj<br />

T ¤ ν<br />

¯sk<br />

T i 3 ti ν ¨<br />

¯sk<br />

µ k ¡<br />

2<br />

ti ν µ k<br />

ti ν µ k .<br />

µ k<br />

2<br />

k 1 i, j 1<br />

¨<br />

¤ ν ti ¤ Kµi<br />

¯ , we obtain the following:<br />

ti tj t j t i T tan<br />

¯sk<br />

µ k <br />

A direct applicati<strong>on</strong> of derivati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>mulae gives<br />

and<br />

2<br />

l, m 1 k 1 i 1<br />

2<br />

2<br />

2<br />

2<br />

2<br />

l, m 1 k 1 j 1<br />

2<br />

k 1<br />

¡<br />

2<br />

k 1<br />

2<br />

2<br />

2<br />

k 1 j 1<br />

T 3 j ¨<br />

ν tj<br />

¯sk<br />

¢ <br />

i j ti<br />

T ¤ ν ν tj µ<br />

¯sk<br />

k<br />

2<br />

k 1 i, j 1<br />

Ttan µ<br />

¯sk<br />

k ¡<br />

2<br />

i 1<br />

i j<br />

T<br />

2 <br />

Ttant j ν ¯ Ktj.<br />

j 1<br />

tl tm t m t l T i 3 ti ν ¨<br />

¯sk<br />

tl tm t m t l T 3 j ν tj<br />

¯sk<br />

ti tj t j t i T 3 3 ν ν ¨<br />

¯sk<br />

¨<br />

¢ ti<br />

¯sk<br />

µ k ¡ T ν tan ¯ K,<br />

µ k ¡<br />

µ k 0<br />

2<br />

k 1<br />

µ k<br />

<br />

¤ ν ν tj µ k<br />

ν T <br />

tant i ¯ Kti<br />

¯Kµk T ν tan µ k ,<br />

(3.26) is obtained by adding up the equati<strong>on</strong>s above. (3.27) is obtained analogously and by replacing<br />

the derivative expressi<strong>on</strong>s in (3.26) with their equivalents involving derivative expressi<strong>on</strong> in (3.27),<br />

<strong>on</strong>e easily obtains the relati<strong>on</strong> (3.28).<br />

78


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Theorem 3.3.9 C<strong>on</strong>sidering a sec<strong>on</strong>d order tensor<br />

T <br />

3<br />

i, j 1<br />

T i j ti tj<br />

3.3 Geometry setting<br />

the expressi<strong>on</strong> of the n<strong>on</strong>scaled gradient of T is given in terms of the n<strong>on</strong>scaled and scaled variables<br />

as follows<br />

and<br />

∇T ∇ ΓT tanR¯y<br />

¡<br />

¡<br />

2<br />

k 1<br />

T ν tan<br />

¯sk<br />

2<br />

i 1<br />

ν ∇ Γ T ν tan<br />

2<br />

k 1<br />

2<br />

j 1<br />

ν T <br />

tant i µi ¯ K<br />

2 <br />

Ttant j ν µj ¯ K<br />

j 1<br />

ν t k ¡ T ν R¯y tan ¯ K ¡<br />

k 1<br />

<br />

R¯y ν ν R¯y ¯ K T ν ν ν R¯y∇ Γ T ν ¤ ν<br />

T ν ¤ ν ¯ Kµk ν t k ¡ T ν ¤ ν ν R¯y ¯ K<br />

T t j ¨ tan ¯ Kµj ν T ν tan<br />

¯y<br />

T ν ¤ ν<br />

ν ν ν<br />

¯y<br />

∇T 1<br />

L ∇ ΓT tanRy<br />

1<br />

L<br />

1<br />

¡ 1<br />

L<br />

2<br />

k 1<br />

T ν tan<br />

sk<br />

1<br />

L<br />

2<br />

i 1<br />

L ν ∇ Γ T ν tan Ry<br />

1<br />

ɛL<br />

2<br />

k 1<br />

2<br />

j 1<br />

ν T <br />

tant i µiK<br />

2<br />

¯Kµk T ν tan t k<br />

2<br />

j 1<br />

T t j ¨ tan<br />

¯y<br />

ν ν ν T ν tan<br />

¯y<br />

1<br />

L<br />

ν<br />

tj ν<br />

2 <br />

Ttant j ν µjK<br />

j 1<br />

ν t k ¡ 1<br />

L T ν tan RyK ¡ 1<br />

L<br />

2<br />

k 1<br />

Kµk T ν tan t k<br />

1<br />

L ν ν RyK T ν 1<br />

L ν ν Ry∇Γ T ν ¤ ν<br />

T ν ¤ ν Kµk ν t k ¡ 1<br />

T ν ¤ ν ν RyK<br />

L<br />

T t j ¨ tan<br />

y<br />

tj ν ¡ 1<br />

L<br />

2<br />

j 1<br />

1 T ν 1<br />

tan ν ν<br />

ɛL y<br />

ɛL ν T νtan ν<br />

y<br />

1 T ν ¤ ν<br />

ν ν ν,<br />

ɛL y<br />

where the index “tan” is meant <str<strong>on</strong>g>for</str<strong>on</strong>g> the tangential comp<strong>on</strong>ent.<br />

T t j ¨ tan Kµj ν<br />

The proof of this theorem is straight<str<strong>on</strong>g>for</str<strong>on</strong>g>ward.<br />

We will now give the definiti<strong>on</strong> of divergence in terms of tensor c<strong>on</strong>tracti<strong>on</strong>.<br />

Definiti<strong>on</strong> 3.3.10 The sec<strong>on</strong>d order identity tensor in R 3 is defined by<br />

G <br />

3<br />

i, j 1<br />

ti ¤ tj t i t j <br />

3<br />

i, j 1<br />

t i ¤ t j ¨ ti tj <br />

3<br />

i 1<br />

ti t i <br />

3<br />

i 1<br />

t i ti<br />

<br />

79


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

C<strong>on</strong>sidering a first or sec<strong>on</strong>d order tensor T , the n<strong>on</strong>scaled divergence of T is its trace given by<br />

and the tangential divergence by<br />

∇ ¤ T ∇T G.<br />

∇ Γ ¤ T ∇ ΓT G.<br />

Theorem 3.3.11 (Divergence of tensors)<br />

Let us c<strong>on</strong>sider a vector field ζ (first order tensor)<br />

ζ <br />

3<br />

i1<br />

ζ i ti ζ tan ζ νν ζ ν ζ ¤ ν.<br />

The divergence of ζ is given in terms of n<strong>on</strong>scaled and scaled variables by<br />

C<strong>on</strong>sidering a sec<strong>on</strong>d order tensor<br />

∇ ¤ ζ ∇ Γζ tanR¯yG ¡ ζ ν ¯ KR¯yG ζ ν<br />

¯y ,<br />

∇ ¤ ζ 1<br />

L ∇ Γζ tanRyG ¡ 1<br />

L ζ νKRyG<br />

T <br />

3<br />

i,j1<br />

T i j ti tj,<br />

the divergence of T is given in terms of n<strong>on</strong>scaled and scaled variables by<br />

and<br />

¨<br />

∇ ¤ T ∇ΓTtanR¯y G<br />

¡<br />

2<br />

k 1<br />

¯Kµk<br />

2<br />

i 1<br />

1<br />

ɛL<br />

ζν . (3.29)<br />

y<br />

ν T <br />

tant i ¯ K µi G ¡ T ν tan R¯y ¯ KG<br />

T νtan ¤ t k¨ ν ∇ Γ T ν tan<br />

¡ T ν ¤ ν ν R¯y ¯ KG T ν tan<br />

¯y<br />

∇ ¤ T 1<br />

L<br />

£<br />

∇ΓTtanRy G<br />

¡ 1<br />

L<br />

£ 2<br />

k 1<br />

Kµk<br />

¡ 1<br />

T ν ¤ ν ν RyKG<br />

L<br />

2<br />

i 1<br />

R¯yG<br />

T ν ¤ ν<br />

ν<br />

¯y<br />

ν T <br />

tant i K µi G ¡ T ν tan RyKG<br />

<br />

T νtan ¤ t k¨ ¡ ν ∇Γ T ν RyG<br />

tan<br />

¢<br />

T νtan<br />

1<br />

ɛL<br />

y<br />

<br />

<br />

T ν ¤ ν<br />

ν<br />

y<br />

The Laplacian of a vector field is given in terms of n<strong>on</strong>scaled and scaled variables by<br />

∇ ¤ ∇ζ ¨ ¨ ¨ ¨ <br />

∇Γ ∇ΓζtanR¯y R¯y G ν tr ∇Γζ ¯ 2<br />

tanKR ¯y ¡ K¯ 2<br />

R¯y ∇Γζν ν tr <br />

∇Γ R¯y∇ Γζν ν<br />

80<br />

2ζtan ¯y 2 2ζν ¯y 2 ν ¡ R 2 ¯y ¯ K 2 ζtan ¨<br />

¡ ∇ ¯<br />

Γ ζνKR¯y R¯yG ¡ ν ζν tr K¯ 2 2<br />

R¯y ¨ ¨ ζtan R¯y ¡<br />

¯y tr R¯y ¯ K ¨ ¡ tr R¯y ¯ K ¨ ζν ¯y<br />

¨ <br />

ν tr ∇Γ R¯y ¯ ¨ ¨<br />

Kζtan R¯y<br />

¨<br />

¨


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

and<br />

3.3 Geometry setting<br />

∇ ¤ ∇ζ ¨ 1<br />

L2 ¡<br />

∇Γ ∇ΓζtanRy Ry G ν tr ∇ΓζtanKR 2¨ 2<br />

y ¡ K Ry ∇Γζν ©<br />

ν 1<br />

L2 tr ∇Γ Ry∇Γζ ν Ry ¡ 1<br />

ɛL2 ζtan y tr RyK ¡ 1<br />

<br />

ζν<br />

tr RyK ν<br />

ɛL2 y<br />

1<br />

ɛ2L2 ¢ 2 ζtan<br />

y2 2 <br />

ζν 1<br />

ν ¡<br />

y2 L2 2<br />

RyK 2 ¨ 1<br />

ζtan ν<br />

L2 tr ∇Γ RyKζ tan Ry<br />

¡ 1<br />

L2 ∇Γ ζνKRy RyG ¡ ν 1<br />

L2 ζν tr K 2 R 2¨ y .<br />

We finally wish to give some important results which will help us to simplify the thin-film problem<br />

presented in ((3.7) – (3.11)).<br />

Lemma 3.3.12 (Divergence of a tangential vector under the integral sign)<br />

Let ¯ ζ 2 i1 ¯ ζiti 2 i1 ¯ ζi Id ¡ ¯y ¯ K ¨ µi be a tangential vector field defined in N t and c<strong>on</strong>sider<br />

the real functi<strong>on</strong>s ¯ f and ¯g defined <strong>on</strong> Γ¯t which are assumed to be sufficiently smooth. Then<br />

∇ Γ ¤<br />

¯gP <br />

¯fP <br />

Proof We have,<br />

and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

∇ Γ ¤<br />

£ ¯gP <br />

¯fP <br />

¯ζd¯y <br />

¯ζd¯y<br />

¯gP <br />

<br />

¯fP <br />

<br />

¡<br />

¯gP <br />

¯fP <br />

¯ζd¯y <br />

2<br />

<br />

2<br />

<br />

i1<br />

i1<br />

∇ Γ ¤ ¯ ζd¯y ¯ ζ ¯gP ¤ ∇Γ¯gP ¡ ¯ ζ ¯ fP ¨ ¤ ∇Γ ¯ fP (3.30)<br />

∇ Γ<br />

∇ Γ<br />

2 ¯gP <br />

¯ζ<br />

¯fP i1 <br />

i 2 ¯gP <br />

d¯y µi ¡<br />

¯fP i1 <br />

£ ¯gP <br />

¯fP <br />

£ ¯gP <br />

¯fP <br />

¯ζ i d¯y<br />

¯y ¯ ζ i d¯y<br />

<br />

<br />

¤ µi<br />

2<br />

i1<br />

¤ Kµi ¡<br />

¯gP <br />

¯y ¯ ζ i d¯y Kµi<br />

¯fP <br />

¯gP <br />

2<br />

i1<br />

¯ζ i d¯y <br />

∇Γ ¤ µi<br />

¯fP <br />

¯y ¯ ζ i d¯y ¨<br />

∇Γ ¤ Kµi .<br />

The use of the derivati<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g>mula of an integral functi<strong>on</strong> in <strong>on</strong>e dimensi<strong>on</strong> and a proper identificati<strong>on</strong><br />

of terms gives<br />

∇ Γ ¤<br />

£ ¯gP <br />

¯fP <br />

¯ζd¯y<br />

<br />

<br />

¡<br />

2<br />

i1 £ 2<br />

i1 £ 2<br />

i1<br />

which is what we where looking <str<strong>on</strong>g>for</str<strong>on</strong>g>.<br />

¯gP <br />

¯fP <br />

¯ζ i ∇Γ ¤ Id ¡ ¯yK ¨ µ i ∇ Γ ¯ ζ i ¨ ¤ Id ¡ ¯yK ¨ µ i¨ d¯y<br />

¯ζ i Id ¡ ¯gP K ¨ µ i<br />

¤ ∇ Γ ¯gP <br />

¯ζ i Id ¡ ¯ fP K ¨ µ i<br />

¤ ∇ Γ ¯ fP ,<br />

Lemma 3.3.13 Let us c<strong>on</strong>sider the points P P t, s Ωt Γt and M <strong>on</strong> the axis P, νt, s.<br />

We call dΓΩt, s, y t1 t2 the surface element at M of the surface parallel to Ωt. Then<br />

¢ ¢ ¢ ¢ <br />

ti 1<br />

ti<br />

ti<br />

∇ ¤<br />

∇Γ<br />

Ry G ∇Γ ¤<br />

0.<br />

dΓΩt, s, y L dΓΩt, s, y<br />

dΓΩt, s, y<br />

<br />

81


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

Proof Let us define the scalar fields ηit, s, y si i 1, 2, and ηyt, s, y ɛy in a bounded<br />

subdomain of N t c<strong>on</strong>taining Ωt and P, M.<br />

∇ηi t i , ∇ηy ν and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e ∇ ¤ t i ν ¨ 0,<br />

since ∇ ¤ ∇f ∇g 0 <str<strong>on</strong>g>for</str<strong>on</strong>g> any scalar field f and g. We also have t1 ν ¡<br />

dΓΩt, s, y and<br />

t2 t1<br />

ν <br />

. The remaining part is a direct applicati<strong>on</strong> of (3.29).<br />

dΓΩt, s, y<br />

Remark 3.3.14 We notice using Lemma 3.3.13 that <strong>on</strong>e has <str<strong>on</strong>g>for</str<strong>on</strong>g> any tangential vector field ζ tan<br />

∇ Γζ tanRyG ∇ ¤ ζ tan<br />

<br />

<br />

<br />

2<br />

∇ dΓΩt, s, y ζ tan ¤ t i¨¨ ¤<br />

i1<br />

2 <br />

∇Γ<br />

ti<br />

dΓΩt, s, y<br />

dΓΩt, s, y ζtan ¤ t<br />

i1<br />

i¨¨ ¤<br />

dΓΩt, s, y<br />

¢<br />

dΓΩt, s, y<br />

∇Γ ¤<br />

µ1 µ2 Ryζ<br />

<br />

µ1 µ2<br />

tan<br />

dΓΩt, s, y .<br />

We will also need some in<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong>s <strong>on</strong> the geometry of the free surface F S. The properties of the<br />

problem inspire the natural parameterizati<strong>on</strong><br />

¯r F S ¯ X¯t, ¯s ¯ H¯t, ¯s ν¯t, ¯s<br />

of the free surface through the parameterizati<strong>on</strong> of the substrate ¯ X¯t, ¯s and the height ¯ H¯t, ¯s of<br />

the film. A tangential basis of the free surface tangent bundle is there<str<strong>on</strong>g>for</str<strong>on</strong>g>e given by the following<br />

vectors:<br />

t1, F S : ¯r F S<br />

¯s1<br />

t2, F S : ¯r F S<br />

¯s2<br />

We also define the unit normal to F S by<br />

Id ¡ ¯ H ¯ K ¨ µ1<br />

Id ¡ ¯ H ¯ K ¨ µ2<br />

¯ H<br />

¯s1<br />

¯ H<br />

¯s2<br />

ν F S : t1, F S t2, F S<br />

t1, F S t2, F S .<br />

ν t1<br />

ν t2<br />

¯ H<br />

ν<br />

¯s1<br />

¯ H<br />

ν.<br />

¯s2<br />

A better expressi<strong>on</strong> of the free surface normal is given through the computati<strong>on</strong><br />

by<br />

82<br />

t1, F S t2, F S t1 t2 ¡ ¯ H<br />

t2 ν ¡ ¯ H<br />

ν t1<br />

¯s1<br />

¯s2<br />

t1 t2 ¡ ¯ H<br />

t2t1 sint1, t2t<br />

¯s1<br />

1 ¡ ¯ H<br />

t2t1 sint1, t2t<br />

¯s2<br />

2<br />

¨<br />

t1 t2 ν ¡ R¯H∇ ¯<br />

ΓH ν F S<br />

<br />

ν ¡ R¯H∇ ¯<br />

ΓH .<br />

1 R¯H∇ ¯<br />

ΓH2 µi<br />

t2


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

Curvature tensor of the free surface:<br />

Let us now c<strong>on</strong>sider t1 F S, t2 ¨<br />

F S, νF S , the dual basis of t1, F S, t2, F S, νF S. this means<br />

We notice that<br />

t 1 F S ¤ t1, F S 1, t 1 F S ¤ t2, F S 0, t 1 F S ¤ ν F S 0,<br />

t 2 F S ¤ t1, F S 0, t 2 F S ¤ t2, F S 1, t 2 F S ¤ ν F S 0.<br />

The free surface curvature tensor is given by<br />

t 1 F S t 1 ¡ t 1 ¨<br />

¤ νF S νF S<br />

t 2 F S t 2 ¡ t 2 ¨<br />

¤ νF S νF S.<br />

¯K F S ¡<br />

2<br />

i1<br />

νF S<br />

t i F S<br />

and a good development of this <str<strong>on</strong>g>for</str<strong>on</strong>g>mula leads to the following lemma<br />

¯si<br />

3.3 Geometry setting<br />

Lemma 3.3.15 (Free surface mean curvature)<br />

The free surface mean curvature ¯ K F S is given in terms of n<strong>on</strong>scaled and scaled variables by<br />

and<br />

¯K F S tr ¯ KF S<br />

¯K F S tr ¯ KF S<br />

¨ <br />

1<br />

tr KR¯H ¯<br />

1 R¯H∇ ¯<br />

ΓH2 ¡ R¯H∇ ¨ ¨<br />

¯<br />

ΓH R¯H∇ ¯<br />

ΓH ¤ R¯H∇ ΓR¯H∇ ¯<br />

ΓH 3<br />

1 R¯H∇ ¯<br />

ΓH2 ¡ R¯H∇ ¨ ¨<br />

¯<br />

ΓH R¯H∇ ΓR¯H∇ ¯<br />

ΓH ¤ R¯H∇ ¯<br />

ΓH 5<br />

1 R¯H∇ ¯<br />

ΓH2 ∇Γ<br />

¨ ¨ ¨<br />

R¯H∇ ¯<br />

ΓH R¯H∇ ¯<br />

ΓH ¤ R¯H∇ ¯<br />

ΓH 3<br />

1 R¯H∇ ¯<br />

ΓH2 ¡ R¯H∇ ¨ ¨<br />

¯ 3<br />

ΓH R¯H∇ ΓR¯H∇ ¯<br />

ΓH ¤ R¯H∇ ¯<br />

ΓH 5<br />

1 R¯H∇ ¯<br />

ΓH2 ¨ 1 1<br />

<br />

L 1 ɛ2RH∇ΓH2 tr KRH ¡ ɛ3<br />

L<br />

RH∇ΓH RH∇ΓH ¤ RH∇ΓR H∇ΓH 3<br />

1 ɛ2R¯H∇ ¯<br />

ΓH2 ¡ ɛ3 RH∇ΓH R¯H∇ ΓR¯H∇ ΓH ¤ RH∇ΓH L 1 ɛ2RH∇ΓH25 ɛ3 ∇Γ RH∇ΓH RH∇ΓH ¤ RH∇ΓH L 1 ɛ2RH∇ΓH23 ¡ ɛ5 RH∇ΓH L<br />

3 RH∇ΓR H∇ΓH ¤ RH∇ΓH <br />

1 ɛ2RH∇ΓH25 .<br />

¨<br />

1<br />

tr ∇Γ 1 R¯H∇ ¯<br />

ΓH2 R¯H∇ Γ ¯ H ¨¨<br />

¨ ¨<br />

2 R ¯ ¯<br />

¯H K∇ΓH ¤ R¯H∇ ¯<br />

ΓH 3<br />

1 R¯H∇ ¯<br />

ΓH2 ¨ ¨<br />

2 R ¯ ¯<br />

¯H K∇ΓH ¤ R¯H∇ ¯<br />

ΓH 3<br />

1 R¯H∇ ¯<br />

ΓH2 ɛ 1<br />

<br />

L 1 ɛ2RH∇ΓH2 tr ∇Γ RH∇ΓH ɛ 2<br />

L<br />

ɛ 2<br />

L<br />

R 2 H K∇ ΓH ¨ ¤ R H∇ ΓH<br />

1 ɛ 2 RH∇ ΓH 23<br />

R 2 H K∇ ΓH ¨ ¤ R H∇ ΓH<br />

1 ɛ 2 RH∇ ΓH 23<br />

With these preliminaries in hand, we wish to rewrite the thin-film problem in a curvilinear coordinate<br />

system attached to the substrate.<br />

83


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

3.4 Derivati<strong>on</strong> of surfactant and thin-film equati<strong>on</strong><br />

We wish here to derive the dimensi<strong>on</strong>less equati<strong>on</strong>s describing the surfactant driven thin-film problem<br />

stated in Secti<strong>on</strong> 3.2. We will particularly use lubricati<strong>on</strong> approximati<strong>on</strong> to reduce the complexity<br />

of the thin-film equati<strong>on</strong>s. As already menti<strong>on</strong> in the introducti<strong>on</strong>, this technique (introduced in<br />

1962 by Orchard [97]) aims to replace the problem by a relatively simple problem whose l<strong>on</strong>g term<br />

behavior is similar to the behavior of the studied model. This is d<strong>on</strong>e by neglecting some relatively<br />

n<strong>on</strong>important effects in the original problem. In our case, we will take, as usual advantage of the<br />

fact that the film is thin and the ratio ɛ HL between the vertical length scale and the horiz<strong>on</strong>tal<br />

length scale is too small compared to 1 (ɛ 1). There<str<strong>on</strong>g>for</str<strong>on</strong>g>e, we will expand the scaled versi<strong>on</strong> of<br />

(3.9) and (3.10) as power series of ɛ and c<strong>on</strong>sider the truncated result at lower power of ɛ as the<br />

simplified equati<strong>on</strong>. Any term of order Oɛ 2 of such expansi<strong>on</strong> will be neglected. This procedure<br />

coincides with the c<strong>on</strong>structi<strong>on</strong> of the center manifold <str<strong>on</strong>g>for</str<strong>on</strong>g> the thin-film equati<strong>on</strong> and, c<strong>on</strong>sequently<br />

the resulting equati<strong>on</strong> is guaranteed to be stable. The case of stati<strong>on</strong>ary surface discussed in [107]<br />

using center manifold theory offers a good example in this issue. Now, let us start by defining the<br />

velocity and its scaling factors.<br />

3.4.1 Velocity and its derivatives<br />

Definiti<strong>on</strong> and Theorem 3.4.1 The velocity ¯v F of a fluid particle ¯r ¯t, ¯s1¯t, ¯s2¯t, ¯y¯t is given<br />

by<br />

¯v F d¯r<br />

d¯t ¯v Γ ¯v mF ¯v R,tan ¯v R,νν, (3.31)<br />

where<br />

is the velocity of the substrate,<br />

¯v Γ ¯ X<br />

¯t<br />

¯v R,tan Id ¡ ¯y ¯ K ¨¢ ¯s1 ¯s2<br />

µ1<br />

¯t ¯t µ2<br />

<br />

is the relative tangential velocity of the fluid in the moving frame attached to the substrate,<br />

¯v mF ¡¯y ∇ Γ ¯v Γ ¤ ν ¯ K¯vΓ,tan<br />

is the velocity due to the rotati<strong>on</strong> of the moving frame and<br />

¯v R,ν d¯y<br />

d¯t<br />

is the scalar normal relative velocity in the directi<strong>on</strong> of the substrate normal ν.<br />

Proof It is clear that<br />

¯v F d¯r<br />

d¯t ¯ X<br />

¯t<br />

¯ X<br />

¯s1<br />

¯s1<br />

¯t<br />

¯ X<br />

¯s2<br />

¯s2<br />

¯t<br />

d¯y ν<br />

ν ¯y<br />

d¯t ¯t<br />

¯v Γ Id ¡ ¯y ¯ K ¨¢ ¯s1 ¯s2<br />

µ1<br />

¯t ¯t µ2<br />

¨<br />

<br />

ν<br />

¯y<br />

¯t<br />

¯y<br />

¢<br />

ν ¯s1<br />

¯s1 ¯t<br />

It remains to differentiate the unit normal with respect to time. In fact,<br />

84<br />

¯ν<br />

¤ ν 0,<br />

¯t<br />

ν<br />

¯s2<br />

<br />

¯s2<br />

¯t<br />

(3.32)<br />

(3.33)<br />

(3.34)<br />

(3.35)<br />

d¯y<br />

ν. (3.36)<br />

d¯t


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3.4 Derivati<strong>on</strong> of surfactant and thin-film equati<strong>on</strong><br />

which means that ¯ν<br />

¯t is a tangential vector. Knowing that µi ¯ X<br />

, we have<br />

¯si<br />

ν<br />

¯t <br />

<br />

2 ¢ 2 ¢ ¢<br />

ν i ¯ <br />

X i<br />

¤ µi µ ¡ ν ¤ µ<br />

¯t ¯si ¯t<br />

i 1<br />

i 1<br />

2 ¢ 2 ¢ ¢ <br />

¯vΓ ¤ ν i<br />

ν i<br />

¡<br />

µ ¯vΓ ¤ µ .<br />

¯si<br />

¯si<br />

i 1<br />

The use of the symmetry of K leads to<br />

i 1<br />

ν<br />

¯t ¡∇ ¯v Γ ¤ ν ¡ ¯ K¯v Γ,tan. (3.37)<br />

Plugging (3.37) into (3.36) and identify the terms in (3.32), (3.33), (3.34) and (3.35) proves (3.31).<br />

It is easy to see that the expressi<strong>on</strong> of these velocity comp<strong>on</strong>ents in terms of scaled variables are<br />

¯v R,tan L<br />

T<br />

¯v Γ L<br />

T<br />

Id ¡ ɛyK<br />

X<br />

t<br />

¢<br />

s1 s2<br />

µ1<br />

t t µ2<br />

<br />

<br />

(3.38)<br />

(3.39)<br />

¯v mF ¡ɛ L<br />

T y ∇ Γ v Γ ¤ ν Kv Γ (3.40)<br />

¯v R,ν ɛ L<br />

T<br />

dy<br />

, (3.41)<br />

dt<br />

which give v L<br />

as the natural scaling of the velocity of the substrate and the relative tangential<br />

T<br />

velocity. Also, ɛv appears as the natural scaling of the scalar normal relative velocity and the<br />

velocity due to the rotati<strong>on</strong> of the moving frame. This naturally leads to the following expressi<strong>on</strong><br />

of ¯v F in terms of scaled variables<br />

¯v F v v Γ v R,tan ɛv v mF v R,νν , (3.42)<br />

where v Γ, v mF , v R,tan, v R,ν identified in (3.38), (3.39), (3.40) and (3.41) are the scaled substrate<br />

velocity, the scaled velocity due to the rotati<strong>on</strong> of the moving frame, the scaled tangential relative<br />

velocity and the scaled scalar normal relative velocity, respectively.<br />

Lemma 3.4.2 Let us c<strong>on</strong>sider the velocity field ¯v F as described above. The time derivative of ¯v F in<br />

terms of n<strong>on</strong>scaled and scaled variables is given as<br />

d¯v F<br />

d¯t <br />

¢ ¯vΓ,tan ¯v mF ¯v R,tan<br />

¯t<br />

<br />

tan<br />

∇ Γ ¯v Γ,tan ¯v mF ¯v R,tan ¯R¯y¯v R,tan<br />

¨ ¯ KR¯y¯v R,tan <br />

¡ ¯v Γ,ν ¯v R,ν ∇Γ¯v ¯<br />

Γ,ν K¯vΓ,tan<br />

¨<br />

¯vΓ,tan ¯v mF ¯v R,tan ¤ ∇Γ¯v ¯<br />

Γ,ν K¯vΓ,tan ν<br />

<br />

∇Γ¯v ¯<br />

Γ,ν K ¯vΓ ¯v mF ¯v R,tan ¨ ¤ R¯y¯v R,tan ν ¯v Γ,ν ¯v R,ν<br />

ν (3.43)<br />

¯t<br />

85


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

d¯v F<br />

d¯t v T<br />

¡ v 2<br />

¢ vΓ,tan ɛv mF v R,tan<br />

t<br />

L v Γ,ν ɛv R,ν ∇ Γv Γ,ν Kv Γ,tan KRyv R,tan<br />

v 2<br />

L v Γ,tan<br />

<br />

tan<br />

ɛv mF v R,tan ¤ ∇ Γv Γ,ν Kv Γ,tan ν<br />

v 2<br />

L ∇ Γv Γ,ν K v Γ ɛv mF v R,tan ¤ Ryv R,tan ν v T<br />

2 v<br />

L ∇Γ vΓ,tan ɛvmF vR,tan ¯Ryv R,tan<br />

where ¯v Γ,ν ¯v Γ ¤ ν and the index “ tan” refers to the tangential part of a vector.<br />

3.4.2 Scaled surfactant equati<strong>on</strong><br />

vΓ,ν ɛvR,ν ν, (3.44)<br />

t<br />

We scale the surfactant c<strong>on</strong>centrati<strong>on</strong> by the equilibrium c<strong>on</strong>centrati<strong>on</strong> Πeq ( ¯ Π ΠeqΠ), the surface<br />

tensi<strong>on</strong> by γeq (¯γ γeqγ), the surface tensi<strong>on</strong> of the equilibrium c<strong>on</strong>centrati<strong>on</strong> of surfactant. We<br />

also scale the diffusivity tensor by the c<strong>on</strong>stant diffusivity coefficient Dsurf ( ¯ D F S Dsurf D F S).<br />

Then the scaled versi<strong>on</strong> of the surfactant equati<strong>on</strong> (3.7) reads<br />

Π<br />

t<br />

∇F S ¤ ΠvF S 1<br />

∇F S ¤ DF S∇F SΠ <strong>on</strong> the free surface F S, (3.45)<br />

Pe<br />

where Pe Lv<br />

Dsurf is the Peclet number, ∇ F S L∇ F S is the dimensi<strong>on</strong>less tangential nabla operator<br />

of F S and v F S ¯v F Sv is the dimensi<strong>on</strong>less velocity of the fluid particle <strong>on</strong> F S. The scaled versi<strong>on</strong><br />

of the boundary c<strong>on</strong>diti<strong>on</strong> (3.8) at the c<strong>on</strong>tact line (Substrate-Fluid-Air) reads<br />

D F S∇ F SΠ ¤ n l F S 0; (3.46)<br />

nl F S being the free surface outer unit c<strong>on</strong>ormal. Finally, let us denote by x Πeq<br />

¯Π<br />

coverage and by E RTa ¯ Π<br />

¯γ0<br />

the surfactant<br />

the surfactant elasticity. The dimensi<strong>on</strong>less Langmuir equati<strong>on</strong> of state<br />

obtained from equati<strong>on</strong> (3.11) is then given by<br />

γ <br />

1 Eln1 ¡ xΠ<br />

. (3.47)<br />

1 Eln1 ¡ x<br />

In cases where E and x are small (<str<strong>on</strong>g>for</str<strong>on</strong>g> example, <str<strong>on</strong>g>for</str<strong>on</strong>g> a polymer 0.1 E 0.5 and x is small <str<strong>on</strong>g>for</str<strong>on</strong>g> dilute<br />

surfactant coverage ), (3.47) can be approximated by<br />

γ 1 Ex1 ¡ Π. (3.48)<br />

This equati<strong>on</strong> has been used by early researchers [98, 114]. However, as surfactant accumulates<br />

at the tip of a drop <str<strong>on</strong>g>for</str<strong>on</strong>g> example, Π gets large at the tip and this approximati<strong>on</strong> fails. The linear<br />

approximati<strong>on</strong> should then be used <strong>on</strong>ly in reas<strong>on</strong>able cases. Although it is very easy to cope with<br />

the linear equati<strong>on</strong> and the essential physics of the surfactant is captured in the linear approximati<strong>on</strong>,<br />

we will use the n<strong>on</strong>linear setup to avoid the menti<strong>on</strong>ed above problem.<br />

3.4.3 Model reducti<strong>on</strong> <str<strong>on</strong>g>for</str<strong>on</strong>g> the thin-film equati<strong>on</strong> using lubricati<strong>on</strong><br />

approximati<strong>on</strong><br />

Let us first define the n<strong>on</strong>scaled mean curvature ¯ K tr ¯ K, the scaled mean curvature K tr K,<br />

the Reynolds number Re ρv Lµ and the B<strong>on</strong>d number B 0 GH 2 µv , where G is the scale<br />

of the gravity ¯g (¯g Gg). We also scale the pressure ¯ P by P µv LH 2 ( ¯ P PP ) and the sum<br />

86


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3.4 Derivati<strong>on</strong> of surfactant and thin-film equati<strong>on</strong><br />

of body <str<strong>on</strong>g>for</str<strong>on</strong>g>ces ¯ f by G ( ¯ f Gf). Body <str<strong>on</strong>g>for</str<strong>on</strong>g>ces include <str<strong>on</strong>g>for</str<strong>on</strong>g> example gravity. Depending <strong>on</strong> the body<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>ce c<strong>on</strong>sidered, an appropriate scaling factor should be chosen. If we are to c<strong>on</strong>sider van der Waals<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>ces, they scale with P. We choose G as we would like to c<strong>on</strong>centrate <strong>on</strong> gravity. So far, we haven’t<br />

explicitly specified how to choose the scaling factors. This plays an important role in the lubricati<strong>on</strong><br />

approximati<strong>on</strong> process since we need a clear way to quantitatively compare effects that influence<br />

the model. In the present model <str<strong>on</strong>g>for</str<strong>on</strong>g> surfactant driven thin-film modeling <strong>on</strong> evolving surfaces, <str<strong>on</strong>g>for</str<strong>on</strong>g><br />

example, we have two independent sources of velocity that act at the same time: the substrate<br />

velocity ¯v Γ, and the relative velocity of the fluid ¯v R. Since the thin-film evoluti<strong>on</strong> is known to be a<br />

slow process, we might then face the situati<strong>on</strong> where ¯v R¯v Γ is very small (¯v R¯v Γ 1). We<br />

would need here to incorporate <strong>on</strong>ly the dominant effects coming from each source; Equati<strong>on</strong> (3.44)<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g> example shows how these velocities appear in the accelerati<strong>on</strong> of a fluid particle. Moreover, taking<br />

the velocity scale <strong>on</strong>ly based <strong>on</strong> <strong>on</strong>e of these velocities makes it difficult to choose an appropriate<br />

time step <str<strong>on</strong>g>for</str<strong>on</strong>g> numerical computati<strong>on</strong>, so that the interplay of the substrate de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> and the fluid<br />

flow can be well resolved. However, depending <strong>on</strong> the model studied and the focus, a compromise<br />

should be found. In the present case, we assume the velocity scale v to be based <strong>on</strong> the relative<br />

evoluti<strong>on</strong> of the thin-film while the time and space derivatives of the scaled substrate velocity vΓ are<br />

assumed to be of order O1. This simply means that the norm of substrate accelerati<strong>on</strong> vΓt and the rate of change in the substrate de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> are proporti<strong>on</strong>al to the rate of change in the<br />

tangential fluid movement. Thus this setup <str<strong>on</strong>g>for</str<strong>on</strong>g>bides high c<strong>on</strong>stant rotati<strong>on</strong> velocity while allowing<br />

high c<strong>on</strong>stant translati<strong>on</strong> velocity. We will then finally assume ɛ2RevΓt Oɛ2 as well as<br />

ɛ2RevR,tant Oɛ2, ɛ3RevmF t Oɛ3, ɛ2K2 Oɛ2 and ɛ2B0 Oɛ2. Let us now<br />

multiply each term of equati<strong>on</strong> (3.10) by LP.<br />

L<br />

P ρd¯v F<br />

d¯t ɛ2 Re<br />

¢<br />

vΓ,tan ɛvmF t<br />

v R,tan<br />

<br />

tan<br />

ɛ 2 Re∇ Γ v Γ,tan<br />

ɛv mF v R,tan ¯Ryv R,tan<br />

¡ ɛ 2 Re vΓ,ν ɛvR,ν ∇ΓvΓ,ν KvΓ,tan KRyv R,tan<br />

ɛ 2 Re vΓ,tan ɛvmF vR,tan ¤ ∇ΓvΓ,ν KvΓ,tan ν ɛ 2 vΓ,ν ɛvR,ν Re<br />

ν<br />

t<br />

ɛ 2 Re ∇ΓvΓ,ν K vΓ ɛvmF vR,tan ¤ RyvR,tan ν, (3.49)<br />

L<br />

P µ∇ ¤ ¨ 2<br />

∇¯v F ɛ<br />

L<br />

P ∇ ¯ P Ry∇ΓP 1 P<br />

ν, (3.50)<br />

ɛ y<br />

¡ L<br />

P ¯ f ¡B 0f tan ¡ B 0f νν f ν f ¤ ν, f tan f ¡ f νν, (3.51)<br />

¡ ∇Γ ∇ Γ v Γ,tan ɛv mF v R,tan Ry Ry G ¡ K R 2 y ∇ Γ v Γ,ν ɛv R,ν ©<br />

ɛ 2 ν tr ∇Γ vΓ,tan ɛvmF vR,tan KR 2 y tr ∇Γ Ry∇Γ vΓ,ν ɛvR,ν Ry ¨<br />

¡ ɛ v Γ,tan ɛv mF v R,tan<br />

y<br />

<br />

vΓ,ν ɛvR,ν tr RyK ¡ ɛtr RyK<br />

ν<br />

y<br />

¡ ɛ 2 R 2 yK 2 v Γ,tan ɛv mF v R,tan ¨ ¡ ɛ 2 ∇ Γ v Γ,ν ɛv R,ν KRy RyG<br />

ɛ 2 ν tr ∇Γ RyK vΓ,tan ɛvmF vR,tan Ry ¡ ɛ 2 ν vΓ,ν ɛvR,ν tr K 2 R 2 y<br />

¢ 2 vΓ,tan ɛvmF vR,tan y2 2vΓ,ν ɛvR,ν y2 <br />

ν . (3.52)<br />

Next, we introduce these terms in the result of the multiplicati<strong>on</strong> of equati<strong>on</strong> (3.10) by LP. Noticing<br />

that Ry Id ɛyK Oɛ 2 , the resulting equati<strong>on</strong> reads<br />

¡ɛK v R,tan<br />

y<br />

2 v R,tan<br />

y 2 ɛ 2 v R,ν<br />

y2 ν ∇ΓP ɛyK∇ΓP 1<br />

ɛ<br />

P<br />

y ν ¡ B 0f tan ¡ B 0f νν Oɛ 2 .<br />

¨<br />

87


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

The projecti<strong>on</strong> of this equati<strong>on</strong> <strong>on</strong> the normal directi<strong>on</strong> as well as <strong>on</strong> the tangential plane leads to a<br />

system of partial differential equati<strong>on</strong>s (PDEs). An approximati<strong>on</strong> of these PDEs at order ɛ 2 reads<br />

<br />

<br />

<br />

P<br />

y<br />

¡ɛK v R,tan<br />

y<br />

= ɛB 0f ν (3.53)<br />

2 v R,tan<br />

y 2 = ∇ ΓP ɛyK∇ ΓP ¡ B 0f tan (3.54)<br />

The system of PDEs (3.53) – (3.54) is a reduced system representing the momentum equati<strong>on</strong>.<br />

Taking v ɛγeqµ as menti<strong>on</strong>ed above and scaling the slip tensor ¯ β by µH ( ¯ β µHβ), we<br />

approximate the boundary c<strong>on</strong>diti<strong>on</strong>s associated to the Navier-Stokes equati<strong>on</strong>s up to Oɛ 2 by<br />

No penetrati<strong>on</strong> <strong>on</strong> Γ : vR,ν 0 (3.55)<br />

Fricti<strong>on</strong> slip c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> Γ :<br />

vR,tan y<br />

ɛKvR,tan βvR,tan (3.56)<br />

Share stress c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> F S :<br />

vR,tan y<br />

ɛKvR,tan Id ɛHK ∇Γγ (3.57)<br />

Laplace-Young’s law <strong>on</strong> F S : P P0 ¡ C γKF S, (3.58)<br />

where C ɛ 2 γeqµv is the inverse capillary number which represents the ratio between surface<br />

tensi<strong>on</strong> and viscous <str<strong>on</strong>g>for</str<strong>on</strong>g>ces. We differentiate C to the standard inverse capillary number C <br />

ɛ 3 γeqµv . K F S L ¯ K F S is the scaled free surface mean curvature. Its Oɛ 2 approximati<strong>on</strong> deduced<br />

from Lemma 3.3.15 and which is effectively incorporated in this model reads<br />

K F S K ɛ HK2 ∆ ΓH K2 tr K 2 . (3.59)<br />

It can be noticed that <str<strong>on</strong>g>for</str<strong>on</strong>g> K Oɛ (almost flat surface), the capillary number C is recovered in<br />

(3.58). Also, <str<strong>on</strong>g>for</str<strong>on</strong>g> K c<strong>on</strong>stant Oɛ (almost cylinder or spherical surface) all the surface tensi<strong>on</strong><br />

term in the pressure gradient in (3.54) become OɛC .<br />

Remark 3.4.3 The surface tensor β describes the properties of the substrate. If we set β 0 Id,<br />

there is no fricti<strong>on</strong> at the c<strong>on</strong>tact of the substrate and we are in the case of perfect slip. If the<br />

eigenvalues of β tend to infinity, then the fricti<strong>on</strong> is too high <strong>on</strong> the substrate interface and there<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

prevents any movement of fluid particles at the surface c<strong>on</strong>tact; this is the well known “no-slip<br />

c<strong>on</strong>diti<strong>on</strong>” comm<strong>on</strong>ly applied in fluid mechanics. Un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunately, in the c<strong>on</strong>text of thin-film flow,<br />

this c<strong>on</strong>diti<strong>on</strong> gives rise to n<strong>on</strong>integrable singularities at the triple line juncti<strong>on</strong> (Substrate-Fluid-<br />

Air) [68]. This problem is overcome by assuming either a precursor layer or the slip c<strong>on</strong>diti<strong>on</strong><br />

we have already introduced. In this c<strong>on</strong>text of lubricati<strong>on</strong> approximati<strong>on</strong>, the no-slip c<strong>on</strong>diti<strong>on</strong> will<br />

be obtain <strong>on</strong>ce the smallest eigenvalue of β is greater than 1ɛ 2 ; which is equivalent to say that<br />

ξ ¤ βξ 1ɛ 2 ξ 2 <str<strong>on</strong>g>for</str<strong>on</strong>g> all tangential vector ξ. To avoid influences of the boundary c<strong>on</strong>diti<strong>on</strong>s which<br />

will take us away from the real world applicati<strong>on</strong>, we must remain near the no-slip c<strong>on</strong>diti<strong>on</strong>. A<br />

good range is to choose β such that its eigenvalues lie between 1 ɛ and 1ɛ 2 which is equivalent to<br />

say that 1 ɛξ 2 ξ ¤ βξ 1ɛ 2 ξ 2 <str<strong>on</strong>g>for</str<strong>on</strong>g> all tangential vector ξ. The whole model is d<strong>on</strong>e by<br />

using the minimal assumpti<strong>on</strong> 1 ɛξ 2 ξ ¤ βξ .<br />

Let us now look <str<strong>on</strong>g>for</str<strong>on</strong>g> the expressi<strong>on</strong> of v R,tan in terms of ɛ. First integrating (3.53) from the high<br />

positi<strong>on</strong> y to H and using the boundary c<strong>on</strong>diti<strong>on</strong> (3.58) gives<br />

P y P 0 ¡ C γK F S ɛB 0f νy ¡ H. (3.60)<br />

Sec<strong>on</strong>dly, we should notice the system of ordinary differential equati<strong>on</strong>s (ODE) (3.54) with the<br />

boundary c<strong>on</strong>diti<strong>on</strong> (3.56) and (3.57) can be solved using power series. We will there<str<strong>on</strong>g>for</str<strong>on</strong>g>e set<br />

88<br />

v R,tan v 0 yv1 y 2 v2 y 3 v3 y 4 v4 y 5 v5 ¤ ¤ ¤ ,


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3.4 Derivati<strong>on</strong> of surfactant and thin-film equati<strong>on</strong><br />

where the coefficients vi i 0, 1, ¤ ¤ ¤ to be determined from the equati<strong>on</strong>s are vectors which do not<br />

depend <strong>on</strong> y. The Oɛ2 approximati<strong>on</strong> of vR,tan reads<br />

¢<br />

1<br />

vR,tan yH ¡<br />

2 ɛyH2K ¡ 1 ¨ 2 2 1<br />

y ¡ ɛy HK ¡<br />

2<br />

6 ɛy3 <br />

1<br />

K Id ¡<br />

6 ɛy3 <br />

¨ <br />

K ∇Γ C γKF S<br />

¢<br />

1<br />

H ¡<br />

2 ɛH2 <br />

¨<br />

¢<br />

¡1 ¡1 1<br />

K Id ¡ ɛyHK β ∇Γ C γKF S Hβ yH ¡<br />

2 y2<br />

<br />

Id ɛB0fν∇ ΓH<br />

¢<br />

¡1<br />

1<br />

1 ¡ ɛHK Id ¡ ɛyK β y ¡ ɛyHK<br />

2 ɛy2 <br />

K Id ∇Γγ<br />

<br />

1<br />

2 H2β ¡1<br />

¢<br />

1<br />

2 yH2 ¡ 1<br />

2 y2H 1<br />

6 y3<br />

<br />

Id ɛB0∇Γfν ¢<br />

1<br />

yH ¡<br />

2 ɛyH2K ¡ 1 ¨ 2 2 1<br />

y ¡ ɛy HK ¡<br />

2<br />

6 ɛy3 <br />

1<br />

K Id ¡<br />

2 ɛyH2 <br />

K B0ftan <br />

B0ftan. (3.61)<br />

¢ Hβ ¡1 ¡ 1<br />

2 ɛH2 β ¡1 K ¡ 1<br />

2 ɛH2 Kβ ¡1 ¡ ɛyHKβ ¡1<br />

Finally, it remains to c<strong>on</strong>sider the mass c<strong>on</strong>servati<strong>on</strong> equati<strong>on</strong> (3.9). A direct use of Theorem 3.3.11<br />

gives the following dimensi<strong>on</strong>less counterpart<br />

∇ Γv Γ,tan v R,tan ɛv mF RyG ¡ v Γ,ν ɛv R,νKRyG v R,ν<br />

y<br />

0. (3.62)<br />

Let us multiply this equati<strong>on</strong> by the rate of change of the surface element of the parallel surface to<br />

Γ al<strong>on</strong>g the normal dSΓ,var t1 t2 ¤ ν µ1 µ2 ¤ ν ¡1 1 ¡ ɛyK 1<br />

2ɛ2y 2K2 ¡ K2. Observing<br />

that K2 1 ¡ KK 2K2 ¡ K2 Id ¡ ν ν 0 <strong>on</strong>e obtains<br />

¡ © ¡<br />

dSΓ,var ∇ΓvΓ,tanG ¡ KvΓ,ν ɛy ∇ΓvΓ,tanKG ¡ K2vΓ,ν ¡ ɛ 2 y 2 ¡<br />

K ∇ΓvΓ,tanK 2 ©<br />

G ¡ K2vΓ,ν ¡ ∇Γ ∇ΓvΓ,ν ¡ © ¨¨ 2 2<br />

dSΓ,var ∇ΓvR,tanRyG ¡ɛK ɛ y K ¡ K2 vR,ν dSΓ,var © ¡<br />

2 2<br />

ɛ y ∇ΓvΓ,tanK 2 ©<br />

G ¡ K3vΓ,ν Kv Γ,tan ɛy Id ¡ ɛ 2 y 2 K Id ¡ K G<br />

vR,ν , 0.<br />

y<br />

where K3 is the trace of K 3 . The integrati<strong>on</strong> of this equati<strong>on</strong> al<strong>on</strong>g the normal ν of the substrate<br />

using the no-penetrati<strong>on</strong> boundary c<strong>on</strong>diti<strong>on</strong> (3.55) (vR,ν 0) <strong>on</strong> Γ gives<br />

© 1<br />

© 1<br />

η<br />

¡ 1<br />

¡<br />

∇ΓvΓ,tanG ¡ KvΓ,ν 2 ɛH2 ¡ ∇ΓvΓ,tanKG ¡ K2vΓ,ν 3 ɛ2H 3 ¡ ©<br />

K ∇ΓvΓ,tanKG ¡ K2vΓ,ν ¡ ∇Γ ∇ΓvΓ,ν H<br />

0<br />

dS Γ,var<br />

Kv Γ,tan<br />

1<br />

2 ɛH2 Id ¡ 1<br />

3 ɛ2 H 3 K Id ¡ K<br />

3 ɛ2 H 3 ¡ ∇ Γv Γ,tanK 2 G ¡ K3v Γ,ν<br />

©<br />

G<br />

¡ ©<br />

∇ΓvR,tanRyG dy dSΓ,varvR,ν 0, (3.63)<br />

H<br />

where the index H refers to the point where the given expressi<strong>on</strong> is evaluated and η H 0 dSΓ,vardy <br />

H¡ 1<br />

2ɛH2K 1<br />

6ɛ2 H 3 ¨ 2 K ¡ K2 is the fluid density above the point P t, s1t, s2t <strong>on</strong> Γt. C<strong>on</strong>sidering<br />

a fluid particle M Xt, s1t, s2t, H t, Xt, s1t, s2t in the substrate coordinate system, the<br />

kinematic c<strong>on</strong>diti<strong>on</strong> reads<br />

vR,ν H dH<br />

dt ΓH t<br />

2<br />

H<br />

si<br />

i1<br />

si<br />

t<br />

H<br />

t R H∇ ΓH ¤ v R,tan, (3.64)<br />

where ΓH :<br />

t<br />

H<br />

t ∇H ¤ vΓ. This notati<strong>on</strong> will <strong>on</strong>ly be used when the functi<strong>on</strong>s explicitly depends<br />

<strong>on</strong> Xt, s1, s2 (i.e. H t, Xt, s1, s2) to differentiate between the usual partial time derivative and<br />

89


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

the material derivative taking by fixing the surface parametric coordinates s1, s2. Now, combining<br />

(3.64) and (3.30) gives<br />

<br />

dSΓ,varvR,ν dS H Γ,var<br />

ΓH ¡<br />

H<br />

t<br />

∇ Γ ¤<br />

H<br />

dSΓ,varRy vR,tan dy<br />

0<br />

∇Γ ¤ dSΓ,varRy vR,tan dy. (3.65)<br />

0<br />

Let us introduce the following useful lemma which gives the partial derivative of the curvature with<br />

respect to time. Its proof, which we omit here, follows the same path as the computati<strong>on</strong> of the<br />

partial derivative of the normal with respect to time.<br />

Lemma 3.4.4 Let K Kt, s be the n<strong>on</strong>dimensi<strong>on</strong>al curvature tensor of Γt, K tr K and<br />

K2 tr K 2 tr KK; then<br />

K<br />

t ∇ Γ ∇ Γv Γ,ν Kv Γ,tan ¡<br />

2<br />

i1<br />

K<br />

¢ uΓ<br />

si<br />

µ i<br />

K ∇ΓvΓ,ν KvΓ,tan ν ¡ ν K ∇ΓvΓ,ν KvΓ,tan K<br />

t ∇Γ ¤ ∇ΓvΓ,ν KvΓ,tan ¡ tr K∇ΓvΓ K2 t 2K∇ K2<br />

t<br />

Γ ¤ ∇ΓvΓ,ν KvΓ,tan ¡ 2Ktr K∇ΓvΓ 2tr K ∇Γ ∇ΓvΓ,ν KvΓ,tan ¡ 2tr K 2 ∇ΓvΓ ¨ .<br />

This lemma leads eventually to the following <str<strong>on</strong>g>for</str<strong>on</strong>g>mula<br />

dS Γ,var H<br />

and (3.65) becomes now<br />

ΓH t Γη t<br />

¡ 1<br />

dSΓ,varvR,ν H Γη t<br />

1<br />

2 ɛH2 ∇ Γ ¤ ∇ Γv Γ,ν<br />

3 ɛ2 H 3 K∇ Γ ¤ ∇ Γv Γ,ν<br />

Kv Γ,tan ¡ 1<br />

2 ɛH2 tr K∇ Γv Γ<br />

KvΓ,tan ¡ tr K ∇Γ ∇ΓvΓ,ν KvΓ,tan ¡ K tr K∇ΓvΓ tr K 2 ∇ΓvΓ ¨<br />

H<br />

∇Γ ¤ dSΓ,varRy vR,tan dy ¡ ∇Γ ¤ dSΓ,varRy vR,tan dy<br />

0<br />

0<br />

1<br />

2 ɛH2∇Γ ¤ ∇ΓvΓ,ν KvΓ,tan ¡ 1<br />

2 ɛH2tr K∇ΓvΓ ¡ 1<br />

3 ɛ2H 3 K∇Γ ¤ ∇ΓvΓ,ν KvΓ,tan ¡ tr K ∇Γ ∇ΓvΓ,ν KvΓ,tan H<br />

¡ K tr K∇ Γv Γ tr K 2 ∇ Γv Γ ¨ .<br />

A proper development of this last equati<strong>on</strong> using Remark 3.3.14 gives<br />

dS Γ,varv R,ν H Γ η<br />

t ∇ Γ ¤<br />

90<br />

H<br />

0<br />

∇ Γ ∇ Γv Γ,ν Kv Γ,tan<br />

¡ 1<br />

2 ɛH2 tr K∇ Γv Γ<br />

Id ¡ ɛy K Id ¡ K v R,tan dy ¡<br />

H<br />

dSΓ,var Ry∇Γv R,tan Gdy<br />

<br />

G<br />

0<br />

¢<br />

1<br />

2 ɛH2 Id ¡ 1<br />

3 ɛ2H 3 K Id ¡ K<br />

1<br />

3 ɛ2H 3 Ktr K∇ΓvΓ ¡ 1<br />

3 ɛ2H 3 tr K 2 ∇ΓvΓ ¨


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

and, finally, the combinati<strong>on</strong> of this equati<strong>on</strong> with (3.63) gives<br />

Γ η<br />

t η∇ Γ ¤ v Γ<br />

∇ Γ ¤<br />

H<br />

0<br />

3.4 Derivati<strong>on</strong> of surfactant and thin-film equati<strong>on</strong><br />

Id ¡ ɛy K Id ¡ K v R,tan dy 0,<br />

where we recall that ∇ Γ ¤ v Γ ∇ Γv Γ,tanG ¡ Kv Γ,ν. The above equati<strong>on</strong> can be summarized as<br />

where the flux F is given by<br />

F <br />

<br />

H<br />

Γ η<br />

t η∇ Γ ¤ v Γ ∇ Γ ¤ F 0, (3.66)<br />

vR,tan ¡ ɛyKvR,tan ɛyKvR,tan dy<br />

0 <br />

1<br />

3 H3 Id ¡ 1<br />

3 ɛH4<br />

¢<br />

1<br />

K Id ¡<br />

2 K<br />

<br />

¨<br />

<br />

2 3 ¡1<br />

<br />

H ¡ ɛH K β ∇Γ C γKF S<br />

¢<br />

3<br />

H Id ¡<br />

2 ɛH2 ¢<br />

¡1 1<br />

K Id β<br />

2 H2 ¡ 2<br />

3 ɛH3 <br />

1<br />

K Id<br />

3 ɛH3 <br />

K ∇Γγ<br />

<br />

B0ftan 1<br />

3 H3 Id ¡ 1<br />

3 ɛH4 K Id ¡ 1<br />

24 ɛH4 K<br />

¢ H 2 ¡ ɛH 3 Kβ ¡1 ¡ 1<br />

2 ɛH3 β ¡1 K<br />

¨<br />

<br />

2 ¡1 1<br />

H β<br />

3 H3 <br />

Id ɛB0fν∇ ΓH<br />

<br />

1<br />

2 H3β ¡1 1<br />

8 H4 <br />

Id ɛB0∇Γfν <br />

B0ftan. (3.67)<br />

In the special case where gravity ¯g Gg Ggtan gνν (gν g ¤ ν) is the <strong>on</strong>ly body <str<strong>on</strong>g>for</str<strong>on</strong>g>ce, we can<br />

notice that ∇Γgν ¡Kgtan and (3.67) becomes<br />

<br />

1<br />

F <br />

3 H3 Id ¡ 1<br />

3 ɛH4<br />

¢<br />

1<br />

K Id ¡<br />

2 K<br />

<br />

¨<br />

<br />

¨<br />

<br />

2 3 ¡1<br />

2 ¡1 1<br />

H ¡ ɛH K β ∇Γ C γKF S H β<br />

3 H3 <br />

Id ɛB0gν∇ ΓH<br />

¢<br />

3<br />

H Id ¡<br />

2 ɛH2 ¢<br />

¡1 1<br />

K Id β<br />

2 H2 ¡ 2<br />

3 ɛH3 <br />

1<br />

K Id<br />

3 ɛH3 <br />

K ∇Γγ<br />

¢<br />

1 3 4 1<br />

H Id ¡ ɛH K Id<br />

3<br />

2 K<br />

<br />

B0gtan H 2 ¡ ɛH 3 Kβ ¡1 ¡ ɛH 3 β ¡1 K ¨ B0gtan. (3.68)<br />

In case of c<strong>on</strong>stant surface tensi<strong>on</strong> γ, no-slip c<strong>on</strong>diti<strong>on</strong> and static surface, the terms in (3.66) and<br />

(3.68) involving ∇ Γγ, β ¡1 , and v Γ cancel out and we recover exactly the equati<strong>on</strong> presented by Roy,<br />

Roberts and Simps<strong>on</strong> in [107]. Let us now c<strong>on</strong>sider the dual effect of gravity and van der Waals<br />

<str<strong>on</strong>g>for</str<strong>on</strong>g>ces. Van der Waals <str<strong>on</strong>g>for</str<strong>on</strong>g>ces are intermolecular <str<strong>on</strong>g>for</str<strong>on</strong>g>ces that come into play when the film’s thickness<br />

become very small (order of several hundreds of Ångströms 100¡1000). These <str<strong>on</strong>g>for</str<strong>on</strong>g>ces are expressed<br />

as potential <str<strong>on</strong>g>for</str<strong>on</strong>g>ces often called disjoining pressure. There are many expressi<strong>on</strong>s <str<strong>on</strong>g>for</str<strong>on</strong>g> this potential in<br />

the literature. We refer to [117] <str<strong>on</strong>g>for</str<strong>on</strong>g> the derivati<strong>on</strong> of a more general <str<strong>on</strong>g>for</str<strong>on</strong>g>mula which reads<br />

¯φ <br />

4<br />

i1<br />

Āi ¯ H ¡i ,<br />

where Ai are coefficients determined by specific intermolecular <str<strong>on</strong>g>for</str<strong>on</strong>g>ces brought into c<strong>on</strong>siderati<strong>on</strong>. In<br />

our model, we will c<strong>on</strong>sider the potential adopted by Ida and Miksis in [72]<br />

¯φ Ā3 ¯ H ¡3 , (3.69)<br />

where Ā3 Ā6πρ. Ā is a physical c<strong>on</strong>stant called Hamaker c<strong>on</strong>stant. When Ā 0, the two<br />

interfaces (Substrate and Free Surface) attract each other and when Ā 0 they repel each other.<br />

To include this effect in the present c<strong>on</strong>text, we can either c<strong>on</strong>sider an extra body <str<strong>on</strong>g>for</str<strong>on</strong>g>ce ¯ fV ∇ ¯ φ<br />

which can be taken into account in the sum of body <str<strong>on</strong>g>for</str<strong>on</strong>g>ces ¯ f, or replace the pressure ¯ P in (3.10) by<br />

¯P ¯ φ. In either case ¯ φ which is originally defined <strong>on</strong> the substrate is extended as c<strong>on</strong>stant al<strong>on</strong>g the<br />

91


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

3 Modeling of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

normal ν. Also, the scaling procedure should be d<strong>on</strong>e carefully. Here we have scaled ¯ f by G while<br />

¯φ scales like pressure ( ¯ φ Pφ), there<str<strong>on</strong>g>for</str<strong>on</strong>g>e the best way to incorporate the effect is to replace ¯ P in<br />

(3.10) by ¯ P ¯ φ. This results in replacing the term CγK F S in the flux F in (3.67) by (¡φ CγK F S),<br />

where φ AH ¡3 and A ɛĀ6πρµv H2 is the dimensi<strong>on</strong>less Hamaker c<strong>on</strong>stant. The resulting<br />

flux is there<str<strong>on</strong>g>for</str<strong>on</strong>g>e<br />

<br />

1<br />

F <br />

3 H3 Id ¡ 1<br />

3 ɛH4<br />

¢<br />

1<br />

K Id ¡<br />

2 K<br />

<br />

¨<br />

<br />

¨<br />

2 3 ¡1<br />

<br />

H ¡ ɛH K β ∇Γ ¡φ C γKF S<br />

<br />

2 ¡1 1<br />

H β<br />

3 H3 ¢<br />

3<br />

Id ɛB0gν∇ ΓH H Id ¡<br />

2 ɛH2 ¢<br />

¡1 1<br />

K Id β<br />

2 H2 ¡ 2<br />

3 ɛH3 <br />

1<br />

K Id<br />

3 ɛH3 <br />

K ∇Γγ<br />

¢<br />

1 3 4 1<br />

H Id ¡ ɛH K Id<br />

3<br />

2 K<br />

<br />

B0gtan H 2 ¡ ɛH 3 Kβ ¡1 ¡ ɛH 3 β ¡1 K ¨ B0gtan (3.70)<br />

and, in this case, the relative velocity vR,tan becomes<br />

¢<br />

1<br />

vR,tan yH ¡<br />

2 ɛyH2K ¡ 1 ¨ 2 2 1<br />

y ¡ ɛy HK ¡<br />

2<br />

6 ɛy3 <br />

1<br />

K Id ¡<br />

6 ɛy3 <br />

¨ <br />

K ∇Γ ¡φ C γKF S<br />

¢<br />

1<br />

H ¡<br />

2 ɛH2 <br />

¨<br />

¢<br />

¡1 ¡1 1<br />

K Id ¡ ɛyHK β ∇Γ ¡φ C γKF S Hβ yH ¡<br />

2 y2<br />

<br />

Id ɛB0gν∇ ΓH<br />

¢<br />

¡1<br />

1<br />

1 ¡ ɛHK Id ¡ ɛyK β y ¡ ɛyHK<br />

2 ɛy2 <br />

K Id ∇Γγ<br />

¢<br />

1<br />

yH ¡<br />

2 y2 ¡ 1<br />

2 ɛyH2K 1<br />

2 ɛy2HK ¡ 1<br />

6 ɛy3 ¢<br />

2 1<br />

K Id ¡ ɛyH ¡<br />

2 ɛy2H 1<br />

6 ɛy3<br />

<br />

K B0gtan <br />

B0gtan. (3.71)<br />

92<br />

¢ Hβ ¡1 ¡ 1<br />

2 ɛH2 Kβ ¡1 ¡ ɛH 2 β ¡1 K ¡ ɛyHKβ ¡1


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

4 Simulati<strong>on</strong> of surfactant driven thin-film<br />

flow <strong>on</strong> moving surfaces<br />

4.1 Introducti<strong>on</strong><br />

Fourth order partial differential equati<strong>on</strong>s (PDEs) appear in numerous fields of mathematics and<br />

physics am<strong>on</strong>g those are image processing, surface diffusi<strong>on</strong>, computer graphic, chemical coating, cell<br />

membrane de<str<strong>on</strong>g>for</str<strong>on</strong>g>mati<strong>on</strong> and fluid dynamics [23, 35, 52, 53, 93, 98, 107]. Un<str<strong>on</strong>g>for</str<strong>on</strong>g>tunately, compared to<br />

sec<strong>on</strong>d order equati<strong>on</strong>s, the literature <strong>on</strong> the numeric of fourth order PDEs is almost inexistent. One<br />

will nevertheless notice a burge<strong>on</strong>ing interest in the simulati<strong>on</strong> of these equati<strong>on</strong>s in the last decade.<br />

In [5, 6, 9, 62], the authors analyse numerical methods <str<strong>on</strong>g>for</str<strong>on</strong>g> both thin film equati<strong>on</strong>s and a coupled<br />

surfactant driven thin film flow system of equati<strong>on</strong>s <strong>on</strong> planar surfaces. In [39, 57] the level set<br />

approach <str<strong>on</strong>g>for</str<strong>on</strong>g> fourth order PDEs <strong>on</strong> curved surfaces is discussed. In this class of methods, the original<br />

PDE stated <strong>on</strong> a curved surface modeled by a level set is first extended as a degenerated equati<strong>on</strong> in<br />

the whole space, then the new equati<strong>on</strong> is solved in a narrow band near the original surface and the<br />

soluti<strong>on</strong> projected <strong>on</strong> the surface. This method will eventually require a new boundary c<strong>on</strong>diti<strong>on</strong><br />

<strong>on</strong> the narrow band boundary. The boundary c<strong>on</strong>diti<strong>on</strong> must be well chosen, otherwise the final<br />

soluti<strong>on</strong> will be severely affected. Most often, the obtained equati<strong>on</strong> is solved using finite element<br />

method or finite difference method which of course have very good properties <strong>on</strong> structured grid<br />

[39, 57].<br />

Recently, the finite volume method has been discussed in [34] <str<strong>on</strong>g>for</str<strong>on</strong>g> the direct simulati<strong>on</strong> of a linear<br />

fourth order PDE <strong>on</strong> curved surfaces. As already menti<strong>on</strong>ed in Chapter II, the finite volume method<br />

remains unexplored <str<strong>on</strong>g>for</str<strong>on</strong>g> direct simulati<strong>on</strong>s of PDEs <strong>on</strong> curved surfaces in general, although it has<br />

proven to be advantageous in number of problems such as str<strong>on</strong>g advecti<strong>on</strong> dominant problems,<br />

simulati<strong>on</strong> <strong>on</strong> general anisotropic and unstructured meshes and problem requiring c<strong>on</strong>servati<strong>on</strong> of<br />

mass. Furthermore, since curved surface meshes are unstructured by nature, the finite volume<br />

method appears to be an interesting tool <str<strong>on</strong>g>for</str<strong>on</strong>g> simulati<strong>on</strong> of PDEs <strong>on</strong> surfaces. In this chapter, we<br />

extend the finite volume methodology developed in Chapter II to the computati<strong>on</strong> of the coupled<br />

surfactant driven thin film flow system of equati<strong>on</strong>s <strong>on</strong> a moving surface. In fact, <strong>on</strong> an evolving<br />

substrate, the flow of a thin film <strong>on</strong> top of which a surfactant c<strong>on</strong>centrati<strong>on</strong> spreads, is c<strong>on</strong>sidered.<br />

Different from [5, 6, 9], where the authors project the surfactant equati<strong>on</strong> <strong>on</strong>to the substrate (planar<br />

in their case) using lubricati<strong>on</strong> approximati<strong>on</strong> and discretize the coupled system of equati<strong>on</strong>s stated<br />

<strong>on</strong> the same domain, we c<strong>on</strong>sider a surfactant equati<strong>on</strong> defined <strong>on</strong> the free surface. In the c<strong>on</strong>text of<br />

thin films, the height of the film parameterizes the free surface <strong>on</strong>to the substrate, thus we trans<str<strong>on</strong>g>for</str<strong>on</strong>g>m<br />

the diffusi<strong>on</strong> equati<strong>on</strong> of the surfactant c<strong>on</strong>centrati<strong>on</strong> into a c<strong>on</strong>vecti<strong>on</strong> diffusi<strong>on</strong> equati<strong>on</strong> <strong>on</strong>to a<br />

virtual free surface which moves <strong>on</strong>ly in the directi<strong>on</strong> of the substrate’s normal. In the new setup,<br />

the surfactant c<strong>on</strong>centrati<strong>on</strong> is advected with the fluid particle velocity tangent to the free surface.<br />

We then combine the methodologies proposed in [62] and [57] with our finite volume methodology<br />

described in Chapter II to discretize the model thin film problem obtained in Chapter III. Next, we<br />

make use of the above menti<strong>on</strong>ed parameterizati<strong>on</strong> of the free surface to project the finite volume<br />

setup <strong>on</strong>to the free surface interface <str<strong>on</strong>g>for</str<strong>on</strong>g> the discretizati<strong>on</strong> of the surfactant equati<strong>on</strong>. This process<br />

leads to a system of n<strong>on</strong>linear equati<strong>on</strong>s whose soluti<strong>on</strong> gives the height of the thin film as well as<br />

the surfactant c<strong>on</strong>centrati<strong>on</strong> at the finite volumes cell center.<br />

We should menti<strong>on</strong> that the most used technique <str<strong>on</strong>g>for</str<strong>on</strong>g> computati<strong>on</strong> of interfacial flows remains the<br />

interface tracking methods; we refer to [71, 127] and references therein. The actual method developed<br />

93


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

4 Simulati<strong>on</strong> of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

in this chapter can be taken as a variant of this class of methods. Despite the fact that we do not<br />

explicitly rec<strong>on</strong>struct the free surface boundary as it is usually the case in this class of methods, we<br />

discretize our surfactant equati<strong>on</strong> <strong>on</strong> a discrete ghost surface represented by the height of the thin<br />

film at finite volumes center point. Let us also menti<strong>on</strong> that the interface tracking method include<br />

surface tracking methods [54, 118], volume tracking methods [104, 127] and moving mesh methods<br />

[51]. Finally, the chapter is presented as follows: in 4.2 we define the method, in 4.3 we develop the<br />

method and in 4.4 we present the numerical results <str<strong>on</strong>g>for</str<strong>on</strong>g> some test problems.<br />

4.2 Problem Setting<br />

As already menti<strong>on</strong>ed in Chapter III, we c<strong>on</strong>sider a family of compact, smooth and oriented hypersurfaces<br />

Γt R n (n 2, 3) <str<strong>on</strong>g>for</str<strong>on</strong>g> t 0, tmax generated by a flux functi<strong>on</strong> Φ : 0, tmax ¢ Γ 0 R n<br />

defined <strong>on</strong> a reference surface (substrate) Γ 0 Γ0 with Γt Φt, Γ 0 . We assume Φ to be the<br />

restricti<strong>on</strong> of a functi<strong>on</strong> also called Φ : 0, tmax ¢ N0 R n , where N0 N 0 is a neighborhood<br />

of Γ 0 in which the lines normal to Γ 0 do not intersect. We also assume that N t Φt, N0 is<br />

a neighborhood of Γt in which the lines normal to Γt do not intersect. We finally assume our<br />

initial surface Γ 0 to be at least C 5 smooth and Φ C 1 0, tmax, C 5 N0. C<strong>on</strong>sidering the restricti<strong>on</strong><br />

of Φ <strong>on</strong>to Γ 0 , we denote by v Γ tΦ the velocity of a substrate material point and assume its<br />

decompositi<strong>on</strong> v Γ v Γ,νν v Γ,tan into a scalar velocity v Γ,ν in the directi<strong>on</strong> of the surface normal ν<br />

and a tangential velocity v Γ,tan. It is clear from the definiti<strong>on</strong>s that the latter functi<strong>on</strong>s depend <strong>on</strong><br />

time and space variables. This will be the case <str<strong>on</strong>g>for</str<strong>on</strong>g> any functi<strong>on</strong> c<strong>on</strong>sidered in this chapter and we<br />

will be omitting the arguments unless necessary. Let us c<strong>on</strong>sider a thin viscous and incompressible<br />

liquid flowing <strong>on</strong> the above described substrate Γ 0 as it undergoes its movement as described in<br />

Chapter III. We assume the entire fluid to be included in the domain N t at any time t. On top of<br />

this film (at the free surface (fluid-air interface)) a surfactant is spreading while the film is evolving.<br />

We assume the effect of gravity and Van-der Waals <str<strong>on</strong>g>for</str<strong>on</strong>g>ces <strong>on</strong> the system. We refer to Chapter III,<br />

Figure 3.1, <str<strong>on</strong>g>for</str<strong>on</strong>g> an illustrati<strong>on</strong> of this setup. This phenomen<strong>on</strong> is governed by a set of PDEs derived<br />

in Chapter III. First, the evoluti<strong>on</strong> of surfactant <strong>on</strong> the free surface F St is governed by<br />

Π<br />

t<br />

∇F S ¤ ΠvF S 1<br />

∇F S ¤ DF S∇F SΠ, (4.1)<br />

Pe<br />

where Π is the surfactant c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> the free surface, Pe is the Peclet number, ∇ F S is the<br />

dimensi<strong>on</strong>less free surface tangential gradient operator, v F S is the dimensi<strong>on</strong>less velocity of the fluid<br />

particle <strong>on</strong> F St and the free surface tangential operator D F S is the surfactant diffusivity tensor.<br />

We assume D F S to be the restricti<strong>on</strong> <strong>on</strong> the free surface tangent bundle of a global elliptic operator in<br />

C 0 0, tmax, C 1 N0. The free surface velocity is defined by v F S v Γ¡ɛH ∇Γv Γ,ν Kv Γ,tan v RF S,<br />

where v RF S is the relative velocity of the fluid particle at the free surface. The comp<strong>on</strong>ent<br />

v RF S,tan v RF S ¡ v RF S ¤ νν of v RF S tangent to the substrate is explicitly defined by<br />

v RF S,tan<br />

<br />

¢<br />

1<br />

2 H2 Id ¡ 1<br />

6 ɛH3 K Id K<br />

<br />

¡1<br />

Id ¡ ɛH K Id K β<br />

¢ 1<br />

2 H2 Id ¡ 1<br />

6 ɛH3 K Id 4K Hβ ¡1 ¡ ɛH 2<br />

¢ <br />

2 1<br />

¨<br />

¡1<br />

<br />

H Id ¡ ɛH K Id K β ∇Γ ¡φ C γKF S<br />

2<br />

¢<br />

1<br />

H ¡<br />

2 ɛH2 <br />

¡1 1<br />

K Id ∇Γγ Hβ<br />

2 H2 <br />

Id ɛB0gν∇ΓH <br />

1<br />

2 Kβ¡1 β ¡1 K Kβ ¡1¨ B0gtan, (4.2)<br />

where H is the height of the film, Id is the identity matrix in R 3 , K is the curvature tensor of<br />

the substrate, K : tr K (trace of K) is the mean curvature of the substrate and φ : AH ¡3<br />

is the disjoining pressure with A being the dimensi<strong>on</strong>less Hamaker c<strong>on</strong>stant. If A is negative, the<br />

substrate-fluid interface and the fluid-air interface repel each other and the parallel fluid-air interface<br />

94


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

4.2 Problem Setting<br />

to the substrate persists; if A is positive these interfaces attract each other and instability occurs<br />

(cf. [98]). By C we denote the inverse capillary number, B 0 the B<strong>on</strong>d number, g tan the comp<strong>on</strong>ent<br />

of the unit gravity vector g tangent to the substrate, g ν g ¤ ν, ∇Γ the substrate gradient operator,<br />

K F S the free surface mean curvature, β the substrate slip tensor, γ the surface tensi<strong>on</strong> and ɛ HL<br />

the ratio between the vertical length scale H and the horiz<strong>on</strong>tal length scale L. We recall that<br />

K F S : K ɛ HK2 ∆ ΓH , (4.3)<br />

where ∆ Γ is the substrate Laplace-Beltrami operator and K2 : tr K 2 the trace of K 2 . The<br />

substrate slip tensor β is assumed to be the restricti<strong>on</strong> <strong>on</strong> the substate tangent bundle of a uni<str<strong>on</strong>g>for</str<strong>on</strong>g>mally<br />

elliptic tensor also called β in C 0 0, tmax, C 1 N0. Only the restricti<strong>on</strong> of the matrix β ¡1 to the<br />

substrate tangential bundle Id ¡ ν νβ ¡1 Id ¡ ν ν, that we again miscall β ¡1 , is included in<br />

the model. We will assume βν ν, and as menti<strong>on</strong>ed in Chapter III the eigen values of Id ¡ ν <br />

νβ Id ¡ ν ν will be taken between 1 ɛ and 1ɛ 2 <str<strong>on</strong>g>for</str<strong>on</strong>g> the numerical simulati<strong>on</strong>. We finally<br />

recall that<br />

γ <br />

1 E ln1 ¡ xΠ<br />

, (4.4)<br />

1 E ln1 ¡ x<br />

where x Πeq<br />

¯Π is the surfactant coverage with Πeq being the equilibrium c<strong>on</strong>centrati<strong>on</strong> of surfactant<br />

and ¯ Π being the surfactant c<strong>on</strong>centrati<strong>on</strong> in the maximum packing limit. x will be taken between<br />

0 and 0.5 in the numerical simulati<strong>on</strong>. E RTa ¯ Π represents the surfactant elasticity with Ta being<br />

¯γ0<br />

the absolute temperature in Kelvin, ¯γ0 the surface tensi<strong>on</strong> of the clean surface (Π 0) and R the<br />

universal gas c<strong>on</strong>stant. The initial surfactant c<strong>on</strong>centrati<strong>on</strong> Π0 Π0, ¤ <strong>on</strong> the free surface is given<br />

and we associate to (4.1) the homogeneous Neumann boundary c<strong>on</strong>diti<strong>on</strong><br />

DF S∇F SΠ ¤ n l<br />

0 (4.5)<br />

F S<br />

at the boundary F St of the free surface; nl being the free surface outer unit c<strong>on</strong>ormal.<br />

F S<br />

On the other hand, the thin-film evoluti<strong>on</strong> is modeled by<br />

Γ η<br />

t η∇Γ ¤ v Γ ∇Γ ¤ F 0, (4.6)<br />

where Γη :<br />

t<br />

η<br />

t vΓ ¤ ∇Γη is the material derivative of the fluid density<br />

η H ¡ 1<br />

2ɛH2 1 K 6ɛ2 H 3 ¨ 2 K ¡ K2 above the substrate Γt and the flux functi<strong>on</strong> F is defined by<br />

<br />

1<br />

F <br />

3 H3 Id ¡ 1<br />

3 ɛH4<br />

¢<br />

1<br />

K Id ¡<br />

2 K<br />

<br />

¨<br />

<br />

¨<br />

2 3 ¡1<br />

<br />

H ¡ ɛH K β ∇Γ ¡φ C γKF S<br />

<br />

2 ¡1 1<br />

H β<br />

3 H3 ¢<br />

3<br />

Id ɛB0gν∇ΓH H ¡<br />

2 ɛH2 ¢<br />

¡1 1<br />

K β<br />

2 H2 ¡ 2<br />

3 ɛH3 <br />

1<br />

K Id<br />

3 ɛH3 <br />

K ∇Γγ<br />

¢<br />

1 3 4 1<br />

H Id ¡ ɛH K Id<br />

3<br />

2 K<br />

<br />

B0gtan H 2 ¡ ɛH 3 Kβ ¡1 ¡ ɛH 3 β ¡1 K ¨ B0gtan. (4.7)<br />

We assume the initial c<strong>on</strong>figurati<strong>on</strong> of the interface H0 H0, ¤ being given, whereby the whole<br />

surface is wetted. We finally c<strong>on</strong>sider the homogeneous Neumann boundary c<strong>on</strong>diti<strong>on</strong><br />

(∇ΓH ¤ nl Γ 0) at the boundary Γt; nl Γt being the unit outer c<strong>on</strong>ormal to the substrate. The<br />

Dirichlet boundary c<strong>on</strong>diti<strong>on</strong> can be easily integrated in the model; of course, if the surface has no<br />

boundary, there will be no need to specify any. The functi<strong>on</strong>s, operators and tensors defined here<br />

are either explicitly or implicitly defined <strong>on</strong> the substrate Γt through the parametric domain; we<br />

will be seeing them as functi<strong>on</strong>s defined in the domain N t via an extenti<strong>on</strong> as c<strong>on</strong>stant in the<br />

normal directi<strong>on</strong> ∇d¤, Γt, where d¤, Γt is a signed distance to the substrate Γt.<br />

The above menti<strong>on</strong>ed problem has not yet acquired a careful analysis of existence and regularity of<br />

a soluti<strong>on</strong>. Meanwile the existence of the soluti<strong>on</strong> of a slightly modified problem has been recently<br />

studied by Uwe Fermum in his PhD thesis [48]. We will nevertheless assume the existence of a<br />

sufficiently regular soluti<strong>on</strong> which c<strong>on</strong>fere a reas<strong>on</strong>able meaning to our equati<strong>on</strong>s.<br />

95


tel-00731479, versi<strong>on</strong> 1 - 12 Sep 2012<br />

4 Simulati<strong>on</strong> of surfactant driven thin-film flow <strong>on</strong> moving surfaces<br />

4.3 Derivati<strong>on</strong> of the scheme<br />

4.3.1 Re<str<strong>on</strong>g>for</str<strong>on</strong>g>mulati<strong>on</strong> of the problem<br />

As usual in the discretizati<strong>on</strong> of fourth order operators, we start by splitting our operator into two<br />

sec<strong>on</strong>d order operators (cf. [6, 34, 59, 61]). First we c<strong>on</strong>sider the operator P ¡ɛ∆ΓH to which we<br />

associate the boundary c<strong>on</strong>diti<strong>on</strong> ∇ΓH ¤ nl Γ 0 <strong>on</strong> the boundary Γ of the substrate Γ. Next P is<br />

taken as variable in (4.2) and (4.7); and our problem is trans<str<strong>on</strong>g>for</str<strong>on</strong>g>med into a system of sec<strong>on</strong>d order<br />

equati<strong>on</strong>s. This is clearly the reas<strong>on</strong> of the extensive development of finite volumes <str<strong>on</strong>g>for</str<strong>on</strong>g> sec<strong>on</strong>d order<br />

operators in the first two chapters. Our discretizati<strong>on</strong> problem will be divided into three coupled<br />

discretizati<strong>on</strong> problems:<br />

The pressure problem:<br />

¡ɛ∆ΓH = P (4.8)<br />

∇ΓH ¤ n l Γ = 0 <strong>on</strong> Γ (4.9)<br />

The mean curvature of the free surface is redefined by KF S K ɛHK2 ¡ P.<br />

The thin-film problem:<br />

The thin-film problem is defined by (4.6) and the boundary c<strong>on</strong>diti<strong>on</strong> ¡D5∇ΓΦ CγP¤n l 0 Γ<br />

<strong>on</strong> Γ with D5 H 2 β ¡1 1<br />

3 H3 ¡1 Id ¡ 3ɛKβ ¨ ¡ 1<br />

3ɛH4 1 K Id ¡ 2K¨ . Here again, <strong>on</strong>e should replace<br />

KF S with its new expressi<strong>on</strong> in the complementary term F defined in (4.7).<br />

The Surfactant problem:<br />

This problem is defined by (4.1), (4.5) and the definiti<strong>on</strong> of vF S in which (4.2) and (4.4) are important.<br />

Let us group some terms appearing in the fluid velocity (4.2) and in the flux functi<strong>on</strong> (4.7).<br />

D1 : Id ¡ 3ɛKβ ¡1¨ , D2 : K Id ¡ 1<br />

2K¨ ,<br />

D3 : Id ¡ 3ɛKβ ¡1 ¡ 3ɛβ ¡1K ¨ 1<br />

, D4 : K Id 2K¨ , D5 : H 2 β ¡1 1<br />

3 H3D1 ¡ 1<br />

3ɛH4 <br />

D2 ,<br />

D6 : CK ɛCHK2 H 2 β ¡1 1<br />

3 H3D1 ¡ 1<br />

3ɛH4 ¡1 1<br />

D2 Hβ 2 H2D1 ¡ 2<br />

3ɛH3 ¨<br />

D2 ,<br />

D7 : ɛC 2 ¡1 1<br />

γK2 H β 3 H3D1 ¡ 1<br />

3ɛH4 2 ¡1 1<br />

D2 ɛB0gν H β 3 H3 Id ¨ ,<br />

D11 : K Id 4K , D12 : Hβ ¡1 1<br />

2 H2D8 ¡ 1<br />

6ɛH3 ¨<br />

D9 ,<br />

D13 : C K ɛHK2 Hβ ¡1 1<br />

2 H2D8 ¡ 1<br />

6ɛH3 ¨ ¡1<br />

D9 β H Id ¡ ɛD9β ¡1¨ ¡ 1<br />

2ɛH2K Id <br />

D14 : ɛC ¡1 1<br />

γK2 Hβ 2 H2D8 ¡ 1<br />

6ɛH3 ¨ ¡1 1<br />

D9 ɛB0gν Hβ 2 H2 Id ¨ .<br />

D8 : Id ¡ ɛ K Id 2K β ¡1 , D9 : K Id K , D10 : Id ¡ ɛ Kβ ¡1 2 β ¡1 K Kβ ¡1¨¨ ,<br />

In the sequel, we will assume ɛ being chosen such that D1 and D3 are strictly positive definite; D5<br />

too will be assumed strictly positive definite if H is not zero. The flux functi<strong>on</strong> F defined in (4.7)<br />

can now be rewritten as<br />

F ¡D5∇Γ<br />

ɛC γH<br />

φ C γP ¨ D6∇Γγ D7∇ΓH C γ<br />

<br />

1<br />

3 H3D1 ¡ 1<br />

3 ɛH4D2 H 2 β ¡1<br />

<br /