Views
5 years ago

BOUWSTENEN 136 - Technische Universiteit Eindhoven

BOUWSTENEN 136 - Technische Universiteit Eindhoven

BOUWSTENEN 136 - Technische Universiteit

Influence of temperature on concrete beams strengthened in flexure with CFRP Ernst-Lucas Klamer / faculty of architecture building and planning tu eindhoven bouwstenen 136

  • Page 2 and 3: INFLUENCE OF TEMPERATURE ON CONCRET
  • Page 4 and 5: INFLUENCE OF TEMPERATURE ON CONCRET
  • Page 6: Constitution of the Doctoral Commit
  • Page 9 and 10: The help of several students of bot
  • Page 11 and 12: Additionally to the small scale bon
  • Page 13 and 14: Andere effecten van temperatuur die
  • Page 15 and 16: 3 Effect of temperature on FRP stre
  • Page 17 and 18: 6 Finite element analyses of bond s
  • Page 19 and 20: 9 Discussion ......................
  • Page 21 and 22: Appendix G. Full scale experiments
  • Page 23 and 24: fxtm Mean tensile strength [N/mm²]
  • Page 25 and 26: xxiv
  • Page 27 and 28: Despite the amount of research that
  • Page 29 and 30: Even in the moderate climate of the
  • Page 31 and 32: The fibers in FRP reinforcement are
  • Page 33 and 34: 2.2.3 Externally bonded FRP reinfor
  • Page 35 and 36: The flexible fabrics are bonded to
  • Page 37 and 38: Like for externally bonded FRP rein
  • Page 39 and 40: 2.4.1 Flexural failure of a beam Th
  • Page 41 and 42: 2.4.3.1 Debonding at flexural crack
  • Page 43 and 44: The shear stress that has to be tra
  • Page 45 and 46: A simpler model is proposed by Blas
  • Page 47 and 48: Shear stress [N/mm²] 9 8 7 6 5 4 3
  • Page 49 and 50: Whether concrete cover rip‐off or
  • Page 51 and 52: The shear resistance at the plate
  • Page 53 and 54:

    3 Effect of temperature on FRP stre

  • Page 55 and 56:

    load 30 clamps FRP laminate (1.2 mm

  • Page 57 and 58:

    Failure load [kN] 20 50 65 Temperat

  • Page 59 and 60:

    In the experiments, three different

  • Page 61 and 62:

    3.4.2 Externally bonded CFRP Baumer

  • Page 63 and 64:

    The structural safety of the bridge

  • Page 65 and 66:

    The normal stresses in the FRP and

  • Page 67 and 68:

    4 Effect of temperature on the mate

  • Page 69 and 70:

    0.003 T Model Code 1990 (CEB 1993)

  • Page 71 and 72:

    For wet concrete, the effect of tem

  • Page 73 and 74:

    0.004 T Eurocode 2 part 1‐2 (CEN

  • Page 75 and 76:

    Relative Young's modulus E s(T)/E s

  • Page 77 and 78:

    4.4.2.2 Matrix material Polymer mat

  • Page 79 and 80:

    Relative tensile strength f ft(T)/f

  • Page 81 and 82:

    Relative Young's modulus E ft(T)/E

  • Page 83 and 84:

    A testing method called ESPI was us

  • Page 85 and 86:

    Table 4‐7: Sikadur‐30 material

  • Page 87 and 88:

    Young's Modulus E a [ N/mm² ] 1400

  • Page 89 and 90:

    The specimens were again placed in

  • Page 91 and 92:

    5.2 Mode I bond fracture 5.2.1 Gene

  • Page 93 and 94:

    Bond strength [N/mm²] ‐20 0 20 4

  • Page 95 and 96:

    After sandblasting of the concrete

  • Page 97 and 98:

    At 20°C, there was no significant

  • Page 99 and 100:

    Thermal strains in the concrete and

  • Page 101 and 102:

    At low load levels, the highest str

  • Page 103 and 104:

    The specimens were tested in a 100

  • Page 105 and 106:

    It is again expected that the decre

  • Page 107 and 108:

    Strains developed in an almost simi

  • Page 109 and 110:

    5.4.5 Strain development during loa

  • Page 111 and 112:

    86 v shear crack concrete adhesive

  • Page 113 and 114:

    Debonding load [kN] 120 100 80 60 4

  • Page 115 and 116:

    6 Finite element analyses of bond s

  • Page 117 and 118:

    92 (a) F F 75 mm 300 mm 25 mm F 150

  • Page 119 and 120:

    The applied temperature dependent m

  • Page 121 and 122:

    Table 6‐2: Material properties of

  • Page 123 and 124:

    The main variable in this model is

  • Page 125 and 126:

    where kGc E(T) c 2(1 )h kGa E(T

  • Page 127 and 128:

    It can be concluded that the differ

  • Page 129 and 130:

    It can be seen that, at the end of

  • Page 131 and 132:

    6.5 Three‐point bending tests 6.5

  • Page 133 and 134:

    Load [kN] Load [kN] 35 30 25 20 15

  • Page 135 and 136:

    The shear stresses in the concrete

  • Page 137 and 138:

    6.5.6 Temperature effects on the fa

  • Page 139 and 140:

    6.6.3 Material properties For the c

  • Page 141 and 142:

    7 Effect of temperature on full sca

  • Page 143 and 144:

    After sandblasting and cleaning of

  • Page 145 and 146:

    7.3 Material properties Due to the

  • Page 147 and 148:

    It can be seen that there is a simi

  • Page 149 and 150:

    7.5 Loading of the beams 7.5.1 Beam

  • Page 151 and 152:

    At 20°C and 50°C, debonding propa

  • Page 153 and 154:

    7.5.2 Beam B The beams B were stren

  • Page 155 and 156:

    The normal strain distribution in t

  • Page 157 and 158:

    The analytical debonding load that

  • Page 159 and 160:

    Failure of this beam is closely rel

  • Page 161 and 162:

    All beams D showed significant more

  • Page 163 and 164:

    7.6 Conclusions In the full scale e

  • Page 165 and 166:

    Table 8‐1: Concrete grade and geo

  • Page 167 and 168:

    The direction of the principle stre

  • Page 169 and 170:

    8.3.2 Steel reinforcement, adhesive

  • Page 171 and 172:

    8.4 Results of the finite element a

  • Page 173 and 174:

    The crack pattern at the maximum lo

  • Page 175 and 176:

    In the last load step (99 kN), the

  • Page 177 and 178:

    At the failure load (111 kN), the a

  • Page 179 and 180:

    With separate analyses, in which th

  • Page 181 and 182:

    Normal stress [N/mm²] 1600 1400 12

  • Page 183 and 184:

    Cracks in the concrete occurred ove

  • Page 185 and 186:

    8.4.3.2 Comparison of the analyses

  • Page 187 and 188:

    At 20°C, in the last, non‐conver

  • Page 189 and 190:

    Figure 8‐23: Crack pattern at the

  • Page 191 and 192:

    Load [kN] Load [kN] 160 140 120 100

  • Page 193 and 194:

    Normal stress [N/mm²] 700 600 500

  • Page 195 and 196:

    Figure 8‐30: Concrete cover rip

  • Page 197 and 198:

    Table 8‐8: Maximum load found for

  • Page 199 and 200:

    8.5 Summary All full scale beams th

  • Page 201 and 202:

    9 Discussion 9.1 Introduction The d

  • Page 203 and 204:

    9.2 The development of thermal stre

  • Page 205 and 206:

    9.2.3 Point B: At the plate‐end F

  • Page 207 and 208:

    Shear stresses are directly related

  • Page 209 and 210:

    Strain [μm/m] 2.000 1.500 1.000 50

  • Page 211 and 212:

    9.3.4 Zone C: Outside the anchorage

  • Page 213 and 214:

    At around this temperature, a chang

  • Page 215 and 216:

    It was expected that the type of de

  • Page 217 and 218:

    As explained, all the described eff

  • Page 219 and 220:

    The experiments, however, also show

  • Page 221 and 222:

    In case the CFRP is exposed to high

  • Page 223 and 224:

    198

  • Page 225 and 226:

    CEB. CEB Bulletin d'information nr.

  • Page 227 and 228:

    fib. fib Bulletin 14. Externally bo

  • Page 229 and 230:

    Morgan, P. Carbon fibers and their

  • Page 231 and 232:

    Spagnolo, G. S. and Ambrosini, D. "

  • Page 233 and 234:

    208

  • Page 235 and 236:

    Appendix A. Development of thermal

  • Page 237 and 238:

    The general solution of equation (A

  • Page 239 and 240:

    Appendix B. Double‐lap shear test

  • Page 241 and 242:

    Load [kN] Load [kN] Load [kN] 60 50

  • Page 243 and 244:

    B.4.2 Thermal strains after heating

  • Page 245 and 246:

    Load [kN] Load [kN] Load [kN] 35 30

  • Page 247 and 248:

    C.2.2 Thermal strains after heating

  • Page 249 and 250:

    Appendix E. Finite element analyses

  • Page 251 and 252:

    E.2 Three‐point bending tests E.2

  • Page 253 and 254:

    Appendix F. Material properties ful

  • Page 255 and 256:

    Appendix G. Full scale experiments

  • Page 257 and 258:

    G.2 Thermal shear stresses in the c

  • Page 259 and 260:

    The displacement at midspan is comp

  • Page 261 and 262:

    H.3 Yielding of the tensile steel r

  • Page 263 and 264:

    Table H‐5: Results of the cross

  • Page 265 and 266:

    I.2 Debonding at shear cracks Matth

  • Page 267 and 268:

    For an anchorage length smaller tha

  • Page 269 and 270:

    I.5 Overview Table I‐5: Maximum l

  • Page 271 and 272:

    Note that this definition of the an

  • Page 273 and 274:

    248

  • Page 275 and 276:

    250

Introduction to - Technische Universiteit Eindhoven
Untitled - Technische Universiteit Eindhoven
Untitled - Technische Universiteit Eindhoven
Workflow Healthcare - Technische Universiteit Eindhoven
bouwstenen 140 - Technische Universiteit Eindhoven
Krist Vaesen - Technische Universiteit Eindhoven
Vestibular Exploration - Technische Universiteit Eindhoven
Acting with Artefacts - Technische Universiteit Eindhoven
an update - Technische Universiteit Eindhoven
P - Technische Universiteit Eindhoven
Ingenieur en preventie - Technische Universiteit Eindhoven
Dendritic MRI contrast agents - Technische Universiteit Eindhoven
Design for Peripheral Interaction - Technische Universiteit Eindhoven
Electrifying Europe - Technische Universiteit Eindhoven
Biomedical Engineering - Technische Universiteit Eindhoven
Self-evaluation - Technische Universiteit Eindhoven
Electrifying Europe - Technische Universiteit Eindhoven
SMPE/e - Technische Universiteit Eindhoven
House style guide - Technische Universiteit Eindhoven
Automotive Systems Design - Technische Universiteit Eindhoven
TU/e notebook program - Technische Universiteit Eindhoven
FNA Annual Report 2010 - Technische Universiteit Eindhoven
Building Europe on the Rails - Technische Universiteit Eindhoven
Uitnodiging Dam new - Technische Universiteit Eindhoven
COBRA Annual Report 2007 - Technische Universiteit Eindhoven
Education guide 'Eindhoven designs' - Technische Universiteit ...
4 | Do the Dutch Design Week - Technische Universiteit Eindhoven
Dr. Q. Yu M.Sc. - Jos Brouwers - Technische Universiteit Eindhoven
TU/e Academic Awards 2009 - Technische Universiteit Eindhoven
Untitled - Technische Universiteit Eindhoven