17.06.2013 Views

Photogrammetry of the optic disc in glaucoma and ocular ...

Photogrammetry of the optic disc in glaucoma and ocular ...

Photogrammetry of the optic disc in glaucoma and ocular ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

R<br />

<strong>Photogrammetry</strong> <strong>of</strong> <strong>the</strong> <strong>optic</strong> <strong>disc</strong> <strong>in</strong><br />

<strong>glaucoma</strong> <strong>and</strong> <strong>ocular</strong> hypertension with<br />

simultaneous stereo photography*<br />

Chris A. Johnson, John L. Keltner, Marijane A. Krohn, <strong>and</strong> Gerald L. Portney<br />

Stereophotogrammetric evaluations <strong>of</strong> <strong>the</strong> <strong>optic</strong> cup were performed for normal, <strong>ocular</strong> hypertensive,<br />

<strong>and</strong> <strong>glaucoma</strong>tous eyes. Average volume, area, <strong>and</strong> depth measurements were<br />

progressively larger from normal to <strong>ocular</strong> hypertensive to <strong>glaucoma</strong>tous eyes, although <strong>the</strong><br />

distributions <strong>of</strong> <strong>in</strong>dividual values exhibited considerable overlap among <strong>the</strong> three groups.<br />

Similar results were obta<strong>in</strong>ed for volume, area, <strong>and</strong> depth asymmetry between each pair <strong>of</strong><br />

eyes. None <strong>of</strong> <strong>the</strong>se measurements was able to dist<strong>in</strong>guish accurately between normal <strong>and</strong><br />

<strong>glaucoma</strong>tous <strong>optic</strong> cups. However, normal eyes showed a high correlation (r = +0.85) between<br />

area <strong>and</strong> depth <strong>of</strong> <strong>the</strong> <strong>optic</strong> cup, whereas this area/depth relationship was reduced <strong>in</strong><br />

<strong>ocular</strong> hypertensives (r = +0.63) <strong>and</strong> completely broke down for <strong>glaucoma</strong>tous eyes<br />

(r = +0.04). Approximately 89% <strong>of</strong> <strong>the</strong> <strong>glaucoma</strong>tous eyes <strong>and</strong> 47% <strong>of</strong> <strong>the</strong> <strong>ocular</strong> hypertensive<br />

eyes were beyond <strong>the</strong> range <strong>of</strong> normal area/depth correlation values. These f<strong>in</strong>d<strong>in</strong>gs represent<br />

an improvement over most previous attempts to quantitatively differentiate between normal<br />

<strong>and</strong> <strong>glaucoma</strong>tous eyes on <strong>the</strong> basis <strong>of</strong> <strong>optic</strong> <strong>disc</strong> measurements alone, <strong>and</strong> support <strong>the</strong> hypo<strong>the</strong>sis<br />

that <strong>optic</strong> <strong>disc</strong> damage usually precedes visual field loss <strong>in</strong> <strong>glaucoma</strong>. With fur<strong>the</strong>r technical<br />

ref<strong>in</strong>ements such as computer image process<strong>in</strong>g, stereophotogrammetry <strong>of</strong> <strong>the</strong> <strong>optic</strong> cup may<br />

become a valuable differential diagnostic technique for <strong>glaucoma</strong>.<br />

Key words: <strong>glaucoma</strong>, <strong>ocular</strong> hypertension, stereophotogrammetry, <strong>optic</strong> <strong>disc</strong><br />

evaluation, <strong>glaucoma</strong>tous <strong>optic</strong> <strong>disc</strong> cupp<strong>in</strong>g<br />

ecent studies have shown that both ste-<br />

1-16 16 20<br />

reo <strong>and</strong> nonstereo " photogrammetric<br />

From <strong>the</strong> Department <strong>of</strong> Ophthalmology (C. A. J.,<br />

M. A. K., <strong>and</strong> G. L. P.) <strong>and</strong> <strong>the</strong> Departments <strong>of</strong> Ophthalmology,<br />

Neurology, <strong>and</strong> Neurological Surgery<br />

(J. L. K.), School <strong>of</strong> Medic<strong>in</strong>e, University <strong>of</strong> California,<br />

Davis.<br />

Supported <strong>in</strong> part by National Eye Institute Research<br />

grant EY-01841 (JLK) <strong>and</strong> National Eye Institute<br />

Academic Investigator Award K07-EY00095 (CAJ).<br />

Submitted for publication July 24, 1978.<br />

Repr<strong>in</strong>t requests: Chris A. Johnson, Ph.D., Department<br />

<strong>of</strong> Ophthalmology, University <strong>of</strong> California School <strong>of</strong><br />

Medic<strong>in</strong>e, Davis, Calif. 95616.<br />

This paper is dedicated to <strong>the</strong> memory <strong>of</strong> Gerald L.<br />

Portney, M.D., who died on May 23, 1977. The present<br />

<strong>in</strong>vestigation represents a cont<strong>in</strong>uation <strong>of</strong> his work<br />

on photogrammetric analysis <strong>of</strong> <strong>the</strong> <strong>optic</strong> <strong>disc</strong> as an<br />

objective diagnostic procedure for <strong>glaucoma</strong>.<br />

process<strong>in</strong>g <strong>of</strong> fundus photographs can produce<br />

accurate measurements <strong>of</strong> <strong>optic</strong> cup topography.<br />

S<strong>in</strong>ce this technique provides an<br />

objective, quantitative evaluation <strong>of</strong> <strong>the</strong> <strong>optic</strong><br />

nerve head, it represents a potentially important<br />

diagnostic tool for <strong>glaucoma</strong> <strong>and</strong> o<strong>the</strong>r<br />

<strong>optic</strong> nerve diseases.<br />

Several <strong>in</strong>vestigators 1 " 3 ' 17 have reported<br />

volume, area, <strong>and</strong> depth characteristics <strong>of</strong> <strong>the</strong><br />

<strong>optic</strong> cup <strong>in</strong> normal populations, based upon<br />

photogrammetric analysis. Their results <strong>in</strong>dicate<br />

that <strong>in</strong> normal subjects, <strong>the</strong>se <strong>optic</strong> cup<br />

measurements are highly symmetrical between<br />

<strong>the</strong> two eyes. Portney 2 ' 3 <strong>and</strong> Holm et<br />

al. 17 found that <strong>the</strong> average volume, area, <strong>and</strong><br />

depth <strong>of</strong> <strong>the</strong> <strong>optic</strong> cup are larger <strong>in</strong> <strong>glaucoma</strong>tous<br />

eyes than <strong>in</strong> normal eyes. However,<br />

<strong>the</strong> distributions <strong>of</strong> <strong>in</strong>dividual values exhibit<br />

1252 0146-0404/79/121252 +12$01.20/0 © 1979 Assoc. for Res. <strong>in</strong> Vis. <strong>and</strong> Ophthal., Inc.


Volume 18<br />

Number 12<br />

Stereophotogrammetry <strong>of</strong> <strong>optic</strong> <strong>disc</strong> 1253<br />

Fig. 1. Schematic representation <strong>of</strong> <strong>the</strong> revised static-k<strong>in</strong>etic visual field test procedure, consist<strong>in</strong>g<br />

<strong>of</strong> 2 k<strong>in</strong>etic isopters beyond 30° <strong>and</strong> static perimetry along 10 meridians with<strong>in</strong> <strong>the</strong><br />

central 30°.<br />

considerable overlap between <strong>the</strong> normal<br />

<strong>and</strong> <strong>glaucoma</strong> populations, <strong>the</strong>reby limit<strong>in</strong>g<br />

<strong>the</strong> diagnostic efficacy <strong>of</strong> <strong>the</strong>se measurements.<br />

Comparison <strong>of</strong> <strong>optic</strong> cup volumes <strong>in</strong><br />

unilateral <strong>and</strong> bilateral <strong>glaucoma</strong> patients revealed<br />

significant asymmetry between eyes,<br />

<strong>in</strong> contrast to <strong>the</strong> results for normal subjects.<br />

Portney 2 ' 3 concluded that <strong>optic</strong> cup volume<br />

asymmetry between eyes was <strong>the</strong> most sensitive<br />

photogrammetric measurement for differentiat<strong>in</strong>g<br />

normal subjects from <strong>glaucoma</strong><br />

patients.<br />

The purpose <strong>of</strong> <strong>the</strong> present <strong>in</strong>vestigation<br />

was to ref<strong>in</strong>e exist<strong>in</strong>g photogrammetric methods<br />

<strong>of</strong> evaluat<strong>in</strong>g <strong>the</strong> <strong>optic</strong> cup <strong>and</strong> <strong>the</strong>reby to<br />

<strong>in</strong>crease <strong>the</strong> diagnostic utility <strong>of</strong> this technique<br />

for <strong>glaucoma</strong>. To enhance <strong>the</strong> early detection<br />

<strong>of</strong> <strong>glaucoma</strong>tous damage, particular<br />

attention was directed toward patients at<br />

high risk (elevated <strong>in</strong>tra<strong>ocular</strong> pressure with<br />

no demonstrable visual field loss) <strong>and</strong> pa-<br />

tients with early <strong>glaucoma</strong>tous visual field<br />

defects.<br />

Materials <strong>and</strong> methods<br />

All participants <strong>in</strong> <strong>the</strong> study received a complete<br />

eye exam<strong>in</strong>ation, <strong>in</strong>clud<strong>in</strong>g refraction, Goldmann<br />

applanarion tonometry, ophthalmoscopy,<br />

biomicroscopy, stereo <strong>disc</strong> photography, <strong>and</strong> k<strong>in</strong>etic<br />

<strong>and</strong> static perimetry. Patients were excluded<br />

if good quality stereo <strong>disc</strong> photographs could not<br />

be obta<strong>in</strong>ed or if <strong>the</strong>y were unable to perform reliably<br />

on visual field test<strong>in</strong>g. One hundred sixtyfour<br />

eyes <strong>of</strong> 84 patients were selected for photogrammetric<br />

evaluation accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g<br />

criteria: (1) average <strong>in</strong>tra<strong>ocular</strong> pressures less than<br />

20 mm Hg with normal <strong>optic</strong> <strong>disc</strong>s <strong>and</strong> visual fields<br />

(normals, N = 40 eyes), (2) average <strong>in</strong>tra<strong>ocular</strong><br />

pressures greater than 25 mm Hg with normal visual<br />

fields (<strong>ocular</strong> hypertensives, N = 106 eyes),<br />

(3) early <strong>glaucoma</strong>tous <strong>optic</strong> <strong>disc</strong> cupp<strong>in</strong>g with<br />

early visual field defects (<strong>glaucoma</strong>, N = 18 eyes).<br />

Follow<strong>in</strong>g this <strong>in</strong>itial classification, all stereo


1254 Johnson et al.<br />

-700 -MO -500 -HOD -300 -200 -100<br />

-400 -300 -200 -100 0 100 200 300 100 500 600<br />

T RXrS FOB 90 DEGREE PLRNf<br />

Invest. Ophthalmol. Visual Sci.<br />

December 1979<br />

Fig. 2. Contour map <strong>and</strong> cross-sectional plots <strong>of</strong> a representative <strong>glaucoma</strong>tous <strong>optic</strong> <strong>disc</strong>.


Volume 18<br />

Nutnlxr 12 Stereophotogrammetry <strong>of</strong> <strong>optic</strong> <strong>disc</strong> 1255<br />

<strong>disc</strong> photographs were manually processed by a<br />

photogrammetric eng<strong>in</strong>eer accord<strong>in</strong>g to st<strong>and</strong>ard<br />

techniques. 21 The photogrammetry data were<br />

converted to digital form <strong>and</strong> analyzed by computer<br />

to determ<strong>in</strong>e depth, area, volume, <strong>and</strong><br />

o<strong>the</strong>r pert<strong>in</strong>ent geometric measurements <strong>of</strong> <strong>the</strong><br />

<strong>optic</strong> cup.<br />

Visual field test<strong>in</strong>g. A comb<strong>in</strong>ation <strong>of</strong> extensive<br />

static <strong>and</strong> k<strong>in</strong>etic perimetry was used to evaluate<br />

visual fields. K<strong>in</strong>etic perimetry (with ei<strong>the</strong>r <strong>the</strong><br />

Goldmann or Tub<strong>in</strong>gen perimeters) consisted <strong>of</strong> at<br />

least 2 isopters beyond 30° radius, 3 isopters<br />

with<strong>in</strong> 30° radius, <strong>and</strong> numerous spot checks between<br />

isopters with<strong>in</strong> <strong>the</strong> central 40° radius, as<br />

previously described by Portney <strong>and</strong> Krohn. 22<br />

Static perimetry (with <strong>the</strong> Tub<strong>in</strong>gen perimeter)<br />

consisted <strong>of</strong> threshold determ<strong>in</strong>ations along <strong>the</strong><br />

45°, 135°, 225°, <strong>and</strong> 315° meridians <strong>in</strong> 1° <strong>in</strong>tervals<br />

out to 20° radius <strong>and</strong> 2° <strong>in</strong>tervals between 20° <strong>and</strong><br />

30° radius. Additional static perimetry was performed<br />

along both radial (meridian) <strong>and</strong> circular<br />

paths which <strong>in</strong>tersected <strong>the</strong> length <strong>and</strong> width <strong>of</strong><br />

visual field defects plotted by k<strong>in</strong>etic perimetry.<br />

Approximately two thirds <strong>of</strong> <strong>the</strong> eyes were evaluated<br />

with this procedure, which required about 1<br />

hr per eye. The rema<strong>in</strong><strong>in</strong>g one third <strong>of</strong> <strong>the</strong> eyes<br />

were tested accord<strong>in</strong>g to <strong>the</strong> method described<br />

below.<br />

In view <strong>of</strong> recent f<strong>in</strong>d<strong>in</strong>gs 22 which show that<br />

static perimetry is more sensitive <strong>and</strong> reliable than<br />

k<strong>in</strong>etic perimetry for detection <strong>of</strong> early <strong>glaucoma</strong>tous<br />

visual field defects, 42 eyes were tested with<br />

<strong>the</strong> revised procedure illustrated <strong>in</strong> Fig. 1 (shown<br />

for a right eye). This visual field exam<strong>in</strong>ation consisted<br />

<strong>of</strong> at least 2 isopters beyond 30° radius (k<strong>in</strong>etic<br />

test<strong>in</strong>g) <strong>and</strong> static perimetry along four<br />

meridians (45°, 135°, 225°, 315°) <strong>in</strong> 2° <strong>in</strong>tervals <strong>and</strong><br />

six <strong>in</strong>termediate meridians <strong>in</strong> 2.5° <strong>in</strong>tervals across<br />

<strong>the</strong> central 30° radius <strong>of</strong> <strong>the</strong> visual field. Additional<br />

circular <strong>and</strong> radial (meridian) static perimetry was<br />

performed when it was necessary to fur<strong>the</strong>r def<strong>in</strong>e<br />

specific portions <strong>of</strong> <strong>the</strong> visual field. All determ<strong>in</strong>ations<br />

were conducted on <strong>the</strong> Tub<strong>in</strong>gen perimeter<br />

<strong>and</strong> required approximately 45 to 50 m<strong>in</strong> per eye.<br />

This revised procedure thus provided <strong>the</strong> dual advantages<br />

<strong>of</strong> greater time efficiency <strong>and</strong> more effective<br />

detection <strong>of</strong> early <strong>glaucoma</strong>tous visual field<br />

defects.<br />

Specific criteria were established to def<strong>in</strong>e <strong>the</strong><br />

presence or absence <strong>of</strong> visual field defects, based<br />

upon extensive previous experience <strong>and</strong> exist<strong>in</strong>g<br />

guidel<strong>in</strong>es developed by o<strong>the</strong>r <strong>in</strong>vestigators. 23 ' 24<br />

Accord<strong>in</strong>g to our st<strong>and</strong>ards, areas <strong>of</strong> visual field<br />

loss had to be at least (1) 5° by 5° <strong>in</strong> size <strong>and</strong> 0.5 log<br />

unit <strong>of</strong> lum<strong>in</strong>ance (apostilbs) deep or (2) 3° by 3° <strong>in</strong><br />

60-<br />

50-<br />

.10 .30 .50 .70 .90 1.10<br />

OPTIC CUP VOLUME (mm 3 )<br />

NORMAL n = 40 eyes<br />

OCULAR HYPERTENSION<br />

n = 106 eyes<br />

GLAUCOMA n= 18 eyes<br />

Fig. 3. Frequency distributions <strong>of</strong> <strong>optic</strong> cup volume<br />

for each <strong>of</strong> <strong>the</strong> three patient groups.<br />

size <strong>and</strong> 0.7 log unit <strong>of</strong> lum<strong>in</strong>ance (apostilbs) deep.<br />

These values are generally beyond <strong>the</strong> range <strong>of</strong><br />

response variability <strong>in</strong> normal subjects. Visual<br />

field defects were also verified on at least two<br />

static pr<strong>of</strong>iles from adjacent meridians, or a comb<strong>in</strong>ation<br />

<strong>of</strong> one meridian <strong>and</strong> one circular static<br />

pr<strong>of</strong>ile. Additional test<strong>in</strong>g with <strong>the</strong>' Fieldmaster<br />

automated perimeter was conducted as a confirmatory<br />

procedure. 25 Patients with questionable or<br />

borderl<strong>in</strong>e results were tested a second time.<br />

To m<strong>in</strong>imize <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> blur on perimetric<br />

determ<strong>in</strong>ations with<strong>in</strong> <strong>the</strong> central 30° radius, patients<br />

were given an appropriate refractive correction<br />

for distance plus an added near correction<br />

for age. Accuracy <strong>of</strong> this correction was checked<br />

at <strong>the</strong> perimeter bowl by subjective refraction<br />

techniques. 26 Fixation was carefully monitored<br />

throughout each test<strong>in</strong>g session, <strong>and</strong> response<br />

variability was determ<strong>in</strong>ed at several visual field<br />

locations to ensure that threshold variations were<br />

less than 0.4 log unit <strong>of</strong> lum<strong>in</strong>ance (apostilbs) dur<strong>in</strong>g<br />

perimetric test<strong>in</strong>g.<br />

Classification <strong>of</strong> <strong>optic</strong> <strong>disc</strong>s. Optic <strong>disc</strong>s were<br />

classified accord<strong>in</strong>g to whe<strong>the</strong>r <strong>the</strong>y appeared to<br />

be normal or exhibited early <strong>glaucoma</strong>tous damage.<br />

Portney's cone-cyl<strong>in</strong>der-hemisphere category<br />

system 2 " 6 (based upon Elschnigs types I to IV<br />

categories) was used to classify normal <strong>optic</strong> <strong>disc</strong>s.<br />

Judgments <strong>of</strong> <strong>glaucoma</strong>tous damage to <strong>the</strong> <strong>optic</strong>


1256 Johnson et al.<br />

.4 .8 1.2 1.6 2.0 2.4<br />

OPTIC CUP ORIFICE AREA (mm 2 )<br />

NORMAL n = 40eyes<br />

OCULAR HYPERTENSION<br />

n= 106 eyes<br />

GLAUCOMA n= 18 eyes<br />

Fig. 4. Frequency distributions <strong>of</strong> <strong>optic</strong> cup area<br />

for each <strong>of</strong> <strong>the</strong> three patient groups.<br />

<strong>disc</strong> were based upon Kronfeld's criteria <strong>of</strong> central<br />

deep atrophy, mottled or "moth-eaten" appearance<br />

<strong>of</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> <strong>optic</strong> cup, upward or<br />

downward extension, marg<strong>in</strong>al excavation <strong>and</strong><br />

narrow nerve rims. 2 " 6 ' 27> 28 O<strong>the</strong>r <strong>in</strong>dicators <strong>of</strong><br />

<strong>glaucoma</strong>tous <strong>optic</strong> cupp<strong>in</strong>g 29 " 36 (e.g., vertical<br />

ovality <strong>of</strong> <strong>the</strong> cup, notch<strong>in</strong>g <strong>of</strong> <strong>the</strong> nerve fiber rim,<br />

asymmetry <strong>of</strong> <strong>the</strong> cup between eyes, pallor <strong>of</strong> <strong>the</strong><br />

<strong>optic</strong> cup) were also employed to dist<strong>in</strong>guish between<br />

normal <strong>and</strong> <strong>glaucoma</strong>tous <strong>optic</strong> cups. As<br />

with <strong>the</strong> evaluation <strong>of</strong> visual field results, conservative<br />

criteria were used for classify<strong>in</strong>g normal vs.<br />

<strong>glaucoma</strong>tous <strong>optic</strong> cups. The <strong>in</strong>vestigators agreed<br />

upon nearly all <strong>optic</strong> <strong>disc</strong> classifications, <strong>and</strong> repeated<br />

evaluations at periodic <strong>in</strong>tervals showed a<br />

high degree <strong>of</strong> consistency.<br />

Stereophotography <strong>and</strong> photogrammetric analysis.<br />

Simultaneous stereo <strong>disc</strong> photographs were<br />

obta<strong>in</strong>ed with <strong>the</strong> Donaldson stereo fundus camera.<br />

37 S<strong>in</strong>ce Kodak photomicrography film (ASA<br />

16) produced fundus photographs which were underexposed<br />

for most eyes, it became necessary to<br />

use Kodachrome 25 film (ASA 25). Frisen 38 has<br />

reported that <strong>the</strong> resolution characteristics <strong>of</strong><br />

Kodak photomicrography film <strong>and</strong> Kodachrome 25<br />

are approximately equivalent for lum<strong>in</strong>ance conditions<br />

similar to those employed <strong>in</strong> this study.<br />

2.8<br />

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0<br />

OPTIC CUP DEPTH (mm)<br />

Invest. Ophthalmol. Visual Sci.<br />

December 1979<br />

NORMAL n = 40 eyes<br />

OCULAR HYPERTENSION<br />

n = IO6 eyes<br />

GLAUCOMA n= 18 eyes<br />

Fig. 5. Frequency distributions <strong>of</strong> <strong>optic</strong> cup depth<br />

for each <strong>of</strong> <strong>the</strong> three patient groups.<br />

Prelim<strong>in</strong>ary <strong>in</strong>vestigations revealed that photogrammetric<br />

measurements performed on both<br />

types <strong>of</strong> film produced comparable results. 39<br />

Several <strong>of</strong> <strong>the</strong> <strong>optic</strong>al specifications provided<br />

with our Donaldson stereo fundus camera were <strong>in</strong><br />

error. The stereo base (reported as 5.75 mm <strong>in</strong> <strong>the</strong><br />

specifications provided with <strong>the</strong> camera) was<br />

found to be 2.87 mm by divid<strong>in</strong>g <strong>the</strong> center-tocenter<br />

distance <strong>of</strong> <strong>the</strong> photographic plate by <strong>the</strong><br />

magnification <strong>of</strong> <strong>the</strong> camera's objective lens (2x).<br />

In addition <strong>the</strong> 3.25X <strong>and</strong> 4.25X magnification<br />

sett<strong>in</strong>gs were calculated to be 2.69X <strong>and</strong> 3.22X,<br />

respectively. This was determ<strong>in</strong>ed by photograph<strong>in</strong>g<br />

a model eye conta<strong>in</strong><strong>in</strong>g a calibrated l<strong>in</strong>e grat<strong>in</strong>g<br />

<strong>and</strong> calculat<strong>in</strong>g <strong>the</strong> ratio <strong>of</strong> image size to object<br />

size. With <strong>the</strong>se revised values, photogrammetric<br />

measurements <strong>of</strong> Donaldson stereo photographs<br />

were consistent with similar determ<strong>in</strong>ations performed<br />

on Zeiss stereo photographs (with <strong>the</strong><br />

Allen rotary prism) <strong>of</strong> <strong>the</strong> same <strong>optic</strong> <strong>disc</strong>.<br />

Each pair <strong>of</strong> stereo <strong>disc</strong> photographs was processed<br />

by a photogrammetric eng<strong>in</strong>eer us<strong>in</strong>g a<br />

Wild A-10 photogrammetric plott<strong>in</strong>g <strong>in</strong>strument<br />

(magnification, 6.55X; stereo base, 200 mm).<br />

Previous studies 6 have reported that <strong>the</strong> variability<br />

<strong>of</strong> this procedure (us<strong>in</strong>g simultaneous stereo<br />

photographs) is approximately 10%. Digital x, y,


Volume 18<br />

Number 12<br />

Table I. Optic cup volume, area, <strong>and</strong> depth measurements <strong>in</strong> normal,<br />

<strong>ocular</strong> hypertensive, <strong>and</strong> <strong>glaucoma</strong>tous eyes<br />

Volume (mm 3 ):<br />

Mean<br />

S.D.<br />

Range<br />

Area (mm 2 ):<br />

Mean<br />

S.D.<br />

Range<br />

Depth (mm):<br />

Mean<br />

S.D.<br />

Range<br />

Normal<br />

(N = 40 eyes)<br />

0.13<br />

0.13<br />

0.001-0.53<br />

0.65<br />

0.37<br />

0.01-1.33<br />

0.34<br />

0.20<br />

0.01-0.79<br />

<strong>and</strong> z coord<strong>in</strong>ates were established for 400 to 700<br />

data po<strong>in</strong>ts on each <strong>optic</strong> <strong>disc</strong> (accord<strong>in</strong>g to an arbitrary<br />

"count" scale used by <strong>the</strong> photogrammetric<br />

plott<strong>in</strong>g device) <strong>and</strong> <strong>the</strong>n transferred to punch<br />

cards for subsequent computer process<strong>in</strong>g. Horizontal<br />

(x) <strong>and</strong> vertical (y) counts were converted to<br />

millimeters accord<strong>in</strong>g to <strong>the</strong> photogrammetric<br />

plotter-to-camera <strong>and</strong> camera-to-eye magnification<br />

ratios, <strong>and</strong> depth (z) counts (<strong>in</strong> arbitrary units)<br />

were converted to millimeters by <strong>the</strong> follow<strong>in</strong>g<br />

equation:<br />

AZ = R b,) • AP<br />

where AZ is <strong>the</strong> change <strong>in</strong> depth (<strong>in</strong> mm); Mi is<br />

<strong>the</strong> magnification <strong>of</strong> <strong>the</strong> Donaldson fundus camera<br />

(2.69x or 3.22x); b! is <strong>the</strong> stereo base <strong>of</strong> <strong>the</strong><br />

Donaldson fundus camera (2.87 mm); M2 is <strong>the</strong><br />

magnification <strong>of</strong> <strong>the</strong> Wild A-10 photogrammetric<br />

plotter (6.55X); b2 is <strong>the</strong> stereo base <strong>of</strong> <strong>the</strong> Wild<br />

A-10 photogrammetric plotter (200 mm); R is <strong>the</strong><br />

ratio <strong>of</strong> <strong>the</strong> magnification <strong>and</strong> stereo base <strong>of</strong> <strong>the</strong><br />

Donaldson stereo fundus camera to <strong>the</strong> magnification<br />

<strong>and</strong> stereo base <strong>of</strong> <strong>the</strong> Wild A-10 photogrammetric<br />

plotter, i.e., R = (M, • b,)/(M2 • b2); fe is<br />

<strong>the</strong> distance between <strong>the</strong> posterior pr<strong>in</strong>cipal po<strong>in</strong>t<br />

<strong>of</strong> <strong>the</strong> eye <strong>and</strong> <strong>the</strong> fundus (17.2 mm); <strong>and</strong> AP is<br />

<strong>the</strong> horizontal parallaxes measured on <strong>the</strong> photographs.<br />

Volume, area, <strong>and</strong> depth measurements were<br />

<strong>the</strong>n calculated by <strong>the</strong> computer. A significant<br />

problem <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>optic</strong> cup volume is specify<strong>in</strong>g<br />

<strong>the</strong> top <strong>of</strong> <strong>the</strong> <strong>optic</strong> cup. S<strong>in</strong>ce <strong>the</strong> rim <strong>of</strong> <strong>the</strong><br />

<strong>optic</strong> cup has considerable topographic variation<br />

about its circumference, volume measurements<br />

may show substantial variation as a result <strong>of</strong> different<br />

criteria employed to establish <strong>the</strong> top <strong>of</strong> <strong>the</strong><br />

<strong>optic</strong> cup. Comparisons among different <strong>optic</strong><br />

Stereophotogrammetry <strong>of</strong> <strong>optic</strong> <strong>disc</strong> 1257<br />

Ocular hypertensive<br />

(N = 106 eyes)<br />

0.20<br />

0.16<br />

0.007-0.74<br />

0.98<br />

0.47<br />

0.16-2.10<br />

0.43<br />

0.19<br />

0.11-0.92<br />

Glaucoma<br />

(N = 18 eyes)<br />

0.41<br />

0.24<br />

0.14-1.15<br />

1.58<br />

0.52<br />

0.70-2.61<br />

0.55<br />

0.14<br />

0.36-0.88<br />

cups exacerbate <strong>the</strong> problem because <strong>of</strong> marked<br />

variation <strong>in</strong> <strong>the</strong> overall configuration <strong>of</strong> <strong>the</strong> cup<br />

from one eye to ano<strong>the</strong>r. In <strong>the</strong> present study, <strong>the</strong><br />

top <strong>of</strong> <strong>the</strong> <strong>optic</strong> cup was def<strong>in</strong>ed by <strong>the</strong> lowest<br />

po<strong>in</strong>t on <strong>the</strong> rim <strong>of</strong> <strong>the</strong> cup orifice. This po<strong>in</strong>t was<br />

determ<strong>in</strong>ed by a computer algorithm which began<br />

at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> <strong>optic</strong> cup (greatest depth, or<br />

largest z value) <strong>and</strong> checked <strong>the</strong> x, y coord<strong>in</strong>ates<br />

around <strong>the</strong> cup for successively smaller depth values.<br />

A "spill-over" at <strong>the</strong> lowest po<strong>in</strong>t <strong>of</strong> <strong>the</strong> <strong>optic</strong><br />

cup rim was <strong>the</strong>reby def<strong>in</strong>ed by an abrupt, extremely<br />

large change <strong>in</strong> x, y coord<strong>in</strong>ates at some<br />

position along <strong>the</strong> cup orifice. This permitted a<br />

st<strong>and</strong>ard, objective criterion to be applied to all<br />

<strong>optic</strong> cups undergo<strong>in</strong>g photogrammetric analysis.<br />

An illustrative example <strong>of</strong> a contour map <strong>and</strong><br />

cross-sectional graphical plots derived from photogrammetric<br />

process<strong>in</strong>g <strong>of</strong> stereo <strong>disc</strong> photographs<br />

is shown <strong>in</strong> Fig. 2.<br />

Results<br />

Figs. 3 to 5 present <strong>the</strong> frequency distributions<br />

<strong>of</strong> volume, area, <strong>and</strong> depth <strong>of</strong> <strong>the</strong><br />

<strong>optic</strong> cup, respectively, for normal, <strong>ocular</strong><br />

hypertensive, <strong>and</strong> <strong>glaucoma</strong>tous eyes. Each<br />

<strong>of</strong> <strong>the</strong>se <strong>optic</strong> cup measurements exhibited<br />

differences <strong>in</strong> <strong>the</strong> distribution <strong>of</strong> values<br />

among various patient groups. Small <strong>optic</strong><br />

cup volumes, areas, <strong>and</strong> depths occurred<br />

more frequently <strong>in</strong> normals, followed by <strong>ocular</strong><br />

hypertensives. Patients with <strong>glaucoma</strong>tous<br />

<strong>optic</strong> <strong>disc</strong> cupp<strong>in</strong>g <strong>and</strong> visual field loss<br />

showed a higher percentage <strong>of</strong> <strong>optic</strong> cups<br />

with large volume, area, <strong>and</strong> depth values. A<br />

chi-square analysis <strong>of</strong> <strong>the</strong>se data revealed


1258 Johnson et al.<br />

60<br />

50-<br />

40-<br />

30-<br />

20-<br />

10-<br />

0<br />

60-1<br />

50-<br />

40-<br />

30-<br />

20-<br />

10o<br />

I ii<br />

NORMAL (Bilateral)<br />

n= 20 Patients<br />

OCULAR HYPERTENSION<br />

(Bilateral)<br />

n= 45 Patients<br />

50-<br />

GLAUCOMA<br />

(Unilateral or Bilateral)<br />

40-<br />

30-<br />

20-<br />

10-<br />

0<br />

n = 15 Patients<br />

.10 .20 .30 40 .50<br />

OPTIC CUP VOLUME ASYMMETRY BETWEEN EYES (mm 3 )<br />

Fig. 6. Frequency distributions <strong>of</strong> volume asymmetry<br />

between fellow eyes for each <strong>of</strong> <strong>the</strong> three<br />

patient groups.<br />

NORMAL (Bilateral)<br />

n= 20 Patients<br />

OCULAR HYPERTENSION<br />

(Bilateral)<br />

n = 45 Patients<br />

GLAUCOMA<br />

(Unilateral or Bilateral)<br />

n=l5 Patients<br />

.2 .4 .6 .8 1.0 1.2 1.4<br />

OPTIC CUP AREA ASYMMETRY BETWEEN EYES (mm 2 )<br />

Fig. 7. Frequency distributions for area asymmetry<br />

between fellow eyes for each <strong>of</strong> <strong>the</strong> three<br />

patient groups.<br />

50-i<br />

40-<br />

30-<br />

20-<br />

10-<br />

0<br />

Invest. Ophthalmol. Visual Sci.<br />

December 1979<br />

NORMAL (Bilateral)<br />

n = 20 Patients<br />

l i i i r<br />

OCULAR HYPERTENSION<br />

(Bilateral)<br />

n= 45 Patients<br />

GLAUCOMA<br />

(Unilateral or Bilateral)<br />

n= 15 Patients<br />

.10 .20 .30 .40 .50 .60<br />

OPTIC CUP DEPTH ASYMMETRY BETWEEN EYES (mm)<br />

Fig. 8. Frequency distributions for depth asymmetry<br />

between fellow eyes for each <strong>of</strong> <strong>the</strong> three<br />

patient groups.<br />

statistically significant differences <strong>in</strong> <strong>the</strong> distribution<br />

<strong>of</strong> volume, area, <strong>and</strong> depth <strong>of</strong> <strong>the</strong><br />

<strong>optic</strong> cup among <strong>the</strong> three patient groups,<br />

(X 2 =115.9, p < 0.0001 for volume; x 2 =<br />

158.0, p < 0.0001 for area; x 2 = 110.3, p <<br />

0.0001 for depth). Despite <strong>the</strong>se highly significant<br />

differences, <strong>the</strong> extensive overlap<br />

among <strong>the</strong> three groups greatly restricts <strong>the</strong><br />

differential diagnostic utility <strong>of</strong> <strong>the</strong>se measurements<br />

for <strong>in</strong>dividual patients. Means,<br />

st<strong>and</strong>ard deviations, <strong>and</strong> ranges <strong>of</strong> <strong>optic</strong> cup<br />

volume, area, <strong>and</strong> depth for <strong>the</strong> three patient<br />

groups are presented <strong>in</strong> Table I.<br />

The asymmetry <strong>of</strong> <strong>optic</strong> cup volume area,<br />

<strong>and</strong> depth between eyes was determ<strong>in</strong>ed for<br />

patients with (1) bilaterally normal eyes<br />

(N = 20 patients), (2) bilaterally <strong>ocular</strong> hypertensive<br />

eyes (N = 45 patients), <strong>and</strong> (3)<br />

early <strong>glaucoma</strong>tous <strong>optic</strong> <strong>disc</strong> cupp<strong>in</strong>g <strong>and</strong> visual<br />

field defects <strong>in</strong> ei<strong>the</strong>r one or both eyes<br />

(N = 15 patients). Frequency distributions<br />

<strong>of</strong> volume, area, <strong>and</strong> depth asymmetry between<br />

fellow eyes are presented <strong>in</strong> Figs. 6 to<br />

8 for <strong>the</strong> three patient groups. Each <strong>of</strong> <strong>the</strong><br />

<strong>optic</strong> cup measurements <strong>in</strong> <strong>glaucoma</strong> patients<br />

showed (on <strong>the</strong> average) greater asymmetry


Volume 18<br />

Number 12<br />

CJ<br />

E<br />

E<br />

: ARE<br />

FICI<br />

ORI<br />

Q.<br />

^D<br />

CJ<br />

t i<br />

)lld(<br />

2.8-<br />

2.4-<br />

2.0-<br />

1.6-<br />

1.2-<br />

.8 •<br />

.4-<br />

NORMAL<br />

n=40 eyes<br />

r = +.854(p


1260 Johnson et al.<br />

2.8<br />

2.4<br />

O |.2-<br />

.4-<br />

' •*. ••<br />

OCULAR HYPERTENSION 28.<br />

Normal Optic Disc<br />

n=70 eyes<br />

r=+.65l (p


Volume 18<br />

Number 12<br />

means <strong>of</strong> accurately differentiat<strong>in</strong>g between<br />

normal <strong>and</strong> <strong>glaucoma</strong>tous <strong>optic</strong> cups for potential<br />

cl<strong>in</strong>ical diagnostic use? To evaluate<br />

this question, we determ<strong>in</strong>ed <strong>the</strong> percentage<br />

<strong>of</strong> <strong>ocular</strong> hypertensive <strong>and</strong> <strong>glaucoma</strong>tous<br />

eyes that exceeded <strong>the</strong> range <strong>of</strong> values found<br />

<strong>in</strong> normal eyes for each <strong>of</strong> <strong>the</strong> seven <strong>optic</strong><br />

cup measures (volume, area, depth, volume<br />

asymmetry, area asymmetry, depth asymmetry,<br />

<strong>and</strong> <strong>the</strong> area/depth relationship). The<br />

f<strong>in</strong>d<strong>in</strong>gs are presented <strong>in</strong> Table III.<br />

Depth <strong>and</strong> depth asymmetry between fellow<br />

eyes showed ra<strong>the</strong>r poor results, whereas<br />

volume, area, <strong>and</strong> volume <strong>and</strong> area asymmetry<br />

between fellow eyes produced somewhat<br />

better separation between <strong>the</strong> three<br />

groups. However, <strong>the</strong> area/depth relationship<br />

revealed <strong>the</strong> most impressive f<strong>in</strong>d<strong>in</strong>gs;<br />

89% <strong>of</strong> <strong>the</strong> <strong>glaucoma</strong>tous eyes <strong>and</strong> 47% <strong>of</strong> <strong>the</strong><br />

<strong>ocular</strong> hypertensive eyes were beyond <strong>the</strong><br />

range <strong>of</strong> area/depth values for normal <strong>optic</strong><br />

cups. It should be noted that <strong>the</strong> two <strong>glaucoma</strong>tous<br />

<strong>optic</strong> cups (11%) that fell with<strong>in</strong> <strong>the</strong><br />

range <strong>of</strong> normal area/depth values were from<br />

<strong>the</strong> same <strong>in</strong>dividual, who happened to be a<br />

high myope. Therefore our photogrammetric<br />

magnification factors, which are based upon<br />

Gullstr<strong>and</strong>'s reduced schematic eye, 45 <strong>in</strong>troduced<br />

errors that may have appreciably underestimated<br />

<strong>the</strong> overall dimensions <strong>of</strong> <strong>the</strong><br />

<strong>optic</strong> cup. Future evaluations that provide<br />

corrections for large refractive errors might<br />

produce even greater separation among normal,<br />

<strong>ocular</strong> hypertensive, <strong>and</strong> <strong>glaucoma</strong>tous<br />

eyes.<br />

There are at least two hypo<strong>the</strong>ses that may<br />

be proposed to account for <strong>the</strong> relationship<br />

between <strong>glaucoma</strong>tous damage <strong>and</strong> <strong>optic</strong> cup<br />

characteristics. (1) Large <strong>optic</strong> cups may generally<br />

be more susceptible to susta<strong>in</strong><strong>in</strong>g <strong>glaucoma</strong>tous<br />

damage. (2) Glaucomatous damage<br />

to <strong>the</strong> <strong>optic</strong> <strong>disc</strong> produced changes <strong>in</strong> <strong>the</strong> size<br />

<strong>and</strong> shape <strong>of</strong> <strong>the</strong> <strong>optic</strong> cup. The consistent,<br />

graduated <strong>in</strong>creases <strong>in</strong> <strong>optic</strong> cup measurements<br />

across <strong>the</strong> three patient groups <strong>in</strong> this<br />

study appear to support <strong>the</strong> second hypo<strong>the</strong>sis.<br />

In particular, <strong>the</strong> area/depth relationships<br />

presented <strong>in</strong> Figs. 9 <strong>and</strong> 10 are highly<br />

consistent with <strong>the</strong> second hypo<strong>the</strong>sis <strong>and</strong><br />

Stereophotogrammetry <strong>of</strong> <strong>optic</strong> <strong>disc</strong> 1261<br />

would be difficult to expla<strong>in</strong> solely on <strong>the</strong><br />

basis <strong>of</strong> large <strong>optic</strong> cups. Many previous <strong>in</strong>vestigators<br />

have reported that <strong>glaucoma</strong>tous<br />

damage to <strong>the</strong> <strong>optic</strong> cup usually precedes visual<br />

field loss. 8 ' 40 ' 41 Our current photogrammetric<br />

data generally support this <strong>in</strong>terpretation.<br />

The results <strong>of</strong> this study represent a significant<br />

improvement over most previous attempts<br />

to differentiate between normal <strong>and</strong><br />

<strong>glaucoma</strong>tous eyes on <strong>the</strong> basis <strong>of</strong> <strong>optic</strong> <strong>disc</strong><br />

evaluation alone, 2 " 6 ' 17< 33j 40 - 41 <strong>and</strong> at <strong>the</strong><br />

same time to avoid <strong>the</strong> problems <strong>and</strong> variability<br />

<strong>in</strong>troduced by methodologic differences<br />

<strong>in</strong> <strong>the</strong> measurement <strong>of</strong> cup/<strong>disc</strong> ratios.<br />

42 Recent multivariate analysis studies by<br />

Susanna <strong>and</strong> Drance 43 <strong>and</strong> Drance et al. 44<br />

exhibit detection rates which are comparable<br />

to our current photogrammetric results, although<br />

many <strong>of</strong> <strong>the</strong> statistical evaluations<br />

were performed on subjective cl<strong>in</strong>ical observations.<br />

Stereophotogrammetry <strong>of</strong>fers <strong>the</strong><br />

advantage <strong>of</strong> objective measurements <strong>of</strong> <strong>the</strong><br />

<strong>optic</strong> cup characteristics <strong>and</strong> may produce a<br />

higher degree <strong>of</strong> uniformity <strong>and</strong> st<strong>and</strong>ardization<br />

among different exam<strong>in</strong>ers. We feel that<br />

both stereophotogrammetric evaluations <strong>of</strong><br />

<strong>the</strong> <strong>optic</strong> cup <strong>and</strong> multivariate statistical<br />

analysis may be <strong>of</strong> potential value for cl<strong>in</strong>ical<br />

diagnostic purposes <strong>in</strong> <strong>glaucoma</strong>.<br />

We are <strong>in</strong>debted to Dr. V. Ralph Algazi <strong>and</strong> Mr.<br />

James Stewart from <strong>the</strong> Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g,<br />

University <strong>of</strong> California, Davis, for perform<strong>in</strong>g<br />

<strong>the</strong> computer process<strong>in</strong>g <strong>of</strong> photogrammetric data.<br />

REFERENCES<br />

1. Jonsas, C: Stereophotogrammetric techniques for<br />

measurements <strong>of</strong> <strong>the</strong> eye ground, Acta Ophthalmol.<br />

Suppl. 117, 1972.<br />

2. Portney, G.: Stereometric analysis <strong>of</strong> normal <strong>and</strong><br />

<strong>glaucoma</strong>tous <strong>optic</strong> <strong>disc</strong>s. In Herron, R.E., <strong>and</strong><br />

Karara, H.M., editors: Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Symposium<br />

<strong>of</strong> Commission V <strong>of</strong> <strong>the</strong> International Society<br />

for <strong>Photogrammetry</strong>, Falls Church, Va., 1974,<br />

American Society for <strong>Photogrammetry</strong>, pp. 226-233.<br />

3. Portney, G.: Photogrammetric analysis <strong>of</strong> volume<br />

asymmetry <strong>of</strong> <strong>the</strong> <strong>optic</strong> nerve head cup on normal,<br />

hypertensive <strong>and</strong> <strong>glaucoma</strong>tous eyes, Am. J. Ophthalmol.<br />

80:51, 1975.<br />

4. Portney, G.: Qualitative parameters <strong>of</strong> <strong>the</strong> normal<br />

<strong>optic</strong> nerve head, Am. J. Ophthalmol. 76:655, 1973.


1262 Johnson et al.<br />

5. Portney, G.: Photogrammetric categorical analysis<br />

<strong>of</strong> <strong>the</strong> <strong>optic</strong> nerve head, Trans. Am. Acad. Ophthalmol.<br />

Otolaryngol. 78:275, 1974.<br />

6. Portney, G.: Photogrammetric analysis <strong>of</strong> <strong>the</strong><br />

three-dimensionel geometry <strong>of</strong> normal <strong>and</strong> <strong>glaucoma</strong>tous<br />

<strong>optic</strong> cups, Trans. Am. Acad. Ophthalmol.<br />

Otolaryngol. 81:239, 1976.<br />

7. Dowman, I., <strong>and</strong> Elk<strong>in</strong>gton, A.: Photogrammetric<br />

measurements <strong>of</strong> <strong>the</strong> ret<strong>in</strong>a <strong>of</strong> <strong>the</strong> eye. In Herron,<br />

R.E., <strong>and</strong> Karara, H.M., editors: Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong><br />

Symposium <strong>of</strong> Commission V <strong>of</strong> <strong>the</strong> International<br />

Society for <strong>Photogrammetry</strong>, Falls Church, Va.,<br />

1974, American Society for <strong>Photogrammetry</strong>, pp.<br />

172-184.<br />

8. Saheb, N., Drance, S., <strong>and</strong> Nelson, A.: The use <strong>of</strong><br />

photogrammetry <strong>in</strong> evaluat<strong>in</strong>g <strong>the</strong> cup <strong>of</strong> <strong>the</strong> <strong>optic</strong><br />

nervehead for a study <strong>in</strong> chronic simple <strong>glaucoma</strong>,<br />

Can. J. Ophthalmol. 7:466, 1972.<br />

9. Schirmer, K., <strong>and</strong> Kratky, V.: <strong>Photogrammetry</strong> <strong>of</strong><br />

<strong>the</strong> <strong>optic</strong> <strong>disc</strong>, Can. J. Ophthalmol. 8:78, 1973.<br />

10. Schirmer, K.: Instamatic photogrammetry, Can. J.<br />

Ophthalmol. 9:81, 1974.<br />

11. Kottler, M., Rosenthal, R., <strong>and</strong> Falconer, D.:<br />

Analog vs. digital photogrammetry for <strong>optic</strong> cup<br />

analysis, INVEST. OPHTHALMOL. 15:651, 1976.<br />

12. Kottler, M., Rosenthal, R., <strong>and</strong> Falconer, D.: Digital<br />

photogrammetry <strong>of</strong> <strong>the</strong> <strong>optic</strong> nerve head, INVEST.<br />

OPHTHALMOL. 13:116, 1974.<br />

13. Rosenthal, R., Kottler, M., Donaldson, D., <strong>and</strong><br />

Falconer, D.: Comparative reproducibility <strong>of</strong> digital<br />

photogrammetric procedure utiliz<strong>in</strong>g three methods<br />

<strong>of</strong> stereophotography, INVEST. OPHTHALMOL. VI-<br />

SUAL SCI. 16:54, 1977.<br />

14. Falconer, D.: Digital stereophotogrammetry <strong>of</strong> <strong>the</strong><br />

<strong>ocular</strong> fundus, Appl. Optics 12:1388, 1973.<br />

15. Crock, G., <strong>and</strong> Parel, J.: Stereophotogrammetry <strong>of</strong><br />

fluoresce<strong>in</strong> angiographs <strong>in</strong> <strong>ocular</strong> biometrics, Med.<br />

J. Aust. 2:586, 1969.<br />

16. Krakau, C, <strong>and</strong> Torlegard, A.: Comparison between<br />

stero <strong>and</strong> slit image photogrammetric measurements<br />

<strong>of</strong> <strong>the</strong> <strong>optic</strong> <strong>disc</strong>. In Herron, R.E., <strong>and</strong><br />

Karara, H. editors: Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> Symposium<br />

<strong>of</strong> Commission V <strong>of</strong> <strong>the</strong> International Society for<br />

<strong>Photogrammetry</strong>, Falls Church, Va., 1974, American<br />

Society for <strong>Photogrammetry</strong>, pp. 185-195.<br />

17. Holm, O.C., Becker, B., Asseff, C, <strong>and</strong> Podos, S.:<br />

Volume <strong>of</strong> <strong>the</strong> <strong>optic</strong> <strong>disc</strong> cup, Am. J. Ophthalmol.<br />

73:876, 1972.<br />

18. Holm, O., <strong>and</strong> Krakau, C.: A photographic method<br />

for measur<strong>in</strong>g <strong>the</strong> volume <strong>of</strong> papillary excavations,<br />

Ann. Ophthalmol. 1:327, 1969-70.<br />

19. Schirmer, K.: Simplified photogrammetry <strong>of</strong> <strong>the</strong><br />

<strong>optic</strong> <strong>disc</strong>, Arch. Ophthalmol. 94:1997, 1976.<br />

20. Goldmann, H., <strong>and</strong> Lotmar, W.: Rapid detection <strong>of</strong><br />

changes <strong>in</strong> <strong>the</strong> <strong>optic</strong> <strong>disc</strong>: Stereo-chronoscopy, Albrecht<br />

Von Graefes Arch. Kl<strong>in</strong>. Exp. Ophthalmol.<br />

202:87, 1977.<br />

21. Thompson, M.: Manual <strong>of</strong> <strong>Photogrammetry</strong>, ed 3,<br />

Falls Church, Va., 1966, American Society for <strong>Photogrammetry</strong>.<br />

Invest. Ophthalmol. Visual Sci.<br />

December 1979<br />

22. Portney, G., <strong>and</strong> Krohn, M.: The limitations <strong>of</strong> k<strong>in</strong>etic<br />

perimetry <strong>in</strong> early scotoma detection, Trans.<br />

Am. Acad. Ophthalmol. Otolaryngol. 85:287, 1978.<br />

23. Armaly, M.: Ocular pressure <strong>and</strong> visual fields: a<br />

ten-year follow-up study, Arch. Ophthalmol. 81:25,<br />

1969.<br />

24. Drance, S., Fairclough, M., Butler, D., <strong>and</strong><br />

Kottler, M.: The importance <strong>of</strong> <strong>disc</strong> hemorrhage <strong>in</strong><br />

<strong>the</strong> prognosis <strong>of</strong> chronic open angle <strong>glaucoma</strong>, Arch.<br />

Ophthalmol. 95:226, 1977.<br />

25. Keltner, J.L., Johnson, C.A., <strong>and</strong> Balestrery, F.G.:<br />

Suprathreshold static perimetry: <strong>in</strong>itial cl<strong>in</strong>ical trials<br />

with <strong>the</strong> Fieldmaster automated perimeter, Arch.<br />

Ophthalmol. 97:260, 1979.<br />

26. Enoch, J.M., Lazarus, J., <strong>and</strong> Johnson, C.A.:<br />

Human psychophysical analysis <strong>of</strong> receptive fieldlike<br />

properties. I. A new transient-like visual response<br />

us<strong>in</strong>g a mov<strong>in</strong>g w<strong>in</strong>dmill (Werbl<strong>in</strong>-type)<br />

target, Sens. Processes 1:14, 1976.<br />

27. Kronfeld, P.: The early ophthalmoscopic diagnosis<br />

<strong>of</strong> <strong>glaucoma</strong>, J. Am. Optom. Assoc. 23:156, 1951.<br />

28. Kronfeld, P.: The <strong>optic</strong> nerve. In Symposium on<br />

Glaucoma, Transactions <strong>of</strong> <strong>the</strong> New Orleans Academy<br />

<strong>of</strong> Ophthalmology, St. Louis, 1967, The C. V.<br />

Mosby Co., pp. 62-73.<br />

29. Kirsch, R., <strong>and</strong> Anderson, D.: Identification <strong>of</strong> <strong>the</strong><br />

<strong>glaucoma</strong>tous <strong>disc</strong>, Trans. Am. Acad. Ophthalmol.<br />

Otolaryngol. 77:143, 1973.<br />

30. Kirsch, R., <strong>and</strong> Anderson, D.: Cl<strong>in</strong>ical recognition<br />

<strong>of</strong> <strong>glaucoma</strong>tous cupp<strong>in</strong>g, Am. J. Ophthalmol.<br />

75:442, 1973.<br />

31. Weisman, R., Asseff, C, Phelps, C, Podos, S., <strong>and</strong><br />

Becker, B.: Vertical elongation <strong>of</strong> <strong>the</strong> <strong>optic</strong> cup <strong>in</strong><br />

<strong>glaucoma</strong>, Trans. Am. Acad. Ophthalmol. Otolaryngol.<br />

77:157, 1973.<br />

32. Hitch<strong>in</strong>gs, R., <strong>and</strong> Spaeth, G.: The <strong>optic</strong> <strong>disc</strong> <strong>in</strong><br />

<strong>glaucoma</strong>. I. Classification, Br. J. Ophthalmol.<br />

60:778, 1976.<br />

33. Fishman, R.: Optic <strong>disc</strong> asymmetry: a sign <strong>of</strong> <strong>ocular</strong><br />

hypertension, Arch. Ophthalmol. 84:590, 1970.<br />

34. Shaffer, R., <strong>and</strong> Hea<strong>the</strong>r<strong>in</strong>gton, J.: The <strong>glaucoma</strong>tous<br />

<strong>disc</strong> <strong>in</strong> <strong>in</strong>fants: a suggested hypo<strong>the</strong>sis for <strong>disc</strong><br />

cupp<strong>in</strong>g, Trans. Am. Acad. Ophthalmol. Otolaryngol.<br />

73:929, 1969.<br />

35. Schwartz, B.: Cupp<strong>in</strong>g <strong>and</strong> pallor <strong>of</strong> <strong>the</strong> <strong>optic</strong> <strong>disc</strong>,<br />

Arch. Ophthalmol. 89:272, 1973.<br />

36. Schwartz, B., Re<strong>in</strong>ste<strong>in</strong>, N., <strong>and</strong> Lieberman, D.:<br />

Pallor <strong>of</strong> <strong>the</strong> <strong>optic</strong> <strong>disc</strong>, Arch. Ophthalmol. 89:278,<br />

1973.<br />

37. Donaldson, D.: A new camera for stereoscopic fundus<br />

photography, Arch. Ophthalmol. 73:253, 1965.<br />

38. Frisen, L.: Resolution at low contrast with a fundus<br />

camera. Comparison <strong>of</strong> various photographic films,<br />

INVEST. OPHTHALMOL. 12:865, 1973.<br />

39. Krohn, M.A., Keltner, J.L., <strong>and</strong> Johnson, C.A.:<br />

Comparison <strong>of</strong> photographic techniques <strong>and</strong> films<br />

used <strong>in</strong> stereophotogrammetry <strong>of</strong> <strong>the</strong> <strong>optic</strong> <strong>disc</strong>.<br />

Am. J. Ophthalmol. (<strong>in</strong> press).<br />

40. Armaly, M.: The <strong>optic</strong> cup <strong>in</strong> <strong>the</strong> normal eye. I. Cup<br />

width, depth, vessel displacement, <strong>ocular</strong> tension


Volume 18<br />

Number 12<br />

<strong>and</strong> outflow facility, Am. J. Ophthalmol. 68:401,<br />

1969.<br />

41. Armaly, M.: Optic cup <strong>in</strong> normal <strong>and</strong> <strong>glaucoma</strong>tous 44.<br />

eyes, INVEST. OPHTHALMOL. 9:425, 1970.<br />

42. Schwartz, J.T.: Methodologic differences <strong>and</strong> measurement<br />

<strong>of</strong> cup-<strong>disc</strong> ratio, Arch. Ophthalmol.<br />

94:1101, 1976. 45.<br />

43. Susanna, R., <strong>and</strong> Drance, S.M.: Use <strong>of</strong> <strong>disc</strong>rim<strong>in</strong>ant<br />

analysis. I. Prediction <strong>of</strong> visual field defects from<br />

Information for authors<br />

Stereophotogrammetry <strong>of</strong> <strong>optic</strong> <strong>disc</strong> 1263<br />

features <strong>of</strong> <strong>the</strong> <strong>glaucoma</strong> <strong>disc</strong>, Arch. Ophthalmol.<br />

96:1568, 1978.<br />

Drance, S.M., Schulzer, M., Douglas, G.R., <strong>and</strong><br />

Sweeney, V.P.: Use <strong>of</strong> <strong>disc</strong>rim<strong>in</strong>ant analysis. II.<br />

Identification <strong>of</strong> persons with <strong>glaucoma</strong>tous visual<br />

field defects, Arch. Ophthalmol. 96:1571, 1978.<br />

Helmholtz, H.: Treatise on Physiological Optics<br />

(J. P. C. Southall, editor), New York, 1962, Dover<br />

Publications, vol. I.<br />

Most <strong>of</strong> <strong>the</strong> provisions <strong>of</strong> <strong>the</strong> Copyright Act <strong>of</strong> 1976 became effective on January 1, 1978.<br />

Therefore, all manuscripts must be accompanied by <strong>the</strong> follow<strong>in</strong>g written statement,<br />

signed by one author: "The undersigned author transfers all copyright ownership <strong>of</strong> <strong>the</strong><br />

manuscript (title <strong>of</strong> article) to The Association for Research <strong>in</strong> Vision <strong>and</strong> Ophthalmology,<br />

Inc., <strong>in</strong> <strong>the</strong> event <strong>the</strong> work is published. The undersigned author warrants that <strong>the</strong> article<br />

is orig<strong>in</strong>al, is not under consideration by ano<strong>the</strong>r journal, <strong>and</strong> has not been previously<br />

published. I sign for <strong>and</strong> accept responsibility for releas<strong>in</strong>g this material on behalf <strong>of</strong> any<br />

<strong>and</strong> all co-authors." Authors will be consulted, when possible, regard<strong>in</strong>g republication <strong>of</strong><br />

<strong>the</strong>ir material.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!