18.05.2013 Views

Liana Biomass and Leaf Area of a "Tierra Firme" Forest in the Rio ...

Liana Biomass and Leaf Area of a "Tierra Firme" Forest in the Rio ...

Liana Biomass and Leaf Area of a "Tierra Firme" Forest in the Rio ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Liana</strong> <strong>Biomass</strong> <strong>and</strong> <strong>Leaf</strong> <strong>Area</strong> <strong>of</strong> a "<strong>Tierra</strong> Firme" <strong>Forest</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Rio</strong> Negro Bas<strong>in</strong>, Venezuela<br />

Francis E. Putzl<br />

Section <strong>of</strong> Ecology <strong>and</strong> Systematics, Cornell University, Ithaca, New York 14850, U.S.A.<br />

ABSTRACT<br />

In evergreen tropical ra<strong>in</strong> forest, grow<strong>in</strong>g on a nutrient-poor Oxisol (lateritic soil) near San Carlos de <strong>Rio</strong> Negro, Venezuela, <strong>the</strong><br />

average total above-ground dry weight <strong>of</strong> lianas was 15.7 t ha-I which was 4.5 percent <strong>of</strong> <strong>the</strong> estimated above-ground forest<br />

biomass. The average leaf area <strong>in</strong>dex <strong>of</strong> lianas was 1.2 M2 m-2 <strong>and</strong> constituted 19 percent <strong>of</strong> total forest leaf area.<br />

In comparison to trees, liana stems are small <strong>in</strong> diameter relative to <strong>the</strong> sizes <strong>of</strong> <strong>the</strong>ir crowns. This difference <strong>in</strong> allometry occurs<br />

because lianas rely on o<strong>the</strong>r plants for support <strong>and</strong> liana stems generally have large diameter <strong>and</strong> thus efficient xylem vessels. By<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> conduct<strong>in</strong>g capacity <strong>of</strong> <strong>the</strong>ir vessels for longer periods <strong>of</strong> time than do trees, lianas are able to <strong>in</strong>crease fur<strong>the</strong>r<br />

<strong>the</strong>ir leaf biomass-stem diameter ratios. Increases <strong>in</strong> cross sectional areas <strong>of</strong> liana stems are associated with proportionately larger<br />

<strong>in</strong>creases <strong>in</strong> leaf biomass than comparable <strong>in</strong>creases <strong>in</strong> cross sectional areas <strong>of</strong> tree stems.<br />

LIANAS ARE WOODY CLIMBING PLANTS that typically rely on suggest an average for tropical forests <strong>of</strong> approximately<br />

o<strong>the</strong>r plants for mechanical support. They are <strong>of</strong>ten strik- 450 trha-' (Lieth 1975).<br />

<strong>in</strong>gly apparent <strong>in</strong> tropical forests (Spruce 1908, Richards <strong>Liana</strong> abundance <strong>and</strong> size-class distribution were es-<br />

1952, Longman <strong>and</strong> Jenik 1974), but little quantitative timated by species <strong>in</strong> 20 r<strong>and</strong>omly located 100 m2 cir<strong>in</strong>formation<br />

exists on liana abundance. The present study cular sample plots. In each plot I measured <strong>the</strong> dbh (direports<br />

liana biomass <strong>and</strong> leaf area <strong>in</strong> a "tierra firme" ameter at 1.3 m or above <strong>the</strong> buttresses) <strong>of</strong> every tree<br />

(never flooded) forest <strong>in</strong> <strong>the</strong> <strong>Rio</strong> Negro Bas<strong>in</strong> near San <strong>and</strong> liana >2 m tall, determ<strong>in</strong>ed <strong>the</strong> species <strong>of</strong> each liana,<br />

Carlos de <strong>Rio</strong> Negro, Venezuela; Jordan <strong>and</strong> Uhl (1978) <strong>and</strong> recorded <strong>the</strong> sizes <strong>of</strong> <strong>the</strong> trees upon which <strong>the</strong> lianas<br />

gave estimates <strong>of</strong> tree biomass <strong>in</strong> <strong>the</strong> same area. Data grew. <strong>Liana</strong>s


TABLE 1. <strong>Liana</strong>s used <strong>in</strong> biomass regressions.<br />

Stem<br />

diam-<br />

eter<br />

Species Family (cm)<br />

Abuta rufescens Menispermaceae 12.0<br />

Abuta rufescens Menispermaceae 8.9<br />

Apocynaceae sp. Apocynaceae 1.2<br />

Cayaponia coriaceae Cucurbitaceae 2.4<br />

Coccoloba sp. Polygonaceae 2.3<br />

Derris sp. Legum<strong>in</strong>osae 0.9<br />

Doliocarpus dentatus Dilleniaceae 8.3<br />

Doliocarpus dentatus Dilleniaceae 3.6<br />

Gnetum nodiflorum<br />

G. schwackeanum<br />

G. schwackeanum<br />

Gnetaceae<br />

Gnetaceae<br />

Gnetaceae<br />

1.2<br />

5.2<br />

8.2<br />

Icac<strong>in</strong>aceae sp. Icac<strong>in</strong>aceae 2.6<br />

Menispermaceae sp. Menispermaceae 3.4<br />

Peritassa laevigata Hippocrateaceae 9.1<br />

Peritassa laevigata Hippocrateaceae 4.1<br />

Pseudoconnarus macrophyllus Connaraceae 1.8<br />

Pseudoconnarus macrophyllus Connaraceae 2.7<br />

High liana species richness <strong>and</strong> rarity <strong>of</strong> many liana<br />

species made it impractical to develop allometric regrestwo,<br />

6 carried three, 4 carried four, 0 carried five, 3<br />

sions for each species. Consequently, I developed a mixedcarried<br />

six, <strong>and</strong> 1 carried seven lianas; compar<strong>in</strong>g <strong>the</strong><br />

species regression based on a total <strong>of</strong> 17 <strong>in</strong>dividuals repobserved<br />

between-tree distribution <strong>of</strong> lianas with Poisson<br />

resent<strong>in</strong>g <strong>the</strong> 12 most common species (Table 1).<br />

probabilities, it is clear that trees with at least one liana<br />

have a higher than r<strong>and</strong>om probability <strong>of</strong> hav<strong>in</strong>g more<br />

RESULTS AND DISCUSSION<br />

than one liana (x2 = 31.9; P < .001). Trees <strong>of</strong> some<br />

species are particularly prone to liana <strong>in</strong>festation, <strong>and</strong> sus-<br />

In 20 sample plots cover<strong>in</strong>g a total <strong>of</strong> 0.2 ha I encoun- pended lianas resemble trellises that provide ready access<br />

tered 45 species <strong>of</strong> lianas (Fig. 1). An average <strong>of</strong> 34.5 to <strong>the</strong> canopy for o<strong>the</strong>r lianas.<br />

<strong>in</strong>dividuals (SD = 9.8) <strong>of</strong> 11.4 species (SD = 2.2) grew For <strong>the</strong> purpose <strong>of</strong> predict<strong>in</strong>g total liana above-ground<br />

<strong>in</strong> each plot; 39 percent <strong>of</strong> <strong>the</strong>se were self-support<strong>in</strong>g dry weights I chose <strong>the</strong> logarithm (log,0) <strong>of</strong> basal area as<br />

(upright). Self-support<strong>in</strong>g lianas constituted 20 percent <strong>the</strong> <strong>in</strong>dependent variable because it is <strong>the</strong> most convenient<br />

(SD = 9) <strong>of</strong> <strong>the</strong> total number <strong>of</strong> woody plants


F 100<br />

log y =0.12 +0.91 log x<br />

R2 0.8185<br />

<strong>the</strong> Oxisol site <strong>in</strong> San Carlos is an Amazon caat<strong>in</strong>ga (heath)<br />

forest on a well developed Spodosol (tropaquod). This<br />

forest has a lower canopy <strong>and</strong> lower species diversity than<br />

<strong>the</strong> Oxisol site <strong>and</strong> is characterized by trees with sclerophylls<br />

<strong>and</strong> a paucity <strong>of</strong> lianas (Kl<strong>in</strong>ge <strong>in</strong> press). Davis<br />

<strong>and</strong> Richards (1934) observed a similar lack <strong>of</strong> lianas <strong>in</strong><br />

=0 _<br />

F-0~~~~~~~~~<br />

_>/<br />

_ 0<br />

0@<br />

heath forests <strong>in</strong> Guyana; Richards (1936) found a similar<br />

contrast <strong>in</strong> abundance <strong>of</strong> lianas <strong>in</strong> heath forest grow<strong>in</strong>g<br />

on white s<strong>and</strong> <strong>and</strong> <strong>in</strong> mixed forest grow<strong>in</strong>g on clay loam<br />

<strong>in</strong> Borneo. This contrast, as Richards (1952) suggests,<br />

may be due to xeric conditions <strong>in</strong> <strong>the</strong> understories <strong>of</strong> heath<br />

0~~~~<br />

forests. However, lianas are <strong>of</strong>ten common <strong>in</strong> forests which<br />

suffer pronounced dry seasons (Holdridge et al. 1971).<br />

m 0 /<br />

Low soil fertility may also partly expla<strong>in</strong> <strong>the</strong> paucity <strong>of</strong><br />

lianas <strong>in</strong> heath forests (Janzen 1974), but, surpris<strong>in</strong>gly,<br />

10 100 <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> Oxisol <strong>and</strong> <strong>of</strong> <strong>the</strong> Spodosol from San<br />

BASAL AREA LIANAS (cm2) Carlos showed little difference <strong>in</strong> <strong>the</strong> concentration <strong>of</strong> ma-<br />

FIGURE 2. Total above ground dry weight <strong>of</strong> lianas as a<br />

function <strong>of</strong> stem basal area at 1.3 m from <strong>the</strong> ground (logl0).<br />

jor nutrients. The dependence <strong>of</strong> lianas on treefall disturbances<br />

(Webb 1958, Putz 1982) suggests that <strong>the</strong> apparently<br />

lower tree mortality rates on <strong>the</strong> Spodosol (pers.<br />

obs.) may be a factor contribut<strong>in</strong>g to <strong>the</strong> lower abundance<br />

<strong>of</strong> lianas. High frequency <strong>of</strong> disturbance may be <strong>the</strong> exleaf<br />

weight ratio, weighted on <strong>the</strong> basis <strong>of</strong> species biomass planation for <strong>the</strong> super-abundance <strong>of</strong> lianas observed <strong>in</strong><br />

<strong>in</strong> <strong>the</strong> 20 sample plots, was 118 cm2 g-1. Jordan <strong>and</strong> Gabon (Hladik 1974) <strong>in</strong> a forest well known for its<br />

Uhl (1978) reported a figure <strong>of</strong> 65 cm2 g- for trees <strong>in</strong> elephants (E. G. Leigh, pers. comm.).<br />

<strong>the</strong> same forest.<br />

Allometric relationships between stem cross sectional<br />

Wood densities <strong>of</strong> <strong>the</strong> 45 liana species encountered area <strong>and</strong> leaf biomass (or leaf area) for trees <strong>and</strong> lianas<br />

varied from 0.31 to 0.95 g.cm-3. Average wood density, are very different; total dry weight <strong>of</strong> leaves <strong>in</strong>creased<br />

weighted on <strong>the</strong> basis <strong>of</strong> estimated species biomass <strong>in</strong> <strong>the</strong> much more rapidly with stem basal area <strong>in</strong> lianas than <strong>in</strong><br />

sample plots was 0.48 g-cm-3; Jordan <strong>and</strong> Uhl (1978) trees (Fig. 3). <strong>Liana</strong> stems can be small <strong>in</strong> diameter relreported<br />

a value <strong>of</strong> 0.96 g cm-3 for average tree wood ative to <strong>the</strong> amount <strong>of</strong> foliage supplied (Schenck 1892,<br />

density <strong>in</strong> <strong>the</strong> same forest. <strong>Liana</strong> abundance varies from Schimper <strong>and</strong> von Faber 1938, Schnell 1970) because<br />

forest to forest but <strong>in</strong> a "tierra firme" forest <strong>in</strong> Brazil, a lianas do not support <strong>the</strong>mselves mechanically <strong>and</strong> beseasonal<br />

evergreen forest <strong>in</strong> Thail<strong>and</strong>, <strong>and</strong> a ra<strong>in</strong> forest <strong>in</strong> cause lianas generally have very efficient xylem vessels.<br />

Ghana, lianas were similar <strong>in</strong> <strong>the</strong>ir abundance to <strong>the</strong> Ox- For a tree to avoid buckl<strong>in</strong>g under its own weight, each<br />

isol site <strong>in</strong> Venezuela (Table 2). Immediately adjacent to height or weight <strong>in</strong>crement must be balanced by a pro-<br />

TABLE 2. <strong>Biomass</strong> <strong>and</strong> leaf area <strong>in</strong>dex (LAI) <strong>of</strong> lianas <strong>and</strong> trees <strong>in</strong> several tropical forests.<br />

Total<br />

above-ground<br />

dry-weight<br />

<strong>in</strong>clud<strong>in</strong>g <strong>Liana</strong><br />

lianas dry-weight LAI<br />

Location <strong>Forest</strong> type (t ha-') (t ha-1) Trees <strong>Liana</strong>s Reference<br />

Brazil <strong>Tierra</strong> Firme 687a 46^ Kl<strong>in</strong>ge <strong>and</strong> Rodrigues<br />

1974<br />

Thail<strong>and</strong> Seasonal Evergreen 403 20 7.4 3.3 Ogawa et al. 1965<br />

Ghana Tropical Ra<strong>in</strong> 308 14 Greenl<strong>and</strong> <strong>and</strong> Kowal<br />

1960<br />

Venezuela Amazon Caat<strong>in</strong>ga 309 2.1 Kl<strong>in</strong>ge, <strong>in</strong> press<br />

Malaysia High Dipterocarp 475 9 7.3 0.7 Kato et al. 1978<br />

Venezuela <strong>Tierra</strong> Firme 351 15 5.2 1.2 Jordan <strong>and</strong> Uhl 1978;<br />

this study<br />

a Fresh-weight.<br />

<strong>Liana</strong> <strong>Biomass</strong> <strong>and</strong> Allometry 187


12<br />

10_.<br />

I-<br />

YIianas= 0 109x - 0.376<br />

0.008<br />

Ytrees =1.368 + 0.018x<br />

0.004<br />

/<br />

I<br />

I<br />

area <strong>of</strong> even large lianas is functional xylem. It is unlikely<br />

that <strong>the</strong> lack <strong>of</strong> non-conduct<strong>in</strong>g xylem is due to <strong>the</strong> lianas<br />

grow<strong>in</strong>g more rapidly <strong>in</strong> diameter than trees because <strong>the</strong><br />

average annual stem diameter growth rate <strong>of</strong> 50 canopy<br />

lianas monitored for 1.5 years <strong>in</strong> San Carlos was approximately<br />

0.5 mm. This extremely slow growth rate coupled<br />

LL<br />

8_/<br />

with <strong>the</strong> lack <strong>of</strong> heartwood formation suggests that xylem<br />

vessels <strong>in</strong> lianas ma<strong>in</strong>ta<strong>in</strong> conduct<strong>in</strong>g capacity for decades.<br />

06<br />

IL<br />

LLi<br />

J4<br />

A<br />

A<br />

A<br />

To rema<strong>in</strong> functional for such long periods <strong>of</strong> time,<br />

liana vessels ei<strong>the</strong>r do not cavitate (develop embolisms)<br />

or somehow cavitated vessels are refilled. Consider<strong>in</strong>g that<br />

most lianas grow on top <strong>of</strong> trees (i.e., <strong>in</strong> full sun) <strong>and</strong><br />

generally have large th<strong>in</strong> leaves, liana stems must expe-<br />

C] - 6<br />

02<br />

H-<br />

/A<br />

A<br />

rience high transpirational dem<strong>and</strong>s <strong>and</strong> consequently high<br />

risks <strong>of</strong> vessel cavitation. Fur<strong>the</strong>rmore, liana stems are<br />

S A<br />

<strong>of</strong>ten physically jostled about; such mechanical distur-<br />

0<br />

20 40 60 80 100<br />

BASAL AREA<br />

120 140<br />

bances may also result <strong>in</strong> vessel cavitation. Thus it seems<br />

more likely that cavitated vessels <strong>in</strong> lianas can be repaired<br />

ra<strong>the</strong>r than avoid cavitation <strong>in</strong> <strong>the</strong> first place.<br />

FIGURE 3. Total dry weight <strong>of</strong> harvested trees (triangles) <strong>and</strong> Root pressure (see Stock<strong>in</strong>g 1956 for a review) may<br />

lianas (dots) plotted aga<strong>in</strong>st stem basal area at 1.3 m from <strong>the</strong> provide <strong>the</strong> necessary force for refill<strong>in</strong>g cavitated xylem<br />

ground.<br />

vessels. The first published account <strong>of</strong> root pressure was<br />

a description <strong>of</strong> <strong>the</strong> phenomenon <strong>in</strong> grapev<strong>in</strong>es ( Vitis sp.;<br />

Hales 1727); xylem vessels <strong>in</strong> grapes are known to refill<br />

<strong>in</strong> <strong>the</strong> spr<strong>in</strong>g with water pumped up from <strong>the</strong> roots (Schoportional<br />

<strong>in</strong>crease <strong>in</strong> stem basal area (Greenhill 1881, l<strong>and</strong>er et al. 1955). Positive xylem pressures have also<br />

McMahon 1973). When xylem loses its conduct<strong>in</strong>g cabeen<br />

reported for several tropical lianas (Schol<strong>and</strong>er et al.<br />

pacity, it still serves to help mechanically support <strong>the</strong> tree; 1957, 1961). Some temperate herbs refill cavitated vesa<br />

balance is thus ma<strong>in</strong>ta<strong>in</strong>ed between requirements for<br />

sels dur<strong>in</strong>g <strong>the</strong> night when root pressure forces stem water<br />

support <strong>and</strong> supply. Xylem vessels <strong>in</strong> trees reta<strong>in</strong> <strong>the</strong>ir<br />

potential positive (Milburn <strong>and</strong> McLaughl<strong>in</strong> 1974). The<br />

conduct<strong>in</strong>g capacity for a few years at most (Zimmer- hypo<strong>the</strong>sis that root pressure serves to refill cavitated vesmann<br />

<strong>and</strong> Brown 1971); this results <strong>in</strong> a b<strong>and</strong> <strong>of</strong> consels<br />

<strong>in</strong> lianas <strong>and</strong> thus prolongs <strong>the</strong>ir functional life awaits<br />

duct<strong>in</strong>g wood (sapwood) surround<strong>in</strong>g a central core <strong>of</strong><br />

experimental exam<strong>in</strong>ation.<br />

nonconduct<strong>in</strong>g heartwood. A large portion <strong>of</strong> each growth <strong>Liana</strong>s are abundant <strong>in</strong> <strong>the</strong> tierra firme forest <strong>of</strong> San<br />

<strong>in</strong>crement <strong>in</strong> tree stems thus serves to replace noncon- Carlos de <strong>Rio</strong> Negro where <strong>the</strong>y contribute substantially<br />

duct<strong>in</strong>g vessels (Preston 1958). Because lianas rely on to total forest leaf area. Per unit cross-sectional area, liana<br />

trees for support, <strong>the</strong>ir stems need not be resistant to stems support more leaf weight than trees. This is because<br />

bend<strong>in</strong>g. Small diameter liana stems can supply water lianas generally have large diameter <strong>and</strong> long function<strong>in</strong>g<br />

<strong>and</strong> m<strong>in</strong>eral nutrients to many more leaves than tree stems<br />

xylem vessels.<br />

<strong>of</strong> similar diameter partially due to <strong>the</strong> extremely wide<br />

diameter xylem vessels found <strong>in</strong> many liana stems<br />

(Carlquist 1975, Ayensu <strong>and</strong> Stern 1964); flow rates ACKNOWLEDGMENTS<br />

<strong>in</strong>crease with <strong>the</strong> fourth power <strong>of</strong> vessel diameter (Poi- F<strong>in</strong>ancial support for this study was provided by <strong>the</strong> National<br />

seuilles's Law; Zimmermann 1978). The steepness <strong>of</strong> <strong>the</strong> Science Foundation <strong>and</strong> <strong>the</strong> Palm Society. I wish to thank P.<br />

basal-area-leaf-weight relation <strong>in</strong> lianas (Fig. 3) suggests L. Marks, C. Uhl, C. F. Jordan, <strong>and</strong> E. G. Leigh, Jr. for <strong>the</strong>ir<br />

that <strong>in</strong> contrast to trees, each diameter <strong>in</strong>crement <strong>in</strong> liana<br />

generous support <strong>and</strong> numerous helpful suggestions. Howard<br />

<strong>and</strong> Kate Clark were both gracious hosts <strong>and</strong> helpful <strong>in</strong> <strong>the</strong><br />

stems allows a proportionate <strong>and</strong> large <strong>in</strong>crease <strong>in</strong> <strong>the</strong> field. Contribution number 3845, Journal Series, Institute <strong>of</strong><br />

amount <strong>of</strong> leaf biomass supplied. Prelim<strong>in</strong>ary dye move- Food <strong>and</strong> Agricultural Sciences, University <strong>of</strong> Florida.<br />

ment experiments <strong>in</strong>dicate that much <strong>of</strong> <strong>the</strong> cross sectional<br />

LITERATURE CITED<br />

AYENSU, E. S., AND W. L. STERN. 1964. Systematic anatomy <strong>and</strong> ontogeny <strong>of</strong> <strong>the</strong> stem <strong>in</strong> Passifloraceae. Contr. U.S. Nat. Herb.<br />

34: 45-71.<br />

188 Putz


CARLQUIST, S. 1975. Ecological strategies <strong>of</strong> xylem evolution. University <strong>of</strong> California Press, Berkeley.<br />

DAVIS, T. A. W., AND P. W. RICHARDS. 1934. The vegetation <strong>of</strong> Moraballi Creek: An ecological study <strong>of</strong> a limited area <strong>of</strong><br />

tropical ra<strong>in</strong> forest. Part 2. J. Ecol. 22: 106-155.<br />

GREENHILL, G. 1881. Determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> greatest height consistent with stability that a vertical pole or mast can be made,<br />

<strong>and</strong> <strong>the</strong> greatest height to which a tree <strong>of</strong> given proportions can grow. Proc. Cambridge Phil. Soc. 4: 65-73.<br />

GREENLAND, D. J., AND J. M. L. KOWAL. 1960. Nutrient content <strong>of</strong> <strong>the</strong> moist tropical forest <strong>of</strong> Ghana. Plant <strong>and</strong> Soil 12: 154-<br />

174.<br />

HALES, S. 1727. Vegetable staticks, or an account <strong>of</strong> some statical experiments on <strong>the</strong> sap <strong>in</strong> vegetables. J. Peele, London.<br />

HEUVELDOP, J. 1977. Erste ergebnisse besl<strong>and</strong>esmeleorologischer untersuchungen im regenwald von San Carlos. Mith. Bundesforschunsanstalt<br />

fur Forst und Holzwirtschuft 115: 101-106.<br />

HLADIK, A. 1974. Importance des lianes dans la production foliare de la foret equatoriale du nord-est du Gabon. C. R. Acad.<br />

Sci. Paris 278: 2527-2530.<br />

HOLDRIDGE, L. R., W. C. GRENKE, W. H. HATHEWAY, T. LIANG, AND J. A. TosI, JR. 1971. <strong>Forest</strong> environments <strong>in</strong> tropical life<br />

zones. Pergamon Press, New York.<br />

JANZEN, D. H. 1974. Tropical blackwater rivers, animals, <strong>and</strong> mast fruit<strong>in</strong>g by <strong>the</strong> Dipterocarpaceae. Biotropica 6: 69-103.<br />

JORDAN, C. F., AND C. UHL. 1978. <strong>Biomass</strong> <strong>of</strong> a "tierra firme" forest <strong>of</strong> <strong>the</strong> Amazon Bas<strong>in</strong>. Oecol. Plant. 13: 387-400.<br />

KATO, R., Y. TADAKI, AND H. OGAWA. 1978. Plant biomass <strong>and</strong> growth <strong>in</strong>crement studies <strong>in</strong> Pasoh <strong>Forest</strong>. Malay. Nature J.<br />

30: 211-224.<br />

KLINGE, H. Studies <strong>in</strong> Amazon caat<strong>in</strong>ga forests <strong>in</strong> Sou<strong>the</strong>rn Venezuela. II. Fresh biomass composition <strong>of</strong> tree vegetation <strong>in</strong> Amazon<br />

caat<strong>in</strong>ga near San Carlos de <strong>Rio</strong> Negro. Acta Cientifica Venezolana. (In press).<br />

, AND W. W. RODRIGUES. 1974. Phytomass estimation <strong>in</strong> a central Amazonian ra<strong>in</strong> forest. <strong>Forest</strong> <strong>Biomass</strong> Studies,<br />

I.U.F.R.O. Congress 15.<br />

KNIGHT, D. H. 1975. A phytosociological analysis <strong>of</strong> species rich tropical forest on Barro Colorado Isl<strong>and</strong>, Panama. Ecol. Monogr.<br />

45: 259-284.<br />

LIETH, H. 1975. Primary production <strong>of</strong> <strong>the</strong> major vegetation units <strong>of</strong> <strong>the</strong> world. In R. H. Whittaker <strong>and</strong> H. Lieth (Eds.).<br />

Primary productivity <strong>of</strong> <strong>the</strong> biosphere. Spr<strong>in</strong>ger-Verlag, N.Y.<br />

LONGMAN, K. A., AND J. JENIK. 1974. Tropical forest <strong>and</strong> its environment. Longman, London.<br />

MCMAHON, T. 1973. Size <strong>and</strong> shape <strong>in</strong> biology. Science 179: 1201-1204.<br />

MILBURN, J. A., AND M. E. MCLAUGHLIN. 1974. Studies <strong>of</strong> cavitation <strong>in</strong> isolated vascular bundles <strong>and</strong> whole leaves <strong>of</strong> Plantago<br />

major L. New Phytol. 73: 861-87 1.<br />

MONTGOMERY, G. G., AND M. E. SUNQUIST. 1978. Habitat selection <strong>and</strong> use by two-toed <strong>and</strong> three-toed sloths. In G. G.<br />

Montgomery (Ed.). The ecology <strong>of</strong> arboreal foliovores. Smithsonian Institution Press, Wash<strong>in</strong>gton, D.C.<br />

OGAWA, H., K. YODA, K. OGINO, AND T. KIRA. 1965. Comparative ecological studies on three ma<strong>in</strong> types <strong>of</strong> forest vegetation<br />

<strong>in</strong> Thail<strong>and</strong>. II. Plant biomass. Nature <strong>and</strong> Life <strong>in</strong> Sou<strong>the</strong>ast Asia 4: 49-80.<br />

PRESTON, R. D. 1958. The ascent <strong>of</strong> sap <strong>and</strong> <strong>the</strong> movement <strong>of</strong> soluble carbohydrates <strong>in</strong>stems <strong>of</strong> higher plants. In D. H. Everett<br />

<strong>and</strong> F. S. Stone (Eds.). The structure <strong>and</strong> properties <strong>of</strong> porous materials. Butterworth, London.<br />

PUTZ, F. E. 1982. Natural history <strong>of</strong> lianas <strong>and</strong> <strong>the</strong>ir <strong>in</strong>fluences on tropical forest dynamics. Ph.D. Dissertation, Cornell University,<br />

Ithaca, New York, U.S.A.<br />

RICHARDS, P. W. 1936. Ecological observations on <strong>the</strong> ra<strong>in</strong> forest <strong>of</strong> Mount Dulit, Sarawak. Parts I <strong>and</strong> II. J. Ecol. 24: 1-37;<br />

340-360.<br />

RICHARDS, P. W. 1952. The tropical ra<strong>in</strong> forest: An ecological study. Cambridge University Press, London.<br />

ROLLET, B. 1969. La regeneration naturelle en foret dense humide sempervirente de pla<strong>in</strong>e de la Guayane Venezuelienne. Bois<br />

et For&ts des Tropiques 124: 19-38.<br />

SCHENCK, H. 1892. Beitrage zur Biologie und Anatomie der Lianen. I. Theil. Beitrage zur Biologie der Lianen. Bot. Mitt. Trop.<br />

4: 1-248.<br />

SCHIMPER, A. F. W., AND F. C. VON FABER. 1938. Pflanzengeographie auf physiologischer grundlage. 3e Aufl., le, B<strong>and</strong>, Fisher,<br />

Jena.<br />

SCHNELL, R. 1970. Introduction a la phytogeographie des pays tropicaux. Les problems generaux. Vol. I. Les flores-les structures.<br />

Gauthiers-Villars, Paris.<br />

SCHOLANDER, P. F., W. E. LOVE, AND J. W. KANWISHER. 1955. The rise <strong>of</strong> sap <strong>in</strong> tall grapev<strong>in</strong>es. Plant Physiol. 30: 93-104.<br />

R. RUUD, AND LEIVESTAD. 1957. The rise <strong>of</strong> sap <strong>in</strong> a tropical liana. Plant Physiol. 32: 1-6.<br />

H. HEINMINGSEN, AND W. GAREY. 1961. Cohesive lift <strong>of</strong> sap <strong>in</strong> <strong>the</strong> rattan v<strong>in</strong>e. Science 134: 1835-1838.<br />

SPRUCE, R. 1908. Notes <strong>of</strong> a botanist on <strong>the</strong> Amazon <strong>and</strong> Andes. Ed. by A. R. Wallace. Macmillan <strong>and</strong> Co., London. 2 Vols.<br />

STARK, N., AND M. SPRArr. 1977. Root biomass <strong>and</strong> nutrient storage <strong>in</strong> ra<strong>in</strong> forest oxisols near San Carlos de <strong>Rio</strong> Negro. Trop.<br />

Ecol. 18: 1-9.<br />

STOCKING, C. R. 1956. Root pressure. H<strong>and</strong>b. Pflanzenphysiologie 3: 583-586.<br />

UHL, C., AND P. G. MURPHY. 1981. Composition, structure <strong>and</strong> regeneration <strong>of</strong> a tierra firme forest on <strong>the</strong> Amazon Bas<strong>in</strong> <strong>of</strong><br />

Venezuella. Trop. Ecol. 22: 2 19-237.<br />

WEBB, L. J. 1958. Cyclones as an ecological factor <strong>in</strong> tropical lowl<strong>and</strong> ra<strong>in</strong> forest, North Queensl<strong>and</strong>. Aust. J. Bot. 6: 220-228.<br />

ZIMMERMANN, M. H. 1978. Structural requirements for optimal water conduction <strong>in</strong> tree stems. In P. B. Toml<strong>in</strong>son <strong>and</strong> M. H.<br />

Zimmermann (Eds.). Tropical trees as liv<strong>in</strong>g systems. Cambridge University Press, Cambridge.<br />

, AND C. L. BROWN. 1971. Trees. Structure <strong>and</strong> function. Spr<strong>in</strong>ger-Verlag, New York.<br />

<strong>Liana</strong> <strong>Biomass</strong> <strong>and</strong> Allometry 189

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!