Dark Matter: Candidates, signals and LHC consequences - Infn

active.pd.infn.it

Dark Matter: Candidates, signals and LHC consequences - Infn

Dark Matter:

Candidates, signals and

LHC consequences

Yann Mambrini, LPT Orsay

Seminar Dipartimento di Fisica «G. Galilei», May 8th 2012, Universita de Padova


Outline


Outline

Introduction : portal models


Outline

Introduction : portal models

Z’ portal : direct, indirect and LHC searches


Outline

Introduction : portal models

Z’ portal : direct, indirect and LHC searches

Higgs portal : direct, indirect and LHC searches


Outline

Introduction : portal models

Z’ portal : direct, indirect and LHC searches

Higgs portal : direct, indirect and LHC searches

Higgs searches : LHC as a dark matter detector


Outline

Introduction : portal models

Z’ portal : direct, indirect and LHC searches

Higgs portal : direct, indirect and LHC searches

Higgs searches : LHC as a dark matter detector

Conclusion and prospects


Astroparticle


Astroparticle

3 different scales : particle (pb), Astro (light years), Cosmo (Hubble time)


Astroparticle

3 different scales : particle (pb), Astro (light years), Cosmo (Hubble time)

3 different philosophies/visions of physics


Astroparticle

3 different scales : particle (pb), Astro (light years), Cosmo (Hubble time)

3 different philosophies/visions of physics

Accelerators are made by physicists for physicists whereas Universe was made

by ? for ?


Astroparticle

3 different scales : particle (pb), Astro (light years), Cosmo (Hubble time)

3 different philosophies/visions of physics

Accelerators are made by physicists for physicists whereas Universe was made

by ? for ?

LHC provides 600 millions collisions per seconds whereas we just have 1 Universe :

we cannot reproduce the experiment to increase the luminosity!!!


Astroparticle

3 different scales : particle (pb), Astro (light years), Cosmo (Hubble time)

3 different philosophies/visions of physics

Accelerators are made by physicists for physicists whereas Universe was made

by ? for ?

LHC provides 600 millions collisions per seconds whereas we just have 1 Universe :

we cannot reproduce the experiment to increase the luminosity!!!

LHC provides his own background, whereas in the Universe, you have no idea of the

background as you always measure Signal+Background.


A little thermal history of the Universe


A little thermal history of the Universe

Boltzmann Equation

dn

dt


A little thermal history of the Universe

Boltzmann Equation

dn

dt

.

= -3 H n (H = R / R)


χ

χ

A little thermal history of the Universe

Boltzmann Equation

dn

dt

SM

SM

.

= -3 H n (H = R / R)


χ

χ

A little thermal history of the Universe

Boltzmann Equation

dn

dt

SM

SM

.

= -3 H n - < σ v> n (H = R / R)

2


χ

χ

A little thermal history of the Universe

Boltzmann Equation

dn

dt

SM

SM

.

= -3 H n - < σ v> n (H = R / R)

2

2

[ - neq ]


χ

χ

A little thermal history of the Universe

Boltzmann Equation

dn

dt

SM

SM

.

= -3 H n - < σ v> n (H = R / R)

2

2

[ - neq ]


χ

χ

A little thermal history of the Universe

Boltzmann Equation

dn

dt

SM

SM

.

= -3 H n - < σ v> n (H = R / R)

2

2

[ - neq ]

-27

3

-1

2 3.10 cm s

Ωh ~ ~ 0.1, decoupling at T ~ Mχ/20

< σv >


Astroparticle data..

[DD = Direct detection; IDγ = Indirect gamma; IDe+ = Indirect antimatter]


Astroparticle data..

[DD = Direct detection; IDγ = Indirect gamma; IDe+ = Indirect antimatter]

DAMA + DAMA/LIBRA : DD ; 5-20 GeV WIMP


Astroparticle data..

[DD = Direct detection; IDγ = Indirect gamma; IDe+ = Indirect antimatter]

DAMA + DAMA/LIBRA : DD ; 5-20 GeV WIMP

EGRET : IDγ ; 40-100 GeV WIMP

INTEGRAL : IDe+ ; 2-5 MeV DM

HEAT : IDe+ ; 100 GeV DM

HESS : IDγ ; > 15 TeV DM

PAMELA + FERMI : IDe+ ; 100 GeV or > 5 TeV DM

CDMS : DD ; 10-100 GeV WIMP

CoGENT : DD ; 6-15 GeV WIMP

CRESST : DD ; 10-20 GeV WIMP


Astroparticle data..

[DD = Direct detection; IDγ = Indirect gamma; IDe+ = Indirect antimatter]

DAMA + DAMA/LIBRA : DD ; 5-20 GeV WIMP

EGRET : IDγ ; 40-100 GeV WIMP

INTEGRAL : IDe+ ; 2-5 MeV DM

HEAT : IDe+ ; 100 GeV DM

Observation of a line

HESS : IDγ ; > 15 TeV DM

at 130 GeV 2.2-3.3 σ ??

Weniger 1204.2797

PAMELA + FERMI : IDe+ ; 100 GeV or > 5 TeV DM

Tempel et al 1205.1045

CDMS : DD ; 10-100 GeV WIMP

CoGENT : DD ; 6-15 GeV WIMP

CRESST : DD ; 10-20 GeV WIMP


Direct detection : principle


χ

U

H

χ

U

NUCLEUS

Direct detection : principle


χ

U

H

NUCLEUS

χ

U

Direct detection : principle

XENON (1 evt per kg per year) : 10 kg – 100kg – 1T


Direct detection : signals


Direct detection : signals

DAMA modulation


CoGeNT

Direct detection : signals

DAMA modulation

Germanium detector with extremely low threshold of 0.4 keVee

CoGENT signal

exponential rise of events

at low energies

claim that it cannot be

electronic noise

Aalseth et al., 1002.4703


CoGeNT

Direct detection : signals

DAMA modulation

Germanium detector with extremely low threshold of 0.4 keVee

CoGENT signal CoGENT + DAMA

exponential rise of events

at low energies

claim that it cannot be

electronic noise

Aalseth et al., 1002.4703


CoGeNT

Direct detection : signals

DAMA modulation

Germanium detector with extremely low threshold of 0.4 keVee

CoGENT signal CoGENT + DAMA

exponential rise of events

at low energies

claim that it cannot be

electronic noise

Aalseth et al., 1002.4703

CoGENT modulation


CoGeNT

Direct detection : signals

DAMA modulation

Germanium detector with extremely low threshold of 0.4 keVee

CoGENT signal CoGENT + DAMA

exponential rise of events

at low energies

claim that it cannot be

electronic noise

Aalseth et al., 1002.4703

CoGENT modulation

CRESST Signal


Constraints in «portal like» models


Constraints in «portal like» models

DM

DM

WMAP : σv ~ 10-26 cm3 s-1

Mediator

Mh

δ

key of the portal

SM

SM


Constraints in «portal like» models

DM

DM

WMAP : σv ~ 10-26 cm3 s-1

Mediator

Mh

δ

key of the portal

SM

SM

Mediator can be mater fields

(Higgs, squarks..) or generated

by symmetries (Z’..)


Constraints in «portal like» models

DM

DM

WMAP : σv ~ 10-26 cm3 s-1

Mediator

Mh

δ

key of the portal

SM

SM

σDM-SM ~ 10-36 cm2

=> excess in DD exp.

Mediator can be mater fields

(Higgs, squarks..) or generated

by symmetries (Z’..)

DM

Mh

SM

DM

δ

SM


Constraints in «portal like» models

DM

DM

WMAP : σv ~ 10-26 cm3 s-1

Mediator

Mh

δ

key of the portal

SM

SM

Except around the pole : 2MDM = Mh : small δ to respect WMAP

=> small σDM-SM

σDM-SM ~ 10-36 cm2

=> excess in DD exp.

Mediator can be mater fields

(Higgs, squarks..) or generated

by symmetries (Z’..)

DM

Mh

SM

DM

δ

SM


h

Constraints in «portal like» models

DM

DM

WMAP : σv ~ 10-26 cm3 s-1

Mediator

Mh

δ

key of the portal

SM

SM

Except around the pole : 2MDM = Mh : small δ to respect WMAP

δ

DM

DM

=> small σDM-SM

σDM-SM ~ 10-36 cm2

=> excess in DD exp.

Mediator can be mater fields

(Higgs, squarks..) or generated

by symmetries (Z’..)

DM

Mh

SM

DM

δ

SM


h

Constraints in «portal like» models

DM

DM

WMAP : σv ~ 10-26 cm3 s-1

Mediator

Mh

δ

key of the portal

SM

SM

Except around the pole : 2MDM = Mh : small δ to respect WMAP

δ

DM

DM

=> small σDM-SM

σDM-SM ~ 10-36 cm2

=> excess in DD exp.

Mediator can be mater fields

(Higgs, squarks..) or generated

by symmetries (Z’..)

DM

Mh

SM

DM

δ

SM

If direct detection experiments see nothing

=> δ < δmax

=> Γ (h -> DM DM) < Γmax

=> h is invisible at LHC


h

Constraints in «portal like» models

DM

DM

WMAP : σv ~ 10-26 cm3 s-1

Mediator

Mh

δ

key of the portal

SM

SM

Except around the pole : 2MDM = Mh : small δ to respect WMAP

δ

DM

DM

=> small σDM-SM

LHC/ILC

WMAP

σDM-SM ~ 10-36 cm2

=> excess in DD exp.

Mediator can be mater fields

(Higgs, squarks..) or generated

by symmetries (Z’..)

DM

Mh

SM

DM

δ

SM

If direct detection experiments see nothing

=> δ < δmax

=> Γ (h -> DM DM) < Γmax

=> h is invisible at LHC

XENON


Y. Mambrini

2010

Gauge extension: Extra UD(1)


Y. Mambrini

2010

Gauge extension: Extra UD(1)

SU(3)*SU(2)*U(1)*UD(1)


Y. Mambrini

2010

Gauge extension: Extra UD(1)

SU(3)*SU(2)*U(1)*UD(1)

gμ Wμ Yμ Xμ


Y. Mambrini

2010

Gauge extension: Extra UD(1)

SU(3)*SU(2)*U(1)*UD(1)

gμ Wμ Yμ Xμ

L’ = -1/4 F Y μν FYμν -1/4 F X μν FXμν + δ/2 F Y μν FXμν


Y. Mambrini

2010

Gauge extension: Extra UD(1)

SU(3)*SU(2)*U(1)*UD(1)

gμ Wμ Yμ Xμ

L’ = -1/4 F Y μν FYμν -1/4 F X μν FXμν + δ/2 F Y μν FXμν

SM states Hybrid states

Dark brane

SM brane

Dark states


Y. Mambrini

2010

Gauge extension: Extra UD(1)

SU(3)*SU(2)*U(1)*UD(1)

gμ Wμ Yμ Xμ

DM Z’µ

L’ = -1/4 F Y μν FYμν -1/4 F X μν FXμν + δ/2 F Y μν FXμν

SM states Hybrid states

Dark brane

SM brane

Dark states

DM

δ

Z ν

SM

SM

WMAP


Y. Mambrini

δ

2010

Gauge extension: Extra UD(1)

DM Z’µ

L’ = -1/4 F Y μν FYμν -1/4 F X μν FXμν + δ/2 F Y μν FXμν

&' )

&' (

&'


!

'

SU(3)*SU(2)*U(1)*UD(1)

gμ Wμ Yμ Xμ

SM states Hybrid states

#123

Dark brane

4++++5+&'+-./

0

1*62

"#$%$

&' )' (' !'

MDM = 10 GeV

SM brane

Dark states

*+++,-./0

ZD

Mx

DM

δ

Z ν

SM

SM

WMAP


Y. Mambrini

δ

2010

Gauge extension: Extra UD(1)

DM Z’µ

L’ = -1/4 F Y μν FYμν -1/4 F X μν FXμν + δ/2 F Y μν FXμν

&' )

&' (

&'


!

'

SU(3)*SU(2)*U(1)*UD(1)

gμ Wμ Yμ Xμ

SM states Hybrid states

#123

Dark brane

4++++5+&'+-./

0

1*62

"#$%$

&' )' (' !'

MDM = 10 GeV

SM brane

Dark states

*+++,-./0

ZD

Mx

DM

δ

Z ν

SM

SM

DM

WMAP

δ

q

DM

Z’ µ

Z ν

CoGENT

q


Y. Mambrini

δ

2010

Gauge extension: Extra UD(1)

DM Z’µ

L’ = -1/4 F Y μν FYμν -1/4 F X μν FXμν + δ/2 F Y μν FXμν

&' )

&' (

&'


!

'

SU(3)*SU(2)*U(1)*UD(1)

gμ Wμ Yμ Xμ


0

10

SM states Hybrid states

#123

Dark brane

4++++5+&'+-./

1*62

"#$%$

&' )' (' !'

MDM = 10 GeV

SM brane

Dark states

*+++,-./0

ZD

Mx

σ

p

SI

−37

−39

10

−41

10

−2 (cm )

Leffmed

DM

Leffmin

δ

Z ν

5 10 15

XENON

CDMS−Si

CRESST I

Leffzep

ψ

0

SM

SM

m (GeV)

DM

WMAP

δ

q

DM

Z’ µ

Z ν

CoGENT

q


Y. Mambrini

δ

2010

Gauge extension: Extra UD(1)

DM Z’µ

L’ = -1/4 F Y μν FYμν -1/4 F X μν FXμν + δ/2 F Y μν FXμν

&' )

&' (

&'


!

'

SU(3)*SU(2)*U(1)*UD(1)

gμ Wμ Yμ Xμ


0

10

SM states Hybrid states

#123

Dark brane

4++++5+&'+-./

1*62

"#$%$

&' )' (' !'

MDM = 10 GeV

SM brane

Dark states

*+++,-./0

ZD

Mx

σ

p

SI

−37

−39

10

−41

10

−2 (cm )

Leffmed

DM

Leffmin

δ

Z ν

5 10 15

XENON

CDMS−Si

CRESST I

Leffzep

ψ

0

δ

SM

SM

−2

10

−3

10

10

−4

m (GeV)

DM

WMAP

CoGENT

CRESST

δ

XENON Leffzep excluded

q

DM

Z’ µ

Z ν

DAMA no channeling

DAMA channeling

XENON Leffmin + CDMS−Si excluded

10 20 30

CoGENT

40

q

M (GeV)

ZD


Constraint from Higgs physics?


H

H

Constraint from Higgs physics?

δ

δ

δ

Z’ µ

Z ν

Z’ µ

Z’ ν


H

H

Constraint from Higgs physics?

δ

δ

δ

Z’ µ

Z ν

Z’ µ

Z’ ν

α δ 2

α δ 4


A monochromatic smoking gun signal

Kumar,Wells 08

Anastopoulos, Bianchi, Dudas, Kiritsis 06

Anastopolos, Fucito, Lionetto, Pradisi, Racioppi, Stanev 08

Dudas, YM, Pokorski, Romagnoni 09 + 12

YM 09


A monochromatic smoking gun signal

Z’

µ

Heavy Fermions (Ψh)

Y

ν

Y

ρ

Kumar,Wells 08

Anastopoulos, Bianchi, Dudas, Kiritsis 06

Anastopolos, Fucito, Lionetto, Pradisi, Racioppi, Stanev 08

Dudas, YM, Pokorski, Romagnoni 09 + 12

YM 09


A monochromatic smoking gun signal

Z’

Ψ

ΨSM

Ψi

µ

Heavy Fermions (Ψh)

U(1) U’(1)

XSM 0

Xi X’i

Ψh 0 X’h

Y

ν

Y

ρ

Kumar,Wells 08

Anastopoulos, Bianchi, Dudas, Kiritsis 06

Anastopolos, Fucito, Lionetto, Pradisi, Racioppi, Stanev 08

Dudas, YM, Pokorski, Romagnoni 09 + 12

YM 09


A monochromatic smoking gun signal

Z’

Ψ

ΨSM

Ψi

µ

Heavy Fermions (Ψh)

U(1) U’(1)

XSM 0

Xi X’i

Ψh 0 X’h

Y

ν

Y

ρ

U’(1)

U’(1)

L L µνρσ

Y Y

+ λ ε F F ρσ

µν

Kumar,Wells 08

Anastopoulos, Bianchi, Dudas, Kiritsis 06

Anastopolos, Fucito, Lionetto, Pradisi, Racioppi, Stanev 08

Dudas, YM, Pokorski, Romagnoni 09 + 12

YM 09


A monochromatic smoking gun signal

Z’

Ψ

ΨSM

Ψi

µ

Heavy Fermions (Ψh)

U(1) U’(1)

XSM 0

Xi X’i

Ψh 0 X’h

Y

ν

Y

ρ

U’(1)

U’(1)

Z’

L L µνρσ

µ

Γ µνρ

Y Y

+ λ ε F F ρσ

µν

Y

Y

ν

ρ

+ L’

Kumar,Wells 08

Anastopoulos, Bianchi, Dudas, Kiritsis 06

Anastopolos, Fucito, Lionetto, Pradisi, Racioppi, Stanev 08

Dudas, YM, Pokorski, Romagnoni 09 + 12

YM 09


A monochromatic smoking gun signal

Z’

Ψ

ΨSM

Ψi

µ

Heavy Fermions (Ψh)

U(1) U’(1)

XSM 0

Xi X’i

Ψh 0 X’h

Y

ν

Y

ρ

U’(1)

U’(1)

Z’

L L µνρσ

µ

Γ µνρ

Y Y

+ λ ε F F ρσ

µν

Y

Y

ν

ρ

+ L’

Kumar,Wells 08

Anastopoulos, Bianchi, Dudas, Kiritsis 06

Anastopolos, Fucito, Lionetto, Pradisi, Racioppi, Stanev 08

Dudas, YM, Pokorski, Romagnoni 09 + 12

YM 09

L = F Yµν F Y µν – (d µ a – M X X µ )2 – i Ψ h γ µ D µ Ψ h

L’ = B a ε µνρσ F Y µν FY ρσ + C εµνρσ X µ Y ν F Y ρσ


A monochromatic smoking gun signal

Z’

Ψ

ΨSM

Ψi

µ

Heavy Fermions (Ψh)

U(1) U’(1)

XSM 0

Xi X’i

Ψh 0 X’h

Y

ν

Y

ρ

U’(1)

U’(1)

Z’

L L µνρσ

µ

Γ µνρ

Y Y

+ λ ε F F ρσ

µν

Y

Y

ν

ρ

+ L’

L = F Yµν F Y µν – (d µ a – M X X µ )2 – i Ψ h γ µ D µ Ψ h

L’ = B a ε µνρσ F Y µν FY ρσ + C εµνρσ X µ Y ν F Y ρσ

δ L’ = - δ ( Z’

)

µ

Kumar,Wells 08

Anastopoulos, Bianchi, Dudas, Kiritsis 06

Anastopolos, Fucito, Lionetto, Pradisi, Racioppi, Stanev 08

Dudas, YM, Pokorski, Romagnoni 09 + 12

YM 09

Y

ν

Y

ρ


A monochromatic smoking gun signal

Z’

Ψ

ΨSM

Ψi

µ

Heavy Fermions (Ψh)

U(1) U’(1)

XSM 0

Xi X’i

Ψh 0 X’h

Y

ν

Y

ρ

U’(1)

U’(1)

Z’

L L µνρσ

µ

Γ µνρ

Y Y

+ λ ε F F ρσ

µν

Y

Y

ν

ρ

+ L’

L = F Yµν F Y µν – (d µ a – M X X µ )2 – i Ψ h γ µ D µ Ψ h

L’ = B a ε µνρσ F Y µν FY ρσ + C εµνρσ X µ Y ν F Y ρσ

δ L’ = - δ ( Z’

)

µ

Z’

Z’

Kumar,Wells 08

Anastopoulos, Bianchi, Dudas, Kiritsis 06

Anastopolos, Fucito, Lionetto, Pradisi, Racioppi, Stanev 08

Dudas, YM, Pokorski, Romagnoni 09 + 12

YM 09

Z ν

γ ρ

Z’

Z ν

Z ρ

Y

ν

Y

ρ

γ ν

γ ρ


A monochromatic smoking gun signal

Z’

Ψ

ΨSM

Ψi

µ

Heavy Fermions (Ψh)

U(1) U’(1)

XSM 0

Xi X’i

Ψh 0 X’h

Y

ν

Y

ρ

U’(1)

U’(1)

Z’

L L µνρσ

µ

Γ µνρ

Y Y

+ λ ε F F ρσ

µν

Y

Y

ν

ρ

+ L’

L = F Yµν F Y µν – (d µ a – M X X µ )2 – i Ψ h γ µ D µ Ψ h

L’ = B a ε µνρσ F Y µν FY ρσ + C εµνρσ X µ Y ν F Y ρσ

δ L’ = - δ ( Z’

)

µ

Z’

Z’

Kumar,Wells 08

Anastopoulos, Bianchi, Dudas, Kiritsis 06

Anastopolos, Fucito, Lionetto, Pradisi, Racioppi, Stanev 08

Dudas, YM, Pokorski, Romagnoni 09 + 12

YM 09

Z ν

γ ρ

Z’

Z ν

Z ρ

Y

ν

Y

ρ

γ ν

γ ρ


Results


DM

DM

DM

DM

gD

gD

Z’

α1

Z/Z

Z / γ

Z’

Z’

Results


DM

DM

DM

DM

gD

gD

Z’

Z/Z

Z / γ

Z’

Z’

Results

dN/dE

α1 2

10 12

10 14

10 16

10

18

g =0.6

D

1 =0.05

E γ = M χ [1 – (M Z /2M χ ) 2 ]

m =144.5

GeV

MZ = 120 GeV

h = 0.104

50 100 150

E (GeV)


DM

DM

DM

DM

gD

gD

Z’

Z/Z

Z / γ

Z’

Z’

Results

dN/dE

α1 2

10 12

10 14

10 16

10

18

g =0.6

D

1 =0.05

E γ = M χ [1 – (M Z /2M χ ) 2 ]

m =144.5

GeV

MZ = 120 GeV

h = 0.104

50 100 150

E (GeV)


DM

DM

DM

DM

gD

gD

Z’

Z/Z

Z / γ

Z’

Z’

Results

dN/dE

α1 2

10 12

10 14

10 16

10

18

g =0.6

D

1 =0.05

m =144.5 GeV


E γ = M χ [1 – (M Z /2M χ ) 2 ]

MZ = 120 GeV

h = 0.104

Observation of a line

at 130 GeV 2.2-3.3 σ ??

Weniger 1204.2797

50 100 150

E (GeV)

Tempel et al 1205.1045


DM

DM

DM

DM

gD

gD

Z’

Z/Z

Z / γ

Z’

Z’

Results

dN/dE

α1 2

10 12

10 14

10 16

10

18

g =0.6

D

1 =0.05

m =144.5 GeV


E γ = M χ [1 – (M Z /2M χ ) 2 ]

MZ = 120 GeV

h = 0.104

Observation of a line

at 130 GeV 2.2-3.3 σ ??

Weniger 1204.2797

50 100 150

E (GeV)

Tempel et al 1205.1045


DM

DM

DM

DM

gD

gD

Z’

Z/Z

Z / γ

Z’

Z’

Results

dN/dE

α1 2

10 12

10 14

10 16

10

18

g =0.6

D

1 =0.05

m =144.5 GeV


E γ = M χ [1 – (M Z /2M χ ) 2 ]

MZ = 120 GeV

h = 0.104

Observation of a line

at 130 GeV 2.2-3.3 σ ??

Weniger 1204.2797

50 100 150

E (GeV)

Tempel et al 1205.1045


DM

DM

DM

DM

gD

gD

Z’

Z/Z

Z / γ

Z’

Z’

Results

dN/dE

α1 2

10 12

10 14

10 16

10

18

g =0.6

D

m =144.5 GeV


WMAP + fitting monochromatic line

1 =0.05

E γ = M χ [1 – (M Z /2M χ ) 2 ]

MZ = 120 GeV

h = 0.104

Observation of a line

at 130 GeV 2.2-3.3 σ ??

Weniger 1204.2797

50 100 150

E (GeV)

Tempel et al 1205.1045


DM

DM

DM

DM

gD

gD

Z’

Z/Z

Z / γ

Z’

Z’

Results

dN/dE

α1 2

10 12

10 14

10 16

10

18

g =0.6

D

1 =0.05

m =144.5 GeV


h = 0.104

MZ = 120 GeV

Higgs in Space

DM

DM

WMAP + fitting monochromatic line

E γ = M χ [1 – (M Z /2M χ ) 2 ]

Observation of a line

at 130 GeV 2.2-3.3 σ ??

Weniger 1204.2797

50 100 150

E (GeV)

Tempel et al 1205.1045

Z’

Top quark

H

[Jackson, Servant, Shaughnessz, Tait, Taoso 09]

γ


Y. M.

2011

The Higgs portal


Y. M.

2011

The Higgs portal

To build the simplest gauge invariant extension of the SM


Y. M.

2011

L = LSM + 1

The Higgs portal

To build the simplest gauge invariant extension of the SM

2 ∂µS∂ µ S − λS

4 S4 − µ2 S

2 S2 − λHS

4 S2 H † H − κ1

2 H† HS − κ3

3 S3


Y. M.

2011

L = LSM + 1

The Higgs portal

To build the simplest gauge invariant extension of the SM

2 ∂µS∂ µ S − λS

4 S4 − µ2 S

2 S2 − λHS

4 S2 H † H − κ1

2 H† HS − κ3

3 S3

Stability of S as DM candidate:

HHS -> HS after SU(2)*U(1)

breaking

-> Higgs mixes with S

-> S -> ff possible and is thus not

a viable DM candidate.

Solved by imposing a Z2 symmetry

S-> -S


Y. M.

2011

L = LSM + 1

The Higgs portal

To build the simplest gauge invariant extension of the SM

2 ∂µS∂ µ S − λS

4 S4 − µ2 S

2 S2 − λHS

4 S2 H † H − κ1

2 H† HS − κ3

3 S3

No phenomenology (=0)

Stability of S as DM candidate:

HHS -> HS after SU(2)*U(1)

breaking

-> Higgs mixes with S

-> S -> ff possible and is thus not

a viable DM candidate.

Solved by imposing a Z2 symmetry

S-> -S


S

S

Y. M.

2011

L = LSM + 1

The Higgs portal

To build the simplest gauge invariant extension of the SM

H

2 ∂µS∂ µ S − λS

4 S4 − µ2 S

2 S2 − λHS

4 S2 H † H − κ1

2 H† HS − κ3

3 S3

No phenomenology (=0)

SM

SM

Stability of S as DM candidate:

HHS -> HS after SU(2)*U(1)

breaking

-> Higgs mixes with S

-> S -> ff possible and is thus not

a viable DM candidate.

Solved by imposing a Z2 symmetry

S-> -S


Combining direct detection constraint, WMAP

and a 125 GeV Higgs


A. Djouadi,

O. Lebedev,

Y. Mambrini,

J. Quevillon

1112.3299

Vectorial and fermionic dark matter


A. Djouadi,

O. Lebedev,

Y. Mambrini,

J. Quevillon

1112.3299

Vectorial and fermionic dark matter

LS = LSM − 1

2 m2 SS 2 − 1

4 λSS 4 − 1

4 λhSSH † HS 2

LV = LSM + 1

2 m2 V VµV µ + 1

4 λV (VµV µ ) 2 + 1

4 λhV V H † HVµV µ

Lf = LSM − 1

2 mf ¯χχ − 1

4

λhff

Λ H† H ¯χχ


How to see an invisible 125 GeV Higgs at LHC?

A. Djouadi, A. Falkowski, Y. M.,

J. Quevillon 2012


How to see an invisible 125 GeV Higgs at LHC?

A. Djouadi, A. Falkowski, Y. M.,

G µ

G ν

J. Quevillon 2012

Monojet

H

G µ

S

S


Conclusion


Conclusion

Portal-like models are very predictive


Conclusion

Portal-like models are very predictive

Scalar vectorial and fermionic DM will soon be excluded by

combined dark/LHC analysis: necessity of another portal-like

particle.


Conclusion

Portal-like models are very predictive

Scalar vectorial and fermionic DM will soon be excluded by

combined dark/LHC analysis: necessity of another portal-like

particle.

Complementarity with LHC is fundamental in any analysis


Conclusion

Portal-like models are very predictive

Scalar vectorial and fermionic DM will soon be excluded by

combined dark/LHC analysis: necessity of another portal-like

particle.

Several models could be excluded by the end of next year

Complementarity with LHC is fundamental in any analysis


Conclusion

Portal-like models are very predictive

Scalar vectorial and fermionic DM will soon be excluded by

combined dark/LHC analysis: necessity of another portal-like

particle.

Several models could be excluded by the end of next year

Complementarity with LHC is fundamental in any analysis

Can be applied to any kind of SM extensions (SUSY, KK..)

More magazines by this user
Similar magazines