14.06.2013 Views

The Effect of Zr-Doping and Crystallite Size on the Mechanical ...

The Effect of Zr-Doping and Crystallite Size on the Mechanical ...

The Effect of Zr-Doping and Crystallite Size on the Mechanical ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-<str<strong>on</strong>g>Doping</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Crystallite</str<strong>on</strong>g> <str<strong>on</strong>g>Size</str<strong>on</strong>g><br />

<strong>on</strong> <strong>the</strong> <strong>Mechanical</strong> Properties<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 Rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> Anatase<br />

V<strong>on</strong> der Fakultät für Biologie, Chemie und Geowissenschaften der<br />

Universität Bayreuth<br />

Zur Erlangung der Würde eines Doktors der Naturwissenschaften<br />

– Dr. rer. nat. –<br />

Genehmigte Dissertati<strong>on</strong><br />

Vorgelegt v<strong>on</strong> Dipl.-Ing.<br />

Eva Susanne Holbig<br />

Bayreuth, 2008


Prüfungsausschuß:<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. J. Breu, Universität Bayreuth (Vorsitzender)<br />

PD Dr. Dubrovinsky, Universität Bayreuth (1. Gutachter)<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. G. Müller, Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er ISE Würzburg<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. H. Samuel, Universität Bayreuth<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. F. Langenhorst, Universität Bayreuth<br />

(2. Gutachter)<br />

Tag der Einreichung: 19.12.2007<br />

Tag des wissenschaftlichen Kolloquiums: 29.04.2008<br />

2


C<strong>on</strong>tent<br />

C<strong>on</strong>tent<br />

Zusammenfassung ............................................................................................................ 4<br />

Summary........................................................................................................................... 8<br />

I. Introducti<strong>on</strong> ................................................................................................................. 12<br />

1. TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 Polymorphs .................................................................................... 12<br />

1.1. Polymorphs <str<strong>on</strong>g>of</str<strong>on</strong>g> Titania ..................................................................................... 12<br />

1.2. Polymorphs <str<strong>on</strong>g>of</str<strong>on</strong>g> Zirc<strong>on</strong>ia................................................................................... 15<br />

1.3. Energetics <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanocrystalline <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 Phases ..................................... 16<br />

2. TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 Phase Diagram...................................................................................... 19<br />

3. Technical Applicati<strong>on</strong>s........................................................................................... 21<br />

4. Tuning <str<strong>on</strong>g>of</str<strong>on</strong>g> Elastic Properties ................................................................................... 23<br />

5. Computati<strong>on</strong>al Work .............................................................................................. 27<br />

6. Motivati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Outline........................................................................................... 29<br />

II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong> .................................................................................... 30<br />

1. High Pressure Experimental Techniques................................................................ 30<br />

1.1. Hydro<strong>the</strong>rmal Experiments ............................................................................. 31<br />

1.2. Pist<strong>on</strong> Cylinder Technique .............................................................................. 32<br />

1.3. Multi Anvil Technique .................................................................................... 34<br />

1.4. Diam<strong>on</strong>d Anvil Cell ........................................................................................ 36<br />

2. Analytical Methods ................................................................................................ 38<br />

2.1. Powder X-Ray Diffracti<strong>on</strong> .............................................................................. 38<br />

2.2. X-Ray Absorpti<strong>on</strong> Spectroscopy..................................................................... 40<br />

2.3. Raman Spectroscopy ....................................................................................... 41<br />

2.4. Electr<strong>on</strong> Microprobe........................................................................................ 41<br />

2.5. Transmissi<strong>on</strong> Electr<strong>on</strong> Microscopy................................................................. 42<br />

3. Ab-initio Calculati<strong>on</strong>s ............................................................................................ 43<br />

4. Compressing Materials: Equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State ............................................................. 44<br />

III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong> ............................................................................................. 46<br />

1. Syn<strong>the</strong>sis <str<strong>on</strong>g>and</str<strong>on</strong>g> Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Starting Materials............................................. 46<br />

1.1. Sol-Gel Syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 Powders ....................................................... 46<br />

1.2. Syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> Microscale Anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> Nanoscale Rutile Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 .............. 55<br />

2. Experimental Results <strong>on</strong> <strong>the</strong> System TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 to 10 GPa ................................... 57<br />

3. Compressi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> Rutile........................................................ 60<br />

3.1. Compressi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped Anatase .................................................. 61<br />

3.2. Compressi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 Nanoscale Rutile........................................... 75<br />

3.3. Compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped microscale rutile ..................................... 77<br />

4. Pressure Induced Transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> Rutile...................................... 80<br />

4.1. Multi Anvil Experiments <strong>on</strong> Phase Transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> Rutile to TiO2II<br />

................................................................................................................................ 80<br />

4.2. DAC Experiments <strong>on</strong> Phase Transiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped Anatase ....................... 84<br />

4.3. DAC Experiments <strong>on</strong> Phase Transiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Rutile .......................................... 86<br />

5. Computati<strong>on</strong>al Ground States <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 ................................................................... 90<br />

IV. C<strong>on</strong>clusi<strong>on</strong>s .............................................................................................................. 96<br />

Acknowledgments ........................................................................................................ 101<br />

Bibliography ................................................................................................................. 102<br />

Erklärung ...................................................................................................................... 115<br />

3


Zusammenfassung<br />

Zusammenfassung<br />

TiO2 und das System TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2<br />

TiO2 ist ein wichtiges technologisches Material, das als weißes Farbpigment<br />

eingesetzt wird, sowie als Halbleiter mit großer Energielücke in farbst<str<strong>on</strong>g>of</str<strong>on</strong>g>fsensibilisierten<br />

Solarzellen, zur Photokatalyse und bei photochemischen Prozessen der<br />

Energieumw<str<strong>on</strong>g>and</str<strong>on</strong>g>lung Verwendung findet. Die bekanntesten Phasen sind Rutil<br />

(P42/mnm, Z=2), Anatas (I4/amd, Z=4) und Brookit (Pcab, Z=8), desweiteren gibt es<br />

eine Reihe v<strong>on</strong> metastabilen Phasen mit geringer Dichte. Kalorimetrische Messungen an<br />

microskaligen Proben klärten die Reihenfolge v<strong>on</strong> der <strong>the</strong>rmodynamisch stabilsten zur<br />

unstabilen Phase wie folgt auf: Rutil → Brookit → Anatas. Bei einer Verringerung der<br />

Korngröße in den nm-Bereich ändern sich die relativen Stabilitäten, so dass Rutil die<br />

stabile Phase im µm-Bereich ist, Brookit bei mittlerer Korngröße und Anatas im nm-<br />

Bereich.<br />

Hochdruckpolymorphe v<strong>on</strong> TiO2 werden mit steigendem Druck immer dichter<br />

und die Koordinati<strong>on</strong>szahl v<strong>on</strong> Ti-O steigt v<strong>on</strong> 6 beim Rutil-typen über 7 beim<br />

Baddeleyit-typen (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2, P21/c, Z=4) und 8 bei der kubischen Struktur, die entweder in<br />

der Fluorit- (Fm-3m, Z=4) oder Pyritstruktur (FeS2, Pa3, Z=4) vorliegt, zu 9 beim<br />

Cotunnit-typen (PbCl2, Pnma, Z=4). Mehrere Hochdruckpolymorphe zeichnen sich<br />

durch ihre große Härte und interessante optische Eigenschaften aus und sind daher<br />

potentielle K<str<strong>on</strong>g>and</str<strong>on</strong>g>idaten für einen technischen Einsatz.<br />

Das Phasendiagramm des Systems TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 besitzt die folgenden<br />

Mischkristalle: Baddeleyit und tetrag<strong>on</strong>ales <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 enthalten bis zu 9 bzw. 20 mol%<br />

TiO2. Es gibt verschiedene (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>,Ti)2O4 Phasen mit einem Gehalt an TiO2 v<strong>on</strong> zwischen<br />

42 und 67 mol%. Rutil baut mit stiegender Temperatur bis zu ~15 mol% <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 bei<br />

1600°C ein. Experimente bei hohen Drücken und Temperaturen wurden unter<br />

Verwendung der Stempel-Zylinder-Presse und der Viel-Stempel-Presse durchgeführt.<br />

Abgeschreckte Proben v<strong>on</strong> Rutil, Anatas und deren Hochdruckmodifikati<strong>on</strong>en, die bei<br />

Drücken bis zu 10 GPa syn<strong>the</strong>tisiert wurden, zeigen einen Gehalt v<strong>on</strong> ≤10 mol% <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2,<br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>-gedopte TiO2 Ausgangsmaterialien haben daher die chemische Zusammensetzung<br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2.<br />

4


Zusammenfassung<br />

Experimentelle Methoden dieser Studie<br />

Das Kompressi<strong>on</strong>verhalten v<strong>on</strong> Anatas und Rutil mit der Zusammensetzung v<strong>on</strong><br />

TiO2 und Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 wurde anh<str<strong>on</strong>g>and</str<strong>on</strong>g> v<strong>on</strong> Proben mit Kristallitgrößen im µm- und nm-<br />

Bereich untersucht. Kompressi<strong>on</strong>sexperimente wurden in der Diamant-Stempelzelle<br />

durchgeführt und die Proben wurden mit Hilfe v<strong>on</strong> in-situ Röntgendiffraktometrie,<br />

Röntgenabsorpti<strong>on</strong> und Ramanspektroskopie charakterisiert. Eine Sol-gel Methode<br />

wurde zur Herstellung v<strong>on</strong> Ausgangsmaterialien Tix:<str<strong>on</strong>g>Zr</str<strong>on</strong>g>1-xO2 mit x = 0.00, 0.10, 0.25,<br />

0.33, 0.50, 0.67, 0.75, 0.90 und 1.0 entwickelt. Bei den Syn<strong>the</strong>seprodukten mit x=0.90<br />

und 1.0 h<str<strong>on</strong>g>and</str<strong>on</strong>g>elte es sich um nanoskaligen Anatas, der bei 1000°C zu mikroskaligem<br />

Rutil gesintert werden k<strong>on</strong>nte. In Hydro<strong>the</strong>rmal-Experimenten wurde außerdem nano-<br />

Anatas Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 verwended um mikroskaligen <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-gedopten Rutil zu syn<strong>the</strong>tisieren.<br />

Kompressi<strong>on</strong>sverhalten v<strong>on</strong> Anatas<br />

Experimente zeigen, dass Anatas weniger kompressibel wird, wenn die<br />

Kristallitgröße in den nm-Bereich herabgesetzt oder das Material mit <str<strong>on</strong>g>Zr</str<strong>on</strong>g> gedopt wird.<br />

Gefittete Zust<str<strong>on</strong>g>and</str<strong>on</strong>g>sgleichungen (EoS) der zweiten Ordung (K0’=4) weissen einen<br />

Kompressi<strong>on</strong>smodul v<strong>on</strong> micro-Anatas v<strong>on</strong> K0=178(1) GPa [1] bzw. K0=179(2) GPa<br />

[2] auf. Das nanokristalline Äquivalent hat einen höheren Wert v<strong>on</strong> zwischen<br />

K0=237(3) GPa [3] bis K0=243(3) GPa [4]. In dieser Studie wurde das<br />

Kompressi<strong>on</strong>smodul v<strong>on</strong> micro-Anatas Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2 zu K0=195(38) GPa ermittelt,<br />

vergleichbar zu ungedoptem Material. Der höchste Wert wurde für nano-Anatas<br />

Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2 gefunden, hier ist K0=258(8) GPa. Der Einbau v<strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> reduziert daher die<br />

Kompressibilität, obwohl <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 Polymorphe generell kompressibler sind als die<br />

dazugehörigen TiO2 Phasen.<br />

Für <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-gedopten Anatas zeigten Röntgendiffrakti<strong>on</strong>sanalysen eine signifikante<br />

Änderung des Kompressi<strong>on</strong>sverhaltens bei einem Druck >4 GPa, hervorgerufen durch<br />

die Wirkung v<strong>on</strong> deviatorischem Streß der während der Kompressi<strong>on</strong> im nano-Material<br />

entsteht. Berechnungen an Superzellen mit verschiedenen Abständen v<strong>on</strong> benachbarten<br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>-Atomen legten die Vermutung nahe, dass es zur Cluster-Bildung v<strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-Atomen im<br />

5


Zusammenfassung<br />

(Ti,<str<strong>on</strong>g>Zr</str<strong>on</strong>g>)O2 Anatas kommt. Die resultierende Gitterstörung kann das veränderte<br />

Kompresi<strong>on</strong>sverhalten weiterhin beeinflussen.<br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>-gedopter nano-Aanatas wird während wiederholter Zyklen v<strong>on</strong> Kompressi<strong>on</strong><br />

und Druckentlastung steifer. Während das Kompressi<strong>on</strong>smodul der ersten Kompressi<strong>on</strong><br />

bei 211 GPa lag, zeigte die Probe nach Druckentlastung bei wiederholter<br />

Komprimierung ein Kompressi<strong>on</strong>smodul v<strong>on</strong> 249 GPa. Es liegt die Vermutung nahe,<br />

dass partielle druckinduzierte Amorphisierung eine entschiedende Rolle für die<br />

Versteifung des Materials spielt.<br />

Microanatas TiO2 transformiert bei der Komprimierung zur MI Phase. Der<br />

Transformati<strong>on</strong>sdruck v<strong>on</strong> Anatase zu MI steigt, wenn die Kristallitgröße in den nm-<br />

Berich fällt, und zwar v<strong>on</strong> 12 GPa bei microscaligem Material zu 18 GPa bei Anatas mit<br />

einer Kristallitgröße v<strong>on</strong> 12 nm. Noch kleinere Kristallite w<str<strong>on</strong>g>and</str<strong>on</strong>g>eln sich in eine amorphe<br />

Phase bei Drücken v<strong>on</strong> 20–24 GPa. Der Einbau v<strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> wirkt sich nicht auf den<br />

Transformati<strong>on</strong>sdruck aus.<br />

Kompressi<strong>on</strong>sverhalten v<strong>on</strong> Rutil<br />

Experimentelle Ergebnisse zeigen, dass weder der Einbau v<strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>, noch die<br />

Reduzierung der Kristalitgröße in den nm-Bereich einen Einfluss auf das<br />

Kompressi<strong>on</strong>sverhalten v<strong>on</strong> Rutil haben. Die Kompressi<strong>on</strong>smodule v<strong>on</strong> nano- und<br />

microskaligem TiO2 sowie nanoskaligem Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2 wurden mit 230(20), 251(12)<br />

und 203(13) GPa bestimm, Unterschiede dieser Werte sind geringer als die Toleranzen<br />

der Messungen. Diese Ergebnisse untertscheiden sich v<strong>on</strong> denen v<strong>on</strong> Anatas, für den die<br />

Reduzierung der Kristallitegröße und der Einbau v<strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> zu einer Erhöhung des<br />

Komrpessi<strong>on</strong>modules führten.<br />

Experimente zeigen, dass der Transformati<strong>on</strong>sdruck v<strong>on</strong> Rutil TiO2 zur MI<br />

Phase mit einer Erniedrigung der Kristallitgröße steigt. In Experimenten, in denen kein<br />

Druckmedium benutzt wurde, liegt der Transfomrati<strong>on</strong>sdruck bei 12 GPa für<br />

microskaligen Rutil, bei 18 GPa für Rutil mit einer Kristallitgröße v<strong>on</strong> 15 nm und bei<br />

22 GPa für eine Probe mit 10 nm. Der Einbau v<strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> hat keinen Einfluss auf den<br />

Transformati<strong>on</strong>sdruck.<br />

6


Zusammenfassung<br />

Berechnungen des Grundzust<str<strong>on</strong>g>and</str<strong>on</strong>g>es v<strong>on</strong> TiO2<br />

Ab-initio Berechnungen der elektr<strong>on</strong>ischen Struktur mit Hilfe der<br />

Dichtefunkti<strong>on</strong>al<strong>the</strong>orie wurden durchgeführt, um die Energien der Grundzustände der<br />

TiO2 Phasen Rutil, Anatas, Brookit, TiO2II und der MI-Phase zu berechnen. Dazu<br />

wurden die projector augmented wave und die linear augmented plane wave Methoden<br />

angew<str<strong>on</strong>g>and</str<strong>on</strong>g>t, zusammen mit der lokalen Dichte Näherung (LDA) und zwei Typen der<br />

generalisierten Gradienten Näherung (GGA) zum Austausch-Korrelati<strong>on</strong>spotential der<br />

Elektr<strong>on</strong>en. Es wurden die Formulierungen v<strong>on</strong> Perdew, Bunge und Enzerh<str<strong>on</strong>g>of</str<strong>on</strong>g>f (PBE),<br />

sowie durch Wu und Cohen (WC) verwendet.<br />

Die Null-Druck Volumina wurden in LDA Berechnungen um 3% kleiner, und in<br />

PBE und WC Berechnungen um 8 und 0.4% größer als experimentelle Werte bestimmt.<br />

Die stabile Phase bei 0 GPa ist Baddeleyite in den LDA Berechnungen und Anatas in<br />

GGA Berechnungen. Dies steht im Gegensatz zu experimentellen Ergebnissen, die Rutil<br />

als die stabile Modifikati<strong>on</strong> zeigen. Rutil besitzt jedoch die höchste Energie in LDA<br />

Berechnugnen und mittlere Energie in GGA Berechnungen.<br />

7


Summary<br />

Summary<br />

TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> System TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2<br />

TiO2 is an important technological material, used as white pigment, as wide<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap semic<strong>on</strong>ductor in electrochemical dye solar cells, for photocatalysis <str<strong>on</strong>g>and</str<strong>on</strong>g> in<br />

photochemical energy-c<strong>on</strong>versi<strong>on</strong> processes. <str<strong>on</strong>g>The</str<strong>on</strong>g> most abundant phases are rutile<br />

(P42/mnm, Z=2), anatase (I4/amd, Z=4) <str<strong>on</strong>g>and</str<strong>on</strong>g> brookite (Pcab, Z=8). In additi<strong>on</strong>, <strong>the</strong>re are<br />

a number <str<strong>on</strong>g>of</str<strong>on</strong>g> metastable low density modificati<strong>on</strong>s. Calorimetric measurements showed<br />

that <strong>the</strong> sequence for microscale material from <strong>the</strong> stable to <strong>the</strong> less stable phase is:<br />

rutile → brookite → anatase. Several phase stability crossovers occur with <strong>the</strong> decrease<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crystallite size while rutile is <strong>the</strong> stable phase for big crystallite sizes, brookite is<br />

stable for intermediate sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase for smallest crystals.<br />

High pressure polymorphs <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 are subsequently denser <str<strong>on</strong>g>and</str<strong>on</strong>g> have increasing<br />

coordinati<strong>on</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti-O with increasing pressure, ranging from 6 for <strong>the</strong> rutile type<br />

over 7 for <strong>the</strong> baddeleyite type (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2, P21/c, Z=4) <str<strong>on</strong>g>and</str<strong>on</strong>g> 8 for <strong>the</strong> cubic structure, which is<br />

fluorite type (Fm-3m, Z=4) or pyrite type (FeS2, Pa3, Z=4), up to 9 for <strong>the</strong> cotunnite<br />

type (PbCl2, Pnma, Z=4). Several high pressure polymorphs are suggested as c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate<br />

materials for technological applicati<strong>on</strong>s because <strong>the</strong>y are very hard <str<strong>on</strong>g>and</str<strong>on</strong>g> have interesting<br />

optical properties.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 shows <strong>the</strong> following solid soluti<strong>on</strong>s.<br />

Baddeleyite <str<strong>on</strong>g>and</str<strong>on</strong>g> tetrag<strong>on</strong>al <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 c<strong>on</strong>tain up to ~9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 mol% TiO2, respectively,<br />

several distinct phases (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>,Ti)2O4 with <strong>the</strong> compositi<strong>on</strong>al range <str<strong>on</strong>g>of</str<strong>on</strong>g> 42 to 67 mol% exist<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 rutile can be doped with up to ~15 mol% <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 at 1600°C. Experiments at high<br />

pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures performed here, using pist<strong>on</strong> cylinder <str<strong>on</strong>g>and</str<strong>on</strong>g> multi anvil presses<br />

showed that quenched samples <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile, anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> high pressure polymorphs<br />

syn<strong>the</strong>sized at up to 10 GPa adopt ≤10 mol% <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2, <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped TiO2 starting materials<br />

<strong>the</strong>refore have <strong>the</strong> compositi<strong>on</strong> Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2.<br />

8


Summary<br />

Experimental Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> this Study<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile was studied for TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 starting materials with crystallite size in <strong>the</strong> micro- <str<strong>on</strong>g>and</str<strong>on</strong>g> also nanometer<br />

range. Compressi<strong>on</strong> experiments were carried out in <strong>the</strong> diam<strong>on</strong>d anvil cell <str<strong>on</strong>g>and</str<strong>on</strong>g> samples<br />

were characterized by in-situ X-ray diffracti<strong>on</strong>, X-ray absorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Raman<br />

spectroscopic measurements. A sol-gel route was developed for <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> starting<br />

materials Tix:<str<strong>on</strong>g>Zr</str<strong>on</strong>g>1-xO2 with x=0.00, 0.10, 0.25, 0.33, 0.50, 0.67, 0.75, 0.90 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.0.<br />

Product <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> syn<strong>the</strong>sis with x=0.90 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.0 was nanaoscale anatase, which was<br />

annealed at 1000°C to microscale rutile. In hydro<strong>the</strong>rmal experiments, nanoscale<br />

anatase Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 was used as starting material for <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> microscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>doped<br />

anatase.<br />

Compressi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Anatase<br />

Experiments show that anatase becomes less compressible when <strong>the</strong> crystallite<br />

size is decreased to <strong>the</strong> nanometer scale <str<strong>on</strong>g>and</str<strong>on</strong>g> when <strong>the</strong> material is <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped. Sec<strong>on</strong>d<br />

order EoS fits (K0’=4) resulted in a bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> microscale anatase <str<strong>on</strong>g>of</str<strong>on</strong>g> K0=178(1)<br />

GPa [1] <str<strong>on</strong>g>and</str<strong>on</strong>g> K0=179(2) GPa [2]. <str<strong>on</strong>g>The</str<strong>on</strong>g> nanoscale counterpart shows much higher values<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> K0=237(3) GPa [3] <str<strong>on</strong>g>and</str<strong>on</strong>g> K0=243(3) GPa [4]. In this study, it was found that<br />

microscale anatase Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2 has K0=195(38) GPa, which is comparable to undoped<br />

material. Largest values were found for nanoscale anatase Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2 with K0=258(8)<br />

GPa. <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doping thus reduces <strong>the</strong> compressibility <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoanatase, even though <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2<br />

polymorphs are more compressible than <strong>the</strong> corresp<strong>on</strong>ding TiO2 forms.<br />

For <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoanatase, XRD analysis showed a significant change in<br />

compressi<strong>on</strong> behavior at pressures >4 GPa, suggested as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> deviatoric<br />

stresses during experimental compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nanoscale material. Computati<strong>on</strong>s <strong>on</strong><br />

supercells with different distances <str<strong>on</strong>g>of</str<strong>on</strong>g> neighboring <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-atoms suggested cluster formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> in <strong>the</strong> (Ti,<str<strong>on</strong>g>Zr</str<strong>on</strong>g>)O2 anatase. <str<strong>on</strong>g>The</str<strong>on</strong>g> resulting structural distorti<strong>on</strong>s can fur<strong>the</strong>r augment<br />

<strong>the</strong> change in compressi<strong>on</strong> behavior.<br />

9


Summary<br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoanatase becomes stiffer up<strong>on</strong> multiple compressi<strong>on</strong> cycles. While<br />

<strong>the</strong> bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first compressi<strong>on</strong> was 211 GPa, after <strong>the</strong> sample was<br />

decompressed, <strong>the</strong> sec<strong>on</strong>d compressi<strong>on</strong> showed a bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> 249 GPa. We suggest<br />

that partial pressure induced amorphizati<strong>on</strong> plays an important role for <strong>the</strong> observed<br />

stiffening.<br />

Microscale anatase TiO2 transforms to <strong>the</strong> MI phase up<strong>on</strong> compressi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

transiti<strong>on</strong> pressure increases with a decreasing crystallite size from 12 GPa for<br />

microscale material to 18 GPa for anatase with crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 nm. Smaller<br />

particles transform to an amorphous phase at pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> 20–24 GPa. <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doping does<br />

not seem to vary <strong>the</strong> transformati<strong>on</strong> pressure.<br />

Compressi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Rutile<br />

Experimental results show that nei<strong>the</strong>r <strong>the</strong> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> nor <strong>the</strong> decrease<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crystallite size to <strong>the</strong> nanometer range modifies <strong>the</strong> bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile. Values for<br />

micro- <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoscale TiO2 as well as nanoscale Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2 were 230(20), 251(12)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 203(13) GPa, <strong>the</strong> differences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> values lie within <strong>the</strong> error <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fits. <str<strong>on</strong>g>The</str<strong>on</strong>g>se<br />

results are different from those <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase, where a decreasse <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallite size <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

doping with <str<strong>on</strong>g>Zr</str<strong>on</strong>g> leads to an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bulk modulus.<br />

Experiments show that <strong>the</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile TiO2 to <strong>the</strong> MI<br />

phase increases with decreasing crystallite size. In experiments with no use <str<strong>on</strong>g>of</str<strong>on</strong>g> a pressure<br />

medium, <strong>the</strong> transformati<strong>on</strong> pressure is 12 GPa for microscale rutile, 18 GPa for rutile<br />

with crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 nm <str<strong>on</strong>g>and</str<strong>on</strong>g> >22 GPa for 10 nm. <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doping has no effect <strong>on</strong> <strong>the</strong><br />

transformati<strong>on</strong> pressure. However, <strong>the</strong> transformati<strong>on</strong> pressure is lowered when<br />

silic<strong>on</strong>oil is used as pressure medium.<br />

Computati<strong>on</strong>al Ground States <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2<br />

Ab-initio all-electr<strong>on</strong> density functi<strong>on</strong>al electr<strong>on</strong>ic structure simulati<strong>on</strong>s <strong>on</strong> <strong>the</strong><br />

ground state energetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TiO2 phases rutile, anatase, brookite, TiO2II <str<strong>on</strong>g>and</str<strong>on</strong>g> MI-phase<br />

were performed using <strong>the</strong> projector augmented wave <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> linear augmented plane<br />

wave methods al<strong>on</strong>g with local density approximati<strong>on</strong> (LDA) <str<strong>on</strong>g>and</str<strong>on</strong>g> two types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

10


Summary<br />

generalized gradient approximati<strong>on</strong>s (GGA), using <strong>the</strong> formulati<strong>on</strong>s by Perdew, Bunge<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Enzerh<str<strong>on</strong>g>of</str<strong>on</strong>g>f, referred to as PBE, <str<strong>on</strong>g>and</str<strong>on</strong>g> by Wu <str<strong>on</strong>g>and</str<strong>on</strong>g> Cohen, reffered to as WC.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> zero pressure volumes are predicted smaller by


I. Introducti<strong>on</strong><br />

I. Introducti<strong>on</strong><br />

1. TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 Polymorphs<br />

Titania, TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> zirc<strong>on</strong>ia, <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2, exhibit a series <str<strong>on</strong>g>of</str<strong>on</strong>g> high pressure polymorphs<br />

with comm<strong>on</strong> crystallographic features, shown also for o<strong>the</strong>r simple oxides with <strong>the</strong><br />

formula AO2. With increasing pressure <strong>the</strong> sequent polymorphs are denser <str<strong>on</strong>g>and</str<strong>on</strong>g> have an<br />

increasing coordinati<strong>on</strong> number (CN), which is <strong>the</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen lig<str<strong>on</strong>g>and</str<strong>on</strong>g>s around<br />

<strong>the</strong> cati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> coordinati<strong>on</strong> numbers range from 6 for <strong>the</strong> rutile type (TiO2, P42/mnm,<br />

Z=2) over 7 for <strong>the</strong> baddeleyite type (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2, P21/c, Z=4, here referred to as MI) <str<strong>on</strong>g>and</str<strong>on</strong>g> 8 for<br />

<strong>the</strong> fluorite type (Fm-3m, Z=4) or pyrite type, respectively (FeS2, Pa3, Z=4) up to 9 for<br />

<strong>the</strong> cotunnite type (PbCl2, Pnma, Z=4). Fur<strong>the</strong>rmore, a 10-fold coordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> postcotunnite<br />

structure was found for PbCl2 <str<strong>on</strong>g>and</str<strong>on</strong>g> SnCl2 <str<strong>on</strong>g>and</str<strong>on</strong>g> was proposed also for AO2<br />

oxides with heavy cati<strong>on</strong> at very high pressure [5,6]. Am<strong>on</strong>g <strong>the</strong> oxides that undergo <strong>the</strong><br />

pressure transiti<strong>on</strong> sequence fully or partly from CN=6 to 9 are: TiO2 [2,7-24], <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2<br />

[25-36], HfO2 [5,28,33,37-44], PbO2 [5] <str<strong>on</strong>g>and</str<strong>on</strong>g> SiO2 [45-49]. Because SiO2 is an<br />

important phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Earth’s crust <str<strong>on</strong>g>and</str<strong>on</strong>g> mantle, its transiti<strong>on</strong> sequence is <str<strong>on</strong>g>of</str<strong>on</strong>g> great<br />

interest for geosciences. TiO2 served as an analogous system in <strong>the</strong> search for potential<br />

post-stishovite silica phases. It was chosen because <strong>the</strong> phase transiti<strong>on</strong>s occur at lower<br />

pressures compared to <strong>the</strong> SiO2 system [22,50].<br />

1.1. Polymorphs <str<strong>on</strong>g>of</str<strong>on</strong>g> Titania<br />

At ambient c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong> stable form <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 is rutile, but also anatase (I4/amd,<br />

CN=6) <str<strong>on</strong>g>and</str<strong>on</strong>g> brookite (Pcab, CN=6) exist as metastable forms, as well as modificati<strong>on</strong>s<br />

with <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> β-VO2 (C2/m [51]), holl<str<strong>on</strong>g>and</str<strong>on</strong>g>ite (I4Im) [52] <str<strong>on</strong>g>and</str<strong>on</strong>g> ramsdellite (Pbnm)<br />

[53]. Rutile, anatase, brookite, TiO2II (Pbcn, CN=6, α-PbO2 structure) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> β-VO2 –<br />

structured phase occur naturally as accessory minerals in sediments, metamorphic,<br />

plut<strong>on</strong>ic <str<strong>on</strong>g>and</str<strong>on</strong>g> volcanic rocks, derived from crust <str<strong>on</strong>g>and</str<strong>on</strong>g> mantle [54]. Anatase, brookite <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong> β-VO2 – structured phase c<strong>on</strong>vert to rutile during prograde metamorphism. Up<strong>on</strong><br />

decompressi<strong>on</strong>, TiO2II is a comm<strong>on</strong> quench-product <str<strong>on</strong>g>of</str<strong>on</strong>g> high pressure polymorphs.<br />

12


I. Introducti<strong>on</strong><br />

Because rutile is resistant to wea<strong>the</strong>ring, it is inherited by metasediments, making <strong>the</strong>m<br />

<strong>the</strong> predominant host for Ti al<strong>on</strong>g with o<strong>the</strong>r trace elements [54].<br />

Figure 1. Phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 from diam<strong>on</strong>d anvil cell experiments. Shown are <strong>the</strong> pressure <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

temperature c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stable phases, <strong>the</strong> known metastable phases are named in <strong>the</strong> inset. <str<strong>on</strong>g>The</str<strong>on</strong>g> rutile–<br />

TiO2II <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2II–MI phase boundaries are after refs. [22,24,55,56]. <str<strong>on</strong>g>The</str<strong>on</strong>g> P-T c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<strong>the</strong>sis for<br />

OI [9], C-TiO2 [18], <str<strong>on</strong>g>and</str<strong>on</strong>g> OII [11] are shown by <strong>the</strong> shaded areas. <str<strong>on</strong>g>The</str<strong>on</strong>g> arrows indicate <strong>the</strong> pressure ranges<br />

over which P-V data were retrieved for OI (19-36 GPa), OII (30-80 GPa), <str<strong>on</strong>g>and</str<strong>on</strong>g> C-TiO2 (9-48 GPa) during<br />

compressi<strong>on</strong> (right pointing arrow) <str<strong>on</strong>g>and</str<strong>on</strong>g> decompressi<strong>on</strong> (left pointing arrow). After Swamy et al. [57].<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 high pressure polymorphs was determined experimentally<br />

as follows (Figure 1): TiO2II (orthorhombic) was found up<strong>on</strong> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase at<br />

pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.6-7 GPa [2,16,17,58]. <str<strong>on</strong>g>The</str<strong>on</strong>g> phase is quenchable to ambient c<strong>on</strong>diti<strong>on</strong>s.<br />

Anatase, rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2II transform to MI at ~12 GPa [1,2,11,14,17,55]. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MI to OI was found at 30 GPa by laser heating to 1300-1500 K <str<strong>on</strong>g>and</str<strong>on</strong>g> at<br />

48 GPa OI transforms to a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> OII <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> cubic phase [18]. A transformati<strong>on</strong><br />

from MI to OII was found at 60 GPa under laser heating to 1260-1800 K. OII could be<br />

compressed to at least 80 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> transforms to MI at 25 GPa up<strong>on</strong> decompressi<strong>on</strong>. A<br />

rapid quench at 77 K, using liquid nitrogen, preserved OII to room pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> low<br />

13


I. Introducti<strong>on</strong><br />

temperatures [11]. Up<strong>on</strong> decompressi<strong>on</strong> at ambient temperatures, <strong>the</strong> transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

OII to MI was found at 20 GPa, <strong>the</strong> cubic phase could be followed to below 9 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

below 7 GPa MI transforms to a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2II <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile [18]. <str<strong>on</strong>g>The</str<strong>on</strong>g> pressures <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

phase transformati<strong>on</strong>s are different for compressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decompressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> vary in<br />

different studies. <str<strong>on</strong>g>The</str<strong>on</strong>g> reas<strong>on</strong> for that is most likely that in many cases phase<br />

transformati<strong>on</strong>s to <strong>the</strong> <strong>the</strong>rmodynamically stable phase were hindered kinetically <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>on</strong>ly <strong>the</strong> metastable phases were observed. <str<strong>on</strong>g>The</str<strong>on</strong>g> apparent pressure-temperature phase<br />

diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 is presented in Figure 1, c<strong>on</strong>taining transformati<strong>on</strong> pressures as well as<br />

pressure ranges in which <strong>the</strong> phases were observed.<br />

In <strong>the</strong> following chapters, <strong>the</strong> phases anatase, rutile, TiO2II <str<strong>on</strong>g>and</str<strong>on</strong>g> MI will play an<br />

important role <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir structures are described in more detail in <strong>the</strong> following (Figure<br />

2). In anatase, each Ti is surrounded by an octahedr<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> six oxygen atoms. Four edges<br />

per octahedr<strong>on</strong> are shared, building a “zig-zag” chain parallel to a as well as b. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

chains are stacked antiparallel to <strong>the</strong> c axis. Rutile c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO6 octahedra <str<strong>on</strong>g>and</str<strong>on</strong>g> two<br />

opposing edges <str<strong>on</strong>g>of</str<strong>on</strong>g> each octahedr<strong>on</strong> are shared, forming linear chains parallel to <strong>the</strong> cdirecti<strong>on</strong>.<br />

In <strong>the</strong> a-b-plane, <strong>the</strong> chains are linked via corner-sharing oxygen atoms. In<br />

TiO2II, <strong>the</strong> octahedra make up a network similar to rutile but are distorted. <str<strong>on</strong>g>The</str<strong>on</strong>g> structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> MI can be seen as an even fur<strong>the</strong>r distorted versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2II, exhibiting a seven-fold<br />

coordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ti-atom.<br />

Figure 2: Elementary cells <str<strong>on</strong>g>and</str<strong>on</strong>g> polyhedra <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 anatase, rutile, TiO2II <str<strong>on</strong>g>and</str<strong>on</strong>g> MI. Oxygen atoms are shown<br />

in red, titanium atoms <str<strong>on</strong>g>and</str<strong>on</strong>g> polyhedra are shown in blue.<br />

14


I. Introducti<strong>on</strong><br />

1.2. Polymorphs <str<strong>on</strong>g>of</str<strong>on</strong>g> Zirc<strong>on</strong>ia<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 polymorph stable at ambient pressures is m<strong>on</strong>oclinic baddeleyite. It is<br />

a widespread trace mineral, occurring in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> rock types like meteorites, tektites,<br />

mafic <str<strong>on</strong>g>and</str<strong>on</strong>g> ultramafic rocks, alkaline intrusi<strong>on</strong>s, kimberlites <str<strong>on</strong>g>and</str<strong>on</strong>g> metacarb<strong>on</strong>ates [59]. At<br />

ambient pressure, it transforms to a tetrag<strong>on</strong>al phase above 1200°C with space group<br />

P42/nmc <str<strong>on</strong>g>and</str<strong>on</strong>g> CN=7, which is a distorted versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cubic fluorite-structured phase,<br />

occurring above 2372°C. <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 melts at 2680°C [60,61] <str<strong>on</strong>g>and</str<strong>on</strong>g> under pressure baddeleyite<br />

is stable up to 10 GPa, polymorphs at higher pressures are OI (10-25 GPa) <str<strong>on</strong>g>and</str<strong>on</strong>g> OII (25-<br />

42 GPa). At higher pressures, ano<strong>the</strong>r orthorhombic phase OIII was found but <strong>the</strong><br />

structure could not be determined [44]. <str<strong>on</strong>g>The</str<strong>on</strong>g> values given by Ohtaka et al. [34] for <strong>the</strong><br />

stabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> high pressure polymorphs differ str<strong>on</strong>gly from <strong>the</strong> <strong>on</strong>es above:<br />

Baddeleyite


I. Introducti<strong>on</strong><br />

1.3. Energetics <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanocrystalline <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 Phases<br />

In microscale particles, <strong>on</strong>ly a negligible amount <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms is situated <strong>on</strong> <strong>the</strong><br />

surface, whereas <strong>the</strong> bulk mass <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms is surrounded by o<strong>the</strong>r bulk atoms. With a<br />

decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crystallite size to <strong>the</strong> nanometer range, <strong>the</strong> relative amount <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms <strong>on</strong><br />

<strong>the</strong> surface increases. Atoms <strong>on</strong> <strong>the</strong> surface exhibit a surface structure, different from<br />

<strong>the</strong> bulk material due to unsaturated b<strong>on</strong>dings <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> atoms. Energetics are <strong>the</strong>refore<br />

very different compared to <strong>the</strong> bulk mass <str<strong>on</strong>g>and</str<strong>on</strong>g> in most cases, H2O is adsorbed <strong>on</strong> <strong>the</strong><br />

surface, making <strong>the</strong> energetics even more complicated. Figure 4 shows a nanometer<br />

scale particle with a core <str<strong>on</strong>g>of</str<strong>on</strong>g> bulk material <str<strong>on</strong>g>and</str<strong>on</strong>g> a surface area as <strong>the</strong> part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> particle<br />

within hailing distance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface, defined to be 0.5 nm. With decreasing particle<br />

size, <strong>the</strong> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms near <strong>the</strong> surface increases, <str<strong>on</strong>g>and</str<strong>on</strong>g> at a certain point, all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

atoms bel<strong>on</strong>g to <strong>the</strong> surface shell. As will be seen later, <strong>the</strong> mechanical properties <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

phase stabilities are str<strong>on</strong>gly affected by a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crystallite size to <strong>the</strong><br />

nanometer range.<br />

Figure 4: Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> volume for nanoscale particle as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> particle diameter, showing<br />

<strong>the</strong> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> volume within 0.5nm <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> surface for a spherical particle. From ref. [62].<br />

1.3.1 Energetics <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanocrystalline Titania<br />

Relative phase stabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> micro- <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoscale rutile, brookite <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase<br />

were intensively studied by Ranade et al. [63], using high temperature oxide melt drop<br />

soluti<strong>on</strong> calorimetry. In that method, two samples are each dropped into a molten oxide,<br />

such as lead borate, sodium molybdate or alkali borate. <str<strong>on</strong>g>The</str<strong>on</strong>g> difference in observed<br />

16


I. Introducti<strong>on</strong><br />

enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> reactants <str<strong>on</strong>g>and</str<strong>on</strong>g> products gives <strong>the</strong> heat <str<strong>on</strong>g>of</str<strong>on</strong>g> formati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> stable form <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2<br />

microscale materials is rutile, having <strong>the</strong> lowest enthalpy. Relative to bulk rutile, bulk<br />

brookite is 0.71±0.38 kJ/mol [64] <str<strong>on</strong>g>and</str<strong>on</strong>g> bulk anatase is 2.61±0.41 kJ/mol higher in<br />

enthalpy [63]. Experiments <strong>on</strong> nanoscale materials revealed that rutile has <strong>the</strong> highest<br />

surface enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.2±0.2 J/m², brookite has a medium value <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.0±0.2 J/m² <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

anatase has <strong>the</strong> lowest value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.4±0.1 J/m². <str<strong>on</strong>g>The</str<strong>on</strong>g> closely balanced energetics lead to<br />

several phase stability crossovers occurring with <strong>the</strong> decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crystallite size<br />

(compare Figure 5). <str<strong>on</strong>g>The</str<strong>on</strong>g> stable phase (with lowest enthalpy) is rutile for big crystallite<br />

sizes, brooktie for intermediate sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase for smallest crystallite sizes.<br />

Figure 5: Enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> micro- <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoscale TiO2 phases rutile, brookite <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase with respect to<br />

microscale rutile versus surface area. Data were obtained by high temperature oxide melt drop soluti<strong>on</strong><br />

calorimetry using 3Na2O·4MoO3 as a solvent. <str<strong>on</strong>g>The</str<strong>on</strong>g> darker line segments indicate <strong>the</strong> energetically stable<br />

phases. From ref. [63].<br />

Because <strong>the</strong> MI phase is not quenchable, calorimetric measurements can not be<br />

performed <strong>on</strong> <strong>the</strong> material. <str<strong>on</strong>g>The</str<strong>on</strong>g> following calorimetric data <strong>on</strong> TiO2II are reported. For<br />

anatase-rutile a difference in enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.24 kcal/mole was measured [65] <str<strong>on</strong>g>and</str<strong>on</strong>g> for<br />

TiO2II-rutile a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.76 kcal/mole [66]. We can <strong>the</strong>refore estimate that <strong>the</strong><br />

sequence for bulk material from <strong>the</strong> stable to <strong>the</strong> less stable phase is: rutile → brookite<br />

→ TiO2II → anatase. Taking into account that TiO2II is a comm<strong>on</strong> decompressi<strong>on</strong><br />

product in experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> occurs naturally as nanocrystallites (e.g. [67]), we can<br />

fur<strong>the</strong>rmore estimate very roughly that it would plot with a slope comparable to anatase<br />

in Figure 5.<br />

17


I. Introducti<strong>on</strong><br />

1.3.2. Energetics <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanocrystalline Zirc<strong>on</strong>ia<br />

Calorimetric measurements <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 baddeleyite as well as <strong>the</strong> tetrag<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

amorphous phases [68] show that for bulk material, <strong>the</strong> stable modificati<strong>on</strong> is<br />

baddeleyite. <str<strong>on</strong>g>The</str<strong>on</strong>g> enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> m<strong>on</strong>oclinic to tetrag<strong>on</strong>al transiti<strong>on</strong> was estimated to be<br />

10±1 kJ/mol <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> amorphizati<strong>on</strong> enthalpy to be 34±2 kJ/mole higher than for bulk<br />

baddeleyite. <str<strong>on</strong>g>The</str<strong>on</strong>g> m<strong>on</strong>oclinic form has <strong>the</strong> highest surface enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.2 J/m², <strong>the</strong><br />

tetrag<strong>on</strong>al phase has intermediate value <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.9 J/m² <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> amorphous phase 0.5 J/m²<br />

[68]. Energy crossovers for nanocrystalline zirc<strong>on</strong>ia enthalpies are shown in Figure 6.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> stable phase (with lowest enthalpy) is m<strong>on</strong>oclinic zirc<strong>on</strong>ia for big crystallite sizes,<br />

<strong>the</strong> tetrag<strong>on</strong>al phase for intermediate sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> amorphous phase for smallest<br />

crystallite sizes.<br />

Figure 6: Enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> micro- <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 phases with respect to <strong>the</strong> microscale m<strong>on</strong>oclinic<br />

baddeleyite, showing several phase stability crossovers <str<strong>on</strong>g>of</str<strong>on</strong>g> nanocrystalline zirc<strong>on</strong>ia. Data were obtained by<br />

high temperature oxide melt drop soluti<strong>on</strong> calorimetry using lead borate as solvent. <str<strong>on</strong>g>The</str<strong>on</strong>g> darker line<br />

segments indicate <strong>the</strong> energetically stable phases. From ref. [68].<br />

18


I. Introducti<strong>on</strong><br />

2. TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 Phase Diagram<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 is well studied up to a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.8 GPa<br />

[69-71] <str<strong>on</strong>g>and</str<strong>on</strong>g> a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 1600°C [72-76], results are presented in Figure 7. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

authors describe <strong>the</strong> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>oclinic <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 (baddeleyite), c<strong>on</strong>taining up to ~9<br />

mol% TiO2. <str<strong>on</strong>g>The</str<strong>on</strong>g> tetrag<strong>on</strong>al <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 phase, stable at temperatures greater than ~1060°C can<br />

adopt much higher amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2, up to 20 mol%. <str<strong>on</strong>g>The</str<strong>on</strong>g> authors distinguish between<br />

an ordered phase <str<strong>on</strong>g>of</str<strong>on</strong>g> (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>,Ti)2O4 at a temperature below 1160°C <str<strong>on</strong>g>and</str<strong>on</strong>g> a disordered <strong>on</strong>e at<br />

higher temperatures. <str<strong>on</strong>g>The</str<strong>on</strong>g> ordered phase c<strong>on</strong>tains 64.9 mol% TiO2 at 800°C to 60.4<br />

mol% TiO2 at 1060°C. A jump occurs to ~49 mol% TiO2 at 1080°C, coinciding with a<br />

remarkable change in <strong>the</strong> b-dimensi<strong>on</strong>, yielding at a sec<strong>on</strong>d, distinct ordered phase. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

disordered phase, stable at temperatures >1160°C c<strong>on</strong>tains 50 mol% TiO2 at 1160°C<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> a bigger range <str<strong>on</strong>g>of</str<strong>on</strong>g> compositi<strong>on</strong>s at higher temperatures with 42 to 67 mol% TiO2 at<br />

1600°C. <str<strong>on</strong>g>The</str<strong>on</strong>g> mineral srilankite (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>Ti2O6 [77]) represents a specific compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this<br />

solid soluti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> TiO2 phase is rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> its <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-incorporati<strong>on</strong> increases linearly with<br />

temperature up to ~15 mol% <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 at 1600°C.<br />

Figure 7: <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2-TiO2 phase diagram from characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quenched samples (refs. [75,76]). All phases<br />

(tetrag<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> m<strong>on</strong>oclinic <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2, ordered <str<strong>on</strong>g>and</str<strong>on</strong>g> disordered (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>,Ti)2O4, TiO2) are solid soluti<strong>on</strong>s, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

phase fields are labelled with <strong>the</strong> predominant end-member. <str<strong>on</strong>g>The</str<strong>on</strong>g> label ’ordered’ encompasses partly <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

fully ordered (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>,Ti)2O4.<br />

19


I. Introducti<strong>on</strong><br />

Srilankite is a rare mineral, its origin <str<strong>on</strong>g>and</str<strong>on</strong>g> stability are discussed c<strong>on</strong>troversially<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> for a l<strong>on</strong>g time, a hydro<strong>the</strong>rmal origin was proposed for natural samples, first found<br />

in a gemst<strong>on</strong>e mine [77], a lamprohpyre pipe [78] <str<strong>on</strong>g>and</str<strong>on</strong>g> ultramafic diatremes [79].<br />

However, experimental results show an ordered phase at low temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

disordering (as for srilankite) <strong>on</strong>ly at temperatures >1160°C, thus suggesting magmatic<br />

origin. Newer findings <str<strong>on</strong>g>of</str<strong>on</strong>g> srilankite in crustal mafic granulites [80] <str<strong>on</strong>g>and</str<strong>on</strong>g> a gabbroic vein<br />

[81] are c<strong>on</strong>sistent with <strong>the</strong> generati<strong>on</strong> at high temperatures.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are three different phases with <strong>the</strong> space group Pbcn: <strong>the</strong> ordered solid<br />

soluti<strong>on</strong> (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>,Ti)2O4, having <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> columbite; <strong>the</strong> disordered solid soluti<strong>on</strong><br />

(<str<strong>on</strong>g>Zr</str<strong>on</strong>g>,Ti)2O4 with <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> scrutinyite [82], c<strong>on</strong>taining srilankite with <strong>the</strong> formula<br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>Ti2O6 [77]; Fur<strong>the</strong>rmore <strong>the</strong>re is <strong>the</strong> TiO2 high pressure polymorph TiO2II. <str<strong>on</strong>g>The</str<strong>on</strong>g>re is<br />

<strong>on</strong>going research whe<strong>the</strong>r this phase makes a solid soluti<strong>on</strong> with <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phases<br />

menti<strong>on</strong>ed. In chapter III. secti<strong>on</strong> 2. “Experimental results <strong>on</strong> <strong>the</strong> system TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 to<br />

10 GPa“, new results are presented, suggesting that it is a separate phase.<br />

20


I. Introducti<strong>on</strong><br />

3. Technical Applicati<strong>on</strong>s<br />

TiO2 phases have a high refractive index with values <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.52, 2.63 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.72 for<br />

anatase, brookite <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile [83]. Because it lacks absorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> visible light, it is used as<br />

white pigment for paints, plastics <str<strong>on</strong>g>and</str<strong>on</strong>g> paper. As a wide b<str<strong>on</strong>g>and</str<strong>on</strong>g> gap semic<strong>on</strong>ductor<br />

(Eg=3.0-3.2 eV) it is used for electrochemical dye solar cells [84] <str<strong>on</strong>g>and</str<strong>on</strong>g> exhibits a good<br />

performance in photocatalysis [85,86]. It is chemically inert <str<strong>on</strong>g>and</str<strong>on</strong>g> highly corrosi<strong>on</strong><br />

resistant, ideal for expositi<strong>on</strong> to aqueous soluti<strong>on</strong>s [87] <str<strong>on</strong>g>and</str<strong>on</strong>g> is used in <strong>the</strong> development<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> photoelectrodes for photochemical energy-c<strong>on</strong>versi<strong>on</strong> processes [88].<br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 is a comm<strong>on</strong> functi<strong>on</strong>al ceramic material as it is hard, chemically inert, has<br />

a high melting point, good i<strong>on</strong>ic c<strong>on</strong>ductivity <str<strong>on</strong>g>and</str<strong>on</strong>g> interesting electrical properties. It is<br />

used as structural ceramic, high temperature solid electrode <str<strong>on</strong>g>and</str<strong>on</strong>g> optical material. It finds<br />

electrical applicati<strong>on</strong>s, including catalyst supports, oxygen sensors, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>rmal barrier<br />

coatings. <str<strong>on</strong>g>The</str<strong>on</strong>g> tetrag<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> cubic phases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 are stabilized by doping an amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

~0.15 mol% <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r oxides like CaO, MgO, <str<strong>on</strong>g>and</str<strong>on</strong>g> Y2O3 [26,89]. Partially stabilized <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Y2O3-stabilized tetrag<strong>on</strong>al <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 polycrystalline (Y-TZP) materials are particularly<br />

useful for advanced structural applicati<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir high strength <str<strong>on</strong>g>and</str<strong>on</strong>g> fracture<br />

toughness. Fur<strong>the</strong>rmore, natural baddeleyite <str<strong>on</strong>g>and</str<strong>on</strong>g> syn<strong>the</strong>tic <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 ceramics are c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate<br />

materials for <strong>the</strong> safe disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> high level nuclear waste from power reactors as well<br />

as pure plut<strong>on</strong>ium from dispositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear weap<strong>on</strong>s [59,90].<br />

Zirc<strong>on</strong>ium titanate ceramics are used as temperature-stable dielectric materials<br />

for ceramic capacitors <str<strong>on</strong>g>and</str<strong>on</strong>g> exhibit outst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing dielectric properties in <strong>the</strong> microwave<br />

frequency range [91-94], making it a c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate material for ceramic res<strong>on</strong>ators, used for<br />

example in wireless communicati<strong>on</strong> technology.<br />

In additi<strong>on</strong> to <strong>the</strong> current applicati<strong>on</strong>, o<strong>the</strong>r TiO2 structures exhibit interesting<br />

optical <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanical properties <str<strong>on</strong>g>and</str<strong>on</strong>g> are proposed as c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate materials for functi<strong>on</strong>al<br />

ceramics. For example, <strong>the</strong> cubic high pressure polymorph <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 may be used as light<br />

absorber in solar-energy c<strong>on</strong>versi<strong>on</strong> [87]; ab-initio investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> electr<strong>on</strong>ic b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

structure showed important optical absorptive transiti<strong>on</strong>s in <strong>the</strong> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> visible<br />

light, predicting a more efficient performance than <strong>the</strong> TiO2 forms used so far.<br />

21


I. Introducti<strong>on</strong><br />

Fur<strong>the</strong>rmore, <strong>the</strong> cotunnite phase (CN=9) is a c<str<strong>on</strong>g>and</str<strong>on</strong>g>idate material for new n<strong>on</strong>carb<strong>on</strong><br />

abrasive materials. Dubrovinsky et al. [11] presented a bulk modulus value <str<strong>on</strong>g>of</str<strong>on</strong>g> K0=431<br />

GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> a hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> 38 GPa, exceeding <strong>the</strong> values for WC (421 <str<strong>on</strong>g>and</str<strong>on</strong>g> 30 GPa, [95])<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cubic BN (369 <str<strong>on</strong>g>and</str<strong>on</strong>g> 32 GPa, [96]). It is likely that <strong>the</strong> OI phase (CN=7) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

cubic phase (CN=8) are also ultrahard substances (compare [57]).<br />

22


I. Introducti<strong>on</strong><br />

4. Tuning <str<strong>on</strong>g>of</str<strong>on</strong>g> Elastic Properties<br />

In industrial technologies using superhard materials for cutting, drilling, milling<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> polishing <strong>the</strong>re is a need for designing new abrasive materials that are hard, tough,<br />

chemically inert <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>rmally stable. As <strong>the</strong> hardest materials, covalent ceramics like<br />

diam<strong>on</strong>d, cubic bor<strong>on</strong>-nitride <str<strong>on</strong>g>and</str<strong>on</strong>g> SiC are applied. But also hard oxides play an<br />

important role because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir low reactivity with atmosphere, especially at elevated<br />

temperatures, which is essential for such applicati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> oxide materials that have<br />

received attenti<strong>on</strong> due to <strong>the</strong>ir high hardness, toughness <str<strong>on</strong>g>and</str<strong>on</strong>g> strength are rutile<br />

structured SiO2 (stishovite), α-Al2O3 (corundum), CVD-produced к-Al2O3, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

transformati<strong>on</strong>-toughened <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2, HfO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2 [97,98]. As it was already menti<strong>on</strong>ed in<br />

<strong>the</strong> last secti<strong>on</strong>, hard TiO2 structures seem to be very promising for new abrasive<br />

materials.<br />

Figure 8: Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shear modulus <str<strong>on</strong>g>and</str<strong>on</strong>g> hardness, plotted for various materials from ref. [97]. Square<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> diam<strong>on</strong>d symbols are computati<strong>on</strong>al data for TiO2 fluorite <str<strong>on</strong>g>and</str<strong>on</strong>g> pyrite from ref. [57].<br />

23


I. Introducti<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> a material is correlated to its bulk modulus <str<strong>on</strong>g>and</str<strong>on</strong>g> shear modulus.<br />

Figure 8 shows, how well <strong>the</strong> shear modulus can be used as indicator for <strong>the</strong> hardness <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a material. Data are presented for various materials [97] as well as for pyrite <str<strong>on</strong>g>and</str<strong>on</strong>g> fluorite<br />

forms <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 [57]. Unfortunately, <strong>the</strong> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shear modulus is not<br />

possible for high pressure polymorphs. We <strong>the</strong>refore have to take <strong>the</strong> bulk modulus as a<br />

substitute for an indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hardness. <str<strong>on</strong>g>The</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bulk modulus <str<strong>on</strong>g>and</str<strong>on</strong>g> how<br />

to determine <strong>the</strong> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state experimentally <str<strong>on</strong>g>and</str<strong>on</strong>g> computati<strong>on</strong>ally is described in<br />

chapter II. secti<strong>on</strong> 4. “Compressing Materials: Equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state”.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are several possibilities to alter <strong>the</strong> elastic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a given material.<br />

Experimental data <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>oretical predicti<strong>on</strong>s suggest that <strong>the</strong> values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bulk<br />

modulus K0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TiO2 high pressure polymorphs increase with an increasing Ti-O<br />

coordinati<strong>on</strong> number. <str<strong>on</strong>g>The</str<strong>on</strong>g> 9-fold coordinated cotunnite structured phase is <strong>the</strong>refore <strong>the</strong><br />

hardest <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 polymorphs, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides known in general. One tool <str<strong>on</strong>g>of</str<strong>on</strong>g> creating new<br />

hard materials is <strong>the</strong>refore to syn<strong>the</strong>size <strong>the</strong> dense high pressure polymorphs <str<strong>on</strong>g>and</str<strong>on</strong>g> to<br />

stabilize <strong>the</strong>m at ambient c<strong>on</strong>diti<strong>on</strong>s. As <strong>on</strong>e promising way to do that, doping <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2<br />

with <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 is proposed. <str<strong>on</strong>g>The</str<strong>on</strong>g> crystal chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> both, titanium <str<strong>on</strong>g>and</str<strong>on</strong>g> zirc<strong>on</strong>ium dioxides<br />

are similar <str<strong>on</strong>g>and</str<strong>on</strong>g> it is known that high pressure zirc<strong>on</strong>ia polymorphs (OI <str<strong>on</strong>g>and</str<strong>on</strong>g> OII) are<br />

quenchable. It is also well known that <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 tetrag<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> cubic high temperature<br />

polymorphs can be stabilized at ambient c<strong>on</strong>diti<strong>on</strong>s by doping with o<strong>the</strong>r cati<strong>on</strong>s, such<br />

as Ca, Mg or Y. With a similar principle, <strong>the</strong> stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high pressure polymorphs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> (Ti1-x<str<strong>on</strong>g>Zr</str<strong>on</strong>g>x)O2 solid soluti<strong>on</strong> is proposed.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<strong>the</strong>r cati<strong>on</strong>s is not <strong>on</strong>ly a way to stabilize high pressure<br />

polymorphs but is a tool by itself to tune elastic properties. <str<strong>on</strong>g>The</str<strong>on</strong>g> compressibility <str<strong>on</strong>g>of</str<strong>on</strong>g> highpressure<br />

polymorphs <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 is systematically smaller than for <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 (Table 1). For <strong>the</strong><br />

m<strong>on</strong>oclinic MI phase, K0 was measured as 290–303 GPa for TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> as 187–212 GPa<br />

for <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2. <str<strong>on</strong>g>The</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> K0 for <strong>the</strong> orthorhombic phases are 318 GPa (TiO2) <str<strong>on</strong>g>and</str<strong>on</strong>g> 243<br />

GPa (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2) for OI, <str<strong>on</strong>g>and</str<strong>on</strong>g> 431 GPa (TiO2) <str<strong>on</strong>g>and</str<strong>on</strong>g> 265 – 444 GPa (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2) for OII, respectively<br />

(details, nomenclature, <str<strong>on</strong>g>and</str<strong>on</strong>g> references are given in Table 1). This pattern can be<br />

understood by a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> electr<strong>on</strong>ic structures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Ti. Having <strong>on</strong>e more<br />

electr<strong>on</strong> shell, <str<strong>on</strong>g>Zr</str<strong>on</strong>g> has larger i<strong>on</strong>ic <str<strong>on</strong>g>and</str<strong>on</strong>g> covalent radii than Ti <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore a higher<br />

compressibility. <str<strong>on</strong>g>The</str<strong>on</strong>g> compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> oxides is not <strong>on</strong>ly c<strong>on</strong>trolled by<br />

<strong>the</strong> compressibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> metal atoms, but also by <strong>the</strong> distorti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir coordinati<strong>on</strong><br />

24


I. Introducti<strong>on</strong><br />

polyhedra <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> oxygen atoms. <str<strong>on</strong>g>The</str<strong>on</strong>g> valence electr<strong>on</strong>s in <strong>the</strong> d states play an<br />

important role in <strong>the</strong> distorti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> polyhedra [19]. However, to give away <strong>the</strong> results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this study, it is worth menti<strong>on</strong>ing that our experimental results <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped<br />

nanoanatase gave <strong>the</strong> highest bulk modulus for anatase (Ti1-x<str<strong>on</strong>g>Zr</str<strong>on</strong>g>x)O2 reported so far. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

doping <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 with <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 thus led to hardening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material.<br />

Table 1: Volumes <str<strong>on</strong>g>and</str<strong>on</strong>g> bulk moduli <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 polymorphs.<br />

Phase V0 V0/Z K0 K'0 P T Technique Ref.<br />

(ų) (ų) (GPa) (GPa) (K)<br />

TiO2<br />

rutile 62.5 31.2 230(20) 6.6(7) 0-20 300 DAC + XRD [14]<br />

rutile 62.5 31.2 210(10) 6.6(7) 0-8 300 MA + XRD [19]<br />

rutile (10 nm) 211(7) [20]<br />

anatase 136.8 34.2 178(1) 4 f 0-8 300 DAC + XRD [1]<br />

anatase 136.3 34.1 190(10) 5.3(10) 0-14 300 DAC + XRD [2]<br />

anatase 143.8 36.0 189.5 3.4 0-50 - ab-initio [2]<br />

anatase (single cryst.) 136.3 34.1 179(2) 4.5(10) 0-5 300 DAC + XRD [2]<br />

anatase (30 - 40 nm) 136.2 34.0 243(3) 4 f 0-35 300 DAC + XRD [4]<br />

anatase (6 nm) - - 237(3) 4 f 6-18 300 DAC + XRD [3]<br />

anatase (6 nm) - - 260 4 f 15 - MD [3]<br />

anatase (6 nm) - - 240 4 f 20 - MD [3]<br />

brookite 257.8 32.2 255(10) 4 f 0-8 300 DAC + XRD [99]<br />

MI 112.2 28.1 290(20) 4 f 10-60 300 DAC + XRD [14]<br />

MI 112.2 28.1 290(20) 4 f 0-20 300 MA + XRD [19]<br />

MI 105.1 26.3 304(6) 3.9(2) 30-80 300 DAC + XRD [1]<br />

MI (10 nm) 235(16) [20]<br />

α-PbO2 122.4 30.6 260(30) - 0-10 300 DAC + XRD [14]<br />

α-PbO2 122.4 30.6 258(8) 4.05(25) 0-8 300 MA + XRD [19]<br />

α-PbO2 212(25) [20]<br />

OI 109.1 27.3 318(3) 4 f 19-36 300 DAC + XRD [9]<br />

OII 105.1 26.3 431(10) 1.35(10) 15-42 300 DAC + XRD [1]<br />

cubic 115.5 28.9 202(5) 1.3(1) 10-55 300 DAC + XRD [18]<br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2<br />

MI 140.6 35.2 212(24) 8(4) 0-70 300 DAC + XRD [38]<br />

MI - - 187 - 0 - Brill. scat. [100]<br />

MI - - 152 4.00 - - ab-initio [101]<br />

MI - - 157 2.38 - - ab-initio [102]<br />

tetrag<strong>on</strong>al (nanocryst.) 139.4 34.9 172(6) 8.5(5) 0-10 300 DAC + XRD [25]<br />

tetrag<strong>on</strong>al - - 205(10) 4 f 0-12.5 1000 MA + XRD [34]<br />

tetrag<strong>on</strong>al - - 200 6.25 - - ab-initio [102]<br />

OI 134.0 33.5 243(10) 7(2) 10-25 300 DAC + XRD [38]<br />

OI - - 273 3..51 - - ab-initio [101]<br />

OI - - 272 4.63 - - ab-initio [102]<br />

OII 123.2 30.8 444(15) 1 f 0-70 300 DAC + XRD [38]<br />

OII 120.1 30.0 265(10) 4 f 0-24 300 MA + XRD [34]<br />

OII 120.1 30.0 296(5) 1 f 0-24 300 MA + XRD [34]<br />

OII 120.9 30.2 306(10) 3.66 f 0-50 300 DAC + XRD [27]<br />

OII 120.9 30.2 322(8) 2.3(4) 0-50 300 DAC + XRD [27]<br />

OII 120.0 30.0 278(11) 3.70(22) 0-100 300 DAC + XRD [32]<br />

OII 120.0 30.0 267(3) 4 f 0-100 300 DAC + XRD [32]<br />

OII - - 314 3.66 - - ab-initio [101]<br />

OII - - 305 4.68 - - ab-initio [102]<br />

K0 = iso<strong>the</strong>rmal bulk modulus; V = elementary cell Volume; Z = number <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 or <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 per elementary<br />

cell; DAC = diam<strong>on</strong>d anvil cell; XRD = in-situ X-ray diffracti<strong>on</strong>; MA = multianvil; MD = Molecular<br />

Dynamics; LD = Lattice Dynamics; Brill. Scat. = Brillouin scattering; f = fixed value;<br />

25


I. Introducti<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a material is fur<strong>the</strong>rmore c<strong>on</strong>trolled by <strong>the</strong><br />

microstructure as well as stress <str<strong>on</strong>g>and</str<strong>on</strong>g> strain in <strong>the</strong> crystallites. <str<strong>on</strong>g>Size</str<strong>on</strong>g> dependent<br />

modificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical properties are described by <strong>the</strong> Hall-Petch effect [103,104],<br />

stating that hardness <str<strong>on</strong>g>and</str<strong>on</strong>g> yield strength increase with decreasing crystallite size:<br />

τ = τ0 + kd -½ (1)<br />

where τ is <strong>the</strong> yield stress, τ0 is <strong>the</strong> fricti<strong>on</strong> stress needed to move individual<br />

dislocati<strong>on</strong>s, k is a c<strong>on</strong>stant (<str<strong>on</strong>g>of</str<strong>on</strong>g>ten referred to as <strong>the</strong> Hall-Petch slope) <str<strong>on</strong>g>and</str<strong>on</strong>g> is material<br />

characteristic, <str<strong>on</strong>g>and</str<strong>on</strong>g> d is <strong>the</strong> average grain size. <str<strong>on</strong>g>The</str<strong>on</strong>g> hardening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nanoscale materials<br />

is related to <strong>the</strong> fact that such small crystallites are free <str<strong>on</strong>g>of</str<strong>on</strong>g> dislocati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore do<br />

not exhibit dislocati<strong>on</strong>-creep up<strong>on</strong> compressi<strong>on</strong>. That way, an important tool for<br />

shearing is not possible in nanoscale compared to microscale material, leading to an<br />

increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> shear-modulus. Nieh et al. [105] reformulated <strong>the</strong> effect for<br />

nanocrystalline materials using <strong>the</strong> Vicker’s hardness H as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crystallite<br />

size d:<br />

H=H0+K/ √d (2)<br />

In c<strong>on</strong>trast, Schiotz et al. [106] describe materials which get s<str<strong>on</strong>g>of</str<strong>on</strong>g>ter as <strong>the</strong><br />

crystallite size decreases after a certain critical size, referred to as <strong>the</strong> reverse Hall-Petch<br />

effect.<br />

A decrease in crystallite size leads to a higher bulk modulus for anatase, as<br />

shown by Swamy et al. [1,4]. <str<strong>on</strong>g>The</str<strong>on</strong>g> authors carried out experiments <strong>on</strong> <strong>the</strong> compressi<strong>on</strong><br />

behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> macrocrystalline anatase [1] up to 8 GPa as well as <str<strong>on</strong>g>of</str<strong>on</strong>g> nanocrystalline<br />

anatase [4] up to 35 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> determined <strong>the</strong> iso<strong>the</strong>rmal bulk modulus for<br />

macrocrystalline anatase to be 178(1) GPa. <str<strong>on</strong>g>The</str<strong>on</strong>g> value for <strong>the</strong> nanocrystalline<br />

counterpart is 243(3) GPa, which is about 35% larger. <str<strong>on</strong>g>The</str<strong>on</strong>g> results suggest that stress<br />

hardens <strong>the</strong> material. In Table 1, <strong>the</strong> volumes, densities <str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state data are<br />

presented for TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 polymorphs with various crystallite sizes.<br />

Stress <str<strong>on</strong>g>and</str<strong>on</strong>g> strain also vary <strong>the</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong> from <strong>on</strong>e polymorph to<br />

<strong>the</strong> o<strong>the</strong>r <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore might be ano<strong>the</strong>r tool for stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high pressure<br />

polymorphs up<strong>on</strong> decompressi<strong>on</strong> or low pressure polymorphs up<strong>on</strong> compressi<strong>on</strong>. A<br />

decrease in crystallite size apparently suppresses <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2II <str<strong>on</strong>g>and</str<strong>on</strong>g> leads to a<br />

higher pressure limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transformati<strong>on</strong> anatase → MI. New experimental results <strong>on</strong><br />

TiO2 are reported in chapter III. secti<strong>on</strong> 4.<br />

26


I. Introducti<strong>on</strong><br />

5. Computati<strong>on</strong>al Work<br />

Experiments <strong>on</strong> <strong>the</strong> TiO2 system have been complemented by a large number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

computati<strong>on</strong>al studies <strong>on</strong> structural [9,21,107-118] <str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong>ic properties [119-125].<br />

A wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al approaches have been used in <strong>the</strong>se studies, with<br />

varying degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> transferability <str<strong>on</strong>g>and</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> methods. On <strong>the</strong> more efficient<br />

side, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> interatomic potential models were developed for atomistic simulati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> titanium oxides [9,107-113,126], primarily applied to lattice dynamics (LD) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

molecular dynamics (MD) computati<strong>on</strong>s. Am<strong>on</strong>g <strong>the</strong> various potentials derived, a<br />

number is well transferable [108,113] <str<strong>on</strong>g>and</str<strong>on</strong>g> LD <str<strong>on</strong>g>and</str<strong>on</strong>g> MD computati<strong>on</strong>s are successful in<br />

describing <strong>the</strong> relative stabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> phases in pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature.<br />

However, to describe electr<strong>on</strong>ic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> a material, such as <strong>the</strong> b<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

structure or electr<strong>on</strong>ic densities <str<strong>on</strong>g>of</str<strong>on</strong>g> states, ab-initio methods must be c<strong>on</strong>sidered, even<br />

though <strong>the</strong>y are computati<strong>on</strong>ally more dem<str<strong>on</strong>g>and</str<strong>on</strong>g>ing. In order to solve <strong>the</strong> Kohn-Sham<br />

(KS) equati<strong>on</strong>s for <strong>the</strong> solid [127], many-body interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> electr<strong>on</strong>s through<br />

exchange <str<strong>on</strong>g>and</str<strong>on</strong>g> correlati<strong>on</strong> need to be approximated. Hartree-Fock (HF) <strong>the</strong>ory calculates<br />

<strong>the</strong> exchange energy exactly, but does not account for correlati<strong>on</strong> [114,115]. In c<strong>on</strong>trast,<br />

in <strong>the</strong> local density (LDA) [128] <str<strong>on</strong>g>and</str<strong>on</strong>g> generalized gradient approximati<strong>on</strong> (GGA) [129],<br />

both exchange <str<strong>on</strong>g>and</str<strong>on</strong>g> correlati<strong>on</strong> are approximated. Computati<strong>on</strong>s using LDA <str<strong>on</strong>g>and</str<strong>on</strong>g> GGA<br />

are typically referred to as density functi<strong>on</strong>al <strong>the</strong>ory (DFT) computati<strong>on</strong>s. For Ti as a<br />

light transiti<strong>on</strong> metal i<strong>on</strong>, <strong>the</strong> correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> electr<strong>on</strong>s plays an important role, as has<br />

been pointed out in <strong>the</strong> literature. Rościszewski et al. [114] found that <strong>the</strong> correlati<strong>on</strong><br />

energy does not change linearly up<strong>on</strong> (de)compressi<strong>on</strong>, making it impossible for HF<br />

computati<strong>on</strong>s to predict <strong>the</strong> compressibility <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile accurately. Only <strong>the</strong> lattice<br />

c<strong>on</strong>stants <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> equilibrium geometry are reproducible. Reinhardt et al. [115]<br />

performed a comparative study <strong>on</strong> rutile using HF as well as DFT with LDA. <str<strong>on</strong>g>The</str<strong>on</strong>g>y<br />

found that <strong>the</strong> latter <strong>on</strong>e gives a good estimate for <strong>the</strong> binding energy whereas HF <strong>on</strong>ly<br />

provides 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> it. <str<strong>on</strong>g>The</str<strong>on</strong>g> results show that HF is an inappropriate method for<br />

computati<strong>on</strong>s <strong>on</strong> TiO2.<br />

In DFT methods, ei<strong>the</strong>r all electr<strong>on</strong>s in <strong>the</strong> systems can be c<strong>on</strong>sidered explicitely<br />

or <strong>the</strong> potential can be approximated by a pseudopotential. A large number <str<strong>on</strong>g>of</str<strong>on</strong>g> ab-initio<br />

27


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

computati<strong>on</strong>s were performed in order to reveal <strong>the</strong> structures, bulk moduli <str<strong>on</strong>g>and</str<strong>on</strong>g> relative<br />

stabilites <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 polymorphs. Sasaki [21] applied GGA <str<strong>on</strong>g>and</str<strong>on</strong>g> a pseudopotential that was<br />

c<strong>on</strong>structed for <strong>the</strong> electr<strong>on</strong> c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> groundstate <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti 4+ , having a partial<br />

core correcti<strong>on</strong> incorporated in <strong>the</strong> evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> exchange-correlati<strong>on</strong> energy. Phase<br />

transformati<strong>on</strong>s occurred in <strong>the</strong> same order as seen experimentally, from rutile to TiO2II<br />

- brookite; however, anatase was not c<strong>on</strong>sidered. Dewhurst <str<strong>on</strong>g>and</str<strong>on</strong>g> Low<strong>the</strong>r [116] used<br />

Troullier-Martin-pseudopotentials with LDA <str<strong>on</strong>g>and</str<strong>on</strong>g> included anatase in <strong>the</strong> structures.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>y found rutile more stable than anatase. In fact, anatase was <strong>the</strong> phase with <strong>the</strong><br />

highest energy am<strong>on</strong>g <strong>the</strong> phases c<strong>on</strong>sidered. In c<strong>on</strong>trast, Muscat et al. [117] used <strong>the</strong><br />

all-electr<strong>on</strong> linear combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> atmic orbitals (LCAO) <str<strong>on</strong>g>and</str<strong>on</strong>g> pseudopotential (PS)<br />

methods as well as HF <strong>the</strong>ory to compute <strong>the</strong> optimal crystal structures at various<br />

pressures. As a result, anatase was predicted more stable than rutile. Labat et al. [118]<br />

performed a detailed analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> structural <str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong>ic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

anatase, applying HF as well as density functi<strong>on</strong>al calculati<strong>on</strong>s using <strong>the</strong> hybrid HF/KS<br />

schemes, LDA <str<strong>on</strong>g>and</str<strong>on</strong>g> GGA. <str<strong>on</strong>g>The</str<strong>on</strong>g> authors report excellent agreement with experimental<br />

b<str<strong>on</strong>g>and</str<strong>on</strong>g> structures as well as structural descripti<strong>on</strong>s, but again anatase was found more<br />

stable than rutile.<br />

28


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

6. Motivati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Outline<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> goal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> current work is to examine <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallite size <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>doping<br />

<strong>on</strong> <strong>the</strong> compressibility <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> transiti<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase. It was<br />

found before that a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crystallite size to <strong>the</strong> nanometer range leads to<br />

stiffening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material <str<strong>on</strong>g>and</str<strong>on</strong>g> here we investigate if this hypo<strong>the</strong>sis applies to pure <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile. From experimental data it is inferred that high pressure<br />

polymorphs <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 have a higher bulk modulus than <strong>the</strong> analogous <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 polymorphs.<br />

In this study, <strong>the</strong> bulk moduli <str<strong>on</strong>g>of</str<strong>on</strong>g> doped <str<strong>on</strong>g>and</str<strong>on</strong>g> undoped phases are determined <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

study dem<strong>on</strong>strates that <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doping leads to a stiffening <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoscale anatase. It was<br />

found before that a decreasing crystallite size to <strong>the</strong> nanometer scale leads to a higher<br />

transformati<strong>on</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile to TiO2II, which is c<strong>on</strong>firmed here. A<br />

detailed comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transiti<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> micro- <str<strong>on</strong>g>and</str<strong>on</strong>g> naoscale doped <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

undoped forms <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase is given below.<br />

For <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> starting materials for <strong>the</strong> experiments, a route <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sol-gel<br />

method was developed <str<strong>on</strong>g>and</str<strong>on</strong>g> hydro<strong>the</strong>rmal experiments were performed. In order to<br />

determine <strong>the</strong> maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doping possible, experiments at pressure up to 10<br />

GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures up to 1600°C were performed. <str<strong>on</strong>g>The</str<strong>on</strong>g> experiments showed that ≤10<br />

mole% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 can be incorporated into <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> high pressure<br />

polymorphs. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped samples used in compressi<strong>on</strong> experiments had <strong>the</strong><br />

compositi<strong>on</strong> Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2.<br />

29


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

In this study, two kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> experiments at high pressures <str<strong>on</strong>g>and</str<strong>on</strong>g> high temperatures<br />

(HPHT) were performed: First <strong>the</strong> materials syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 materials <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

sec<strong>on</strong>d diam<strong>on</strong>d anvil cell (DAC) experiments with in-situ observati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> data<br />

collecti<strong>on</strong> up<strong>on</strong> compressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decompressi<strong>on</strong>. For syn<strong>the</strong>sis experiments at HPHT,<br />

<strong>the</strong> pist<strong>on</strong> cylinder, multi anvil <str<strong>on</strong>g>and</str<strong>on</strong>g> hydro<strong>the</strong>rmal apparatus were chosen <str<strong>on</strong>g>and</str<strong>on</strong>g> recovered<br />

samples were analyzed by means <str<strong>on</strong>g>of</str<strong>on</strong>g> powder X-ray diffracti<strong>on</strong> (XRD), microprobing <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

transmissi<strong>on</strong> electr<strong>on</strong> microscopy (TEM). Compressi<strong>on</strong> experiments were carried out in<br />

<strong>the</strong> DAC <str<strong>on</strong>g>and</str<strong>on</strong>g> in-situ XRD, X-ray absorpti<strong>on</strong> (XAS) <str<strong>on</strong>g>and</str<strong>on</strong>g> Raman spectroscopic<br />

measurements were performed. In secti<strong>on</strong> 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2, high pressure experimental<br />

techniques as well as analytical methods are described. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>the</strong>oretical approach to<br />

calculate energetics <str<strong>on</strong>g>and</str<strong>on</strong>g> structures <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 polymorphs is reported in secti<strong>on</strong> 3. In<br />

experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> computati<strong>on</strong>s, <strong>the</strong> compressi<strong>on</strong> behavior was analyzed in detail <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong>refore, some <strong>the</strong>ory about <strong>the</strong> compressibility is given in secti<strong>on</strong> 4, reviewing basic<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> elasticity <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> finite strain.<br />

1. High Pressure Experimental Techniques<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are numerous methods for performing experiments at high pressures <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

high temperatures, used for syn<strong>the</strong>sis as well as in-situ studies <str<strong>on</strong>g>of</str<strong>on</strong>g> materials at extreme<br />

c<strong>on</strong>diti<strong>on</strong>s [130]. As a general rule, <strong>on</strong>e can state that <strong>the</strong> higher <strong>the</strong> pressure achieved,<br />

<strong>the</strong> smaller <strong>the</strong> sample volume has to be. With <strong>the</strong> pist<strong>on</strong> cylinder apparatus, pressures<br />

up to ~5 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures up to 2200°C can be achieved, with a sample volume <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

typically ~200 mm³. <str<strong>on</strong>g>The</str<strong>on</strong>g> pist<strong>on</strong>-cylinder press is durable <str<strong>on</strong>g>and</str<strong>on</strong>g> robust, <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>trols <strong>the</strong><br />

high pressures <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures over l<strong>on</strong>g periods <str<strong>on</strong>g>of</str<strong>on</strong>g> time, days to even weeks.<br />

Compared to that, <strong>the</strong> multi-anvil apparatus can produce much higher pressures.<br />

Depending <strong>on</strong> <strong>the</strong> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> cubes <str<strong>on</strong>g>and</str<strong>on</strong>g> load, up to 25 GPa can be achieved at up to<br />

~2000°C, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s can be c<strong>on</strong>trolled for time periods <str<strong>on</strong>g>of</str<strong>on</strong>g> several hours. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

sample volumes are between 14 mm³ for lower pressures <str<strong>on</strong>g>and</str<strong>on</strong>g> ~6 mm³ for higher<br />

30


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

pressures. In c<strong>on</strong>trast, in <strong>the</strong> DAC, a maximum static pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> ~300 GPa can be<br />

reached. At intermediate pressures, <strong>the</strong> DAC can be heated by electrical resistive<br />

heating (internal or external) to about 1000°C or internal laser heating to about 3000°C.<br />

However, sample volumes are as small as 0.0002 mm³.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> in-situ measurements possible is highest for DAC experiments.<br />

Diam<strong>on</strong>ds are transparent for electromagnetic radiati<strong>on</strong> in a broad energy range,<br />

allowing for optical, near-infrared <str<strong>on</strong>g>and</str<strong>on</strong>g> X-ray analytical methods. Depending <strong>on</strong> <strong>the</strong><br />

design <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> materials, multi anvil presses can allow for in-situ X-ray<br />

diffracti<strong>on</strong>, but are limited for o<strong>the</strong>r in-situ techniques. <str<strong>on</strong>g>The</str<strong>on</strong>g> pist<strong>on</strong> cylinder apparatus<br />

lacks <strong>the</strong> possibility for in-situ X-ray diffracti<strong>on</strong>.<br />

1.1. Hydro<strong>the</strong>rmal Experiments<br />

Hydro<strong>the</strong>rmal experiments were performed in cold-seal pressure vessels, at<br />

pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature c<strong>on</strong>diti<strong>on</strong>s, were H2O is in <strong>the</strong> supercritical state, allowing for<br />

generally high dissoluti<strong>on</strong> rates. <str<strong>on</strong>g>The</str<strong>on</strong>g> system is shown in Figure 9 <str<strong>on</strong>g>and</str<strong>on</strong>g> described<br />

elsewhere [131-133].<br />

Figure 9: Schematics <str<strong>on</strong>g>of</str<strong>on</strong>g> a cold-seal pressure vessel <str<strong>on</strong>g>and</str<strong>on</strong>g> system. <str<strong>on</strong>g>The</str<strong>on</strong>g> pressure vessel is externally heated,<br />

while <strong>the</strong> seal is cooled. Pressure is generated by an external pressure pump <str<strong>on</strong>g>and</str<strong>on</strong>g> held c<strong>on</strong>stant by closing<br />

<strong>the</strong> valve when run c<strong>on</strong>diti<strong>on</strong>s are reached. Temperature is c<strong>on</strong>trolled by a <strong>the</strong>rmocouple situated close to<br />

<strong>the</strong> sample capsule. From ref.[134].<br />

31


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

Experiments were performed in Au capsules with <strong>the</strong> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.0 mm <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

length <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 mm. <str<strong>on</strong>g>The</str<strong>on</strong>g> capsules were cut from seamless tubing, washed in c<strong>on</strong>centrated<br />

hydr<str<strong>on</strong>g>of</str<strong>on</strong>g>luoric acid, repeatedly rinsed in distilled water, cleaned with alcohol in an<br />

ultras<strong>on</strong>ic bath <str<strong>on</strong>g>and</str<strong>on</strong>g> annealed to yellow-orange color over a Meeker burner. Capsules<br />

were crimped <str<strong>on</strong>g>and</str<strong>on</strong>g> welded flat, filled with distilled <str<strong>on</strong>g>and</str<strong>on</strong>g> dei<strong>on</strong>ized water <str<strong>on</strong>g>and</str<strong>on</strong>g> ~30 mg<br />

sample powder, yielding 5 wt% H2O. Capsules were crimped <str<strong>on</strong>g>and</str<strong>on</strong>g> welded immediately<br />

with a trifold. During welding, capsules were partly submerged in a bath <str<strong>on</strong>g>of</str<strong>on</strong>g> cold water<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> ice to prevent loss <str<strong>on</strong>g>of</str<strong>on</strong>g> H2O. In all cases, weight loss during welding was 0.04–0.08<br />

mg; For <strong>the</strong> same method, Dolejš <str<strong>on</strong>g>and</str<strong>on</strong>g> Baker [135] report that piercing <strong>the</strong> welded<br />

capsule <str<strong>on</strong>g>and</str<strong>on</strong>g> determining <strong>the</strong> weight loss by drying revealed no loss <str<strong>on</strong>g>of</str<strong>on</strong>g> H2O within <strong>the</strong><br />

weighing error (0.02 mg). Capsules were stored at 120°C for 1 h to ensure<br />

homogeneous distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H2O vapor <str<strong>on</strong>g>and</str<strong>on</strong>g> re-weighed to check for leakage.<br />

Experiments were carried out in cold-seal pressure vessels, using air as pressure<br />

medium. Temperatures were m<strong>on</strong>itored by external chromel-alumel <strong>the</strong>rmocouples,<br />

calibrated against <strong>the</strong> melting point <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCl (800.6°C). Individual temperatures are<br />

accurate to ±2°C. Pressure was measured with <strong>the</strong> Bourd<strong>on</strong>-tube gauges, calibrated<br />

against a factory calibrated Heise gauge. Pressure data are precise to ±2 MPa. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

experiments were terminated by placing <strong>the</strong> vessel in an air jet <str<strong>on</strong>g>and</str<strong>on</strong>g> quenched below <strong>the</strong><br />

solidus temperature in 1–2 min. All capsules were checked for leakage, opened <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

stored at room c<strong>on</strong>diti<strong>on</strong>s.<br />

1.2. Pist<strong>on</strong> Cylinder Technique<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> pist<strong>on</strong> cylinder technique works by <strong>the</strong> principle <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure amplificati<strong>on</strong>,<br />

where in <strong>the</strong> so called master ram a small load <strong>on</strong> a large pist<strong>on</strong> is c<strong>on</strong>verted to a<br />

relatively large load <strong>on</strong> a small pist<strong>on</strong>. Additi<strong>on</strong>ally to <strong>the</strong> master ram, <strong>the</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pist<strong>on</strong>-cylinder apparatus used here is end-loaded, having a sec<strong>on</strong>d hydraulic ram to<br />

vertically load <str<strong>on</strong>g>and</str<strong>on</strong>g> hence streng<strong>the</strong>n <strong>the</strong> pressure vessel in which <strong>the</strong> sample is located<br />

(Figure 10).<br />

32


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

Figure 10: Cross-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an end-loaded pist<strong>on</strong> cylinder apparatus. <str<strong>on</strong>g>The</str<strong>on</strong>g> sample is situated in <strong>the</strong><br />

pressure vessel <str<strong>on</strong>g>and</str<strong>on</strong>g> compressed by applying force <strong>on</strong> <strong>the</strong> master ram. <str<strong>on</strong>g>The</str<strong>on</strong>g> end load ram serves to<br />

streng<strong>the</strong>n <strong>the</strong> pressure vessel. <str<strong>on</strong>g>The</str<strong>on</strong>g> sample is heated by electrical resistance. Redrawn after ref. [136].<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> sample assembly c<strong>on</strong>tains NaCl as solid pressure medium, a graphitic<br />

resistance heater, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> sample, which is surrounded by a Pt-capsule <str<strong>on</strong>g>and</str<strong>on</strong>g> placed into<br />

<strong>the</strong> hot spot <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> assembly (Figure 11). A large voltage is applied to <strong>the</strong> steel plates<br />

above <str<strong>on</strong>g>and</str<strong>on</strong>g> below <strong>the</strong> pressure vessel <str<strong>on</strong>g>and</str<strong>on</strong>g> passed across <strong>the</strong> resistance heater to heat <strong>the</strong><br />

sample, while <strong>the</strong> temperature is m<strong>on</strong>itored with a s-type <strong>the</strong>rmocouple placed close to<br />

<strong>the</strong> sample. During an experiment, pressure vessel, bridge <str<strong>on</strong>g>and</str<strong>on</strong>g> upper plates are cooled<br />

by a circulating water system.<br />

33


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

Figure 11: Cross secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample assembly for pist<strong>on</strong>-cylinder experiments.<br />

In all experiments, samples were compressed to 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> target run pressure<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n heated. <str<strong>on</strong>g>The</str<strong>on</strong>g> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> heated sample was adjusted to <strong>the</strong> target pressure<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> automatically c<strong>on</strong>trolled during <strong>the</strong> run time. Samples were quenched by switching<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> heating power, followed by manual decompressi<strong>on</strong>.<br />

1.3. Multi Anvil Technique<br />

In <strong>the</strong> multi anvil apparatus, <strong>the</strong> force <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydraulic press is exerted <strong>on</strong>to a set <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

six steel anvils, forming a cubic cavity, in which eight tungsten carbide (WC) cubes are<br />

placed. <str<strong>on</strong>g>The</str<strong>on</strong>g> corners <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> WC cubes are truncated to form an octahedral pressure<br />

chamber, filled by an MgO octahedr<strong>on</strong> that c<strong>on</strong>tains <strong>the</strong> sample capsule (Figure 12).<br />

Details <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> technique are described elsewhere (e.g. ref. [137-140]).<br />

34


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

Figure 12: Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> multi-anvil setup. On <strong>the</strong> left, two steel blocks are shown, forming a cubic<br />

cavity <str<strong>on</strong>g>and</str<strong>on</strong>g> enclosing a set <str<strong>on</strong>g>of</str<strong>on</strong>g> eight WC-anvils. On <strong>the</strong> right, <strong>the</strong> eight WC cubes are shown in detail,<br />

having truncated corners to form an octahedral void in which <strong>the</strong> sample is situated. <str<strong>on</strong>g>The</str<strong>on</strong>g> truncati<strong>on</strong> edge<br />

length (TEL) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cubes is marked in red, <strong>the</strong> octahedr<strong>on</strong> edge length (OEL) is marked in blue.<br />

Several assemblies exist with varying octahedr<strong>on</strong> edge length (OEL) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

truncati<strong>on</strong> edge length (TEL) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cubes. <str<strong>on</strong>g>The</str<strong>on</strong>g> maximum pressure that can be reached<br />

in an experiment increases with decreasing OEL <str<strong>on</strong>g>and</str<strong>on</strong>g> TEL, <str<strong>on</strong>g>and</str<strong>on</strong>g> thus with decreasing<br />

sample size. For <strong>the</strong> experiments here, WC cubes with OEL = 10 mm <str<strong>on</strong>g>and</str<strong>on</strong>g> TEL = 5 mm<br />

were used, allowing to squeeze <strong>the</strong> sample to 10 GPa (Figure 13).<br />

Figure 13: Pressure assembly <str<strong>on</strong>g>of</str<strong>on</strong>g> a multi anvil experiment.<br />

35


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> octahedr<strong>on</strong> is made <str<strong>on</strong>g>of</str<strong>on</strong>g> MgO doped with 5% Cr2O3 to reduce heat loss by<br />

radiati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> sample is surrounded by a Re-capsule, which again is surrounded by an<br />

MgO cylinder <str<strong>on</strong>g>and</str<strong>on</strong>g> placed into <strong>the</strong> hot spot <str<strong>on</strong>g>of</str<strong>on</strong>g> a cylindrical graphite resistance heater,<br />

which is insulated from <strong>the</strong> octahedr<strong>on</strong> by a zirc<strong>on</strong>ia sleeve. <str<strong>on</strong>g>The</str<strong>on</strong>g> capsule, made from<br />

0.25 mm thick Re-foil, has a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.6 mm <str<strong>on</strong>g>and</str<strong>on</strong>g> a length <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.5 mm. <str<strong>on</strong>g>The</str<strong>on</strong>g> sample<br />

temperature is m<strong>on</strong>itored using a W75Re25-W97Re3 <strong>the</strong>rmocouple, which is placed in<br />

c<strong>on</strong>tact with <strong>the</strong> capsule. Pressures are calibrated using known phase transiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

comm<strong>on</strong> minerals (compare ref. [141]), with an uncertainty <str<strong>on</strong>g>of</str<strong>on</strong>g> ~1 GPa. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>the</strong>rmal<br />

gradient al<strong>on</strong>g <strong>the</strong> capsule at 1600°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 10 GPa is ±50°C [142].<br />

Multi-anvil experiments were carried out using <strong>the</strong> 1-Cylinder Sumitomo Press<br />

with axial force <str<strong>on</strong>g>of</str<strong>on</strong>g> 1200 t. In all experiments <strong>the</strong> samples were compressed to <strong>the</strong> run<br />

pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>n heated at <strong>the</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> ~100 °C/min. <str<strong>on</strong>g>The</str<strong>on</strong>g> samples were quenched by<br />

switching <str<strong>on</strong>g>of</str<strong>on</strong>g>f <strong>the</strong> heating power <str<strong>on</strong>g>and</str<strong>on</strong>g> cooled at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1000 °C/s, followed by slow<br />

pressure quenching, lasting up to 15 hours.<br />

1.4. Diam<strong>on</strong>d Anvil Cell<br />

In <strong>the</strong> diam<strong>on</strong>d anvil cell (DAC), <strong>the</strong> pressure chamber is made by a drilled hole<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> a metal foil, which is placed between <strong>the</strong> polished culets <str<strong>on</strong>g>of</str<strong>on</strong>g> two diam<strong>on</strong>ds. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

diam<strong>on</strong>ds are seated <strong>on</strong> supporting plates, such that even moderate force <strong>on</strong> <strong>the</strong> plates<br />

lead to very high pressures <strong>on</strong> <strong>the</strong> sample chamber. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> different<br />

types <str<strong>on</strong>g>of</str<strong>on</strong>g> DAC designs (for details see refs. [143-147]). <str<strong>on</strong>g>The</str<strong>on</strong>g> DAC design used for<br />

experiments <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is described in detail by Dubrovinskaia <str<strong>on</strong>g>and</str<strong>on</strong>g> Dubrovinsky<br />

[148] <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> principle is shown in Figure 14. For this study, a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> 1/4 karate type IA<br />

diam<strong>on</strong>ds with a cullet size <str<strong>on</strong>g>of</str<strong>on</strong>g> 250 µm or 300 µm was used. <str<strong>on</strong>g>The</str<strong>on</strong>g> gasket was made from<br />

Re-foil with a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> ~250 µm, which was indented between <strong>the</strong> diam<strong>on</strong>ds to 40–<br />

60 µm. Using electrical erosi<strong>on</strong>, a hole with diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 80–100 µm was drilled in <strong>the</strong><br />

middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> indented area to form <strong>the</strong> pressure chamber.<br />

36


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

Figure 14: Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> a diam<strong>on</strong>d anvil cell used at BGI. Redrawn after ref. [148].<br />

For Raman studies, a small ruby sphere served as pressure calibrant, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

shift <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fluorescence line was used to determine <strong>the</strong> pressure, following <strong>the</strong> method<br />

described by Mao et al. [149]. For X-ray diffracti<strong>on</strong> studies, a small piece <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu-wire<br />

served as internal pressure calibrant, when <strong>the</strong> pressure transmitting medium was<br />

absent. When deviatoric stresses in <strong>the</strong> sample needed to be minimized by <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

transmitting medium, LiF was chosen. LiF is a chemically stable s<str<strong>on</strong>g>of</str<strong>on</strong>g>t material with low<br />

shear strength, <str<strong>on</strong>g>and</str<strong>on</strong>g> serves as both, pressure transmitting medium <str<strong>on</strong>g>and</str<strong>on</strong>g> pressure calibrant<br />

in X-ray diffracti<strong>on</strong> experiments, exhibiting low absorpti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> a low scattering factor<br />

for in-situ measurements through <strong>the</strong> DAC.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> DAC can be heated using ei<strong>the</strong>r electrical resistive (e.g. [148]) or laser<br />

heating [150-153]. In this study, samples were heated using <strong>the</strong> Nd-YAG laser (λ=1.064<br />

µm <str<strong>on</strong>g>and</str<strong>on</strong>g> power above 20 W), as provided at <strong>the</strong> synchrotr<strong>on</strong> facility at <strong>the</strong> advanced<br />

phot<strong>on</strong> source (APS) in Arg<strong>on</strong>ne, Illinois, [154].<br />

37


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

2. Analytical Methods<br />

2.1. Powder X-Ray Diffracti<strong>on</strong><br />

To determine <strong>the</strong> lattice parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> atomic coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crystalline<br />

samples, two types <str<strong>on</strong>g>of</str<strong>on</strong>g> angle-dispersive XRD analysis were performed, in-situ studies <strong>on</strong><br />

DAC experiments as well as characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<strong>the</strong>sized samples. <str<strong>on</strong>g>The</str<strong>on</strong>g> latter was<br />

d<strong>on</strong>e at BGI <strong>on</strong> a <strong>the</strong> Siemens D5000 diffractometer (Cu Kα2 radiati<strong>on</strong>, λ=1.542 Å), or a<br />

Phillips X’Pert diffractometer (Co Kα2 radiati<strong>on</strong>, λ=1.78897 Å). <str<strong>on</strong>g>The</str<strong>on</strong>g> sample was<br />

ground <str<strong>on</strong>g>and</str<strong>on</strong>g> mixed with Si powder in proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ~1:0.2, serving as calibrant. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

principles <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> technique can be found in ref. [155]. Full pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile refinements <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

diffracti<strong>on</strong> patterns were performed using <strong>the</strong> General Structure Analysis System<br />

(GSAS) program [156,157]. In-situ measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> DAC experiments were performed<br />

at <strong>the</strong> high brilliance X-ray system at BGI, using Mo Kα radiati<strong>on</strong> (λ=0.7105 Å) <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

CCD Bruker APEX detector, or at a synchrotr<strong>on</strong> facility, using flexible radiati<strong>on</strong> with<br />

wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> ~0.3 Å <str<strong>on</strong>g>and</str<strong>on</strong>g> a MAR345 image plate. Experiments were performed at <strong>the</strong><br />

Swiss Norwegian Beamline at <strong>the</strong> European Synchrotr<strong>on</strong> Radiati<strong>on</strong> Facility (ESRF),<br />

Grenoble, France, toge<strong>the</strong>r with Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Vladimir Dmitriev, <str<strong>on</strong>g>and</str<strong>on</strong>g> at GeoSoilEnviroCARS<br />

13 BMD at <strong>the</strong> Advanced Phot<strong>on</strong> Source (APS), Arg<strong>on</strong>ne, Illinois, toge<strong>the</strong>r with Dr.<br />

Vitali Prakapenka. <str<strong>on</strong>g>The</str<strong>on</strong>g> diffracti<strong>on</strong> images were integrated using <strong>the</strong> FIT2D program<br />

[158], where CeO2 was used to determine <strong>the</strong> distance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample from <strong>the</strong> detector<br />

al<strong>on</strong>g with o<strong>the</strong>r fitting parameters necessary. GSAS was used for full pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> integrated patterns, an example is shown in Figure 15.<br />

38


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

Figure 15: Processing <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD data from imaging plates. On <strong>the</strong> top, an image from MAR345 detector <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

LiF + <str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1Ti0.9O2 at 13 GPa ( λ=0.31) is shown before integrati<strong>on</strong>. On <strong>the</strong> bottom, <strong>the</strong> result <str<strong>on</strong>g>of</str<strong>on</strong>g> full pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

refinement is shown for <strong>the</strong> same spectrum, upper tickmarks indicate LiF <str<strong>on</strong>g>and</str<strong>on</strong>g> lower tickmarks indicate<br />

anatase <str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1Ti0.9O2.<br />

To determine <strong>the</strong> crystallite size <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> strain <str<strong>on</strong>g>of</str<strong>on</strong>g> a sample from XRD data, <strong>the</strong><br />

TOPAS-ACADEMIC s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware [159] was used for c<strong>on</strong>voluti<strong>on</strong>-based pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile fitting<br />

[160] <str<strong>on</strong>g>and</str<strong>on</strong>g> refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> microstructure. <str<strong>on</strong>g>The</str<strong>on</strong>g> diffracti<strong>on</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a CeO2 st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard<br />

was used to determine <strong>the</strong> source emissi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>and</str<strong>on</strong>g> instrumental c<strong>on</strong>tributi<strong>on</strong> to peak<br />

broadening. <str<strong>on</strong>g>The</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallite size <str<strong>on</strong>g>and</str<strong>on</strong>g> strain <strong>on</strong> <strong>the</strong> peak broadening were<br />

39


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

analyzed using <strong>the</strong> double-Voigt approach [161]. Integral-breadth based volumeweighted<br />

mean column height LVol_IB <str<strong>on</strong>g>of</str<strong>on</strong>g> coherently diffracting domains as well as mean<br />

strain values e0 [160] were obtained simultaneously. <str<strong>on</strong>g>The</str<strong>on</strong>g> estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallite size<br />

from LVol_IB depends <strong>on</strong> <strong>the</strong> particular crystallite shape <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> size distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> crystallites. For m<strong>on</strong>odisperse spherical crystallites with diameter D, <strong>the</strong> following<br />

equati<strong>on</strong> is applicable: D = 4/3 LVol_IB [162,163].<br />

2.2. X-Ray Absorpti<strong>on</strong> Spectroscopy<br />

X-Ray Absorpti<strong>on</strong> Spectroscopy (XAS) is generally used to determine <strong>the</strong> local<br />

atomic <str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong>ic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms, in our study that <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti atoms. Absorbing Xrays<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> energies close to <strong>the</strong> electr<strong>on</strong> binding energy, <strong>the</strong> absorpti<strong>on</strong> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> an atom<br />

shows specific features, <strong>the</strong> absorpti<strong>on</strong> edge, which is divided into three regi<strong>on</strong>s: <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

pre-edge regi<strong>on</strong> just before <strong>the</strong> edge, <strong>the</strong> X-Ray Absorpti<strong>on</strong> Near-Edge Structure<br />

(XANES) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> Extended X-Ray Absorpti<strong>on</strong> Fine Structure (EXAFS). <str<strong>on</strong>g>The</str<strong>on</strong>g> XANES<br />

regi<strong>on</strong> is extended to 50-100 eV bey<strong>on</strong>d an absorpti<strong>on</strong> edge <str<strong>on</strong>g>and</str<strong>on</strong>g> is determined by <strong>the</strong><br />

local density <str<strong>on</strong>g>of</str<strong>on</strong>g> vacant states <str<strong>on</strong>g>of</str<strong>on</strong>g> an absorbing atom, as well as multiple-scattering<br />

effects, while <strong>the</strong> EXAFS regi<strong>on</strong> is extended to up to 2000 eV bey<strong>on</strong>d <strong>the</strong> edge <str<strong>on</strong>g>and</str<strong>on</strong>g> is<br />

dominated by single scattering processes [164]. High quality XANES spectra were<br />

recorded in-situ up<strong>on</strong> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material in a DAC for several pressures across<br />

<strong>the</strong> phase transiti<strong>on</strong>. It was shown before that pre-edge features observed at <strong>the</strong> K edge<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ti atom are very sensitive to <strong>the</strong> distorti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> local envir<strong>on</strong>ment around <strong>the</strong> Ti<br />

atom [165-167], <str<strong>on</strong>g>and</str<strong>on</strong>g> that displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ti atoms from <strong>the</strong>ir centrosymmetric<br />

positi<strong>on</strong>s leads to <strong>the</strong> appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> an additi<strong>on</strong>al peak due to transiti<strong>on</strong>s into unfilled<br />

atomic d level. <str<strong>on</strong>g>The</str<strong>on</strong>g> transiti<strong>on</strong> from <strong>the</strong> s to d states is forbidden in <strong>the</strong> electric dipole<br />

approximati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> is usually very weak because its existence is <strong>on</strong>ly due to a small<br />

electric quadrupole matrix element in <strong>the</strong> absorpti<strong>on</strong> cross secti<strong>on</strong>. However, <strong>the</strong> Ti<br />

atom displacement from <strong>the</strong> cubic site breaks inversi<strong>on</strong> symmetry <str<strong>on</strong>g>and</str<strong>on</strong>g> induces a mixing<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> p <str<strong>on</strong>g>and</str<strong>on</strong>g> d states, thus introduces a large dipole transiti<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> this peak is<br />

<strong>the</strong>refore a direct probe <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> local displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> this atom [165,166]. K edge<br />

measurements serve well to distinguish between different phases.<br />

40


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

Ti K-edge measurements were performed in <strong>the</strong> transmissi<strong>on</strong> geometry at<br />

beamline ID12 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> ESRF [168]. <str<strong>on</strong>g>The</str<strong>on</strong>g> experimental c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> measurement are reported in ref. [169]. In order to enhance <strong>the</strong> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

transmitted beam, a DAC was used with thin diam<strong>on</strong>ds, which were mounted <strong>on</strong> fully<br />

perforated diam<strong>on</strong>d anvils [170,171]. In order to minimize deviatoric stresses <strong>on</strong> <strong>the</strong><br />

sample, silic<strong>on</strong>oil was used as pressure transmitting medium.<br />

2.3. Raman Spectroscopy<br />

Raman scattering occurs due to <strong>the</strong> excitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vibrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> atoms or<br />

molecules in <strong>the</strong> sample when <strong>the</strong> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> electric field applied equals <strong>the</strong><br />

eigen frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> corresp<strong>on</strong>ding vibrati<strong>on</strong>. A charge separati<strong>on</strong> is induced during<br />

<strong>the</strong> interacti<strong>on</strong> with radiati<strong>on</strong> while <strong>the</strong> electr<strong>on</strong> shell is displaced as a resp<strong>on</strong>se to <strong>the</strong><br />

external field. <str<strong>on</strong>g>The</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> observed Raman b<str<strong>on</strong>g>and</str<strong>on</strong>g>s as well as <strong>the</strong> eigen frequencies,<br />

relative intensities, widths <str<strong>on</strong>g>and</str<strong>on</strong>g> polarizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vibrati<strong>on</strong>al b<str<strong>on</strong>g>and</str<strong>on</strong>g>s are c<strong>on</strong>trolled by <strong>the</strong><br />

sizes, valences <str<strong>on</strong>g>and</str<strong>on</strong>g> masses <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> atomic species, <strong>the</strong> b<strong>on</strong>d forces between <strong>the</strong> vibrating<br />

atoms <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir arrangement in <strong>the</strong> crystal structure (e.g. ref.[172]).<br />

Raman spectroscopy serves as an important tool for in-situ phase identificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

characterizati<strong>on</strong> up<strong>on</strong> compressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> heating during DAC experiments [173-175].<br />

Raman scattering measurements were perfomred <strong>on</strong> a LABRAM Raman<br />

spectrometer with a He-Ne laser (632 nm). <str<strong>on</strong>g>The</str<strong>on</strong>g> spectrometer was calibrated using <strong>the</strong><br />

Г25 ph<strong>on</strong><strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Si. <str<strong>on</strong>g>The</str<strong>on</strong>g> vibrati<strong>on</strong>al peaks were analysed using <strong>the</strong> PeakFit TM program by<br />

J<str<strong>on</strong>g>and</str<strong>on</strong>g>el Scientific <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> Savitsky-Golay data-smoothing algorithm was used for peak<br />

analysis. <str<strong>on</strong>g>The</str<strong>on</strong>g> peak pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles were described by combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Lorentzian <str<strong>on</strong>g>and</str<strong>on</strong>g> Guassian<br />

functi<strong>on</strong>s.<br />

2.4. Electr<strong>on</strong> Microprobe<br />

Electr<strong>on</strong> microprobing is a comm<strong>on</strong> tool for materials analysis; details about <strong>the</strong><br />

method can be found elsewhere, e.g. refs. [176,177]. All samples were mounted in<br />

epoxy resin <str<strong>on</strong>g>and</str<strong>on</strong>g> polished. Samples <str<strong>on</strong>g>and</str<strong>on</strong>g> epoxy mounts are n<strong>on</strong>-c<strong>on</strong>ductive <str<strong>on</strong>g>and</str<strong>on</strong>g> were<br />

41


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

<strong>the</strong>refore carb<strong>on</strong> coated to ensure c<strong>on</strong>ducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> beam electr<strong>on</strong>s away from <strong>the</strong><br />

sample. All samples were analyzed <strong>on</strong> <strong>the</strong> JEOL JXA-8200 electr<strong>on</strong> microprobe at BGI.<br />

In order to identify <strong>the</strong> phases <str<strong>on</strong>g>and</str<strong>on</strong>g> to achieve knowledge about which elements are<br />

present in each phase, Energy Dispersive Spectrometry (EDS) was used to obtain<br />

qualitative spectra. <str<strong>on</strong>g>The</str<strong>on</strong>g> EDS s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware is equipped with a marker database for K-, L-,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> M-lines for peak identificati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> chemical compositi<strong>on</strong>s were analyzed using<br />

Wavelength Dispersive Spectrometry (WDS) with a 10 nA beam current <str<strong>on</strong>g>and</str<strong>on</strong>g> an<br />

accelerating voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 kV. <str<strong>on</strong>g>The</str<strong>on</strong>g> instrument was calibrated <strong>on</strong> a natural rutile st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard<br />

for TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> natural zirc<strong>on</strong> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard for <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2. <str<strong>on</strong>g>The</str<strong>on</strong>g> CITZAF correcti<strong>on</strong> package <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Armstr<strong>on</strong>g [178] was used to reduce <strong>the</strong> data <str<strong>on</strong>g>and</str<strong>on</strong>g> to obtain quantitative analysis. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

atomic number correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Duncumb <str<strong>on</strong>g>and</str<strong>on</strong>g> Reed, Heinrich’s tabulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> absorpti<strong>on</strong><br />

coefficients, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> fluorescence correcti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Reed were used to obtain a quantitative<br />

analysis [178].<br />

2.5. Transmissi<strong>on</strong> Electr<strong>on</strong> Microscopy<br />

Details about Transmissi<strong>on</strong> Electr<strong>on</strong> Microscopy (TEM) technique can be found<br />

in refs. [179,180]. <str<strong>on</strong>g>The</str<strong>on</strong>g> microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample as well as crystal structures were<br />

investigated by High Resoluti<strong>on</strong> Transmissi<strong>on</strong> Electr<strong>on</strong> Microscopy (HRTEM), a phase<br />

c<strong>on</strong>trasting imaging technique where <strong>the</strong> c<strong>on</strong>trast is due to differences in <strong>the</strong><br />

electrostatic potential in <strong>the</strong> crystal. Analysis was d<strong>on</strong>e <strong>on</strong> <strong>the</strong> analytical Philips CM20<br />

FEG scanning TEM at BGI as well as <strong>on</strong> <strong>the</strong> FEI Tecnai TM G 2 F20 X-Twin TEM at<br />

Ge<str<strong>on</strong>g>of</str<strong>on</strong>g>orschungszentrum Potsdam (GFZ), using accelerating voltage <str<strong>on</strong>g>of</str<strong>on</strong>g> 120–200 kV.<br />

Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> nanocrystalline starting material were prepared by dropping <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanolic<br />

soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample <strong>on</strong>to <strong>the</strong> grid <str<strong>on</strong>g>of</str<strong>on</strong>g> a specimen holder. Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> compressed<br />

material after a DAC experiment were prepared by Focused I<strong>on</strong> Beam Thinning [181] at<br />

GFZ.<br />

42


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

3. Ab-initio Calculati<strong>on</strong>s<br />

Ab-initio all-electr<strong>on</strong> density functi<strong>on</strong>al electr<strong>on</strong>ic structure simulati<strong>on</strong>s were<br />

performed <strong>on</strong> <strong>the</strong> TiO2 polymorphs rutile, anatase, brookite, TiO2II <str<strong>on</strong>g>and</str<strong>on</strong>g> baddelyite<br />

structured phase in order to explore <strong>the</strong> ground state energetics. <str<strong>on</strong>g>The</str<strong>on</strong>g> PAW method [182]<br />

as implemented in <strong>the</strong> Vienna Ab-Initio Simulati<strong>on</strong> Package (VASP) [129,183] <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

LAPW method [184] as implemented in <strong>the</strong> WIEN2k code [185,186] were used.<br />

Computati<strong>on</strong>s were performed, using LDA [128] <str<strong>on</strong>g>and</str<strong>on</strong>g> GGA [129] for VASP <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

WIEN2k, applying <strong>the</strong> approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Perdew et al. [187] as well as WC for Wien2k<br />

[188]. WC is a new GGA approximati<strong>on</strong>, developed in <strong>the</strong> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti-based<br />

ferroelectric phases [188]. It may be appropriate for computati<strong>on</strong>s <strong>on</strong> TiO2, but has not<br />

been applied to date. In <strong>the</strong> plane wave computati<strong>on</strong>s, plane wave cut<str<strong>on</strong>g>of</str<strong>on</strong>g>fs <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec =1000<br />

eV were included. <str<strong>on</strong>g>The</str<strong>on</strong>g>y have been found necessary for computati<strong>on</strong>s <strong>on</strong> transiti<strong>on</strong> metal<br />

bearing oxides <str<strong>on</strong>g>and</str<strong>on</strong>g> silicates. In <strong>the</strong> LAPW method, <strong>the</strong> plane waves were exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed up<br />

to RKmax=9.0, with uniform muffin tin radii <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.8 Bohr for Ti <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.6 Bohr for O for all<br />

structures. Crystal structures were optimized for internal <str<strong>on</strong>g>and</str<strong>on</strong>g> external degrees <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freedom at c<strong>on</strong>stant volumes, starting from experimental structures. Reciprocal space<br />

was sampled <strong>on</strong> M<strong>on</strong>khorst-Pack k-point grids [189], with <strong>the</strong> product <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

kpoints · atoms per unit cell >1944. Computati<strong>on</strong>s were performed for a wide volume<br />

range allowing for a reliable equati<strong>on</strong>-<str<strong>on</strong>g>of</str<strong>on</strong>g>-state fit with a third order finite strain (Birch-<br />

Murnaghan) equati<strong>on</strong>-<str<strong>on</strong>g>of</str<strong>on</strong>g>-state [190]. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> study are presented in chapter III.<br />

secti<strong>on</strong> 6. “Computati<strong>on</strong>al ground states <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2”.<br />

Ano<strong>the</strong>r set <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>s, using PAW method with LDA <str<strong>on</strong>g>and</str<strong>on</strong>g> PBE, was<br />

performed to calculate ground state energetics <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti8O16 as well as <str<strong>on</strong>g>Zr</str<strong>on</strong>g>1Ti7O16 supercells<br />

for varying volumes. <str<strong>on</strong>g>The</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cell parameters as well as energies <str<strong>on</strong>g>and</str<strong>on</strong>g> atomic<br />

positi<strong>on</strong>s as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> volume were explored. A 2×1×1 supercell was used for<br />

anatase al<strong>on</strong>g with a <str<strong>on</strong>g>Zr</str<strong>on</strong>g> doped versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this cell (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>1Ti7O16). Reciprocal space was<br />

sampled <strong>on</strong> a 6×12×4 M<strong>on</strong>khorst-Pack k-point grid [189]. Both cells were relaxed for<br />

internal <str<strong>on</strong>g>and</str<strong>on</strong>g> external degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> freedom, leaving <strong>the</strong> volume fixed for volumes ranging<br />

from 10.0–12.5 ų for TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 10.0–13.0 ų per atom for <str<strong>on</strong>g>Zr</str<strong>on</strong>g>Ti7O16.<br />

43


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

4. Compressing Materials: Equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> change in volume <str<strong>on</strong>g>of</str<strong>on</strong>g> a material with changing pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature<br />

depends <strong>on</strong> <strong>the</strong> isobaric <strong>the</strong>rmal expansi<strong>on</strong> α as well as <strong>the</strong> iso<strong>the</strong>rmal compressibility β<br />

such that:<br />

VT,P = V1, 298 [1+ α(T-298) – β(P-1)] (3)<br />

where α <str<strong>on</strong>g>and</str<strong>on</strong>g> β are not c<strong>on</strong>stant but approximate to a certain value, resulting in finite<br />

strain. <str<strong>on</strong>g>The</str<strong>on</strong>g> iso<strong>the</strong>rmal volume change up<strong>on</strong> compressi<strong>on</strong> can be described by a number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> State (EoS). Here, <strong>the</strong> Birch-Murnaghan EoS for finite strain was used.<br />

It is based up<strong>on</strong> <strong>the</strong> assumpti<strong>on</strong> that <strong>the</strong> strain energy <str<strong>on</strong>g>of</str<strong>on</strong>g> a solid undergoing compressi<strong>on</strong><br />

can be expressed as a Taylor series in <strong>the</strong> finite strain, f. <str<strong>on</strong>g>The</str<strong>on</strong>g> Birch-Murnaghan EoS<br />

[190] is based up<strong>on</strong> <strong>the</strong> Eulerian strain:<br />

fE =0.5 [(V0/V) 2/3 -1]/2 (4)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> expansi<strong>on</strong> to third order in <strong>the</strong> strain yields <strong>the</strong> Birch-Munraghan EoS:<br />

P = 1.5 K0 [(V0/V) 7/3 - (V0/V) 5/3 ]·{1 - 0.75 (4- K0’)·[(V0/V) 2/3 -1]} (5)<br />

with K0 = iso<strong>the</strong>rmal bulk modulus (K0 = 1/β (dP/dV)T) <str<strong>on</strong>g>and</str<strong>on</strong>g> K0’ = dK0/dP. In this study,<br />

pressure-volume data up<strong>on</strong> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples were gained during diam<strong>on</strong>d<br />

anvil cell experiments. <str<strong>on</strong>g>The</str<strong>on</strong>g> data were <strong>the</strong>n fitted to a third order Birch Murnaghan EoS<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> for some instances to a sec<strong>on</strong>d order EoS with K0’ fixed to 4, which is typical for<br />

most materials. In order to yield estimates for <strong>the</strong> EoS parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>ir uncertainties<br />

in a least square refinement, applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a weighing scheme was necessary. For each<br />

data point i, <strong>the</strong> weight wi was assigned such that:<br />

wi = σ -2 (6)<br />

where σ² is <strong>the</strong> true variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data point, comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> from<br />

uncertainties in <strong>the</strong> pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> volume measurements.<br />

In order to express <strong>the</strong> relati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> P <str<strong>on</strong>g>and</str<strong>on</strong>g> V linearly, <strong>the</strong> F-f plot was used. Here, Birch’s<br />

normalized pressure F was plotted versus <strong>the</strong> Eulerian strain fE with:<br />

F = P/(3 fE (2 fE +1)) 5/2 (7)<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> data are described by a third order truncati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EoS <str<strong>on</strong>g>and</str<strong>on</strong>g> as an<br />

advantage, K0 <str<strong>on</strong>g>and</str<strong>on</strong>g> K0’ can be fitted as parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> a linear functi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> such<br />

a fit equals 3K0(K0’−4)/2. To calculate fE (equati<strong>on</strong> 4), V0 was gained from<br />

44


II. Methods <str<strong>on</strong>g>and</str<strong>on</strong>g> Instrumentati<strong>on</strong><br />

experimental data. If no experimental V0 was available, <strong>the</strong> refined V0 was used as fitted<br />

by <strong>the</strong> EoS refinement (equati<strong>on</strong>s 5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6).<br />

In this study, experimental pressure-volume data obtained from DAC<br />

experiments were fitted to Birch-Murnaghan EoS <str<strong>on</strong>g>and</str<strong>on</strong>g> plotted as F-f. Fur<strong>the</strong>rmore, in abinitio<br />

computati<strong>on</strong>s <strong>the</strong> internal energy E was calculated for varying pressures. Given<br />

that –P = dE/dV, it follows that:<br />

E(V) = V0K0/ K0’ [(1/ K0’-1)·(V0/V) Ko’-1 + (V/V0)] + c<strong>on</strong>st, (8)<br />

allowing for direct comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> computati<strong>on</strong>al <str<strong>on</strong>g>and</str<strong>on</strong>g> experimental results <str<strong>on</strong>g>of</str<strong>on</strong>g> K0<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> K’.<br />

45


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

1. Syn<strong>the</strong>sis <str<strong>on</strong>g>and</str<strong>on</strong>g> Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Starting Materials<br />

Due to small sample volumes, experimental studies at high pressures <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

temperatures require a starting material with distinct stoichiometry that is homogeneous<br />

<strong>on</strong> a nanometer scale. Because TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 are poor glass builders, homogeneous<br />

mixtures can not be gained from quenching a melt. <str<strong>on</strong>g>The</str<strong>on</strong>g> typical manufacturing process<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> mixtures is <strong>the</strong>refore <strong>the</strong> sintering <str<strong>on</strong>g>of</str<strong>on</strong>g> ceramics from oxides or carb<strong>on</strong>ates at<br />

temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 1400°C or higher [70,191]. However, such a syn<strong>the</strong>sis path has clear<br />

limitati<strong>on</strong>s due to <strong>the</strong> immiscibility <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> very slow diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

solid state reacti<strong>on</strong>. At calcinati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong>re are immiscibility gaps <str<strong>on</strong>g>of</str<strong>on</strong>g> solid<br />

soluti<strong>on</strong>s between ~30 <str<strong>on</strong>g>and</str<strong>on</strong>g> ~45 mol% TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> ~60 <str<strong>on</strong>g>and</str<strong>on</strong>g> ~90 mol% TiO2 (compare<br />

Figure 7). Samples with relevant compositi<strong>on</strong>s will <strong>the</strong>refore always c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> two<br />

phases. <str<strong>on</strong>g>The</str<strong>on</strong>g> effect leads to inhomogeneous distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> atoms, especially<br />

when grain sizes are in <strong>the</strong> µm range or bigger.<br />

1.1. Sol-Gel Syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 Powders<br />

As an alternative to sintering <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides, zirc<strong>on</strong>ium-titanium oxides were<br />

prepared by sol-gel syn<strong>the</strong>sis. <str<strong>on</strong>g>The</str<strong>on</strong>g>re are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> sol-gel studies with <strong>the</strong> goal to<br />

obtain zirc<strong>on</strong>ia-titania powders with high surface energy, e.g. for applicati<strong>on</strong> as<br />

humidity sensors [71,192-195]. <str<strong>on</strong>g>The</str<strong>on</strong>g> goal <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to syn<strong>the</strong>size a series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amorphous or nanocrystalline materials with a distinct stoichiometry, which are<br />

homogeneous <strong>on</strong> a nanometer scale <str<strong>on</strong>g>and</str<strong>on</strong>g> free <str<strong>on</strong>g>of</str<strong>on</strong>g> organic material. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, a route <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sol-gel syn<strong>the</strong>sis was established in which temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hydrolisis<br />

reacti<strong>on</strong> were optimized, having <strong>the</strong> following c<strong>on</strong>straints: In order to gain carb<strong>on</strong> free<br />

material, <strong>the</strong> hydrolysis should last for a l<strong>on</strong>g period <str<strong>on</strong>g>of</str<strong>on</strong>g> time at high temperature. At <strong>the</strong><br />

same time, diffusi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> growth to bigger crystallite sizes was to be hindered, requiring<br />

lower temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> shorter durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hydrolysis reacti<strong>on</strong>.<br />

46


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> precursor powders were syn<strong>the</strong>sized as previously reported [196]. 1 mole<br />

acetylacet<strong>on</strong>e was added slowly to <strong>on</strong>e mole zirc<strong>on</strong>ium–n–propoxide, or titanium-nethoxide,<br />

respectively. <str<strong>on</strong>g>The</str<strong>on</strong>g> yellow soluti<strong>on</strong> obtained was stirred at 40°C for <strong>on</strong>e hour. 3<br />

mole destilled water were added <str<strong>on</strong>g>and</str<strong>on</strong>g> stirred for 30 minutes at 80°C. <str<strong>on</strong>g>The</str<strong>on</strong>g> soluti<strong>on</strong> was<br />

destilled by rotati<strong>on</strong>al evaporati<strong>on</strong> at 80 mbar air pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> 80°C. <str<strong>on</strong>g>The</str<strong>on</strong>g> powder<br />

obtained had a c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ~53 wt% with respect to <strong>the</strong> oxide, given from heat loss<br />

analysis after heating at 1000°C.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> precursor powders were weighed, yielding stoichiometries <str<strong>on</strong>g>of</str<strong>on</strong>g> Tix:<str<strong>on</strong>g>Zr</str<strong>on</strong>g>1-x with<br />

x = 0.00, 0.10, 0.25, 0.33, 0.50, 0.67, 0.75, 0.90 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.0 <str<strong>on</strong>g>and</str<strong>on</strong>g> dissolved in ei<strong>the</strong>r H2O- or<br />

ethanol-based soluti<strong>on</strong>s, so that c<strong>on</strong>centrati<strong>on</strong>s were 10 wt% in <strong>the</strong> sol with respect to<br />

<strong>the</strong> corresp<strong>on</strong>ding oxide. <str<strong>on</strong>g>The</str<strong>on</strong>g> sols were stirred for about <strong>on</strong>e hour until <strong>the</strong>y were clear.<br />

In <strong>the</strong> sols, <strong>the</strong> Ti <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> atoms are homogeneously distributed to <strong>the</strong> atomic scale, ideal<br />

for obtaining homogeneous gels <str<strong>on</strong>g>and</str<strong>on</strong>g> powders. <str<strong>on</strong>g>The</str<strong>on</strong>g> sols were distilled under rotati<strong>on</strong>al<br />

evaporati<strong>on</strong> at 80 mbar air pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> 80°C, obtaining gel powders.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> gel powders were heated at 200°C for <strong>on</strong>e hour, ground in an agate mortar,<br />

heated at 200°C for ano<strong>the</strong>r 30 minutes <str<strong>on</strong>g>and</str<strong>on</strong>g> ground again. In six porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ~8 g each,<br />

<strong>the</strong> dried powders were put into ceramic crucibles, placed in a metal chamber <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

furnace with <strong>the</strong> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 2110 cm³ <str<strong>on</strong>g>and</str<strong>on</strong>g> heated to 400°C or 500°C, respectively for 2<br />

hours, while 400 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> distilled water were sprayed into <strong>the</strong> chamber <str<strong>on</strong>g>and</str<strong>on</strong>g> supported <strong>the</strong><br />

hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material. Afterwards, <strong>the</strong> samples were heated at <strong>the</strong> same temperature<br />

in <strong>the</strong> dry furnace for ano<strong>the</strong>r hour.<br />

In order to study <strong>the</strong> crystallizati<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material syn<strong>the</strong>sized, <str<strong>on</strong>g>and</str<strong>on</strong>g> to<br />

minimize its water c<strong>on</strong>tent, <strong>the</strong> samples were annealed at 1400°C for 72 hours.<br />

1.1.1. Purity <str<strong>on</strong>g>and</str<strong>on</strong>g> Microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> Sol-Gel Powders<br />

In order to gain more informati<strong>on</strong> about <strong>the</strong> grain sizes <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> texture <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

reacti<strong>on</strong> products, HRTEM images were taken. Differential <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal Analysis (DTA)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g>rmoGravimetric Analysis (TGA; Setaram TAG24, Caluire, France) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

powders were performed with a heating rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 K/min in dry air atmosphere.<br />

Nitrogen sorpti<strong>on</strong> was measured, using an automated volumetric analyser (Model<br />

Autosorb 3B, Quantachrome Instruments, Boynt<strong>on</strong> Beach, USA). Prior to nitrogen<br />

adsorpti<strong>on</strong> analysis, samples were dried at 110°C for 16 h at reduced pressure. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

47


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

multipoint-method was used to determine <strong>the</strong> specific surface area according to<br />

Brunauer, Emmet <str<strong>on</strong>g>and</str<strong>on</strong>g> Teller (BET).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> samples syn<strong>the</strong>sized via sol-gel process are mainly colorless powders,<br />

excluding samples with nominally 100 mol% <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2, which are always dark grey or black<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> thus, c<strong>on</strong>tain small amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> (


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

with a pore volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.16 cm 3 /g, which is typical for sol-gel materials (Figure 17). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

type 1 iso<strong>the</strong>rm indicates a microporous network with an average pore diameter <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

around 1.8 nm.<br />

Figure 17: N2-sorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sol-gel sample with 50 mol-% TiO2. <str<strong>on</strong>g>The</str<strong>on</strong>g> pore size distributi<strong>on</strong> (left) shows a<br />

highly porous material with a pore volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.16cm³/g, <strong>the</strong> iso<strong>the</strong>rm (right) indicates an average pore<br />

diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.8 nm.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TGA <str<strong>on</strong>g>and</str<strong>on</strong>g> DTA/TG experiments are presented in Figure 18.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> total overall mass loss up to 1000°C is 6 wt% <str<strong>on</strong>g>and</str<strong>on</strong>g> can be separated in two<br />

temperature regimes. <str<strong>on</strong>g>The</str<strong>on</strong>g> first, major mass loss until 250°C <str<strong>on</strong>g>of</str<strong>on</strong>g> ~5 wt% is directly<br />

associated with a broad endo<strong>the</strong>rmic DTA signal due to <strong>the</strong> evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adsorbed<br />

water in <strong>the</strong> micropores. <str<strong>on</strong>g>The</str<strong>on</strong>g> minor mass loss at T=250-1000°C <str<strong>on</strong>g>of</str<strong>on</strong>g> ~1 wt% may be<br />

explained by decompositi<strong>on</strong> reacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> organic residues or <strong>the</strong> c<strong>on</strong>tinued c<strong>on</strong>densati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> OH-groups within <strong>the</strong> material. At a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 717°C, <strong>the</strong> DTA data show a<br />

large exo<strong>the</strong>rmic signal (<strong>on</strong>set at T=714°C), indicating <strong>the</strong> crystallizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> srilankite<br />

from <strong>the</strong> amorphous phase. It can be c<strong>on</strong>cluded that <strong>the</strong> total amount <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> + H2O <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> sol-gel samples produced is samller than 1 wt%.<br />

A st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard drying procedure at 250°C for 24 h was used to reduce <strong>the</strong> water<br />

c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> powders. <str<strong>on</strong>g>The</str<strong>on</strong>g> overall mass loss was reduced to ~3%, as can be seen from<br />

<strong>the</strong> differential <strong>the</strong>rmal DTA/TG experiments (Figure 18). However, it has to be noted<br />

that still a minor endo<strong>the</strong>rmic vaporizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water occurs. Also <strong>the</strong> small weight loss<br />

at temperatures >250°C is still present.<br />

49


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 18: Results <str<strong>on</strong>g>of</str<strong>on</strong>g> DTA/TG measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> a sol-gel sample with 50 mol% TiO2, before (left) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

after (right) drying at 250°C.<br />

1.1.2. Phase Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sol-Gel <str<strong>on</strong>g>and</str<strong>on</strong>g> Annealed Powders<br />

XRD patterns show that sol-gel samples with nominal bulk compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

x=0.25-0.67 are amorphous, samples with x≤0.10 are solid soluti<strong>on</strong>s with <strong>the</strong> structures<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> cubic zirc<strong>on</strong>ia <str<strong>on</strong>g>and</str<strong>on</strong>g> baddeleyite, <str<strong>on</strong>g>and</str<strong>on</strong>g> at x≥0.67 an anatase structured phase appears.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> crystalline phases show very broad peaks, indicating crystallite sizes in <strong>the</strong><br />

nanometer range (Figure 19).<br />

After annealing at 1400°C, samples with nominal bulk compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> x≤0.33<br />

c<strong>on</strong>tain solid soluti<strong>on</strong>s with <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> baddeleyite, samples with x=0.33-0.75<br />

c<strong>on</strong>tain a srilankite-structured phase, <str<strong>on</strong>g>and</str<strong>on</strong>g> with x≤0.90 solid soluti<strong>on</strong>s with <strong>the</strong> structure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rutile. <str<strong>on</strong>g>The</str<strong>on</strong>g> very sharp peaks c<strong>on</strong>firm an increase in crystallite size after annealing<br />

(Figure 19). Cubic zirc<strong>on</strong>ia is not present after annealing <str<strong>on</strong>g>and</str<strong>on</strong>g> thus, Ti does not stabilize<br />

<strong>the</strong> cubic zirc<strong>on</strong>ia phase, as opposed to o<strong>the</strong>r cati<strong>on</strong>s, e.g. Y. <str<strong>on</strong>g>The</str<strong>on</strong>g> amorphous<br />

intermediate phase transforms to srilankite at a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> about 720°C, as indicated<br />

by TGK. <str<strong>on</strong>g>The</str<strong>on</strong>g> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong> from anatase into rutile was not measured<br />

in this study, Borkar et al. [198] present a detailed study <strong>on</strong> <strong>the</strong> phase transiti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

give a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 700°C for <strong>the</strong> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phase transformati<strong>on</strong> for undoped<br />

anatase.<br />

50


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 19: Full pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile refinements <str<strong>on</strong>g>of</str<strong>on</strong>g> X-ray powder diffracti<strong>on</strong> patterns from <strong>the</strong> samples with x=0 (top),<br />

x=50 (middle) <str<strong>on</strong>g>and</str<strong>on</strong>g> x=100 (bottom) before (left) <str<strong>on</strong>g>and</str<strong>on</strong>g> after (right) annealing at 1400°C. Patterns were<br />

collected using Co Kα1 radiati<strong>on</strong> (1.78897 Å) with Si as internal st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard.<br />

51


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 20: Lattice parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> syn<strong>the</strong>sized oxides as refined by full pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile analysis.<br />

Values are given for experiments with nominal bulk compositi<strong>on</strong>s in mol% TiO2. Literature data are:<br />

Baddeleyite [199], cubic <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 [79],srilankite [200], rutile [201] <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase [202]. Mole fracti<strong>on</strong>s are<br />

refined occupancies (annealed samples), nominal bulk compositi<strong>on</strong>s (single phase sol-gel products) or<br />

estimates from phase diagrams (multi phase sol-gel products), respectively. Lines are linear fits (see text).<br />

52


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Results <str<strong>on</strong>g>of</str<strong>on</strong>g> full pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile refinements are presented in Figure 20, showing lattice<br />

parameters as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compositi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> refined lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> all endmembers<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> solid soluti<strong>on</strong>s are in very good agreement with literature data. <str<strong>on</strong>g>The</str<strong>on</strong>g> volume<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> baddeleyite was refined to 140.88(16) Å 3 , Yashima et al [199] give a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 140.76<br />

Å 3 . <str<strong>on</strong>g>The</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> cubic <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 was refined to 134.09(14) Å 3 , Wang et al. [79] present<br />

135.4 Å 3 . It is remarkable that <strong>the</strong> high temperature phase (cubic zirc<strong>on</strong>ia) has a smaller<br />

volume <strong>the</strong>n <strong>the</strong> low temperature phase (baddeleyite). <str<strong>on</strong>g>The</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile was refined<br />

to 62.43(1) Å 3 , G<strong>on</strong>schorek [201] describes a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 62.43 Å 3 ; <strong>the</strong> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase<br />

was refined to 136.15(4) Å 3 , Howard et al. [202] found a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 136.27 Å 3 ; <strong>the</strong><br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> srilankite was refined to 132.2264(18) Å 3 , Newnham [200] gives a value <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

131.73 Å 3 . Following <strong>the</strong> same trend, <strong>the</strong> lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> all solid soluti<strong>on</strong>s<br />

decrease with <strong>the</strong> substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bigger cati<strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> by <strong>the</strong> smaller Ti (Figure 20).<br />

Especially anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile show a significant change in volume with <strong>the</strong> incorporati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> n<strong>on</strong>-equlibrium syn<strong>the</strong>sis differ from those expected by <strong>the</strong><br />

equilibrium phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> McHale et al. [70] (Figure 21). In <strong>the</strong> sol-gel syn<strong>the</strong>sis,<br />

tetrag<strong>on</strong>al zirc<strong>on</strong>ia was not syn<strong>the</strong>sized but baddeleyite al<strong>on</strong>g with cubic zirc<strong>on</strong>ia. In <strong>the</strong><br />

syn<strong>the</strong>sis at 500°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 400°C with bulk compositi<strong>on</strong> x=0.10, solid soluti<strong>on</strong>s with<br />

structure <str<strong>on</strong>g>of</str<strong>on</strong>g> baddeleyite <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> cubic <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 were produced <str<strong>on</strong>g>and</str<strong>on</strong>g> thus, <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2<br />

that can be incorporated into <strong>the</strong> structures is higher than described before.<br />

53


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 21: Phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2. t-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 ss indicates <strong>the</strong> solid soluti<strong>on</strong> with structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tetrag<strong>on</strong>al zirc<strong>on</strong>ia, m-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 ss <strong>the</strong> solid soluti<strong>on</strong> with structure <str<strong>on</strong>g>of</str<strong>on</strong>g> baddeleyite, t-TiO2 ss <strong>the</strong> solid soluti<strong>on</strong><br />

with structure <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile. Plotted are solid soluti<strong>on</strong>s from annealed samples (open symbols) <str<strong>on</strong>g>and</str<strong>on</strong>g> from<br />

samples <str<strong>on</strong>g>of</str<strong>on</strong>g> sol-gel syn<strong>the</strong>sis (filled symbols) in <strong>the</strong> structures <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase, rutile, baddeleyite, cubic <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2,<br />

srilankite <str<strong>on</strong>g>and</str<strong>on</strong>g> an amorphous phase. Compositi<strong>on</strong>s are refined from full pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile analysis (annealed<br />

samples) <str<strong>on</strong>g>and</str<strong>on</strong>g> nominal bulk compositi<strong>on</strong>s (sol-gel samples). Redrawn after Mc Hale et al. [70].<br />

Fur<strong>the</strong>rmore, stable fits <str<strong>on</strong>g>of</str<strong>on</strong>g> Rietveld refinements <strong>on</strong> <strong>the</strong> annealed sample with<br />

x=0.33 were found in which <strong>the</strong> occupancies <str<strong>on</strong>g>of</str<strong>on</strong>g> both, baddeleyite <str<strong>on</strong>g>and</str<strong>on</strong>g> cubic zirc<strong>on</strong>ia,<br />

are refined to x~0.33. <str<strong>on</strong>g>The</str<strong>on</strong>g>se values again extend <strong>the</strong> metastablity fields <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phases. It<br />

is <strong>the</strong>refore c<strong>on</strong>firmed that <strong>the</strong> high temperature srilankite phase has disordered<br />

structure as full pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile refinements do not show any superstructural reflexes.<br />

Fur<strong>the</strong>rmore x=0.92 was refined as lowest value for <strong>the</strong> annealed solid soluti<strong>on</strong>s with<br />

rutile structure, c<strong>on</strong>sistent with <strong>the</strong> phase diagram by McHale et al. [70].<br />

As dem<strong>on</strong>strated above we were able to obtain homogeneous starting materials<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Tix<str<strong>on</strong>g>Zr</str<strong>on</strong>g>1-xO2 with x=0.00, 0.10, 0.25, 0.33, 0.50, 0.67, 0.75, 0.90 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.0. <str<strong>on</strong>g>The</str<strong>on</strong>g> syn<strong>the</strong>sis<br />

path using a hydrous sol <str<strong>on</strong>g>and</str<strong>on</strong>g> hydrolysis temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 400°C was most appropriate <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

produced samples with carb<strong>on</strong> c<strong>on</strong>tents


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

1.2. Syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> Microscale Anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> Nanoscale Rutile<br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2<br />

Hydro<strong>the</strong>rmal experiments as well as dry annealing experiments were<br />

performed, using nanoscale anatase Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 as starting material which was<br />

syn<strong>the</strong>sized by <strong>the</strong> sol-gel method. For hydro<strong>the</strong>rmal experiments, <strong>the</strong> starting material<br />

was filled in a gold capsule, 5 wt% H2O was added <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> capsules were welded shut.<br />

For <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> microscale anatase c<strong>on</strong>diti<strong>on</strong>s below <strong>the</strong> estimated transformati<strong>on</strong><br />

temperature to rutile were chosen (pressure=1 kbar, temperature=500°C) <str<strong>on</strong>g>and</str<strong>on</strong>g> a durati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 5 days to allow for growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crystallites. <str<strong>on</strong>g>The</str<strong>on</strong>g> run product was a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microscale rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> microscale anatase, determined by XRD. In order to prevent <strong>the</strong><br />

transformati<strong>on</strong> into rutile, a sec<strong>on</strong>d experiment at 300°C was performed. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

experiment was successful <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> run product was pure microscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase<br />

(Figure 22).<br />

Figure 22: Back scattered electr<strong>on</strong> image <str<strong>on</strong>g>of</str<strong>on</strong>g> microscale anatase Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2<br />

For <strong>the</strong> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoscale rutile, c<strong>on</strong>diti<strong>on</strong>s above <strong>the</strong> estimated<br />

transformati<strong>on</strong> temperature (pressure=1 kbar, temperature=750°C) <str<strong>on</strong>g>and</str<strong>on</strong>g> a short run<br />

durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e hour were chosen in order to suppress crystal coarsening. Never<strong>the</strong>less,<br />

<strong>the</strong> run product obtained was microscale rutile. Taking into account that <strong>the</strong> syn<strong>the</strong>sis at<br />

500°C also produced microscale rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase it is suggested that it is not possible<br />

55


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

to find <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s required for a successful syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoscale rutile up<strong>on</strong> <strong>the</strong><br />

hydro<strong>the</strong>rmal route. This is because <strong>the</strong> coarsening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material seems to happen<br />

before <strong>the</strong> transformati<strong>on</strong> is complete. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, dry annealing experiments were<br />

performed for <strong>the</strong> transformati<strong>on</strong> to nanoscale rutile. <str<strong>on</strong>g>The</str<strong>on</strong>g> starting material was placed<br />

into platinum crucibles <str<strong>on</strong>g>and</str<strong>on</strong>g> heated in <strong>the</strong> furnace under air. <str<strong>on</strong>g>The</str<strong>on</strong>g> phase transformati<strong>on</strong><br />

was expected to take place at ~500°C, but it was found that after heating at temperatures<br />

between 500°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 1000°C for 1 hour <strong>on</strong>ly anatase was present. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, heating<br />

time or temperature were decreased <str<strong>on</strong>g>and</str<strong>on</strong>g> it was found that heating at 800°C for 7 days as<br />

well as at 1200°C for 10 minutes led to <strong>the</strong> transformati<strong>on</strong> into a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> microscale<br />

TiO2II <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile. It can be assumed that <strong>the</strong> transformati<strong>on</strong> occurs in <strong>the</strong> form anatase<br />

→ TiO2II → rutile. During or even before <strong>the</strong> transformati<strong>on</strong> <strong>the</strong> crystallites coarsen to<br />

<strong>the</strong> micrometer range, making it impossible to syn<strong>the</strong>size nanoscale rutile.<br />

56


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

2. Experimental Results <strong>on</strong> <strong>the</strong> System TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 to 10<br />

GPa<br />

High pressure experiments were carried out in <strong>the</strong> pist<strong>on</strong> cylinder apparatus at<br />

pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> 3.5 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 1300°C <str<strong>on</strong>g>and</str<strong>on</strong>g> 1600°C, as well as <strong>on</strong><br />

<strong>the</strong> multi anvil apparatus at a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 1200°C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

1350°C. As starting material, mixtures <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 (99,999%) <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 (99,99%) with a<br />

TiO2 c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> 75 <str<strong>on</strong>g>and</str<strong>on</strong>g> 40 mol% were used. In order to get a homogeneous <str<strong>on</strong>g>and</str<strong>on</strong>g> fine<br />

grained mixture, <strong>the</strong> oxides were ground for 6 hrs, using an achate mortar <str<strong>on</strong>g>and</str<strong>on</strong>g> pestle <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

heated in a furnace at 1300°C for 24 hrs, <strong>the</strong>n grinded again for 12 hrs.<br />

Figure 23: Back scattered electr<strong>on</strong> image <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> recovered sample from a pist<strong>on</strong> cylinder experiment with<br />

75 mol% TiO2, performed at P=3.5 GPa, T=1220°C <str<strong>on</strong>g>and</str<strong>on</strong>g> a durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 21 hrs. <str<strong>on</strong>g>The</str<strong>on</strong>g> appearance is<br />

representative for o<strong>the</strong>r experiments. <str<strong>on</strong>g>The</str<strong>on</strong>g> light grains are <str<strong>on</strong>g>Zr</str<strong>on</strong>g>- rich solid soluti<strong>on</strong>s, <strong>the</strong> dark grains are Tirich<br />

solid soluti<strong>on</strong>s, grey grains have intermediate compositi<strong>on</strong>.<br />

Microprobe analyses show that <strong>the</strong> run product is a sintered material that<br />

c<strong>on</strong>tains crystallites with <strong>the</strong> size <str<strong>on</strong>g>of</str<strong>on</strong>g> some micrometers. Figure 23 shows <strong>the</strong> back<br />

scattered electr<strong>on</strong> image <str<strong>on</strong>g>of</str<strong>on</strong>g> a recovered sample from a pist<strong>on</strong> cylinder experiment with<br />

x=75 mol% TiO2, which is representative for all run products <str<strong>on</strong>g>of</str<strong>on</strong>g> our series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

57


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

experiments. <str<strong>on</strong>g>The</str<strong>on</strong>g> grains have reacti<strong>on</strong>s rims, indicating that chemical equilibrium is not<br />

yet achieved.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> chemical compositi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phases produced were analyzed, using <strong>the</strong><br />

Wavelength Dispersive Spectrometry (WDS). Rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> zirc<strong>on</strong>ia st<str<strong>on</strong>g>and</str<strong>on</strong>g>ards were used<br />

for calibrati<strong>on</strong>. Durati<strong>on</strong> for <strong>the</strong> measurements were 20 sec<strong>on</strong>ds <strong>on</strong> <strong>the</strong> peak positi<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 10 sec<strong>on</strong>ds <strong>on</strong> <strong>the</strong> background. For each sample, 100 points were measured <str<strong>on</strong>g>and</str<strong>on</strong>g> it<br />

was assured that every measured point was placed well within a grain. <str<strong>on</strong>g>The</str<strong>on</strong>g> results were<br />

transformed to whole-numbered mol% TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> each mole-number was<br />

counted, Figure 24 shows <strong>the</strong> results for <strong>the</strong> samples syn<strong>the</strong>sized at 2 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> 1650°C.<br />

A Ti rich solid soluti<strong>on</strong> with ≤12 mol% <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2, an intermediate phase with 45-70 mol%<br />

TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> a <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-rich phase with ≤28 mol% TiO2 were found. It has to be noted here that<br />

chemical equilibrium is not claimed to be achieved. For that, multiple reversal<br />

experiments would have been necessary. Never<strong>the</strong>less, <strong>the</strong> experiments are sufficient to<br />

investigate <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solid soluti<strong>on</strong>s in <strong>the</strong> pressure- <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature range<br />

analyzed <str<strong>on</strong>g>and</str<strong>on</strong>g> to determine <strong>the</strong> maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doping in TiO2 polymorphs to<br />

~10 mol%.<br />

Figure 24: Chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> quenched samples from pist<strong>on</strong> cylinder experiments at 2 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

1650°C. Starting materials had <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 75 (top) <str<strong>on</strong>g>and</str<strong>on</strong>g> 40 (bottom) mol% TiO2. Datapoints are<br />

counts <str<strong>on</strong>g>of</str<strong>on</strong>g> whole-numbered values <str<strong>on</strong>g>of</str<strong>on</strong>g> mol% TiO2.<br />

58


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 25 shows <strong>the</strong> experimental results for <strong>the</strong> system TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 at pressures<br />

≤10 GPa. Between 2 <str<strong>on</strong>g>and</str<strong>on</strong>g> 3.5 GPa, <strong>the</strong> Ti c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-rich phase (baddeleyite <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

high pressure polymorphs) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> intermediate phase (srilankite <str<strong>on</strong>g>and</str<strong>on</strong>g> high pressure<br />

polymorphs) increase with increasing pressure, as expected for <strong>the</strong> smaller cati<strong>on</strong> in <strong>the</strong><br />

high pressure phase. <str<strong>on</strong>g>The</str<strong>on</strong>g> phase boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ti-rich phase (rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> high pressure<br />

polymorphs) does not shift with pressure, indicating that <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> solubility in TiO2<br />

phases is limited to ~10 mol%.<br />

XRD data show that disordered orthorhombic srilankite is stable up to at least<br />

3.5 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> transforms to a high pressure polymorph between 3.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 GPa.<br />

Hydro<strong>the</strong>rmal origin for srilankite can be ruled out <str<strong>on</strong>g>and</str<strong>on</strong>g> an igneous origin can be<br />

c<strong>on</strong>firmed, c<strong>on</strong>sistent with <strong>the</strong> occurrence in high grade rocks such as eclogites,<br />

granulites, lamprophyres <str<strong>on</strong>g>and</str<strong>on</strong>g> chromatites. Fur<strong>the</strong>rmore, an upper pressure limit for <strong>the</strong><br />

stability <str<strong>on</strong>g>of</str<strong>on</strong>g> srilankite <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 GPa can be given.<br />

Figure 25: Experimental results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> system TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 at pressures ≤10 GPa. Thick lines label results<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> this study: <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-rich phase is baddeleyite <str<strong>on</strong>g>and</str<strong>on</strong>g> high pressure polymorphs, <strong>the</strong> intermediate phase is<br />

srilankite <str<strong>on</strong>g>and</str<strong>on</strong>g> high pressure polymorphs, Ti-rich phase is rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> high pressure polymorphs. Thin lines<br />

are after data from ref. [73].<br />

59


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

3. Compressi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> Rutile<br />

A systematic experimental study was performed <strong>on</strong> pure TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2<br />

materials with micro- <str<strong>on</strong>g>and</str<strong>on</strong>g> nanometer scaled crystallite sizes. <str<strong>on</strong>g>The</str<strong>on</strong>g> compressibilities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> materials were determined by equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state (EoS) fits. An overview over<br />

experimental studies is presented in Table 2. Only <strong>the</strong> compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

microcrystalline TiO2 anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile as well as <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoscale TiO2 anatase were<br />

studied sufficiently before (references are given in Table 2). In <strong>the</strong> following, new<br />

results <strong>on</strong> <strong>the</strong> compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 nanoscale rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 anatase<br />

(micro- <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoscale) <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile (microscale) are presented. Unfortunately,<br />

experiments <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoscale rutile can not be presented here because <strong>the</strong><br />

material could not be syn<strong>the</strong>sized. It should be noted again that <strong>the</strong> maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 incorporated by <strong>the</strong> TiO2 polymorphs up to 10 GPa is 10 mol% (compare Figure<br />

25), leading to <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped material studied here.<br />

Table 2: Overview over experiments<br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g> Material Literature Comp.-cycles<br />

Anatase<br />

TiO2 µm chemical Sufficiently studied (ref. [1])<br />

nm sol-gel Sufficiently studied (ref. [3,4]<br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 µm hydro<strong>the</strong>rmal This study<br />

nm sol-gel This study (ref. [203]) This study<br />

Rutile<br />

TiO2 µm sol-gel/comm. Sufficiently studied (ref. [14,19,20]<br />

nm sol-gel This study<br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 µm sol-gel This study<br />

nm n.a.<br />

Material = starting material (comm = commercial chemical, sol-gel = syn<strong>the</strong>sized by <strong>the</strong> sol-gel process<br />

at <strong>the</strong> Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er ISC, hydro<strong>the</strong>rmal = grown hydro<strong>the</strong>rmally) Comp.-cycles = experiment with cycles <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

compressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decompressi<strong>on</strong>.<br />

In <strong>the</strong> following, <strong>the</strong> compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> various forms <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

rutile is described (this secti<strong>on</strong>). It is followed by a secti<strong>on</strong> <strong>on</strong> <strong>the</strong> pressure induced<br />

phase transiti<strong>on</strong>s that were observed during <strong>the</strong> compressi<strong>on</strong> experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> a secti<strong>on</strong><br />

<strong>on</strong> computati<strong>on</strong>al ground states <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 phases.<br />

60


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

3.1. Compressi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped Anatase<br />

3.1.1 Experimental Details<br />

An experiment was carried out <strong>on</strong> <strong>the</strong> hydro<strong>the</strong>rmally grown microscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>doped<br />

anatase Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2, mixed homogeneously with LiF (99.99% purity) in a mass<br />

proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 1:1. In-situ XRD patterns were collected at APS, using an X-ray<br />

beam with λ=0.33 Å <str<strong>on</strong>g>and</str<strong>on</strong>g> a size <str<strong>on</strong>g>of</str<strong>on</strong>g> 6×15 µm. <str<strong>on</strong>g>The</str<strong>on</strong>g> sample-to-detector distance was 248<br />

mm. <str<strong>on</strong>g>The</str<strong>on</strong>g> seats <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DAC had an opening <str<strong>on</strong>g>of</str<strong>on</strong>g> 22°, allowing <strong>the</strong> collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diffracti<strong>on</strong><br />

data to ∼1 ų. <str<strong>on</strong>g>The</str<strong>on</strong>g> st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> LiF volume at <strong>the</strong> maximum pressure<br />

achieved (13 GPa) is less than 0.01 ų, corresp<strong>on</strong>ding to an uncertainty in pressure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

less than 0.5 GPa.<br />

Ano<strong>the</strong>r experiment was carried out <strong>on</strong> nanocrystalline <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase<br />

Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2, syn<strong>the</strong>sized with <strong>the</strong> sol-gel process, again mixed with LiF (99.99%<br />

purity) in a proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 1:1. <str<strong>on</strong>g>The</str<strong>on</strong>g> crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> doped anatase was about<br />

12(±3) nm, as indicated by High-Resoluti<strong>on</strong> Transmissi<strong>on</strong> Electr<strong>on</strong> Microscopy (Figure<br />

35) <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>firmed by c<strong>on</strong>voluti<strong>on</strong>-based pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile fitting <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD data. In-situ XRD<br />

patterns were collected at APS, using an X-ray beam with λ=0.31 Å <str<strong>on</strong>g>and</str<strong>on</strong>g> a size <str<strong>on</strong>g>of</str<strong>on</strong>g> 6×15<br />

µm. <str<strong>on</strong>g>The</str<strong>on</strong>g> distance sample to detector was 272 mm.<br />

3.1.2 Experimental <str<strong>on</strong>g>and</str<strong>on</strong>g> Computati<strong>on</strong>al Results<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoscale anatase at zero pressure were<br />

refined to a=3.8110(3) Å, c=9.6101(12) Å <str<strong>on</strong>g>and</str<strong>on</strong>g> V=139.57(2) ų, results from fitting to<br />

an EoS for <strong>the</strong> microcrystalline counterpart give smaller values <str<strong>on</strong>g>of</str<strong>on</strong>g> a=3.799(1) Å,<br />

c=9.589(6) Š<str<strong>on</strong>g>and</str<strong>on</strong>g> V = 138.5(1) ų. Lattice expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 nanoparticles was<br />

observed before [204,205]. As <strong>the</strong> larger <str<strong>on</strong>g>Zr</str<strong>on</strong>g> is incorporated for <strong>the</strong> smaller Ti into <strong>the</strong><br />

structure, <strong>the</strong> values are c<strong>on</strong>sistently higher than <strong>the</strong> <strong>on</strong>es for pure anatase obtained by<br />

Swamy et al.. [1,4] <str<strong>on</strong>g>The</str<strong>on</strong>g> authors report a=3.7910(5) Å, c=9.5146(9) Å <str<strong>on</strong>g>and</str<strong>on</strong>g> V=136.74(5)<br />

ų for macrocrystalline anatase [1] <str<strong>on</strong>g>and</str<strong>on</strong>g> a=3.7830(3) Å, c=9.513(9) Å <str<strong>on</strong>g>and</str<strong>on</strong>g> V=136.15(2)<br />

ų for nanocrystalline anatase with crystallite sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 to 40 nm [4].<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> XRD data <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nanocrystalline sample at ambient c<strong>on</strong>diti<strong>on</strong>s were used to<br />

estimate <strong>the</strong> crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> starting material. We used <strong>the</strong> TOPAS-ACADEMIC<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware [159] for c<strong>on</strong>voluti<strong>on</strong>-based pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile fitting [160] <str<strong>on</strong>g>and</str<strong>on</strong>g> refined <strong>the</strong><br />

61


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

microstructure. <str<strong>on</strong>g>The</str<strong>on</strong>g> diffracti<strong>on</strong> spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> a CeO2 st<str<strong>on</strong>g>and</str<strong>on</strong>g>ard was used to determine <strong>the</strong><br />

source emissi<strong>on</strong> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>and</str<strong>on</strong>g> instrumental c<strong>on</strong>tributi<strong>on</strong> to peak broadening. <str<strong>on</strong>g>The</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crystallite size <str<strong>on</strong>g>and</str<strong>on</strong>g> strain <strong>on</strong> <strong>the</strong> peak broadening were analyzed using <strong>the</strong> double-Voigt<br />

approach, results are LVol_IB=11.0(3) nm, <str<strong>on</strong>g>and</str<strong>on</strong>g> e0=22(1)%. <str<strong>on</strong>g>The</str<strong>on</strong>g> resulting value for <strong>the</strong><br />

starting material is D=14.7(4) nm, which is in good agreement with <strong>the</strong> estimate from<br />

TEM analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> 12(3) nm.<br />

Figure 26: Results <str<strong>on</strong>g>of</str<strong>on</strong>g> full pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile refinements <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase at different<br />

pressures, obtained from DAC experiments, using radiati<strong>on</strong> with λ=0.31 Å. Upper red tickmarks label LiF<br />

peaks, lower black tickmarks label peaks from anatase <str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1Ti0.9O2.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nano- <str<strong>on</strong>g>and</str<strong>on</strong>g> microanatase were observed as pure phases up to a<br />

pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 GPa, as indicated by <strong>the</strong> refined XRD patterns (Figure 26). <str<strong>on</strong>g>The</str<strong>on</strong>g> trends <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> variati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lattice parameters are presented in Figure 27. While all relative<br />

lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> microscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatse decrease linearly up<strong>on</strong> compressi<strong>on</strong>,<br />

62


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

<strong>the</strong> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relative lattice parameter a/a0 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nanoscale material decreases for<br />

pressures >4 GPa, indicating a decrease in compressibility <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> a parameter at higher<br />

pressures. Because <strong>the</strong> slope c/c0 remains <strong>the</strong> same, <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> a/c str<strong>on</strong>gly increases at<br />

pressures >4 GPa. For <strong>the</strong> nanoscale material, a difference in <strong>the</strong> slope is also observed<br />

for <strong>the</strong> average metal oxygen (M–O) b<strong>on</strong>d lengths in <strong>the</strong> octahedra (Figure 28),<br />

indicating a change in <strong>the</strong> compressi<strong>on</strong> behavior at a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> ∼4 GPa. <str<strong>on</strong>g>The</str<strong>on</strong>g> variati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> M–O4 b<strong>on</strong>d length (between equatorial atoms) is slightly larger than <strong>the</strong> error <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

data points <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore can be taken as almost c<strong>on</strong>stant. In c<strong>on</strong>trast, <strong>the</strong> M–O2 b<strong>on</strong>d<br />

length (in between apical atoms) has a negative slope at pressures


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 28: Metal-oxygen b<strong>on</strong>d lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> MO6 octahedra for nanoscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase. M–O2<br />

indicates average b<strong>on</strong>d length between metal atom (Ti, <str<strong>on</strong>g>Zr</str<strong>on</strong>g>) <str<strong>on</strong>g>and</str<strong>on</strong>g> apical oxygen atom (O2), M–O4 inidcates<br />

average b<strong>on</strong>d length between metal atom (Ti, <str<strong>on</strong>g>Zr</str<strong>on</strong>g>) <str<strong>on</strong>g>and</str<strong>on</strong>g> equatorial oxygen atom (O4); black points are<br />

experimental results from XRD; grey c<strong>on</strong>tinued lines are results from ab-initio computati<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> pressure versus volume data obtained from full pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile analysis were fitted<br />

to Birch-Murnaghan equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> state (EoS). For <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nanoscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase, V0<br />

was experimentally determined to 139.57(1) ų <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> data were fitted to a third order<br />

EoS, resulting in V0=139.58(2) ų, K0=227(18) GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> K0‘=14(6) (Figure 29). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

value <str<strong>on</strong>g>of</str<strong>on</strong>g> K0‘ is 4 for most materials, a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 is anormously high. Figure 29 shows<br />

a plot <str<strong>on</strong>g>of</str<strong>on</strong>g> Birch’s normalized pressure F versus <strong>the</strong> Eulerian strain f, referred to as F-f<br />

plot, for <strong>the</strong> nanoscale material, using <strong>the</strong> experimentally determined V0. Fitting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

data resulted in F = 3799 f +221, it follows that K0=226(6) GPa. Given that <strong>the</strong> slope <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> fit is 3K0(K’−4)/2, it follows that K0’=14. <str<strong>on</strong>g>The</str<strong>on</strong>g>se results are compatible with <strong>the</strong><br />

results from <strong>the</strong> EoS fits presented above. For comparis<strong>on</strong> with o<strong>the</strong>r materials, <strong>the</strong> data<br />

were fitted to a sec<strong>on</strong>d order EoS with K0‘=4, results are shown in Figure 29. However,<br />

<strong>the</strong> qualitiy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fit is much poorer than for <strong>the</strong> fit with K0‘=14(6).<br />

64


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 29: Compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoscale anatase <str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1Ti0.9O2. <str<strong>on</strong>g>The</str<strong>on</strong>g> left figure shows experimental<br />

pressure-volume data from room temperature experiments (diam<strong>on</strong>ds), a third order Birch-Murnaghan<br />

EoS fit (black curve) <str<strong>on</strong>g>and</str<strong>on</strong>g> a sec<strong>on</strong>d order EoS fit with K0’=4. <str<strong>on</strong>g>The</str<strong>on</strong>g> right figure shows an F-f plot, data are<br />

described by a third-order truncati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EoS <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> linear fit has a slope <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 K0 (K’ −4)/2, fitted to<br />

F = 3799 f +221.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> F-f plot <str<strong>on</strong>g>of</str<strong>on</strong>g> microscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase (Figure 30) shows a horiz<strong>on</strong>tal slope with<br />

K0‘=4, typical for most materials <str<strong>on</strong>g>and</str<strong>on</strong>g> different from <strong>the</strong> nanoscale counterpart, where<br />

K0’=14. Unfortunately, V0 was not determined experimentally <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore, <strong>the</strong> value<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> V0=138.39(51) ų was used for fitting an EoS with K0‘=4. Here, <strong>the</strong> bulk modulus<br />

was determined to K0=195(38) GPa (Figure 30, left); fitting <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> F-f plot (Figure 30,<br />

right) gave K0=241(8) GPa.<br />

Figure 30: Compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> microscale anatase <str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1Ti0.9O2. <str<strong>on</strong>g>The</str<strong>on</strong>g> left figure shows experimental<br />

pressure-volume data from room temperature experiments (diam<strong>on</strong>ds) <str<strong>on</strong>g>and</str<strong>on</strong>g> a sec<strong>on</strong>d order Birch-<br />

Murnaghan EoS (black curve) with K0’=4. <str<strong>on</strong>g>The</str<strong>on</strong>g> right figure shows an F-f plot with a fitted slope <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

F=241(8).<br />

65


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Experiments were complemented by ab-intio computati<strong>on</strong>s <strong>on</strong> internal energies<br />

for different cell volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase (Ti:<str<strong>on</strong>g>Zr</str<strong>on</strong>g>=7:1), for computati<strong>on</strong>al<br />

details see chapter II, secti<strong>on</strong> 3. <str<strong>on</strong>g>The</str<strong>on</strong>g> EoS parameters were obtained by fitting <strong>the</strong> E-V<br />

relati<strong>on</strong>. In agreement with experiment it was found that doping <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 anatase with <str<strong>on</strong>g>Zr</str<strong>on</strong>g><br />

exp<str<strong>on</strong>g>and</str<strong>on</strong>g>s <strong>the</strong> zero pressure volume by ∼3% <str<strong>on</strong>g>and</str<strong>on</strong>g> decreases <strong>the</strong> compressibility markedly.<br />

We obtained K0’=4.0 for both, TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> (Ti7<str<strong>on</strong>g>Zr</str<strong>on</strong>g>)O16, differing from experimental results<br />

for <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanocrystalline anatase. Additi<strong>on</strong>ally, <strong>the</strong> computati<strong>on</strong>al results were<br />

compared to <strong>the</strong> experimentally determined relative lattice parameters (Figure 27) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

b<strong>on</strong>d lengths (Figure 28). <str<strong>on</strong>g>The</str<strong>on</strong>g> calculated slopes <str<strong>on</strong>g>of</str<strong>on</strong>g> relative lattice parameters a/a0 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

c/c0 are c<strong>on</strong>stant <str<strong>on</strong>g>and</str<strong>on</strong>g> have a more negative slope than <strong>the</strong> experimental data. <str<strong>on</strong>g>The</str<strong>on</strong>g> b<strong>on</strong>d<br />

lengths <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> metal to <strong>the</strong> equatorial oxygen atoms <str<strong>on</strong>g>of</str<strong>on</strong>g> a polyhedr<strong>on</strong> (M–O4) are smaller<br />

than <strong>the</strong> <strong>on</strong>es to <strong>the</strong> apical atoms (M–O2), in c<strong>on</strong>trast to experimental data where <strong>the</strong><br />

polyhedra are found largely incompressible.<br />

In order to gain insight into <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-distributi<strong>on</strong> in <strong>the</strong> TiO2-<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 solid soluti<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> to investigate <strong>the</strong> possible tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong>ium atoms, computati<strong>on</strong>s<br />

<strong>on</strong> alternative supercells were performed. Computati<strong>on</strong>s were c<strong>on</strong>ducted <strong>on</strong> cells with a<br />

volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 11.0 ų per atom <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti:<str<strong>on</strong>g>Zr</str<strong>on</strong>g>=7:1. In <strong>the</strong> Ti-<str<strong>on</strong>g>Zr</str<strong>on</strong>g> supercell, <strong>the</strong> a<br />

parameter was doubled while b <str<strong>on</strong>g>and</str<strong>on</strong>g> c remained <strong>the</strong> same as in anatase, <strong>the</strong> notati<strong>on</strong> is<br />

<strong>the</strong>refore 2a×b×c. In this cell, next neighboring <str<strong>on</strong>g>Zr</str<strong>on</strong>g> atoms with a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.78 Å were<br />

found al<strong>on</strong>g <strong>the</strong> b directi<strong>on</strong>. A different supercell with <strong>the</strong> setup a×b×2c had next<br />

neighboring <str<strong>on</strong>g>Zr</str<strong>on</strong>g> atoms with <strong>the</strong> same distance in both, a <str<strong>on</strong>g>and</str<strong>on</strong>g> b directi<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore<br />

showed a tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> clustering when compared to <strong>the</strong> 2a×b×c cell. In ano<strong>the</strong>r<br />

supercell, <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> atoms were spread equally, opposing <strong>the</strong> tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> clustering. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

setup was 2a×2b×c <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> next neighboring <str<strong>on</strong>g>Zr</str<strong>on</strong>g> atoms had a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.38 Å. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

cell had a doubled size <str<strong>on</strong>g>and</str<strong>on</strong>g> two <str<strong>on</strong>g>Zr</str<strong>on</strong>g> atoms were placed in <strong>the</strong> positi<strong>on</strong>s 0, 0, 1/2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

0, 1/2, 1/8. For all supercells, i<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> cell shape were relaxed. Reciprocal space was<br />

sampled using k-point meshes <str<strong>on</strong>g>of</str<strong>on</strong>g> 6×12×4 for 2a×b×c, 12×12×2 for a×b×2c <str<strong>on</strong>g>and</str<strong>on</strong>g> 4×4×4<br />

for 2a×2b×c.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> results are shown in Figure 31, indicating that <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> atoms in anatase have<br />

a tendency to cluster. <str<strong>on</strong>g>The</str<strong>on</strong>g> cell with evenly spread <str<strong>on</strong>g>Zr</str<strong>on</strong>g> atoms (2a× 2b×c) with <strong>the</strong> l<strong>on</strong>gest<br />

possible <str<strong>on</strong>g>Zr</str<strong>on</strong>g>–<str<strong>on</strong>g>Zr</str<strong>on</strong>g> distance for nearest neighbors <str<strong>on</strong>g>of</str<strong>on</strong>g> 5.377 Å is energetically least favorable.<br />

66


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> cell a×b×2c in which <strong>the</strong> nearest neighbors with a <str<strong>on</strong>g>Zr</str<strong>on</strong>g>–<str<strong>on</strong>g>Zr</str<strong>on</strong>g> distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.785 Å are<br />

found in <strong>the</strong> directi<strong>on</strong>s parallel to <strong>the</strong> a <str<strong>on</strong>g>and</str<strong>on</strong>g> b axis has <strong>the</strong> lowest energy.<br />

Figure 31: Energies <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti7<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O16 anatase supercells with different setups, indicated by <strong>the</strong> dimensi<strong>on</strong>s in a,<br />

b <str<strong>on</strong>g>and</str<strong>on</strong>g> c-directi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-atom (red points). <str<strong>on</strong>g>The</str<strong>on</strong>g> supercell <strong>on</strong> <strong>the</strong> left exhibits <strong>the</strong><br />

highest amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-clustering <str<strong>on</strong>g>and</str<strong>on</strong>g> has <strong>the</strong> lowest energy, thus is most stable.<br />

3.1.3 Discussi<strong>on</strong><br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase str<strong>on</strong>gly increases with a decreasing crystallite size<br />

to <strong>the</strong> nanometer scale as well as with doping <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>. Values <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bulk modulus from<br />

fitting an EoS with K0’=4 for periodic cells from ab-initio computati<strong>on</strong>s are K0=153<br />

GPa for TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> K0=161 GPa for <str<strong>on</strong>g>Zr</str<strong>on</strong>g>Ti7O16. Values for microscale anatase are<br />

K0=178(1) GPa [1] <str<strong>on</strong>g>and</str<strong>on</strong>g> K0=179(2) GPa [2] (TiO2) <str<strong>on</strong>g>and</str<strong>on</strong>g> K0=195(38) GPa (Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2).<br />

For nanoscale anatase, K0=237(3) GPa [3] <str<strong>on</strong>g>and</str<strong>on</strong>g> K0=243(3) GPa [4] are reported for TiO2<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> K0=258(8) GPa was measured in this study for Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2 (compare Figure 32<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Table 12).<br />

67


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 32: Compressibility <str<strong>on</strong>g>of</str<strong>on</strong>g> various forms <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase. Grey symbols are computati<strong>on</strong>al results (“infinite<br />

crystal”), black symbols are from experiments <strong>on</strong> microscale crystallites. Open symbols indicate<br />

experimental results <strong>on</strong> nanoscale crystallites. Squares represent TiO2 anatase, triangles show <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped<br />

anatase. Lines are from fitting to an EoS.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> experimental results <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoanatase show a significant change in<br />

compressi<strong>on</strong> behavior at pressures >4 GPa: <str<strong>on</strong>g>The</str<strong>on</strong>g> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> a/c str<strong>on</strong>gly increases <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> b<strong>on</strong>d length M–O2 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> octahedral changes from negative to positive.<br />

This change in compressi<strong>on</strong> behavior can be understood by c<strong>on</strong>sidering <strong>the</strong> crystal<br />

structure. Figure 33 shows <strong>the</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase in <strong>the</strong> b-c plane. Each Ti is<br />

surrounded by an octahedr<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> six oxygen atoms. <str<strong>on</strong>g>The</str<strong>on</strong>g> octahedra are linked via edges<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> build a “zig-zag” chain parallel to a as well as b. <str<strong>on</strong>g>The</str<strong>on</strong>g> chains are stacked antiparallel<br />

to <strong>the</strong> c axis <str<strong>on</strong>g>and</str<strong>on</strong>g>, as <strong>the</strong> data suggest, can be compressed parallel to c with <strong>the</strong> same rate<br />

over <strong>the</strong> whole pressure range analyzed. However, al<strong>on</strong>g <strong>the</strong> directi<strong>on</strong>s a <str<strong>on</strong>g>and</str<strong>on</strong>g> b, <strong>the</strong><br />

chains can be compressed more readily at pressures


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 33: Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase. <str<strong>on</strong>g>The</str<strong>on</strong>g> lattice is shown in <strong>the</strong> b-c plane, dimensi<strong>on</strong>s are 3a×2b×2c. O4 are<br />

marked red <str<strong>on</strong>g>and</str<strong>on</strong>g> display equatorial oxygen atoms (edge sharing), O2 are marked black <str<strong>on</strong>g>and</str<strong>on</strong>g> display apical<br />

oxygen atoms (cornersharing).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> compressi<strong>on</strong> behavior as it is seen for nanoscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase<br />

is not observed in experiments <strong>on</strong> <strong>the</strong> microscale material or computati<strong>on</strong>s (compare<br />

Figures 26 <str<strong>on</strong>g>and</str<strong>on</strong>g> 27). It is suggested that <strong>the</strong> anomalous compressi<strong>on</strong> behavior is<br />

attributed to <strong>the</strong> deviatoric stresse that play an important role in <strong>the</strong> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nanoscale material. Even though <strong>the</strong> pressure medium LiF was used, which is<br />

characterized by a small shear modulus [206], <strong>the</strong> spatial pressure distributi<strong>on</strong> within<br />

<strong>the</strong> cell is most likely not even, resulting in deviatoric stresses. It can be c<strong>on</strong>cluded that<br />

<strong>the</strong> str<strong>on</strong>g decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> compressibility at higher pressures is related to <strong>the</strong><br />

nanocrystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase material. It appears that <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doping <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> clustering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-atoms can affect <strong>the</strong> structural parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> influence <strong>the</strong><br />

elastic properties: opposed to <strong>the</strong> c<strong>on</strong>clusi<strong>on</strong> <strong>on</strong>e would draw from comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elastic<br />

c<strong>on</strong>stants for TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 polymorphs (Table 1), <strong>the</strong> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> into TiO2<br />

anatase results in an increasing bulk modulus.<br />

3.1.4. Experiment with Cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> Compressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Decompressi<strong>on</strong><br />

In order to find out, whe<strong>the</strong>r <strong>the</strong> anomalous compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped<br />

nanoanatase is reversible up<strong>on</strong> compressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decompressi<strong>on</strong>, additi<strong>on</strong>al DAC<br />

experiments were performed with cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> compressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> decompressi<strong>on</strong>. As<br />

starting material, <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2 was mixed with LiF (99.99% purity) in<br />

a mass proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 1:1. XRD patterns were collected at APS beamline BM-D,<br />

X-ray beam with λ=0.3344 Å <str<strong>on</strong>g>and</str<strong>on</strong>g> a size <str<strong>on</strong>g>of</str<strong>on</strong>g> 6×15 µm. <str<strong>on</strong>g>The</str<strong>on</strong>g> sample-to-detector distance<br />

69


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

was 201 mm. <str<strong>on</strong>g>The</str<strong>on</strong>g> seats <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> DAC were made from cBN, allowing for collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

diffracti<strong>on</strong> data to d=1 Å. Unlike o<strong>the</strong>r DAC samples, <strong>the</strong> sample was loaded without<br />

any compressi<strong>on</strong> applied during <strong>the</strong> loading process, <strong>the</strong>n compressed at room<br />

temperature to 12 GPa, decompressed to 0.5 GPa, compressed to 12 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

decompressed to ambient c<strong>on</strong>diti<strong>on</strong>s. A sec<strong>on</strong>d DAC experiment was performed <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>doped<br />

nanoanatase, using Raman spectroscopy. <str<strong>on</strong>g>The</str<strong>on</strong>g> material was loaded toge<strong>the</strong>r with a<br />

small ruby-sphere, serving as a pressure calibrant, no pressure medium was used. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

pressure-induced frequency shifts were m<strong>on</strong>itored while <strong>the</strong> sample was compressed<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> decompressed in <strong>the</strong> same way as for <strong>the</strong> previous experiment. After <strong>the</strong><br />

experiment, <strong>the</strong> sample was prepared for TEM analysis, using a Focused I<strong>on</strong> Beam<br />

Device [181]. <str<strong>on</strong>g>The</str<strong>on</strong>g> produced foil with a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> ~50 nm was analyzed at <strong>the</strong> TEM at<br />

<strong>the</strong> GeoForschungszentrum, Potsdam. <str<strong>on</strong>g>The</str<strong>on</strong>g> crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> doped anatase was<br />

measured before <str<strong>on</strong>g>and</str<strong>on</strong>g> after <strong>the</strong> experiment, using high-resoluti<strong>on</strong> TEM <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong>based<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile fitting <str<strong>on</strong>g>of</str<strong>on</strong>g> XRD data.<br />

Table 3 presents refined lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> LiF as well as <strong>the</strong><br />

pressure. Figure 34 shows <strong>the</strong> pressure-volume data <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample as refined from XRD<br />

data <str<strong>on</strong>g>and</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fitting to a sec<strong>on</strong>d order EoS with K’ fixed to 4. <str<strong>on</strong>g>The</str<strong>on</strong>g> bulk<br />

modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material was determined during <strong>the</strong> first compressi<strong>on</strong> to K0=211(7) GPa,<br />

up<strong>on</strong> <strong>the</strong> decompressi<strong>on</strong> K0 decreased to 199(3) GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> it was increased up<strong>on</strong> <strong>the</strong><br />

sec<strong>on</strong>d compressi<strong>on</strong> to 249(9) GPa. <str<strong>on</strong>g>The</str<strong>on</strong>g> precompressed sample is stiffer than <strong>the</strong><br />

uncompressed sample. <str<strong>on</strong>g>The</str<strong>on</strong>g> figure also shows <strong>the</strong> data <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> previous experiment<br />

performed <strong>on</strong> <strong>the</strong> same material. It is worth noting at this point that <strong>the</strong> experiment was<br />

performed <strong>on</strong> a sample which was compacted <str<strong>on</strong>g>and</str<strong>on</strong>g> precompressed between diam<strong>on</strong>d<br />

anvils during <strong>the</strong> sample loading. <str<strong>on</strong>g>The</str<strong>on</strong>g> bulk modulus was measured as K0=266(6) GPa,<br />

c<strong>on</strong>firming <strong>the</strong> hypo<strong>the</strong>sis that precompressed samples are stiffer than originally<br />

uncompressed samples.<br />

70


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Table 3: Experimental lattice parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> pressures<br />

Exp. Anatase LiF<br />

a (Å) c (Å) V (ų) a (Å) V (ų) p (GPa)<br />

1 3.801(1) 9.583(4) 138.45(6) 4.031(1) 65.47(1) 0.3(1)<br />

2 3.800(1) 9.583(4) 138.39(7) 4.030(1) 65.46(1) 0.3(1)<br />

3 3.800(1) 9.583(5) 138.35(8) 4.030(1) 65.46(2) 0.3(1)<br />

4 3.799(2) 9.577(1) 138.20(20) 4.003(1) 64.14(1) 1.9(1)<br />

5 3.794(1) 9.544(6) 137.35(10) 3.988(1) 63.44(1) 2.8(2)<br />

6 3.790(2) 9.528(11) 136.86(18) 3.964(1) 62.28(1) 4.0(3)<br />

7 3.784(1) 9.493(8) 135.89(14) 3.946(1) 61.42(1) 5.7(3)<br />

8 3.778(2) 9.465(11) 135.11(19) 3.924(1) 60.43(1) 7.3(4)<br />

9 3.770(1) 9.411(6) 133.79(10) 3.904(1) 59.49(1) 8.9(4)<br />

10 3.767(2) 9.393(9) 133.29(15) 3.887(1) 58.75(1) 10.3(5)<br />

11 3.762(2) 9.368(14) 132.57(23) 3.873(1) 58.09(1) 11.6(5)<br />

12 3.761(2) 9.339(9) 132.09(14) 3.872(1) 58.05(1) 11.7(5)<br />

13 3.761(1) 9.343(7) 132.15(11) 3.880(1) 58.42(1) 10.9(5)<br />

14 3.761(1) 9.347(6) 132.24(9) 3.885(1) 58.62(1) 10.6(5)<br />

15 3.763(1) 9.347(7) 132.37(11) 3.893(1) 59.00(1) 9.8(4)<br />

16 3.768(1) 9.393(8) 133.37(13) 3.917(1) 60.11(1) 7.8(4)<br />

17 3.770(1) 9.397(8) 133.52(13) 3.919(1) 60.17(1) 7.7(4)<br />

18 3.772(1) 9.410(6) 133.87(11) 3.926(1) 60.53(1) 7.1(4)<br />

19 3.777(1) 9.447(7) 134.75(12) 3.946(4) 61.46(1) 5.6(3)<br />

21 3.781(1) 9.473(7) 135.40(12) 3.960(5) 62.10(1) 4.6(3)<br />

22 3.783(1) 9.490(6) 135.80(10) 3.9732(6) 62.72(2) 3.8(2)<br />

23 3.800(1) 9.556(5) 137.96(8) 4.024(1) 65.17(2) 0.6(1)<br />

24 3.798(1) 9.550(7) 137.73(12) 3.982(1) 63.13(1) 3.2(2)<br />

25 3.793(1) 9.521(5) 136.95(8) 3.959(4) 62.06(1) 4.7(3)<br />

26 3.787(8) 9.494(5) 136.14(8) 3.933(1) 60.83(2) 6.6(3)<br />

27 3.780(1) 9.462(6) 135.18(10) 3.909(1) 59.72(2) 8.5(4)<br />

28 3.771(1) 9.417(6) 133.88(9) 3.880(1) 58.40(2) 11.0(5)<br />

29 3.803(1) 9.567(3) 138.36(6) 4.026(1) 65.25(1) 0.5(1)<br />

Figure 34 presents <strong>the</strong> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> lattice parameters a/c as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

pressure. <str<strong>on</strong>g>The</str<strong>on</strong>g> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> curve is linear for <strong>the</strong> first compressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> more or less also<br />

for <strong>the</strong> decompressi<strong>on</strong>. Up<strong>on</strong> <strong>the</strong> sec<strong>on</strong>d compressi<strong>on</strong> however, <strong>the</strong> slope becomes<br />

steeper at pressure larger than 5 GPa (line 3), which is comparable to <strong>the</strong> previous<br />

experiment (line 3’). <str<strong>on</strong>g>The</str<strong>on</strong>g> anomalous compressi<strong>on</strong> behavior for nanoscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped<br />

anatase reported before is <strong>the</strong>refore partly reproduced in this study.<br />

71


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 34: Results <str<strong>on</strong>g>of</str<strong>on</strong>g> a DAC experiment <strong>on</strong> nanocrystalline <str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1Ti0.9O2 with cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> compressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

decompressi<strong>on</strong>. Experimental room temperature pressure-volume data are shown <strong>on</strong> <strong>the</strong> left side, curves<br />

are fits to a sec<strong>on</strong>d order Birch-Murnaghan EoS with K0’=4. <str<strong>on</strong>g>The</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> lattice parameters a/c are<br />

presented <strong>on</strong> <strong>the</strong> right side, curves are to guide <strong>the</strong> eye. Data are from <strong>the</strong> experiment <strong>on</strong> an originally<br />

uncompressed sample (diam<strong>on</strong>ds) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> experiment <strong>on</strong> a precompresed sample (crosses). <str<strong>on</strong>g>The</str<strong>on</strong>g> black<br />

symbols (labelled “1”) are from <strong>the</strong> first compressi<strong>on</strong>; <strong>the</strong> dark grey symbols (labelled “2”) are from <strong>the</strong><br />

first decompressi<strong>on</strong>, <strong>the</strong> light grey symbols (labelled “3”) are from <strong>the</strong> sec<strong>on</strong>d compressi<strong>on</strong>, <strong>the</strong> open<br />

symbol diam<strong>on</strong>ds are from <strong>the</strong> sec<strong>on</strong>d decompressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> light grey symbols labeled “3’” is from <strong>the</strong><br />

experiment <strong>on</strong> precompressed material.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> XRD data <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample at ambient c<strong>on</strong>diti<strong>on</strong>s at <strong>the</strong> beginning (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> at<br />

<strong>the</strong> end (b) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment were used to estimate <strong>the</strong> crystallite size <str<strong>on</strong>g>and</str<strong>on</strong>g> to see<br />

whe<strong>the</strong>r a change <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> microstructure can be observed. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong>-based<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile fitting revealed that <strong>the</strong> strain <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material increased str<strong>on</strong>gly during <strong>the</strong><br />

experiment from e0=0.13(3)% at <strong>the</strong> beginning to e0=0.26(4)% at <strong>the</strong> end. Ano<strong>the</strong>r<br />

c<strong>on</strong>firmati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> additi<strong>on</strong>ally induced strain is <strong>the</strong> relati<strong>on</strong>ship between a <str<strong>on</strong>g>and</str<strong>on</strong>g> c lattice<br />

parameters (Table 4). <str<strong>on</strong>g>The</str<strong>on</strong>g> unit cell at <strong>the</strong> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment is deformed with an<br />

el<strong>on</strong>gati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> a parameter <str<strong>on</strong>g>and</str<strong>on</strong>g> shortening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> b parameter. At <strong>the</strong> same time, <strong>the</strong><br />

unit cell volume <str<strong>on</strong>g>and</str<strong>on</strong>g> pressure are practically <strong>the</strong> same.<br />

Table 4: Results <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong>-based pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile fitting<br />

p (GPa) V (ų) a (Å) c (Å) L Vol_IB (nm) D (nm) e 0 (%) Rwp<br />

a 0.29 138.30(4) 3.7998(4) 9.578(2) 8.2(4) 10.9(6) 0.13(3) 8.6<br />

b 0.52 138.22(5) 3.8017(4) 9.563(3) 9.3(6) 12.4(1) 0.26(4) 9.1<br />

at <strong>the</strong> beginning (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> at <strong>the</strong> end (b) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experiment;<br />

Figure 35 shows high-resoluti<strong>on</strong> TEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> starting material as well as<br />

<strong>the</strong> quenched sample <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sec<strong>on</strong>d experiment, performed <strong>on</strong> anatase Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2<br />

72


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

without <strong>the</strong> use <str<strong>on</strong>g>of</str<strong>on</strong>g> a pressure medium. <str<strong>on</strong>g>The</str<strong>on</strong>g> crystallite sizes are 12(±3) nm for both<br />

samples <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore remain more or less c<strong>on</strong>stant during <strong>the</strong> experiment. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

crystallites <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> quenched sample show spherical crystal shape <str<strong>on</strong>g>and</str<strong>on</strong>g> are defect free.<br />

Figure 35: HRTEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nanoscale anatase Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2 sample before (left) <str<strong>on</strong>g>and</str<strong>on</strong>g> recovered after<br />

<strong>the</strong> experiment (right). A indicates an area <str<strong>on</strong>g>of</str<strong>on</strong>g> a suggested amorphous rim, C indicates a crystalline area.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>re are several lines <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence suggesting that <strong>the</strong> crystallites are<br />

surrounded by amorphous rims <str<strong>on</strong>g>and</str<strong>on</strong>g> that amorphizati<strong>on</strong> takes place gradually up<strong>on</strong><br />

compressi<strong>on</strong>. Pressure induced amorphizati<strong>on</strong> was observed before by Swamy et al.<br />

[207], who claimed that anatase with crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g>


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

crystalline core, which also c<strong>on</strong>tains some defects. In our study, <strong>the</strong> TEM analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

material after compressi<strong>on</strong> shows in fact features that can be assigned as rims <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amorphous material with a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> several nanometer (Figure 35, right), c<strong>on</strong>firming<br />

<strong>the</strong> suggested appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> partial amorphizati<strong>on</strong>. However, <strong>the</strong> TEM image shows a<br />

foil <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample in which several crystallites overlap <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> features seen could be <strong>the</strong><br />

c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> that. To avoid overlap <str<strong>on</strong>g>of</str<strong>on</strong>g> crystallites, TEM foils with a thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 10-<br />

15 nm would be necessary.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> lines <str<strong>on</strong>g>of</str<strong>on</strong>g> evidence described lead to <strong>the</strong> c<strong>on</strong>clusi<strong>on</strong> that <strong>the</strong> nanoscale anatase<br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 undergoes partial pressure induced amorphizati<strong>on</strong>, which leads to stiffening<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material. Up<strong>on</strong> compressi<strong>on</strong>, amorphous rims start to envelop <strong>the</strong> crystallites. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

amorphizati<strong>on</strong> takes place gradually <str<strong>on</strong>g>and</str<strong>on</strong>g> starts at lower pressures than predicted<br />

<strong>the</strong>oretically (12 GPa as opposed to 25 GPa [3]). We can use <strong>the</strong> phenomen<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

amorphizati<strong>on</strong> to explain <strong>the</strong> compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample in <strong>the</strong> following way:<br />

Part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compressi<strong>on</strong> energy is used for <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amorphous crystallite rims.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> rims seem to shield <strong>the</strong> anatase particles against pressure change <str<strong>on</strong>g>and</str<strong>on</strong>g> most probably<br />

deform <str<strong>on</strong>g>and</str<strong>on</strong>g> exhibit strain while <strong>the</strong>y are assimilating <strong>the</strong> compressi<strong>on</strong> energy. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

anatase nanocrystallites <strong>the</strong>refore undergo less pressure change than <strong>the</strong> LiF particles.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> partial amorphizati<strong>on</strong> is accompanied by stiffening <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material, making it an<br />

interesting phenomen<strong>on</strong> for material research with <strong>the</strong> goal to create new abrasive<br />

materials.<br />

3.1.5. C<strong>on</strong>clusi<strong>on</strong>s<br />

Experimental <str<strong>on</strong>g>and</str<strong>on</strong>g> computati<strong>on</strong>al results show that anatase becomes less<br />

compressible when <strong>the</strong> crystallite size is decreased to <strong>the</strong> nanometer scale <str<strong>on</strong>g>and</str<strong>on</strong>g> when <strong>the</strong><br />

material is <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped (compare Figure 32 <str<strong>on</strong>g>and</str<strong>on</strong>g> Table 11). <str<strong>on</strong>g>The</str<strong>on</strong>g> fact that <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped<br />

nanoanatase is least compressible is opposite to <strong>the</strong> expectati<strong>on</strong> from <strong>the</strong> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

elastic c<strong>on</strong>stants for TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 polymorphs: while <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 polymorphs show a smaller<br />

bulk modulus than <strong>the</strong> corresp<strong>on</strong>ding TiO2 forms, <strong>the</strong> incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> into TiO2<br />

anatase results in an increasing bulk modulus.<br />

For <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoanatase, XRD analysis showed a significant change in<br />

compressi<strong>on</strong> behavior at pressures >4 GPa: <str<strong>on</strong>g>The</str<strong>on</strong>g> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> a/c str<strong>on</strong>gly increases (Figure<br />

27), <strong>the</strong> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> b<strong>on</strong>d length M-O2 <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> octahedra changes from negative to<br />

74


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

positive (Figure 28). Computati<strong>on</strong>s <strong>on</strong> supercells with different distances <str<strong>on</strong>g>of</str<strong>on</strong>g> neighboring<br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>-atoms showed that <str<strong>on</strong>g>Zr</str<strong>on</strong>g> atoms at close distances are energetically favored, hinting at<br />

possible cluster formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> in <strong>the</strong> (Ti,<str<strong>on</strong>g>Zr</str<strong>on</strong>g>)O2 compounds (Figure 31). <str<strong>on</strong>g>The</str<strong>on</strong>g> change in<br />

compressi<strong>on</strong> behavior at ~4 GPa observed in <strong>the</strong> experiments is not reproduced by <strong>the</strong><br />

computati<strong>on</strong>s for <strong>the</strong> perfect bulk crystal, suggesting that <strong>the</strong> anomalous compressi<strong>on</strong><br />

behavior is caused by <strong>the</strong> nano-crystallinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples. <str<strong>on</strong>g>The</str<strong>on</strong>g> cluster formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

resulting structural distorti<strong>on</strong>s can fur<strong>the</strong>r augment <strong>the</strong> change in compressi<strong>on</strong> behavior.<br />

It was fur<strong>the</strong>rmore observed that <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoanatase becomes stiffer up<strong>on</strong><br />

multiple compressi<strong>on</strong> cycles. <str<strong>on</strong>g>The</str<strong>on</strong>g> first compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample showed a bulk<br />

modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> 211 GPa, after <strong>the</strong> sample was decompressed, <strong>the</strong> bulk modulus for <strong>the</strong><br />

sec<strong>on</strong>d compressi<strong>on</strong> was 249 GPa. We suggest that partial pressure induced<br />

amorphizati<strong>on</strong> plays an important role for <strong>the</strong> process <str<strong>on</strong>g>of</str<strong>on</strong>g> stiffening observed.<br />

3.2. Compressi<strong>on</strong> Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 Nanoscale Rutile<br />

Compressi<strong>on</strong> experiments at ambient temperature <strong>on</strong> nanoscale rutile were<br />

performed before by Olsen et al. [20]. In that study, <strong>the</strong> starting material was obtained<br />

via milling <str<strong>on</strong>g>of</str<strong>on</strong>g> bulk material to a final crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g> ~10 nm. Up<strong>on</strong> compressi<strong>on</strong>, <strong>the</strong><br />

material transformed to <strong>the</strong> MI structure at ~20 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> pressure-volume data<br />

resulted in a value <str<strong>on</strong>g>of</str<strong>on</strong>g> K0=211(7) GPa, identical for bulk rutile, <str<strong>on</strong>g>and</str<strong>on</strong>g> K’=8(1). Milling can<br />

induce strain <str<strong>on</strong>g>and</str<strong>on</strong>g> structural disorder <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore eventually affect <strong>the</strong> compressi<strong>on</strong><br />

behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> material. To avoid this possibility, we used nanoscale rutile for <strong>the</strong><br />

experiments which was syn<strong>the</strong>sized from TiCl4 starting material by a hydro<strong>the</strong>rmal<br />

method, described by Li et al. [208]. <str<strong>on</strong>g>The</str<strong>on</strong>g> material was syn<strong>the</strong>sized by <strong>the</strong> group <str<strong>on</strong>g>of</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Guangshe Li, Fujian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Research <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Matter, China <str<strong>on</strong>g>and</str<strong>on</strong>g> before<br />

at Brigham Young University, USA.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> DAC compressi<strong>on</strong> experiment was performed at APS under c<strong>on</strong>diti<strong>on</strong>s as<br />

described for <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoanatase. <str<strong>on</strong>g>The</str<strong>on</strong>g> starting material with crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g> ~15<br />

nm (Figure 46 left) was placed in <strong>the</strong> DAC al<strong>on</strong>g with Cu as pressure calibrant, no o<strong>the</strong>r<br />

pressure medium was used.<br />

75


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 36: Pressure-volume data (diam<strong>on</strong>ds) <str<strong>on</strong>g>and</str<strong>on</strong>g> a Birch-Murnaghan EoS fit (curve) <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 nanorutile<br />

from room temperature DAC experiments.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> pressure-volume data <str<strong>on</strong>g>of</str<strong>on</strong>g> nanorutile were used to determine <strong>the</strong> parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EoS. V0 was not available from experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore fitted in a sec<strong>on</strong>d order<br />

EoS with K’=4, results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> fit were V0=62.49(6) Å <str<strong>on</strong>g>and</str<strong>on</strong>g> K0=251(12) GPa (Figure 36).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> F-f plot <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data revealed that K0’=4 <str<strong>on</strong>g>and</str<strong>on</strong>g> K0=257(22) GPa (Figure 37), c<strong>on</strong>sistent<br />

with <strong>the</strong> EoS fit menti<strong>on</strong>ed mefore. <str<strong>on</strong>g>The</str<strong>on</strong>g> bulk modulus is similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> bulk rutile<br />

(230 GPa, compare Table 5).<br />

Figure 37: F-f plot <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental data <strong>on</strong> TiO2 nanorutile, based <strong>on</strong> <strong>the</strong> Birch-Murnaghan EoS. <str<strong>on</strong>g>The</str<strong>on</strong>g> data<br />

are described by a third-order truncati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> EoS <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> linear fit has a slope <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 K0 (K’ −4)/2.<br />

Nanorutile shows <strong>the</strong> same compressi<strong>on</strong> behavior as <strong>the</strong> microscale counterpart<br />

in <strong>the</strong> pressure regime below 10 GPa. At higher pressures <strong>the</strong> data show slight stiffening<br />

in relati<strong>on</strong> to <strong>the</strong> trend <str<strong>on</strong>g>of</str<strong>on</strong>g> microscale material. Fur<strong>the</strong>rmore, <strong>the</strong> bulk modulus obtained<br />

for hydro<strong>the</strong>rmally grown material (this study) is essentially <strong>the</strong> same as for milled<br />

76


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

starting material (Figure 38, compare ref. [20]). However, <strong>the</strong> latter <strong>on</strong>e has a larger unit<br />

cell volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 62.9 ų, compared to 62.5 ų for hydro<strong>the</strong>rmally grown <str<strong>on</strong>g>and</str<strong>on</strong>g> bulk rutile.<br />

Figure 38: Pressure-volume data for bulk <str<strong>on</strong>g>and</str<strong>on</strong>g> nanocrystalline rutile. <str<strong>on</strong>g>The</str<strong>on</strong>g> diam<strong>on</strong>ds [209] <str<strong>on</strong>g>and</str<strong>on</strong>g> squares<br />

[210] represent bulk rutile while <strong>the</strong> crosses represent ~10 nm rutile nanocrystals from milled starting<br />

material [20],<str<strong>on</strong>g>and</str<strong>on</strong>g> circles represent ~15 nm rutile nanocrystals from hydro<strong>the</strong>rmal growth (this study).<br />

3.3. Compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped microscale rutile<br />

DAC experiments were carried out analogous to experiments <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped<br />

nanoanatase. For <strong>the</strong> study <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped rutile, Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 from sol gel syn<strong>the</strong>sis was<br />

annealed at 1400°C for 20 hours, transforming to microscale rutile. <str<strong>on</strong>g>The</str<strong>on</strong>g> rutile obtained<br />

was mixed with LiF in mass proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 1:1 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> mixture was homogenized. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

lattice parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped rutile at zero pressure were refined to a=4.622(1) Å,<br />

c=2.993(2) Š<str<strong>on</strong>g>and</str<strong>on</strong>g> V = 63.944(5) ų. Incorporating <strong>the</strong> larger <str<strong>on</strong>g>Zr</str<strong>on</strong>g> as substituent for <strong>the</strong><br />

smaller Ti into <strong>the</strong> structure, <strong>the</strong> values are c<strong>on</strong>sistently higher <strong>the</strong>n <strong>the</strong> <strong>on</strong>es for pure<br />

rutile with a=4.5939(1) Å, c=2.9589(1) Å <str<strong>on</strong>g>and</str<strong>on</strong>g> V=62.444(2) ų (NIST-certificated<br />

values).<br />

77


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 39: Pressure-volume data for microscale rutile (diam<strong>on</strong>ds) with compositi<strong>on</strong> Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Birch-Murnaghan equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state fit (curve).<br />

Least-square refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data to a third order Birch Murnaghan EoS<br />

resulted in <strong>the</strong> following parameters: V0=63.94(1) ų, K0=203(13) GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> K0‘=14(4)<br />

(Figure 39). <str<strong>on</strong>g>The</str<strong>on</strong>g> value for K0‘ <str<strong>on</strong>g>of</str<strong>on</strong>g> 14 is higher than for most materials <str<strong>on</strong>g>and</str<strong>on</strong>g> similar to <strong>the</strong><br />

refined value <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nanoscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase (Figure 29). Figure 40 shows an F-fplot<br />

for <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped rutile, for which <strong>the</strong> experimentally determined V0 was used. Fitting<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> data resulted in F = 2999(948) f +206(12), it follows that K0=206(12) GPa <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong> high value <str<strong>on</strong>g>of</str<strong>on</strong>g> K0‘ = 14 is c<strong>on</strong>firmed.<br />

Figure 40: F-f plot <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental data <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1Ti0.9O2 microscale rutile, based <strong>on</strong> <strong>the</strong> Birch-Murnaghan<br />

equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state. <str<strong>on</strong>g>The</str<strong>on</strong>g> data are described by a third-order truncati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> linear<br />

fit has a slope <str<strong>on</strong>g>of</str<strong>on</strong>g> 3K0(K’-4)/2.<br />

Figure 41 shows <strong>the</strong> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> relative lattice parameters a/a0 <str<strong>on</strong>g>and</str<strong>on</strong>g> c/c0<br />

up<strong>on</strong> compressi<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> c-parameter has a c<strong>on</strong>stant slope over <strong>the</strong> pressure range<br />

78


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

analyzed; <strong>the</strong> a-parameter shows a steeper slope at pressures


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

4. Pressure Induced Transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Anatase <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Rutile<br />

In <strong>the</strong> following, experimental results <strong>on</strong> <strong>the</strong> pressure induced phase<br />

transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile are reported. In <strong>the</strong> first secti<strong>on</strong>, a study <strong>on</strong> <strong>the</strong><br />

phase boundaries anatase – TiO2II <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile – TiO2II by means <str<strong>on</strong>g>of</str<strong>on</strong>g> sample syn<strong>the</strong>sis<br />

with <strong>the</strong> multi anvil apparatus <str<strong>on</strong>g>and</str<strong>on</strong>g> XRD sample characterizati<strong>on</strong> is presented. Secti<strong>on</strong>s<br />

4.2. <str<strong>on</strong>g>and</str<strong>on</strong>g> 4.3. address compressi<strong>on</strong> experiments in <strong>the</strong> DAC with in-situ phase<br />

characterizati<strong>on</strong> via XRD.<br />

4.1. Multi Anvil Experiments <strong>on</strong> Phase Transiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Anatase<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Rutile to TiO2II<br />

TiO2II was found as accessory mineral in impact rocks (e.g.[13]) <str<strong>on</strong>g>and</str<strong>on</strong>g> raised <strong>the</strong><br />

interest to determine <strong>the</strong> phase boundary between rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2II so that <strong>the</strong> pressure<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> temperature experienced by <strong>the</strong> rock could be c<strong>on</strong>strained.<br />

Pressure (GPa)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

Rutile/HP TiO 2<br />

5<br />

4<br />

3<br />

This study<br />

Wi<strong>the</strong>rs 03<br />

Akaogi 92<br />

200 400 600 800 1000 1200 1400 1600 1800<br />

Temperature ( o C)<br />

Figure 42: Phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2II. <str<strong>on</strong>g>The</str<strong>on</strong>g> left diagram (from Frost <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mass<strong>on</strong>ne, unpublished) shows phase boundaries <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile (filled symbols) <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2II (open symbols)<br />

bracketed by pist<strong>on</strong> cylinder (1000 o C) experiments. Only <strong>the</strong> experiments that<br />

c<strong>on</strong>strain <strong>the</strong> curve are shown. Curves from two previous studies are shown for comparis<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> right<br />

figure is from ref. [19] <str<strong>on</strong>g>and</str<strong>on</strong>g> shows <strong>the</strong> phase diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2, obtained in heating <str<strong>on</strong>g>and</str<strong>on</strong>g> compressi<strong>on</strong>.<br />

Circles denote rutile; squares denote TiO2II; triangles show MI. <str<strong>on</strong>g>The</str<strong>on</strong>g> full line marks <strong>the</strong> rutile/TiO2II<br />

phase boundary for <strong>the</strong> bulk material, <strong>the</strong> broken line for <strong>the</strong> nanophase material, <strong>the</strong> dotted line is <strong>the</strong><br />

phase boundary from ref. [56].<br />

80


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Experimental studies using <strong>the</strong> pist<strong>on</strong> cylinder <str<strong>on</strong>g>and</str<strong>on</strong>g> multi anvil techniques were<br />

d<strong>on</strong>e by Wi<strong>the</strong>rs et al. [24], Akaogi et al. [56], Olsen et al. [19] <str<strong>on</strong>g>and</str<strong>on</strong>g> also Frost <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Mass<strong>on</strong>ne (pers<strong>on</strong>al informati<strong>on</strong> from D.J. Frost). <str<strong>on</strong>g>The</str<strong>on</strong>g> determinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phase<br />

boundary disagree c<strong>on</strong>siderably as shown in Figure 42, <str<strong>on</strong>g>and</str<strong>on</strong>g> changes from negative to<br />

positive slopes with increasing temperature are reported; for nanophase material, <strong>the</strong><br />

phase boundary is shifted towards lower pressure [19]. <str<strong>on</strong>g>The</str<strong>on</strong>g> discrepancy between <strong>the</strong><br />

studies dem<strong>on</strong>strates <strong>the</strong> complexity under which <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> phase<br />

transformati<strong>on</strong> are c<strong>on</strong>trolled. We <strong>the</strong>refore studied which parameters affect <strong>the</strong><br />

c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transformati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>ducted experiments <strong>on</strong> rutile<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> anatase starting material with different crystallites sizes under varying run<br />

c<strong>on</strong>diti<strong>on</strong>s, using <strong>the</strong> multi anvil apparatus. Experimental c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> starting<br />

materials are listed in Table 6, run pressure was 10 GPa for all experiments.<br />

Table 6: Run c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> multi anvil experiments<br />

T<br />

(°C) Start. mat. # time<br />

rutile TiO2II<br />

e0 D (nm) e0 D (nm)<br />

1800 rutile (µm) 1 45min min. 0.17(1) >1000 maj. 0.010(1) 204(5)<br />

1100 rutile (µm) 13 20sec min n.d. n.d. maj. 0.115(8) 41(3)<br />

1100 rutile (µm) 2 45min min 0.48(6) 84(9) maj. 0.061(2) 105(5)<br />

1100 rutile (µm) 3 22hrs min 0.19(6) >1000 maj. 0.044(1) 192(15)<br />

1100 rutile (nm, hyd.) 16 45min - n.d. n.d. maj. 0.068(3) 75(3)<br />

1100 rutile (nm, com.) 19 45min min n.d. n.d. maj. 0.054(6) 95(14)<br />

1100 anatase (µm) 14 45min - n.d. n.d. maj. 0.041(2) 122(6)<br />

1100 anatase (nm, sol.) 10 45min - n.d. n.d. maj. 0 34(1)<br />

1100 anatase (nm, hyd.) 15 45min - n.d. n.d. maj. 0 42(1)<br />

20 rutile (µm) 5 45min maj. 0.27(5) 67(9) -<br />

hyd. = hydro<strong>the</strong>rmally grown; sol. = material from sol-gel syn<strong>the</strong>sis; com. = commercial; min = minor phase (~5<br />

wt%), maj. = major phase.<br />

XRD analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> samples were performed at ESRF, Figure 43 shows<br />

representative patterns for <strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 <strong>the</strong>ta <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.5–18°. <str<strong>on</strong>g>The</str<strong>on</strong>g> peaks for <strong>the</strong> rutile<br />

starting material (green) are very sharp, whereas peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cold compressed sample<br />

(blue) are much broader. Here, results from c<strong>on</strong>voluti<strong>on</strong> based pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile fitting indicate<br />

high strain with e0=0.27(5) <str<strong>on</strong>g>and</str<strong>on</strong>g> a small apparent crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g> 67(9) nm (Table 6,<br />

#5). Under compressi<strong>on</strong> at 1100°C, TiO2II starts to form (red), but even though <strong>the</strong> run<br />

c<strong>on</strong>diti<strong>on</strong>s lay within <strong>the</strong> proposed stability field <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2II (Figure 42), ~5 wt% rutile is<br />

still present. Rutile in this sample has a much higher strain <str<strong>on</strong>g>of</str<strong>on</strong>g> e0=0.048(6) compared to<br />

81


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

TiO2II, where e0=0.061(2). <str<strong>on</strong>g>The</str<strong>on</strong>g> apparent crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile is smaller (84(9) nm)<br />

compared to TiO2II (105(5) mn). Figure 44 shows a HRTEM image <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample.<br />

TiO2II phase makes up <strong>the</strong> bulk material <str<strong>on</strong>g>and</str<strong>on</strong>g> small lamella <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile are intergrown. This<br />

appearance was observed before in natural minerals [211] as well as syn<strong>the</strong>stic samples<br />

[67]. L<strong>on</strong>ger run durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 22 hrs leads to crystal growth <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile to D>1000 nm <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

reduced strain with e0=0.19(6) (Table 6, #3), while extremely shortened durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 22<br />

sec produces a small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile for which <strong>the</strong> c<strong>on</strong>voluti<strong>on</strong>-based pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile fitting<br />

fails. Compressi<strong>on</strong> at higher temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 1800°C produces a sample similar to <strong>the</strong><br />

<strong>on</strong>e at 1100°C (compare #1 <str<strong>on</strong>g>and</str<strong>on</strong>g> #2 in table 6). In experiments with nanoscale rutile<br />

starting material, a very small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile is present in <strong>the</strong> experiment using ball<br />

milled commercial rutile, <str<strong>on</strong>g>and</str<strong>on</strong>g> no rutile is present when <strong>the</strong> nanoscale starting material<br />

was grown hydro<strong>the</strong>rmally. XRD patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> samples from experiments <strong>on</strong> anatase<br />

starting material do not allow to judge whe<strong>the</strong>r anatase is present as minor phase or not,<br />

because <strong>the</strong> peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2II str<strong>on</strong>gly overlap.<br />

Figure 43: XRD patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> starting material <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> recovered samples <str<strong>on</strong>g>of</str<strong>on</strong>g> multi anvil experiments in<br />

<strong>the</strong> range <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.5-18°, collected at ESRF with radiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> λ=0.711 Å. <str<strong>on</strong>g>The</str<strong>on</strong>g> spectra show varying peak<br />

breadths <str<strong>on</strong>g>and</str<strong>on</strong>g> for broad peaks, strain or a decreased crystallite size is suggested. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>voluti<strong>on</strong>based<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile fitting are presented in table 6.<br />

82


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 44: HRTEM image <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> recovered sample <str<strong>on</strong>g>of</str<strong>on</strong>g> an experiment at 1100°C with durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 45 min,<br />

using microscale rutile as starting material. <str<strong>on</strong>g>The</str<strong>on</strong>g> experiment was performed in <strong>the</strong> suggested stability field<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2II, which is <strong>the</strong> main phase observed by X-ray diffracti<strong>on</strong>. However, <strong>the</strong> sample c<strong>on</strong>tains lamella<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> rutile. Similar observati<strong>on</strong>s using HRTEM are described in refs. [67,211].<br />

Even though experiments were performed in <strong>the</strong> proposed stability field <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

TiO2II, ~5% <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile remain present in recovered samples <str<strong>on</strong>g>of</str<strong>on</strong>g> multi anvil experiments at<br />

10 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> 1100-1800°C. Small rutile lamella with breadths <str<strong>on</strong>g>of</str<strong>on</strong>g> a few nm <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

el<strong>on</strong>gati<strong>on</strong> parallel to <strong>the</strong> c-directi<strong>on</strong> are found.<br />

In multi anvil experiments, <strong>the</strong> volume is not c<strong>on</strong>stant as <strong>the</strong> transformati<strong>on</strong><br />

takes place <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore, pressure can drop <str<strong>on</strong>g>and</str<strong>on</strong>g> may become buffered at <strong>the</strong> transiti<strong>on</strong><br />

pressure where both phases coexist. In order to overcome this phenomen<strong>on</strong>, in-situ<br />

experiments are necessary, in which <strong>the</strong> pressure- <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature c<strong>on</strong>diti<strong>on</strong>s can be<br />

c<strong>on</strong>trolled more sufficiently. Pressure buffering does not occur in a natural envir<strong>on</strong>ment<br />

83


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

und <strong>the</strong>refore, TiO2 can still be seen as an appropriate system to be used as<br />

Geo<strong>the</strong>rmobarometer to c<strong>on</strong>strain pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature experienced by <strong>the</strong> rock.<br />

4.2. DAC Experiments <strong>on</strong> Phase Transiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped<br />

Anatase<br />

Experiments <strong>on</strong> anatase single crystals [2,17,58] as well as polycrystalline anatase<br />

[16,58] showed transformati<strong>on</strong> to TiO2II at 2.5-7 GPa. In c<strong>on</strong>trast, Arlt et al. [2] observed<br />

<strong>the</strong> transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polycrystalline anatase to MI without <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2II at 13<br />

GPa. <str<strong>on</strong>g>The</str<strong>on</strong>g> experiments by Swamy et al. [4] <str<strong>on</strong>g>and</str<strong>on</strong>g> Wang et al. [212,213] led to <strong>the</strong><br />

c<strong>on</strong>clusi<strong>on</strong> that a decrease in crystallite size suppresses <strong>the</strong> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2II <str<strong>on</strong>g>and</str<strong>on</strong>g> leads<br />

to a higher pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> transformati<strong>on</strong> anatase → MI (compare Table 13). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> MI to OI was found at 30 GPa by laser heating to 1300-1500 K [18]. In<br />

this chapter, <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> doping with 10 mol% <str<strong>on</strong>g>Zr</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> transiti<strong>on</strong> behavior is studied<br />

for micro- <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoscale anatase. Experimental details are <strong>the</strong> same as for experiments<br />

<strong>on</strong> <strong>the</strong> compressi<strong>on</strong> behavior (compare secti<strong>on</strong> 3.1.).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> compressi<strong>on</strong> experiment at room temperature <strong>on</strong> microscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped<br />

anatase showed anatase as single phase up to 13 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped<br />

anatase to <strong>the</strong> MI phase took place between 13 <str<strong>on</strong>g>and</str<strong>on</strong>g> 20 GPa, which is higher than for TiO2<br />

microscale anatase. TiO2II was not observed. Up<strong>on</strong> fur<strong>the</strong>r compressi<strong>on</strong> to 50 GPa, <strong>the</strong><br />

OII phase was identified, which remained stable after laser heating to 1500 K. Fur<strong>the</strong>r<br />

heating to 2000 K led to <strong>the</strong> transformati<strong>on</strong> into a single new phase, which could not be<br />

identified yet. <str<strong>on</strong>g>The</str<strong>on</strong>g> high pressure phase could be quenched to ambient c<strong>on</strong>diti<strong>on</strong>s.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> experiment <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoscale anatase showed <strong>the</strong> following pressure<br />

induced phase transformati<strong>on</strong>s. TiO2II was not observed <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> first reflecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

coexisting MI <str<strong>on</strong>g>and</str<strong>on</strong>g> OI phases appeared at 14 GPa. Anatase remained present until 17<br />

GPa. Laser heating at 35 GPa to ~1500-1600K c<strong>on</strong>served <strong>the</strong> phase assemblage <str<strong>on</strong>g>of</str<strong>on</strong>g> MI<br />

plus OI. Up<strong>on</strong> decompressi<strong>on</strong> to ambient c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong> phases transformed to a mixture<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2II plus OII. Swamy et al. [4] observed <strong>the</strong> preservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nanocrystalline anatase<br />

TiO2 until 16.5 GPa, comparable to our study. <str<strong>on</strong>g>The</str<strong>on</strong>g> authors found <strong>the</strong> first appearance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

MI reflecti<strong>on</strong> at 18.2(4) GPa as opposed to 14 GPa for <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoanatase. <str<strong>on</strong>g>The</str<strong>on</strong>g>y<br />

fur<strong>the</strong>rmore observed anatase stable up to 25 GPa, which is much higher than 17 GPa for<br />

84


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoanatase. No occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> OI phase is reported in <strong>the</strong> study by Swamy<br />

et al. We <strong>the</strong>refore c<strong>on</strong>clude that <strong>the</strong> doping with <str<strong>on</strong>g>Zr</str<strong>on</strong>g> stabilizes <strong>the</strong> OI phase within <strong>the</strong><br />

pressure range <str<strong>on</strong>g>of</str<strong>on</strong>g> 14–35 GPa, coexisting with MI. In order to analyze whe<strong>the</strong>r or not <strong>the</strong><br />

coexistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> MI <str<strong>on</strong>g>and</str<strong>on</strong>g> OI phases over such a broad P-intervall, even after heating, is<br />

related to a chemical decompositi<strong>on</strong>, we carried out a multi anvil experiment <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>doped<br />

nano-anatase at 20 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> 1200°C. A backscattered electr<strong>on</strong> microprobe image<br />

<strong>on</strong> <strong>the</strong> quench product indicates two distinct phases (Figure 45). <str<strong>on</strong>g>The</str<strong>on</strong>g> brighter phase has<br />

crystallites sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> ≤2 µm, too small for quantitative analysis. Never<strong>the</strong>less<br />

measurements <strong>on</strong> larger individuals could be performed <str<strong>on</strong>g>and</str<strong>on</strong>g> revealed that <strong>the</strong> two phases<br />

have very similar compositi<strong>on</strong>, both ranging from TiO2 c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> 83 to 95 mol%. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

results do not yield at a chemical breakup.<br />

Figure 45: Backscattered electr<strong>on</strong> image (left) <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical compositi<strong>on</strong> (right) <str<strong>on</strong>g>of</str<strong>on</strong>g> mulit anvil experiment<br />

<strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoanatase at 20 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> 1200°C<br />

85


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

4.3. DAC Experiments <strong>on</strong> Phase Transiti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Rutile<br />

Up<strong>on</strong> compressi<strong>on</strong>, bulk rutile transforms to MI at ~12 GPa [19]. Nanoscale<br />

anatase was studied by Olsen et al. [20], using a ~10 nm starting material <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

transformati<strong>on</strong> to <strong>the</strong> MI phase was found between 20 <str<strong>on</strong>g>and</str<strong>on</strong>g> 30 GPa, which is much higher<br />

compared to bulk material. However, for this study ball milled powder was used <str<strong>on</strong>g>and</str<strong>on</strong>g> it is<br />

not clear how <strong>the</strong> strain induced by <strong>the</strong> method might affect <strong>the</strong> transiti<strong>on</strong> behavior. For a<br />

mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> nanorutile + nanoanatase (30 nm) [213], transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoanatase to an<br />

amorphous phase after 16 GPa is reported, <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> nanorutile to MI between 9 <str<strong>on</strong>g>and</str<strong>on</strong>g> 16<br />

GPa. However, <strong>the</strong> high pressure transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile was not deduced explicitly. In<br />

order to do so, experiments <strong>on</strong> nanorutile were carried out <strong>on</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> samples with<br />

different crystallite sizes in <strong>the</strong> nanoscale, syn<strong>the</strong>sized with a hydro<strong>the</strong>rmal method [208]<br />

to reduce strain <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> starting material. Fur<strong>the</strong>rmore, experiments <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped<br />

microscale rutile are reported.<br />

4.3.1. TiO2 Nanoscale Rutile<br />

Several DAC experiments were carried out in order to reveal <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

crystallite size <strong>on</strong> <strong>the</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong>. It was fur<strong>the</strong>rmore tested, what effect<br />

<strong>the</strong> pressure medium has <strong>on</strong> <strong>the</strong> transformati<strong>on</strong> behavior. Experiments using XRD<br />

without any pressure medium were performed <strong>on</strong> material with smallest dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> crystallites <str<strong>on</strong>g>of</str<strong>on</strong>g> ~15 nm (a), ~10 nm (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> ~8 nm (c), as indicated by high resoluti<strong>on</strong><br />

TEM analysis (Figure 46) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> smallest size additi<strong>on</strong>al experiments were<br />

performed with silic<strong>on</strong>oil as pressure medium, using XRD <str<strong>on</strong>g>and</str<strong>on</strong>g> XAS techniques.<br />

Experiments (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) <str<strong>on</strong>g>and</str<strong>on</strong>g> were performed at APS, using Cu as pressure calibrant <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

an X-ray beam with λ=0.31 Å <str<strong>on</strong>g>and</str<strong>on</strong>g> a size <str<strong>on</strong>g>of</str<strong>on</strong>g> 6×15 µm. <str<strong>on</strong>g>The</str<strong>on</strong>g> distance sample to detector<br />

was 272 mm. Experiment (c) was performed at BGI <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> pressure was calibrated by<br />

Raman spectroscopy <str<strong>on</strong>g>of</str<strong>on</strong>g> a ruby crystal, incorporated in <strong>the</strong> sample chamber. <str<strong>on</strong>g>The</str<strong>on</strong>g> XRD<br />

experiment <strong>on</strong> <strong>the</strong> same sample with silic<strong>on</strong>oil as pressure medium was performed at<br />

APS <str<strong>on</strong>g>and</str<strong>on</strong>g> Cu served as pressure calibrant. <str<strong>on</strong>g>The</str<strong>on</strong>g> X-ray beam had a wavelength <str<strong>on</strong>g>of</str<strong>on</strong>g> λ=0.275<br />

Å <str<strong>on</strong>g>and</str<strong>on</strong>g> a size <str<strong>on</strong>g>of</str<strong>on</strong>g> 6x15µm. <str<strong>on</strong>g>The</str<strong>on</strong>g> XAS experiment was performed in <strong>the</strong> transmissi<strong>on</strong><br />

geometry at beamline ID12 at <strong>the</strong> ESRF, using solic<strong>on</strong>oil as pressure medium <str<strong>on</strong>g>and</str<strong>on</strong>g> a<br />

86


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

ruby crystal as Raman-presure calibrant, o<strong>the</strong>r experimental details can be found in ref.<br />

[165].<br />

Figure 46: HRTEM images <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoscale rutile starting materials a (left), b (middle) <str<strong>on</strong>g>and</str<strong>on</strong>g> c (right).<br />

Rutile with <strong>the</strong> crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 nm (a) undergoes a phase transformati<strong>on</strong> to<br />

<strong>the</strong> MI phase at pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> ~18 GPa, which is much higher than observed for <strong>the</strong> bulk<br />

material (12 GPa). <str<strong>on</strong>g>The</str<strong>on</strong>g> MI phase was observed as <strong>the</strong> <strong>on</strong>ly phase at pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> 32 to at<br />

least 45 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> remained present as <strong>the</strong> <strong>on</strong>ly phase after heating to ~1500 °C at 45 GPa<br />

(Figure 47), c<strong>on</strong>sistent with experiments <strong>on</strong> bulk rutile (APS).<br />

Figure 47: XRD patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> high pressure phases up<strong>on</strong> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nanorutile. <str<strong>on</strong>g>The</str<strong>on</strong>g> top shows <strong>the</strong> full<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile refinement <str<strong>on</strong>g>of</str<strong>on</strong>g> MI phase at 45 GPa after leaser heating at 1500 °C, gained up<strong>on</strong> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

starting material (a). <str<strong>on</strong>g>The</str<strong>on</strong>g> bottom shows an unidentified phase from compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sample (b) to 44 GPa.<br />

87


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Rutile with smaller crystallite sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> ~10x10x50nm (b) remained present to even<br />

higher pressures: It was observed as single phase up to a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 22 GPa, at 34 GPa<br />

<strong>the</strong> main phase was still rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> at 44 GPa <strong>the</strong> material transformed in to a new phase<br />

which is not identified from <strong>the</strong> XRD data available (Figure 47). <str<strong>on</strong>g>The</str<strong>on</strong>g> sample with<br />

smallest crystallite size <str<strong>on</strong>g>of</str<strong>on</strong>g> ~8x8x90 nm (c) showed a decreasing intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile peaks<br />

at pressures ≥20 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> vanishing 40 GPa. Unfortunately, <strong>the</strong> high pressure phase is not<br />

identified from <strong>the</strong> XRD data available (BGI), baddeleyite can be excluded. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental results from starting materials (a) <str<strong>on</strong>g>and</str<strong>on</strong>g> (b) suggest that<br />

decreasing crystallite size leads to stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile to higher pressures. However, <strong>the</strong><br />

use <str<strong>on</strong>g>of</str<strong>on</strong>g> silic<strong>on</strong>oil lowers <strong>the</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong> as can be seen in XRD <str<strong>on</strong>g>and</str<strong>on</strong>g> XAS<br />

experiments <strong>on</strong> starting material (c): XRD patterns reveal that baddeleyite starts to form<br />

between 19 <str<strong>on</strong>g>and</str<strong>on</strong>g> 23 GP, while rutile remains present up to at least 33 GPa (Figure 48). In<br />

c<strong>on</strong>trast, <strong>the</strong> baddeleyite phase could not be identified in <strong>the</strong> experiment in which no<br />

pressure medium was used. <str<strong>on</strong>g>The</str<strong>on</strong>g> results suggest that <strong>the</strong> choice <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> pressure medium<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> thus <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrostaticity affect <strong>the</strong> transiti<strong>on</strong> behavior.<br />

Figure 48: In-situ XRD spectra up<strong>on</strong> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nanorutile from <strong>the</strong> DAC experiment with starting<br />

material (c) <str<strong>on</strong>g>and</str<strong>on</strong>g> silic<strong>on</strong>oil<br />

X-ray absorpti<strong>on</strong> spectroscopy (XAS) was performed in collaborati<strong>on</strong> with Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Jean-Paul Itié at <strong>the</strong> synchrotr<strong>on</strong> SOLEIL. K preeedge spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti indicate that a<br />

transformati<strong>on</strong> to <strong>the</strong> MI phase starts at 14 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> is complete at 20 GPa (Figure 49);<br />

88


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

<strong>the</strong> quench product is TiO2II. This pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong> is lower than observed by<br />

XRD.<br />

Figure 49: K pre-edge spectra for Ti. <str<strong>on</strong>g>The</str<strong>on</strong>g> left spectrum shows rutile, MI <str<strong>on</strong>g>and</str<strong>on</strong>g> TiO2II phases for reference,<br />

<strong>the</strong> right spectrum shows in-situ experimental results from <strong>the</strong> compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nanorutile.<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> results gained shows that <strong>the</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong><br />

generally increases with decreasing crystallite size <str<strong>on</strong>g>and</str<strong>on</strong>g> is lowered when silic<strong>on</strong>oil is used<br />

as pressure medium. However, results from XRD <str<strong>on</strong>g>and</str<strong>on</strong>g> XAS differ quantitatively.<br />

4.3.2. <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped Microscale Rutile<br />

Experiments <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped rutile were performed in <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> LiF,<br />

experimental details are described in secti<strong>on</strong> 3.3. <str<strong>on</strong>g>The</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> phase transiti<strong>on</strong>s to <strong>the</strong> MI<br />

phase was observed at 11 GPa, slightly lower pressure than observed for TiO2 microscale<br />

rutile (12 GPa). <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped rutile is present up to 20 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> MI phase remained after<br />

laser heating to ~1500°C at 30 GPa.<br />

89


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

5. Computati<strong>on</strong>al Ground States <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2<br />

Ab-initio all-electr<strong>on</strong> density functi<strong>on</strong>al electr<strong>on</strong>ic structure simulati<strong>on</strong>s were<br />

performed, using <strong>the</strong> PAW method [182] as implemented in <strong>the</strong> Vienna Ab-Initio<br />

Simulati<strong>on</strong> Package (VASP) [129,183] <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> LAPW method [184] as implemented in<br />

<strong>the</strong> WIEN2k code [185,186]. LDA [128] <str<strong>on</strong>g>and</str<strong>on</strong>g> GGA [129] were used for computati<strong>on</strong>s<br />

with VASP <str<strong>on</strong>g>and</str<strong>on</strong>g> WIEN2k, <str<strong>on</strong>g>and</str<strong>on</strong>g> WC was used for computati<strong>on</strong>s with Wien2k [188].<br />

Table 7: Equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> state from experiments <str<strong>on</strong>g>and</str<strong>on</strong>g> computati<strong>on</strong>s<br />

Phase Method V (ų) E0(eV) V0 (ų) K0 (GPa) K0'<br />

rutile exp [14] 62.50 230(20) 7(1)<br />

PAW_LDA 52-66 -9.788 60.93 246 4.0<br />

LAPW_LDA 52-66 -9087.058 60.55 254 4.0<br />

PAW_GGA 52-68 -8.969 64.37 214 4.0<br />

LAPW_GGA 52-68 -9111.519 64.16 219 4.0<br />

LAPW_WC 52-68 -9106.298 62.29 233 4.0<br />

anatase exp [2] 136.30 179(2) 5(1)<br />

PAW_LDA 112-140 -9.794 133.62 160 4.0<br />

LAPW_LDA 112-140 -9087.063 133.02 162 4.0<br />

PAW_GGA 120-152 -8.998 140.93 155 4.0<br />

LAPW_GGA 120-152 -9111.558 140.14 157 4.0<br />

LAPW_WC 120-144 -9106.315 137.19 149 4.0<br />

α-PbO2 exp [19] 122.40 258(8) 4(1)<br />

PAW_LDA 104-128 -9.793 119.59 200 4.0<br />

LAPW_LDA 104-128 -9087.063 118.84 208 4.0<br />

PAW_GGA 104-136 -8.974 126.68 197 4.0<br />

LAPW_GGA 108-136 -9111.523 126.76 192 4.0<br />

LAPW_WC 104-128 -9106.288 123.16 167 4.0<br />

brookite exp [99] 257.80 255(10) 4<br />

PAW_LDA 208-272 -9.795 250.98 217 4.0<br />

LAPW_LDA 208-272 -9087.063 249.70 210 4.0<br />

PAW_GGA 208-288 -8.987 266.18 187 4.0<br />

LAPW_GGA 224-288 -9111.538 265.92 185 4.0<br />

LAPW_WC 208-272 -9106.307 256.82 203 4.0<br />

baddeleyite exp [14] 112.20 290(20) 4<br />

PAW_LDA 100-120 -9.802 112.00 190 4.0<br />

LAPW_LDA 100-120 -9087.069 111.50 194 4.0<br />

PAW_GGA 108-124 -8.940 120.72 147 4.0<br />

LAPW_GGA 108-124 -9111.483 121.27 134 4.0<br />

LAPW_WC 108-120 -9106.288 113.91 251 4.0<br />

In <strong>the</strong> plane wave computati<strong>on</strong>s, plane wave cut<str<strong>on</strong>g>of</str<strong>on</strong>g>fs <str<strong>on</strong>g>of</str<strong>on</strong>g> Ec=1000 eV were<br />

included, which have been found necessary for computati<strong>on</strong>s <strong>on</strong> transiti<strong>on</strong> metal bearing<br />

oxides <str<strong>on</strong>g>and</str<strong>on</strong>g> silicates. In <strong>the</strong> LAPW method <strong>the</strong> plane waves were exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed up to<br />

RKmax=9.0, with uniform muffin tin radii <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.8 Bohr for Ti <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.6 Bohr for O for all<br />

structures. Crystal structures were optimized for internal <str<strong>on</strong>g>and</str<strong>on</strong>g> external degrees <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

freedom at c<strong>on</strong>stant volumes, starting from experimental structures in <strong>the</strong> PAW<br />

computati<strong>on</strong>s (Table 9). Reciprocal space was sampled <strong>on</strong> M<strong>on</strong>khorst-Pack k-point<br />

90


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

grids [189], with <strong>the</strong> product <str<strong>on</strong>g>of</str<strong>on</strong>g> kpoints · atoms per unit cell >1944. Computati<strong>on</strong>s were<br />

performed for a wide volume range, allowing for a reliable fit to a third order Birch-<br />

Murnaghan EoS [190] (Table 8).<br />

Table 8: Lattice parameters <str<strong>on</strong>g>and</str<strong>on</strong>g> atomic coordinates<br />

Phase Meth. Atom (Pos.) a (Å) b (Å) c (Å) α (°) ß (°) γ (°) V (ų)<br />

Space gr. (#) x y z<br />

rutile exp 4.594 4.594 2.959 90 90 90 62.44<br />

P 42/m n m Ti (2a) 0 0 0<br />

(136) O (4f) 0.3049 0.3049 0<br />

LDA 4.563 4.563 2.927 90 90 90 60.93<br />

Ti (2a) 0 0 0<br />

O (4f) 0.3038 0.3038 0<br />

GGA 4.658 4.658 2.968 90 90 90 64.37<br />

Ti (2a) 0 0 0<br />

O (4f) 0.3046 0.3046 0<br />

anatase exp 3.784 3.784 9.515 90 90 90 136.25<br />

I 41/a m d S Ti (4a) 0 0 0<br />

(141) O (8e) 0 0 0.2081<br />

LDA 3.723 3.723 8.790 90 90 90 133.62<br />

Ti (4a) 0 0 0<br />

O (8e) 0 0 0.2188<br />

GGA 3.813 3.813 9.618 90 90 90 140.93<br />

Ti (4a) 0 0 0<br />

O (8e) 0 0 0.2057<br />

α -PbO2 exp 4.786 5.476 5.028 90 90 90 131.74<br />

P b c n Ti (4c) 0 0.2025 0.25<br />

(60) O (8d) 0.2689 0.4024 0.4337<br />

LDA 4.542 5.495 4.882 90 90 90 119.56<br />

Ti (4c) 0 0.1743 0.25<br />

O (8d) 0.2727 0.3812 0.4183<br />

GGA 4.582 5.606 4.934 90 90 90 126.68<br />

Ti (4c) 0 0.1773 0.25<br />

O (8d) 0.2715 0.3805 0.4186<br />

brookite exp 9.184 5.447 5.145 90 90 90 257.38<br />

P b c a Ti (8c) 0.1250 0.0980 0.8630<br />

(61) O (8c) 0.0080 0.1470 0.1820<br />

O (8c) 0.2290 0.1100 0.5300<br />

LDA 9.125 5.403 5.091 90 90 90 125.49<br />

Ti (8c) 0.1289 0.0972 0.8618<br />

O (8c) 0.0103 0.1494 0.1844<br />

O (8c) 0.2303 0.1101 0.5348<br />

GGA 9.282 5.521 5.194 90 90 90 133.09<br />

Ti (8c) 0.1289 0.0926 0.8614<br />

O (8c) 0.0103 0.1482 0.1826<br />

O (8c) 0.2292 0.1068 0.5349<br />

baddeleyite exp 5.145 5.208 5.311 90 99.23 90 140.46<br />

P 21/c Ti (4e) 0.2758 0.0404 0.2089<br />

(14) O (4e) 0.0690 0.3420 0.3450<br />

O (4e) 0.4510 0.7580 0.4790<br />

LDA 4.744 4.844 4.947 90 101.63 90 112.01<br />

Ti (4e) 0.2794 0.0528 0.2119<br />

O (4e) 0.0684 0.3352 0.3400<br />

O (4e) 0.4412 0.7592 0.4757<br />

GGA 4.878 4.914 5.126 90 101.52 90 120.72<br />

Ti (4e) 0.2753 0.0583 0.2180<br />

O (4e) 0.0589 0.3159 0.3593<br />

O (4e) 0.4510 0.7583 0.4548<br />

Following <strong>the</strong> known trend for most materials, LDA both in <strong>the</strong> PAW <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

LAPW computati<strong>on</strong>s underestimates experimental values <str<strong>on</strong>g>of</str<strong>on</strong>g> V0, although in <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> TiO2 structures by less than 3%. Bulk moduli <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile are well reproduced, larger by<br />

91


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

7% for PAW <str<strong>on</strong>g>and</str<strong>on</strong>g> 10% for LAPW. Bulk moduli for anatase are underestimated by ~10%<br />

(both PAW <str<strong>on</strong>g>and</str<strong>on</strong>g> LAPW), for α-PbO2 by ~25% (PAW) <str<strong>on</strong>g>and</str<strong>on</strong>g> ~20% (LAPW), for brookite<br />

by ~15% <str<strong>on</strong>g>and</str<strong>on</strong>g> for baddeleyite by 34% (both PAW <str<strong>on</strong>g>and</str<strong>on</strong>g> LAPW). <str<strong>on</strong>g>The</str<strong>on</strong>g> zero-pressure<br />

volumes obtained from <strong>the</strong> fitting were used to interpolate zero-pressure lattice<br />

c<strong>on</strong>stants <str<strong>on</strong>g>and</str<strong>on</strong>g> atomic coordinates (Table 9). Axial ratios for all phases are within 2% <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> experimental values. Atomic coordinates for rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> brookite are in good<br />

agreement with experiment, for baddeleyite, α-PbO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase <strong>the</strong> atomic coordinates<br />

are c<strong>on</strong>siderably different (Table 9). At zero pressure <strong>the</strong> stable structures is<br />

baddeleyite, <str<strong>on</strong>g>and</str<strong>on</strong>g> at slightly over-exp<str<strong>on</strong>g>and</str<strong>on</strong>g>ed volumes anatase is <strong>the</strong> grounstate, with a<br />

transiti<strong>on</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> ~0.5 GPa. Rutile, which is <strong>the</strong> experimentally determined stable<br />

phase at ambient c<strong>on</strong>diti<strong>on</strong>s, has <strong>the</strong> highest E0 (Table 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> Figure 50).<br />

Figure 50: Computati<strong>on</strong>al results <str<strong>on</strong>g>of</str<strong>on</strong>g> LDA <strong>on</strong> TiO2 phases. On <strong>the</strong> lefth<str<strong>on</strong>g>and</str<strong>on</strong>g> side, energy-volume data<br />

(symbols) <str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state fits (lines) are shown, volumes are normalized to 12 atoms per unit cell.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> right h<str<strong>on</strong>g>and</str<strong>on</strong>g> side shows energy-pressure data calculated from <strong>the</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> state.<br />

92


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

Figure 51: Computati<strong>on</strong>al results <str<strong>on</strong>g>of</str<strong>on</strong>g> PBE <strong>on</strong> TiO2 phases. On <strong>the</strong> lefth<str<strong>on</strong>g>and</str<strong>on</strong>g> side, energy-volume data<br />

(symbols) <str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state fits (lines) are shown, volumes are normalized to 12 atoms per unit cell.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> right h<str<strong>on</strong>g>and</str<strong>on</strong>g> side shows energy-pressure data calculated from <strong>the</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> state.<br />

In <strong>the</strong> PBE computati<strong>on</strong>s, experimental V0 are overestimated by 8% for<br />

baddeleyite <str<strong>on</strong>g>and</str<strong>on</strong>g> less than 4% for o<strong>the</strong>r TiO2 phases in PAW as well as LAPW<br />

computati<strong>on</strong>s, following <strong>the</strong> general trend for PBE. <str<strong>on</strong>g>The</str<strong>on</strong>g> bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile is well<br />

reproduced, smaller by 7% for PAW <str<strong>on</strong>g>and</str<strong>on</strong>g> 5% for LAPW. Bulk moduli <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase are<br />

underestimated by 14% (PAW) <str<strong>on</strong>g>and</str<strong>on</strong>g> 12% (LAPW), for α-PbO2 by 24% (PAW) <str<strong>on</strong>g>and</str<strong>on</strong>g> 26%<br />

(LAPW), for brookite by 27% (PAW <str<strong>on</strong>g>and</str<strong>on</strong>g> LAPW) <str<strong>on</strong>g>and</str<strong>on</strong>g> for baddeleyite by 49% (PAW)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 54% (LAPW). Axial ratios for all phases are within 2% <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> experimental values.<br />

Atomic coordinates for rutile, anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> brookite are in good agreement with<br />

experiment, for baddeleyite <str<strong>on</strong>g>and</str<strong>on</strong>g> α-PbO2 <strong>the</strong> atomic coordinates are c<strong>on</strong>siderably<br />

different (Table 9). <str<strong>on</strong>g>The</str<strong>on</strong>g> stable structure at ambient pressure is anatase. Rutile has low<br />

relative stability (Table 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> Figure 51).<br />

WC in <strong>the</strong> LAPW computati<strong>on</strong>s estimates experimental values <str<strong>on</strong>g>of</str<strong>on</strong>g> V0 larger by<br />

<strong>on</strong>ly 0.4% <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong>refore is <strong>the</strong> most appropriate approximati<strong>on</strong>. <str<strong>on</strong>g>The</str<strong>on</strong>g> bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rutile is well reproduced, larger by <strong>on</strong>ly 1%. Bulk moduli for anatase are underestimated<br />

by 17%, for α-PbO2 by 35%, for brookite by 20% <str<strong>on</strong>g>and</str<strong>on</strong>g> for baddeleyite by 13%. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

93


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

stable structure at ambient pressure is anatase. Rutile has intermediate relative stability<br />

(Table 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> Figure 52).<br />

Figure 52: Computati<strong>on</strong>al results <str<strong>on</strong>g>of</str<strong>on</strong>g> WC <strong>on</strong> TiO2 phases. On <strong>the</strong> lefth<str<strong>on</strong>g>and</str<strong>on</strong>g> side, energy-volume data<br />

(symbols) <str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state fits (lines) are shown, volumes are normalized to 12 atoms per unit cell.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> right h<str<strong>on</strong>g>and</str<strong>on</strong>g> side shows energy-pressure data calculated from <strong>the</strong> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> state.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> stable structures at ambient pressure (0 GPa) is baddeleyite for LDA<br />

computati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase for GGA computati<strong>on</strong>s, c<strong>on</strong>tradicting experimental results<br />

that determine rutile as <strong>the</strong> most stable phase [64-66]. However, rutile appears to have<br />

<strong>the</strong> highest energy in LDA computati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> intermediate energy in GGA<br />

computati<strong>on</strong>s.<br />

Table 9: Internal energies <str<strong>on</strong>g>and</str<strong>on</strong>g> phase transformati<strong>on</strong>s at zero pressure<br />

PAW_LDA LAPW_LDA PAW_PBE LAPW_PBE LAPW_WC<br />

phase E0 (eV) phase E0 (eV) phase E0 (eV) phase E0 (eV) phase E0 (eV)<br />

-<br />

-<br />

-<br />

rutile -117.449 rutile 109044.699 baddeleyite -107.281 baddeleyite 109337.804 baddeleyite 109275.455<br />

-<br />

-<br />

-<br />

α-PbO2 -117.516 brookite 109044.748 rutile -107.635 rutile 109338.230 α-PbO2 109275.460<br />

-<br />

-<br />

-<br />

anatase -117.534 α-PbO2 109044.749 α-PbO2 -107.691 α-PbO2 109338.279 rutile 109275.578<br />

-<br />

-<br />

-<br />

brookite -117.538 anatase 109044.755 brookite -107.838 brookite 109338.450 brookite 109275.682<br />

-<br />

-<br />

-<br />

baddeleyite -117.617 baddeleyite 109044.832 anatase -107.974 anatase 109338.693 anatase 109275.784<br />

phase<br />

anatase →<br />

baddeleyite<br />

Ptrans<br />

(GPa) phase Ptrans (GPa) phase<br />

- 0.7 anatase → - 0.6 anatase →<br />

baddeleyite<br />

brookite →<br />

α-PbO2<br />

94<br />

Ptrans<br />

(GPa) phase Ptrans (GPa) phase Ptrans (GPa)<br />

3.0 anatase → 5.2<br />

anatase → 1.9<br />

3.5 α-PbO2<br />

brookite →<br />

baddeleyite<br />

2.5<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> following phase transformati<strong>on</strong>s are predicted by LDA: anatase →<br />

baddelyite at -0.7 GPa (PAW) <str<strong>on</strong>g>and</str<strong>on</strong>g> -0.6 GPa (LAPW). For PBE results are anatase →<br />

brookite at 3.0 GPa → α-PbO2 at 3.5 GPa (PAW) whereas LAPW predicts anatase → α-<br />

PbO2 at 5.2 GPa. WC predicts anatase → brookite at 1.9 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> brookite →


III. Results <str<strong>on</strong>g>and</str<strong>on</strong>g> Discussi<strong>on</strong><br />

baddelyite at 2.5 GPa. Compared to that compressi<strong>on</strong> experiments <strong>on</strong> single crystal <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

microcrystalline anatase showed transformati<strong>on</strong> into α-PbO2 at pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-4 GPa<br />

[2,16,17,58]. Rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> α-PbO2 transform into baddeleyite at ~ 13 GPa [2,11].<br />

95


C<strong>on</strong>clusi<strong>on</strong>s<br />

IV. C<strong>on</strong>clusi<strong>on</strong>s<br />

This study addresses <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doping <str<strong>on</strong>g>and</str<strong>on</strong>g> crystallite size <strong>on</strong> <strong>the</strong><br />

mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase phases. Compressi<strong>on</strong> experiments in<br />

<strong>the</strong> diam<strong>on</strong>d anvil cell using in-situ XRD were performed <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> compressibilities <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> samples were determined. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, pressure-volume data were fitted to equati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> state (EoS) <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> zero-pressure volume V0, <strong>the</strong> bulk modulus K0 <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> first<br />

pressure derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> bulk modulus K0’ were obtained. During compressi<strong>on</strong><br />

experiments, <strong>the</strong> transformati<strong>on</strong>s to high pressure polymorphs were observed <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doping <str<strong>on</strong>g>and</str<strong>on</strong>g> crystallite size <strong>on</strong> <strong>the</strong> transiti<strong>on</strong> behavior was studied.<br />

Fur<strong>the</strong>rmore, ab-initio computati<strong>on</strong>s were performed to predict <strong>the</strong> EoS parameters<br />

<strong>the</strong>oretically. Table 11 shows a list <str<strong>on</strong>g>of</str<strong>on</strong>g> studies found in literature <str<strong>on</strong>g>and</str<strong>on</strong>g> performed here<br />

(marked with X).<br />

Table 10: Experimental <str<strong>on</strong>g>and</str<strong>on</strong>g> computati<strong>on</strong>al studies <strong>on</strong> rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> anatase<br />

µm nm comp<br />

Anatase TiO2 refs. [1,2] refs. [3,4] X<br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 X X X<br />

Rutile TiO2 refs. [14,19,20] X X<br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 X n.a. n.a.<br />

µm = Experiments <strong>on</strong> microscale material; nm = experiments <strong>on</strong> nanoscale material; comp = ab-initio<br />

computati<strong>on</strong>al study<br />

<str<strong>on</strong>g>Crystallite</str<strong>on</strong>g> <str<strong>on</strong>g>Size</str<strong>on</strong>g> <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <strong>on</strong> TiO2 Anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> Rutile<br />

Anatase becomes less compressible when <strong>the</strong> crystallite size is decreased to <strong>the</strong><br />

nanometer scale. Ab-initio computati<strong>on</strong>s <strong>on</strong> TiO2 anatase with periodic boundary<br />

c<strong>on</strong>diti<strong>on</strong>s, thus computing an infinite crystal, have lowest bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> 149 – 153<br />

GPa, depending <strong>on</strong> <strong>the</strong> computati<strong>on</strong>al approximati<strong>on</strong>s used (Table 12). <str<strong>on</strong>g>The</str<strong>on</strong>g> bulk<br />

modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> microcrystalline anatase was measured as K0=178(1) GPa [1] <str<strong>on</strong>g>and</str<strong>on</strong>g> 179(2)<br />

GPa [2] GPa, <strong>the</strong> nanoscale cpounterpart shows K0=237(3) GPa [3] <str<strong>on</strong>g>and</str<strong>on</strong>g> 243(3) [4] GPa<br />

(Table 12).<br />

96


C<strong>on</strong>clusi<strong>on</strong>s<br />

In c<strong>on</strong>trast, <strong>the</strong> compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile is not affected by variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

crystallite size. Computai<strong>on</strong>s with periodic boundary c<strong>on</strong>diti<strong>on</strong>s give a bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

233 GPa, experiments <strong>on</strong> microscale rutile revealed a bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> K0=230(20) GPa<br />

[20] <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> nanoscale counterpart has K0=203(13) (Table 12).<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> pressure induced phase transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile are described<br />

in Table 13. Transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase to TiO2II is <strong>on</strong>ly observed for TiO2 single<br />

crystals <str<strong>on</strong>g>and</str<strong>on</strong>g> some microscale polycrystalline materials at a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.6–7 GPa;<br />

TiO2II transforms to <strong>the</strong> MI phase at 10–17 GPa (details in Table 13). <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase to MI was observed for micro- <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoscale TiO2. <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong> increases with a decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crystallite size from 13 GPa<br />

(microscale material) to 18 GPa for 12 nm particles. Smaller particles transform to an<br />

amorphous phase at pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> 20–24 GPa. Pressure induced transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile<br />

to <strong>the</strong> MI phase was observed at a pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 GPa, nanocrystals transform at higher<br />

pressures. <str<strong>on</strong>g>The</str<strong>on</strong>g> <strong>on</strong>set <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong> is at 16–23 GPa when ref. [213], in which <strong>the</strong><br />

detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> high pressure phase seems unreliable, is excluded.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> pressure induced phase transformati<strong>on</strong>s predicted by <strong>the</strong> ab-initio<br />

computati<strong>on</strong>al study are not c<strong>on</strong>sistent with experimental results. Rutile, which is <strong>the</strong><br />

stable modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 (e.g. [63]), has lowest to intermediate energy (Table 12) in<br />

computati<strong>on</strong>s. <str<strong>on</strong>g>The</str<strong>on</strong>g> transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase into TiO2II was predicted very well at a<br />

pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.5 GPa (PAW-PBE) <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.2 (LAPW_PBE), <strong>the</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> transformati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> anatase into MI was calculated slightly lower observed experimentally at -1 GPa<br />

(LDA) <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.5 GPa (WC) (Tables 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> 12).<br />

97


C<strong>on</strong>clusi<strong>on</strong>s<br />

Table 11: Equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state parameters for anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile<br />

Material <str<strong>on</strong>g>Size</str<strong>on</strong>g> V0 (ų) K0 (GPa) K'0<br />

Anatase<br />

98<br />

Reference<br />

TiO2 WC 2 137.19 149 4.0 this study<br />

LDA 2 133.62 160 4.0 this study<br />

LDA 1 141.1 153 4.0 this study<br />

µm 136.8 178(1), 179(2) [1,2]<br />

nm 136.2 237(3), 243(3) [3,4]<br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2<br />

Rutile<br />

LDA 1 145.4 161 4.0<br />

µm 138.5(1) 195(38) 4.0<br />

nm 139.4(1) 258(8) 4.0 [203], this study<br />

TiO2 WC 62.29 233 4.0 this study<br />

µm 62.5 230(20) 6.6(7) [14,19,20]<br />

nm 62.50(9) 203(13) 4.0 this study<br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2<br />

µm 63.94(5) 236(5) 6.6(7) this study<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-<str<strong>on</strong>g>Doping</str<strong>on</strong>g> <strong>on</strong> TiO2 Anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> Rutile<br />

In order to determine <strong>the</strong> maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> that can be incorporated into<br />

TiO2 polymorphs, experiments were carried out at temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 1200–1600 °C <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> 2–10 GPa, using <strong>the</strong> pist<strong>on</strong> cylinder <str<strong>on</strong>g>and</str<strong>on</strong>g> multi anvil press. Run products<br />

were analyzed by XRD <str<strong>on</strong>g>and</str<strong>on</strong>g> microprobe analysis. Results show that rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> high<br />

pressure polymorphs to 10 GPa incorporate up to 10 mol% <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2. <str<strong>on</strong>g>The</str<strong>on</strong>g>refore, for<br />

experiments <strong>on</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile, starting materials with compositi<strong>on</strong><br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 were used. <str<strong>on</strong>g>The</str<strong>on</strong>g> high pressure experiments fur<strong>the</strong>rmore revealed that <strong>the</strong><br />

high pressure limit <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> srilankite lies between 3.5 <str<strong>on</strong>g>and</str<strong>on</strong>g> 6 GPa, important<br />

for geosciences in underst<str<strong>on</strong>g>and</str<strong>on</strong>g>ing <strong>the</strong> origin <str<strong>on</strong>g>and</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s for <strong>the</strong> genesis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

mineral.<br />

For syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoscale <str<strong>on</strong>g>and</str<strong>on</strong>g> microscale starting materials, a route <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sol-gel syn<strong>the</strong>sis was developed <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoscale anatase Tix<str<strong>on</strong>g>Zr</str<strong>on</strong>g>1-xO2 with x = 0.90 <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.0<br />

was produced. Microscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped rutile was syn<strong>the</strong>sized hydro<strong>the</strong>rmally at a pressure<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1 GPa <str<strong>on</strong>g>and</str<strong>on</strong>g> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 300°C, using <strong>the</strong> nanoscale <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped anatase from solgel<br />

syn<strong>the</strong>sis as starting material.


C<strong>on</strong>clusi<strong>on</strong>s<br />

Table 12: Pressure induced phase transformati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile<br />

Chem. <str<strong>on</strong>g>Size</str<strong>on</strong>g> Anatase→TiO2II TiO2II→MI Anatase→MI,<br />

P (GPa) P (GPa) AP; P (GPa)<br />

99<br />

Pmedium<br />

TiO2 comp 3.5 – 5.2 -1 – 2.5 this work<br />

SC 4.5; 4.5 - 7 Meth.-eth [2,17]<br />

µm<br />

13 - 17 Meth.-eth. [17]<br />

2.6 Meth.-eth. [58]<br />

~ 7 ~ 10 Silic<strong>on</strong>oil [16]<br />

13 (MI) NaCl [1]<br />

30-40 nm 18 (MI) n<strong>on</strong>e [4]<br />

12 nm 18 (MI) Liqu. Nit. [214]<br />

7-11 nm 24 (AP) Meth.-eth. [212]<br />

4-8 nm 20 - 24 (AP) n<strong>on</strong>e [207]<br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 µm 13 – 20 (MI) n<strong>on</strong>e this work<br />

12 nm 14 – 17 (MI) LiF this work<br />

Chem. <str<strong>on</strong>g>Size</str<strong>on</strong>g> Rutile→TiO2II TiO2II→MI Rutile→MI P- Ref.<br />

P (GPa) P (GPa) P (GPa) medium<br />

TiO2 µm 12 Meth.-eth. [14]<br />

µm 12 NaCl [55]<br />

30 nm 9 - 16 n<strong>on</strong>e [213]<br />

15 nm 18 n<strong>on</strong>e this work<br />

10 nm 20 - 30 n<strong>on</strong>e [20]<br />

8 nm > 20 n<strong>on</strong>e this work<br />

8 nm 23 - 33 Si-oil<br />

XRD<br />

this work<br />

8 nm 14 - 20 Si-oil<br />

XAS<br />

Ref.<br />

this work<br />

Ti0.9<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.1O2 µm 11 - 20 LiF this work<br />

Comp = computati<strong>on</strong>s, compare Table 10, MI = baddeleyite structured phase, AP = amorphous phase<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> compressibility <str<strong>on</strong>g>of</str<strong>on</strong>g> high-pressure polymorphs <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 is systematically<br />

smaller than for <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 (compare Table 1). Never<strong>the</strong>less, doping with 10% <str<strong>on</strong>g>Zr</str<strong>on</strong>g> leads to<br />

stiffening <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoscale anatase: TiO2 nanoanatase has a bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> K0=237(3)<br />

GPa [3] <str<strong>on</strong>g>and</str<strong>on</strong>g> K0=243(3) GPa [4] GPa, while <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped counterpart shows K0=258(8)<br />

GPa. However, differences for microscale anatase samples are within <strong>the</strong> error:<br />

K0=178(1) GPa [1] <str<strong>on</strong>g>and</str<strong>on</strong>g> K0=179(2) GPa [2] for TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> K0=195(38) GPa for


C<strong>on</strong>clusi<strong>on</strong>s<br />

Ti0.90<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.10O2. A similar relati<strong>on</strong>ship was observed for rutile, where <strong>the</strong> bulk moduli <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> undoped microscale rutile <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> doped counterpart are 230(20) GPa [20] <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

203(13) GPa.<br />

XRD analysis showed a significant change in compressi<strong>on</strong> behavior for <strong>the</strong> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>doped<br />

nanoanatase at pressures >4 GPa. It is likely to be a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> deviatoric<br />

stresses during experimental compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> nanoscale material. Computati<strong>on</strong>s <strong>on</strong><br />

supercells with different distances <str<strong>on</strong>g>of</str<strong>on</strong>g> neighboring <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-atoms suggested cluster formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g> in <strong>the</strong> (Ti,<str<strong>on</strong>g>Zr</str<strong>on</strong>g>)O2 anatase. <str<strong>on</strong>g>The</str<strong>on</strong>g> resulting structural distorti<strong>on</strong>s can fur<strong>the</strong>r augment<br />

<strong>the</strong> change in compressi<strong>on</strong> behavior.<br />

It was found that <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoanatase becomes stiffer up<strong>on</strong> multiple<br />

compressi<strong>on</strong> cycles. <str<strong>on</strong>g>The</str<strong>on</strong>g> bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> first compressi<strong>on</strong> was 211 GPa. After<br />

decompressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sample, <strong>the</strong> sec<strong>on</strong>d compressi<strong>on</strong> showed a bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> 249<br />

GPa. It is suggested that partial pressure induced amorphizati<strong>on</strong> plays an important role<br />

for <strong>the</strong> observed stiffening.<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> transformati<strong>on</strong> pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile to <strong>the</strong> MI phase is not affected<br />

by <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doping.<br />

100


Acknowledgments<br />

Acknowledgments<br />

This work was made possible through collaborati<strong>on</strong> with a number <str<strong>on</strong>g>of</str<strong>on</strong>g> people<br />

from BGI as well as o<strong>the</strong>r research groups <str<strong>on</strong>g>and</str<strong>on</strong>g> I want to thank <strong>the</strong>m for <strong>the</strong>ir support.<br />

First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, I want to thank my advisors Dr. Le<strong>on</strong>id Dubrovinsky, Dr. Gerd Steinle-<br />

Neumann <str<strong>on</strong>g>and</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Gerd Müller for all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>ir teaching, advice <str<strong>on</strong>g>and</str<strong>on</strong>g> discussi<strong>on</strong>s about<br />

<strong>the</strong> design <str<strong>on</strong>g>and</str<strong>on</strong>g> evolving progress <str<strong>on</strong>g>of</str<strong>on</strong>g> my <strong>the</strong>sis. I was well supported. I appreciate <strong>the</strong><br />

support <str<strong>on</strong>g>of</str<strong>on</strong>g> my colleagues at BGI in science (Dr. Dan Frost, Dr. Tiziana B<str<strong>on</strong>g>of</str<strong>on</strong>g>fa-Ballaran,<br />

Dr. Nobuyoshi Miyajima, Dr. Alex<str<strong>on</strong>g>and</str<strong>on</strong>g>er Kurnosov, Dr. Innokenty Kantor, Dr. David<br />

Dolejš, Dr. Razvan Caracas, Dr. Ahmed El Goresy, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Dave Rubie, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Hans<br />

Keppler), organizati<strong>on</strong> (Dr. Stefan Keyssner, Lydia Kis<strong>on</strong>-Herzing, Petra Buchert) <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

technical support (Gerti Gollner, Hubert Schulze, Heinz Fischer, Stefan Übelhack,<br />

Detlef Krauße, Sven Linhardt, Anke Potzel). I want to thank <strong>the</strong> following people from<br />

outside BGI: Dr. Vitali Prakapenka, Dr. Alexei Kuznetsov <str<strong>on</strong>g>and</str<strong>on</strong>g> Dr. Varghese Swamy for<br />

<strong>the</strong>ir support <strong>on</strong> <strong>the</strong> GeoSoilEnviroCARS 13 IDD at <strong>the</strong> Advanced Phot<strong>on</strong> Source<br />

(APS), USA; Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Jean-Paul Itié for absorpti<strong>on</strong> experiments at <strong>the</strong> synchrotr<strong>on</strong><br />

SOLEIL, France; Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Vladimir Dmitriev for XRD measurements at <strong>the</strong> Swiss<br />

Norwegian beamline at ESRF, France; Dr. Richard Wirth from <strong>the</strong> GFZ, Potsdam for<br />

TEM analysis; Dr. Peer Löbmann <str<strong>on</strong>g>and</str<strong>on</strong>g> Matthias Bockmeyer from <strong>the</strong> Fraunh<str<strong>on</strong>g>of</str<strong>on</strong>g>er ISC,<br />

Würzburg, for support with <strong>the</strong> sol-gel syn<strong>the</strong>sis. This work was financed by <strong>the</strong><br />

Elitenetzwerk Bayern <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Bayerisches Staatsministerium für Wissenschaft,<br />

Forschung und Kunst in <strong>the</strong> internati<strong>on</strong>al graduate school “Oxides”. I want to thank for<br />

<strong>the</strong> financial support <str<strong>on</strong>g>and</str<strong>on</strong>g> network activities.<br />

Fur<strong>the</strong>rmore I would like to thank my family, friends <str<strong>on</strong>g>and</str<strong>on</strong>g> teachers who<br />

encouraged me to take my scientific path <str<strong>on</strong>g>and</str<strong>on</strong>g> stay <strong>on</strong> it. I want to thank Werner Ebert<br />

who helped me build <strong>the</strong> foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> my scientific career; Werner Thiemann, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

Klaus Jacobs <str<strong>on</strong>g>and</str<strong>on</strong>g> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Timothy Grove for sharing <strong>the</strong>ir great inspirati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> passi<strong>on</strong> for<br />

science with me; my teachers from <strong>the</strong> CITA studio for supporting me during hard<br />

times; Ulrike, Isabella, Silvia <str<strong>on</strong>g>and</str<strong>on</strong>g> Silke, you w<strong>on</strong>derful women who always reminded<br />

me <str<strong>on</strong>g>of</str<strong>on</strong>g> whom I am. And I want to thank Stefan.<br />

101


Bibliography<br />

Bibliography<br />

[1] V. Swamy <str<strong>on</strong>g>and</str<strong>on</strong>g> L.S. Dubrovinsky, Bulk modulus <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Solids 62 (2001) 673-675.<br />

[2] T. Arlt, M. Bermejo, M.A. Blanco, L. Gerward, J.Z. Jiang, J.S. Olsen <str<strong>on</strong>g>and</str<strong>on</strong>g> J.M.<br />

Recio, High-pressure polymorphs <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase TiO2, Physical Review B 61 (2000)<br />

14414-14419.<br />

[3] V. Pischedda, G.R. Hearne, A.M. Dawe <str<strong>on</strong>g>and</str<strong>on</strong>g> J.E. Low<strong>the</strong>r, Ultrastability <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

enhanced stiffness <str<strong>on</strong>g>of</str<strong>on</strong>g> similar to 6 nm TiO2 nanoanatase <str<strong>on</strong>g>and</str<strong>on</strong>g> eventual pressureinduced<br />

disorder <strong>on</strong> <strong>the</strong> nanometer scale, Physical Review Letters 96 (2006)<br />

035509.<br />

[4] V. Swamy, L.S. Dubrovinsky, N.A. Dubrovinskaia, A.S. Simi<strong>on</strong>ovici, M.<br />

Drakopoulos, V. Dmitriev <str<strong>on</strong>g>and</str<strong>on</strong>g> H.P. Weber, Compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nanocrystalline anatase TiO2, Solid State Communicati<strong>on</strong>s 125 (2003) 111-115.<br />

[5] J. Haines, J.M. Leger <str<strong>on</strong>g>and</str<strong>on</strong>g> O. Schulte, <str<strong>on</strong>g>The</str<strong>on</strong>g> high-pressure phase transiti<strong>on</strong><br />

sequence from <strong>the</strong> rutile-type through to <strong>the</strong> cotunnite-type structure in PbO2,<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics-C<strong>on</strong>densed Matter 8 (1996) 1631-1646.<br />

[6] J.M. Leger, J. Haines <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Atouf, <str<strong>on</strong>g>The</str<strong>on</strong>g> high pressure behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

cotunnite <str<strong>on</strong>g>and</str<strong>on</strong>g> post-cotunnite phases <str<strong>on</strong>g>of</str<strong>on</strong>g> PbCl2 <str<strong>on</strong>g>and</str<strong>on</strong>g> SnCl2, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Solids 57 (1996) 7-16.<br />

[7] R. Ahuja <str<strong>on</strong>g>and</str<strong>on</strong>g> L.S. Dubrovinsky, High-pressure structural phase transiti<strong>on</strong>s in<br />

TiO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> hardest known oxide, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics-C<strong>on</strong>densed<br />

Matter 14 (2002) 10995-10999.<br />

[8] R. Ahuja <str<strong>on</strong>g>and</str<strong>on</strong>g> L.S. Dubrovinsky, Cotunnite-structured titanium dioxide <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong><br />

hardest known oxide, High Pressure Research 22 (2002) 429-433.<br />

[9] N.A. Dubrovinskaia, L.S. Dubrovinsky, R. Ahuja, V.B. Prokopenko, V.<br />

Dmitriev, H.P. Weber, J.M. Osorio-Guillen <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Johanss<strong>on</strong>, Experimental <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<strong>the</strong>oretical identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a new high-pressure TiO2 polymorph, Physical<br />

Review Letters 87 (2001) 275501 1-4.<br />

[10] N.A. Dubrovinskaia, L.S. Dubrovinsky, V. Swamy <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Ahuja, Cotunnitestructured<br />

titanium dioxide, High Pressure Research 22 (2002) 391-394.<br />

[11] L.S. Dubrovinsky, N.A. Dubrovinskaia, V. Swamy, J. Muscat, N.M. Harris<strong>on</strong>,<br />

R. Ahuja, B. Holm <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Johanss<strong>on</strong>, Materials science - <str<strong>on</strong>g>The</str<strong>on</strong>g> hardest known<br />

oxide, Nature 410 (2001) 653-654.<br />

[12] A. El Goresy, M. Chen, L. Dubrovinsky, P. Gillet <str<strong>on</strong>g>and</str<strong>on</strong>g> G. Graup, An ultradense<br />

polymorph <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile with seven-coordinated titanium from <strong>the</strong> Ries crater,<br />

Science 293 (2001) 1467-1470.<br />

[13] A. El Goresy, M. Chen, P. Gillet, L. Dubrovinsky, G. Graup <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Ahuja, A<br />

natural shock-induced dense polymorph <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile with alpha-PbO2 structure in<br />

<strong>the</strong> suevite from <strong>the</strong> Ries crater in Germany, Earth <str<strong>on</strong>g>and</str<strong>on</strong>g> Planetary Science Letters<br />

192 (2001) 485-495.<br />

[14] L. Gerward <str<strong>on</strong>g>and</str<strong>on</strong>g> J.S. Olsen, Post-rutile high-pressure phases in TiO2, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Crystallography 30 (1997) 259-264.<br />

[15] L. Gerward <str<strong>on</strong>g>and</str<strong>on</strong>g> J.S. Olsen, High-pressure behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> titanium dioxide, in:<br />

European Powder Diffracti<strong>on</strong>: Epdic Iv, Pts 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 (1996), pp. 383-386.<br />

102


Bibliography<br />

[16] J. Haines <str<strong>on</strong>g>and</str<strong>on</strong>g> J.M. Leger X-Ray-Diffracti<strong>on</strong> Study <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 up to 49 Gpa,<br />

Physica B 192 (1993) 233-237.<br />

[17] K. Lagarec <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Desgreniers, Raman-Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Single-Crystal Anatase TiO2 up<br />

to 70 Gpa, Solid State Communicati<strong>on</strong>s 94 (1995) 519-524.<br />

[18] M. Mattesini, J.S. de Almeida, L. Dubrovinsky, N. Dubrovinskaia, B. Johanss<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> R. Ahuja, High-pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> high-temperature syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cubic TiO2<br />

polymorph, Physical Review B 70 (2004) 212101 1-4.<br />

[19] J.S. Olsen, L. Gerward <str<strong>on</strong>g>and</str<strong>on</strong>g> J.Z. Jiang, On <strong>the</strong> rutile/alpha-PbO2-type phase<br />

boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics <str<strong>on</strong>g>and</str<strong>on</strong>g> Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Solids 60 (1999) 229-<br />

233.<br />

[20] J.S. Olsen, L. Gerward <str<strong>on</strong>g>and</str<strong>on</strong>g> J.Z. Jiang, High-pressure behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> nano titanium<br />

dioxide, High Pressure Research 22 (2002) 385-389.<br />

[21] T. Sasaki, Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile-type TiO2 under high pressure, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics-<br />

C<strong>on</strong>densed Matter 14 (2002) 10557-10562.<br />

[22] H. Sato, S. Endo, M. Sugiyama, T. Kikegawa, O. Shimomura <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Kusaba,<br />

Baddeleyite-Type High-Pressure Phase <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2, Science 251 (1991) 786-788.<br />

[23] V. Swamy, N.A. Dubrovinskaia <str<strong>on</strong>g>and</str<strong>on</strong>g> L.S. Dubrovinsky, Compressibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

baddeleyite-type TiO2 from static compressi<strong>on</strong> to 40 GPa, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Alloys <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Compounds 340 (2002) 46-48.<br />

[24] A.C. Wi<strong>the</strong>rs, E.J. Essene <str<strong>on</strong>g>and</str<strong>on</strong>g> Y.X. Zhang, Rutile/TiO2II phase equilibria,<br />

C<strong>on</strong>tributi<strong>on</strong>s to Mineralogy <str<strong>on</strong>g>and</str<strong>on</strong>g> Petrology 145 (2003) 199-204.<br />

[25] P. Bouvier, E. Djurado, G. Lucazeau <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Le Bihan, High-pressure structural<br />

evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> undoped tetrag<strong>on</strong>al nanocrystalline zirc<strong>on</strong>ia, Physical Review B 62<br />

(2000) 8731-8737.<br />

[26] T.K. Gupta, F.F. Lange <str<strong>on</strong>g>and</str<strong>on</strong>g> J.H. Bechtold, <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Stress-Induced Phase-<br />

Transformati<strong>on</strong> <strong>on</strong> Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Polycrystalline Zirc<strong>on</strong>ia C<strong>on</strong>taining Metastable<br />

Tetrag<strong>on</strong>al Phase, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science 13 (1978) 1464-1470.<br />

[27] J. Haines, J.M. Leger <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Atouf, Crystal-Structure <str<strong>on</strong>g>and</str<strong>on</strong>g> Equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> State <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Cotunnite-Type Zirc<strong>on</strong>ia, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 78 (1995)<br />

445-448.<br />

[28] J. Haines, J.M. Leger, S. Hull, J.P. Petitet, A.S. Pereira, C.A. Perott<strong>on</strong>i <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

J.A.H. da Jornada, Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> cotunnite-type phases <str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong>ia <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

hafnia by neutr<strong>on</strong> diffracti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Raman spectroscopy, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American<br />

Ceramic Society 80 (1997) 1910-1914.<br />

[29] G. Kulcinsk., High-Pressure Induced Phase Transiti<strong>on</strong> in <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

American Ceramic Society 51 (1968) 582-&.<br />

[30] O. Ohtaka, S. Kume <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Ito, Stability Field <str<strong>on</strong>g>of</str<strong>on</strong>g> Cotunnite-Type Zirc<strong>on</strong>ia,<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 73 (1990) 744-745.<br />

[31] O. Ohtaka, S. Kume <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Ito, Syn<strong>the</strong>sis <str<strong>on</strong>g>and</str<strong>on</strong>g> Phase-Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> Cotunnite-Type<br />

Zirc<strong>on</strong>ia, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 71 (1988) C448-C449.<br />

[32] O. Ohtaka, D. Andrault, P. Bouvier, E. Schultz <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Mezouar, Phase relati<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 to 100 GPa, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Crystallography 38<br />

(2005) 727-733.<br />

[33] O. Ohtaka, H. Fukui, K. Funakoshi, W. Utsumi, T. Irifune <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Kikegawa,<br />

Phase relati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> EOS <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 <str<strong>on</strong>g>and</str<strong>on</strong>g> HfO2 under high-temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> highpressure,<br />

High Pressure Research 22 (2002) 221-226.<br />

[34] O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoski, W. Utsumi, T.<br />

Irifune, K. Kuroda <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Kikegawa, Phase relati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

103


Bibliography<br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 under high temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> high pressure, Physical Review B 6317 (2001)<br />

174108.<br />

[35] O. Ohtaka, T. Yamanaka, S. Kume, E. Ito <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Navrotsky, Stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

M<strong>on</strong>oclinic <str<strong>on</strong>g>and</str<strong>on</strong>g> Orthorhombic Zirc<strong>on</strong>ia - Studies by High-Pressure Phase-<br />

Equilibria <str<strong>on</strong>g>and</str<strong>on</strong>g> Calorimetry, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 74 (1991)<br />

505-509.<br />

[36] O. Ohtaka, T. Yamanaka <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Yagi New High-Pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> High-<br />

Temperature Phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 above 1000 °C at 20 Gpa, Physical Review B 49<br />

(1994) 9295-9298.<br />

[37] J.E. Low<strong>the</strong>r, J.K. Dewhurst, J.M. Leger <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Haines, Relative stability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 <str<strong>on</strong>g>and</str<strong>on</strong>g> HfO2 structural phases, Physical Review B 60 (1999) 14485-14488.<br />

[38] S. Desgreniers <str<strong>on</strong>g>and</str<strong>on</strong>g> K. Lagarec, High-density <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 <str<strong>on</strong>g>and</str<strong>on</strong>g> HfO2: Crystalline<br />

structures <str<strong>on</strong>g>and</str<strong>on</strong>g> equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> state, Physical Review B 59 (1999) 8467-8472.<br />

[39] G.A. Kourouklis <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Liarokapis, Pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> Temperature-Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Raman-Spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Zirc<strong>on</strong>ia <str<strong>on</strong>g>and</str<strong>on</strong>g> Hafnia, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic<br />

Society 74 (1991) 520-523.<br />

[40] L.G. Liu, New High-Pressure Phases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 <str<strong>on</strong>g>and</str<strong>on</strong>g> HfO2, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Solids 41 (1980) 331-334.<br />

[41] Bendelia.Na, S.V. Popova <str<strong>on</strong>g>and</str<strong>on</strong>g> L. Verescha, New High Pressure Modificati<strong>on</strong>s<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 <str<strong>on</strong>g>and</str<strong>on</strong>g> HfO2, Geochemistry Internati<strong>on</strong>al Ussr 4 (1967) 557-559.<br />

[42] A. Jayaraman, S.Y. Wang, S.K. Sharma <str<strong>on</strong>g>and</str<strong>on</strong>g> L.C. Ming, Pressure-Induced<br />

Phase-Transformati<strong>on</strong>s in HfO2 to 50 Gpa Studied by Raman-Spectroscopy,<br />

Physical Review B 48 (1993) 9205-9211.<br />

[43] J.E. Jaffe, R.A. Bachorz <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Gutowski, Low-temperature polymorphs <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2 <str<strong>on</strong>g>and</str<strong>on</strong>g> HfO2: A density-functi<strong>on</strong>al <strong>the</strong>ory study, Physical Review B 72<br />

(2005).<br />

[44] J.M. Leger, A. Atouf, P.E. Tomaszewski <str<strong>on</strong>g>and</str<strong>on</strong>g> A.S. Pereira, Pressure-Induced<br />

Phase-Transiti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Volume Changes in HfO2 up to 50 Gpa, Physical Review<br />

B 48 (1993) 93-98.<br />

[45] S.N. Luo, J.L. Mosenfelder, P.D. Asimow <str<strong>on</strong>g>and</str<strong>on</strong>g> T.J. Ahrens, Direct shock wave<br />

loading <str<strong>on</strong>g>of</str<strong>on</strong>g> Stishovite to 235 GPa: Implicati<strong>on</strong>s for perovskite stability relative to<br />

an oxide assemblage at lower mantle c<strong>on</strong>diti<strong>on</strong>s, Geophysical Research Letters<br />

29 (2002).<br />

[46] D. Andrault, G. Fiquet, J.P. Itie, P. Richet, P. Gillet, D. Hausermann <str<strong>on</strong>g>and</str<strong>on</strong>g> M.<br />

Hanfl<str<strong>on</strong>g>and</str<strong>on</strong>g>, <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal pressure in <strong>the</strong> laser-heated diam<strong>on</strong>d-anvil cell: An X-ray<br />

diffracti<strong>on</strong> study, European Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineralogy 10 (1998) 931-940.<br />

[47] V. Swamy, S.K. Saxena, B. Sundman <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Zhang, A <str<strong>on</strong>g>The</str<strong>on</strong>g>rmodynamic<br />

Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Silica Phase-Diagram, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical Research-Solid<br />

Earth 99 (1994) 11787-11794.<br />

[48] R.T. Downs <str<strong>on</strong>g>and</str<strong>on</strong>g> D.C. Palmer, <str<strong>on</strong>g>The</str<strong>on</strong>g> Pressure Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Alpha-Cristobalite,<br />

American Mineralogist 79 (1994) 9-14.<br />

[49] L.G. Liu, Bulk Moduli <str<strong>on</strong>g>of</str<strong>on</strong>g> SiO2 Polymorphs - Quartz, Coesite <str<strong>on</strong>g>and</str<strong>on</strong>g> Stishovite,<br />

Mechanics <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials 14 (1993) 283-290.<br />

[50] R.G. McQueen, J.C. Jamies<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> S.P. Marsh, Shock-Wave Compressi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

X-Ray Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Titanium Dioxide, Science 155 (1967) 1401-&.<br />

[51] R. March<str<strong>on</strong>g>and</str<strong>on</strong>g>, L. Brohan <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Tournoux, TiO2(B) a New Form <str<strong>on</strong>g>of</str<strong>on</strong>g> Titanium-<br />

Dioxide <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> Potassium Octatitanate K2Ti8O17, Materials Research Bulletin<br />

15 (1980) 1129-1133.<br />

104


Bibliography<br />

[52] M. Latroche, L. Brohan, R. March<str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Tournoux, New Holl<str<strong>on</strong>g>and</str<strong>on</strong>g>ite Oxides<br />

- TiO2(H) <str<strong>on</strong>g>and</str<strong>on</strong>g> K0.06TiO2, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Solid State Chemistry 81 (1989) 78-82.<br />

[53] J. Akimoto, Y. Gotoh, Y. Oosawa, N. N<strong>on</strong>ose, T. Kumagai, K. Aoki <str<strong>on</strong>g>and</str<strong>on</strong>g> H.<br />

Takei, Topotactic Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ramsdellite-Type Li0.5TiO2, a New Polymorph<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Titanium-Dioxide - TiO2 (R), Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Solid State Chemistry 113 (1994)<br />

27-36.<br />

[54] J.F. Banfield, B.L. Bisch<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>and</str<strong>on</strong>g> M.A. Anders<strong>on</strong>, TiO2 Accessory Minerals -<br />

Coarsening, <str<strong>on</strong>g>and</str<strong>on</strong>g> Transformati<strong>on</strong> Kinetics in Pure <str<strong>on</strong>g>and</str<strong>on</strong>g> Doped Syn<strong>the</strong>tic<br />

Nanocrystalline Materials, Chemical Geology 110 (1993) 211-231.<br />

[55] J. Tang <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Endo, P-T Boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> Alpha-PbO2 Type <str<strong>on</strong>g>and</str<strong>on</strong>g> Baddeleyite Type<br />

High-Pressure Phases <str<strong>on</strong>g>of</str<strong>on</strong>g> Titanium-Dioxide, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic<br />

Society 76 (1993) 796-798.<br />

[56] M. Akaogi, K. Kusaba, J. Susaki, T. Yagi, M. Matsui, T. Kikegawa, H. Yusa<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> E. Ito in: Y. Sy<strong>on</strong>o, M.H. Manghnanni (Eds). High-Pressure Research:<br />

Applicati<strong>on</strong> to Earth <str<strong>on</strong>g>and</str<strong>on</strong>g> Planetary Sciences, Terra Scientific Publiching<br />

Company, Tokyo (1992) 447.<br />

[57] V. Swamy, E. Holbig, L. Dubrovinsky, V. Prakapenka <str<strong>on</strong>g>and</str<strong>on</strong>g> B.C. Muddle,<br />

<strong>Mechanical</strong> properties <str<strong>on</strong>g>of</str<strong>on</strong>g> bulk <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoscale TiO2 phases, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Solids (submitted) (2007).<br />

[58] T. Ohsaka, S. Yamaoka <str<strong>on</strong>g>and</str<strong>on</strong>g> O. Shimomura, <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrostatic-Pressure <strong>on</strong><br />

<strong>the</strong> Raman-Spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> Anatase (TiO2), Solid State Communicati<strong>on</strong>s 30 (1979)<br />

345-347.<br />

[59] G.R. Lumpkin, Physical <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> baddeleyite (m<strong>on</strong>oclinic<br />

zirc<strong>on</strong>ia) in natural envir<strong>on</strong>ments: an overview <str<strong>on</strong>g>and</str<strong>on</strong>g> case study, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Nuclear Materials 274 (1999) 206-217.<br />

[60] D. Viechnic <str<strong>on</strong>g>and</str<strong>on</strong>g> V.S. Stubican, Phase Studies within System <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2-MgO, Nature<br />

206 (1965) 1251-&.<br />

[61] R.E. Latta, E. Duderstadt <str<strong>on</strong>g>and</str<strong>on</strong>g> R.E. Fryxell, Melting Point <str<strong>on</strong>g>of</str<strong>on</strong>g> Pure Zirc<strong>on</strong>ia,<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Materials 35 (1970) 345-&.<br />

[62] A. Navrotsky, Calorimetry <str<strong>on</strong>g>of</str<strong>on</strong>g> nanoparticles, surfaces, interfaces, thin films, <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

multilayers, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical <str<strong>on</strong>g>The</str<strong>on</strong>g>rmodynamics 39 (2007) 1-9.<br />

[63] M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban,<br />

P.H. Borse, S.K. Kulkarni, G.S. Doran <str<strong>on</strong>g>and</str<strong>on</strong>g> H.J. Whitfield, Energetics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nanocrystalline TiO2, Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

United States <str<strong>on</strong>g>of</str<strong>on</strong>g> America 99 (2002) 6476-6481.<br />

[64] T. Mitsuhashi <str<strong>on</strong>g>and</str<strong>on</strong>g> O.J. Kleppa, Transformati<strong>on</strong> Enthalpies <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> TiO2<br />

Polymorphs, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 62 (1979) 356-357.<br />

[65] Navrotsk.A <str<strong>on</strong>g>and</str<strong>on</strong>g> O.J. Kleppa, Enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> Anatase-Rutile Transformati<strong>on</strong>,<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 50 (1967) 626-&.<br />

[66] Navrotsk.A, J.C. Jamies<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> O.J. Kleppa, Enthalpy <str<strong>on</strong>g>of</str<strong>on</strong>g> Transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a<br />

High-Pressure Polymorph <str<strong>on</strong>g>of</str<strong>on</strong>g> Titanium Dioxide to Rutile Modificati<strong>on</strong>, Science<br />

158 (1967) 388-&.<br />

[67] P.Y. Shen, S.L. Hwang, H.T. Chu, T.F. Yu, C.N. Pan <str<strong>on</strong>g>and</str<strong>on</strong>g> W.L. Huang, On <strong>the</strong><br />

transformati<strong>on</strong> pathways <str<strong>on</strong>g>of</str<strong>on</strong>g> alpha-PbO2-type TiO2 at <strong>the</strong> twin boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile<br />

bicrystals <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile bicrystals, European Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineralogy 17<br />

(2005) 543-552.<br />

105


Bibliography<br />

[68] M.W. Pitcher, S.V. Ushakov, A. Navrotsky, B.F. Woodfield, G.S. Li, J. Boerio-<br />

Goates <str<strong>on</strong>g>and</str<strong>on</strong>g> B.M. Tissue, Energy crossovers in nanocrystalline zirc<strong>on</strong>ia, Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 88 (2005) 160-167.<br />

[69] A.E. McHale <str<strong>on</strong>g>and</str<strong>on</strong>g> R.S. Roth, Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Phase-Transiti<strong>on</strong> in <str<strong>on</strong>g>Zr</str<strong>on</strong>g>TiO4 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Zr</str<strong>on</strong>g>TiO4-SnO2 Solid-Soluti<strong>on</strong>s, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 66<br />

(1983) C18-C20.<br />

[70] A.E. McHale <str<strong>on</strong>g>and</str<strong>on</strong>g> R.S. Roth, Low-Temperature Phase-Relati<strong>on</strong>ships in <strong>the</strong><br />

System <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2-TiO2, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 69 (1986) 827-<br />

832.<br />

[71] R. Merkle <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Bertagnolli, Crystallizati<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> series <str<strong>on</strong>g>of</str<strong>on</strong>g> solid<br />

soluti<strong>on</strong>s <str<strong>on</strong>g>Zr</str<strong>on</strong>g>xTi1-xO2 <str<strong>on</strong>g>and</str<strong>on</strong>g> Pby<str<strong>on</strong>g>Zr</str<strong>on</strong>g>xTi1-xO2+y prepared by <strong>the</strong> sol-gel process, Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Chemistry 8 (1998) 2433-2439.<br />

[72] U. Troitzsch, TiO2-doped zirc<strong>on</strong>ia: Crystal structure, m<strong>on</strong>oclinic-tetrag<strong>on</strong>al<br />

phase transiti<strong>on</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> <strong>the</strong> new tetrag<strong>on</strong>al compound <str<strong>on</strong>g>Zr</str<strong>on</strong>g>3TiO8, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

American Ceramic Society 89 (2006) 3201-3210.<br />

[73] U. Troitzsch, A.G. Christy <str<strong>on</strong>g>and</str<strong>on</strong>g> D.J. Ellis, Syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> ordered zirc<strong>on</strong>ium<br />

titanate (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>,Ti)2O4 from <strong>the</strong> oxides using fluxes, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American<br />

Ceramic Society 87 (2004) 2058-2063.<br />

[74] U. Troitzsch, A.G. Christy <str<strong>on</strong>g>and</str<strong>on</strong>g> D.J. Ellis, <str<strong>on</strong>g>The</str<strong>on</strong>g> crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> disordered<br />

(<str<strong>on</strong>g>Zr</str<strong>on</strong>g>,Ti)O2 solid soluti<strong>on</strong> including srilankite: evoluti<strong>on</strong> towards tetrag<strong>on</strong>al <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2<br />

with increasing <str<strong>on</strong>g>Zr</str<strong>on</strong>g>, Physics <str<strong>on</strong>g>and</str<strong>on</strong>g> Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Minerals 32 (2005) 504-514.<br />

[75] U. Troitzsch <str<strong>on</strong>g>and</str<strong>on</strong>g> D.J. Ellis, High-PT study <str<strong>on</strong>g>of</str<strong>on</strong>g> solid soluti<strong>on</strong>s in <strong>the</strong> system <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2-<br />

TiO2: <str<strong>on</strong>g>The</str<strong>on</strong>g> stability <str<strong>on</strong>g>of</str<strong>on</strong>g> srilankite, European Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Mineralogy 16 (2004) 577-<br />

584.<br />

[76] U. Troitzsch <str<strong>on</strong>g>and</str<strong>on</strong>g> D.J. Ellis, <str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2-TiO2 phase diagram, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials<br />

Science 40 (2005) 4571-4577.<br />

[77] A. Willgallis <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Hartl, (<str<strong>on</strong>g>Zr</str<strong>on</strong>g>0.33Ti0.67)O2 - a Natural Zirc<strong>on</strong>ium-Titanium<br />

Oxide with an Alpha-PbO2 Structure, Zeitschrift Fur Kristallographie 164<br />

(1983) 59-66.<br />

[78] S.I. Kostrovitsky, V.K. Garanin <str<strong>on</strong>g>and</str<strong>on</strong>g> D.A. Varlamov, Srilankite - <strong>the</strong> 2nd Finding<br />

in <strong>the</strong> World, Doklady Akademii Nauk 328 (1993) 601-604.<br />

[79] L.P. Wang, E.J. Essene <str<strong>on</strong>g>and</str<strong>on</strong>g> Y.X. Zhang, Mineral inclusi<strong>on</strong>s in pyrope crystals<br />

from Garnet Ridge, Ariz<strong>on</strong>a, USA: implicati<strong>on</strong>s for processes in <strong>the</strong> upper<br />

mantle, C<strong>on</strong>tributi<strong>on</strong>s to Mineralogy <str<strong>on</strong>g>and</str<strong>on</strong>g> Petrology 135 (1999) 164-178.<br />

[80] B. Bingen, H. Austrheim <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Whitehouse, Ilmenite as a source for zirc<strong>on</strong>ium<br />

during high-grade metamorphism? Textural evidence from <strong>the</strong> Caled<strong>on</strong>ides <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

western Norway <str<strong>on</strong>g>and</str<strong>on</strong>g> implicati<strong>on</strong>s for zirc<strong>on</strong> geochr<strong>on</strong>ology, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Petrology 42 (2001) 355-375.<br />

[81] T. Morishita, J. Maeda, S. Miyashita, T. Matsumoto <str<strong>on</strong>g>and</str<strong>on</strong>g> H.J.B. Dick, Magmatic<br />

srilankite (Ti2<str<strong>on</strong>g>Zr</str<strong>on</strong>g>O6) in gabbroic vein cutting oceanic peridotites: An unusual<br />

product <str<strong>on</strong>g>of</str<strong>on</strong>g> peridotite-melt interacti<strong>on</strong>s beneath slow-spreading ridges, American<br />

Mineralogist 89 (2004) 759-766.<br />

[82] J.E. Taggart, E.E. Foord, A. Rosenzweig <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Hans<strong>on</strong>, Scrutinyite, Natural<br />

Occurrences <str<strong>on</strong>g>of</str<strong>on</strong>g> Alpha-PbO2 from Bingham, New-Mexico, USA, <str<strong>on</strong>g>and</str<strong>on</strong>g> Mapimi,<br />

Mexico, Canadian Mineralogist 26 (1988) 905-910.<br />

[83] J.G. Li, T. Ishigaki <str<strong>on</strong>g>and</str<strong>on</strong>g> X.D. Sun, Anatase, brookite, <str<strong>on</strong>g>and</str<strong>on</strong>g> rutile nanocrystals via<br />

redox reacti<strong>on</strong>s under mild hydro<strong>the</strong>rmal c<strong>on</strong>diti<strong>on</strong>s: Phase-selective syn<strong>the</strong>sis<br />

106


Bibliography<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> physicochemical properties, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry C 111 (2007)<br />

4969-4976.<br />

[84] U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> M. Gratzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high<br />

phot<strong>on</strong>-to-electr<strong>on</strong> c<strong>on</strong>versi<strong>on</strong> efficiencies, Nature 395 (1998) 583-585.<br />

[85] M.R. H<str<strong>on</strong>g>of</str<strong>on</strong>g>fmann, S.T. Martin, W.Y. Choi <str<strong>on</strong>g>and</str<strong>on</strong>g> D.W. Bahnemann, Envir<strong>on</strong>mental<br />

Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Semic<strong>on</strong>ductor Photocatalysis, Chemical Reviews 95 (1995) 69-<br />

96.<br />

[86] M.A. Fox <str<strong>on</strong>g>and</str<strong>on</strong>g> M.T. Dulay, Heterogeneous Photocatalysis, Chemical Reviews 93<br />

(1993) 341-357.<br />

[87] M. Mattesini, J.S. de Almeida, L. Dubrovinsky, N. Dubrovinskaia, B. Johanss<strong>on</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> R. Ahuja, Cubic TiO2 as a potential light absorber in solar-energy<br />

c<strong>on</strong>versi<strong>on</strong>, Physical Review B 70 (2004).<br />

[88] A. Fujishim <str<strong>on</strong>g>and</str<strong>on</strong>g> K. H<strong>on</strong>da, Electrochemical Photolysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Water at a<br />

Semic<strong>on</strong>ductor Electrode, Nature 238 (1972) 37-&.<br />

[89] W.M. Kriven, Possible Alternative Transformati<strong>on</strong> Tougheners to Zirc<strong>on</strong>ia -<br />

Crystallographic Aspects, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 71 (1988)<br />

1021-1030.<br />

[90] T. Muromura <str<strong>on</strong>g>and</str<strong>on</strong>g> Y. Hinatsu, Fluorite Type Phase in Nuclear Waste Ceramics<br />

with High Zirc<strong>on</strong>ia <str<strong>on</strong>g>and</str<strong>on</strong>g> Alumina C<strong>on</strong>tents, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Nuclear Materials 151<br />

(1987) 55-62.<br />

[91] S.X. Zhang, J.B. Li, J. Cao, H.Z. Zhai <str<strong>on</strong>g>and</str<strong>on</strong>g> B. Zhang, <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> compositi<strong>on</strong> <strong>on</strong><br />

sinterability, microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> microwave dielectric properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>xTi1-xO4<br />

(x=0.40-0.60) ceramics, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science Letters 20 (2001) 1409-<br />

1411.<br />

[92] F. Azough, R. Freer, C.L. Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> G.W. Lorimer, <str<strong>on</strong>g>The</str<strong>on</strong>g> relati<strong>on</strong>ship between<br />

<strong>the</strong> microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> microwave dielectric properties <str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong>ium titanate<br />

ceramics, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Science 31 (1996) 2539-2549.<br />

[93] F. Azough, A. Wright <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Freer, <str<strong>on</strong>g>The</str<strong>on</strong>g> Microstructure <str<strong>on</strong>g>and</str<strong>on</strong>g> Dielectric-<br />

Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>5Ti7O24 Ceramics, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Solid State Chemistry 108 (1994)<br />

284-290.<br />

[94] G. Wolfram <str<strong>on</strong>g>and</str<strong>on</strong>g> H.E. Gobel, Existence Range, Structural <str<strong>on</strong>g>and</str<strong>on</strong>g> Dielectric-<br />

Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>xTiySnzO4 Ceramics (X+Y+Z=2), Materials Research Bulletin 16<br />

(1981) 1455-1463.<br />

[95] S.H. Jhi, J. Ihm, S.G. Louie <str<strong>on</strong>g>and</str<strong>on</strong>g> M.L. Cohen, Electr<strong>on</strong>ic mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> hardness<br />

enhancement in transiti<strong>on</strong>-metal carb<strong>on</strong>itrides, Nature 399 (1999) 132-134.<br />

[96] C.M. Sung <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Sung, Carb<strong>on</strong> nitride <str<strong>on</strong>g>and</str<strong>on</strong>g> o<strong>the</strong>r speculative superhard<br />

materials, Materials Chemistry <str<strong>on</strong>g>and</str<strong>on</strong>g> Physics 43 (1996) 1-18.<br />

[97] D.M. Teter, Computati<strong>on</strong>al alchemy: <str<strong>on</strong>g>The</str<strong>on</strong>g> search for new superhard materials,<br />

Mrs Bulletin 23 (1998) 22-27.<br />

[98] J.E. Low<strong>the</strong>r, Superhard ceramic oxides, Mrs Bulletin 28 (2003) 189-193.<br />

[99] W. Luo, S.F. Yang, Z.C. Wang, Y. Wang, R. Ahuja, B. Johanss<strong>on</strong>, J. Liu <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

G.T. Zou, Structural phase transiti<strong>on</strong>s in brookite-type TiO2 under high pressure,<br />

Solid State Communicati<strong>on</strong>s 133 (2005) 49-53.<br />

[100] S.K. Chan, Y. Fang, M. Grimsditch, Z. Li, M.V. Nevitt, W.M. Roberts<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

E.S. Zouboulis, Temperature-Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Elastic-Moduli <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>on</strong>oclinic<br />

Zirc<strong>on</strong>ia, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 74 (1991) 1742-1744.<br />

107


Bibliography<br />

[101] R.E. Cohen, M.J. Mehl <str<strong>on</strong>g>and</str<strong>on</strong>g> L.L. Boyer, Phase-Transiti<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> Elasticity in<br />

Zirc<strong>on</strong>ia, Physica B & C 150 (1988) 1-9.<br />

[102] J.K. Dewhurst <str<strong>on</strong>g>and</str<strong>on</strong>g> J.E. Low<strong>the</strong>r, Relative stability, structure, <str<strong>on</strong>g>and</str<strong>on</strong>g> elastic<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> several phases <str<strong>on</strong>g>of</str<strong>on</strong>g> pure zirc<strong>on</strong>ia, Physical Review B 57 (1998) 741-<br />

747.<br />

[103] N.J. Petch, <str<strong>on</strong>g>The</str<strong>on</strong>g> Cleavage Strength <str<strong>on</strong>g>of</str<strong>on</strong>g> Polycrystals, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ir<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Steel<br />

Institute 174 (1953) 25-28.<br />

[104] E.O. Hall, <str<strong>on</strong>g>The</str<strong>on</strong>g> Deformati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Ageing <str<strong>on</strong>g>of</str<strong>on</strong>g> Mild Steel .3. Discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Results,<br />

Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Physical Society <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>d<strong>on</strong> Secti<strong>on</strong> B 64 (1951) 747-753.<br />

[105] T.G. Nieh <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Wadsworth, Hall-Petch Relati<strong>on</strong> in Nanocrystalline Solids,<br />

Scripta Metallurgica Et Materialia 25 (1991) 955-958.<br />

[106] J. Schiotz, F.D. Di Tolla <str<strong>on</strong>g>and</str<strong>on</strong>g> K.W. Jacobsen, S<str<strong>on</strong>g>of</str<strong>on</strong>g>tening <str<strong>on</strong>g>of</str<strong>on</strong>g> nanocrystalline<br />

metals at very small grain sizes, Nature 391 (1998) 561-563.<br />

[107] S. Ogata, H. Iyetomi, K. Tsuruta, F. Shimojo, R.K. Kalia, A. Nakano <str<strong>on</strong>g>and</str<strong>on</strong>g> P.<br />

Vashishta, Variable-charge interatomic potentials for molecular-dynamics<br />

simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics 86 (1999) 3036-3041.<br />

[108] H. leRoux <str<strong>on</strong>g>and</str<strong>on</strong>g> L. Glasser ,Transferable potentials for <strong>the</strong> Ti-O system, Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Materials Chemistry 7 (1997) 843-851.<br />

[109] F.H. Streitz <str<strong>on</strong>g>and</str<strong>on</strong>g> J.W. Mintmire, Charge-Transfer <str<strong>on</strong>g>and</str<strong>on</strong>g> B<strong>on</strong>ding in Metallic<br />

Oxides, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Adhesi<strong>on</strong> Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 8 (1994) 853-864.<br />

[110] C.R.A. Catlow, C.M. Freeman <str<strong>on</strong>g>and</str<strong>on</strong>g> R.L. Royle, Recent Studies Using Static<br />

Simulati<strong>on</strong> Techniques, Physica B & C 131 (1985) 1-12.<br />

[111] M. Mostoller <str<strong>on</strong>g>and</str<strong>on</strong>g> J.C. Wang, I<strong>on</strong>ic Potential Models in Insulators Having <strong>the</strong><br />

Rutile Structure, Physical Review B 32 (1985) 6773-6786.<br />

[112] M. Matsui <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Akaogi in: Molecular Simulati<strong>on</strong> (1991) 239-244.<br />

[113] V. Swamy <str<strong>on</strong>g>and</str<strong>on</strong>g> J.D. Gale, Transferable variable-charge interatomic potential for<br />

atomistic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> titanium oxides, Physical Review B 62 (2000) 5406-<br />

5412.<br />

[114] K. Rosciszewski, K. Doll, B. Paulus, P. Fulde <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Stoll, Ground-state<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> rutile: Electr<strong>on</strong>-correlati<strong>on</strong> effects, Physical Review B 57 (1998)<br />

14667-14672.<br />

[115] P. Reinhardt, B.A. Hess <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Causa, Electr<strong>on</strong>ic <str<strong>on</strong>g>and</str<strong>on</strong>g> geometrical structure <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bulk rutile studied with Hartree-Fock <str<strong>on</strong>g>and</str<strong>on</strong>g> density functi<strong>on</strong>al methods,<br />

Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Quantum Chemistry 58 (1996) 297-306.<br />

[116] J.K. Dewhurst <str<strong>on</strong>g>and</str<strong>on</strong>g> J.E. Low<strong>the</strong>r, High-pressure structural phases <str<strong>on</strong>g>of</str<strong>on</strong>g> titanium<br />

dioxide, Physical Review B 54 (1996) R3673-R3675.<br />

[117] J. Muscat, V. Swamy <str<strong>on</strong>g>and</str<strong>on</strong>g> N.M. Harris<strong>on</strong>, First-principles calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

phase stability <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2, Physical Review B 65 (2002).<br />

[118] F. Labat, P. Baranek, C. Domain, C. Minot <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Adamo, Density functi<strong>on</strong>al<br />

<strong>the</strong>ory analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> structural <str<strong>on</strong>g>and</str<strong>on</strong>g> electr<strong>on</strong>ic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 rutile <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

anatase polytypes: Performances <str<strong>on</strong>g>of</str<strong>on</strong>g> different exchange-correlati<strong>on</strong> functi<strong>on</strong>als,<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Physics 126 (2007).<br />

[119] M. Posternak, A. Baldereschi, E.J. Walter <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Krakauer, Wannier functi<strong>on</strong>s<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Born charge tensors <str<strong>on</strong>g>of</str<strong>on</strong>g> brookite TiO2, Physical Review B 74 (2006).<br />

[120] K.M. Glassford <str<strong>on</strong>g>and</str<strong>on</strong>g> J.R. Chelikowsky, Structural <str<strong>on</strong>g>and</str<strong>on</strong>g> Electr<strong>on</strong>ic-Properties <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Titanium-Dioxide, Physical Review B 46 (1992) 1284-1298.<br />

108


Bibliography<br />

[121] M. Mikami, S. Nakamura, O. Kitao <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Arakawa, Lattice dynamics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

dielectric properties <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 anatase: A first-principles study (vol B 66, art no<br />

155213, 2002), Physical Review B 69 (2004).<br />

[122] M.Y. Kuo, C.L. Chen, C.Y. Hua, H.C. Yang <str<strong>on</strong>g>and</str<strong>on</strong>g> P.Y. Shen, Density functi<strong>on</strong>al<br />

<strong>the</strong>ory calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dense TiO2 polymorphs: Implicati<strong>on</strong> for visible-lightresp<strong>on</strong>sive<br />

photocatalysts, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physical Chemistry B 109 (2005) 8693-<br />

8700.<br />

[123] C.Y. Lee <str<strong>on</strong>g>and</str<strong>on</strong>g> X. G<strong>on</strong>ze, Dielectric-C<strong>on</strong>stants <str<strong>on</strong>g>and</str<strong>on</strong>g> Born <str<strong>on</strong>g>Effect</str<strong>on</strong>g>ive Charges <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

TiO2 Rutile, Physical Review B 49 (1994) 14730-14731.<br />

[124] S. Matsushima, K. Obata, H. Yamane, K. Yamada, H. Nakamura, M. Arai <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

K. Kobayashi, First-principles b<str<strong>on</strong>g>and</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 with Brookite structure,<br />

Electrochemistry 72 (2004) 694-696.<br />

[125] S.D. Mo <str<strong>on</strong>g>and</str<strong>on</strong>g> W.Y. Ching, Electr<strong>on</strong>ic <str<strong>on</strong>g>and</str<strong>on</strong>g> Optical-Properties <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 Phases <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Titanium-Dioxide - Rutile, Anatase, <str<strong>on</strong>g>and</str<strong>on</strong>g> Brookite, Physical Review B 51 (1995)<br />

13023-13032.<br />

[126] V. Swamy, J.D. Gale <str<strong>on</strong>g>and</str<strong>on</strong>g> L.S. Dubrovinsky, Atomistic simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> crystal<br />

structures <str<strong>on</strong>g>and</str<strong>on</strong>g> bulk moduli <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 polymorphs, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Solids 62 (2001) 887-895.<br />

[127] W. Kohn <str<strong>on</strong>g>and</str<strong>on</strong>g> L.J. Sham, Self-C<strong>on</strong>sistent Equati<strong>on</strong>s Including Exchange <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Correlati<strong>on</strong> <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s, Physical Review 140 (1965) 1133-&.<br />

[128] P. Hohenberg <str<strong>on</strong>g>and</str<strong>on</strong>g> W. Kohn, Inhomogeneous Electr<strong>on</strong> Gas, Physical Review B<br />

136 (1964) B864-&.<br />

[129] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jacks<strong>on</strong>, M.R. Peders<strong>on</strong>, D.J.<br />

Singh <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Fiolhais, Atoms, Molecules, Solids, <str<strong>on</strong>g>and</str<strong>on</strong>g> Surfaces - Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>the</strong> Generalized Gradient Approximati<strong>on</strong> for Exchange <str<strong>on</strong>g>and</str<strong>on</strong>g> Correlati<strong>on</strong>, Physical<br />

Review B 46 (1992) 6671-6687.<br />

[130] I.L. Spain, Ultrahigh pressure apparatus <str<strong>on</strong>g>and</str<strong>on</strong>g> technology, in: High pressure<br />

Technology, vol. 1 Equipment design, materials, <str<strong>on</strong>g>and</str<strong>on</strong>g> properties, editors Spain,<br />

I.L. <str<strong>on</strong>g>and</str<strong>on</strong>g> Pauwe J.. Marcel Dekker, new York (1977) 395.<br />

[131] W.C. Luth <str<strong>on</strong>g>and</str<strong>on</strong>g> O.F. Tuttle, Externally heated cold-seal pressure vessels for use<br />

to 10,000 bars <str<strong>on</strong>g>and</str<strong>on</strong>g> 750 °C, American Mineralogist 48 (1963) 1401-1403.<br />

[132] O.F. Tuttle, Two pressure vessels for silicate-water studies, Geological Society<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> America Bulletin 60 (1949) 1927-1929.<br />

[133] A.L. Boettcher <str<strong>on</strong>g>and</str<strong>on</strong>g> D.M. Kerrick, Temperature-calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cold-seal presure<br />

vessels, Research Tecniques fot high pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> high temperature, G.C. Ulmer<br />

(ed.), New York, Springer (1971) 179-173.<br />

[134] J.R. Holloway <str<strong>on</strong>g>and</str<strong>on</strong>g> B.J. Wood, Simulating <strong>the</strong> Earth: Experimental<br />

Geochemistry, Bost<strong>on</strong>, Unwin Hyman (1988) 26.<br />

[135] D. Dolejs <str<strong>on</strong>g>and</str<strong>on</strong>g> D.R. Baker, Fluorite solubility in hydrous haplogranitic melts at<br />

100 MPa, Chemical Geology 225 (2006) 40-60.<br />

[136] T. Dunn, <str<strong>on</strong>g>The</str<strong>on</strong>g> pist<strong>on</strong>-cylinder apparatus, in: Luth, R.W. (ed): Experiments at<br />

High Pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> Applicati<strong>on</strong>s to <strong>the</strong> Earth's Mantle, MAC shortcourse<br />

h<str<strong>on</strong>g>and</str<strong>on</strong>g>book, Vol.21. Mineralogical associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Canada, (1993) p. 39-94.<br />

[137] N. Kawai <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Endo, Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ultrahigh Hydrostatic Pressures by a Split<br />

Sphere Apparatus, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific Instruments 41 (1970) 1178-&.<br />

[138] J. Graham, <str<strong>on</strong>g>The</str<strong>on</strong>g> multianvil press. In Sammis, C.G <str<strong>on</strong>g>and</str<strong>on</strong>g> Henvey, T.L. (eds.),<br />

Geophysics Part A, Laboratory Measurements, Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental<br />

physics. Academic Press, Orl<str<strong>on</strong>g>and</str<strong>on</strong>g>o (1987).<br />

109


Bibliography<br />

[139] E. Ohtani, T. Irifune, W. Hibbers<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> A.E. Ringwood, Modified split-sphere<br />

guide block for practical operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a multi-anvil apparatus, High<br />

Temperatures - high Pressures 19 (1987) 523-529.<br />

[140] D. Walker, M.A. Carpenter <str<strong>on</strong>g>and</str<strong>on</strong>g> C.M. Hitch, Some Simplificati<strong>on</strong>s to Multianvil<br />

Devices for High-Pressure Experiments, American Mineralogist 75 (1990)<br />

1020-1028.<br />

[141] Y.W. Fei <str<strong>on</strong>g>and</str<strong>on</strong>g> S.K. Saxena, Internally C<strong>on</strong>sistent <str<strong>on</strong>g>The</str<strong>on</strong>g>rmodynamic Data <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Equilibrium Phase-Relati<strong>on</strong>s for Compounds in <strong>the</strong> System MgO-SiO2 at High-<br />

Pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> High-Pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> High-Temperature, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical<br />

Research-Solid Earth <str<strong>on</strong>g>and</str<strong>on</strong>g> Planets 95 (1990) 6915-6928.<br />

[142] M.J. Walter, Y. Thibault, K. Wei <str<strong>on</strong>g>and</str<strong>on</strong>g> R.W. Luth, Characterizing Experimental<br />

Pressure <str<strong>on</strong>g>and</str<strong>on</strong>g> Temperature C<strong>on</strong>diti<strong>on</strong>s in Multi-Anvil Apparatus, Canadian<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics 73 (1995) 273-286.<br />

[143] A. Jayaraman, Diam<strong>on</strong>d Anvil Cell <str<strong>on</strong>g>and</str<strong>on</strong>g> High-Pressure Physical Investigati<strong>on</strong>s,<br />

Reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern Physics 55 (1983) 65-108.<br />

[144] G.J. Piermarini <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Block, Ultrahigh Pressure Diam<strong>on</strong>d-Anvil Cell <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Several Semic<strong>on</strong>ductor Phase-Transiti<strong>on</strong> Pressures in Relati<strong>on</strong> to Fixed-Point<br />

Pressure Scale, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific Instruments 46 (1975) 973-979.<br />

[145] H.K. Mao, P.M. Bell, K.J. Dunn, R.M. Chrenko <str<strong>on</strong>g>and</str<strong>on</strong>g> R.C. Devries, Absolute<br />

Pressure Measurements <str<strong>on</strong>g>and</str<strong>on</strong>g> Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Diam<strong>on</strong>ds Subjected to Maximum<br />

Static Pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.3-1.7 Mbar, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific Instruments 50 (1979)<br />

1002-1009.<br />

[146] L. Merrill <str<strong>on</strong>g>and</str<strong>on</strong>g> W.A. Bassett, Miniature Diam<strong>on</strong>d Anvil Pressure Cell for Single-<br />

Crystal X-Ray-Diffracti<strong>on</strong> Studies, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific Instruments 45 (1974)<br />

290-294.<br />

[147] G. Huber, K. Syassen <str<strong>on</strong>g>and</str<strong>on</strong>g> W.B. Holzapfel, Pressure-Dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> 4f Levels in<br />

Europium Pentaphosphate up to 400-Kbar, Physical Review B 15 (1977) 5123-<br />

5128.<br />

[148] N. Dubrovinskaia <str<strong>on</strong>g>and</str<strong>on</strong>g> L. Dubrovinsky, Whole-cell heater for <strong>the</strong> diam<strong>on</strong>d anvil<br />

cell, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific Instruments 74 (2003) 3433-3437.<br />

[149] H.K. Mao, J. Xu <str<strong>on</strong>g>and</str<strong>on</strong>g> P.M. Bell, Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Ruby Pressure Gauge to 800-<br />

Kbar under Quasi-Hydrostatic C<strong>on</strong>diti<strong>on</strong>s, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical Research-<br />

Solid Earth <str<strong>on</strong>g>and</str<strong>on</strong>g> Planets 91 (1986) 4673-4676.<br />

[150] T. Watanuki, O. Shimomura, T. Yagi, T. K<strong>on</strong>do <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Isshiki, C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

laser-heated diam<strong>on</strong>d anvil cell system for in situ x-ray diffracti<strong>on</strong> study at<br />

SPring-8, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific Instruments 72 (2001) 1289-1292.<br />

[151] D. Andrault, G. Fiquet, T. Charpin <str<strong>on</strong>g>and</str<strong>on</strong>g> T. le Bihan, Structure analysis <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

stability field <str<strong>on</strong>g>of</str<strong>on</strong>g> beta-ir<strong>on</strong> at high P <str<strong>on</strong>g>and</str<strong>on</strong>g> T, American Mineralogist 85 (2000)<br />

364-371.<br />

[152] L.S. Dubrovinsky, P. Lazor, S.K. Saxena, P. Haggkvist, H.P. Weber, T. Le<br />

Bihan <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Hausermann, Study <str<strong>on</strong>g>of</str<strong>on</strong>g> laser heated ir<strong>on</strong> using third generati<strong>on</strong><br />

synchrotr<strong>on</strong> X-ray radiati<strong>on</strong> facility with imaging plate at high pressures,<br />

Physics <str<strong>on</strong>g>and</str<strong>on</strong>g> Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Minerals 26 (1999) 539-545.<br />

[153] G.Y. Shen, H.K. Mao, R.J. Hemley, T.S. Duffy <str<strong>on</strong>g>and</str<strong>on</strong>g> M.L. Rivers, Melting <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

crystal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> at high pressures <str<strong>on</strong>g>and</str<strong>on</strong>g> temperatures, Geophysical<br />

Research Letters 25 (1998) 373-376.<br />

110


Bibliography<br />

[154] G.Y. Shen, V.B. Prakapenka, P.J. Eng, M.L. Rivers <str<strong>on</strong>g>and</str<strong>on</strong>g> S.R. Sutt<strong>on</strong>, Facilities<br />

for high-pressure research with <strong>the</strong> diam<strong>on</strong>d anvil cell at GSECARS, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Synchrotr<strong>on</strong> Radiati<strong>on</strong> 12 (2005) 642-649.<br />

[155] D. McKie <str<strong>on</strong>g>and</str<strong>on</strong>g> C. McKie, Essentials <str<strong>on</strong>g>of</str<strong>on</strong>g> Crystallography (Crystalline Solids Vol<br />

1), Blackwell Science Ltd. (1986).<br />

[156] B.H. Toby, EXPGUI, a graphical user interface for GSAS, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Crystallography 34 (2001) 210-213.<br />

[157] A.C. Lars<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> R.B. V<strong>on</strong> Dreele, Los Alamos Nati<strong>on</strong>al Laboratory Report<br />

LAUR (2000) 86-748.<br />

[158] A. Hammersley, Computer program Fit2D, ESRF, Grenoble (1998).<br />

[159] A. Coelho, TOPAS-Academic Users Manual, http:/pws.prserv.Net/Alan.Coelho/<br />

(2005).<br />

[160] A. Kern, A. Coelho <str<strong>on</strong>g>and</str<strong>on</strong>g> R.W. Cheary, in: E.J. Mettemeijer, P.Scard (eds):<br />

Diffracti<strong>on</strong> Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials, p. 17, Springer, Berlin<br />

(2004).<br />

[161] D. Balzar <str<strong>on</strong>g>and</str<strong>on</strong>g> H. Ledbetter, Voigt-Functi<strong>on</strong> Modeling in Fourier-Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Size</str<strong>on</strong>g>-Broadened <str<strong>on</strong>g>and</str<strong>on</strong>g> Strain-Broadened X-Ray-Diffracti<strong>on</strong> Peaks, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Applied Crystallography 26 (1993) 97-103.<br />

[162] D. Balzar, Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile Fitting <str<strong>on</strong>g>of</str<strong>on</strong>g> X-Ray-Diffracti<strong>on</strong> Lines <str<strong>on</strong>g>and</str<strong>on</strong>g> Fourier-Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Broadening, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Crystallography 25 (1992) 559-570.<br />

[163] N.C. Popa <str<strong>on</strong>g>and</str<strong>on</strong>g> D. Balzar, An analytical approximati<strong>on</strong> for a size-broadened<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile given by <strong>the</strong> lognormal <str<strong>on</strong>g>and</str<strong>on</strong>g> gamma distributi<strong>on</strong>s, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied<br />

Crystallography 35 (2002) 338-346.<br />

[164] V.L. Aksenov, A.Y. Kuzmin, J. Purans <str<strong>on</strong>g>and</str<strong>on</strong>g> S.I. Tyutyunnikov, EXAFS<br />

spectroscopy at synchrotr<strong>on</strong>-radiati<strong>on</strong> beams, Physics <str<strong>on</strong>g>of</str<strong>on</strong>g> Particles <str<strong>on</strong>g>and</str<strong>on</strong>g> Nuclei 32<br />

(2001) 675-707.<br />

[165] J.P. Itie, B. Couzinet, A. Polian, A.M. Flank <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Lagarde, Pressure-induced<br />

disappearance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> local rhombohedral distorti<strong>on</strong> in BaTiO3, Europhysics<br />

Letters 74 (2006) 706-711.<br />

[166] R.V. Vedrinskii, V.L. Kraizman, A.A. Novakovich, P.V. Demekhin <str<strong>on</strong>g>and</str<strong>on</strong>g> S.V.<br />

Urazhdin, Pre-edge fine structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> 3d atom K x-ray absorpti<strong>on</strong> spectra <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

quantitative atomic structure determinati<strong>on</strong>s for ferroelectric perovskite structure<br />

crystals, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics-C<strong>on</strong>densed Matter 10 (1998) 9561-9580.<br />

[167] F. Farges, G.E. Brown <str<strong>on</strong>g>and</str<strong>on</strong>g> J.J. Rehr, Ti K-edge XANES studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Ti<br />

coordinati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> disorder in oxide compounds: Comparis<strong>on</strong> between <strong>the</strong>ory <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

experiment, Physical Review B 56 (1997) 1809-1819.<br />

[168] A. Rogalev, J. Goul<strong>on</strong>, C. Goul<strong>on</strong>-Ginet <str<strong>on</strong>g>and</str<strong>on</strong>g> C. Malgrange, in Magnetism <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Synchrotr<strong>on</strong> Radiati<strong>on</strong>, E. Beaurepaire,F. Scheurer, G. Krill <str<strong>on</strong>g>and</str<strong>on</strong>g> J.-P. Kappler<br />

(eds.) Lectures Notes in Physics, Springer, New York 565 (2001).<br />

[169] C. Dhaussy, N. Jaouen, J.P. P. Itié, A. Rogalev, S. Marinel <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Veres,<br />

Synchrotr<strong>on</strong> Radiati<strong>on</strong> Instrumentati<strong>on</strong>, AIP C<strong>on</strong>f.Proc. No. 879, AIP, New<br />

York (2007) 1825.<br />

[170] A. Dadashev, M.P. Pasternak, G.K. Rozenberg <str<strong>on</strong>g>and</str<strong>on</strong>g> R.D. Taylor, Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

perforated diam<strong>on</strong>d anvils for very high-pressure research, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific<br />

Instruments 72 (2001) 2633-2637.<br />

[171] J.P. Itie, F. Baudelet, A. C<strong>on</strong>geduti, B. Couzinet, F. Farges <str<strong>on</strong>g>and</str<strong>on</strong>g> A. Polian, High<br />

pressure x-ray absorpti<strong>on</strong> spectroscopy at lower energy in <strong>the</strong> dispersive mode:<br />

111


Bibliography<br />

applicati<strong>on</strong> to Ce <str<strong>on</strong>g>and</str<strong>on</strong>g> FePO4, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics-C<strong>on</strong>densed Matter 17 (2005)<br />

S883-S888.<br />

[172] L. Nasdala, D.C. Smith, R. Kaindl <str<strong>on</strong>g>and</str<strong>on</strong>g> M.A. Ziemann, Raman spectroscopy:<br />

Analytical perspectives in mineralogical research. In Beran, A. <str<strong>on</strong>g>and</str<strong>on</strong>g> Libowitzky<br />

(eds.), EMU Notes in Mineralogy, Vol. 6: Spectroscopic Methods in<br />

Mineralogy. Eötvös University Press, Budapest. (2004) 281-243.<br />

[173] A.J. Jayaraman, Diam<strong>on</strong>d anvil cell <str<strong>on</strong>g>and</str<strong>on</strong>g> high-pressure physical investigati<strong>on</strong>s,<br />

Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Modern Physics 55 (1983) 65-85.<br />

[174] J.R. Ferraro, Vibrati<strong>on</strong>al spectroscopy at high external pressures- <str<strong>on</strong>g>The</str<strong>on</strong>g> diam<strong>on</strong>d<br />

anvil cell. New York, Academic Press (1984) 264.<br />

[175] J.C. Chervin, B. Canny, M. Gauthier <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Pruzan, Micro-Raman at Variable<br />

Low-Temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> Very High-Pressure, Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Scientific Instruments 64<br />

(1993) 203-206.<br />

[176] A. Putnis, Introducti<strong>on</strong> to Mineral Sciences. Cambridge University press,<br />

Cambridge. (1992).<br />

[177] S.J.B. Reed, Electr<strong>on</strong> microprobe analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> scanning electr<strong>on</strong> microscopy in<br />

geology. Cambridge University press, Cambridge. (1996).<br />

[178] J.T. Armstr<strong>on</strong>g, Citzaf - a Package <str<strong>on</strong>g>of</str<strong>on</strong>g> Correcti<strong>on</strong> Programs for <strong>the</strong> Quantitative<br />

Electr<strong>on</strong> Microbeam X-Ray-Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Thick Polished Materials, Thin-Films,<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Particles, Microbeam Analysis 4 (1995) 177-200.<br />

[179] R.F. Egert<strong>on</strong>, Electr<strong>on</strong> energy-loss spectroscopy in <strong>the</strong> electr<strong>on</strong> miscroscope.<br />

Plenum press, New York. (1996).<br />

[180] D.B. Williams <str<strong>on</strong>g>and</str<strong>on</strong>g> C.B. Carter, Transmissi<strong>on</strong> electr<strong>on</strong> microscopy - IV<br />

Spectroscopy. Plenum press., New York (1996) 637-729.<br />

[181] R. Wirth, Focused i<strong>on</strong> beam (FIB): Applicati<strong>on</strong>s in micro- <str<strong>on</strong>g>and</str<strong>on</strong>g> nanoanalysis in<br />

geosciences <str<strong>on</strong>g>and</str<strong>on</strong>g> applied mineralogy, Praktische Metallographie-Practical<br />

Metallography 42 (2005) 188-205.<br />

[182] J. Hafner, Atomic-scale computati<strong>on</strong>al materials science, Acta Materialia 48<br />

(2000) 71-92.<br />

[183] G. Kresse <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Hafner, Ab-Initio Molecular-Dynamics for Open-Shell<br />

Transiti<strong>on</strong>-Metals, Physical Review B 48 (1993) 13115-13118.<br />

[184] S.H. Wei, H. Krakauer <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Weinert, Linearized Augmented-Plane-Wave<br />

Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> Electr<strong>on</strong>ic-Structure <str<strong>on</strong>g>and</str<strong>on</strong>g> Total Energy <str<strong>on</strong>g>of</str<strong>on</strong>g> Tungsten, Physical<br />

Review B 32 (1985) 7792-7797.<br />

[185] P. Blaha, K. Schwarz, P. Dufek <str<strong>on</strong>g>and</str<strong>on</strong>g> J. Luitz, Wien97, Vienna University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Technology (1990).<br />

[186] P. Blaha, K. Schwarz, P. Sorantin <str<strong>on</strong>g>and</str<strong>on</strong>g> S.B. Trickey, Full-Potential, Linearized<br />

Augmented Plane-Wave Programs for Crystalline Systems, Computer Physics<br />

Communicati<strong>on</strong>s 59 (1990) 399-415.<br />

[187] J.P. Perdew, K. Burke <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Ernzerh<str<strong>on</strong>g>of</str<strong>on</strong>g>, Generalized gradient approximati<strong>on</strong><br />

made simple, Physical Review Letters 77 (1996) 3865-3868.<br />

[188] Z.G. Wu <str<strong>on</strong>g>and</str<strong>on</strong>g> R.E. Cohen, More accurate generalized gradient approximati<strong>on</strong> for<br />

solids, Physical Review B 73 (2006).<br />

[189] H.J. M<strong>on</strong>khorst <str<strong>on</strong>g>and</str<strong>on</strong>g> J.D. Pack, Special Points for Brillouin-Z<strong>on</strong>e Integrati<strong>on</strong>s,<br />

Physical Review B 13 (1976) 5188-5192.<br />

[190] F. Birch, Finite Elastic Strain <str<strong>on</strong>g>of</str<strong>on</strong>g> Cubic Crystals, Physical Review, 1947, pp.<br />

809-824.<br />

112


Bibliography<br />

[191] S. Ananta, R. Tipak<strong>on</strong>titikul <str<strong>on</strong>g>and</str<strong>on</strong>g> T. Tunkasiri, Syn<strong>the</strong>sis, formati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> zirc<strong>on</strong>ium titanate (ZT) powders, Materials Letters 57 (2003)<br />

2637-2642.<br />

[192] M. Daturi, A. Crem<strong>on</strong>a, F. Milella, G. Busca <str<strong>on</strong>g>and</str<strong>on</strong>g> E. Vogna, Characterisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

zirc<strong>on</strong>ia-titania powders prepared by coprecipitati<strong>on</strong>, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> European<br />

Ceramic Society 18 (1998) 1079-1087.<br />

[193] I.C. Cosentino, E.N.S. Muccillo, R. Muccillo <str<strong>on</strong>g>and</str<strong>on</strong>g> F.M. Vichi, Low-temperature<br />

sol-gel syn<strong>the</strong>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> single-phase <str<strong>on</strong>g>Zr</str<strong>on</strong>g>TiO4 nanoparticles, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sol-Gel<br />

Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 37 (2006) 31-37.<br />

[194] A. Bianco, M. Paci <str<strong>on</strong>g>and</str<strong>on</strong>g> R. Freer, Zirc<strong>on</strong>ium titanate: from polymeric precursors<br />

to bulk ceramics, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> European Ceramic Society 18 (1998) 1235-<br />

1243.<br />

[195] E.L. Sham, M.A.G. Ar<str<strong>on</strong>g>and</str<strong>on</strong>g>a, E.M. Farfan-Torres, J.C. Gottifredi, M. Martinez-<br />

Lara <str<strong>on</strong>g>and</str<strong>on</strong>g> S. Bruque, Zirc<strong>on</strong>ium titanate from sol-gel syn<strong>the</strong>sis: <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal<br />

decompositi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> quantitative phase analysis, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Solid State Chemistry<br />

139 (1998) 225-232.<br />

[196] P. Lobmann, Soluble powders as precursors for TiO2 thin films, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sol-<br />

Gel Science <str<strong>on</strong>g>and</str<strong>on</strong>g> Technology 33 (2005) 275-282.<br />

[197] M. Bockmeyer <str<strong>on</strong>g>and</str<strong>on</strong>g> P. Lobmann, Densificati<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> microstructural evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

TiO2 films prepared by sol-gel processing, Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials 18 (2006)<br />

4478-4485.<br />

[198] S.A. Borkar <str<strong>on</strong>g>and</str<strong>on</strong>g> S.R. Dharwadkar, Temperatures <str<strong>on</strong>g>and</str<strong>on</strong>g> kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase to rutile<br />

transformati<strong>on</strong> in doped TiO2 heated in microwave field, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal<br />

Analysis <str<strong>on</strong>g>and</str<strong>on</strong>g> Calorimetry 78 (2004) 761-767.<br />

[199] M. Yashima, T. Hirose, S. Katano, Y. Suzuki, M. Kakihana <str<strong>on</strong>g>and</str<strong>on</strong>g> M. Yoshimura,<br />

Structural-Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>O2-CeO2 Solid-Soluti<strong>on</strong>s around <strong>the</strong> M<strong>on</strong>oclinic-<br />

Tetrag<strong>on</strong>al Phase-Boundary, Physical Review B 51 (1995) 8018-8025.<br />

[200] R.E. Newnham, Crystal Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>TiO4, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic<br />

Society 50 (1967) 216-&.<br />

[201] W. G<strong>on</strong>schorek, X-Ray Charge-Density Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Rutile (TiO2), Zeitschrift Fur<br />

Kristallographie 160 (1982) 187-203.<br />

[202] C.J. Howard, E.H. Kisi <str<strong>on</strong>g>and</str<strong>on</strong>g> O. Ohtaka, Crystal-Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 Orthorhombic<br />

Zirc<strong>on</strong>ias, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> American Ceramic Society 74 (1991) 2321-2323.<br />

[203] E. Holbig, L. Dubrovinsky, G. Steinle-Neumann, V. Prakapenka <str<strong>on</strong>g>and</str<strong>on</strong>g> V. Swamy,<br />

Compressi<strong>on</strong> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Zr</str<strong>on</strong>g>-doped nanoanatase, Zeitschrift Fur Naturforschung<br />

Secti<strong>on</strong> B-a Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Sciences 61 (2006) 1577-1585.<br />

[204] Y. Li, T.J. White <str<strong>on</strong>g>and</str<strong>on</strong>g> S.H. Lim, Low-temperature syn<strong>the</strong>sis <str<strong>on</strong>g>and</str<strong>on</strong>g> microstructural<br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> titania nano-particles, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Solid State Chemistry 177 (2004)<br />

1372-1381.<br />

[205] V. Swamy, D. Menzies, B.C. Muddle, A. Kuznetsov, L.S. Dubrovinsky, Q. Dai<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> V. Dmitriev, N<strong>on</strong>linear size dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> anatase TiO2 lattice parameters,<br />

Applied Physics Letters 88 (2006).<br />

[206] T. Yagi, Experimental-Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>The</str<strong>on</strong>g>rmal-Expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Several Alkali-<br />

Halides at High-Pressures, Transacti<strong>on</strong>s-American Geophysical Uni<strong>on</strong> 58 (1977)<br />

492-492.<br />

[207] V. Swamy, A. Kuznetsov, L.S. Dubrovinsky, P.F. McMillan, V.B. Prakapenka,<br />

G. Shen <str<strong>on</strong>g>and</str<strong>on</strong>g> B.C. Muddle, <str<strong>on</strong>g>Size</str<strong>on</strong>g>-dependent pressure-induced amorphizati<strong>on</strong> in<br />

nanoscale TiO2, Physical Review Letters 96 (2006) 135702.<br />

113


Bibliography<br />

[208] G.S. Li, L.P. Li, J. Boerio-Goates <str<strong>on</strong>g>and</str<strong>on</strong>g> B.F. Woodfield, Grain-growth kinetics <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

rutile TiO2 nanocrystals under hydro<strong>the</strong>rmal c<strong>on</strong>diti<strong>on</strong>s, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Materials<br />

Research 18 (2003) 2664-2669.<br />

[209] R.M. Hazen <str<strong>on</strong>g>and</str<strong>on</strong>g> L.W. Finger, Bulk Moduli <str<strong>on</strong>g>and</str<strong>on</strong>g> High-Pressure Crystal-<br />

Structures <str<strong>on</strong>g>of</str<strong>on</strong>g> Rutile-Type Compounds, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics <str<strong>on</strong>g>and</str<strong>on</strong>g> Chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Solids 42 (1981) 143-151.<br />

[210] L.C. Ming <str<strong>on</strong>g>and</str<strong>on</strong>g> M.H. Manghnani, Iso<strong>the</strong>rmal Compressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 (Rutile)<br />

under Hydrostatic-Pressure to 106-Kbar, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Geophysical Research 84<br />

(1979) 4777-4779.<br />

[211] X.L. Wu, D.W. Meng <str<strong>on</strong>g>and</str<strong>on</strong>g> Y.J. Han, alpha-PbO2-type nanophase <str<strong>on</strong>g>of</str<strong>on</strong>g> TiO2 from<br />

coesite-bearing eclogite in <strong>the</strong> Dabie Mountains, China, American Mineralogist<br />

90 (2005) 1458-1461.<br />

[212] Z.W. Wang <str<strong>on</strong>g>and</str<strong>on</strong>g> S.K. Saxena, Raman spectroscopic study <strong>on</strong> pressure-induced<br />

amorphizati<strong>on</strong> in nanocrystalline anatase (TiO2), Solid State Communicati<strong>on</strong>s<br />

118 (2001) 75-78.<br />

[213] Z.W. Wang, S.K. Saxena, V. Pischedda, H.P. Liermann <str<strong>on</strong>g>and</str<strong>on</strong>g> C.S. Zha, X-ray<br />

diffracti<strong>on</strong> study <strong>on</strong> pressure-induced phase transformati<strong>on</strong>s in nanocrystalline<br />

anatase/rutile (TiO2), Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics-C<strong>on</strong>densed Matter 13 (2001) 8317-<br />

8323.<br />

[214] G.R. Hearne, J. Zhao, A.M. Dawe, V. Pischedda, M. Maaza, M.K. Nieuwoudt,<br />

P. Kibasomba, O. Nemraoui, J.D. Comins <str<strong>on</strong>g>and</str<strong>on</strong>g> M.J. Witcomb, <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> grain<br />

size <strong>on</strong> structural transiti<strong>on</strong>s in anatase TiO2: A Raman spectroscopy study at<br />

high pressure, Physical Review B 70 (2004).<br />

114


Erklärung<br />

Erklärung<br />

Hiermit erkläre ich, daß ich die vorliegende Arbeit selbständig verfaßt und keine<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>eren als die v<strong>on</strong> mir angegeben Quellen und Hilfsmittel benutzt habe.<br />

Ferner erkläre ich, daß ich nicht <str<strong>on</strong>g>and</str<strong>on</strong>g>erweitig mit oder ohne Erfolg versucht habe,<br />

eine Dissertati<strong>on</strong> einzureichen. Ich habe keine gleichartige Doktorprüfung an einer<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g>eren Hochschule endgültig nicht best<str<strong>on</strong>g>and</str<strong>on</strong>g>en.<br />

Bayreuth, den 19. 12. 2007<br />

Eva Holbig<br />

115

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!