06.06.2013 Views

HANBURY BROWN & TWISS* INTERFEROMETRY WITH ANYONS

HANBURY BROWN & TWISS* INTERFEROMETRY WITH ANYONS

HANBURY BROWN & TWISS* INTERFEROMETRY WITH ANYONS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>HANBURY</strong> <strong>BROWN</strong> & <strong>TWISS*</strong><br />

<strong>INTERFEROMETRY</strong> <strong>WITH</strong><br />

<strong>ANYONS</strong><br />

G. Campagnano , O. Zilberberg, YG, I.Gornyi D.E. Feldman and A. Potter<br />

(PRL 2012, Editor’s suggestion)<br />

G. Campagnano , O. Zilberberg, YG, I.Gornyi (to be published)<br />

*Hanbury Brown & Twiss , Nature 1956


one particle: interferometry (e.g. with AB flux)<br />

two particles: entanglement; quantum statistics<br />

(of identical particles)


Motivation: Two–particle interference<br />

S1<br />

D4<br />

D2<br />

D3<br />

D1<br />

# Photons (bosons)<br />

Electrons (fermions)<br />

See I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu,<br />

and V. Umansky, Nature 448, 333 (2007).<br />

Statistics + Entanglement<br />

S4


Hanbury Brown & Twiss with<br />

Fermions, Bosons, Classical<br />

Colliding beams of Anyons (heuristic)<br />

Aharonov-Bohm with Anyons


Fermions, Bosons, Classical particles….


S1<br />

Buttiker, Blanter<br />

r<br />

t<br />

D2<br />

D1<br />

Classical<br />

t’<br />

r’<br />

S2<br />

P(2,0) P(1,1) P(0,2)


Fermions:<br />

b<br />

⎛ D1<br />

⎞ ˆ S1<br />

⎜ ⎟=<br />

S ⎜ ⎟<br />

bD<br />

2 aS<br />

2<br />

Buttiker, Blanter<br />

⎛a⎞ ⎝ ⎠ ⎝ ⎠<br />

nˆ = b b<br />

1<br />

†<br />

D1 D1<br />

nˆ = b b<br />

2<br />

†<br />

D2 D2<br />

S1<br />

r<br />

t<br />

D2<br />

P(1,1) = Ψ nn ˆˆ Ψ = 0 a a b b b b a a 0<br />

P T R<br />

† † † †<br />

1 2 S2 S1 D1 D1 D2 D2 S1 S2<br />

2<br />

(1,1) = ( + ) =<br />

1<br />

D1<br />

t’<br />

r’<br />

S2<br />

P(2,0) P(1,1) P(0,2)<br />

Fermions 0 1 0


S1<br />

“bunching”<br />

=enhanced<br />

noise<br />

“anti-bunching”<br />

=reduced noise<br />

Buttiker, Blanter<br />

r<br />

t<br />

D2<br />

t’<br />

r’<br />

S2<br />

D1 P(2,0) P(1,1) P(0,2)<br />

Classical<br />

Bosons<br />

Fermions 0 1 0


… adding another handle: A-B flux<br />

S1<br />

ɸ<br />

D1<br />

D2<br />

S2<br />

Samuelson,Sukhorukov, Buttiker 2004<br />

I I |<br />

A + A | ⋅ | A + A |<br />

2 2<br />

D1 D2<br />

1 4 2 3<br />

A ⋅A ⋅A ⋅A<br />

* *<br />

1 4 3 2


HBT<br />

HBT with AB<br />

SUMMARY Fermions/Bosons<br />

⎧fermions<br />

⎪<br />

⎨<br />

⎪<br />

⎩bosons<br />

⎧<br />

⎪<br />

⎨<br />

⎪<br />

⎪<br />

⎩<br />

anti − bunching<br />

bunching<br />

fermions<br />

bosons<br />

φ<br />

#cos(2 π )<br />

φ<br />

0


ealization of HBT + AB<br />

Mach-Zehnder interferometer<br />

2 Mach-Zehnder interferometers


Mach-Zehnder photonic interferometer<br />

S<br />

M2<br />

BS1<br />

D2<br />

M1<br />

no back scattering<br />

BS2<br />

D1<br />

intensity (a.u.)<br />

1.0<br />

0.5<br />

0.0<br />

0<br />

1<br />

2<br />

D1<br />

phase difference ( π)<br />

3<br />

4<br />

D2<br />

5


D<br />

# 2<br />

QPC<br />

M#<br />

2<br />

# G<br />

G<br />

# 1<br />

# air bridge<br />

G<br />

# 3<br />

D<br />

# 1<br />

G<br />

# 2<br />

QPC<br />

# 1<br />

D2 S2<br />

S2 D2<br />

S1 D1<br />

# S<br />

Heiblum et al


introducing ‘two-particle’ interference<br />

Neder, Ofek,<br />

Heiblum, …


actual sample<br />

Neder, Ofek,<br />

Heiblum …<br />

Nature 2007


<strong>ANYONS</strong>– why are they non trivial?<br />

no “second quantization”<br />

(cannot assign “Klein factors”)


e<br />

iπν<br />

i −<br />

e πν<br />

KLEIN FACTORS (=statistical factors) cannot be<br />

can be assigned to ANYONIC FIELD OPERATORS


TWO WAYS TO OVERCOME THE PROBLEM:<br />

1. assign statistical flux<br />

2. Assign a Klein factor to a tunneling operator<br />

…. example anyonic Mach-Zehnder<br />

Law, Feldman, YG<br />

Feldman, YG, Kitaev, Stern


S1<br />

D2 S2<br />

S2 D2


S1<br />

D2 S2<br />

S2 D2


S1<br />

D2 S2<br />

S2 D2


S1<br />

D2 S2<br />

S2 D2


zero temp. kinetic eq.<br />

0<br />

p<br />

0<br />

p 1<br />

2<br />

p<br />

2<br />

1<br />

#qp trapped<br />

transition rates<br />

( a more detailed analysis: Keldysh)<br />

ν = 1/3<br />

Law, Feldman, YG


Hanbury Brown & Twiss with<br />

Ferrmions, Bosons, Classical<br />

Colliding beams of Anyons<br />

Aharonov-Bohm with Anyons


A CARICATURE <strong>WITH</strong> (Abelian) <strong>ANYONS</strong>


A CARICATURE <strong>WITH</strong> (Abelian) <strong>ANYONS</strong><br />

P(2,0)<br />

P(1,1)<br />

r<br />

t<br />

1<br />

(1+ cos( πν ))<br />

4<br />

1<br />

(1− cos( πν ))<br />

2<br />

t’<br />

r’<br />

P(2, 0) + P(1,1) + P(0,<br />

2) = 1<br />

⎧ 1 fermions<br />

⎪<br />

P(1,1)<br />

= ⎨ 0 bosons<br />

⎪⎩<br />

1/ 2 classical


Hanbury Brown & Twiss with<br />

Ferrmions, Bosons, Classical<br />

Colliding beams of Anyons<br />

Aharonov-Bohm with Anyons


2 anyons<br />

S1<br />

ɸ<br />

D1<br />

D2<br />

S2<br />

4<br />

Γ<br />

AHARONOV-BOHM PERIOD 3Φ0<br />

???<br />

Compare<br />

Thouless & YG


3 anyons + 3 anyons interferometry<br />

Φ periodicity<br />

0<br />

Byers-Yang<br />

S1<br />

ɸ<br />

D1<br />

D2<br />

12 th order pert. theory !<br />

S2


THE MAIN RESULT<br />

| ΓΓΓΓ | Ω<br />

I I cos(2 π / )<br />

3 3<br />

D1 D1 = 2<br />

6(| Γ A |<br />

A B C D<br />

⋅ 2 2 2 2 2<br />

+ | Γ B | + | Γ C | + | ΓD<br />

| ) γ<br />

ΦAB Φ0<br />

microscopic periodicity parameters<br />

calculated from Keldysh<br />

not 12<br />

Γ<br />

+ sign !! BOSON-LIKE !!


ingredients of the analysis<br />

3 state kinetics ( cf. Mach-Zehnder)<br />

# statistical fluxes mod(3)


ingredients of the analysis<br />

3 state kinetics ( cf. Mach-Zehnder)<br />

1- particle and 2-particle processes


One &<br />

Two<br />

Qp processes


S1<br />

ɸ<br />

D1<br />

D<br />

2<br />

S2


RATE EQUATION TREATMENT:<br />

three-state kinetics<br />

number of<br />

trapped<br />

fluxes<br />

mod(3)


ingredients of the analysis<br />

3 state kinetics ( cf. Mach-Zehnder)<br />

1- particle and 2-particle processes<br />

how to tackle 12 th order ?<br />

12 th order 8 th order


qp-electron tunneling<br />

hybrids<br />

qp<br />

electron


SUMMARY: signatures of fractional statistics<br />

boson- like<br />

boson-like<br />

12 th order 8 th order

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!