04.05.2013 Views

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

Analysis of the extended defects in 3C-SiC.pdf - Nelson Mandela ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

47<br />

When this is <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong> Darw<strong>in</strong>-Howie-Whelan equations it modifies <strong>the</strong><br />

equations to be,<br />

d<br />

dz<br />

g<br />

2i(<br />

s<br />

g<br />

i<br />

g g<br />

'<br />

e<br />

' g q '<br />

g<br />

g<br />

dR<br />

g ) g<br />

i<br />

'<br />

(4.37)<br />

g<br />

dz<br />

which only constitutes a change <strong>in</strong> <strong>the</strong> excitation error to an effective excitation error<br />

given by,<br />

dR(r)<br />

( r) s g <br />

(4.38)<br />

dz<br />

eff<br />

sg g<br />

4.3. Image Contrast for Selected Defects<br />

4.3.1 L<strong>in</strong>e Defects<br />

As discussed <strong>in</strong> section 2.4 a dislocation is a l<strong>in</strong>ear lattice defect which may be<br />

characterised by a Burgers vector b and a dislocation l<strong>in</strong>e direction u. It may be<br />

characterised as be<strong>in</strong>g <strong>of</strong> edge character with b·u = 0 or screw character with b || u or<br />

a mixture <strong>of</strong> both. In general <strong>the</strong> displacement field <strong>of</strong> a dislocation is given by,<br />

1 s<strong>in</strong> 2<br />

1<br />

2<br />

cos<br />

<br />

R b<br />

be<br />

b u<br />

ln r <br />

(4.39)<br />

2<br />

4(<br />

1<br />

)<br />

2(<br />

1<br />

)<br />

4(<br />

1<br />

)<br />

<br />

where υ is Poissons’s ratio, be <strong>the</strong> edge component <strong>of</strong> <strong>the</strong> Burgers vector and (r,θ)<br />

polar coord<strong>in</strong>ates <strong>in</strong> a plane perpendicular to <strong>the</strong> dislocation l<strong>in</strong>e direction.<br />

4.3.2 Stack<strong>in</strong>g Faults<br />

The aim <strong>of</strong> this section is not to describe <strong>the</strong> full process <strong>of</strong> simulat<strong>in</strong>g an <strong>in</strong>cl<strong>in</strong>ed<br />

stack<strong>in</strong>g fault with its associated partial dislocations but ra<strong>the</strong>r to describe a relatively<br />

easy way <strong>of</strong> obta<strong>in</strong><strong>in</strong>g one-dimensional <strong>in</strong>tensity pr<strong>of</strong>iles <strong>of</strong> stack<strong>in</strong>g fault fr<strong>in</strong>ges. The<br />

procedure uses a scatter<strong>in</strong>g matrix approach discussed <strong>in</strong> Section 4.2.5 with <strong>the</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!