Industrial fan design and investigation by means of URANS ... - Cineca
Industrial fan design and investigation by means of URANS ... - Cineca
Industrial fan design and investigation by means of URANS ... - Cineca
You also want an ePaper? Increase the reach of your titles
YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.
FMGroup @ DIMA-SUR<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
Aless<strong>and</strong>ro CORSINI, Giovanni DELIBRA<br />
FMGroup @ DIMA-SUR<br />
www.dima.uniroma1.it<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
WHO’S WHO @ FluidMachinery Group, DIMA-SUR<br />
Marco Bassetti<br />
Domenico Borello<br />
Lucio Cardillo<br />
Aless<strong>and</strong>ro Corsini<br />
Giovanni Delibra<br />
Andrea Marchegiani<br />
Previous CFD team members (… now in industry)<br />
Carlo Iossa<br />
Filippo Menichini<br />
Ste<strong>fan</strong>o Minotti<br />
Andrea Santoriello<br />
FMGroup @ DIMA-SUR<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
Franco Rispoli<br />
Giuseppe Riccucci<br />
Rafael Saavedra @ UDEP Piura, Peru<br />
Fabrizio Sciulli<br />
Esmeralda Tuccimei<br />
Paolo Venturini<br />
CFD s<strong>of</strong>tware<br />
FEM f90 & C++ Xenios<br />
FVM f90 T-Flows<br />
FVM OpenFOAM<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
WHAT ARE WE DOING w.r.t. CFD<br />
<strong>URANS</strong>, LES <strong>and</strong> hybrid LES/RANS for heat <strong>and</strong> mass transfer & combustion<br />
Particle Tracking, Fouling <strong>and</strong> Deposition<br />
development <strong>and</strong> assessment <strong>of</strong> new models & numerical technologies<br />
computations <strong>of</strong> industrial flows, mainly for turbomachinery applications<br />
Partner Industries<br />
Faggiolati Pumps<br />
FlaktWoods Group<br />
Fieni Srl<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
<strong>Industrial</strong> flows computed with OpenFOAM<br />
• Axial flow <strong>fan</strong>s:<br />
• control <strong>of</strong> separation<br />
• operations under strong pressure fluctuations<br />
New projects<br />
• Large centrifugal <strong>fan</strong>s: rotor-stator interaction<br />
• LES <strong>of</strong> onshore caisson for Wells Turbine with Actuator Line Methodology<br />
FMGroup @ DIMA-SUR<br />
Outline<br />
Most <strong>of</strong> these projects were run on CINECA or CASPUR [*] HPC grids<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
[*] CASPUR is now part <strong>of</strong> CINECA<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Up‐front logic for CFD oriented <strong>design</strong>,<br />
where is to be located?<br />
at conceptual stage to provide hints <strong>of</strong> the basic<br />
governing flow physics<br />
e.g. biomimesis<br />
at preliminary stage to explore possbile flow<br />
configuration to exploit the selected physical<br />
mechanisms<br />
at the detailed <strong>design</strong> stage to elaborate the<br />
range <strong>of</strong> virtual proto‐types<br />
cost reduction in the R&D process<br />
less “real” proto‐types <strong>and</strong> test‐rigs<br />
larger set <strong>of</strong> explored <strong>design</strong> solutions available since the<br />
early stage <strong>of</strong> the process<br />
<strong>design</strong> solution oriented <strong>by</strong> a deeper knowledge <strong>of</strong> the<br />
underlying flow physics<br />
not just empiricism<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
from D. Jakipse, 2001<br />
CINECA - Bologna, 27 Nov. 2012
AXIAL FLOW FAN FOR TUNNEL AND METRO UNITS<br />
with<br />
FlaktWoods Group<br />
FMGroup @ DIMA-SUR<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Problem to solve<br />
<strong>Industrial</strong> <strong>fan</strong>s for tunnels in metropolitan mass-transfer systems:<br />
•need to comply with new EU legal requirements that pose strict efficiency <strong>and</strong><br />
acoustic emission limits;<br />
•need to be able to adapt to complex operating conditions such as:<br />
• smoke <strong>and</strong> hot (400°C) gas extraction in case <strong>of</strong> fire<br />
• the destabilising effects <strong>of</strong> compression <strong>and</strong> expansion pressure waves<br />
generated <strong>by</strong> the passage <strong>of</strong> the trains inside the tunnels<br />
•need to increase pressure rise <strong>and</strong> blade loading because <strong>of</strong> market request<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Problem to solve<br />
<strong>Industrial</strong> <strong>fan</strong>s for tunnels in metropolitan mass-transfer systems:<br />
•need to comply with new EU legal requirements that pose strict efficiency <strong>and</strong><br />
acoustic emission limits;<br />
•need to be able to adapt to complex operating conditions such as:<br />
• smoke <strong>and</strong> hot (400°C) gas extraction in case <strong>of</strong> fire<br />
• the destabilising effects <strong>of</strong> compression <strong>and</strong> expansion pressure waves<br />
generated <strong>by</strong> the passage <strong>of</strong> the trains inside the tunnels<br />
•need to increase pressure rise <strong>and</strong> blade loading because <strong>of</strong> market request<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Problem to solve<br />
<strong>Industrial</strong> <strong>fan</strong>s for tunnels in metropolitan mass-transfer systems:<br />
•need to comply with new EU legal requirements that pose strict efficiency <strong>and</strong><br />
acoustic emission limits;<br />
•need to be able to adapt to complex operating conditions such as:<br />
• smoke <strong>and</strong> hot (400°C) gas extraction in case <strong>of</strong> fire<br />
• the destabilising effects <strong>of</strong> compression <strong>and</strong> expansion pressure waves<br />
generated <strong>by</strong> the passage <strong>of</strong> the trains inside the tunnels<br />
•need to increase pressure rise <strong>and</strong> blade loading because <strong>of</strong> market request<br />
• stall control is a key technology for axial <strong>fan</strong> operations<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
• need to increase pressure rise <strong>and</strong> blade loading because <strong>of</strong> market request<br />
• stall control is a key technology for axial <strong>fan</strong> operations<br />
• one <strong>of</strong> the possible source <strong>of</strong> inspiration for new stall resistant solutions<br />
comes from biomimesis<br />
• Biomimesis is the examination <strong>of</strong> nature, its models, systems, processes, <strong>and</strong><br />
elements to emulate or take inspiration from in order to solve human problems.<br />
FMGroup @ DIMA-SUR<br />
Problem to solve: possible ways to solve it<br />
• Possible solution to <strong>design</strong> stall resistant <strong>fan</strong> blades: exploiting the peculiar shape<br />
<strong>of</strong> the leading edge <strong>of</strong> the flippers <strong>of</strong> the humpback whale<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
How flipper tubercles make a mercyless hunter<br />
exploiting the shape <strong>of</strong> the leading edge <strong>of</strong> the flippers <strong>of</strong> the humpback whale<br />
Corsini, A., Delibra, G., Sheard, A.G., “On the role <strong>of</strong> leading-edge bumps in the control <strong>of</strong> stall on-set in axial <strong>fan</strong> blades”, Proceedings <strong>of</strong> the FAN 2012 Conference, Senlis, France, 2012.<br />
main objective <strong>of</strong> the work was to scrutinise the performance <strong>of</strong> a sinusoidal leading<br />
edge on a cambered airfoil (NACA4415); comparison with symmetric pr<strong>of</strong>ile<br />
(NACA0015) was provided<br />
influence <strong>of</strong> the leading edge geometry at different operating conditions was studied<br />
assessment <strong>of</strong> a modified sinusoidal-shaped leading edge in terms <strong>of</strong> lift <strong>and</strong> drag<br />
performance<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
lift coefficient shows that the introduction <strong>of</strong> a sinusoidal-shaped leading<br />
edge modifies the aer<strong>of</strong>oil performance during stall:<br />
• early recovering in the aerodynamic work capability<br />
• 30% gain in lift after stall for the WHALE4415 cambered airfoil<br />
FMGroup @ DIMA-SUR<br />
How flipper tubercles make a mercyless hunter<br />
Corsini, A., Delibra, G., Sheard, A.G., “On the role <strong>of</strong> leading-edge bumps in the control <strong>of</strong> stall on-set in axial <strong>fan</strong> blades”, Proceedings <strong>of</strong> the FAN 2012 Conference, Senlis, France, 2012.<br />
Lift coefficient vs Angle <strong>of</strong> Attack<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
How flipper tubercles make a mercyless hunter<br />
the leading edge geometry directly impacted on the aer<strong>of</strong>oil velocity <strong>and</strong><br />
vorticity fields:<br />
• leading edge sinusoid peak > stabilising effect at the trailing edge<br />
• leading edge sinusoid through > separation<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
separation<br />
Pressure isolines on the suction surface<br />
NACA4415<br />
Corsini, A., Delibra, G., Sheard, A.G., “On the role <strong>of</strong> leading-edge bumps in the control <strong>of</strong> stall on-set in axial <strong>fan</strong> blades”, Proceedings <strong>of</strong> the FAN 2012 Conference, Senlis, France, 2012.<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
JFM 224<br />
Blade section ARA-D<br />
Diameter at the tip 2240 mm<br />
Blade count 16<br />
Hub-to-tip ratio 0.5<br />
hub tip<br />
Chord (mm) 143 92.5<br />
Solidity (-) 0.64 0.21<br />
Pitch angle (deg) 48 24<br />
Volume Flow Rate 150 m 3 /s<br />
Total Pressure Rise 2800 Pa<br />
Rotation speed 1500 rpm<br />
Energy consumption 0.5 MW<br />
Reynolds number, based on D tip <strong>and</strong> V tip exceeds 26M<br />
A stator is present downstream the rotor but it is not<br />
accounted for in the simulations.<br />
Equations are always solved in the relative frame <strong>of</strong><br />
reference, accounting for Coriolis <strong>and</strong> centrifugal forces<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
solver SRFSimpleFOAM<br />
(more or less)<br />
approach RANS<br />
FMGroup @ DIMA-SUR<br />
Numerical methodology<br />
model non-linear (cubic) low-Re k- (Lien et al.)<br />
cell count 4.1M (2M hexa + 2.1M tetra)<br />
average y + 1.2 (blade), 1.9 (hub & casing)<br />
domain 1 blade vane, extending 1c upstream <strong>and</strong><br />
2c downstream the rotor<br />
numerical<br />
schemes<br />
CDS (momentum)<br />
QUICK (turbulent variables)<br />
solver GAMG (pressure)<br />
CG (other eqns)<br />
tolerance: 10 -10<br />
operating<br />
points<br />
110, 130 <strong>and</strong> 150 m 3 /s<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
When the whale hits the <strong>fan</strong><br />
Design <strong>of</strong> a “whale <strong>fan</strong>” based on literature <strong>and</strong> data from<br />
isolated airfoil<br />
Sinusoidal pr<strong>of</strong>ile limited to the tip <strong>of</strong> the blade<br />
Hub was not “whaled”<br />
• The sinusoid amplitude was chosen as 3% <strong>of</strong> the chord at tip<br />
• The wavelength as 5% <strong>of</strong> the blade span<br />
• 5.5 sinusoids were used, starting with a peak at the tip<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
Q [m 3 /s] Total pressure rise [Pa]<br />
Exp JFM224 JWFM224<br />
<br />
(datum) (whale <strong>fan</strong>)<br />
110 2858 +1% 2831 2748 -3%<br />
FMGroup @ DIMA-SUR<br />
Validation <strong>of</strong> results<br />
130 2752 +2% 2798 2714 -3%<br />
150 2511 +2% 2565 2502 -2%<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Inner working <strong>of</strong> the bumps<br />
Corsini, A., Delibra, G., Sheard, A.G., “LEADING EDGE BUMPS IN VENTILATION FANS”, GT2013-94853 submitted to ASME Turbo Expo 2013, San Antonio (US)<br />
Pressure isolines on the suction surface <strong>of</strong> the blade for the investigated cases<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Inner working <strong>of</strong> the bumps<br />
Corsini, A., Delibra, G., Sheard, A.G., “LEADING EDGE BUMPS IN VENTILATION FANS”, GT2013-94853 submitted to ASME Turbo Expo 2013, San Antonio (US)<br />
whale<br />
For JFM224 isolines are aligned with the leading edge <strong>of</strong><br />
the blade <strong>and</strong> the only distortion comes from the tip, due<br />
to leakage from the pressure surface.<br />
In JWFM224 low pressure cores are generated at the<br />
trough <strong>of</strong> the sinusoid, as already occurred with an<br />
isolated pr<strong>of</strong>ile.<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Inner working <strong>of</strong> the bumps<br />
Corsini, A., Delibra, G., Sheard, A.G., “LEADING EDGE BUMPS IN VENTILATION FANS”, GT2013-94853 submitted to ASME Turbo Expo 2013, San Antonio (US)<br />
The low-pressure cores are responsible for the release<br />
from the leading edge <strong>of</strong> counter-rotating turbulent<br />
structures<br />
The straight blade <strong>of</strong> JFM224 does not generate any<br />
large-scale structure apart from the tip-leakage vortex.<br />
Such vortex in J1 case interacts with a large separation<br />
zone at the tip <strong>of</strong> the blade.<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Inner working <strong>of</strong> the bumps<br />
streamlines at 95% <strong>of</strong> the blade span<br />
In W1 the structure originates at the leading edge is<br />
counter-rotating with respect to the leakage vortex <strong>and</strong><br />
partially blocks its evolution. This lead to a complete<br />
reattachment <strong>of</strong> the flow on the suction surface<br />
streamlines at 95% <strong>of</strong> the blade span<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Inner working <strong>of</strong> the bumps<br />
turbulent structures, visualised with an iso-surface <strong>of</strong> the vorticity<br />
Corsini, A., Delibra, G., Sheard, A.G., “LEADING EDGE BUMPS IN VENTILATION FANS”, GT2013-94853 submitted to ASME Turbo Expo 2013, San Antonio (US)<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Problem to solve<br />
<strong>Industrial</strong> <strong>fan</strong>s for tunnels in metropolitan mass-transfer systems:<br />
•need to comply with new EU legal requirements that pose strict efficiency <strong>and</strong><br />
acoustic emission limits;<br />
•need to be able to adapt to complex operating conditions such as:<br />
• smoke <strong>and</strong> hot (400°C) gas extraction in case <strong>of</strong> fire<br />
• the destabilising effects <strong>of</strong> compression <strong>and</strong> expansion pressure waves<br />
generated <strong>by</strong> the passage <strong>of</strong> the trains inside the tunnels<br />
•need to increase pressure rise <strong>and</strong> blade loading because <strong>of</strong> market request<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
solver modified version <strong>of</strong> pisoFOAM<br />
(to account for Coriolis <strong>and</strong> centrifugal effects)<br />
approach LES<br />
model one equation (k) for SGS (Davidson)<br />
cell count 9M hexa<br />
average y + 1.2 (blade), 1.9 (hub&casing)<br />
domain 1 blade vane, extending 1c upstream <strong>and</strong> 1c<br />
downstream the rotor<br />
numerical<br />
schemes<br />
FMGroup @ DIMA-SUR<br />
CDS (momentum)<br />
QUICK (turbulent variables)<br />
solver GAMG (pressure) <strong>and</strong> CG (other eqns)<br />
tolerance: 10 -10<br />
operating<br />
point<br />
150 m 3 /s<br />
Numerical methodology<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
Inflow average velocity components<br />
p ±1000 Pa<br />
Ubulk ±4.8%<br />
tramp 1.3x10-5 s<br />
tpulse 4 ms<br />
Pressure increase/drop characterisation<br />
FMGroup @ DIMA-SUR<br />
Simulation <strong>of</strong> pressure pulses<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
A B C<br />
FMGroup @ DIMA-SUR<br />
Evolution <strong>of</strong> c p for compression wave<br />
A: beginning <strong>of</strong> compression<br />
B: middle<br />
C: end <strong>of</strong> compression tip<br />
D. Borello - A. Corsini – G. Delibra – F. Rispoli – A. G. Sheard., “Numerical Investigation On The<br />
Aerodynamics Of A Tunnel Ventilation Fan During Pressure Pulses”, submitted to ETC 2013<br />
mid<br />
hub<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
• sudden change <strong>of</strong> the pressure<br />
distribution during the pulse (B)<br />
• capability <strong>of</strong> the rotor to adapt to<br />
quickly the new mass flow rate<br />
(C)<br />
• pressure isolines on the suction<br />
surface show a clear 90 deg<br />
turning (B)<br />
• during pressure pulse (B) isolines<br />
are more radial <strong>and</strong> give<br />
evidence <strong>of</strong> a stall from the hub<br />
to 2/3 <strong>of</strong> the span, while the tip<br />
section is still capable <strong>of</strong><br />
contributing to the rotor pressure<br />
developing capability.<br />
CINECA - Bologna, 27 Nov. 2012
A: beginning <strong>of</strong> expansion<br />
B: middle<br />
C: end <strong>of</strong> compression<br />
A B C<br />
FMGroup @ DIMA-SUR<br />
Evolution <strong>of</strong> c p for expansion wave<br />
D. Borello - A. Corsini – G. Delibra – F. Rispoli – A. G. Sheard., “Numerical Investigation On The<br />
Aerodynamics Of A Tunnel Ventilation Fan During Pressure Pulses”, submitted to ETC 2013<br />
tip<br />
mid<br />
hub<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
• As the pulse hits the blade (B) the<br />
rotor adjust to the drop <strong>of</strong> mass<br />
flow increasing the work <strong>and</strong> so<br />
the lift over the blade<br />
• In this case the distribution <strong>of</strong><br />
pressure isolines remains<br />
“vertical”, yet a strong load <strong>of</strong> the<br />
tip <strong>of</strong> the blade is recognisable<br />
• Distributions <strong>of</strong> the pressure<br />
coefficient show that midspan <strong>and</strong><br />
tip sections are over-loaded<br />
CINECA - Bologna, 27 Nov. 2012
Evolution <strong>of</strong> blade loading during pressure pulse<br />
time evolution <strong>of</strong> the integral values <strong>of</strong> forces<br />
on the blade during the increase (top) or<br />
drop (bottom) <strong>of</strong> mass flow rate<br />
Compression wave:<br />
D. Borello - A. Corsini – G. Delibra – F. Rispoli – A. G. Sheard., “Numerical<br />
Investigation On The Aerodynamics Of A Tunnel Ventilation Fan During<br />
Pressure Pulses”, submitted to ETC 2013<br />
FMGroup @ DIMA-SUR<br />
as the blade stalls, the peripheral component<br />
<strong>of</strong> force is almost null, whereas the axial<br />
component shows a sudden change <strong>of</strong> sign<br />
Expansion wave:<br />
overall overload <strong>of</strong> the blade, as the value <strong>of</strong><br />
both axial <strong>and</strong> peripheral forces doubles<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Next<br />
more snow<br />
more whales<br />
more <strong>fan</strong>s (lot <strong>of</strong> fun)<br />
<strong>and</strong> something new…<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
LES <strong>of</strong> a Oscillating Water Column device coupled with Wells turbine for<br />
Mediterranean operations simulated with Actuator Line Methodology (CINECA,<br />
IscraB)<br />
Numerical tools: hasNotANameYetFoam<br />
FMGroup @ DIMA-SUR<br />
A glimpse <strong>of</strong> the future (i)<br />
Blade pr<strong>of</strong>ile (rotor) NACA0015<br />
Dtip 500 mm<br />
Dhub 375 mm<br />
OWC chamber<br />
Solidity 0.64<br />
Wells turbine<br />
Blade count 7+2x<br />
3600 rpm<br />
U bulk (axial): 9.1 m/s<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012
Numerical computations <strong>of</strong> the performance <strong>of</strong> Technopal centrifugal <strong>fan</strong> (FlaktWoods<br />
Group), with particle dispersion, deposit <strong>and</strong> erosion<br />
Numerical tools: pimpleDyMFoam (for <strong>URANS</strong>, possibly hybrid LES/RANS)<br />
pTrack (in-house FEM code for particle tracking, erosion <strong>and</strong> fouling)<br />
Technopal <strong>fan</strong> assembly<br />
FMGroup @ DIMA-SUR<br />
A glimpse <strong>of</strong> the future (ii)<br />
Impeller inlet diameter 1804 mm<br />
Impeller outlet diameter 3440 mm<br />
Volute outlet diameter 5600 mm<br />
Impeller blade width 400 mm<br />
Volute width 200 mm<br />
Impeller blade count 11<br />
Rotational frequency 900 rpm<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
Technopal impeller rendering<br />
CINECA - Bologna, 27 Nov. 2012
FMGroup @ DIMA-SUR<br />
Thanks<br />
<strong>Industrial</strong> <strong>fan</strong> <strong>design</strong> <strong>and</strong> <strong>investigation</strong> <strong>by</strong> <strong>means</strong> <strong>of</strong><br />
<strong>URANS</strong> <strong>and</strong> LES based numerical methods<br />
giovanni.delibra@uniroma1.it<br />
CINECA - Bologna, 27 Nov. 2012