03.10.2012 Views

Device reference guide - Altium

Device reference guide - Altium

Device reference guide - Altium

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Hardware Buyer’s Guide<br />

Tools for Interactive FPGA Design


Making electronics design easier <br />

<strong>Altium</strong> has always been at the forefront of desktop EDA technology.<br />

<strong>Altium</strong> defined the future of desktop design with the release of the<br />

world’s first Windows ® -based PCB design tool. Our latest 2004 product<br />

line continues this history of innovation by bringing to the engineer’s<br />

desktop a complete electronics design system that covers board-level,<br />

system-on-FPGA and complete embedded system design technologies.<br />

<strong>Altium</strong> creates design solutions that bring together the best of<br />

electronic design and contemporary software technology to keep<br />

pace with the changing nature of today’s and tomorrow’s electronics<br />

design processes. <strong>Altium</strong>’s edge lies in making its products affordable<br />

and easy to use for all designers whilst putting the very best<br />

technology into all of its products.<br />

Our philosophy is a simple one – we want every designer in the<br />

world to have access to the best possible design tools at an affordable<br />

price and to make the engineer’s desktop the most powerful,<br />

productive and cost-effective design platform.<br />

At <strong>Altium</strong> we truly believe in making electronics design easier.<br />

So let us make life easier for you...<br />

“<br />

The philosophy behind <strong>Altium</strong>’s vision is a belief that<br />

all designers must have easy access to the best available<br />

electronic design tools, and that these tools must be easy<br />

to use and truly affordable. This is essential if we are<br />

to continue to see great innovation.”<br />

Nick Martin<br />

Founder and Joint CEO – <strong>Altium</strong> Limited


LiveDesign Hardware Buyer’s Guide<br />

Tools for Interactive FPGA Design<br />

Section 01 Interactive FPGA design with the NanoBoard 4<br />

02 FPGA device support 8<br />

03 <strong>Device</strong> <strong>reference</strong> <strong>guide</strong> 14<br />

<strong>Altium</strong>’s unique reconfigurable development platform<br />

– the NanoBoard – allows rapid and interactive<br />

implementation and debugging of your FPGA design.<br />

Target programmable devices are housed on plug-in<br />

daughter boards, allowing you to easily change the<br />

target project architecture, providing a truly FPGA<br />

vendor-independent development solution.<br />

For flexible systems design, multiple NanoBoards can<br />

be chained together to support the development of<br />

complex systems comprising of multiple FPGA devices<br />

spread across multiple PCBs. Connections on the<br />

NanoBoard for user-developed boards enables easy<br />

porting of designs to your own dedicated PCB.<br />

The NanoBoard, in combination with <strong>Altium</strong>’s extensive<br />

range of LiveDesign-enabled development solutions,<br />

will transform your desktop into a complete and<br />

interactive FPGA-based electronics design laboratory.


SECTION 01 INTERACTIVE FPGA DESIGN NANOBOARD-NB1 2004<br />

4<br />

Why should I use<br />

<strong>Altium</strong>’s NanoBoard<br />

over other<br />

development boards?<br />

Fully LiveDesign enabled<br />

for seamless integration<br />

with <strong>Altium</strong>’s 2004 family<br />

of design tools<br />

Multiple target devices<br />

are included<br />

Vendor-independence is<br />

supported by having the<br />

reprogrammable device<br />

(FPGA, CPLD) on a<br />

daughter board; the<br />

target is changed by<br />

replacing one daughter<br />

board with another<br />

A complex system of<br />

NanoBoards running the<br />

same or different projects<br />

can be created by<br />

chaining several<br />

NanoBoards together<br />

Working with FPGAbased<br />

user boards only<br />

requires a JTAG<br />

connection since the<br />

NanoBoard acts to<br />

control the design<br />

download to the user<br />

board plus all interactions<br />

with processors and<br />

virtual instruments<br />

A rich set of peripherals<br />

and connectors are<br />

included on the board<br />

for design flexibility<br />

Interactive FPGA design with<br />

the NanoBoard <br />

The NanoBoard is a unique, sophisticated, device- and vendorindependent<br />

FPGA-based development board that allows rapid<br />

and interactive implementation and debugging of FPGA designs.<br />

<strong>Altium</strong>’s new NanoBoard (nano-level breadboard)<br />

is the industry’s first FPGA-based, LiveDesign-enabled<br />

development board. The NanoBoard allows rapid<br />

and interactive implementation and debugging<br />

of FPGA designs and has been specially designed<br />

to take full advantage of <strong>Altium</strong>’s 2004 family of<br />

LiveDesign-enabled design tools. Target programmable<br />

devices are housed on plug-in daughter boards,<br />

enabling engineers to easily change the target<br />

project architecture, providing a truly FPGA<br />

vendor-independent development board.<br />

For flexible systems design, multiple NanoBoards can<br />

be chained together to support the development of<br />

complex systems comprising of multiple FPGA devices<br />

spread across multiple PCBs. Connections on the<br />

NanoBoard for user-developed boards enables easy<br />

porting of designs to your own dedicated PCB, which<br />

can be linked into the system via the NanoBoard to<br />

extend the LiveDesign process to the production PCB.<br />

As well as providing communications to and from<br />

the FPGA, the NanoBoard incorporates a wide range<br />

of peripherals such as an LCD, RAM, serial flash<br />

memory, keypad and ADC/DAC that can easily<br />

be used for application development. Ports on the<br />

NanoBoard include PS2, RS232, CAN, VGA, and I2C,<br />

as well as a range of general purpose I/O headers.<br />

The NanoBoard, in combination with <strong>Altium</strong>’s<br />

extensive range of LiveDesign-enabled electronics<br />

development tools, will transform your desktop into<br />

a complete and interactive FPGA-based electronics<br />

design laboratory.<br />

FPGA vendor and target independent<br />

The NanoBoard features swappable daughter boards<br />

that house the target programmable device. This<br />

allows easy reconfiguration of the NanoBoard to<br />

support multiple device families from different FPGA<br />

vendors. <strong>Altium</strong>’s LiveDesign-enabled design systems,<br />

such as Protel ®<br />

and Nexar , take full advantage<br />

of this by offering a device-independent design<br />

environment that allows a single design to be<br />

retargeted to a wide range of programmable<br />

devices, providing true design portability.<br />

Cyclone <br />

Plug-in daughter boards with Altera ®<br />

(EP1C12-Q240C7) and Xilinx ®<br />

Spartan ®<br />

(XC2S300E-<br />

PQ208) FPGAs are supplied as standard with<br />

the NanoBoard.<br />

Change the target FPGA easily by swapping daughter boards.<br />

The system will automatically recognise the installed device.<br />

NanoBoard-NB1 2004 – LiveDesign-enabled FPGA-based development board www.altium.com/nanoboard


Build a complex system by daisy chaining multiple NanoBoards.<br />

Chaining of multiple NanoBoards<br />

The NanoBoard includes both Master and Slave<br />

NanoTalk connectors that allow multiple NanoBoards<br />

to be chained together when used with <strong>Altium</strong>’s<br />

LiveDesign-enabled design systems. The NanoTalk<br />

controller manages the routing of signals between<br />

the boards to maintain continuity of the JTAG<br />

chains across NanoBoards. The target device on<br />

each NanoBoard forms a hard JTAG chain that is<br />

accessible via the system software. Similarly, all<br />

devices (such as Nexus processor cores and virtual<br />

instruments contained within the designs) running<br />

on each of the NanoBoards form a continuous ‘soft’<br />

chain that is also accessible via the design software.<br />

The system software allows you to target different<br />

FPGA projects to each NanoBoard in the chain,<br />

allowing you to develop complex systems that<br />

contain multiple FPGAs that may be implemented<br />

over several PCBs.<br />

Connect your production board to the design system via the NanoBoard and<br />

continue the LiveDesign process on the final PCB.<br />

Connection of production PCBs<br />

The NanoBoard includes connectors for the<br />

integration of a designer’s production PCB into the<br />

LiveDesign environment. By exposing the hard and<br />

soft JTAG chains in your design, you can connect<br />

your production PCB to the NanoBoard via a 10-way<br />

header. The JTAG devices on your board will appear<br />

in the LiveDesign-enabled design environment as<br />

devices on the hard JTAG chain. Soft devices such<br />

as Nexus process cores and virtual instruments<br />

running on the FPGAs on your production board<br />

will appear in the soft chain and are accessible<br />

through the design environment. This extends the<br />

LiveDesign process to the design and debugging of<br />

your production board. Up to two user boards can<br />

be connected to each NanoBoard in the system.<br />

Features overview<br />

The NanoBoard is fully<br />

compatible with all <strong>Altium</strong><br />

DXP 2004-based systems<br />

FPGA vendor and device<br />

independent<br />

Plug-in daughter board<br />

system supports a wide<br />

range of target FPGAs<br />

Altera ® Cyclone (EP1C12-<br />

Q240C7) daughter board<br />

supplied<br />

Xilinx ® Spartan ® IIE<br />

(XC2S300E-PQ208)<br />

daughter board supplied<br />

Other device daughter boards<br />

can be purchased separately<br />

System automatically detects<br />

installed FPGA device<br />

Multiple NanoBoards<br />

can be chained together –<br />

NanoBoard controller<br />

manages routing of hard<br />

and soft JTAG chains<br />

Up to two user boards can be<br />

connected to the NanoBoard<br />

with automatic routing of<br />

hard and soft JTAG chains<br />

Includes power pack<br />

with multiple plugs for<br />

various electrical outlet<br />

configurations<br />

Includes ribbon cable for PC<br />

connection plus other cables<br />

and connectors<br />

Extensive NanoBoard<br />

technical hardware<br />

<strong>reference</strong> manual<br />

Peripherals include: LCD,<br />

LED array, switch array,<br />

keypad, buzzer, ADC/DAC,<br />

256K x 8 RAM, 8M serial flash<br />

RAM, on-board serial flash<br />

RAM for FPGA config,<br />

programmable clock<br />

Ports include: PS2 mouse<br />

and keyboard, RS232, CAN,<br />

VGA, I2C, general purpose<br />

I/O headers<br />

continued overleaf<br />

SECTION 01 INTERACTIVE FPGA DESIGN NANOBOARD-NB1 2004<br />

5


SECTION 01 INTERACTIVE FPGA DESIGN NANOBOARD NANOBOARD-NB1 NB1 2004<br />

6<br />

TDI<br />

U2<br />

LAX_1K16<br />

Running<br />

Logic<br />

Analyser<br />

TDI TDO<br />

Interactive hardware<br />

debug<br />

Debugging circuitry inside<br />

an FPGA can be a difficult<br />

task. Internal signals can<br />

be brought out to the pins<br />

of the FPGA for monitoring<br />

and testing, but this adds<br />

to the complexity of the<br />

design process. What’s<br />

needed is a way to<br />

examine and control<br />

signals inside the FPGA.<br />

The DXP 2004 system<br />

provides a library of virtual<br />

instruments that can be<br />

wired into your circuit at<br />

the schematic level. The<br />

instruments comprise a<br />

hardware portion that is<br />

synthesized and downloaded<br />

into the target FPGA, and<br />

a soft instrument panel<br />

controllable from the PC.<br />

Instruments communicate<br />

with the system via a<br />

secondary ‘soft’ JTAG chain<br />

that is established inside<br />

the FPGA and brought<br />

out to defined pins on the<br />

NanoBoard. These virtual<br />

instruments then give<br />

you a window into the<br />

operation of the loaded<br />

FPGA for interactive<br />

debugging of your design.<br />

What ‘breadboarding at the nano level’<br />

has to offer<br />

1 RS232<br />

The DTE RS232 connector provides TXD, RXD, RTS<br />

and CTS signal lines connected to the target FPGA<br />

via level translation circuitry.<br />

2 CAN<br />

The CAN connector is interfaced to the target<br />

FPGA via a CAN protocol transceiver with<br />

configurable speed.<br />

3 VGA<br />

NB1 includes a VGA-compatible RGB video monitor<br />

port. The port is configured with two bits per color,<br />

a total of six bits per pixel or 64 colors. The port is<br />

directly connected to I/O pins on the target FPGA.<br />

4 NanoTalk configuration header<br />

Uses jumpers to configure the operational mode<br />

of the NB1 NanoTalk controller and to set the<br />

default clock rate.<br />

5 PS2<br />

Two standard PS2 ports are available on NB1<br />

and are directly connected to I/O pins on the<br />

target FPGA. These are nominally intended for<br />

the connection of a PC keyboard and mouse<br />

to the FPGA design.<br />

6 Parallel port connection to PC<br />

NB1 connects to a PC via a standard parallel port. A<br />

cable for this purpose is supplied with the NanoBoard.<br />

7 Power connectors<br />

Two parallel power connector jacks are provided<br />

so that power can be supplied to a chain of<br />

NanoBoards in daisychain configuration.<br />

8 NanoTalk Slave<br />

Multiple NanoBoards can be chained together using<br />

the NanoTalk Master and NanoTalk Slave headers.<br />

Connectors are provided for this. The NanoBoard<br />

controllers manage the routing of JTAG chains<br />

between boards to provide access to all hard and<br />

soft devices on all chained boards.<br />

9 NanoBoard controller<br />

The NB1 controller performs a variety of tasks,<br />

including managing the routing of the various<br />

JTAG chains to and from the target devices and<br />

controlling communications to and from the design<br />

software running on the PC. The controller is<br />

implemented inside a reconfigurable FPGA device<br />

to allow for firmware upgrades in the field.<br />

10 Serial flash RAM<br />

NB1 includes two 8Mbit serial flash RAM resources.<br />

These can be programmed by the design system via<br />

the NanoBoard controller. One of the devices can be<br />

set as a source to configure the target FPGA on<br />

power up.<br />

11 Daughter board sockets<br />

Dual high-cycle sockets are used to plug in the<br />

swappable daughter boards containing target FPGA<br />

devices. The daughter boards allow the NanoBoard<br />

to be used with a variety of programmable devices.<br />

12 Static RAM<br />

NB1 provides two 128k x 8 static RAM devices, which<br />

are directly connected to I/O pins on the target FPGA<br />

device. The SRAM devices have a common Chip Select<br />

and address lines, but separate 8-bit data bus and<br />

RD/RW signals for each chip. The memory resource<br />

can be application-configured as single 128k x 16 or<br />

256k x 8 address space, or two 128k x 8 spaces.<br />

13 Programmable system clock<br />

SPI-based programmable clock generator that<br />

provides a fixed 20MHz <strong>reference</strong> clock and userprogrammed<br />

clock with an output frequency from<br />

6 to 200MHz. Both clocks are connected to global<br />

clock pins on the plug-in target FPGA.<br />

14 DIP switch<br />

8-way DIP switch, accessible directly from target FPGA.<br />

15 LED array<br />

8 x high intensity LED array, accessible directly from<br />

target FPGA.<br />

16 Test/reset button<br />

General purpose momentary-action pushbutton,<br />

accessed directly from the target FPGA. This has no<br />

intrinsically set function, but is nominally intended<br />

to be used as a hard reset button for the FPGAbased<br />

circuit.<br />

17 General purpose headers<br />

A total of 36 target FPGA I/O lines are terminated<br />

on the two general purpose User Headers on NB1.<br />

These headers also provide ground and power.<br />

18 ADC/DAC & I2C<br />

NB1 is equipped with general purpose analog<br />

to digital and digital to analog converters, both<br />

interfaced using the I2C protocol. Four channels<br />

are provided as well as a filtered 3.3V analog<br />

supply and ground. The same signals are<br />

available via a header, which additionally provides<br />

I2C signals and a 5V supply and power ground.<br />

NanoBoard-NB1 2004 – LiveDesign-enabled FPGA-based development board www.altium.com/nanoboard


23<br />

22<br />

21<br />

The <strong>Altium</strong> NanoBoard is the first<br />

LiveDesign-enabled development<br />

platform for Nexar and Protel<br />

19 Audio CODEC<br />

NB1 provides an 8-bit audio CODEC, together with<br />

relevant analog pre- and post- conditioning circuitry,<br />

terminated with stereo input and output jacks.<br />

The CODEC is accessible from the target FPGA.<br />

20 User board connectors<br />

NB1 includes two user board JTAG headers.<br />

These headers are used to include a user-developed<br />

board in the hard and soft JTAG chains, and can<br />

be used to extend the LiveDesign process to your<br />

production PCB.<br />

21 Keypad<br />

1 2 3 4 5 6 7<br />

20<br />

A 16-way keypad is provided for user input to the<br />

FPGA circuit. The keypad is arranged in a 4 x 4 array<br />

and organized so that a row-column scanning<br />

19<br />

18<br />

24<br />

process can read the status of each key. The keypad<br />

features replaceable overlays.<br />

22 LCD<br />

NB1 includes a standard 16 character by two line<br />

LCD with LED backlight, accessible directly from<br />

the target FPGA.<br />

23 Buzzer<br />

17<br />

NB1 includes a magnetic audio transducer<br />

connected to an I/O line on the target FPGA.<br />

24 High capacity FPGA daughter boards<br />

Included as standard with the NanoBoard are<br />

the two most popular FPGA daughter boards to<br />

accommodate reconfigurable systems including<br />

processor-based designs.<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

Features overview<br />

On-board programmable<br />

clock (frequencies from<br />

6MHz to 200MHz, software<br />

controllable) and fixed<br />

frequency <strong>reference</strong> clock<br />

Upgradeable NanoBoard<br />

controller firmware<br />

Integrated heavy-duty<br />

NanoBoard stand<br />

DXP 2004 software<br />

support for NanoBoard<br />

Comprehensive set of FPGAbased<br />

virtual instruments for<br />

interactive hardware debug<br />

Virtual instruments include<br />

soft front panels that<br />

communicate with the design<br />

running on the NanoBoard<br />

Virtual instruments include<br />

logic analyzers, frequency<br />

counters, frequency<br />

generators, I/O blocks<br />

Central control of FPGA<br />

design processing and<br />

download<br />

<strong>Device</strong>s view allows<br />

interaction with all<br />

NanoBoards connected<br />

to the system, all FPGA<br />

target devices and all soft<br />

devices contained within<br />

the downloaded designs<br />

FPGA vendor tools<br />

(supplied separately) driven<br />

transparently through DXP<br />

interface for place and<br />

route<br />

NanoBoard port plug-in<br />

library allows convenient<br />

schematic-level connection<br />

to NanoBoard devices<br />

Configuration Manager<br />

allows FPGA project to<br />

be easily retargeted from<br />

NanoBoard to final PCB<br />

implementation<br />

SECTION 01 INTERACTIVE FPGA DESIGN NANOBOARD-NB1 2004<br />

7


SECTION 02 FPGA DEVICE SUPPORT NANOBOARD-NB1 2004<br />

8<br />

Hitting the target<br />

By providing target devices<br />

on plug-in daughter<br />

boards, <strong>Altium</strong> lowers the<br />

cost of development for<br />

companies that work with<br />

more than one device family.<br />

It also makes it easy to<br />

evaluate and compare the<br />

features and benefits of<br />

different devices without<br />

the need to support<br />

multiple development<br />

systems. Engineers can<br />

create their FPGA design<br />

and then plug-in different<br />

daughter boards to test the<br />

design on a wide variety of<br />

target FPGA architectures.<br />

The system also allows<br />

engineers to do design<br />

work on a device that is<br />

particularly suitable for<br />

development, and then<br />

switch to a different device<br />

for final production.<br />

FPGA device support<br />

Swappable FPGA daughter boards offer true device independence,<br />

allowing you to easily retarget your design to any device family and<br />

ensuring you always have access to the latest in FPGA device technology.<br />

With most development systems you’re limited<br />

to a single target device, and designing for<br />

different devices requires you to work on multiple<br />

development boards. <strong>Altium</strong>’s NanoBoard eliminates<br />

this constraint by housing the target device on a<br />

robust daughter board that plugs into the main<br />

board via a set of high-reliability connectors. This<br />

allows you to change the target device at any time,<br />

making it possible to develop systems for a range<br />

of device families from multiple FPGA vendors.<br />

System-wide device support<br />

The available range of daughter board devices<br />

is fully supported in the system software. When<br />

you swap daughter boards, the DXP 2004 system<br />

automatically recognizes the target device and<br />

configures the environment appropriately. In the<br />

<strong>Device</strong>s view the correct vendor tool set for place-<br />

&-route and timing analysis is automatically<br />

selected, and any project configurations valid<br />

for the target device are available for selection.<br />

<strong>Altium</strong>’s DXP 2004 product range comes with<br />

constraint files for each supported daughter board.<br />

These constraint files map the FPGA pinout on<br />

the daughter board to the relevant NanoBoard<br />

resources. You can add these constraint files to your<br />

project configuration to easily set up your project<br />

for download to the NanoBoard. Each project can<br />

have multiple configurations, allowing you to easily<br />

retarget your design for the full range of available<br />

daughter boards.<br />

<strong>Altium</strong>’s DXP 2004 product range comes with<br />

a range of FPGA-based components to allow<br />

for easy schematic-based system development.<br />

These components are supplied as a schematic<br />

symbol with attached FPGA models. All components<br />

are pre-synthesized and pre-verified to support all<br />

available target daughter boards. This means that<br />

your designs can be targeted to any supported<br />

device without the need to re-engineer the circuit.<br />

The correct models are automatically selected<br />

and instantiated based on the target device<br />

you have fitted.<br />

Continuously updated device support<br />

Manufacturers continually release new devices<br />

and device families. <strong>Altium</strong>’s development team<br />

is constantly adding additional device support and<br />

new daughter boards that can be dropped in to<br />

your existing system. This protects your design tool<br />

investment and allows you to expand your system<br />

as new devices come onto the market.<br />

With <strong>Altium</strong>’s NanoBoard and DXP 2004-based<br />

design systems your development environment<br />

is future-proof.<br />

The wide range of available daughter boards makes the NanoBoard<br />

a truly device and FPGA vendor-independent development platform.<br />

NanoBoard-NB1 2004 – LiveDesign-enabled FPGA-based development board www.altium.com/nanoboard


Available daughter boards<br />

FPGA <strong>Device</strong>s<br />

Actel ProASIC Plus <br />

<strong>Device</strong>: APA600-FPQ208<br />

The ProASIC Plus family of devices, Actel’s second generation Flash FPGAs, offers<br />

enhanced performance over Actel’s ProASIC family. It combines the advantages of<br />

ASICs with the benefits of programmable devices through nonvolatile Flash technology.<br />

This enables engineers to create high-density systems using existing ASIC or FPGA<br />

design flows and tools. In addition, the ProASIC Plus family offers a unique clock<br />

conditioning circuit based on two on-board phase-locked loops (PLLs). The family<br />

offers up to 1 million system gates, supported with up to 198kbits of 2-port SRAM<br />

and up to 712 user I/Os, all providing 50 MHz PCI performance.<br />

APA600 features:<br />

21,504 logic elements (as 3-input function generators), 600,000 system gates<br />

126 Kbits of embedded RAM (total)<br />

4 global clock networks<br />

2 phase-locked loops (PLLs) with flexible phase<br />

Support for 4 selectable I/O standards<br />

Altera ®<br />

Cyclone <br />

<strong>Device</strong>: EP1C12Q240C7<br />

The Cyclone field programmable gate array family is based on a 1.5-V, 0.13-µm,<br />

all-layer copper SRAM process, with densities up to 20,060 logic elements (LEs)<br />

and up to 288 Kbits of RAM.<br />

EP1C12 features:<br />

12,060 logic elements (as 4-input LUTs with programmable register<br />

and carry chain)<br />

239 Kbits of RAM (total)<br />

4 dedicated clocks and 8 dual-purpose clocks (DPCLK)<br />

2 phase-locked loops (PLLs)<br />

Support for 10 selectable I/O standards<br />

Altera ®<br />

Cyclone with SRAM<br />

<strong>Device</strong>: EP1C20F400C8<br />

The Cyclone field programmable gate array family is based on a 1.5-V, 0.13-µm,<br />

all-layer copper SRAM process, with densities up to 20,060 logic elements (LEs)<br />

and up to 288 Kbits of RAM.<br />

EP1C20 features:<br />

20,060 logic elements (as 4-input LUTs with programmable register<br />

and carry chain)<br />

294 Kbits of RAM (total)<br />

4 dedicated clocks, and 8 dual-purpose clocks (DPCLK)<br />

2 phase-locked loops (PLLs)<br />

Support for 10 selectable I/O standards<br />

Additional daughter board features:<br />

Two IDT71V416L static RAM ICs – 4 Meg (256K x 16) 10ns advanced<br />

high-speed CMOS<br />

SECTION 02 FPGA DEVICE SUPPORT NANOBOARD-NB1 2004<br />

9


SECTION 02 FPGA DEVICE SUPPORT NANOBOARD-NB1 2004<br />

10<br />

Altera ®<br />

Stratix with SRAM<br />

<strong>Device</strong>: EP1S10F780C7<br />

The Stratix family of FPGAs is based on a 1.5-V, 0.13-µm, all-layer copper<br />

SRAM process, with densities up to 79,040 logic elements (LEs) and up to<br />

7.5 Mbits of RAM.<br />

EP1S10 features:<br />

10,570 logic elements (as 4-input LUTs with programmable register<br />

and carry chain)<br />

920 Kbits RAM (total)<br />

6 digital signal processing (DSP) blocks<br />

24 embedded multipliers (18 x 18-bit)<br />

16 dedicated global clocks<br />

4 fast, and 2 enhanced phase-locked loops (PLLs)<br />

Support for 26 selectable I/O standards<br />

Additional daughter board features:<br />

Two IDT71V416L static RAM ICs – 4 Meg (256K x 16) 10ns advanced<br />

high-speed CMOS<br />

One MAX1617 SMBus temperature sensor which measures FPGA chip<br />

temperature and internal sensor temperature<br />

Xilinx ®<br />

Spartan ®<br />

-II<br />

<strong>Device</strong>: XC2S200-6PQ208C<br />

The Spartan ®<br />

-II 2.5V Field-Programmable Gate Array family gives users<br />

high performance, abundant logic resources, and a rich feature set, all at an<br />

exceptionally low price. The six-member family offers densities ranging from<br />

15,000 to 200,000 system gates. System performance is supported up to<br />

200 MHz.<br />

XC2S200 features:<br />

5,292 logic cells arranged in 2,352 CLB slices (200,000 system gates)<br />

Up to 4,704 4-input LUTs and 4,704 flip-flops<br />

Block RAM (to 56K bits) and distributed RAM (to 73.5K bits)<br />

4 digital clock managers (DLLs)<br />

4 primary low-skew global clock distribution nets<br />

Support for 16 selectable I/O standards<br />

Xilinx ®<br />

Spartan ®<br />

-IIE<br />

<strong>Device</strong>: XC2S300E-6PQ208C<br />

The Spartan ®<br />

-IIE 1.8V Field-Programmable Gate Array family gives users<br />

high performance, abundant logic resources, and a rich feature set, all at an<br />

exceptionally low price. The seven-member family offers densities ranging from<br />

50,000 to 600,000 system gates. System performance is supported beyond<br />

200 MHz.<br />

XC2S300E features:<br />

6,912 logic cells arranged in 3,072 CLB slices (300,000 system gates)<br />

Up to 6,144 4-input LUTs and 6,144 flip-flops<br />

Block RAM (to 64K bits) and distributed RAM (to 96K bits)<br />

4 digital clock managers (DLLs)<br />

4 primary low-skew global clock distribution nets<br />

Support for 19 selectable I/O standards with fast or slow slew rates<br />

and multiple drive strengths<br />

NanoBoard-NB1 2004 – LiveDesign-enabled FPGA-based development board www.altium.com/nanoboard


Xilinx ®<br />

Spartan ®<br />

-IIE with SRAM<br />

<strong>Device</strong>: XC2S600E-6FG456C<br />

The Spartan ®<br />

-IIE 1.8V Field-Programmable Gate Array family gives users<br />

high performance, abundant logic resources, and a rich feature set, all at an<br />

exceptionally low price. The seven-member family offers densities ranging from<br />

50,000 to 600,000 system gates. System performance is supported beyond<br />

200 MHz.<br />

XC2S600E features:<br />

15,552 logic cells arranged in 6,912 CLB slices (600,000 system gates)<br />

Up to 13,824 4-input LUTs and 13,824 flip-flops<br />

Block RAM (to 288K bits) and distributed RAM (to 216K bits)<br />

4 digital clock managers (DLLs)<br />

4 primary low-skew global clock distribution nets<br />

Support for 19 selectable I/O standards with fast or slow slew rates<br />

and multiple drive strengths<br />

Additional daughter board features:<br />

Two IDT71V416L static RAM ICs – 4 Meg (256K x 16) 10ns advanced high-speed CMOS<br />

Xilinx ®<br />

Spartan ®<br />

-3 with SRAM<br />

<strong>Device</strong>: XC3S1000-4FG456C<br />

The 1.2V Spartan ®<br />

-3 family of Field-Programmable Gate Arrays is specifically<br />

designed to meet the needs of high volume, cost-sensitive consumer electronic<br />

applications. The eight-member family offers densities ranging from 50,000<br />

to five million system gates.<br />

XC3S1000 features:<br />

17,280 logic cells arranged in 7,680 CLB slices (1000K system gates)<br />

Up to 15,360 4-input LUTs and 15,360 flip-flops<br />

Block RAM (to 432K bits) and distributed RAM (to 120K bits)<br />

4 digital clock managers (DLLs)<br />

8 global clock lines with abundant routing<br />

Support for 26 selectable I/O standards with fast or slow slew rates<br />

and multiple drive strengths<br />

Additional daughter board features:<br />

Two IDT71V416L static RAM ICs – 4 Meg (256K x 16) 10ns advanced high-speed CMOS<br />

Xilinx ®<br />

Virtex ®<br />

-II with SRAM<br />

<strong>Device</strong>: XC2V1000-4FG456C<br />

The Virtex ®<br />

-II family is a platform FPGA developed for high performance from<br />

low-density to high-density designs that are based on IP cores and customized<br />

modules. The family delivers complete solutions for telecommunication, wireless,<br />

networking, video, and DSP applications.<br />

XC2V1000 features:<br />

11,520 logic cells arranged in 5,120 CLB slices (1000K system gates)<br />

Up to 10,240 4-input LUTs and 10,240 flip-flops<br />

Block RAM (to 720K bits) and distributed RAM (to 160K bits)<br />

8 digital clock managers (DLLs)<br />

16 global clock multiplexer buffers<br />

Support for 34 selectable I/O standards with fast or slow slew rates<br />

and multiple drive strengths<br />

Additional daughter board features:<br />

Two IDT71V416L static RAM ICs – 4 Meg (256K x 16) 10ns advanced high-speed CMOS<br />

One MAX1617 SMBus temperature sensor which measures FPGA chip<br />

temperature and internal sensor temperature<br />

Optional key memory battery backup for bitstream encryption<br />

SECTION 02 FPGA DEVICE SUPPORT NANOBOARD-NB1 2004<br />

11


SECTION 02 FPGA DEVICE SUPPORT NANOBOARD-NB1 2004<br />

12<br />

CPLD <strong>Device</strong>s<br />

Xilinx ®<br />

Virtex-II Pro with SRAM<br />

<strong>Device</strong>: XC2VP7-5FG456C<br />

The Virtex ®<br />

-II Pro family contains platform FPGAs for designs that are based on<br />

IP cores and customized modules. The family incorporates multi-gigabit transceivers<br />

and PowerPC CPU blocks. It empowers complete solutions for telecommunication,<br />

wireless, networking, video, and DSP applications.<br />

XC2VP7 features:<br />

11,088 logic cells arranged in 4,928 CLB slices<br />

Up to 9,856 4-input LUTs and 9,856 flip-flops<br />

Block RAM (to 792K bits) and distributed RAM (to 154K bits)<br />

4 digital clock managers (DLLs)<br />

16 global clock multiplexer buffers<br />

Support for 32 selectable I/O standards with fast or slow slew rates<br />

and multiple drive strengths<br />

The device contains a ‘hard’ PowerPC 405 processor core, which is supported<br />

in Nexar by a complete tool-chain (TASKING Viper compiler, source level<br />

debugger, etc) that allows use of this device in FPGA-based system designs<br />

Additional daughter features:<br />

Two IDT71V416L static RAM ICs – 4 Meg (256K x 16) 10ns advanced<br />

high-speed CMOS<br />

One MAX1617 SMBus temperature sensor which measures FPGA chip<br />

temperature and internal sensor temperature<br />

Interface to two of the high speed (3.125GHz) transceivers in the Virtex-II Pro –<br />

each transceiver channel has 4 gold plated SMA coax connectors mounted along<br />

the top of the daughter board (transceivers are used with the programmable<br />

on-board Nanoboard clock that limits their speed to between 1 and 2GHz)<br />

The board comes with 8 coax connector cables and an example project that<br />

demonstrates the use of the transceivers<br />

Altera ®<br />

MAX ®<br />

3000/7000 with PLCC sockets<br />

<strong>Device</strong>: EPM7032AELC44-10<br />

The MAX ®<br />

family of devices are high-density, high performance devices based on<br />

Altera’s second-generation MAX architecture. The EEPROM-based devices operate<br />

with a 3.3-V supply voltage and provide 600 to 10,000 usable gates and counter<br />

speeds of up to 303.0 MHz, dependant on specific device.<br />

EPM7032AE features:<br />

32 macrocells<br />

2 dedicated global clocks<br />

3.3V supply voltage with 2.5 to 5V I/Os<br />

Support for 2 selectable I/O standards<br />

Additional daughter board features:<br />

The daughter board includes one 44 pin and one 84 pin PLCC socket providing<br />

support for any of the following devices: EPM3032A, EPM3064A, EPM7032S,<br />

EPM7064S, EPM7128S, EPM7160S, EPM7032AE, EPM7064AE, EPM7128AE,<br />

EPM7032B, EPM7064B, EPM7032S, EPM7064S, EPM7128S, EPM7160S.<br />

NanoBoard-NB1 2004 – LiveDesign-enabled FPGA-based development board www.altium.com/nanoboard


Xilinx ®<br />

CoolRunner ®<br />

-II<br />

<strong>Device</strong>: XC2C256-6PQ208C<br />

The Xilinx ®<br />

CoolRunner ®<br />

-II CPLDs deliver the high speed and ease of use associated<br />

with the XC9500/XL/XV CPLD family with the extremely low power versatility<br />

of the XPLA3 family in a single CPLD. Low power consumption and high-speed<br />

operation are combined into a single family that is easy to use and cost effective.<br />

XC2C256 features:<br />

256 macrocells<br />

2 separate I/O banks<br />

3 dedicated global clocks<br />

1.8V supply voltage with 1.5 to 3.3V I/Os<br />

Fast Zero Power (FZP) architecture<br />

Support for 8 selectable I/O standards<br />

Xilinx ®<br />

CoolRunner ®<br />

XPLA3<br />

<strong>Device</strong>: XCR3256XL-12PQ208C<br />

The CoolRunner ®<br />

XPLA3 (eXtended Programmable Logic Array) family of CPLDs<br />

is targeted for low power systems that include portable, handheld, and power<br />

sensitive applications. Each member of the XPLA3 family includes Fast Zero<br />

Power (FZP) design technology that combines low power and high speed.<br />

XCR3256XL features:<br />

256 macrocells<br />

4 dedicated global clocks<br />

3.3V supply voltage with 3.3 and 5V I/Os<br />

Fast Zero Power (FZP) architecture<br />

Support for 3 selectable I/O standards<br />

Xilinx ®<br />

XC9500XL <br />

<strong>Device</strong>: XC95288XL-6PQ208C<br />

The FastFLASH XC9500XL family is a 3.3V CPLD family targeted for highperformance,<br />

low-voltage applications in leading edge communications and<br />

computing systems, where high device reliability and low power dissipation<br />

is important.<br />

XC95288XL features:<br />

288 macrocells<br />

3 dedicated global clocks<br />

3.3V supply voltage with 2.5 to 5V I/Os<br />

Support for 2 selectable I/O standards<br />

Xilinx ®<br />

XC9500XV <br />

<strong>Device</strong>: XC95288XV-6PQ208C<br />

The XC9500XV family is a 2.5V CPLD family targeted for high-performance,<br />

low-voltage applications in leading edge communications and computing systems,<br />

where high device reliability and low power dissipation is important.<br />

XC95288XV features:<br />

288 macrocells<br />

4 separate I/O banks<br />

3 dedicated global clocks<br />

2.5V supply voltage with 1.8 to 3.3V I/Os<br />

Split-rail I/O structure with multiple output drive level capability<br />

SECTION 02 FPGA DEVICE SUPPORT NANOBOARD-NB1 2004<br />

13


SECTION 03 DEVICE REFERENCE GUIDE NANOBOARD-NB1 2004<br />

14<br />

<strong>Device</strong> <strong>reference</strong> <strong>guide</strong>: FPGA<br />

Vendor<br />

Family<br />

General Logic Capabilities<br />

Communications Clocks<br />

<strong>Device</strong><br />

Operating Voltage<br />

Configuration Memory (Bits)<br />

Daughter Board Available<br />

Logic Elements*<br />

Actel ProASICPlus APA075 3.3 - - 3,072 27 - - 3,072 2 - 2 180 Y<br />

Actel ProASICPlus APA150 3.3 - - 6,144 36 - - 6,144 2 - 2 180 Y<br />

Actel ProASICPlus APA300 3.3 - - 8,192 72 - - 8,192 2 - 2 180 Y<br />

Actel ProASICPlus APA450 3.3 - - 12,288 108 - - 12,288 2 - 2 180 Y<br />

Actel ProASICPlus APA600 3.3 - 21,504 126 - - 21,504 2 - 2 180 Y<br />

Actel ProASICPlus APA750 3.3 - - 32,768 144 - - 32,768 2 - 2 180 Y<br />

Actel ProASICPlus APA1000 3.3 - - 56,320 198 - - 56,320 2 - 2 180 Y<br />

Altera Cyclone EP1C3 1.5 0.63M - 2,910 59 - - 2,910 34 - 1 320 Y<br />

Altera Cyclone EP1C4 1.5 0.93M - 4,000 78 - - 4,000 129 - 2 320 Y<br />

Altera Cyclone EP1C6 1.5 1.17M - 5,980 92 - - 5,980 72 - 2 320 Y<br />

Altera Cyclone EP1C12 1.5 2.32M 12,060 239 - - 12,060 103 - 2 320 Y<br />

Altera Cyclone EP1C20 1.5 3.56M 20,060 294 - - 20,060 129 - 2 320 Y<br />

Altera Stratix EP1S10 1.5 3.53M 10,570 920 24 - 10,570 88 - 6 420 Y<br />

Altera Stratix EP1S20 1.5 5.90M - 18,460 1,669 40 - 18,460 132 - 6 420 Y<br />

Altera Stratix EP1S25 1.5 7.89M - 25,660 1,944 40 - 25,660 156 - 6 420 Y<br />

Altera Stratix EP1S30 1.5 10.38M - 32,470 3,317 48 - 32,470 164 - 10 420 Y<br />

Altera Stratix EP1S40 1.5 12.39M - 41,250 3,423 56 - 41,250 178 - 12 420 Y<br />

Altera Stratix EP1S60 1.5 17.54M - 57,120 5,215 72 - 57,120 232 - 12 420 Y<br />

Altera Stratix EP1S80 1.5 23.83M - 79,040 7,427 88 - 79,040 288 - 12 420 Y<br />

Altera Stratix GX EP1SGX10C 1.5 3.58M - 10,570 920 24 - 10,570 42 4, 8 4 420 Y<br />

Altera Stratix GX EP1SGX10D 1.5 3.58M - 10,570 920 24 - 10,570 42 4, 8 4 420 Y<br />

Altera Stratix GX EP1SGX25C 1.5 7.95M - 25,660 1,944 40 - 25,660 76 4, 8, 16 4 420 Y<br />

Altera Stratix GX EP1SGX25D 1.5 7.95M - 25,660 1,944 40 - 25,660 76 4, 8, 16 4 420 Y<br />

Altera Stratix GX EP1SGX25F 1.5 7.95M - 25,660 1,944 40 - 25,660 76 4, 8, 16 4 420 Y<br />

Altera Stratix GX EP1SGX40D 1.5 12.53M - 41,250 3,423 56 - 41,250 88 8, 20 8 420 Y<br />

Altera Stratix GX EP1SGX40G 1.5 12.53M - 41,250 3,423 56 - 41,250 88 8, 20 8 420 Y<br />

Xilinx Spartan2 XC2S15 2.5 0.2M - 432 16 - 6 384 - - 4 200 Y<br />

Xilinx Spartan2 XC2S30 2.5 0.4M - 972 24 - 14 864 - - 4 200 Y<br />

Xilinx Spartan2 XC2S50 2.5 0.6M - 1,728 32 - 24 1,536 - - 4 200 Y<br />

Xilinx Spartan2 XC2S100 2.5 0.8M - 2,700 40 - 38 2,400 - - 4 200 Y<br />

Xilinx Spartan2 XC2S150 2.5 1.1M - 3,888 48 - 54 3,456 - - 4 200 Y<br />

Xilinx Spartan2 XC2S200 2.5 1.4M 5,292 56 - 74 4,704 - - 4 200 Y<br />

Xilinx Spartan2E XC2S50E 1.8 0.6M - 1,728 32 - 24 1,536 83 - 4 320 Y<br />

Xilinx Spartan2E XC2S100E 1.8 0.9M - 2,700 40 - 37 2,400 86 - 4 320 Y<br />

Xilinx Spartan2E XC2S150E 1.8 1.1M - 3,888 48 - 54 3,456 114 - 4 320 Y<br />

Xilinx Spartan2E XC2S200E 1.8 1.4M - 5,292 56 - 73 4,704 120 - 4 320 Y<br />

Xilinx Spartan2E XC2S300E 1.8 1.9M 6,912 64 - 96 6,144 120 - 4 320 Y<br />

Xilinx Spartan2E XC2S400E 1.8 2.7M - 10,800 160 - 150 9,600 172 - 4 320 Y<br />

Xilinx Spartan2E XC2S600E 1.8 4.0M 15,552 288 - 216 13,824 205 - 4 320 Y<br />

Xilinx Spartan3 XC3S50 1.2 0.4M - 1,728 72 4 12 1,536 56 - 2 330 Y<br />

Xilinx Spartan3 XC3S200 1.2 1.0M - 4,320 216 12 30 3,840 76 - 4 330 Y<br />

Xilinx Spartan3 XC3S400 1.2 1.7M - 8,064 288 16 56 7,168 116 - 4 330 Y<br />

Xilinx Spartan3 XC3S1000 1.2 3.2M 17,280 432 24 120 15,360 175 - 4 330 Y<br />

Xilinx Spartan3 XC3S1500 1.2 5.2M - 29,952 576 32 208 26,624 221 - 4 330 Y<br />

*For Actel ProASICPlus, a logic element is the equivalent of a logic module/tile<br />

For Altera Cyclone/Stratix/Stratix GX, a logic element is defined as a 4-input LUT + register + carry chain with carry select<br />

For Xilinx Spartan-3, a logic element/cell is defined as a 4-input LUT + flip-flop<br />

For Xilinx Spartan-II/IIE, a logic element/cell is defined as a 4-input LUT + a register<br />

For Xilinx Virtex/E/II/II PRO, a logic element/cell is defined as a 4-input LUT + flip flop + carry logic<br />

Important: Verify all data in this document with the device data sheets found at the vendor website<br />

Total Block RAM Bits (K)<br />

Dedicated Multipliers<br />

(18 x 18)<br />

Total Distributed RAM Bits (K)<br />

Registers<br />

Maximum Differential<br />

I/O Pairs<br />

NanoBoard-NB1 2004 – LiveDesign-enabled FPGA-based development board www.altium.com/nanoboard<br />

Transceivers Channels<br />

Digital Clock Manager (DCM)<br />

DLL/PLL<br />

Max Clock Frequency (MHz)<br />

Phase-Shifting<br />

Frequency Synthesis<br />

Clocks<br />

Global Clock Lines<br />

No. of Supported I/O<br />

Standards<br />

Maximum Available User I/O<br />

I/O Voltage Levels<br />

Programmable Drive Strength<br />

Programmable Slew-Rate<br />

Y 4 4 158 2.5, 3.3 N Y N TQFP100, TQFP144, PQFP208, FBGA144<br />

Y 4 4 242 2.5, 3.3 N Y N TQFP100, PQFP208, PBGA456, FBGA144, FBGA256<br />

Y 4 4 290 2.5, 3.3 N Y N PQFP208, PBGA456, FBGA144, FBGA256<br />

Y 4 4 344 2.5, 3.3 N Y N PQFP208, PBGA456, FBGA144, FBGA256, FBGA484<br />

Y 4 4 454 2.5, 3.3 N Y N PQFP208, PBGA456, FBGA256, FBGA484, FBGA676<br />

Y 4 4 562 2.5, 3.3 N Y N PQFP208, PBGA456, FBGA676, FBGA896<br />

Y 4 4 712 2.5, 3.3 N Y N PQFP208, PBGA456, FBGA896, FBGA1152<br />

Y 8 10 104 1.5, 1.8, 2.5, 3.3 Y Y N 100-Pin TQFP, 144-Pin TQFP<br />

Y 8 10 301 1.5, 1.8 2.5, 3.3 Y Y N 324-Pin BGA, 400-Pin BGA<br />

Y 8 10 185 1.5, 1.8, 2.5, 3.3 Y Y N 144-Pin TQFP, 240-Pin PQFP, 256-Pin BGA<br />

Y 8 10 249 1.5, 1.8, 2.5, 3.3 Y Y N 240-Pin PQFP, 256-Pin BGA, 324-Pin BGA<br />

Y 8 10 301 1.5, 1.8, 2.5, 3.3 Y Y N 324-Pin BGA, 400-Pin BGA<br />

Y 16 26 426 1.5, 1.8, 2.5, 3.3 Y Y Y 484-Pin BGA, 672-Pin BGA, 672-Pin,BGA, 780-Pin BGA<br />

Y 16 26 586 1.5, 1.8, 2.5, 3.3 Y Y Y 484-Pin BGA, 672-Pin BGA, 672-Pin,BGA, 780-Pin BGA<br />

Y 16 26 706 1.5, 1.8, 2.5, 3.3 Y Y Y 672-Pin BGA, 672-Pin BGA, 780-Pin BGA, 1,020-Pin BGA<br />

Y 16 26 726 1.5, 1.8, 2.5, 3.3 Y Y Y 780-Pin BGA, 956-Pin BGA, 1,020-Pin BGA<br />

Y 16 26 822 1.5, 1.8, 2.5, 3.3 Y Y Y 780-Pin BGA, 956-Pin BGA, 1,020-Pin BGA, 1,508-Pin BGA<br />

Y 16 26 1,022 1.5, 1.8, 2.5, 3.3 Y Y Y 956-Pin BGA, 1,020-Pin BGA, 1,508-Pin BGA<br />

Y 16 26 1,203 1.5, 1.8, 2.5, 3.3 Y Y Y 956-Pin BGA, 1,020-Pin BGA, 1,508-Pin BGA<br />

Y 16 27 330 1.5, 1.8, 2.5, 3.3 Y Y Y 672-Pin BGA<br />

Y 16 27 330 1.5, 1.8, 2.5, 3.3 Y Y Y 672-Pin BGA<br />

Y 16 27 426 1.5, 1.8, 2.5, 3.3 Y Y Y 672-Pin BGA<br />

Y 16 27 542 1.5, 1.8, 2.5, 3.3 Y Y Y 672-Pin BGA, 1,020-Pin BGA<br />

Y 16 27 542 1.5, 1.8, 2.5, 3.3 Y Y Y 1,020-Pin BGA<br />

Y 16 27 548 1.5, 1.8, 2.5, 3.3 Y Y Y 1,020-Pin BGA<br />

Y 16 27 548 1.5, 1.8, 2.5, 3.3 Y Y Y 1,020-Pin BGA<br />

Y 4 16 86 1.5, 2.5, 3.3 Y Y N VQ100, TQ144, CS144<br />

Y 4 16 132 1.5, 2.5, 3.3 Y Y N VQ100, TQ144, CS144, PQ208<br />

Y 4 16 176 1.5, 2.5, 3.3 Y Y N TQ144, PQ208, FG256<br />

Y 4 16 196 1.5, 2.5, 3.3 Y Y N TQ144, PQ208, FG256, FG456<br />

Y 4 16 260 1.5, 2.5, 3.3 Y Y N PQ208, FG256, FG456<br />

Y 4 16 284 1.5, 2.5, 3.3 Y Y N PQ208, FG256, FG456<br />

Y 4 19 182 1.5, 1.8, 2.5, 3.3 Y Y N TQ144, PQ208, FT256<br />

Y 4 19 202 1.5, 1.8, 2.5, 3.3 Y Y N TQ144, PQ208, FT256, FG456<br />

Y 4 19 265 1.5, 1.8, 2.5, 3.3 Y Y N PQ208, FT256, FG456<br />

Y 4 19 289 1.5, 1.8, 2.5, 3.3 Y Y N PQ208, FT256, FG456<br />

Y 4 19 329 1.5, 1.8, 2.5, 3.3 Y Y N PQ208, FT256, FG456<br />

Y 4 19 410 1.5, 1.8, 2.5, 3.3 Y Y N FT256, FG456, FG676<br />

Y 4 19 514 1.5, 1.8, 2.5, 3.3 Y Y N FG456, FG676<br />

Y 8 26 124 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y N VQ100, TQ144, PQ208<br />

Y 8 26 173 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y N VQ100, TQ144, PQ208, FT256<br />

Y 8 26 264 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y N TQ144, PQ208, FT256, FG320, FG456<br />

Y 8 26 391 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y N FT256, FG320, FG456, FG676<br />

Y 8 26 487 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y N FG320, FG456, FG676<br />

continued overleaf<br />

I/O Packages<br />

Programmable Pin Termination<br />

Packages Available<br />

SECTION 03 DEVICE REFERENCE GUIDE NANOBOARD-NB1 2004<br />

15


SECTION 03 DEVICE REFERENCE GUIDE NANOBOARD-NB1 2004<br />

16<br />

<strong>Device</strong> <strong>reference</strong> <strong>guide</strong>: FPGA (continued)<br />

Vendor<br />

Family<br />

General Logic Capabilities<br />

Communications Clocks<br />

<strong>Device</strong><br />

Operating Voltage<br />

Configuration Memory (Bits)<br />

Daughter Board Available<br />

Logic Elements*<br />

Xilinx Spartan3 XC3S2000 1.2 7.7M - 46,080 720 40 320 40,960 270 - 4 330 Y<br />

Xilinx Spartan3 XC3S4000 1.2 11.3M - 62,208 1,728 96 432 55,296 312 - 4 330 Y<br />

Xilinx Spartan3 XC3S5000 1.2 13.3M - 74,880 1,872 104 520 66,560 344 - 4 330 Y<br />

Xilinx Virtex XCV50 2.5 0.5M - 1,728 32 - 24 1,728 - - 4 180 -<br />

Xilinx Virtex XCV100 2.5 0.75M - 2,700 40 - 38 2,700 - - 4 180 -<br />

Xilinx Virtex XCV150 2.5 1.0M - 3,888 48 - 54 3,888 - - 4 180 -<br />

Xilinx Virtex XCV200 2.5 1.25M - 5,292 56 - 74 5,292 - - 4 180 -<br />

Xilinx Virtex XCV300 2.5 1.65M - 6,912 64 - 96 6,912 - - 4 180 -<br />

Xilinx Virtex XCV400 2.5 2.4M - 10,800 80 - 150 10,800 - - 4 180 -<br />

Xilinx Virtex XCV600 2.5 3.45M - 15,552 96 - 216 15,552 - - 4 180 -<br />

Xilinx Virtex XCV800 2.5 4.5M - 21,168 112 - 294 21,168 - - 4 180 -<br />

Xilinx Virtex XCV1000 2.5 5.85M - 27,648 128 - 384 27,648 - - 4 180 -<br />

Xilinx Virtex2 XC2V40 1.5 0.4M - 576 72 4 8 512 44 - 4 420 Y<br />

Xilinx Virtex2 XC2V80 1.5 0.6M - 1,152 144 8 16 1,024 60 - 4 420 Y<br />

Xilinx Virtex2 XC2V250 1.5 1.7M - 3,456 432 24 48 3,072 100 - 8 420 Y<br />

Xilinx Virtex2 XC2V500 1.5 2.8M - 6,912 576 32 96 6,144 132 - 8 420 Y<br />

Xilinx Virtex2 XC2V1000 1.5 4.1M 11,520 720 40 160 10,240 216 - 8 420 Y<br />

Xilinx Virtex2 XC2V1500 1.5 5.7M - 17,280 864 48 240 15,360 264 - 8 420 Y<br />

Xilinx Virtex2 XC2V2000 1.5 7.5M - 24,192 1,008 56 336 21,504 312 - 8 420 Y<br />

Xilinx Virtex2 XC2V3000 1.5 10.5M - 32,256 1,728 96 448 28,672 360 - 12 420 Y<br />

Xilinx Virtex2 XC2V4000 1.5 15.7M - 51,840 2,160 120 720 46,080 456 - 12 420 Y<br />

Xilinx Virtex2 XC2V6000 1.5 21.9M - 76,032 2,592 144 1,056 67,584 552 - 12 420 Y<br />

Xilinx Virtex2 XC2V8000 1.5 29.1M - 104,882 3,024 168 1,456 93,184 554 - 12 420 Y<br />

Xilinx Virtex2Pro XC2VP2 1.5 1.3M - 3,168 216 12 44 2,816 100 4 4 420 Y<br />

Xilinx Virtex2Pro XC2VP4 1.5 3.0M - 6,768 504 28 94 6,016 172 4 4 420 Y<br />

Xilinx Virtex2Pro XC2VP7 1.5 4.4M 11,088 792 44 154 9,856 196 8 4 420 Y<br />

Xilinx Virtex2Pro XC2VP20 1.5 8.2M - 20,880 1,584 88 290 18,560 276 8 8 420 Y<br />

Xilinx Virtex2Pro XC2VP30 1.5 11.3M - 30,816 2,448 136 428 27,392 372 8 8 420 Y<br />

Xilinx Virtex2Pro XC2VP40 1.5 15.5M - 43,632 3,456 192 606 38,784 396 0, 12 8 420 Y<br />

Xilinx Virtex2Pro XC2VP50 1.5 19.0M - 53,136 4,176 232 738 47,232 420 0, 16 8 420 Y<br />

Xilinx Virtex2Pro XC2VP70 1.5 25.6M - 74,448 5,904 328 1,034 66,176 492 16, 20 8 420 Y<br />

Xilinx Virtex2Pro XC2VP100 1.5 33.5M - 99,216 7,992 444 1,378 88,192 572 0, 20 12 420 Y<br />

Xilinx VirtexE XCV50E 1.8 0.6M - 1,728 64 - 24 1,728 83 - 8 320 -<br />

Xilinx VirtexE XCV100E 1.8 0.8M - 2,700 80 - 38 2,700 83 - 8 320 -<br />

Xilinx VirtexE XCV200E 1.8 1.4M - 5,292 112 - 74 5,292 119 - 8 320 -<br />

Xilinx VirtexE XCV300E 1.8 1.8M - 6,912 128 - 96 6,912 137 - 8 320 -<br />

Xilinx VirtexE XCV400E 1.8 2.6M - 10,800 160 - 150 10,800 183 - 8 320 -<br />

Xilinx VirtexE XCV600E 1.8 3.8M - 15,552 288 - 216 15,552 247 - 8 320 -<br />

Xilinx VirtexE XCV1000E 1.8 6.3M - 27,648 384 - 384 27,648 281 - 8 320 -<br />

Xilinx VirtexE XCV1600E 1.8 7.9M - 34,992 576 - 486 34,992 344 - 8 320 -<br />

Xilinx VirtexE XCV2000E 1.8 9.7M - 43,200 640 - 600 43,200 344 - 8 320 -<br />

Xilinx VirtexE XCV2600E 1.8 12.3M - 57,132 736 - 794 57,132 344 - 8 320 -<br />

Xilinx VirtexE XCV3200E 1.8 15.5M - 73,008 832 - 1,014 73,008 344 - 8 320 -<br />

*For Actel ProASICPlus, a logic element is the equivalent of a logic module/tile<br />

For Altera Cyclone/Stratix/Stratix GX, a logic element is defined as a 4-input LUT + register + carry chain with carry select<br />

For Xilinx Spartan-3, a logic element/cell is defined as a 4-input LUT + flip-flop<br />

For Xilinx Spartan-II/IIE, a logic element/cell is defined as a 4-input LUT + a register<br />

For Xilinx Virtex/E/II/II PRO, a logic element/cell is defined as a 4-input LUT + flip flop + carry logic<br />

Important: Verify all data in this document with the device data sheets found at the vendor website<br />

Total Block RAM Bits (K)<br />

Dedicated Multipliers<br />

(18 x 18)<br />

Total Distributed RAM Bits (K)<br />

Registers<br />

Maximum Differential<br />

I/O Pairs<br />

NanoBoard-NB1 2004 – LiveDesign-enabled FPGA-based development board www.altium.com/nanoboard<br />

Transceivers Channels<br />

Digital Clock Manager (DCM)<br />

DLL/PLL<br />

Max Clock Frequency (MHz)<br />

Phase-Shifting<br />

Frequency Synthesis<br />

Clocks<br />

Global Clock Lines<br />

No. of Supported I/O<br />

Standards<br />

Maximum Available User I/O<br />

I/O Voltage Levels<br />

I/O Packages<br />

Programmable Drive Strength<br />

Y 8 26 565 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y N FG676, FG900<br />

Y 8 26 712 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y N FG900, FG1156<br />

Y 8 26 784 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y N FG900, FG1156<br />

- 4 15 180 1.5, 2.5, 3.3 Y Y N CS144, TQ144, PQ240, BG256, FG256<br />

- 4 15 180 1.5, 2.5, 3.3 Y Y N CS144, TQ144, PQ240, BG256, FG256<br />

- 4 15 260 1.5, 2.5, 3.3 Y Y N PQ240, BG256, BG352, FG256, FG456<br />

- 4 15 284 1.5, 2.5, 3.3 Y Y N PQ240, BG256, BG352, FG256, FG456<br />

- 4 15 316 1.5, 2.5, 3.3 Y Y N PQ240, BG352, BG432, FG456<br />

- 4 15 404 1.5, 2.5, 3.3 Y Y N HQ240, BG432, BG560, FG676<br />

- 4 15 512 1.5, 2.5, 3.3 Y Y N HQ240, BG432, BG560, FG676, FG680<br />

- 4 15 512 1.5, 2.5, 3.3 Y Y N HQ240, BG432, BG560, FG676, FG680<br />

- 4 15 512 1.5, 2.5, 3.3 Y Y N BG560, FG680<br />

Y 16 34 88 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y Y CS144, FG256<br />

Y 16 34 120 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y Y CS144, FG256<br />

Y 16 34 200 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y Y CS144, FG256, FG456<br />

Y 16 34 264 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y Y FG256, FG456<br />

Y 16 34 432 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y Y FG256, FG456, FF896, BG575<br />

Y 16 34 528 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y Y FG676, FF896, BG575<br />

Y 16 34 624 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y Y FG676, FF896, BG575, BF957<br />

Y 16 34 720 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y Y FG676, FF1152, BG728, BF957<br />

Y 16 34 912 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y Y FF1152, FF1517, BF957<br />

Y 16 34 1,104 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y Y FF1152, FF1517, BF957<br />

Y 16 34 1,108 1.2, 1.5, 1.8, 2.5, 3.0, 3.3 Y Y Y FF1152, FF1517<br />

Y 16 32 204 1.5, 1.8, 2.5, 3.3 Y Y Y FG256, FG456, FF672<br />

Y 16 32 348 1.5, 1.8, 2.5, 3.3 Y Y Y FG256, FG456, FF672<br />

Y 16 32 396 1.5, 1.8, 2.5, 3.3 Y Y Y FG456, FF672, FF896<br />

Y 16 32 564 1.5, 1.8, 2.5, 3.3 Y Y Y FG676, FF896, FF1152<br />

Y 16 32 644 1.5, 1.8, 2.5, 3.3 Y Y Y FG676, FF896, FF1152<br />

Y 16 32 804 1.5, 1.8, 2.5, 3.3 Y Y Y FG676, FF1152, FF1148<br />

Y 16 32 852 1.5, 1.8, 2.5, 3.3 Y Y Y FF1152, FF1148. FF1517<br />

Y 16 32 996 1.5, 1.8, 2.5, 3.3 Y Y Y FF1517, FF1704<br />

Y 16 32 1,164 1.5, 1.8, 2.5, 3.3 Y Y Y FF1704, FF1696<br />

- 4 19 176 1.5, 1.8, 2.5, 3.3 Y Y N CS144, PQ240, FG256<br />

- 4 19 196 1.5, 1.8, 2.5, 3.3 Y Y N CS144, PQ240, BG352, FG256<br />

- 4 19 284 1.5, 1.8, 2.5, 3.3 Y Y N CS144, PQ240, BG352, FG256, FG456<br />

- 4 19 316 1.5, 1.8, 2.5, 3.3 Y Y N PQ240, BG352, BG432, FG256, FG456<br />

- 4 19 404 1.5, 1.8, 2.5, 3.3 Y Y N PQ240, BG432, BG560, FG676<br />

- 4 19 512 1.5, 1.8, 2.5, 3.3 Y Y N HQ240, BG432, BG560, FG676, FG680, FG900<br />

- 4 19 660 1.5, 1.8, 2.5, 3.3 Y Y N HQ240, BG560, FG680, FG860, FG900, FG1156<br />

- 4 19 724 1.5, 1.8, 2.5, 3.3 Y Y N BG560, FG680, FG860, FG900, FG1156<br />

- 4 19 804 1.5, 1.8, 2.5, 3.3 Y Y N BG560, FG680, FG860, FG1156<br />

- 4 19 804 1.5, 1.8, 2.5, 3.3 Y Y N FG1156<br />

- 4 19 804 1.5, 1.8, 2.5, 3.3 Y Y N FG1156<br />

Programmable Slew-Rate<br />

Programmable Pin Termination<br />

Packages Available<br />

SECTION 03 DEVICE REFERENCE GUIDE NANOBOARD-NB1 2004<br />

17


SECTION 03 DEVICE REFERENCE GUIDE NANOBOARD-NB1 2004<br />

18<br />

<strong>Device</strong> <strong>reference</strong> <strong>guide</strong>: CPLD<br />

Vendor<br />

Family<br />

General Logic Capabilities I/O<br />

Packages<br />

<strong>Device</strong><br />

Operating Voltage<br />

Daughter Board Available<br />

Macrocells<br />

Registers<br />

Altera MAX 3000A EPM3032A 3.3 32 32 32 34 4.5, 7.5, 10 2.5, 3.3, 5.0 2 Y<br />

Altera MAX 3000A EPM3064A 3.3 64 64 32 66 4.5, 7.5, 10 2.5, 3.3, 5.0 2 Y<br />

Altera MAX 3000A EPM3128A 3.3 - 128 128 32 98 5.0, 7.5, 10 2.5, 3.3, 5.0 2 Y<br />

Altera MAX 3000A EPM3256A 3.3 - 256 256 32 161 7.5, 10 2.5, 3.3, 5.0 2 Y<br />

Altera MAX 3000A EPM3512A 3.3 - 512 512 32 208 7.5, 10 2.5, 3.3, 5.0 2 Y<br />

Altera MAX 7000AE EPM7032AE 3.3 * 32 32 32 36 4.5, 7.5, 10 2.5, 3.3, 5.0 2 Y<br />

Altera MAX 7000AE EPM7064AE 3.3 64 64 32 68 4.5, 7.5, 10 2.5, 3.3, 5.0 2 Y<br />

Altera MAX 7000AE EPM7128AE 3.3 128 128 32 100 5.0, 7.5, 10 2.5, 3.3, 5.0 2 Y<br />

Altera MAX 7000AE EPM7256AE 3.3 - 256 256 32 164 5.5, 7.5, 10 2.5, 3.3, 5.0 2 Y<br />

Altera MAX 7000AE EPM7512AE 3.3 - 512 512 32 212 7.5, 10, 12 2.5, 3.3, 5.0 2 Y<br />

Altera MAX 7000B EPM7032B 2.5 32 32 32 36 3.5, 5.0, 7.5 1.8, 2.5, 3.3 2 Y<br />

Altera MAX 7000B EPM7064B 2.5 64 64 32 68 3.5, 5.0, 7.5 1.8, 2.5, 3.3 2 Y<br />

Altera MAX 7000B EPM7128B 2.5 - 128 128 32 100 4.0, 7.5, 10 1.8, 2.5, 3.3 2 Y<br />

Altera MAX 7000B EPM7256B 2.5 - 256 256 32 164 5.0, 7.5, 10 1.8, 2.5, 3.3 2 Y<br />

Altera MAX 7000B EPM7512B 2.5 - 512 512 32 212 5.0, 7.5, 10 1.8, 2.5, 3.3 2 Y<br />

Altera MAX 7000S EPM7032S 5.0 32 32 32 36 5.0, 6.0, 7.5, 10 3.3, 5.0 2 Y<br />

Altera MAX 7000S EPM7064S 5.0 64 64 32 68 5.0, 6.0, 7.5, 10 3.3, 5.0 2 Y<br />

Altera MAX 7000S EPM7128S 5.0 128 128 32 100 6.0, 7.5, 10, 15 3.3, 5.0 2 Y<br />

Altera MAX 7000S EPM7160S 5.0 160 160 32 104 6.0, 7.5, 10 3.3, 5.0 2 Y<br />

Altera MAX 7000S EPM7192S 5.0 - 192 192 32 124 7.5, 10, 15 3.3, 5.0 2 Y<br />

Altera MAX 7000S EPM7256S 5.0 - 256 256 32 164 7.5, 10, 15 3.3, 5.0 2 Y<br />

Xilinx CoolRunner2 XC2C32 1.8 - 32 32 40 33 3, 4, 6 1.5, 1.8, 2.5, 3.3 3 Y<br />

Xilinx CoolRunner2 XC2C32A 1.8 - 32 32 40 33 3, 4, 6 1.5, 1.8, 2.5, 3.3 3 Y<br />

Xilinx CoolRunner2 XC2C64 1.8 - 64 64 40 64 4, 5, 7 1.5, 1.8, 2.5, 3.3 3 Y<br />

Xilinx CoolRunner2 XC2C64A 1.8 - 64 64 40 64 4, 5, 7 1.5, 1.8, 2.5, 3.3 3 Y<br />

Xilinx CoolRunner2 XC2C128 1.8 - 128 128 40 100 4.5, 6, 7 1.5, 1.8, 2.5, 3.3 3 Y<br />

Xilinx CoolRunner2 XC2C256 1.8 256 256 40 184 5, 6, 7 1.5, 1.8, 2.5, 3.3 3 Y<br />

Xilinx CoolRunner2 XC2C384 1.8 - 384 384 40 240 6, 7, 10 1.5, 1.8, 2.5, 3.3 3 Y<br />

Xilinx CoolRunner2 XC2C512 1.8 - 512 512 40 270 6, 7, 10 1.5, 1.8, 2.5, 3.3 3 Y<br />

Xilinx CoolRunnerXPLA3 XCR3032XL 3.3 - 32 32 48 36 5, 7.5, 10 3.3, 5.0 4 Y<br />

Xilinx CoolRunnerXPLA3 XCR3064XL 3.3 - 64 64 48 68 6, 7.5, 10 3.3, 5.0 4 Y<br />

Xilinx CoolRunnerXPLA3 XCR3128XL 3.3 - 128 128 48 108 6, 7.5, 10 3.3, 5.0 4 Y<br />

Xilinx CoolRunnerXPLA3 XCR3256XL 3.3 256 256 48 164 7.5, 10, 12 3.3, 5.0 4 Y<br />

Xilinx CoolRunnerXPLA3 XCR3384XL 3.3 - 384 384 48 220 7.5, 10, 12 3.3, 5.0 4 Y<br />

Xilinx CoolRunnerXPLA3 XCR3512XL 3.3 - 512 512 48 260 7.5, 10, 12 3.3, 5.0 4 Y<br />

Xilinx XC9500 XC9536 5.0 - 36 36 90 34 5, 6, 7.5, 10, 15 5.0 3 Y<br />

Xilinx XC9500 XC95108 5.0 - 108 108 90 108 7.5, 10, 15, 20 5.0 3 Y<br />

Xilinx XC9500 XC95144 5.0 - 144 144 90 133 7.5, 10, 15 5.0 3 Y<br />

Xilinx XC9500 XC95216 5.0 - 216 216 90 166 10, 15, 20 5.0 3 Y<br />

Xilinx XC9500 XC95288 5.0 - 288 288 90 192 10, 15, 20 5.0 3 Y<br />

Xilinx XC9500XL XC9536XL 3.3 - 36 36 90 36 5, 7.5, 10 2.5, 3.3, 5.0 3 Y<br />

Xilinx XC9500XL XC9572XL 3.3 - 72 72 90 72 5, 7.5, 10 2.5, 3.3, 5.0 3 Y<br />

Xilinx XC9500XL XC95144XL 3.3 - 144 144 90 117 5, 7.5, 10 2.5, 3.3, 5.0 3 Y<br />

Xilinx XC9500XL XC95288XL 3.3 288 288 90 192 6, 7.5, 10 2.5, 3.3, 5.0 3 Y<br />

Xilinx XC9500XV XC9536XV 2.5 - 36 36 90 36 5, 7.5 1.8, 2.5, 3.3 3 Y<br />

Xilinx XC9500XV XC9572XV 2.5 - 72 72 90 72 5, 7.5 1.8, 2.5, 3.3 3 Y<br />

Xilinx XC9500XV XC95144XV 2.5 - 144 144 90 117 5, 7.5 1.8, 2.5, 3.3 3 Y<br />

Xilinx XC9500XV XC95288XV 2.5 288 288 90 192 6, 7.5, 10 1.8, 2.5, 3.3 3 Y<br />

*Installed<br />

Important: Verify all data in this document with the device data sheets found at the vendor website<br />

Product Terms per Macrocell<br />

Maximum Available User I/O<br />

Pin-to-Pin Delay (Speed ns)<br />

NanoBoard-NB1 2004 – LiveDesign-enabled FPGA-based development board www.altium.com/nanoboard<br />

I/O Voltage Levels<br />

No. Global Clocks<br />

Programmable Slew Rate<br />

Packages Available<br />

44-Pin PLCC/TQFP<br />

44-Pin PLCC/TQFP, 100-Pin TQFP<br />

100-Pin TQFP, 144-Pin TQFP, 256-Pin BGA<br />

144-Pin TQFP, 208-Pin PQFP, 256-Pin BGA<br />

208-Pin PQFP, 256-Pin BGA<br />

44-Pin PLCC/TQFP<br />

44-Pin PLCC/TQFP, 100-Pin TQFP, 100-Pin BGA<br />

84-Pin PLCC, 100-Pin TQFP, 100-Pin BGA, 144-Pin TQFP, 256-Pin BGA<br />

100-Pin TQFP, 100-Pin BGA, 144-Pin TQFP, 208-Pin PQFP, 256-Pin BGA<br />

144-Pin TQFP, 208-Pin PQFP, 256-Pin BGA, 256-Pin BGA<br />

44-Pin PLCC/TQFP, 49-Pin BGA<br />

44-Pin TQFP, 49-Pin BGA, 100-Pin TQFP, 100-Pin BGA<br />

100-Pin TQFP, 100-Pin BGA, 144-Pin TQFP, 256-Pin BGA<br />

100-Pin TQFP, 144-Pin TQFP, 169-Pin BGA, 208-Pin PQFP, 256-Pin BGA<br />

144-Pin TQFP, 169-Pin BGA, 208-Pin PQFP, 256-Pin BGA, 256-Pin BGA<br />

44-Pin PLCC/TQFP<br />

44-Pin PLCC/TQFP, 84-Pin PLCC, 100-Pin TQFP<br />

84-Pin PLCC, 100-Pin PQFP/TQFP, 160-Pin PQFP<br />

84-Pin PLCC, 100-Pin TQFP, 160-Pin PQFP<br />

160-Pin PQFP<br />

208-Pin PQFP/RQFP<br />

PC44, VQ44, CP56<br />

PC44, VQ44, CP56<br />

PC44, VQ44, CP56, VQ100<br />

PC44, VQ44, CP56, VQ100<br />

VQ100, CP132, TQ144<br />

VQ100, CP132, TQ144, PQ208, FT256<br />

TQ144, PQ208, FT256, FG324<br />

PQ208, FT256, FG324<br />

PC44, VQ44, CS48<br />

PC44, VQ44, CS48, CP56, VQ100<br />

VQ100, CS144, TQ144<br />

TQ144, PQ208, FG256, CS280<br />

TQ144, PQ208, FT256, FG324<br />

PQ208, FT256, FG324<br />

VQ44, PC44, CS48<br />

PC84, TQ100, PQ100, PQ160<br />

TQ100, PQ100, PQ160<br />

PQ160, HQ208, BG352<br />

HQ208, BG352<br />

PC44, VQ44, CS48, VQ64<br />

PC44, VQ44, CS48, VQ64, TQ100<br />

TQ100, CS144, TQ144<br />

TQ144, PQ208, BG256, FG256, CS280<br />

PC44, VQ44, CS48<br />

PC44, VQ44, CS48, TQ100<br />

TQ100, CS144, TQ144<br />

TQ144, PQ208, FG256, CS280<br />

SECTION 03 DEVICE REFERENCE GUIDE NANOBOARD-NB1 2004<br />

19


SECTION 03 DEVICE REFERENCE GUIDE NANOBOARD-NB1 2004<br />

20<br />

<strong>Device</strong> <strong>reference</strong> <strong>guide</strong>: Configuration<br />

Vendor<br />

Family<br />

<strong>Device</strong><br />

Xilinx XC18V00 XC18V04 4M VQ44, PC44<br />

Xilinx XC18V00 XC18V02 2M VQ44, PC44<br />

Xilinx XC18V00 XC18V01 1M VQ44, PC20, SO20<br />

Xilinx XC18V00 XC18V512 512K VQ44, PC20, SO20<br />

Xilinx XCF XCF01S 1M VO20<br />

Xilinx XCF XCF02S 2M VO20<br />

Xilinx XCF XCF04S 4M VO20<br />

Xilinx XCF XCF08P 8M VO48, FS48<br />

Xilinx XCF XCF16P 16M VO48, FS48<br />

Xilinx XCF XCF32P 32M VO48, FS48<br />

Important: Verify all data in this document with the device data sheets found at the vendor website<br />

Size (bits)<br />

Packages Available<br />

NanoBoard-NB1 2004 – LiveDesign-enabled FPGA-based development board www.altium.com/nanoboard


<strong>Altium</strong> Sales and Support Centers<br />

North America<br />

<strong>Altium</strong> Inc<br />

17140 Bernardo Center Drive<br />

Suite 100<br />

San Diego, CA 92128<br />

Ph: +1 858 485 4600<br />

Fax: +1 858 485 4610<br />

Email: info.na@altium.com<br />

Germany<br />

<strong>Altium</strong> Europe GmbH<br />

Technologiepark Karlsruhe<br />

Albert-Nestler-Straße 7<br />

76131 Karlsruhe, Germany<br />

Ph: +49 (0) 721 8244 300<br />

Fax: +49 (0) 721 8244 320<br />

Email: info.de@altium.com<br />

Australia<br />

<strong>Altium</strong> Limited<br />

Level 14, 39 Murray Street<br />

Hobart TAS 7000<br />

Ph: +61 3 6231 4177<br />

Fax: +61 3 6231 4167<br />

Email: info.au@altium.com<br />

Japan<br />

<strong>Altium</strong> Japan K.K.<br />

Resona Gotanda building 7F<br />

1-23-9, Nishi-Gotanda,<br />

Shinagawa-ku Tokyo 141-0031<br />

Ph: +81 3 5436 2501<br />

Fax: +81 3 5436 2505<br />

Email: info.jp@altium.com<br />

Switzerland<br />

Protel AG<br />

(A subsidiary of <strong>Altium</strong> Limited)<br />

Unterdorfstrasse 1<br />

CH-4334 Sisseln<br />

Ph: +41 (0) 62 866 41 11<br />

Fax: +41 (0) 62 866 41 10<br />

Email: info.ch@altium.com<br />

China<br />

<strong>Altium</strong> Shanghai Representative Office<br />

Unit 13B, Hua Du Mansion<br />

No 838 Zhang Yang Road<br />

Pudong, Shanghai 200122<br />

Ph: +86 21 6876 4016<br />

Fax: +86 21 6876 4015<br />

Email: info.cn@altium.com<br />

For a full list of <strong>Altium</strong> resellers<br />

visit www.altium.com<br />

For more information about <strong>Altium</strong>’s complete range of electronics hardware and software<br />

design products visit: www.altium.com<br />

Copyright © 2004 <strong>Altium</strong> Limited.<br />

<strong>Altium</strong>, CAMtastic, CircuitStudio, Design Explorer, DXP, LiveDesign, NanoBoard, NanoTalk, Nexar, nVisage, P-CAD, Protel, Situs,<br />

TASKING, and Topological Autorouting and their respective logos are trademarks or registered trademarks of <strong>Altium</strong> Limited or its<br />

subsidiaries. AutoCAD is a registered trademark of Autodesk, Inc., Board Station and PADS are registered trademarks of Mentor<br />

Graphics Corp., CoolRunner, Spartan and Virtex are registered trademarks of Xilinx, Inc., Cyclone, MAX and Stratix are trademarks<br />

of Altera Corporation, OrCAD, OrCAD Capture, OrCAD Layout and SPECCTRA are registered trademarks of Cadence Design<br />

Systems, Inc., and Windows and Visual SourceSafe are registered trademarks of Microsoft Corporation. All other registered or<br />

unregistered trademarks <strong>reference</strong>d herein are the property of their respective owners, and no trademark rights to the same are claimed.<br />

NanoBoard-NB1 2004 – LiveDesign-enabled FPGA-based development board www.altium.com/nanoboard

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!