References/Piśmiennictwo 1. Galen C, 1854a. The Movement of ...

References/Piśmiennictwo 1. Galen C, 1854a. The Movement of ...

References/Piśmiennictwo 1. Galen C, 1854a. The Movement of ...


You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.


1. Galen C, 1854a. The Movement of Muscles I. Daremberg (1854-1856). II:323.

2. Gerlach J. Von den Rückenmarke. In: Stricker S, editor. Handbuch der Lehre von den Geweben. Leipzig: Engelmann; 1871:665-93.

3. Golgi C. La rete nervosa diffusa degli organi centrali del sistema nervoso: suo significata fisiologico. Arch Ital Biol 1891;15:434-63.

4. Galvani L. De viribus electricitatis in motu musculari commentaris. Bononien Sci Art Instit Acad Comm 1791;7:363-418.

5. Du Bois-Reymond E. Untersuchungen über Thierische electricität. Berlin: Reimner; 1848.

6. von Helmholtz HLF. Vorlaufiger Bericht ueber die Fortpflanzungsgeschwindigkeit der Nervenreizung. Arch Anat Physiol Wiss Med


7. Valentin G. Über den Verlauf und die letzten Enden der Nerven. Nova Acta Physico-medica Academiae Caesareae Leopoldino-carolinae

naturae curiosorum 1836;18:51-240.

8. Emmert FC. Über die Endigungsweise der Nerven in den Muskeln nach eigenen Untersuchungen. Bern: Jenni CA; 1836:1-35.

9. Boeke J. Das anatomische Substrat der Verbindung zwischen Nerv und Muskel nach neueren Untersuchungen. Stuttgart: Verh Dtsch

Orthop Ges; 1934.

10. Doyere L. Memoire sur de les tardigrades. Ann Sci Nat Zool 1840;14:269-361.

11. Krause W. Über die Endigung der Muskelnerven. Z Rationelle Med 1863:18:136-60.

12. Vulpian EF. Lecons sur la Physiologie Generale et Comparee du Systeme Nerveux. Paris: Bailliere; 1866.

13. Kühne W. On the origin and the causation of vital movement. Proc R Soc Lond B 1888;4.

14. Kühne W. Nerv- und Muskelfaser (1869). In: Stricker S (ed) Handbuch der Lehre von den Geweben. Leipzig: Engelmann; 1871:147-69.

15. Langley JN. On the reaction of cells and of nerve endings to certain poisons, chiefly as regards the reaction of striated muscle to nicotine

and to curare. J Physiol 1905:33:374-413.

16. Hunt R, Taveau RM. On the physiological action of certain cholin derivatives and new methods for detecting cholin. Br Med J


17. Dale HH. The action of certain esters and ethers of choline and their relation to muscarine. J Pharmacol Exp Ther 1914:6:147-90.

18. Tello JF. Genesis de las terminaciounes nerviosas motrices y sensitivas. I. En el sistema locomotor de los vertebrados superiores. Madrid

Univ Lab Invest Biol Trabajos 1917:15:101-99.

19. Loewi O, Navratil E. Über humorale Übertragkarkeit der Herznervenwirkung: X. Mitteilung. U¨ ber das Schicksal des Vagustoff. Pflügers

Arch Gesamte Physiol 1926:214.

20. Marnay A, Nachmansohn D. Choline esterase in voluntary muscle. J Physiol 1938:92:34-47.

21. Eccles JC, O’Connor WJ. Action potentials evoked by indirect stimulation of curarized muscle. J Physiol 1938:94:9P-11P(4 vols).

22. Eccles JC, Katz B, Kuffler SW. Effect of eserine on neuromuscular transmission. J Neurophysiol 1942:5:211-21.

23. Couteaux R, Nachmansohn D. Changes of cholinesterase at end-plates of voluntary muscles following section of sciatic nerve. Proc Soc

Exp Biol 1940:43:177-81.

24. Mendel B, Rudney H. Cholinesterase. 3. Specific tests for true cholinesterase and pseudo-cholinesterase. Biochem J 1943;37:473-6.

25. Del Castillo J, Katz B. Quantal components of the end-plate potential. J Physiol 1954;124:560-73.

26. Del Castillo J, Katz B. Biochemical aspects of neuro-muscular transmission. Progr Biophys Biophys Chem 1956;6:122-70.

27. Del Castillo J, Katz B. On the localization of acetylcholine receptors. J Physiol 1955;128:157-81.

28. Huxley AF, Niedergerke R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature


29. Huxley H, Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature


30. Robertson J D. The ultrastructure of a reptilian myoneural junction. J Biophys Biochem Cytol 1956;2:381-94.

31. Birks R, Huxley HE, Katz B. The fine structure of the neuromuscular junction of the frog. J Physiol 1960;150:134-44.

32. Miledi R. Junctional and extrajunctional acetylcholine receptors in skeletal muscle fibres. J Physiol 1960;151:24-30.

33. Miledi R. The acetylcholine sensitivity of frog muscle fibres after complete or partial denervation. J Physiol 1960;151:1-23.

34. Couteaux R, Picot-Dechavassine M. Vesicules synaptiques et poches au niveau des ‘zones actives’ de la jonction neuromusculaire. Compt.

Rend. Acad Sci Ser D 1970;271:2346-9.

35. Bittner GD, Kennedy D. Quantitive aspects of transmitter release. J Cell Biol 1970;47:585-92.

36. Holtzman E, Freeman AR, Kashner LA. Stimulation-dependent alteration in peroxidase uptake at lobster neuromuscular junctions.

Science 1971;173:733-6.

37. Changeux JP. Kasai M, Huchet M, Meunier JC. Extraction from electric tissue of Electrophorus of a protein presenting several typical

properties characteristic of the physiological receptor of acetylcholine. C. R. Acad Sci Hebd Seances Acad Sci D 1970;270:2864-7.

38. Miledi R, Molinoff P, Potter LT. Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature 1971;229:554-7.

39. Katz B. Quantal mechanism of neural transmitter release. Science 1971;173:123-6.

40. Dryer F, Peper K, Akert K, Sandri C, Moor H. Ultrastructure of the ‘active zone’ in the frog neuromuscular junction. Brain Res



41. Noda M, Takahashi H, Tanabe T, Toyosato M, Furutani Y, Hirose T, et al. Primary structure of alpha-subunit precursor of Torpedo

californica acetylcholine receptor deduced from cDNA sequence. Nature 1982;299:793-7.

42. Merlie JP, Sanes JR. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibers. Nature 1985;317:66-8.

43. Südhof TC, Lottspeich F, Greengard P, Mehl E, Jahn R. Synaptophysin: A synaptic vesicle protein with four transmembrane regions and

a novel cytoplasmic domain. Science 1987;238:1142-4.

44. Perin MS, Fried VA, Mignery GA, Jahn R, Südhof TC. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory

region of protein kinase C. Nature 1990;45:260-3.

45. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, et al. Atomic structure of acetylcholinesterase from Torpedo californica:

a prototypic acetylcholine-binding protein. Science 1991;253:872-9.

46. The action potential. In Bear MF, Connors BW, Paradiso MA. Neuroscience. Exploring the brain. 2 nd edition Lippincott Williams &


47. Pumpkin DW, Reese TS, Llinas R. Are the presynaptic membrane particles calcium channels? Proc Batl Acad Sci USA 1981;78:7210-3.

48. Ahnert-Hilger G, Höltje M, Pahner I, Winter S, Brunk I. Regulation of vesicular neurotransmitter transporters. Rev Physiol Biochem

Pharmacol 2003;150:140-60.

49. Südhof TC. The synaptic vesicle cycle. Annu Rev Neurosci 2004;27:509-47.

50. Griffin JW, Thompson WJ. Biology and pathology of nonmyelinating Schwann cells. Glia 2008;56:1518-31.

51. Allen NJ, Barres BA. Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 2005;15:542-8.

52. Feng Z, Ko CP. Neuronal glia interactions at the vertebrate neuromuscular junction. Curr Opin Pharmacol 2007;7:316-24.

53. Cao G, Ko C-P. Schwann cell-derived factors modulate synaptic activities at developing neuromuscular synapses. J Neurosci


54. Colomar A, Robitaille R. Glial modulation of synaptic transmission at the neuromuscular junction. Glia 2004;47:284-9.

55. Smit AB, Brejc K, Syed N, Sixma TK. Structure and function of AChBP, homologue of the ligand-binding domain of the nicotinic

acetylcholine receptor. Ann NY Acad Sci 2003;998:81-92.

56. Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS, et al. A glia-derived acetylcholine-binding protein that modulates

synaptic transmission. Nature 2001;411:261-8.

57. Schoch S, Gundelfinger ED. Molecular organization of the presynaptic active zone. Cell Tissue Res 2006;326:379-91.

58. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ. The architecture of active zone material at the frog’s neuromuscular

junction. Nature 2001;409:479-84.

59. Walrond JP, Reese TS. Structure of axon terminals and active zones at synapses on lizard twitch and tonic muscle fibers. J Neurosci


60. Slater CR, Lyons PR, Walls TJ, Fawcett PR, Young C. Structure and function of neuromuscular junctions in the vastus lateralis of man.

A motor point biopsy study of two groups of patients. Brain 1992;115:451-78.

61. Katz B, Miledi R. Estimates of quantal content during chemical potentiation of transmitter release. Proc R Soc Lond 1979;205:369-78.

62. Couteaux R, Pecot-Dechavassine M. Synaptic vesicles and pouches at the level of “active zones” of the neuromuscular junction. C R

Acad Sci IV 1970;271:2346-9.

63. Landis DM, Hall AK, Weinstein LA, Reese TS. The organization of cytoplasm at the presynaptic active zone of a central nervous system

synapse. Neuron 1988;1:201-9.

64. Roos J, Kelly RB. The endocytic machinery in nerve terminals surrounds sites of exocytosis. Curr Biol 1999;9:1411-4.

65. Siksou L, Triller A, Marty S. An emerging view of presynaptic structure from electron microscopic studies. J Neurochem 2009;108:1336-42.

66. Cao YQ, Piedras-Renteria ES, Smith GB, Chen G, Harata NC, Tsien RW. Neuron 2004;43:387-400.

67. Nagwaney S, Harlow ML, Jung JH, Szule JA, Ress D, Xu J, et al. Macromolecular connections of active zone material to docked synaptic

vesicles and presynaptic membrane at neuromuscular junctions of mouse. J Comp Neurol 2009;513:457-68.

68. Juranek J, Mukherjee K, Rickmann M, Martens H, Calka J, Südhof TC, et al. Differential expression of active zone proteins in

neuromuscular junctions suggests functional diversification. Eur J Neurosci 2006;24:3043-52.

69. Liu G. Presynaptic control of quantal size: kinetic mechanisms and implications for synaptic transmission and plasticity. Curr Opin

Neurobiol 2003;13:324-31.

70. Hartzell HC, Kuffler SW, Yoshikami D. Post-synaptic potentiation: interaction between quanta of acetylcholine at the skeletal

neuromuscular synapse. J Physiol (Lond.) 1975;251:427-63.

71. Slater CR. Structural determinants of the reliability of synaptic transmission at the vertebrate neuromuscular junction. J Neurocytol


72. Van der Kloot W. Loading and recycling of synaptic vesicles in the Torpedo electric organ and the vertebrate neuromuscular junction.

Prog Neurobiol 2003;71:269-303.

73. Südhof TC. Synaptic vesicles: an organelle comes of age. Cell 2006;127:671-3.

74. Lang T, Jahn R. Core proteins of the secretory machinery. Handbook of Experimental Pharmacology 2008;184:107-27.

75. Becherer U, Rettig J. Vesicle pools, docking, priming and release. Cell Tissue Res 2006;326:393-407.

76. Elmqvist D, Hofmann WW, Kugelberg J, Quastel DM. An electrophysiological investigation of neuromuscular transmission in myasthenia

gravis. J Physiol 1964;174:417-34.


77. Gaffield MA, Rizzoli SO, Betz WJ. Mobility of synaptic vesicles in different pools in resting and stimulated frog motor nerve terminals.

Neuron 2006;51:317-25.

78. Kuromi H, Kidokoro Y. Exocytosis and endocytosis of synaptic vesicle and functional roles of vesicle pools: lessons from the Drosophila

neuromuscular junction. Neuroscientist 2005;11:138-47.

79. Levitan ES. Signaling for vesicle mobilization and synaptic plasticity. Mol Neurobiol 2008;37:39-43.

80. Malsam J, Kreye S, Söllner TH. Membrane fusion: SNAREs and regulation. Cell Mol Life Sci 2008;65:2814-32.

81. Parsons SM, Bahr BA, Rogers GA, Clarkson ED, Noremberg K, Hicks BW. Acetylcholine transporter-vesamicol receptor pharmacology

and structure. Prog Brain Res 1993;98:175-81.

82. Edwards RH. The neurotransmitter cycle and quantal size. Neuron 2007;55:835-58.

83. Maycox PR, Deckwerth T, Hell JW, Jahn R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional

reconstitution in proteoliposomes. J Biol Chem 1988;263:15423-8.

84. Inoue T, Wang Y, Jefferies K, Qi J, Hinton A, Forgac M. Structure and regulation of the V-ATPases. J Bioenerg Biomembr 2005;37:393-8.

85. Parsons SM. Transport mechanisms in acetylcholine and monoamine storage. FASEB J 2000;14:2423-34.

86. Naves LA, Van der Kloot W. Repetitive nerve stimulation decreases the acetylcholine content of quanta at the frog neuromuscular

junction. J Physiol 2001;532:637-47.

87. Ceccarelli B, Hurlbut WP. Vesicle hypothesis of the release of quanta of acetylcholine. Physiol Rev 1980;60:396-441.

88. Rizzoli SO, Betz WJ. Synaptic vesicle pools. Nat Rev Neurosci 2005;6:57-69.

89. Gracz LM, Wang W-C, Parsons SM. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport.

Biochemistry 1988;27:5268-74.

90. Wang X, Li Y, Engisch KL, Nakanishi ST, Dodson SE, Miller GW, Cope TC, Pinter MJ, Rich MM. Activity-dependent presynaptic

regulation of quantal size at the mammalian neuromuscular junction in vivo. J Neurosci 2005;25:343-51.

91. Jahn R, Lang T, Südhof TC. Membrane fusion. Cell 2003;112:519-33.

92. Chapman ER, Hanson PI, An S. Jahn R: Gas + regulates the interaction between synaptotagmin and syntaxin 1. J Biol Chem


93. Chen YA, Scheller RH. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol 2001;2:98-106.

94. Chen YA, Scales SJ, Scheller RH. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 2001;30:161-70.

95. Carr CM, Munson M. Tag team action at the synapse. EMBO Rep 2007;8:834-8.

96. Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. A protein assembly-disassembly pathway in vitro that may correspond

to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 1993;75:409-18.

97. Sheng ZH, Rettig J, Cook T, Catterall WA. Calcium-dependent interaction of N-type calcium channels with the synaptic core complex.

Nature 1996;379:451-4.

98. Lin RC, Scheller RH. Structural organization of the synaptic exocytosis core complex. Neuron 1997;19:1087-94.

99. Langosch D, Hofmann M, Ungermann C. The role of transmembrane domains in membrane fusion. Cell Mol Life Sci 2007;64:850-64.

100. Yoon TY, Shin YK. Progress in understanding the neuronal SNARE function and its regulation. Cell Mol Life Sci 2009;66:460-9.

101. Söllner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE. SNAP receptors implicated in

vesicle targeting and fusion. Nature 1993;362:310-24.

102. Rothman JE. Mechanisms of intracellular protein transport Nature 1994;372:55-63.

103. Rowley KL, Mantilla CB, Ermilov LG, Sieck GC. Synaptic vesicle distribution and release at rat diaphragm neuromuscular junctions. J

Neurophysiol 2007;98:478-87.

104. Royle SJ, Lagnado L. Endocytosis at the synaptic terminal. J Physiol 2003;553:345-55.

105. Richards DA, Guatimosim C, Betz WJ. Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals.

Neuron 2000;27:551-9.

106. Jung N, Haucke V. Clathrin-Mediated Endocytosis at Synapses. Traffic 2007;8:1129-36.

107. Kirchhausen, T. Clathrin. Annu Rev Biochem 2000;69:699-727.

108. Sweitzer, SM, Hinshaw JE. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 1998;93:1021-9.

109. Cao H, Orth JD, Chen J, Weller SG, Heuser JE, McNiven MA. Cortactin is a component of clathrin-coated pits and participates in

receptor-mediated endocytosis. Mol Cell Biol 2003;23:2162-70.

110. Heerssen H, Fetter RD, Davis GW. Clathrin dependence of synaptic-vesicle formation at the Drosophila neuromuscular junction. Curr

Biol 2008;18:401-9.

111. Zefirov AL, Abdrakhmanov MM, Mukhamedyarov MA, Grigoryev PN. The role of extracellular calcium in exo- and endocytosis of

synaptic vesicles at the frog motor nerve terminals. Neuroscience 2006;143:905-10.

112. Kavalali ET. Synaptic vesicle reuse and its implications. Neuroscientist 2006;12:57-66.

113. Richards DA, Guatimosim C, Rizzoli SO, Betz WJ. Synaptic vesicle pools at the frog neuromuscular junction. Neuron 2003;39:529-41.

114. Maycox PR, Link E, Reetz A, Morris SA, Jahn R. Clathrin-coated vesicles in nervous tissue are involved primarily in synaptic vesicle

recycling. J Cell Biol 1992;118:1379-88.

115. Sato K, Ernstrom GG, Watanabe S, Weimer RM, Chen CH, Sato M, et al. Differential requirements for clathrin in receptor-mediated

endocytosis and maintenance of synaptic vesicle pools. Proc Natl Acad Sci USA 2009;106: 1139-44.


116. An S, Zenisek D. Regulation of exocytosis in neurons and neuroendocrine cells. Curr Opin Neurobiol 2005;14:522-30.

117. Heuser JE, Reese TS. Structural changes after transmitter release at the frog neuromuscular junction. J Cell Biol 1981;88:564-80.

118. Miller TM, Heuser JE. Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. J Cell Biol 1984;98:685-98.

119. Jonsson M, Gurley D, Dabrowski M, Larsson O, Johnson EC, Eriksson LI. Distinct pharmacologic properties ofneuromuscular blocking

agents on human neuronal nicotinic acetylcholine receptors: a possible explanation for the train-of-four fade. Anesthesiology


120. Jonsson M, Dabrowski M, Gurley DA, et al. Activation and inhibition of human muscular and neuronal nicotinic acetylcholine receptors

by succinylcholine. Anesthesiology 2006;104:724-33.

121. Langer SZ. Presynaptic autoreceptors regulating transmitter release. Neurochem Int 2008;52:26-30.

122. Lindstrom JM. Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability

to pathology. Ann NY Acad Sci 2003;998:41-52.

123. Faria M, Oliveira L, Timoteo MA, Lobo MG, Correia-De-Sa´ P. Blockade of neuronal facilitatory nicotinic receptors containing alpha

3 beta 2 subunits contribute to tetanic fade in the rat isolated diaphragm. Synapse 2003;49:77-88.

124. Sieburth D, Ch’ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, et al. Systematic analysis of genes required for synapse structure and

function. Nature 2005;436:510-7.

125. Sanes J. The Basement Membrane/Basal Lamina of Skeletal Muscle. J Biol Chem 2003;278:12601-4.

126. Cohen MW, Hoffstrom BG, DeSimone DW. Active zones on motor nerve terminals contain alpha 3beta 1 integrin. J Neurosci 2000;


127. Pavlov I, Lauri S, Taira T, Rauvala H. The role of ECM molecules in activity-dependent synaptic development and plasticity. Birth Defects

Res C Embryo Today 2004;72:12-24.

128. Van Vactor D, Wall DP, Johnson KG. Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr Opin Neurobiol


129. Patton BL. Basal lamina and the organization of neuromuscular synapses. J Neurocytol 2003;32:883-903.

130. Yurchenco PD, O’Rear JJ. Basal lamina assembly. Curr. Opin. Cell. Biol. 1994;6:674-681.

131. Foster RF, Thompson JM, Kaufman SJ. A laminin substrate promotes myogenesis in rat skeletal muscle cultures: analysis of replication

and development using antidesmin and anti-BrdUrd monoclonal antibodies. Dev Biol 1987;122:11-20.

132. Timpl R, Brown JC. Supramolecular assembly of basement membranes. Bioessays1996;18:123-32.

133. McMahan UJ, Sanes JR, Marshall LM. Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature


134. Zimmerman G, Soreq H. Termination and beyond: acetylcholinesterase as a modulator of synaptic transmission. Cell Tissue Res


135. Aldunate R, Casar JC, Brandan E, Inestrosa NC. Structural and functional organization of synaptic acetylcholinesterase. Brain Research

Brain Research Reviews 2004;47:96-104.

136. Rotundo RL, Gomez AM, Fernandez-Valle C, Randall WR. Allelic variants of acetylcholinesterase: genetic evidence that all

acetylcholinesterase forms in avian nerves and muscles are encoded by a single gene. Proc Natl Acad Sci USA 1988;85:7805-9.

137. Meshorer E, Soreq H. Virtues and woes of AChE alternative splicing in stress–related neuropathologies. Trends Neurosci 2006;29:216-24.

138. Massoulié J. The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 2002;11:130-43.

139. Krejci E, Thomine S, Boschetti N, Legay C, Sketelj J, Massoulié J. The mammalian gene of acetylcholinesterase-associated collagen. J

Biol Chem 1997;272:22840-7.

140. Deprez P, Inestrosa NC, Krejci E. Two different heparin-binding domains in the triple-helical domain of ColQ, the collagen tail subunit

of synaptic acetylcholinesterase. J Biol Chem 2003;278:23233-42.

141. Arikawa-Hirasawa E, Rossi SG, Rotundo RL, Yamada Y. Absence of acetylcholinesterase at the neuromuscular junctions of perlecannull

mice. Nat Neurosci 2002;5:119-23.

142. Jacobson C, Cote P, Rossi S, Rotundo R, Carbonetto S. The dystroglycan complex is necessary for stabilization of acetylcholine receptor

clusters at neuromuscular junctions and formation of the synaptic basement membrane. J Cell Biol 2001;152:435-50.

143. Wallace BG. Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix associated components of the

postsynaptic apparatus. J Neurosci 1989;9:1294-302.

144. Minic J, Chatonnet A, Krejci E, Molgó J. Butyrylcholinesterase, acetylcholinesterase activity and quantal transmitter release at normal

and acetylcholinesterase knockout mouse neuromuscular junctions. Br J Pharmacol 2003;138:177-87.

145. Kasprzak H, Salpeter MM. J. Neurosci 1985;5:951-5.

146. Anglister L, Stiles JR, Salpeter MM. Acetylcholinesterase density and turnover number at frog neuromuscular junctions, with modeling

of their role in synaptic function. Neuron 1994;12:783-94.


Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!